Science.gov

Sample records for active neutrino species

  1. Testing light sterile neutrino species with the Sun

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2012-07-01

    Several pieces of data seem to point towards new light sterile neutrino species. Here we show that the solar sector is able to provide stringent constraints on the most general schemes endowed with such new particles.

  2. Is there evidence for additional neutrino species from cosmology?

    NASA Astrophysics Data System (ADS)

    Feeney, Stephen M.; Peiris, Hiranya V.; Verde, Licia

    2013-04-01

    It has been suggested that recent cosmological and flavor-oscillation data favor the existence of additional neutrino species beyond the three predicted by the Standard Model of particle physics. We apply Bayesian model selection to determine whether there is indeed any evidence from current cosmological datasets for the standard cosmological model to be extended to include additional neutrino flavors. The datasets employed include cosmic microwave background temperature, polarization and lensing power spectra, and measurements of the baryon acoustic oscillation scale and the Hubble constant. We also consider other extensions to the standard neutrino model, such as massive neutrinos, and possible degeneracies with other cosmological parameters. The Bayesian evidence indicates that current cosmological data do not require any non-standard neutrino properties.

  3. Oscillation properties of active and sterile neutrinos and neutrino anomalies at short distances

    NASA Astrophysics Data System (ADS)

    Khruschov, V. V.; Fomichev, S. V.; Titov, O. A.

    2016-09-01

    A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal activeneutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilities for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a 2 type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.

  4. Earth matter effect on active-sterile neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Acero, Mario A.; Aguilar-Arevalo, Alexis A.; D'Olivo, J. C.

    2011-08-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some experimental observations. In a four-neutrino mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos taking into account the matter effect for a varying terrestrial density.

  5. Calorimetric method for determination of 51Cr neutrino source activity

    NASA Astrophysics Data System (ADS)

    Veretenkin, E. P.; Gavrin, V. N.; Danshin, S. N.; Ibragimova, T. V.; Kozlova, Yu. P.; Mirmov, I. N.

    2015-12-01

    Experimental study of nonstandard neutrino properties using high-intensity artificial neutrino sources requires the activity of the sources to be determined with high accuracy. In the BEST project, a calorimetric system for measurement of the activity of high-intensity (a few MCi) neutrino sources based on 51Cr with an accuracy of 0.5-1% is created. In the paper, the main factors affecting the accuracy of determining the neutrino source activity are discussed. The calorimetric system design and the calibration results using a thermal simulator of the source are presented.

  6. Neutrinos

    PubMed Central

    Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher

    1999-01-01

    Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (≈1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680

  7. Direct detection of relic active and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng

    2016-05-01

    Both active and sterile sub-eV neutrinos can form the cosmic neutrino background in the early Universe. We consider the beta-decaying (e.g., 3H) and EC-decaying (e.g., 163Ho) nuclei as the promising targets to capture relic neutrinos in the laboratory. We calculate the capture rates of relic electron neutrinos and antineutrinos against the corresponding beta decay or electron capture (EC) decay backgrounds in the (3+Ns) flavor mixing scheme, and discuss the future prospect in terms of the PTOLEMY project. We stress that such direct measurements of hot DM might not be hopeless in the long term.

  8. Active and sterile neutrino mass effects on beta decay spectra

    SciTech Connect

    Boillos, Juan Manuel; Moya de Guerra, Elvira

    2013-06-10

    We study the spectra of the emitted charged leptons in charge current weak nuclear processes to analyze the effect of neutrino masses. Standard active neutrinos are studied here, with masses of the order of 1 eV or lower, as well as sterile neutrinos with masses of a few keV. The latter are warm dark matter (WDM) candidates hypothetically produced or captured as small mixtures with the active neutrinos. We compute differential decay or capture rates spectra in weak charged processes of different nuclei ({sup 3}H, {sup 187}Re, {sup 107}Pd, {sup 163}Ho, etc) using different masses of both active and sterile neutrinos and different values of the mixing parameter.

  9. High-energy neutrinos from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectrum and high-energy neutrino background flux from photomeson production in active galactic nuclei (AGN) is calculated using the recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing high-energy particles. Collectively, AGN produce the dominant isotropic neutrino background between 10,000 and 10 to the 10th GeV, detectable with current instruments. AGN neutrinos should produce a sphere of stellar disruption which may explain the 'broad-line region' seen in AGN.

  10. Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, K.; Murdin, P.

    2000-11-01

    Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...

  11. Neutrino observations from the Sudbury Neutrino Observatory

    SciTech Connect

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O'Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  12. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  13. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  14. High energy neutrinos from radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Mészáros, Peter

    2004-12-01

    Most active galactic nuclei (AGN) lack prominent jets, and show modest radio emission and significant x-ray emission which arises mainly from the galactic core, very near the central black hole. We use a quantitative scenario of such core-dominated radio-quiet AGN, which attributes a substantial fraction of the x-ray emission to the presence of abortive jets involving the collision of gas blobs in the core. Here we investigate the consequences of the acceleration of protons in the shocks from such collisions. We find that protons will be accelerated up to energies above the pion photoproduction threshold on both the x rays and the UV photons from the accretion disk. The secondary charged pions decay, producing neutrinos. We predict significant fluxes of TeV-PeV neutrinos, and show that the AMANDA II detector is already constraining several important astrophysical parameters of these sources. Larger cubic kilometer detectors such as IceCube will be able to detect such neutrinos in less than one year of operation, or otherwise rule out this scenario.

  15. Solar Neutrino Physics

    SciTech Connect

    Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

    1999-07-15

    With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters.

  16. Calorimetric method for determination of {sup 51}Cr neutrino source activity

    SciTech Connect

    Veretenkin, E. P. Gavrin, V. N.; Danshin, S. N.; Ibragimova, T. V.; Kozlova, Yu. P.; Mirmov, I. N.

    2015-12-15

    Experimental study of nonstandard neutrino properties using high-intensity artificial neutrino sources requires the activity of the sources to be determined with high accuracy. In the BEST project, a calorimetric system for measurement of the activity of high-intensity (a few MCi) neutrino sources based on {sup 51}Cr with an accuracy of 0.5–1% is created. In the paper, the main factors affecting the accuracy of determining the neutrino source activity are discussed. The calorimetric system design and the calibration results using a thermal simulator of the source are presented.

  17. Probing the effective number of neutrino species with the cosmic microwave background

    SciTech Connect

    Ichikawa, Kazuhide; Sekiguchi, Toyokazu; Takahashi, Tomo

    2008-10-15

    We discuss how much we can probe the effective number of neutrino species N{sub {nu}} with the cosmic microwave background alone. Using the data of the WMAP, ACBAR, CBI, and BOOMERANG experiments, we obtain a constraint on the effective number of neutrino species as 0.96

  18. Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2016-05-01

    Several anomalies recorded in short-baseline neutrino experiments suggest the possibility that the standard 3-flavor framework may be incomplete and point towards a manifestation of new physics. Light sterile neutrinos provide a credible solution to these puzzling results. Here, we present a concise review of the status of the neutrino oscillations within the 3+1 scheme, the minimal extension of the standard 3-flavor framework endowed with one sterile neutrino species. We emphasize the potential role of LBL experiments in the searches of CP violation related to sterile neutrinos and their complementarity with the SBL experiments.

  19. Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity.

    PubMed

    Ahmed, S N; Anthony, A E; Beier, E W; Bellerive, A; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Dai, X; Dalnoki-Veress, F; Doe, P J; Dosanjh, R S; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Fowler, M M; Frame, K; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Hamer, A S; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howe, M A; Jagam, P; Jelley, N A; Klein, J R; Kos, M S; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Mifflin, C; Miknaitis, K K S; Miller, G G; Moffat, B A; Nally, C W; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C; Peeters, S J M; Poon, A W P; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesić, G; Thomson, M; Thorman, M; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Tseung, H Wan Chan; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Yeh, M; Zuber, K

    2004-05-07

    The Sudbury Neutrino Observatory has precisely determined the total active (nu(x)) 8B solar neutrino flux without assumptions about the energy dependence of the nu(e) survival probability. The measurements were made with dissolved NaCl in heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27(stat)+/-0.38(syst) x 10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Deltam(2)=7.1(+1.2)(-0.6) x 10(-5) eV(2) and theta=32.5(+2.4)(-2.3) degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.

  20. PeV Neutrinos Observed by IceCube from Cores of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2013-01-01

    I show that the high energy neutrino flux predicted to arise from active galactic nuclei cores can explain the PeV neutrinos detected by IceCube without conflicting with the constraints from the observed extragalactic cosmic-ray and gamma-ray backgrounds.

  1. The Measurement of the Number of Light Neutrino Species at LEP

    NASA Astrophysics Data System (ADS)

    Mele, Salvatore

    2015-07-01

    Within weeks of the start of the data taking at the LEP accelerator, the ALEPH, DELPHI, L3 and OPAL experiments were able to confirm the existence of just three light neutrino species. This measurement relies on the Standard Model relation between the `invisible' width of the Z-boson and the cross-sections for Z-boson production and subsequent decay into hadrons. The full data sample collected by the experiments at and around the Z-boson resonance allows a high-precision measurement of the number of light neutrino species as 2.9840 ± 0.0082. The uncertainty is mostly due to the understanding of the low-angle Bhabha scattering process used to determine the experimental luminosity. This result is independently confirmed by the elegant direct observation of the e^-e^+ to ν bar{ν}γ process, through the detection of an initial-state-radiation photon in otherwise empty detectors. This result confirms expectations from the existence of three charged leptons species, and contributes to the fields of astrophysics and cosmology. Alongside other LEP achievements, the precision of this result is a testament to the global cooperation underpinning CERN's fourth decade. LEP saw the onset of large-scale collaboration across experiments totaling over 2000 scientists, together with a strong partnership within the wider high-energy physics community: from accelerator operations to the understanding of theoretical processes.

  2. Active-sterile neutrino oscillations in the early Universe with full collision terms

    SciTech Connect

    Hannestad, Steen; Hansen, Rasmus Sloth; Tram, Thomas; Wong, Yvonne Y.Y. E-mail: rshansen@phys.au.dk E-mail: yvonne.y.wong@unsw.edu.au

    2015-08-01

    Sterile neutrinos are thermalised in the early Universe via oscillations with the active neutrinos for certain mixing parameters. The most detailed calculation of this thermalisation process involves the solution of the momentum-dependent quantum kinetic equations, which track the evolution of the neutrino phase space distributions. Until now the collision terms in the quantum kinetic equations have always been approximated using equilibrium distributions, but this approximation has never been checked numerically. In this work we revisit the sterile neutrino thermalisation calculation using the full collision term, and compare the results with various existing approximations in the literature. We find a better agreement than would naively be expected, but also identify some issues with these approximations that have not been appreciated previously. These include an unphysical production of neutrinos via scattering and the importance of redistributing momentum through scattering, as well as details of Pauli blocking. Finally, we devise a new approximation scheme, which improves upon some of the shortcomings of previous schemes.

  3. Active-sterile neutrino oscillations in the early Universe with full collision terms

    SciTech Connect

    Hannestad, Steen; Hansen, Rasmus Sloth; Tram, Thomas; Wong, Yvonne Y.Y.

    2015-08-11

    Sterile neutrinos are thermalised in the early Universe via oscillations with the active neutrinos for certain mixing parameters. The most detailed calculation of this thermalisation process involves the solution of the momentum-dependent quantum kinetic equations, which track the evolution of the neutrino phase space distributions. Until now the collision terms in the quantum kinetic equations have always been approximated using equilibrium distributions, but this approximation has never been checked numerically. In this work we revisit the sterile neutrino thermalisation calculation using the full collision term, and compare the results with various existing approximations in the literature. We find a better agreement than would naively be expected, but also identify some issues with these approximations that have not been appreciated previously. These include an unphysical production of neutrinos via scattering and the importance of redistributing momentum through scattering, as well as details of Pauli blocking. Finally, we devise a new approximation scheme, which improves upon some of the shortcomings of previous schemes.

  4. Upper Limits to the Diffuse Neutrino Emission from Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bolesta, Jeffery W.

    1997-07-01

    In November of 1987 a muon detector dubbed the Short Prototype String (SPS) was successfully operated for about 30 hours in the deep ocean approximately 35 km west of the big island of Hawaii. The original purpose of the experiment was to demonstrate the technical feasibility of conducting neutrino astronomy in the deep ocean, and to serve as the prototype to the DUMAND experiment. Hence, the data were originally analyzed to measure the deep ocean flux of atmospheric muons as a proof of concept. The more recent theoretical investigations of neutrino production in Active Galactic Nuclei (AGN) has motivated a search of the data for the unique signature of neutrino-induced particle cascades. The optical properties of the deep ocean allows for surprisingly large detection volumes that grow with incident neutrino energy. It is found through Monte Carlo simulation that the fiducial mass for this type of search is ~7 × 106 tons of water at incident neutrino energies of 1 PeV (1015eV). This results in an exposure of 19.2 kton-years (kty) at this energy for 24 hours of operation. No evidence for neutrino-induced cascades was found in ~20 hours of detector livetime. This leads to the most stringent limits of AGN neutrino fluxes above the PeV scale yet published.

  5. An active electron polarized scintillating GSO target for neutrino physics

    NASA Astrophysics Data System (ADS)

    Baiboussinov, B.; Braggio, C.; Cardini, A.; Carugno, G.; Congiu, F.; Gain, S.; Galeazzi, G.; Lai, A.; Lehman, A.; Mocci, P.; Mura, A.; Quochi, F.; Saba, M.; Saitta, B.; Sartori, G.

    2012-12-01

    The feasibility of an electron-polarized, active target to be used as detector in neutrino scattering experiments, suggested by several theoretical papers, has been investigated. We report on the properties of the paramagnetic crystal Gd2SiO5 (GSO), in which 7.7% of the total number of electrons present can be polarized by lowering the temperature and applying an intense external magnetic field. The material magnetic susceptibility has been measured down to cryogenic temperatures showing that for H=5 T and T=4 K about 80% of the maximum allowed magnetization can be attained. Also the spectral and time response of the crystal have been characterized and the scintillation process has been studied using a photomultiplier to measure the response to gamma rays irradiation and cosmic rays operating the GSO crystal at 13.5 K. An avalanche photodiode (APD) readout of the scintillation signal from the GSO crystal has also been performed, since the magnetic field-independent response of this device allows it to be placed close to the crystal in the cryogenic environment.

  6. Chaos, determinacy and fractals in active-sterile neutrino oscillations in the early universe

    SciTech Connect

    Abazajian, Kevork N; Agrawal, Prateek E-mail: apr@umd.edu

    2008-10-15

    The possibility of light sterile neutrinos allows for the resonant production of lepton number in the early universe through matter-affected neutrino mixing. For a given mixing of the active and sterile neutrino states it has been found that the lepton number generation process is chaotic and strongly oscillatory. We undertake a new study of the sensitivity of this process to initial conditions through the quantum rate equations. We confirm the chaoticity of the process in this solution, and moreover find that the resultant lepton number and the sign of the asymmetry produce a fractal in the parameter space of mass, mixing angle and initial baryon number. This has implications for future searches for sterile neutrinos, where arbitrarily high sensitivity may not be determinate in forecasting the lepton number of the universe.

  7. Correlative Aspects of the Solar Electron Neutrino Flux and Solar Activity

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2000-01-01

    Between 1970 and 1994, the Homestake Solar Neutrino Detector obtained 108 observations of the solar electron neutrino flux (less than 0.814 MeV). The "best fit" values derived from these observations suggest an average daily production rate of about 0.485 Ar-37 atom per day, a rate equivalent to about 2.6 SNU (solar neutrino units) or about a factor of 3 below the expected rate from the standard solar model. In order to explain, at least, a portion of this discrepancy, some researchers have speculated that the flux of solar neutrinos is variable, possibly being correlated with various markers of the solar cycle (e.g., sunspot number, the Ap index, etc.). In this paper, using the larger "standard data set," the issue of correlative behavior between solar electron neutrino flux and solar activity is re-examined. The results presented here clearly indicate that no statistically significant association exists between any of the usual markers of solar activity and the solar electron neutrino flux.

  8. Obscured flat spectrum radio active galactic nuclei as sources of high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Maggi, G.; Buitink, S.; Correa, P.; de Vries, K. D.; Gentile, G.; Tavares, J. León; Scholten, O.; van Eijndhoven, N.; Vereecken, M.; Winchen, T.

    2016-11-01

    Active galactic nuclei (AGN) are believed to be one of the main source candidates for the high-energy (TeV-PeV) cosmic neutrino flux recently discovered by the IceCube neutrino observatory. Nevertheless, several correlation studies between AGN and the cosmic neutrinos detected by IceCube show no significance. Therefore, in this article we consider a specific subclass of AGN for which an increased neutrino production is expected. This subclass contains AGN for which their high-energy jet is pointing toward Earth. Furthermore, we impose the condition that the jet is obscured by gas or dust surrounding the AGN. A method is presented to determine the total column density of the obscuring medium, which is probed by determining the relative x-ray attenuation with respect to the radio flux as obtained from the AGN spectrum. The total column density allows us to probe the interaction of the jet with the surrounding matter, which leads to additional neutrino production. Finally, starting from two different source catalogs, this method is applied to specify a sample of low redshift radio galaxies for which an increased neutrino production is expected.

  9. Nonzero θ13 with unbroken μ -τ symmetry of the active neutrino mass matrix in the presence of a light sterile neutrino

    NASA Astrophysics Data System (ADS)

    Borah, Debasish

    2017-02-01

    We revisit the possibility of generating a nonzero reactor mixing angle in a scenario where there is a sterile neutrino at the eV scale apart from the usual three sub-eV scale active neutrinos. We show that the 3 ×3 active neutrino mass matrix can possess a μ -τ symmetry and can still be consistent with the nonzero value of the reactor mixing angle θ13 if this μ -τ symmetry is broken in the sterile neutrino sector. We first propose a simple model based on the discrete flavor symmetry A4×Z3×Z3' to realize such a scenario and then numerically evaluate the complete 3 +1 neutrino parameter space that allows such a possibility. We show that the possibility of generating a nonzero θ13 can, in general, remain valid even if the present 3 +1 neutrino global fit data get ruled out by future experiments. We also discuss the possible implications at neutrinoless double beta decay (0 ν β β ) experiments in view of the latest results from the KamLAND-Zen experiment.

  10. High Energy Gamma Rays and Neutrinos from Star-forming Activities in the Galactic and Extragalactic Sources

    NASA Astrophysics Data System (ADS)

    Razzaque, Soebur

    2017-01-01

    The origin of the IceCube astrophysical neutrinos is an outstanding question. Star-forming activities which can accelerate particles to very high energies have been suggested as possible origin of these neutrinos. I will present a scenario where a subset of the neutrino events originate from the Galactic center region and Fermi Bubbles, resulting from star-forming activities. Multi-messenger signal in high energy gamma rays and neutrinos can probe this scenario. I will also present an analysis of the statistical association of the star-forming sources in our Galaxy and outside, with astrophysical neutrinos, as well as expected neutrino signal from these sources by fitting gamma-ray data.

  11. Neutrino-heated stars and broad-line emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  12. Active to sterile neutrino mixing limits from neutral-current interactions in MINOS.

    PubMed

    Adamson, P; Auty, D J; Ayres, D S; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cavanaugh, S; Cherdack, D; Childress, S; Coelho, J A B; Coleman, S J; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grant, N; Grzelak, K; Habig, A; Harris, D; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Ilic, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Morfín, J; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Nowak, J A; Oliver, W P; Orchanian, M; Paley, J; Patterson, R B; Pawloski, G; Pearce, G F; Petyt, D A; Phan-Budd, S; Pittam, R; Plunkett, R K; Qiu, X; Ratchford, J; Raufer, T M; Rebel, B; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreiner, P; Sharma, R; Shanahan, P; Sousa, A; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Walding, J J; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Zwaska, R

    2011-07-01

    Results are reported from a search for active to sterile neutrino oscillations in the MINOS long-baseline experiment, based on the observation of neutral-current neutrino interactions, from an exposure to the NuMI neutrino beam of 7.07×10(20) protons on target. A total of 802 neutral-current event candidates is observed in the Far Detector, compared to an expected number of 754 ± 28(stat) ± 37(syst) for oscillations among three active flavors. The fraction f(s) of disappearing ν(μ) that may transition to ν(s) is found to be less than 22% at the 90% C.L.

  13. PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei.

    PubMed

    Kalashev, Oleg E; Kusenko, Alexander; Essey, Warren

    2013-07-26

    The observed very high energy spectra of distant blazars are well described by secondary gamma rays produced in line-of-sight interactions of cosmic rays with background photons. In the absence of the cosmic-ray contribution, one would not expect to observe very hard spectra from distant sources, but the cosmic ray interactions generate very high energy gamma rays relatively close to the observer, and they are not attenuated significantly. The same interactions of cosmic rays are expected to produce a flux of neutrinos with energies peaked around 1 PeV. We show that the diffuse isotropic neutrino background from many distant sources can be consistent with the neutrino events recently detected by the IceCube experiment. We also find that the flux from any individual nearby source is insufficient to account for these events. The narrow spectrum around 1 PeV implies that some active galactic nuclei can accelerate protons to EeV energies.

  14. A study of neutrino oscillations in MINOS

    SciTech Connect

    Raufer, Tobias Martin

    2007-01-01

    MINOS is a long-baseline neutrino oscillations experiment located at Fermi National Accelerator Laboratory (FNAL), USA. It makes use of the NuMI neutrino beamline and two functionally identical detectors located at distances of ~1km and ~735km from the neutrino production target respectively. The Near Detector measures the composition and energy spectrum of the neutrino beam with high precision while the Far Detector looks for evidence of neutrino oscillations. This thesis presents work conducted in two distinct areas of the MINOS experiment: analysis of neutral current and charged current interactions. While charged current events are only sensitive to muon neutrino disappearance, neutral current events can be used to distinguish oscillations into sterile neutrinos from those involving only active neutrino species. A complete, preliminary neutral current study is performed on simulated data. This is followed by a more detailed investigation of neutral current neutrino interactions in the MINOS Near Detector. A procedure identifying neutral current interactions and rejecting backgrounds due to reconstruction failures is developed. Two distinct event classification methods are investigated. The selected neutral current events in the Near Detector are used to extract corrections to the neutral current cross-section in the MINOS Monte Carlo simulation as a function of energy. The resulting correction factors are consistent with unity. The main MINOS charged current neutrino disappearance analysis is described. We present the Monte Carlo tuning procedure, event selection, extrapolation from Near to Far Detector and fit for neutrino oscillations. Systematic errors on this measurement are evaluated and discussed in detail. The data are consistent with neutrino oscillations with the following parameters: 2.74 $+0.44\\atop{-0.26}$ x 10-3 eV2 and sin2(2θ23) > 0.87 at 68% confidence level.

  15. Independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the Sudbury Neutrino Observatory.

    PubMed

    Aharmim, B; Ahmed, S N; Amsbaugh, J F; Anthony, A E; Banar, J; Barros, N; Beier, E W; Bellerive, A; Beltran, B; Bergevin, M; Biller, S D; Boudjemline, K; Boulay, M G; Bowles, T J; Browne, M C; Bullard, T V; Burritt, T H; Cai, B; Chan, Y D; Chauhan, D; Chen, M; Cleveland, B T; Cox-Mobrand, G A; Currat, C A; Dai, X; Deng, H; Detwiler, J; DiMarco, M; Doe, P J; Doucas, G; Drouin, P-L; Duba, C A; Duncan, F A; Dunford, M; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Ford, R J; Formaggio, J A; Fowler, M M; Gagnon, N; Germani, J V; Goldschmidt, A; Goon, J T M; Graham, K; Guillian, E; Habib, S; Hahn, R L; Hallin, A L; Hallman, E D; Hamian, A A; Harper, G C; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Henning, R; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jamieson, B; Jelley, N A; Keeter, K J; Klein, J R; Kormos, L L; Kos, M; Krüger, A; Kraus, C; Krauss, C B; Kutter, T; Kyba, C C M; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Loach, J C; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Martin, R; McBryde, K; McCauley, N; McDonald, A B; McGee, S; Mifflin, C; Miller, G G; Miller, M L; Monreal, B; Monroe, J; Morissette, B; Myers, A; Nickel, B G; Noble, A J; Oblath, N S; O'Keeffe, H M; Ollerhead, R W; Gann, G D Orebi; Oser, S M; Ott, R A; Peeters, S J M; Poon, A W P; Prior, G; Reitzner, S D; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Schwendener, M H; Secrest, J A; Seibert, S R; Simard, O; Simpson, J J; Sinclair, L; Skensved, P; Smith, M W E; Steiger, T D; Stonehill, L C; Tesić, G; Thornewell, P M; Tolich, N; Tsui, T; Tunnell, C D; Van Wechel, T; Van Berg, R; VanDevender, B A; Virtue, C J; Walker, T J; Wall, B L; Waller, D; Tseung, H Wan Chan; Wendland, J; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Wright, A; Yeh, M; Zhang, F; Zuber, K

    2008-09-12

    The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (nu_x) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54_-0.31;+0.33(stat)-0.34+0.36(syst)x10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Deltam2=7.59_-0.21;+0.19x10(-5) eV2 and theta=34.4_-1.2;+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.

  16. Phenomenology of Light Sterile Neutrinos: a Brief Review

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2013-03-01

    An increasing number of anomalous experimental results are emerging, which cannot be described within the standard three-neutrino framework. We present a concise discussion of the most popular phenomenological interpretation of such findings, based on a hypothetical flavor conversion phenomenon of the ordinary "active" neutrinos into new light "sterile" species having mass m ˜{O}(1) eV.

  17. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    NASA Astrophysics Data System (ADS)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  18. A comment on the suspected solar neutrino -- solar activity connection

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1994-01-01

    Recently, it has been proposed that there exists a highly statistically significant (at greater than or equal to 98% level of confidence) relationship between Ar-37 production rate (namely, solar neutrinos) and the Ap geomagnetic index (namely, solar particles), based on the chi-square goodness-of-fit test and correlation analysis, for the interval 1970-1990. While a relationship between the two parameters, indeed, seems to be discernible, the strength of the relationship has been overstated. Instead of being significant at the afore-mentioned level of confidence, the relationship is found to be significant at only greater than or equal to 95% level of confidence, based on Yates' modification to the chi-square test for 2 x 2 contingency tables. Likewise, while correlation analysis yields a value of r = 0.2691, it is important to note that such a value suggests that only about 7% of the variance can be 'explained' by the inferred correlation and that the remaining 93% of the variance must be attributed to other sources.

  19. SASI ACTIVITY IN THREE-DIMENSIONAL NEUTRINO-HYDRODYNAMICS SIMULATIONS OF SUPERNOVA CORES

    SciTech Connect

    Hanke, Florian; Mueller, Bernhard; Wongwathanarat, Annop; Marek, Andreas; Janka, Hans-Thomas E-mail: bjmuellr@mpa-garching.mpg.de E-mail: amarek@mpa-garching.mpg.de

    2013-06-10

    The relevance of the standing accretion shock instability (SASI) compared to neutrino-driven convection in three-dimensional (3D) supernova-core environments is still highly controversial. Studying a 27 M{sub Sun} progenitor, we demonstrate, for the first time, that violent SASI activity can develop in 3D simulations with detailed neutrino transport despite the presence of convection. This result was obtained with the PROMETHEUS-VERTEX code with the same sophisticated neutrino treatment so far used only in one-dimensional and two-dimensional (2D) models. While buoyant plumes initially determine the nonradial mass motions in the postshock layer, bipolar shock sloshing with growing amplitude sets in during a phase of shock retraction and turns into a violent spiral mode whose growth is only quenched when the infall of the Si/SiO interface leads to strong shock expansion in response to a dramatic decrease of the mass accretion rate. In the phase of large-amplitude SASI sloshing and spiral motions, the postshock layer exhibits nonradial deformation dominated by the lowest-order spherical harmonics (l = 1, m = 0, {+-}1) in distinct contrast to the higher multipole structures associated with neutrino-driven convection. We find that the SASI amplitudes, shock asymmetry, and nonradial kinetic energy in three dimensions can exceed those of the corresponding 2D case during extended periods of the evolution. We also perform parameterized 3D simulations of a 25 M{sub Sun} progenitor, using a simplified, gray neutrino transport scheme, an axis-free Yin-Yang grid, and different amplitudes of random seed perturbations. They confirm the importance of the SASI for another progenitor, its independence of the choice of spherical grid, and its preferred growth for fast accretion flows connected to small shock radii and compact proto-neutron stars as previously found in 2D setups.

  20. SASI Activity in Three-dimensional Neutrino-hydrodynamics Simulations of Supernova Cores

    NASA Astrophysics Data System (ADS)

    Hanke, Florian; Müller, Bernhard; Wongwathanarat, Annop; Marek, Andreas; Janka, Hans-Thomas

    2013-06-01

    The relevance of the standing accretion shock instability (SASI) compared to neutrino-driven convection in three-dimensional (3D) supernova-core environments is still highly controversial. Studying a 27 M ⊙ progenitor, we demonstrate, for the first time, that violent SASI activity can develop in 3D simulations with detailed neutrino transport despite the presence of convection. This result was obtained with the PROMETHEUS-VERTEX code with the same sophisticated neutrino treatment so far used only in one-dimensional and two-dimensional (2D) models. While buoyant plumes initially determine the nonradial mass motions in the postshock layer, bipolar shock sloshing with growing amplitude sets in during a phase of shock retraction and turns into a violent spiral mode whose growth is only quenched when the infall of the Si/SiO interface leads to strong shock expansion in response to a dramatic decrease of the mass accretion rate. In the phase of large-amplitude SASI sloshing and spiral motions, the postshock layer exhibits nonradial deformation dominated by the lowest-order spherical harmonics (l = 1, m = 0, ±1) in distinct contrast to the higher multipole structures associated with neutrino-driven convection. We find that the SASI amplitudes, shock asymmetry, and nonradial kinetic energy in three dimensions can exceed those of the corresponding 2D case during extended periods of the evolution. We also perform parameterized 3D simulations of a 25 M ⊙ progenitor, using a simplified, gray neutrino transport scheme, an axis-free Yin-Yang grid, and different amplitudes of random seed perturbations. They confirm the importance of the SASI for another progenitor, its independence of the choice of spherical grid, and its preferred growth for fast accretion flows connected to small shock radii and compact proto-neutron stars as previously found in 2D setups.

  1. Neutral-current detectors for the Sudbury Neutrino Observatory

    SciTech Connect

    Hime, A.; SNO Collaboration

    1997-09-01

    With its heavy water target, the Sudbury Neutrino Observatory has the unique opportunity to measure both the {sup 8}B flux of electron neutrinos from the Sun and the flux of all active neutrino species independently, thus offering a direct and model-independent test of a neutrino oscillation solution to the solar neutrino problem. The authors report on the physics intent and design of a discrete method of neutral-current detection in the Sudbury neutrino observatory that will utilize ultra-low background {sup 3}He proportional counters dispersed throughout the heavy water volume. Projections of background in all components of the detector are considered in an analysis of the ability to extract the neutral-current signal and the neutral-current to charged-current ratio.

  2. Neutrinos from AGN

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

  3. High energy neutrinos from primary cosmic rays accelerated in the cores of active galaxies

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectra and high-energy neutrino fluxes are calculated from photomeson production in active galactic nuclei (AGN) such as quasars and Seyfert galaxies using recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing ultrahigh-energy cosmic rays in the AGN. Collectively AGN should produce the dominant isotropic neutrino background between 10 exp 4 and 10 exp 10 GeV. Measurement of this background could be critical in determining the energy-generation mechanism, evolution, and distribution of AGN. High-energy background spectra and spectra from bright AGN such as NGC4151 and 3C273 are predicted which should be observable with present detectors. High energy AGN nus should produce a sphere of stellar disruption around their cores which could explain their observed broad-line emission regions.

  4. Neutrino Experiments

    SciTech Connect

    McKeown, R. D.

    2010-08-04

    Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

  5. Search for sterile neutrino mixing in the MINOS long baseline experiment

    SciTech Connect

    Adamson, P.; Andreopoulos, C.; Auty, D.J.; Ayres, D.S.; Backhouse, C.; Barnes Jr., P.D.; Barr, G.; Barrett, W.L.; Bishai, M.; Blake, A.; Bock, G.J.; /Fermilab /Fermilab

    2010-01-01

    A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18 x 10{sup 20} protons on target in which neutrinos of energies between {approx}500 MeV and 120 GeV are produced predominantly as {nu}{sub {mu}}, the visible energy spectrum of candidate neutral-current reactions in the MINOS far-detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the {nu}{sub {mu}} flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles {theta}{sub 24} and {theta}{sub 34} are constrained to be less than 11{sup o} and 56{sup o} at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime {tau}{sub 3}/m{sub 3} > 2.1 x 10{sup -12} s/eV at 90% C.L.

  6. Absolute neutrino mass scale

    NASA Astrophysics Data System (ADS)

    Capelli, Silvia; Di Bari, Pasquale

    2013-04-01

    Neutrino oscillation experiments firmly established non-vanishing neutrino masses, a result that can be regarded as a strong motivation to extend the Standard Model. In spite of being the lightest massive particles, neutrinos likely represent an important bridge to new physics at very high energies and offer new opportunities to address some of the current cosmological puzzles, such as the matter-antimatter asymmetry of the Universe and Dark Matter. In this context, the determination of the absolute neutrino mass scale is a key issue within modern High Energy Physics. The talks in this parallel session well describe the current exciting experimental activity aiming to determining the absolute neutrino mass scale and offer an overview of a few models beyond the Standard Model that have been proposed in order to explain the neutrino masses giving a prediction for the absolute neutrino mass scale and solving the cosmological puzzles.

  7. Cosmic Neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2008-02-01

    I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance.

  8. Berry phase in neutrino oscillations

    SciTech Connect

    He Xiaogang; McKellar, Bruce H.J.; Zhang Yue

    2005-09-01

    We study the Berry phase in neutrino oscillations for both Dirac and Majorana neutrinos. In order to have a Berry phase, the neutrino oscillations must occur in a varying medium, the neutrino-background interactions must depend on at least two independent densities, and also there must be CP violation. If the neutrino interactions with matter are mediated only by the standard model W and Z boson exchanges, these conditions imply that there must be at least three generations of neutrinos. The CP violating Majorana phases do not play a role in generating a Berry phase. We show that a natural way to satisfy the conditions for the generation of a Berry phase is to have sterile neutrinos with active-sterile neutrino mixing, in which case at least two active and one sterile neutrinos are required. If there are additional new CP violating flavor changing interactions, it is also possible to have a nonzero Berry phase with just two generations.

  9. An Independent Measurement of the Total Active 8B Solar Neutrino Flux Using an Array of 3He Proportional Counters at the Sudbury Neutrino Observatory

    SciTech Connect

    SNO Colla

    2008-06-05

    The Sudbury Neutrino Observatory (SNO) used an array of {sup 3}He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active ({nu}{sub x}) {sup 8}B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54{sub -0.31}{sup +0.33}(stat){sub -0.34}{sup +0.36}(syst) x 10{sup 6} cm{sup -2}s{sup -1}, in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields {Delta}m{sup 2} = 7.94{sub -0.26}{sup +0.42} x 10{sup -5} eV{sup 2} and {theta} = 33.8{sub -1.3}{sup +1.4} degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.

  10. Independent Measurement of the Total Active {sup 8}B Solar Neutrino Flux Using an Array of {sup 3}He Proportional Counters at the Sudbury Neutrino Observatory

    SciTech Connect

    Aharmim, B.; Chauhan, D.; Farine, J.; Fleurot, F.; Hallman, E. D.; Krueger, A.; Schwendener, M. H.; Virtue, C. J.; Ahmed, S. N.; Cai, B.; Chen, M.; DiMarco, M.; Earle, E. D.; Evans, H. C.; Ewan, G. T.; Guillian, E.; Harvey, P. J.; Keeter, K. J.; Kormos, L. L.; Kos, M.

    2008-09-12

    The Sudbury Neutrino Observatory (SNO) used an array of {sup 3}He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active ({nu}{sub x}) {sup 8}B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54{sub -0.31}{sup +0.33}(stat){sub -0.34}{sup +0.36}(syst)x10{sup 6} cm{sup -2} s{sup -1}, in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields {delta}m{sup 2}=7.59{sub -0.21}{sup +0.19}x10{sup -5} eV{sup 2} and {theta}=34.4{sub -1.2}{sup +1.3} degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.

  11. Neutrino Oscillations with Reactor Neutrinos

    NASA Astrophysics Data System (ADS)

    Cabrera, Anatael

    2007-06-01

    Prospect measurements of neutrino oscillations with reactor neutrinos are reviewed in this document. The following items are described: neutrinos oscillations status, reactor neutrino experimental strategy, impact of uncertainties on the neutrino oscillation sensitivity and, finally, the experiments in the field. This is the synthesis of the talk delivered during the NOW2006 conference at Otranto (Italy) during September 2006.

  12. MINOS Sterile Neutrino Search

    SciTech Connect

    Koskinen, David Jason

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  13. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  14. Calorimetric system for high-precision determination of activity of the 51Cr neutrino source in the BEST experiment

    NASA Astrophysics Data System (ADS)

    Veretenkin, E. P.; Gavrin, V. N.; Danshin, S. N.; Ibragimova, T. V.; Kalashnikova, A. A.; Kozlova, J. P.; Martynov, A. A.

    2017-01-01

    The calorimetric system based on mass-flow calorimeter for high-precision determination of neutrino flux from 51Cr source with activity 3MCi and higher is created for experiment BEST. The achieved heat release uncertainties are less than 0.25% in the whole range of the heat power and less than 0.1% in the range of 250-500 W. Total value the uncertainty considering the uncertainty of the energy release in the 51Cr decay (0.23%) shows that the activity of 3MCi 51Cr neutrino source can be determined with accuracy better than 0.5%.

  15. IceCube expectations for two high-energy neutrino production models at active galactic nuclei

    SciTech Connect

    Argüelles, C.A.; Bustamante, M.; Gago, A.M. E-mail: mbustamante@pucp.edu.pe

    2010-12-01

    We have determined the currently allowed regions of the parameter spaces of two representative models of diffuse neutrino flux from active galactic nuclei (AGN): one by Koers and Tinyakov (KT) and another by Becker and Biermann (BB). Our observable has been the number of upgoing muon-neutrinos expected in the 86-string IceCube detector, after 5 years of exposure, in the range 10{sup 5} ≤ E{sub ν}/GeV ≤ 10{sup 8}. We have used the latest estimated discovery potential of the IceCube-86 array at the 5σ level to determine the lower boundary of the regions, while for the upper boundary we have used either the AMANDA upper bound on the neutrino flux or the more recent preliminary upper bound given by the half-completed IceCube-40 array (IC40). We have varied the spectral index of the proposed power-law fluxes, α, and two parameters of the BB model: the ratio between the boost factors of neutrinos and cosmic rays, Γ{sub ν}/Γ{sub CR}, and the maximum redshift of the sources that contribute to the cosmic-ray flux, z{sub CR}{sup max}. For the KT model, we have considered two scenarios: one in which the number density of AGN does not evolve with redshift and another in which it evolves strongly, following the star formation rate. Using the IC40 upper bound, we have found that the models are visible in IceCube-86 only inside very thin strips of parameter space and that both of them are discarded at the preferred value of α = 2.7 obtained from fits to cosmic-ray data. Lower values of α, notably the values 2.0 and 2.3 proposed in the literature, fare better. In addition, we have analysed the capacity of IceCube-86 to discriminate between the models within the small regions of parameter space where both of them give testable predictions. Within these regions, discrimination at the 5σ level or more is guaranteed.

  16. Neutrino Physics

    DOE R&D Accomplishments Database

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  17. Neutrinos from collapsars

    NASA Astrophysics Data System (ADS)

    Vieyro, F. L.; Romero, G. E.; Peres, O. L. G.

    2013-10-01

    Context. Long gamma-ray bursts (GRBs) are associated with the gravitational collapse of very massive stars. The central engine of a GRB can collimate relativistic jets that propagate inside the stellar envelope. The shock waves produced when the jet disrupts the stellar surface are capable of accelerating particles up to very high energies. Aims: If the jet has hadronic content, neutrinos will be produced via charged pion decays. The main goal of this work is to estimate the neutrino emission produced in the region close to the surface of the star, taking pion and muon cooling into account, along with subtle effects arising from neutrino production in a highly magnetized medium. Methods: We estimate the maximum energies of the different kinds of particles and solve the coupled transport equations for each species. Once the particle distributions are known, we calculate the intensity of neutrinos. We study the different effects on the neutrinos that can change the relative weight of different flavors. In particular, we consider the effects of neutrino oscillations, and of neutrino spin precession caused by strong magnetic fields. Results: The expected neutrino signals from the shocks in the uncorking regions of Population III events is very weak, but the neutrino signal produced by Wolf-Rayet GRBs with z < 0.5 is not far from the level of the atmospheric background. Conclusions: The IceCube experiment does not have the sensitivity to detect neutrinos from the implosion of the earliest stars, but a number of high-energy neutrinos may be detected from nearby long GRBs. The cumulative signal should be detectable over several years (~10 yr) of integration with the full 86-string configuration.

  18. Neutrino physics

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  19. On neutrino flavor states

    NASA Astrophysics Data System (ADS)

    Ho, Chiu Man

    2012-12-01

    We review the issues associated with the construction of neutrino flavor states. We then provide a consistent proof that the flavor states are approximately well-defined only if neutrinos are ultra-relativistic or the mass differences are negligible compared to energy. However, we show that weak interactions can be consistently described by only neutrino mass eigenstates. Meanwhile, the second quantization of neutrino flavor fields generally has no physical relevance as their masses are indefinite. Therefore, the flavor states are not physical quantum states and they should simply be interpreted as definitions to denote specific linear combinations of mass eigenstates involved in weak interactions. We also briefly discuss the implication of this work for the mixing between active and heavy sterile neutrinos.

  20. Texas Endangered Species Activity Book.

    ERIC Educational Resources Information Center

    Jackson, Kathleen Marie; Campbell, Linda

    This publication is the result of the Texas Parks and Wildlife Division's (TPWD's) commitment to education and the fertile partnerships formed between TPWD biologists and educators. This activity book brings together the expertise and practical knowledge of a classroom teacher with the technical knowledge and skills of a TPWD biologist and artist.…

  1. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  2. Neutrino phenomenology

    DOE PAGES

    Coloma, Pilar

    2016-11-21

    Neutrino oscillations have demonstrated that neutrinos have mass and, by now, oscillation experiments have been able to determine most of the parameters in the leptonic mixing matrix with a very good accuracy. Nevertheless, there are still many open questions in the neutrino sector. As a result, I will briefly discuss some of these questions, pointing out possible experimental avenues to address them.

  3. Dark radiation sterile neutrino candidates after Planck data

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Melchiorri, Alessandro; Mena, Olga

    2013-11-01

    Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62+0.50-0.48 at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming Neff active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find mν, sterileeff < 0.36 eV and 3.14 < Neff < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < Neff < 4.43 and mν, sterileeff < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. ∑mν ~ 0.06 eV. These values compromise the viability of the (3+2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3+1) massive sterile neutrino scenario, we find mν, sterileeff < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.

  4. Experimental data on solar neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-04-01

    Neutrino physics continues to be a very active research field, full of opened fundamental questions reaching even beyond the Standard Model of elementary particles and towards a possible new physics. Solar neutrinos have played a fundamental historical role in the discovery of the phenomenon of neutrino oscillations and thus non-zero neutrino mass. Even today, the study of solar neutrinos provides an important insight both into the neutrino as well as into the stellar and solar physics. In this section we give an overview of the most important solar-neutrino measurements from the historical ones up to the most recent ones. We cover the results from the experiments using radio-chemic (Homestake, SAGE, GNO, GALLEX), water Cherenkov (Kamiokande, Super-Kamiokande, SNO), and the liquid-scintillator (Borexino, KamLAND) detection techniques.

  5. Sterile Neutrino Search with MINOS

    SciTech Connect

    Devan, Alena V.

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  6. WMAPping out neutrino masses

    SciTech Connect

    Pierce, Aaron; Murayama, Hitoshi

    2003-10-28

    Recent data from the Wilkinson Microwave Anisotropy Probe (WMAP) place important bounds on the neutrino sector. The precise determination of the baryon number in the universe puts a strong constraint on the number of relativistic species during Big-Bang Nucleosynthesis. WMAP data, when combined with the 2dF Galaxy Redshift Survey (2dFGRS), also directly constrain the absolute mass scale of neutrinos. These results impinge upon a neutrino oscillation interpretation of the result from the Liquid Scintillator Neutrino Detector (LSND).We also note that the Heidelberg-Moscow evidence for neutrinoless double beta decay is only consistent with the WMAP+2dFGRS data for the largest values of the nuclear matrix element.

  7. Solar neutrinos and neutrino physics

    NASA Astrophysics Data System (ADS)

    Maltoni, Michele; Smirnov, Alexei Yu.

    2016-04-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ_{12} and Δ m 2 21 have been measured; θ_{13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3 ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  8. Magnus approximation in neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Acero, Mario A.; Aguilar-Arevalo, Alexis A.; D'Olivo, J. C.

    2011-04-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.

  9. Active galactic nuclei, neutrinos, and interacting cosmic rays in NGC 253 and NGC 1068

    SciTech Connect

    Yoast-Hull, Tova M.; Zweibel, Ellen G.; Gallagher III, J. S.; Everett, John E.

    2014-01-10

    The galaxies M82, NGC 253, NGC 1068, and NGC 4945 have been detected in γ-rays by Fermi. Previously, we developed and tested a model for cosmic-ray interactions in the starburst galaxy M82. Now, we aim to explore the differences between starburst and active galactic nucleus (AGN) environments by applying our self-consistent model to the starburst galaxy NGC 253 and the Seyfert galaxy NGC 1068. Assuming a constant cosmic-ray acceleration efficiency by supernova remnants with Milky Way parameters, we calculate the cosmic-ray proton and primary and secondary electron/positron populations, predict the radio and γ-ray spectra, and compare with published measurements. We find that our models easily fit the observed γ-ray spectrum for NGC 253 while constraining the cosmic-ray source spectral index and acceleration efficiency. However, we encountered difficultly modeling the observed radio data and constraining the speed of the galactic wind and the magnetic field strength, unless the gas mass is less than currently preferred values. Additionally, our starburst model consistently underestimates the observed γ-ray flux and overestimates the radio flux for NGC 1068; these issues would be resolved if the AGN is the primary source of γ-rays. We discuss the implications of these results and make predictions for the neutrino fluxes for both galaxies.

  10. Neutrino factory

    DOE PAGES

    Bogomilov, M.; Matev, R.; Tsenov, R.; ...

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  11. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  12. Supernova Neutrinos

    SciTech Connect

    Cardall, Christian Y

    2007-01-01

    A nascent neutron star resulting from stellar collapse is a prodigious source of neutrinos of all flavors. While the most basic features of this neutrino emission can be estimated from simple considerations, the detailed simulation of the neutrinos' decoupling from the hot neutron star is not yet computationally tractable in its full glory, being a time-dependent six-dimensional transport problem. Nevertheless, supernova neutrino fluxes are of great interest in connection with the core-collapse supernova explosion mechanism and supernova nucleosynthesis, and as a potential probe of the supernova environment and of some of the neutrino mixing parameters that remain unknown; hence, a variety of approximate transport schemes have been used to obtain results with reduced dimensionality. However, none of these approximate schemes have addressed a recent challenge to the conventional wisdom that neutrino flavor mixing cannot impact the explosion mechanism or r-process nucleosynthesis.

  13. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  14. Neutrino mass

    SciTech Connect

    Robertson, R.G.H.

    1992-01-01

    Despite intensive experimental work since the neutrino's existence was proposed by Pauli 60 years ago, and its first observation by Reines and Cowan almost 40 years ago, the neutrino's fundamental properties remain elusive. Among those properties are the masses of the three known flavors, properties under charge conjugation, parity and time-reversal, and static and dynamic electromagnetic moments. Mass is perhaps the most fundamental, as it constrains the other properties. The present status of the search for neutrino mass is briefly reviewed.

  15. Precision Solar Neutrino Measurements with the Sudbury Neutrino Observatory

    SciTech Connect

    Oblath, Noah

    2007-10-26

    The Sudbury Neutrino Observatory (SNO) is the first experiment to measure the total flux of active, high-energy neutrinos from the sun. Results from SNO have solved the long-standing 'Solar Neutrino Problem' by demonstrating that neutrinos change flavor. SNO measured the total neutrino flux with the neutral-current interaction of solar neutrinos with 1000 tonnes of D{sub 2}O. In the first two phases of the experiment we detected the neutron from that interaction by capture on deuterium and capture on chlorine, respectively. In the third phase an array of {sup 3}He proportional counters was deployed in the detector. This allows a measurement of the neutral-current neutrons that is independent of the Cherenkov light detected by the PMT array. We are currently developing a unique, detailed simulation of the current pulses from the proportional-counter array that will be used to help distinguish signal and background pulses.

  16. Pseudo-dirac neutrinos: a challenge for neutrino telescopes.

    PubMed

    Beacom, John F; Bell, Nicole F; Hooper, Dan; Learned, John G; Pakvasa, Sandip; Weiler, Thomas J

    2004-01-09

    Neutrinos may be pseudo-Dirac states, such that each generation is actually composed of two maximally mixed Majorana neutrinos separated by a tiny mass difference. The usual active neutrino oscillation phenomenology would be unaltered if the pseudo-Dirac splittings are deltam(2) less, similar 10(-12) eV(2); in addition, neutrinoless double beta decay would be highly suppressed. However, it may be possible to distinguish pseudo-Dirac from Dirac neutrinos using high-energy astrophysical neutrinos. By measuring flavor ratios as a function of L/E, mass-squared differences down to deltam(2) approximately 10(-18) eV(2) can be reached. We comment on the possibility of probing cosmological parameters with neutrinos.

  17. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  18. Atmospheric neutrinos and discovery of neutrino oscillations.

    PubMed

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.

  19. Neutrinos help reconcile Planck measurements with the local universe.

    PubMed

    Wyman, Mark; Rudd, Douglas H; Vanderveld, R Ali; Hu, Wayne

    2014-02-07

    Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six-parameter model of flat ΛCDM. This tension has two parts. First, the Planck satellite data suggest a higher normalization of matter perturbations than local measurements of galaxy clusters. Second, the expansion rate of the Universe today, H0, derived from local distance-redshift measurements is significantly higher than that inferred using the acoustic scale in galaxy surveys and the Planck data as a standard ruler. The addition of a sterile neutrino species changes the acoustic scale and brings the two into agreement; meanwhile, adding mass to the active neutrinos or to a sterile neutrino can suppress the growth of structure, bringing the cluster data into better concordance as well. For our fiducial data set combination, with statistical errors for clusters, a model with a massive sterile neutrino shows 3.5σ evidence for a nonzero mass and an even stronger rejection of the minimal model. A model with massive active neutrinos and a massless sterile neutrino is similarly preferred. An eV-scale sterile neutrino mass--of interest for short baseline and reactor anomalies--is well within the allowed range. We caution that (i) unknown astrophysical systematic errors in any of the data sets could weaken this conclusion, but they would need to be several times the known errors to eliminate the tensions entirely; (ii) the results we find are at some variance with analyses that do not include cluster measurements; and (iii) some tension remains among the data sets even when new neutrino physics is included.

  20. Neutrino magnetohydrodynamics

    SciTech Connect

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2016-01-15

    A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.

  1. Review of direct neutrino mass experiments

    SciTech Connect

    Dragoun, O.

    2015-10-28

    Advantages and drawbacks of the kinematic methods of the neutrino mass determination are discussed. The meaning of the effective neutrino mass, resulting from measurements of the endpoint region of β-spectra is clarified. Current experimental constraints on the mass of active as well as sterile neutrinos are presented. Several new experiments are briefly outlined.

  2. Neutrino factories

    SciTech Connect

    Soler, F. J. P.

    2015-07-15

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ{sub 13}. The accelerator facility will deliver 10{sup 21} muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δ{sub CP} that a Neutrino Factory can achieve and the δ{sub CP} coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  3. Neutrino factories: realization and physics potential

    SciTech Connect

    Geer, S.; Zisman, M.S.; /LBL, Berkeley

    2006-12-01

    Neutrino Factories offer an exciting option for the long-term neutrino physics program. This new type of neutrino facility will provide beams with unique properties. Low systematic uncertainties at a Neutrino Factory, together with a unique and precisely known neutrino flavor content, will enable neutrino oscillation measurements to be made with unprecedented sensitivity and precision. Over recent years, the resulting neutrino factory physics potential has been discussed extensively in the literature. In addition, over the last six years the R&D necessary to realize a Neutrino Factory has been progressing, and has developed into a significant international activity. It is expected that, within about five more years, the initial phase of this R&D program will be complete and, if the community chooses to build this new type of neutrino source within the following decade, neutrino factory technology will be ready for the final R&D phase prior to construction. In this paper (1) an overview is given of the technical ingredients needed for a Neutrino Factory, (2) beam properties are described, (3) the resulting neutrino oscillation physics potential is summarized, (4) a more detailed description is given for one representative Neutrino Factory design, and (5) the ongoing R&D program is summarized, and future plans briefly described.

  4. Collagen degrading activity associated with Mycobacterium species

    PubMed Central

    Masso, F; Paez, A; Varela, E; d Diaz; Zenteno, E; Montano, L

    1999-01-01

    BACKGROUND—The mechanism of Mycobacterium tuberculosis penetration into tissues is poorly understood but it is reasonable to assume that there is a contribution from proteases capable of disrupting the extracellular matrix of the pulmonary epithelium and the blood vessels. A study was undertaken to identify and characterise collagen degrading activity of M tuberculosis.
METHODS—Culture filtrate protein extract (CFPE) was obtained from reference mycobacterial strains and mycobacteria isolated from patients with tuberculosis. The collagen degrading activity of CFPE was determined according to the method of Johnson-Wint using 3H-type I collagen. The enzyme was identified by the Birkedal-Hansen and Taylor method and its molecular mass determined by SDS-PAGE and Sephacryl S-300 gel filtration chromatography using an electroelution purified enzyme.
RESULTS—CFPE from Mycobacterium tuberculosis strain H37Rv showed collagenolytic activity that was four times higher than that of the avirulent strain H37Ra. The 75 kDa enzyme responsible was divalent cation dependent. Other mycobacterial species and those isolated from patients with tuberculosis also had collagen degrading activity.
CONCLUSIONS—Mycobacterium species possess a metalloprotease with collagen degrading activity. The highest enzymatic activity was found in the virulent reference strain H37Rv.

 PMID:10212111

  5. Neutrino radiation hazards: A paper tiger

    SciTech Connect

    Cossairt, J.D.; Grossman, N.L.; Marshall, E.T.

    1996-09-01

    Neutrinos are present in the natural environment due to terrestrial, solar, and cosmic sources and are also produced at accelerators both incidentally and intentionally as part of physics research programs. Progress in fundamental physics research has led to the creation of beams of neutrinos of ever-increasing intensity and/or energy. The large size and cost associated with these beams attracts, and indeed requires, public interest, support, and some understanding of the `exotic` particles produced, including the neutrinos. Furthermore, the very word neutrino (`little neutral one`, as coined by Enrico Fermi) can lead to public concern due to confusion with `neutron`, a word widely associated with radiological hazards. Adding to such possible concerns is a recent assertion, widely publicized, that neutrinos from astronomical events may have led to the extinction of some biological species. Presented here are methods for conservatively estimating the dose equivalent due to neutrinos as well as an assessment of the possible role of neutrinos in biological extinction processes. It is found that neutrinos produced by the sun and modern particle accelerators produce inconsequential dose equivalent rates. Examining recent calculations concerning neutrinos incident upon the earth due to stellar collapse, it is concluded that it is highly unlikely that these neutrinos caused the mass extinctions of species found in the paleontological record. Neutrino radiation hazards are, then, truly a `paper tiger`. 14 refs., 1 fig., 1 tab.

  6. Cosmological and Astrophysical Implications of Sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork

    2014-03-01

    Cosmology has entered an even more precision-driven epoch, with many of the basic parameters of cosmology being known to the few-percent level. However, some unresolved tensions remain between large scale structure measures of cosmology and primary cosmic microwave background measures. This may indicate new physics in the neutrino sector, since neutrinos are the second most abundant particle in the Universe, and the least quantified. New neutrino physics may include extra (sterile) species of neutrinos, massive neutrinos, or both. I will review the status of these measures as well as the prospects for the resolution of the tension(s). Neutrinos also play a dominant energetics role in Type II supernova explosions, and the presence of new neutrino physics also has implications for supernova physics, which I will also review. Supported in part by the NSF CAREER Program.

  7. Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments

    NASA Astrophysics Data System (ADS)

    Adamson, P.; An, F. P.; Anghel, I.; Aurisano, A.; Balantekin, A. B.; Band, H. R.; Barr, G.; Bishai, M.; Blake, A.; Blyth, S.; Bock, G. J.; Bogert, D.; Cao, D.; Cao, G. F.; Cao, J.; Cao, S. V.; Carroll, T. J.; Castromonte, C. M.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, R.; Chen, S. M.; Chen, Y.; Chen, Y. X.; Cheng, J.; Cheng, J.-H.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Childress, S.; Chu, M. C.; Chukanov, A.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; Cummings, J. P.; de Arcos, J.; De Rijck, S.; Deng, Z. Y.; Devan, A. V.; Devenish, N. E.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Flanagan, W.; Frohne, M. V.; Gabrielyan, M.; Gallagher, H. R.; Germani, S.; Gill, R.; Gomes, R. A.; Gonchar, M.; Gong, G. H.; Gong, H.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grassi, M.; Grzelak, K.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Habig, A.; Hackenburg, R. W.; Hahn, S. R.; Han, R.; Hans, S.; Hartnell, J.; Hatcher, R.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Holin, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, J.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Hylen, J.; Irwin, G. M.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; James, C.; Jen, K. L.; Jensen, D.; Jetter, S.; Ji, X. L.; Ji, X. P.; Jiao, J. B.; Johnson, R. A.; de Jong, J. K.; Joshi, J.; Kafka, T.; Kang, L.; Kasahara, S. M. S.; Kettell, S. H.; Kohn, S.; Koizumi, G.; Kordosky, M.; Kramer, M.; Kreymer, A.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lang, K.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Litchfield, P. J.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. C.; Liu, J. L.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Lucas, P.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; Malyshkin, Y.; Mann, W. A.; Marshak, M. L.; Martinez Caicedo, D. A.; Mayer, N.; McDonald, K. T.; McGivern, C.; McKeown, R. D.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Mitchell, I.; Mooney, M.; Moore, C. D.; Mualem, L.; Musser, J.; Nakajima, Y.; Naples, D.; Napolitano, J.; Naumov, D.; Naumova, E.; Nelson, J. K.; Newman, H. B.; Ngai, H. Y.; Nichol, R. J.; Ning, Z.; Nowak, J. A.; O'Connor, J.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Orchanian, M.; Pahlka, R. B.; Paley, J.; Pan, H.-R.; Park, J.; Patterson, R. B.; Patton, S.; Pawloski, G.; Pec, V.; Peng, J. C.; Perch, A.; Pfützner, M. M.; Phan, D. D.; Phan-Budd, S.; Pinsky, L.; Plunkett, R. K.; Poonthottathil, N.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, X.; Radovic, A.; Raper, N.; Rebel, B.; Ren, J.; Rosenfeld, C.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Rubin, H. A.; Sail, P.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Moed Sher, S.; Sousa, A.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tagg, N.; Talaga, R. L.; Tang, W.; Taychenachev, D.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Todd, J.; Tognini, S. C.; Toner, R.; Torretta, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Tzanakos, G.; Urheim, J.; Vahle, P.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z. M.; Webb, R. C.; Weber, A.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C.; Whitehead, L.; Whitehead, L. H.; Wise, T.; Wojcicki, S. G.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, J. Y.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2016-10-01

    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin22 θμ e are set over 6 orders of magnitude in the sterile mass-squared splitting Δ m412. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δ m412<0.8 eV2 at 95 % CLs .

  8. Neutrino '88. Proceedings.

    NASA Astrophysics Data System (ADS)

    Schneps, J.; Kafka, T.; Mann, W. A.; Nath, P.

    Contents: 1. Neutrino mass. 2. Neutrino oscillations. 3. Double beta decay. 4. Solar neutrinos. 5. Neutrinos from supernovae. 6. Neutrino interactions at accelerators. 7. New detectors for neutrino processes. 8. Neutrino interactions at accelerators II. 9. W, Z, and the standard model. 10. "Fred Reines at 70" Fest. 11. Nucleon decay, the standard model, and beyond. 12. Neutrinos: Earth, atmosphere, Sun, and galaxies. 13. Dark matter and cosmology. 14. Theoretical topics. 15. Future prospects.

  9. Thermalisation of light sterile neutrinos in the early universe

    SciTech Connect

    Hannestad, Steen; Tram, Thomas; Tamborra, Irene E-mail: tamborra@mpp.mpg.de

    2012-07-01

    Recent cosmological data favour additional relativistic degrees of freedom beyond the three active neutrinos and photons, often referred to as ''dark'' radiation. Light sterile neutrinos is one of the prime candidates for such additional radiation. However, constraints on sterile neutrinos based on the current cosmological data have been derived using simplified assumptions about thermalisation of ν{sub s} at the Big Bang Nucleosynthesis (BBN) epoch. These assumptions are not necessarily justified and here we solve the full quantum kinetic equations in the (1 active + 1 sterile) scenario and derive the number of thermalised species just before BBN begins (T ≅ 1 MeV) for null (L = 0) and large (L = 10{sup −2}) initial lepton asymmetry and for a range of possible mass-mixing parameters. We find that the full thermalisation assumption during the BBN epoch is justified for initial small lepton asymmetry only. Partial or null thermalisation occurs when the initial lepton asymmetry is large.

  10. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  11. Few active mechanisms of the 0νββ decay and effective mass of Majorana neutrinos

    NASA Astrophysics Data System (ADS)

    Šimkovic, Fedor; Vergados, John; Faessler, Amand

    2010-12-01

    It is well known that there exist many mechanisms that may contribute to neutrinoless double beta decay. By exploiting the fact that the associated nuclear matrix elements are target dependent we show that, given definite experimental results on a sufficient number of targets, one can determine or sufficiently constrain all lepton violating parameters including the mass term. As a specific example we show that, assuming the observation of the 0νββ decay in three different nuclei, e.g., Ge76, Mo100, and Te130, and just three lepton number violating mechanisms (light- and heavy-neutrino mass mechanisms as well as the R-parity breaking supersymmetry mechanism) being active, there are only four different solutions for the lepton violating parameters, provided that they are relatively real. In particular, our analysis shows that the effective neutrino Majorana mass |mββ| can be almost uniquely extracted by utilizing other existing constraints (cosmological observations and tritium β-decay experiments). We also point out the possibility that the nonobservation of the 0νββ decay for some isotopes could be in agreement with a value of |mββ| in the sub-eV region. We thus suggest that it is important to have at least two different 0νββ-decay experiments for a given nucleus. We note that obtained results are sensitive to the accuracy of measured half-lives and to uncertainties in calculated nuclear matrix elements.

  12. Phytochemistry and biological activities of Phlomis species.

    PubMed

    Limem-Ben Amor, Ilef; Boubaker, Jihed; Ben Sgaier, Mohamed; Skandrani, Ines; Bhouri, Wissem; Neffati, Aicha; Kilani, Soumaya; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila

    2009-09-07

    The genus Phlomis L. belongs to the Lamiaceae family and encompasses 100 species native to Turkey, North Africa, Europe and Asia. It is a popular herbal tea enjoyed for its taste and aroma. Phlomis species are used to treat various conditions such as diabetes, gastric ulcer, hemorrhoids, inflammation, and wounds. This review aims to summarize recent research on the phytochemistry and pharmacological properties of the genus Phlomis, with particular emphasis on its ethnobotanical uses. The essential oil of Phomis is composed of four chemotypes dominated by monoterpenes (alpha-pinene, limonene and linalool), sesquiterpenes (germacrene D and beta-caryophyllene), aliphalic compounds (9,12,15-octadecatrienoic acid methyl ester), fatty acids (hexadecanoic acid) and other components (trans-phytol, 9,12,15-octadecatrien-1-ol). Flavonoids, iridoids and phenylethyl alcohol constitute the main compounds isolated from Phlomis extracts. The pharmacological activities of some Phlomis species have been investigated. They are described according to antidiabetic, antinociceptive, antiulcerogenic, protection of the vascular system, anti-inflammatory, antiallergic, anticancer, antimicrobial and antioxidant properties.

  13. The Neutrino Telescope ANTARES

    NASA Astrophysics Data System (ADS)

    Hernández, Juan José

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration [1] , formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological deffects, Q-balls, etc). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented

  14. Solar Neutrinos. II. Experimental

    DOE R&D Accomplishments Database

    Davis, Raymond Jr.

    1964-01-01

    A method is described for observing solar neutrinos from the reaction Cl{sup 37}(nu,e{sup -})Ar{sup 37} in C{sub 2}Cl{sub 4}. Two 5 00-gal tanks of C{sub 2}Cl{sub 4} were placed in a limestone mine (1800 m.w.e.) and the resulting Ar{sup 37} activity induced by cosmic mesons( mu ) was measured to determine the necessary conditions for solar neutrino observations. (R.E.U.)

  15. Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation

    SciTech Connect

    Kersten, Joern; Smirnov, Alexei Yu.

    2007-10-01

    We consider the possibility to detect right-handed neutrinos, which are mostly singlets of the standard model gauge group, at future accelerators. Substantial mixing of these neutrinos with the active neutrinos requires a cancellation of different contributions to the light neutrino mass matrix at the level of 10{sup -8}. We discuss possible symmetries behind this cancellation and argue that for three right-handed neutrinos they always lead to conservation of total lepton number. Light neutrino masses can be generated by small perturbations violating these symmetries. In the most general case, LHC physics and the mechanism of neutrino mass generation are essentially decoupled; with additional assumptions, correlations can appear between collider observables and features of the neutrino mass matrix.

  16. Analysis of the solar neutrino data

    NASA Astrophysics Data System (ADS)

    Peña-Garay, C.

    2003-05-01

    We analyse the solar neutrino data (pre-SNO) in the framework of two-neutrino, three-neutrino and four-neutrino schemes. We discuss the status of the different regimes that remain allowed (LMA, SMA and LOW-QVO). The solar and the atmospheric data are in good agreement with the CHOOZ data showing a preference for small θ13, where the stronger bound comes from the CHOOZ data. Also, we discuss the oscillations to active and sterile neutrinos in a unified picture: four-neutrino oscillations. Using the predictions for the next solar neutrino experiment, SNO, we discuss the questions that could be solved in the different frameworks. The data will be able to disfavour some of the solar regimes and also will be able to prove (or disprove) the 2+2 scenarios.

  17. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  18. Sterile Neutrino Experiments I: Accelerator-based

    NASA Astrophysics Data System (ADS)

    Toups, Matthew

    2017-01-01

    The Standard Model is the theory that describes the fundamental constituents of matter and their interactions. Despite its great success, there still exists evidence for a wide range of phenomena, which lie outside the framework of the Standard Model. Among these, neutrino flavor oscillations hold great promise to bring insight to the field towards a theory that transcends the Standard Model. The discovery of light, sterile neutrinos that mix with the three active neutrino flavors and modify the standard three-neutrino oscillation probabilities in vacuum and matter would be a major breakthrough for the field and contribute to our overall understanding of neutrino mass and mixing. Current indications for light sterile neutrinos come from a variety of experiments reporting anomalies. The accelerator-based LSND and MiniBooNE experiments, for example, reported an excess of electron-type neutrinos over short baselines, which if interpreted as due to νμ ->νe (or νμ ->νe) oscillations, would imply the existence of a fourth light neutrino mass state. On the other hand, null results from other accelerator-based neutrino oscillation experiments searching for sterile neutrinos have put constraints on the possible existence of these particles. This talk will review the accelerator-based searches for light, sterile neutrinos as well as the prospects for confirming or refuting their existence in the coming years.

  19. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  20. Supernova Neutrinos

    SciTech Connect

    Beacom, John

    2009-11-14

    Supernovae in our Galaxy probably occur about 3 times per century, though 90% of them are invisible optically because of obscuration by dust. However, present solar neutrino detectors are sensitive to core-collapse supernovae anywhere in our Galaxy, and would detect of order 10,000 events from a supernova at a distance of 10 kpc (roughly the distance to the Galactic center). I will describe how this data can be used to understand the supernova itself, as well as to test the properties of neutrinos.

  1. Light sterile neutrinos in the early universe

    SciTech Connect

    Lunardini, Cecilia

    2014-06-24

    Cosmological and terrestrial data suggests the number of light neutrinos may be greater than 3, motivating a careful reexamination of cosmological bounds on extra light species. Big bang nucleosynthesis constrains the number of relativistic neutrino species present during nucleosynthesis, N{sub eff}{sup BBN}, while measurements of the cosmic microwave background (CMB) angular power spectrum constrain the effective energy density in relativistic neutrinos at the time of matter-radiation equality, N{sub eff}{sup CMB}. We review a scenario with two sterile neutrinos and explore whether partial thermalization of the sterile states can ease the tension between cosmological constraints on N{sub eff}{sup BBN} and terrestrial data. We conclude that, still, two additional light sterile neutrinos species cannot fit all the data at the 95% confidence level.

  2. Dark radiation sterile neutrino candidates after Planck data

    SciTech Connect

    Valentino, Eleonora Di; Melchiorri, Alessandro; Mena, Olga E-mail: alessandro.melchiorri@roma1.infn.it

    2013-11-01

    Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62{sup +0.50}{sub −0.48} at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming N{sub eff} active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find m{sub ν,} {sub sterile}{sup eff} < 0.36 eV and 3.14 < N{sub eff} < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < N{sub eff} < 4.43 and m{sub ν,} {sub sterile}{sup eff} < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. ∑m{sub ν} ∼ 0.06 eV. These values compromise the viability of the (3+2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3+1) massive sterile neutrino scenario, we find m{sub ν,} {sub sterile}{sup eff} < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.

  3. The solar neutrino problem.

    NASA Astrophysics Data System (ADS)

    Xu, Renxin; Luo, Xianhan

    1995-12-01

    The solar neutrino problem (SNP) is reviewed on the bases of neutrino physics, solar neutrino detection and standard solar model. It is interesting that the detected neutrino flux values of different solar neutrino detectors are lower than the values calculated by SMM in different degree. The studies on SNP in particle physics and in astrophysics are also discussed respectively.

  4. Sterile Neutrinos in Cold Climates

    SciTech Connect

    Jones, Benjamin J.P.

    2015-09-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin224 ≤ 0.02 at m2 ~ 0.3 eV2, and the LSND and Mini

  5. Implications of the 17 keV neutrino

    SciTech Connect

    Hall, L.J.

    1991-06-01

    Constraints on the theoretical interpretation of the 17 keV neutrino are reviewed. A simple understanding of the 17 keV neutrino is provided by flavon models, which involve the spontaneous breaking of Abelian lepton symmetries and have only the usual three light neutrino species. Signatures for this class of models include neutrino oscillations, tau decay to an electron and a flavon, and invisible decay modes of the Higgs boson to two flavons.

  6. PREFACE: ARENA 2006—Acoustic and Radio EeV Neutrino detection Activities

    NASA Astrophysics Data System (ADS)

    Thompson, Lee

    2007-06-01

    The International Conference on Acoustic and Radio EeV Neutrino Activities, ARENA 2006 was jointly hosted by the Universities of Northumbria and Sheffield at the City of Newcastle Campus of the University of Northumbria in June 2006. ARENA 2006 was the latest in a series of meetings which have addressed, either separately or jointly, the use of radio and acoustic sensors for the detection of highly relativistic particles. Previous successful meetings have taken place in Los Angeles (RADHEP, 2000), Stanford (2003) and DESY Zeuthen (ARENA 2005). A total of 50 scientists from across Europe, the US and Japan attended the conference presenting status reports and results from a number of projects and initiatives spread as far afield as the Sweden and the South Pole. The talks presented at the meeting and the proceedings contained herein represent a `snapshot' of the status of the fields of acoustic and radio detection at the time of the conference. The three day meeting also included two invited talks by Dr Paula Chadwick and Dr Johannes Knapp who gave excellent summaries of the related astroparticle physics fields of high energy gamma ray detection and high energy cosmic ray detection respectively. As well as a full academic agenda there were social events including a Medieval themed conference banquet at Lumley Castle and a civic reception kindly provided by the Lord Mayor of Newcastle and hosted at the Mansion House. Thanks must go to the International Advisory Board members for their input and guidance, the Local Organising Committee for their hard work in bringing everything together and finally the delegates for the stimulating, enthusiastic and enjoyable spirit in which ARENA 2006 took place. Lee Thompson

    International Advisory Board

    G. Anton, ErlangenD. Besson, Kansas
    J. Blümer, KarlsruheA. Capone, Rome
    H. Falcke, BonnP. Gorham, Hawaii
    G. Gratta

  7. Neutrino masses and solar neutrinos

    SciTech Connect

    Wolfenstein, L.

    1992-11-01

    It has been pointed out by Bahcall and Bethe and others that all solar neutrino data can be explained by MSW oscillations with m({nu}{sub {mu}}) {approximately} 10{sup {minus}3} eV consistent with ideas grand unified theories (GUTS). There is a second possibility consistent with GUTS ideas with m({nu}{sub {tau}}) {approximately} 10{sup {minus}2} eV and m({nu} {sub {mu}}) {approximately} 10 {sup {minus}4} eV. The two cases can be distinguished by a measurement of the solar neutrinos from {sup {tau}}Be.

  8. Supernova neutrinos

    SciTech Connect

    John Beacom

    2003-01-23

    We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  9. Neutrino Interactions

    SciTech Connect

    Kamyshkov, Yuri; Handler, Thomas

    2016-10-24

    The neutrino group of the University of Tennessee, Knoxville was involved from 05/01/2013 to 04/30/2015 in the neutrino physics research funded by DOE-HEP grant DE-SC0009861. Contributions were made to the Double Chooz nuclear reactor experiment in France where second detector was commissioned during this period and final series of measurements has been started. Although Double Chooz was smaller experimental effort than competitive Daya Bay and RENO experiments, its several advantages make it valuable for understanding of systematic errors in measurements of neutrino oscillations. Double Chooz was the first experiment among competing three that produced initial result for neutrino angle θ13 measurement, giving other experiments the chance to improve measured value statistically. Graduate student Ben Rybolt defended his PhD thesis on the results of Double Chooz experiment in 2015. UT group has fulfilled all the construction and analysis commitments to Double Chooz experiment, and has withdrawn from the collaboration by the end of the mentioned period to start another experiment. Larger effort of UT neutrino group during this period was devoted to the participation in another DOE-HEP project - NOvA experiment. The 14,000-ton "FAR" neutrino detector was commissioned in northern Minnesota in 2014 together with 300-ton "NEAR" detector located at Fermilab. Following that, the physics measurement program has started when Fermilab accelerator complex produced the high-intensity neutrino beam propagating through Earth to detector in MInnessota. UT group contributed to NOvA detector construction and developments in several aspects. Our Research Associate Athanasios Hatzikoutelis was managing (Level 3 manager) the construction of the Detector Control System. This work was successfully accomplished in time with the commissioning of the detectors. Group was involved in the development of the on-line software and study of the signatures of the cosmic ray backgrounds

  10. Velocity-induced neutrino oscillation and its possible implications for long baseline neutrinos

    NASA Astrophysics Data System (ADS)

    Banik, Amit Dutta; Majumdar, Debasish

    2015-12-01

    If the three types of active neutrinos possess different maximum attainable velocities and the neutrino eigenstates in the velocity basis are different from those in the flavor (and mass) basis, then this will induce a flavor oscillation in addition to the normal mass-flavor oscillation. Here we study such an oscillation scenario in three neutrino framework including also the matter effect and apply our results to demonstrate its consequences for long baseline (LBL) neutrinos. We also predict the possible signatures in terms of yields in a possible LBL neutrino experiment.

  11. Neutrino fluxes from a core-collapse supernova in a model with three sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Yudin, A. V.; Nadyozhin, D. K.; Khruschov, V. V.; Fomichev, S. V.

    2016-12-01

    The characteristics of the gravitational collapse of a supernova and the fluxes of active and sterile neutrinos produced during the formation of its protoneutron core have been calculated numerically. The relative yields of active and sterile neutrinos in corematter with different degrees of neutronization have been calculated for various input parameters and various initial conditions. A significant increase in the fraction of sterile neutrinos produced in superdense core matter at the resonant degree of neutronization has been confirmed. The contributions of sterile neutrinos to the collapse dynamics and the total flux of neutrinos produced during collapse have been shown to be relatively small. The total luminosity of sterile neutrinos is considerably lower than the luminosity of electron neutrinos, but their spectrum is considerably harder at high energies.

  12. The Economics of Saving Endangered Species: A Teaching Activity.

    ERIC Educational Resources Information Center

    Schug, Mark C.; Shaw, Jane S.

    1997-01-01

    Argues that well-intentioned government policies, such as the Endangered Species Act, can actually cause harm to endangered species by creating disincentives to preserving the habitat for endangered species. Maintains that the use of incentives can lead to voluntary species protection. Includes instructions for an in-class teaching activity. (MJP)

  13. Neutrino magnetic moment

    SciTech Connect

    Chang, D. . Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL ); Senjanovic, G. . Dept. of Theoretical Physics)

    1990-01-01

    We review attempts to achieve a large neutrino magnetic moment ({mu}{sub {nu}} {le} 10{sup {minus}11}{mu}{sub B}), while keeping neutrino light or massless. The application to the solar neutrino puzzle is discussed. 24 refs.

  14. Limits on active to sterile neutrino oscillations from disappearance searches in the MINOS, Daya Bay, and Bugey-3 experiments

    SciTech Connect

    Adamson, P.; An, F. P.; Anghel, I.; Aurisano, A.; Balantekin, A. B.; Band, H. R.; Barr, G.; Bishai, M.; Blake, A.; Blyth, S.; Bock, G. J.; Bogert, D.; Cao, D.; Cao, G. F.; Cao, J.; Cao, S. V.; Carroll, T. J.; Castromonte, C. M.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, R.; Chen, S. M.; Chen, Y.; Chen, Y. X.; Cheng, J.; Cheng, J. -H.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Childress, S.; Chu, M. C.; Chukanov, A.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; Cummings, J. P.; de Arcos, J.; De Rijck, S.; Deng, Z. Y.; Devan, A. V.; Devenish, N. E.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Flanagan, W.; Frohne, M. V.; Gabrielyan, M.; Gallagher, H. R.; Germani, S.; Gill, R.; Gomes, R. A.; Gonchar, M.; Gong, G. H.; Gong, H.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grassi, M.; Grzelak, K.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Habig, A.; Hackenburg, R. W.; Hahn, S. R.; Han, R.; Hans, S.; Hartnell, J.; Hatcher, R.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Holin, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, J.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Hylen, J.; Irwin, G. M.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; James, C.; Jen, K. L.; Jensen, D.; Jetter, S.; Ji, X. L.; Ji, X. P.; Jiao, J. B.; Johnson, R. A.; de Jong, J. K.; Joshi, J.; Kafka, T.; Kang, L.; Kasahara, S. M. S.; Kettell, S. H.; Kohn, S.; Koizumi, G.; Kordosky, M.; Kramer, M.; Kreymer, A.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lang, K.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y. -C.; Ling, J. J.; Link, J. M.; Litchfield, P. J.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. C.; Liu, J. L.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Lucas, P.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; Malyshkin, Y.; Mann, W. A.; Marshak, M. L.; Martinez Caicedo, D. A.; Mayer, N.; McDonald, K. T.; McGivern, C.; McKeown, R. D.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Mitchell, I.; Mooney, M.; Moore, C. D.; Mualem, L.; Musser, J.; Nakajima, Y.; Naples, D.; Napolitano, J.; Naumov, D.; Naumova, E.; Nelson, J. K.; Newman, H. B.; Ngai, H. Y.; Nichol, R. J.; Ning, Z.; Nowak, J. A.; O’Connor, J.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Orchanian, M.; Pahlka, R. B.; Paley, J.; Pan, H. -R.; Park, J.; Patterson, R. B.; Patton, S.; Pawloski, G.; Pec, V.; Peng, J. C.; Perch, A.; Pfützner, M. M.; Phan, D. D.; Phan-Budd, S.; Pinsky, L.; Plunkett, R. K.; Poonthottathil, N.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, X.; Radovic, A.; Raper, N.; Rebel, B.; Ren, J.; Rosenfeld, C.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Rubin, H. A.; Sail, P.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Moed Sher, S.; Sousa, A.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tagg, N.; Talaga, R. L.; Tang, W.; Taychenachev, D.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Todd, J.; Tognini, S. C.; Toner, R.; Torretta, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Tzanakos, G.; Urheim, J.; Vahle, P.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z. M.; Webb, R. C.; Weber, A.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C.; Whitehead, L.; Whitehead, L. H.; Wise, T.; Wojcicki, S. G.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C. -H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, J. Y.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.

    2016-10-07

    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Here, stringent limits on sin2μe are set over 6 orders of magnitude in the sterile mass-squared splitting Δm241. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm241 < 0.8 eV2 at 95% CLs.

  15. Limits on active to sterile neutrino oscillations from disappearance searches in the MINOS, Daya Bay, and Bugey-3 experiments

    DOE PAGES

    Adamson, P.; An, F. P.; Anghel, I.; ...

    2016-10-07

    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Here, stringent limits on sin22θμe are set over 6 orders of magnitudemore » in the sterile mass-squared splitting Δm241. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm241 < 0.8 eV2 at 95% CLs.« less

  16. Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments.

    PubMed

    Adamson, P; An, F P; Anghel, I; Aurisano, A; Balantekin, A B; Band, H R; Barr, G; Bishai, M; Blake, A; Blyth, S; Bock, G J; Bogert, D; Cao, D; Cao, G F; Cao, J; Cao, S V; Carroll, T J; Castromonte, C M; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, R; Chen, S M; Chen, Y; Chen, Y X; Cheng, J; Cheng, J-H; Cheng, Y P; Cheng, Z K; Cherwinka, J J; Childress, S; Chu, M C; Chukanov, A; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; Cummings, J P; de Arcos, J; De Rijck, S; Deng, Z Y; Devan, A V; Devenish, N E; Ding, X F; Ding, Y Y; Diwan, M V; Dolgareva, M; Dove, J; Dwyer, D A; Edwards, W R; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Flanagan, W; Frohne, M V; Gabrielyan, M; Gallagher, H R; Germani, S; Gill, R; Gomes, R A; Gonchar, M; Gong, G H; Gong, H; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grassi, M; Grzelak, K; Gu, W Q; Guan, M Y; Guo, L; Guo, R P; Guo, X H; Guo, Z; Habig, A; Hackenburg, R W; Hahn, S R; Han, R; Hans, S; Hartnell, J; Hatcher, R; He, M; Heeger, K M; Heng, Y K; Higuera, A; Holin, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, J; Huang, X T; Huber, P; Huo, W; Hussain, G; Hylen, J; Irwin, G M; Isvan, Z; Jaffe, D E; Jaffke, P; James, C; Jen, K L; Jensen, D; Jetter, S; Ji, X L; Ji, X P; Jiao, J B; Johnson, R A; de Jong, J K; Joshi, J; Kafka, T; Kang, L; Kasahara, S M S; Kettell, S H; Kohn, S; Koizumi, G; Kordosky, M; Kramer, M; Kreymer, A; Kwan, K K; Kwok, M W; Kwok, T; Lang, K; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lee, J H C; Lei, R T; Leitner, R; Leung, J K C; Li, C; Li, D J; Li, F; Li, G S; Li, Q J; Li, S; Li, S C; Li, W D; Li, X N; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, S; Lin, S K; Lin, Y-C; Ling, J J; Link, J M; Litchfield, P J; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, J C; Liu, J L; Loh, C W; Lu, C; Lu, H Q; Lu, J S; Lucas, P; Luk, K B; Lv, Z; Ma, Q M; Ma, X B; Ma, X Y; Ma, Y Q; Malyshkin, Y; Mann, W A; Marshak, M L; Martinez Caicedo, D A; Mayer, N; McDonald, K T; McGivern, C; McKeown, R D; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Mitchell, I; Mooney, M; Moore, C D; Mualem, L; Musser, J; Nakajima, Y; Naples, D; Napolitano, J; Naumov, D; Naumova, E; Nelson, J K; Newman, H B; Ngai, H Y; Nichol, R J; Ning, Z; Nowak, J A; O'Connor, J; Ochoa-Ricoux, J P; Olshevskiy, A; Orchanian, M; Pahlka, R B; Paley, J; Pan, H-R; Park, J; Patterson, R B; Patton, S; Pawloski, G; Pec, V; Peng, J C; Perch, A; Pfützner, M M; Phan, D D; Phan-Budd, S; Pinsky, L; Plunkett, R K; Poonthottathil, N; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Qiu, X; Radovic, A; Raper, N; Rebel, B; Ren, J; Rosenfeld, C; Rosero, R; Roskovec, B; Ruan, X C; Rubin, H A; Sail, P; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Moed Sher, S; Sousa, A; Steiner, H; Sun, G X; Sun, J L; Tagg, N; Talaga, R L; Tang, W; Taychenachev, D; Thomas, J; Thomson, M A; Tian, X; Timmons, A; Todd, J; Tognini, S C; Toner, R; Torretta, D; Treskov, K; Tsang, K V; Tull, C E; Tzanakos, G; Urheim, J; Vahle, P; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, X; Wang, Y F; Wang, Z; Wang, Z M; Webb, R C; Weber, A; Wei, H Y; Wen, L J; Whisnant, K; White, C; Whitehead, L; Whitehead, L H; Wise, T; Wojcicki, S G; Wong, H L H; Wong, S C F; Worcester, E; Wu, C-H; Wu, Q; Wu, W J; Xia, D M; Xia, J K; Xing, Z Z; Xu, J L; Xu, J Y; Xu, Y; Xue, T; Yang, C G; Yang, H; Yang, L; Yang, M S; Yang, M T; Ye, M; Ye, Z; Yeh, M; Young, B L; Yu, Z Y; Zeng, S; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, X T; Zhang, Y M; Zhang, Y X; Zhang, Z J; Zhang, Z P; Zhang, Z Y; Zhao, J; Zhao, Q W; Zhao, Y B; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2016-10-07

    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin^{2}2θ_{μe} are set over 6 orders of magnitude in the sterile mass-squared splitting Δm_{41}^{2}. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm_{41}^{2}<0.8  eV^{2} at 95%  CL_{s}.

  17. A Comment on the Suspected Solar Neutrino-Solar Activity Connection

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1994-01-01

    Recently, it has been proposed that there exists a highly statistically significant (at greater than or equal to 98% level of confidence) relationship between Ar-37 production rate (viz., solar neutrinos) and the Ap geomagnetic index (viz., solar particles), based on the (chi)-square goodness-of-fit test and correlation analysis, for the interval 1970-1990. While a relationship between the two parameters, indeed, seems to be discernible, the strength of the relationship has been overstated. Instead of being significant at the afore-mentioned level of confidence, the relationship is found to be significant at only greater than or equal to 95% level of confidence, based on Yates' modification to the (chi)-square test for 2 x 2 contingency tables. Likewise, while correlation analysis yields a value of r = 0.2691, it is important to note that such a value suggests that only about 7% of the variance can be 'explained' by the inferred correlation and that the remaining 93% of the variance must be attributed to other sources.

  18. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    SciTech Connect

    Marino, Alysia Diane

    2004-01-01

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while ~2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 ± 0.065(stat.)±$0.065\\atop{0.068}$(sys.)±0.02(theor.)] x 106cm-2s-1, via the elastic-scattering interaction is [2.21±0.22(stat.)±$0.12\\atop{0.11}$(sys.)±0.01(theor.)] x 106cm-2s-1, and via the neutral-current interaction is [5.05±0.23(stat.)±$0.31\\atop{0.37}$(sys.)±0.06(theor.)] x 106cm-2s-1. The electron-only flux seen via the charged-current interaction is more than 7σ below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation.

  19. Neutrinos: Theory and Phenomenology

    SciTech Connect

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  20. NEUTRINO FACTORIES - PHYSICS POTENTIALS.

    SciTech Connect

    PARSA,Z.

    2001-02-16

    The recent results from Super-Kamiokande atmospheric and solar neutrino observations opens a new era in neutrino physics and has sparked a considerable interest in the physics possibilities with a Neutrino Factory based on the muon storage ring. We present physics opportunities at a Neutrino Factory, and prospects of Neutrino oscillation experiments. Using the precisely known flavor composition of the beam, one could envision an extensive program to measure the neutrino oscillation mixing matrix, including possible CP violating effects. These and Neutrino Interaction Rates for examples of a Neutrino Factory at BNL (and FNAL) with detectors at Gran Sasso, SLAC and Sudan are also presented.

    1. Solar neutrinos.

      NASA Astrophysics Data System (ADS)

      Cremonesi, O.

      1993-12-01

      The main purpose of this paper is to review the progress made in the field of solar-neutrino physics with the results of the last-generation experiments together with the new perspectives suggested by the future projects. An elementary introduction to energy production mechanisms and stellar models is given. Neutrino properties and oscillations are discussed with particular interest in matter effects. Present experiments and future projects are reviewed. Particular attention is devoted to the compelling background and low-statistics problems. Finally, presently available results from running experiments are discussed, in the framework of the SNP. Some conclusions on the possibilities of the new proposed projects to actually slove the problem are also given.

    2. The Intermediate Neutrino Program

      SciTech Connect

      Adams, C.; et al.

      2015-03-23

      The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

    3. High Energy Neutrinos from the Fermi Bubbles

      NASA Astrophysics Data System (ADS)

      Razzaque, Soebur; Lunardini, Cecilia

      2012-03-01

      Recent discovery of two gamma-ray emitting bubble-shaped structures (Fermi Bubbles) at the Galactic center opens up a possibility to detect high-energy neutrinos from them as well, if the observed gamma rays have hadronic origin. This new predicted Galactic neutrino flux is hard, following gamma-ray data, compared to the atmospheric neutrino flux and can be detected with a kilometer scale neutrino telescope in the northern hemisphere, such as the planned KM3NeT, above 20-50 TeV. IceCube Neutrino Observatory at the South pole can also provide interesting constraints on the flux model. A detection or exclusion of this neutrino flux can discriminate between a leptonic or hadronic origin of the gamma-rays, as well as bring unique information on the activities at the Galactic center.

    4. The ANTARES telescope neutrino alert system

      NASA Astrophysics Data System (ADS)

      Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

      2012-03-01

      The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.

    5. A combined view of sterile-neutrino constraints from CMB and neutrino oscillation measurements

      NASA Astrophysics Data System (ADS)

      Bridle, Sarah; Elvin-Poole, Jack; Evans, Justin; Fernandez, Susana; Guzowski, Pawel; Söldner-Rembold, Stefan

      2017-01-01

      We perform a comparative analysis of constraints on sterile neutrinos from the Planck experiment and from current and future neutrino oscillation experiments (MINOS, IceCube, SBN). For the first time, we express joint constraints on Neff and meffsterile from the CMB in the Δm2, sin2 ⁡ 2 θ parameter space used by oscillation experiments. We also show constraints from oscillation experiments in the Neff, meffsterile cosmology parameter space. In a model with a single sterile neutrino species and using standard assumptions, we find that the Planck 2015 data and the oscillation experiments measuring muon-neutrino (νμ) disappearance have similar sensitivity.

    6. Neutrino decay and solar neutrino seasonal effect

      NASA Astrophysics Data System (ADS)

      Picoreti, R.; Guzzo, M. M.; de Holanda, P. C.; Peres, O. L. G.

      2016-10-01

      We consider the possibility of solar neutrino decay as a sub-leading effect on their propagation between production and detection. Using current oscillation data, we set a new lower bound to the ν2 neutrino lifetime at τ2 /m2 ≥ 7.2 ×10-4s .eV-1 at 99% C.L. Also, we show how seasonal variations in the solar neutrino data can give interesting additional information about neutrino lifetime.

    7. Solar neutrino experiments and neutrino oscillations

      SciTech Connect

      Cleveland, B.T.; Davis, R. Jr.; Rowley, J.K.

      1981-01-01

      This report gives the results of the Brookhaven solar neutrino experiment that is based upon the neutrino capture reaction, /sup 37/Cl(..nu..,e/sup -/)/sup 37/Ar. The experiment was built in 1967 to test the theory of solar energy production, and it is well known that the neutrino capture rate in the detector is lower than that expected from theoretical models of the sun. The results will be compared to the current solar model calculations. One possible explanation of the low solar neutrino capture rate is that the neutrinos oscillate between two or more neutrino states, a topic of particular interest to this conference. This question is discussed in relation to the /sup 37/Cl experiment, and to other solar neutrino detectors that are capable of observing the lower energy neutrinos from the sun. A radiochemical solar neutrino detector located deep underground has a very low background and is capable of detecting the monoenergetic neutrinos from megacurie sources of radioisotopes that decay by electron capture. Experiments of this nature are described that are capable of testing for neutrino oscillations with a omicronm/sup 2/ as low as 0.2 eV/sup 2/ if there is maximum mixing between two neutrino states.

    8. Antifungal activity of heartwood extracts from three Juniperus species

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Heartwood samples from three species of Juniperus (i.e., J. virginianna, J. occidentalis, and J. ashei) were extracted with hexane, ethanol and methanol and the hexane and ethanol extracts were tested for antifungal activity against four species of wood-rot fungi. These three species represent the ...

    9. Working Group Report: Neutrinos

      SciTech Connect

      de Gouvea, A.; Pitts, K.; Scholberg, K.; Zeller, G. P.

      2013-10-16

      This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.

    10. Long Baseline Neutrino Oscillations

      SciTech Connect

      Rebel, Brian; /Fermilab

      2009-10-01

      There is compelling evidence for neutrino flavor change as neutrinos propagate. The evidence for this phenomenon has been provided by several experiments observing neutrinos that traverse distances of several hundred kilometers between production and detection. This review outlines the evidence for neutrino flavor change from such experiments and describes recent results in the field.

    11. Underground neutrino astronomy

      SciTech Connect

      Schramm, D.N.

      1983-02-01

      A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium.

    12. Neutrinos in Nuclear Physics

      SciTech Connect

      McKeown, Bob

      2015-06-01

      Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

    13. The cosmic neutrino background

      NASA Technical Reports Server (NTRS)

      Dar, Arnon

      1991-01-01

      The cosmic neutrino background is expected to consist of relic neutrinos from the big bang, of neutrinos produced during nuclear burning in stars, of neutrinos released by gravitational stellar collapse, and of neutrinos produced by cosmic ray interactions with matter and radiation in the interstellar and intergalactic medium. Formation of baryonic dark matter in the early universe, matter-antimatter annihilation in a baryonic symmetric universe, and dark matter annihilation could have also contributed significantly to the cosmic neutrino background. The purpose of this paper is to review the properties of these cosmic neutrino backgrounds, the indirect evidence for their existence, and the prospects for their detection.

    14. Variations in the Solar Neutrino Flux

      DOE R&D Accomplishments Database

      Davis, R. Jr.; Cleveland, B. T.; Rowley, J. K.

      1987-08-02

      Observations are reported from the chlorine solar neutrino detector in the Homestake Gold Mine, South Dakota, USA. They extend from 1970 to 1985 and yield an average neutrino capture rate of 2.1 +- 0.3 SNU. The results from 1977 to 1985 show an anti-correlation with the solar activity cycle, and an apparent increased rate during large solar flares.

    15. Neutrino mixing and oscillations in astrophysical environments

      SciTech Connect

      Balantekin, A. B.

      2014-05-02

      A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

    16. A light sterile neutrino from Friedberg-Lee symmetry

      NASA Astrophysics Data System (ADS)

      He, Xiao-Gang; Liao, Wei

      2014-01-01

      Light sterile neutrinos of mass about an eV with mixing U of a few percent to active neutrinos may solve some anomalies shown in experimental data related to neutrino oscillation. How to have light sterile neutrinos is one of the theoretical problems which have attracted a lot of attentions. In this article we show that such an eV scale light sterile neutrino candidate can be obtained in a seesaw model in which the right-handed neutrinos satisfy a softly-broken Friedberg-Lee (FL) symmetry. In this model a right-handed neutrino is guaranteed by the FL symmetry to be light comparing with other two heavy right-handed neutrinos. It can be of eV scale when the FL symmetry is softly broken and can play the role of eV scale sterile neutrino needed for explaining the anomalies of experimental data. This model predicts that one of the active neutrino is massless. We find that this model prefers inverted hierarchy mass pattern of active neutrinos than normal hierarchy. An interesting consequence of this model is that realizing relatively large |U| and relatively small |U| in this model naturally leads to a relatively small |U|. This interesting prediction can be tested in future atmospheric or solar neutrino experiments.

    17. Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters.

      PubMed

      Ahmad, Q R; Allen, R C; Andersen, T C; Anglin, J D; Barton, J C; Beier, E W; Bercovitch, M; Bigu, J; Biller, S D; Black, R A; Blevis, I; Boardman, R J; Boger, J; Bonvin, E; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Browne, M C; Bullard, T V; Bühler, G; Cameron, J; Chan, Y D; Chen, H H; Chen, M; Chen, X; Cleveland, B T; Clifford, E T H; Cowan, J H M; Cowen, D F; Cox, G A; Dai, X; Dalnoki-Veress, F; Davidson, W F; Doe, P J; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Ferraris, A P; Ford, R J; Formaggio, J A; Fowler, M M; Frame, K; Frank, E D; Frati, W; Gagnon, N; Germani, J V; Gil, S; Graham, K; Grant, D R; Hahn, R L; Hallin, A L; Hallman, E D; Hamer, A S; Hamian, A A; Handler, W B; Haq, R U; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hepburn, J D; Heron, H; Hewett, J; Hime, A; Howe, M; Hykawy, J G; Isaac, M C P; Jagam, P; Jelley, N A; Jillings, C; Jonkmans, G; Kazkaz, K; Keener, P T; Klein, J R; Knox, A B; Komar, R J; Kouzes, R; Kutter, T; Kyba, C C M; Law, J; Lawson, I T; Lay, M; Lee, H W; Lesko, K T; Leslie, J R; Levine, I; Locke, W; Luoma, S; Lyon, J; Majerus, S; Mak, H B; Maneira, J; Manor, J; Marino, A D; McCauley, N; McDonald, A B; McDonald, D S; McFarlane, K; McGregor, G; Meijer Drees, R; Mifflin, C; Miller, G G; Milton, G; Moffat, B A; Moorhead, M; Nally, C W; Neubauer, M S; Newcomer, F M; Ng, H S; Noble, A J; Norman, E B; Novikov, V M; O'Neill, M; Okada, C E; Ollerhead, R W; Omori, M; Orrell, J L; Oser, S M; Poon, A W P; Radcliffe, T J; Roberge, A; Robertson, B C; Robertson, R G H; Rosendahl, S S E; Rowley, J K; Rusu, V L; Saettler, E; Schaffer, K K; Schwendener, M H; Schülke, A; Seifert, H; Shatkay, M; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, A R; Smith, M W E; Spreitzer, T; Starinsky, N; Steiger, T D; Stokstad, R G; Stonehill, L C; Storey, R S; Sur, B; Tafirout, R; Tagg, N; Tanner, N W; Taplin, R K; Thorman, M; Thornewell, P M; Trent, P T; Tserkovnyak, Y I; Van Berg, R; Van de Water, R G; Virtue, C J; Waltham, C E; Wang, J-X; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wittich, P; Wouters, J M; Yeh, M

      2002-07-01

      The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted 8B spectrum, the night minus day rate is 14.0%+/-6.3%(+1.5%)(-1.4%) of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the nu(e) asymmetry is found to be 7.0%+/-4.9%(+1.3%)(-1.2%). A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the large mixing angle solution.

    18. Relic Neutrino Absorption Spectroscopy

      SciTech Connect

      Eberle, b

      2004-01-28

      Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

    19. The solar neutrino problem and the neutrino magnetic moment

      NASA Astrophysics Data System (ADS)

      Pulido, João

      1992-02-01

      The physics of the proposed solution to the solar neutrino puzzle based on the neutrino magnetic moment is reviewed. The magnetic moment transition mechanism from active to sterile neutrinos can be either resonant or non-resonant and its kinship to matter enhanced oscillations is shown. The transition probability in the adiabatic approximation is calculated and the limits to adiabaticity are discussed. The full probability incorporating both the adiabatic and non-adiabatic regimes is derived using the Landau-Zener approximation for the non-adiabatic regimes. The available experimental data from the three existing solar neutrino experiments (Davis, Kamiokande II and SAGE) are compared with the results of the theory. From this comparison one can predict for the flavour square mass difference Δ2m21 = (0.5-1.5) x 10-8eV2 and for the magnetic moment μ > (6-7) × 10-12 μB. The uncertainties in the solar magnetic field are considerable and the ansatz used takes a value of 10 5 G along the solar core and the radiation zone, decreasing then linearly along the convection zone. A change in B by one or two orders of magnitude has the main effect of modifying the lower bound on μ by the same proportion, while leaving Δ2m21 practically unaltered. An anticorrelation between neutrino flux and solar activity, although consistent with the theory, cannot be clearly predicted.

    20. Neutrinos estériles en nucleosíntesis primordial

      NASA Astrophysics Data System (ADS)

      Sáez, M. M.; Mosquera, M. E.; Civitarese, O.

      2015-08-01

      We have studied the effect of the inclusion of massive sterile neutrinos upon primordial abundances of the elements produced during the stage of primordial nucleosynthesis (Big Bang Nucleosynthesis). We calculate the new active neutrino number densities by taking into account the interactions between active neutrinos (effective potential), the active neutrino oscillations, the active-sterile neutrino oscillations and a damping factor for active neutrinos. We computed the primordial abundances as functions of the active-sterile mixing parameters. Finally, we compared the abundances calculated theoretically with the observations to set constraints for the free parameters.

    1. Does diet influence salivary enzyme activities in elephant species?

      PubMed

      Boehlke, Carolin; Pötschke, Sandra; Behringer, Verena; Hannig, Christian; Zierau, Oliver

      2017-01-01

      Asian elephants (Elephas maximus) and African elephants (Loxodonta africana) are herbivore generalists; however, Asian elephants might ingest a higher proportion of grasses than Africans. Although some studies have investigated nutrition-specific morphological adaptations of the two species, broader studies on salivary enzymes in both elephant species are lacking. This study focuses on the comparison of salivary enzymes activity profiles in the two elephant species; these enzymes are relevant for protective and digestive functions in humans. We aimed to determine whether salivary amylase (sAA), lysozyme (sLYS), and peroxidase (sPOD) activities have changed in a species-specific pattern during evolutionary separation of the elephant genera. Saliva samples of 14 Asian and eight African elephants were collected in three German zoos. Results show that sAA and sLYS are salivary components of both elephant species in an active conformation. In contrast, little to no sPOD activity was determined in any elephant sample. Furthermore, sAA activity was significantly higher in Asian compared with African elephants. sLYS and sPOD showed no species-specific differences. The time of food provision until sample collection affected only sAA activity. In summary, the results suggest several possible factors modulating the activity of the mammal-typical enzymes, such as sAA, sLYS, and sPOD, e.g., nutrition and sampling procedure, which have to be considered when analyzing differences in saliva composition of animal species.

    2. Chromium-51 calibrating neutrino source

      SciTech Connect

      Demchenko, N.F.; Karasev, V.I.; Karelin, E.A.

      1993-12-31

      The problem for measurement of the sun neutrino flux is resolved at the specially made Baksansk neutrino telescope and calls for calibration of registration system. For this a man made neutrino source is required with the known yield of particles and intensity comparable with the intensity of the measured subject. The most suitable radionuclide for production of this source is chromium-51 the radionuclide decay of which is accompanied with neutrino radiation. At the Research Institute of Atomic Reactors (in Dimitrovgrad) the production technology is developed as well as the closed chromium-51 neutrino source is made of 4 x 10{sup 5} Ci activity. The parts of active source made in the form of core of metallic isotope-enriched chromium were irradiated in the high flux neutron trap of the SM-2 reactor. The sources were subsequently assembled at the shield cells with remote equipment application. The source was certificated as a special form radioactive material. Due to low half-life of chromium-51 (T 1/2 - 27 hours) all the operations on assembly, certification and delivery of source to the Baksansk Laboratory were performed at the earliest possible date (less than 3 days).

    3. Generalized Boltzmann formalism for oscillating neutrinos

      SciTech Connect

      Strack, P.; Burrows, A.

      2005-05-01

      In the standard approaches to neutrino transport in the simulation of core-collapse supernovas, one will often start from the classical Boltzmann equation for the neutrino's spatial, temporal, and spectral evolution. For each neutrino species, and its antiparticle, the classical density in phase space, or the associated specific intensity, will be calculated as a function of time. The neutrino radiation is coupled to matter by source and sink terms on the 'right-hand side' of the transport equation and together with the equations of hydrodynamics this set of coupled partial differential equations for classical densities describes, in principle, the evolution of core collapse and explosion. However, with the possibility of neutrino oscillations between species, a purely quantum-physical effect, how to generalize this set of Boltzmann equations for classical quantities to reflect oscillation physics has not been clear. To date, the formalisms developed have retained the character of quantum operator physics involving complex quantities and have not been suitable for easy incorporation into standard supernova codes. In this paper, we derive generalized Boltzmann equations for quasiclassical, real-valued phase-space densities that retain all the standard oscillation phenomenology, including the matter-enhanced resonant flavor conversion (Mikheev-Smirnov-Wolfenstein effect), neutrino self-interactions, and the interplay between decohering matter coupling and flavor oscillations. With this formalism, any code(s) that can now handle the solution of the classical Boltzmann or transport equation can easily be generalized to include neutrino oscillations in a quantum-physically consistent fashion.

    4. Experimental Neutrino Physics: Final Report

      SciTech Connect

      Lane, Charles E.; Maricic, Jelena

      2012-09-05

      Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

    5. Neutrino mass, a status report

      SciTech Connect

      Robertson, R.G.H.

      1993-08-01

      Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

    6. Neutrino Physics at Fermilab

      ScienceCinema

      Saoulidou, Niki

      2016-07-12

      Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

    7. Neutrinos and Supernovae

      SciTech Connect

      Meyer, Bradley S.

      2008-05-12

      Core-collapse supernovae are one of the few astrophysical environments in which neutrinos play a dominant role. Neutrinos emission is the means by which a newly-born neutron star formed in a core-collapse event cools. Neutrinos may play a significant role in causing the supernova explosion. Finally neutrinos may significantly affect the nucleosynthesis occurring in the layers of the exploding star that are eventually ejected into interstellar space. This paper reviews some interesting neutrino-nucleus processes that may occur in the cores of exploding massive stars and then discusses some effects neutrinos may have on explosive nucleosynthesis in supernovae.

    8. Investigation of Neutrino Properties with Bolometric Detectors

      SciTech Connect

      Heeger, Karsten M

      2014-11-01

      Neutrino mass and mixing are amongst the major discoveries of the past decade. The particle nature of neutrinos and the hierarchy of mass eigenstates, however, are unknown. Neutrinoless double beta-decay (0νββ) is the only known mechanism to test whether neutrinos are their own antiparticles. The observation of 0νββ would imply lepton number violation and show that neutrinos have Majorana mass. This report describes research activities performed at the University of Wisconsin in 2011-2014 aimed at the search for 0νββ with CUORE-0 and CUORE with the goal of exploring the inverted mass hierarchy region and probing an effective neutrino mass of ~40- 120 meV.

    9. Solar Neutrino flare detection in Hyperkamiokande and SK

      NASA Astrophysics Data System (ADS)

      Fargion, Daniele

      2016-07-01

      The possible buid and near activity of a Megaton neutrino detection in HyperKamiokande and the older SK implementation by Gadolinium liqid might open to future detection of largest solar flare (pion trace at tens MeV) electron neutrino and antineutrino. The multiwave detection of X-gamma and neutrino event might offer a deep view of such solar acelleration and of neutrino flavor mix along its flight. The possoble near future discover of such events will open a third neutrino astronomy windows after rarest SN 1987A and persistent Solar nuclear signals.

    10. Are there sterile neutrinos at the eV scale?

      PubMed

      Kopp, Joachim; Maltoni, Michele; Schwetz, Thomas

      2011-08-26

      New predictions for the antineutrino flux from nuclear reactors suggest that reactor experiments may have measured a deficit in this flux, which can be interpreted in terms of oscillations between the known active neutrinos and new sterile states. We perform a reanalysis of global short-baseline neutrino oscillation data in a framework with one or two sterile neutrinos. While one sterile neutrino is still not sufficient to reconcile the signals suggested by reactor experiments and by the LSND and MiniBooNE experiments with null results from other searches, we find that, with the new reactor flux prediction, the global fit improves considerably when two sterile neutrinos are introduced.

    11. Measuring the activity of a 51Cr neutrino source based on the gamma-radiation spectrum

      NASA Astrophysics Data System (ADS)

      Gorbachev, V. V.; Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

      2015-12-01

      A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of 51Cr is presented.

    12. Low energy neutrinos in Super-Kamiokande

      NASA Astrophysics Data System (ADS)

      Sekiya, Hiroyuki

      2016-05-01

      Super-Kamiokande (SK), a 50 kton water Cherenkov detector, observes 8B solar neutrinos via neutrino-electron elastic scattering. The analysis threshold was successfully lowered to 3.5 MeV (recoil electron kinetic energy) in SK-IV. To date SK has observed solar neutrinos for 18 years. An analysis regarding possible correlations between the solar neutrino flux and the 11 year solar activity cycle is shown. With large statistics, SK searches for distortions of the solar neutrino energy spectrum caused by the MSW resonance in the core of the sun. SK also searches for a day/night solar neutrino flux asymmetry induced by the matter in the Earth. The Super-Kamiokande Gd (SK-Gd) project is the upgrade of the SK detector via the addition of water-soluble gadolinium (Gd) salt. This modification will enable it to efficiently identify low energy anti-neutrinos. SK-Gd will pursue low energy physics currently inaccessible to SK due to backgrounds. The most important will be the world’s first observation of the diffuse supernova neutrino background. The main R&D program towards SK-Gd is EG ADS: a 200 ton, fully instrumented tank built in a new cavern in the Kamioka mine.

    13. Identification of the haemolytic activity of Malassezia species.

      PubMed

      Juntachai, Weerapong; Kummasook, Aksarakorn; Mekaprateep, Malee; Kajiwara, Susumu

      2014-03-01

      Malassezia species are part of the normal skin flora and are associated with a number of human and animal skin diseases. However, the mechanisms that mediate infection and host-fungal interactions are poorly understood. The haemolytic activity of several microorganisms is considered a factor that contributes to pathogenicity of the organism to humans and animals. This virulence factor was previously identified in several pathogenic fungi that cause systemic mycoses, such as Aspergillus and Candida. In this study, the haemolytic activity of six major Malassezia species, including M. furfur, M. globosa, M. pachydermatis, M. restricta, M. slooffiae and M. sympodialis, was investigated. The haemolytic activity of these species was tested on tryptone soya agar with 5% sheep blood. All the examined Malassezia species produced a halo zone of complete haemolysis. A quantitative analysis of the haemolytic activity was performed by incubating sheep erythrocytes with the extraction from culture of each Malassezia species. Interestingly, M. globosa and M. restricta showed significantly high haemolytic activity compared with the other Malassezia species. In addition, M. globosa also exhibited stable haemolytic activity after treatment at 100 °C and in the presence of some proteases, indicating that this haemolytic factor is different from those of other fungi.

    14. Volatile species in halide-activated-diffusion coating packs

      NASA Technical Reports Server (NTRS)

      Bianco, Robert; Rapp, Robert A.; Jacobson, Nathan S.

      1992-01-01

      An atmospheric pressure sampling mass spectrometer was used to identify the vapor species generated in a halide-activated cementation pack. Pack powder mixtures containing a Cr-Al binary masteralloy powder, an NH4Cl activator salt, and either ZrO2 or Y2O3 (or neither) were analyzed at 1000 C. Both the equilibrium calculations for the pack and mass spectrometer results indicated that volatile AlCl(x) and CrCl(y) species were generated by the pack powder mixture; in packs containing the reactive element oxide, volatile ZrCl(z) and YCl(w) species were formed by the conversion of their oxide sources.

    15. The Low Energy Neutrino Factory

      SciTech Connect

      Bross, Alan; Geer, Steve; Ellis, Malcolm; Fernandez Martinez, Enrique; Li, Tracey; Pascoli, Silvia; Mena, Olga

      2010-03-30

      We show that a low energy neutrino factory with a baseline of 1300 km and muon energy of 4.5 GeV has an excellent physics reach. The results of our optimisation studies demonstrate that such a setup can have remarkable sensitivity to theta{sub 13} and delta for sin{sup 2}(2theta{sub 13})>10{sup -4}, and to the mass hierarchy for sin{sup 2}(2theta{sub 13})>10{sup -3}. We also illustrate the power of the unique combination of golden and platinum channels accessible to the low energy neutrino factory. We have considered both a 20 kton totally active scintillating detector and a 100 kton liquid argon detector as possible detector technologies, finding that a liquid argon detector with very good background rejection can produce sensitivity to theta{sub 13} and delta with that of the International Design Study neutrino factory.

    16. Solar Neutrino Problem

      DOE R&D Accomplishments Database

      Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

      1978-04-28

      A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

    17. Supernova neutrino detection

      SciTech Connect

      Scholberg, K.

      2015-07-15

      In this presentation I summarize the main detection channels for neutrinos from core-collapse supernovae, and describe current status of and future prospects for supernova-neutrino-sensitive detectors worldwide.

    18. Limits on neutrino radiative decay from SN1987A

      NASA Technical Reports Server (NTRS)

      Jaffe, Andrew H.; Fenimore, ED; Turner, Michael S.

      1993-01-01

      We calculate limits on the properties of neutrinos using data from gamma ray detectors on the Pioneer Venus Orbiter and Solar Max Mission satellites. A massive neutrino decaying in flight from the supernova would produce gamma rays detectable by these instruments. The lack of such a signal allows us to constrain the mass, radiative lifetime, and branching ratio to photons of a massive neutrino species produced in the supernova.

    19. Sterile neutrinos at the CNGS

      NASA Astrophysics Data System (ADS)

      Donini, Andrea; Maltoni, Michele; Meloni, Davide; Migliozzi, Pasquale; Terranova, Francesco

      2007-12-01

      We study the potential of the CNGS beam in constraining the parameter space of a model with one sterile neutrino separated from three active ones by an Script O(eV2) mass-squared difference, Δ mSBL2. We perform our analysis using the OPERA detector as a reference (our analysis can be upgraded including a detailed simulation of the ICARUS detector). We point out that the channel with the largest potential to constrain the sterile neutrino parameter space at the CNGS beam is νμ→ντ. The reason for that is twofold: first, the active-sterile mixing angle that governs this oscillation is the less constrained by present experiments; second, this is the signal for which both OPERA and ICARUS have been designed, and thus benefits from an extremely low background. In our analysis we also took into account νμ→νe oscillations. We find that the CNGS potential to look for sterile neutrinos is limited with nominal intensity of the beam, but it is significantly enhanced with a factor 2 to 10 increase in the neutrino flux. Data from both channels allow us, in this case, to constrain further the four-neutrino model parameter space. Our results hold for any value of Δ mSBL2gtrsim0.1 eV2, i.e. when oscillations driven by this mass-squared difference are averaged. We have also checked that the bound on θ13 that can be put at the CNGS is not affected by the possible existence of sterile neutrinos.

    20. Leptogenesis with many neutrinos

      SciTech Connect

      Eisele, Marc-Thomas

      2008-02-15

      We consider leptogenesis in scenarios with many neutrino singlets. We find that the lower bound for the reheating temperature can be significantly relaxed with respect to the hierarchical three neutrino case. We further argue that the upper bound for the neutrino mass scale from leptogenesis gets significantly lifted in these scenarios. As a specific realization, we then discuss an extradimensional model, where the large number of neutrinos is provided by Kaluza-Klein excitations.

    1. Neutrino Oscillation Physics

      SciTech Connect

      Kayser, Boris

      2012-06-01

      To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

    2. Neutrino masses and mixings

      SciTech Connect

      Wolfenstein, L.

      1991-12-31

      Theoretical prejudices, cosmology, and neutrino oscillation experiments all suggest neutrino mass are far below present direct experimental limits. Four interesting scenarios and their implications are discussed: (1) a 17 keV {nu}{sub {tau}}, (2) a 30 ev {nu}{sub {tau}} making up the dark matter, (3) a 10{sup {minus}3} ev {nu}{sub {mu}} to solve the solar neutrino problem, and (4) a three-neutrino MSW solution.

    3. Solar Neutrino Spectroscopy

      NASA Astrophysics Data System (ADS)

      Feilitzsch, F. v.

      1999-01-01

      Since the pioneering experiment of R. Davis et al., which started neutrino astronomy by measuring the solar neutrinos via the inverse beta decay reaction on 37Cl, all solar neutrino experiments find a considerably lower flux than expected by standard solar models. This finding is generally called the solar neutrino problem. Many attempts have been made to explain this result by altering the solar models, or assuming different nuclear cross sections for fusion processes assumed to be the energy sources in the sun. There have been performed numerous experiments recently to investigate the different possibilities to explain the solar neutrino problem. These experiments covered solar physics with helioseismology, nuclear cross section measurements, and solar neutrino experiments. Up to now no convincing explanation based on "standard" physics was suggested. However, assuming nonstandard neutrino properties, i.e. neutrino masses and mixing as expected in most extensions of the standard theory of elementary particle physics, natural solutions for the solar neutrino problem can be found. It appears that with this newly invented neutrino astronomy fundamental information on astrophysics as well as elementary particle physics are tested uniquely. In this contribution an attempt is made to review the situation of the neutrino astronomy for solar neutrino spectroscopy and discuss the future prospects in this field.

    4. Comparison of cytotoxic activities of extracts from Selaginella species

      PubMed Central

      Li, Juan; Lei, Xiang; Chen, Ke-li

      2014-01-01

      Background: Selaginella species are resurrection plants, which are known, possess various molecular bioactivities depending on species, but only a few species have been detailed observe in the advanced research. Objective: The objective of the following study is to compare the chemical profiles of different species of Selaginella and to investigate cytotoxicity and induction of apoptosis activities of some species of Selaginella. Materials and Methods: The high-performance liquid chromatography (HPLC) method was developed for chemical analysis. Ethyl acetate, ethanol and water-soluble extracts from seven Selaginella species were submitted to 3-(4,5-dimenthyl thizol-2-yl)-2,5-diphenyl tetrazolium bromide assay, flow cytometry, deoxyribonucleic acid (DNA) laddering analysis and caspase-3 expression using Bel-7402, HT-29 and HeLa cells. Results: The HPLC analysis revealed two major common peaks, which were identified as amentoflavone and robustaflavone and another three main peaks in their chromatograms. The results showed that S. labordei, Selaginella tamariscina and Selaginella uncinata had relatively stronger activities on Bel-7402 and HeLa cells and Selaginella moellendorfii had moderate antiproliferation activities, but Selaginella remotifolia and Selaginella pulvinata had almost no inhibitory activities. The main active components were in the ethyl acetate extracts which had abundant biflavonoids. The effects of these extracts on cell proliferation and apoptosis in different cells were not the same, they were more apparent on HeLa cells than on HT-29 cells. The assay of DNA laddering analysis and caspase-3 expression further confirmed that inducing cell apoptosis was one of antitumor mechanisms and antitumor activities of Selaginella species were related to apoptosis induced by caspase family. Conclusion: S. labordei, S. tamariscina and S. uncinata would be potential antitumor agents. PMID:25422557

    5. Search for active neutrino disappearance using neutral-current interactions in the MINOS long-baseline experiment

      SciTech Connect

      Adamson, P.; Andreopoulos, C.; Arms, Kregg E.; Armstrong, R.; Auty, D.J.; Ayres, D.S.; Backhouse, C. Baller, B.; Barr, G.; Barrett, W.L.; Becker, B.R.; /Minnesota U. /Rutherford

      2008-07-01

      We have measured the rates and spectra of neutral-current neutrino interactions in the MINOS detectors, which are separated by 734 km. A depletion in the rate at the far site would indicate mixing between {nu}{sub {mu}} and a sterile particle. The depletion of the total neutral-current event rate at the far site is limited to be below 17% at 90% confidence level without {nu}{sub e} appearance. Assuming oscillations occur at a single mass-squared splitting, a fit to the neutral- and charged-current energy spectra shows the fraction of {nu}{sub {mu}} oscillating to a sterile neutrino is 0.28{sub -0.28}{sup +0.25}(stat.+syst.). Including {nu}{sub e} appearance at the current experimental upper bound limits the depletion to be below 21% at 90% confidence level and the fit fraction of {nu}{sub {mu}} oscillating to a sterile neutrino is 0.43{sub -0.27}{sup +0.23}(stat.+syst.).

    6. Primordial nucleosynthesis and neutrino physics

      NASA Astrophysics Data System (ADS)

      Smith, Christel Johanna

      We study primordial nucleosynthesis abundance yields for assumed ranges of cosmological lepton numbers, sterile neutrino mass-squared differences and active-sterile vacuum mixing angles. We fix the baryon-to-photon ratio at the value derived from the cosmic microwave background (CMB) data and then calculate the deviation of the 2 H, 4 He, and 7 Li abundance yields from those expected in the zero lepton number(s), no-new-neutrino-physics case. We conclude that high precision (< 5% error) measurements of the primordial 2 H abundance from, e.g., QSO absorption line observations coupled with high precision (< 1% error) baryon density measurements from the CMB could have the power to either: (1) reveal or rule out the existence of a light sterile neutrino if the sign of the cosmological lepton number is known; or (2) place strong constraints on lepton numbers, sterile neutrino mixing properties and resonance sweep physics. Similar conclusions would hold if the primordial 4 He abundance could be determined to better than 10%. We have performed new Big Bang Nucleosynthesis calculations which employ arbitrarily-specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally-determined primordial helium and deuterium abundances. We have modified a standard BBN code to perform these

    7. Nucleosynthesis and Neutrinos

      SciTech Connect

      Kajino, Toshitaka

      2011-05-06

      Neutrinos play the critical roles in nucleosynthesis of light-to-heavy mass nuclei in core-collapse supernovae. We study the nucleosynthesis induced by neutrino interactions and find suitable average neutrino temperatures in order to explain the observed solar system abundances of several isotopes {sup 7}Li, {sup 11}B, {sup 138}La and {sup 180}Ta. These isotopes are predominantly synthesized by the supernova {nu}-process. We also study the neutrino oscillation effects on their abundances and propose a method to determine the unknown neutrino oscillation parameters, i.e. {theta}{sub 13} and mass hierarchy.

    8. DEEP UNDERGROUND NEUTRINO EXPERIMENT

      SciTech Connect

      Wilson, Robert J.

      2016-03-03

      The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.

    9. Mass determination of neutrinos

      NASA Technical Reports Server (NTRS)

      Chiu, Hong-Yee

      1988-01-01

      A time-energy correlation method has been developed to determine the signature of a nonzero neutrino mass in a small sample of neutrinos detected from a distant source. The method is applied to the Kamiokande II (Hirata et al., 1987) and IMB (Bionta et al., 1987) observations of neutrino bursts from SN 1987A. Using the Kamiokande II data, the neutrino rest mass is estimated at 2.8 + 2.0, - 1.4 eV and the initial neutrino pulse is found to be less than 0.3 sec full width, followed by an emission tail lasting at least 10 sec.

    10. LSND neutrino oscillation results

      SciTech Connect

      Louis, W.C.

      1996-06-01

      In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say {bar {nu}}{sub {mu}}) spontaneously transforms into a neutrino of another type (say {bar {nu}}{sub e}). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with {bar {nu}}{sub {mu}} oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations.

    11. Supernovae neutrino pasta interaction

      NASA Astrophysics Data System (ADS)

      Lin, Zidu; Horowitz, Charles; Caplan, Matthew; Berry, Donald; Roberts, Luke

      2017-01-01

      In core-collapse supernovae, the neutron rich matter is believed to have complex structures, such as spherical, slablike, and rodlike shapes. They are collectively called ``nuclear pasta''. Supernovae neutrinos may scatter coherently on the ``nuclear pasta'' since the wavelength of the supernovae neutrinos are comparable to the nuclear pasta scale. Consequently, the neutrino pasta scattering is important to understand the neutrino opacity in the supernovae. In this work we simulated the ``nuclear pasta'' at different temperatures and densities using our semi-classical molecular dynamics and calculated the corresponding static structure factor that describes ν-pasta scattering. We found the neutrino opacities are greatly modified when the ``pasta'' exist and may have influence on the supernovae neutrino flux and average energy. Our neutrino-pasta scattering effect can finally be involved in the current supernovae simulations and we present preliminary proto neutron star cooling simulations including our pasta opacities.

    12. Measuring Neutrino Oscillations with Nuclear Reactors

      SciTech Connect

      McKeown, R. D.

      2007-10-26

      Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided crucial information on the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.

    13. Detecting sterile neutrinos with KATRIN like experiments

      SciTech Connect

      Riis, Anna Sejersen; Hannestad, Steen E-mail: sth@phys.au.dk

      2011-02-01

      A sterile neutrino with mass in the eV range, mixing with ν-bar {sub e}, is allowed and possibly even preferred by cosmology and oscillation experiments. If such eV-mass neutrinos exist they provide a much better target for direct detection in beta decay experiments than the active neutrinos which are expected to have sub-eV masses. Their relatively high mass would allow for an easy separation from the primary decay signal in experiments such as KATRIN.

    14. A New Neutrino Oscillation

      SciTech Connect

      Parke, Stephen J.; /Fermilab

      2011-07-01

      Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) divided by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected background

    15. Collective neutrino oscillations in supernovae

      SciTech Connect

      Duan, Huaiyu

      2014-06-24

      In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

    16. Big bang nucleosynthesis with independent neutrino distribution functions

      SciTech Connect

      Smith, Christel J.; Fuller, George M.; Smith, Michael S.

      2009-05-15

      We have performed new big bang nucleosynthesis calculations, which employ arbitrarily specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate, and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early Universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally determined primordial helium and deuterium abundances. We have modified a standard big bang nucleosynthesis code to perform these calculations and have made it available to the community.

    17. Neutrino physics with JUNO

      NASA Astrophysics Data System (ADS)

      An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

      2016-03-01

      The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

    18. Cosmic neutrino cascades from secret neutrino interactions

      NASA Astrophysics Data System (ADS)

      Ng, Kenny C. Y.; Beacom, John F.

      2014-09-01

      The first detection of high-energy astrophysical neutrinos by IceCube provides new opportunities for tests of neutrino properties. The long baseline through the cosmic neutrino background (CνB) is particularly useful for directly testing secret neutrino interactions (νSI) that would cause neutrino-neutrino elastic scattering at a larger rate than the usual weak interactions. We show that IceCube can provide competitive sensitivity to νSI compared to other astrophysical and cosmological probes, which are complementary to laboratory tests. We study the spectral distortions caused by νSI with a large s-channel contribution, which can lead to a dip, bump, or cutoff on an initially smooth spectrum. Consequently, νSI may be an exotic solution for features seen in the IceCube energy spectrum. More conservatively, IceCube neutrino data could be used to set model-independent limits on νSI. Our phenomenological estimates provide guidance for more detailed calculations, comparisons to data, and model building.

    19. Is cosmology compatible with sterile neutrinos?

      SciTech Connect

      Dodelson, Scott; Melchiorri, Alessandro; Slosar, Anze; /Ljubljana U.

      2005-11-01

      By combining data from cosmic microwave background (CMB) experiments (including the recent BOOMERANG-2K2 results), large scale structure (LSS) and Lyman-{alpha} forest observations, we constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless + 1 massive neutrino case we bound the mass of the sterile neutrino to m{sub s} < 0.55eV at 95% c.l.. These results exclude at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We then generalize the analysis to account for active neutrino masses (which tightens the limit to m{sub s} < 0.51eV) and the possibility that the sterile abundance is not thermal. In the latter case, the constraints in the (mass, density) plane are non-trivial. For a mass of > 1eV or < 0.05eV the cosmological energy density in sterile neutrinos is always constrained to be {omega}{sub {nu}} < 0.005 at 95% c.l.. However, for a sterile neutrino mass of {approx} 0.25 eV, {omega}{sub {nu}} can be as large as 0.015.

    20. Towards the resolution of the solar neutrino problem

      SciTech Connect

      Friedland, Alexander

      2000-08-01

      A number of experiments have accumulated over the years a large amount of solar neutrino data. The data indicate that the observed solar neutrino flux is significantly smaller than expected and, furthermore, that the electron neutrino survival probability is energy dependent. This ''solar neutrino problem'' is best solved by assuming that the electron neutrino oscillates into another neutrino species. Even though one can classify the solar neutrino deficit as strong evidence for neutrino oscillations, it is not yet considered a definitive proof. Traditional objections are that the evidence for solar neutrino oscillations relies on a combination of hard, different experiments, and that the Standard Solar Model (SSM) might not be accurate enough to precisely predict the fluxes of different solar neutrino components. Even though it seems unlikely that modifications to the SSM alone can explain the current solar neutrino data, one still cannot completely discount the possibility that a combination of unknown systematic errors in some of the experiments and certain modifications to the SSM could conspire to yield the observed data. To conclusively demonstrate that there is indeed new physics in solar neutrinos, new experiments are aiming at detecting ''smoking gun'' signatures of neutrino oscillations, such as an anomalous seasonal variation in the observed neutrino flux or a day-night variation due to the regeneration of electron neutrinos in the Earth. In this dissertation we study the sensitivity reach of two upcoming neutrino experiments, Borexino and KamLAND, to both of these effects. Results of neutrino oscillation experiments for the case of two-flavor oscillations have always been presented on the (sin2 2θ, Δm2) parameter space. We point out, however, that this parameterization misses the half of the parameter space π/4 < θ < π/2, which is physically inequivalent to the region 0 < θ < π/4 in the presence of matter effects. The MSW

    1. Hemolytic Activities of the Candida Species in Liquid Medium

      PubMed Central

      Malcok, Hilal Kuzucu; Aktas, Esin; Ayyildiz, Ahmet; Yigit, Nimet; Yazgi, Halil

      2009-01-01

      Objective The aim of this study was to evaluate the in vitro hemolytic activities of 107 Candida strains isolated from different clinical samples in liquid medium, and to examine the impact of glucose on this activity. Materials and Methods A total of 107 Candida isolates representing seven species (C. albicans, n=28; C. glabrata, n=23; C. tropicalis, n=17; C. parapsilosis, n=16; C. kefyr, n=14; C. krusei, n=5; C. guilliermondii, n=4) were included in the study. The hemolytic activities of the strains were tested on two different Sabouraud dextrose liquid media (SDB) containing 7% defibrinated human blood, one of which is supplemented with 3% glucose and the other without glucose. Cultures were evaluated at the end of a 48-hour incubation. The hemolysis in the media was detected spectrophotometrically by measuring the amount of released hemoglobin and compared with a standard hemolysate which was prepared prior to testing. The degree of hemolysis (percentage value) by an individual strain was calculated according to the following formula below: (Absorbance of supernatant media at 540 nm / Absorbance of standard hemolysate at 540 nm X 100). Results In the liquid medium without glucose, strains generally produced hemolysis at low levels. The degree of hemolysis produced by all species increased noticeably in the liquid medium with glucose. Strains of C. albicans and C.kefyr had demonstrated significant hemolytic activity, whereas others had lower activity. C. parapsilosis exerted very little hemolytic activity in the medium with glucose and showed no activity in the medium without glucose. Conclusion The hemolytic activities of most Candida species was found to be higher in the human blood-enriched SDB medium containing 3% additive glucose than in the one free from additives. This result indicates that increased blood glucose concentration may contribute to increased hemolytic activity in Candida species, and it suggests a parallel with possible pathogenesis of

    2. Neutrino dynamics below the electroweak crossover

      SciTech Connect

      Ghiglieri, J.; Laine, M.

      2016-07-12

      We estimate the thermal masses and damping rates of active (m< eV) and sterile (M∼ GeV) neutrinos with thermal momenta k∼3T at temperatures below the electroweak crossover (5 GeV neutrinos interact via direct scatterings mediated by Yukawa couplings, and via their overlap with active neutrinos. Including all leading-order reactions we find that the washout rate generally exceeds the Hubble rate for 5 GeV 130 GeV remains an option. Our differential rates are tabulated in a form suitable for studies of specific scenarios with given neutrino Yukawa matrices.

    3. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils

      PubMed Central

      Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M.; De Bruijn, Irene

      2015-01-01

      The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'–based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

    4. Direct neutrino mass measurements

      NASA Astrophysics Data System (ADS)

      Thümmler, T.

      2011-07-01

      The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.

    5. Neutrino-driven Explosion of a 20 Solar-mass Star in Three Dimensions Enabled by Strange-quark Contributions to Neutrino-Nucleon Scattering

      NASA Astrophysics Data System (ADS)

      Melson, Tobias; Janka, Hans-Thomas; Bollig, Robert; Hanke, Florian; Marek, Andreas; Müller, Bernhard

      2015-08-01

      Interactions with neutrons and protons play a crucial role for the neutrino opacity of matter in the supernova core. Their current implementation in many simulation codes, however, is rather schematic and ignores not only modifications for the correlated nuclear medium of the nascent neutron star, but also free-space corrections from nucleon recoil, weak magnetism, or strange quarks, which can easily add up to changes of several 10% for neutrino energies in the spectral peak. In the Garching supernova simulations with the Prometheus-Vertex code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 {M}⊙ progenitor star that a moderate strangeness-dependent contribution of {g}{{a}}{{s}}=-0.2 to the axial-vector coupling constant {g}{{a}}≈ 1.26 can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is in the direction of current experimental results and reduces the neutral-current scattering opacity of neutrons, which dominate in the medium around and above the neutrinosphere. This leads to increased luminosities and mean energies of all neutrino species and strengthens the neutrino-energy deposition in the heating layer. Higher nonradial kinetic energy in the gain layer signals enhanced buoyancy activity that enables the onset of the explosion at ˜300 ms after bounce, in contrast to the model with vanishing strangeness contributions to neutrino-nucleon scattering. Our results demonstrate the close proximity to explosion of the previously published, unsuccessful 3D models of the Garching group.

    6. Sudbury Neutrino Observatory

      SciTech Connect

      Beier, E.W.

      1992-03-01

      This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical {sup 37}Cl and {sup 71}Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

    7. Antioxidant, antimicrobial and antiproliferative activities of five lichen species.

      PubMed

      Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Comić, Ljiljana; Dačić, Dragana; Curčić, Milena; Marković, Snežana

      2011-01-01

      The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells.

    8. [L-lysine-alpha-oxidase activity of some Trichoderma species].

      PubMed

      Smirnova, I P; Khaduev, S Kh

      1984-01-01

      Trichoderma cultures were tested for their ability to produce L-lysine-alpha-oxidase. The highest enzyme activity was manifested by T. harzianum (MGU), T. longibrachiatum Rifai VKM F-2025 and T. aureoviride Rifai VKM F-2026. The biosynthesis of the enzyme did not depend on the growth of the cultures and did not vary among the species.

    9. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

      PubMed Central

      Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Čomić, Ljiljana; Đačić, Dragana; Ćurčić, Milena; Marković, Snežana

      2011-01-01

      The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells. PMID:21954369

    10. Metabolomic profiling and antioxidant activity of some Acacia species

      PubMed Central

      Abdel-Farid, I.B.; Sheded, M.G.; Mohamed, E.A.

      2014-01-01

      Metabolomic profiling of different parts (leaves, flowers and pods) of Acacia species (Acacia nilotica, Acacia seyal and Acacia laeta) was evaluated. The multivariate data analyses such as principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were used to differentiate the distribution of plant metabolites among different species or different organs of the same species. A.nilotica was characterized with a high content of saponins and A.seyal was characterized with high contents of proteins, phenolics, flavonoids and anthocyanins. A.laeta had a higher content of carbohydrates than A. nilotica and A. seyal. On the basis of these results, total antioxidant capacity, DPPH free radical scavenging activity and reducing power of the methanolic extracts of studied parts were evaluated. A.nilotica and A.seyal extracts showed less inhibitory concentration 50 (IC50) compared to A.laeta extracts which means that these two species have the strongest radical scavenging activity whereas A. laeta extracts have the lowest radical scavenging activity. A positive correlation between saponins and flavonoids with total antioxidant capacity and DPPH radical scavenging activity was observed. Based on these results, the potentiality of these plants as antioxidants was discussed. PMID:25313274

    11. Is the Higgs boson composed of neutrinos?

      DOE PAGES

      Krog, Jens; Hill, Christopher T.

      2015-11-09

      We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

    12. Variations in the solar neutrino flux

      SciTech Connect

      Davis, R. Jr.; Cleveland, B.T.; Rowley, J.K.

      1987-01-01

      Observations are reported from the chlorine solar neutrino detector in the Homestake Gold Mine, South Dakota, USA. They extend from 1970 to 1985 and yield an average neutrino capture rate of 2.1 +- 0.3 SNU. The results from 1977 to 1985 show an anti-correlation with the solar activity cycle, and an apparent increased rate during large solar flares. 18 refs., 2 figs.

    13. Is the Higgs boson composed of neutrinos?

      SciTech Connect

      Krog, Jens; Hill, Christopher T.

      2015-11-09

      We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

    14. Neutrino experiments at LSD and ASD installations.

      NASA Astrophysics Data System (ADS)

      Dadykin, V. L.; Khalchukov, F. F.; Korchagin, V. B.; Korchagin, P. V.; Korolkova, E. V.; Malgin, A. S.; Mal'Gin, A. S.; Ryassny, V. G.; Ryasnyj, V. G.; Ryazhskaya, O. G.; Talochkin, V. P.; Yakushev, V. F.; Zatsepin, G. T.; Aglietta, M.; Badino, G.; Bologna, G. F.; Castagnoli, C.; Castellina, A.; Fulgione, W.; Galeotti, P.; Saavedra, O.; Trinchero, G. C.; Vallania, P.; Vernetto, S.

      No candidate for an antineutrino burst from collapsing stars has been observed during more than 4 years of ASD (Artymovsk Scintillation Detector) and 250 days of LSD (Large Scintillation Detector, Mont Blanc) lifetime. The data collected by the LSD installation are used to obtain an upper limit on the flux of atmospheric neutrinos, and to examine the possibility of detecting solar neutrinos and the correlation between their flux and solar activity.

    15. Acquiring information about neutrino parameters by detecting supernova neutrinos

      SciTech Connect

      Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

      2010-08-01

      We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle {theta}{sub 13}, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about {theta}{sub 13} and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

    16. THE BNL SUPER NEUTRINO BEAM PROJECT

      SciTech Connect

      WENG,W-T.; RAPARIA,D.

      2004-12-02

      To determine the neutrino mixing amplitudes and phase accurately, as well as the CP violation parameters, a very long base line super neutrino beam facility is needed. This is possible due to the long distance and wideband nature of the neutrino beam for the observation of several oscillations from one species of the neutrino to the other [1,2]. BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW and beyond for such a neutrino facility which consists of three major subsystems. First is a 1.5 GeV superconducting linac to replace the booster as injector for the AGS, second is the performance upgrade for the AGS itself for the higher intensity and repetition rate, and finally is target and horn system for the neutrino production. The major contribution for the higher power is from the increase of the repetition rate of the AGS form 0.3 Hz to 2.5 Hz, with moderate increase from the intensity [3]. The design consideration to achieve high intensity and low losses for the linac and the AGS will be reviewed. The target horn design for high power operation and easy maintenance will also be presented.

    17. Solar neutrino detection

      SciTech Connect

      Miramonti, Lino

      2009-04-30

      More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

    18. Paradoxes of neutrino oscillations

      SciTech Connect

      Akhmedov, E. Kh.; Smirnov, A. Yu.

      2009-08-15

      Despite the theory of neutrino oscillations being rather old, some of its basic issues are still being debated in the literature. We discuss a number of such issues, including the relevance of the 'same energy' and 'same momentum' assumptions, the role of quantum-mechanical uncertainty relations in neutrino oscillations, the dependence of the coherence and localization conditions that ensure the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question of (in)dependence of the oscillation probabilities on the neutrino production and detection processes, and the applicability limits of the stationary-source approximation. We also develop a novel approach to calculation of the oscillation probability in the wave-packet approach, based on the summation/integration conventions different from the standard one, which allows a new insight into the 'same energy' vs. 'same momentum' problem. We also discuss a number of apparently paradoxical features of the theory of neutrino oscillations.

    19. Activation mechanism of Gi and Go by reactive oxygen species.

      PubMed

      Nishida, Motohiro; Schey, Kevin L; Takagahara, Shuichi; Kontani, Kenji; Katada, Toshiaki; Urano, Yasuteru; Nagano, Tetsuo; Nagao, Taku; Kurose, Hitoshi

      2002-03-15

      Reactive oxygen species are proposed to work as intracellular mediators. One of their target proteins is the alpha subunit of heterotrimeric GTP-binding proteins (Galpha(i) and Galpha(o)), leading to activation. H(2)O(2) is one of the reactive oxygen species and activates purified Galpha(i2). However, the activation requires the presence of Fe(2+), suggesting that H(2)O(2) is converted to more reactive species such as c*OH. The analysis with mass spectrometry shows that seven cysteine residues (Cys(66), Cys(112), Cys(140), Cys(255), Cys(287), Cys(326), and Cys(352)) of Galpha(i2) are modified by the treatment with *OH. Among these cysteine residues, Cys(66), Cys(112), Cys(140), Cys(255), and Cys(352) are not involved in *OH-induced activation of Galpha(i2). Although the modification of Cys(287) but not Cys(326) is required for subunit dissociation, the modification of both Cys(287) and Cys(326) is necessary for the activation of Galpha(i2) as determined by pertussis toxin-catalyzed ADP-ribosylation, conformation-dependent change of trypsin digestion pattern or guanosine 5'-3-O-(thio)triphosphate binding. Wild type Galpha(i2) but not Cys(287)- or Cys(326)-substituted mutants are activated by UV light, singlet oxygen, superoxide anion, and nitric oxide, indicating that these oxidative stresses activate Galpha(i2) by the mechanism similar to *OH-induced activation. Because Cys(287) exists only in G(i) family, this study explains the selective activation of G(i)/G(o) by oxidative stresses.

    20. In vitro antioxidant and antiproliferative activities of nine Salvia species.

      PubMed

      Loizzo, Monica Rosa; Abouali, Morteza; Salehi, Peyman; Sonboli, Ali; Kanani, Mohammad; Menichini, Francesco; Tundis, Rosa

      2014-01-01

      Supported by a growing increase of scientific research attesting the health properties of salvia species, we have decided to investigate nine Salvia namely Salvia sclarea, Salvia atropatana, Salvia sahendica, Salvia hydrangea, Salvia xanthocheila, Salvia macrosiphon, Salvia glutinosa, Salvia chloroleuca and Salvia ceratophylla species for their antioxidant and antiproliferative activities. In order to correlate the bioactivity with their phytochemical content, the total phenol and total flavonoid contents were also determined. S. ceratophylla exhibited the strongest activity against C32 cells with an IC50 value of 20.8 μg mL(- 1), while S. glutinosa exhibited an IC50 value of 29.5 μg mL(- 1) against ACHN cell line. Interestingly, S. glutinosa displayed also the highest DPPH radical-scavenging activity with an IC50 of 3.2 μg mL(- 1). These species are characterised by the highest total phenol and flavonoid contents. The obtained results suggest that Salvia species are healthy plant foods.

    1. The Angra Neutrino Project: precise measurement of {theta}{sub 13} and safeguards applications of neutrino detectors

      SciTech Connect

      Casimiro, E.; Anjos, J. C.

      2009-04-20

      We present an introduction to the Angra Neutrino Project. The goal of the project is to explore the use of neutrino detectors to monitor the reactor activity. The Angra Project, willl employ as neutrino sources the reactors of the nuclear power complex in Brazil, located in Angra dos Reis, some 150 Km south from the city of Rio de Janeiro. The Angra collaboration will develop and operate a low-mass neutrino detector to monitor the nuclear reactor activity, in particular to measure the reactor thermal power and the reactor fuel isotopic composition.

    2. Radical scavenging, antioxidant and antimicrobial activities of halophytic species.

      PubMed

      Meot-Duros, Laetitia; Le Floch, Gaëtan; Magné, Christian

      2008-03-05

      For the first time, both antioxidant and antimicrobial activities are simultaneously reported in halophytic plants, particularly on polar fractions. Chloroformic and methanolic extracts of the halophytes Eryngium maritimum L., Crithmum maritimum L. and Cakile maritima Scop. were tested for their antimicrobial activities against 12 bacterial and yeast strains. In addition, radical scavenging and antioxidant activities were assessed, as well as total phenol contents. Only one bacterial strain (Listeria monocytogenes) was not inhibited by plants extracts, and apolar (chloroformic) fractions were generally more active than polar (methanolic) ones. Eryngium maritimum presented the weakest radical scavenging activity (ABTS IC(50)=0.28 mg ml(-1)), as well as the lowest total phenol content (16.4 mg GAE g(-1) DW). However, the three halophytic species had relatively strong total antioxidant activities (from 32.7 to 48.6 mg ascorbate equivalents g (-1) DW). Consequences on the potential use of these plants in food or cosmetic industry are discussed.

    3. Novel Ideas for Neutrino Beams

      SciTech Connect

      Peach, Ken

      2007-04-23

      Recent developments in neutrino physics, primarily the demonstration of neutrino oscillations in both atmospheric neutrinos and solar neutrinos, provide the first conclusive evidence for physics beyond the Standard Model of particle physics. The simplest phenomenology of neutrino oscillations, for three generations of neutrino, requires six parameters - two squared mass differences, 3 mixing angles and a complex phase that could, if not 0 or {pi}, contribute to the otherwise unexplained baryon asymmetry observed in the universe. Exploring the neutrino sector will require very intense beams of neutrinos, and will need novel solutions.

    4. Neutrino oscillation studies with reactors.

      PubMed

      Vogel, P; Wen, L J; Zhang, C

      2015-04-27

      Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

    5. Neutrino oscillation studies with reactors

      DOE PAGES

      Vogel, P.; Wen, L.J.; Zhang, C.

      2015-04-27

      Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

    6. Neutrino oscillation studies with reactors

      PubMed Central

      Vogel, P.; Wen, L.J.; Zhang, C.

      2015-01-01

      Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

    7. Neutrinos in Cosmology

      SciTech Connect

      Wong, Yvonne Y. Y.

      2008-01-24

      I give an overview of the effects of neutrinos on cosmology, focussing in particular on the role played by neutrinos in the evolution of cosmological perturbations. I discuss how recent observations of the cosmic microwave background and the large-scale structure of galaxies can probe neutrino masses with greater precision than current laboratory experiments. I describe several new techniques that will be used to probe cosmology in the future.

    8. Neutrinos: Nature's Ghosts?

      ScienceCinema

      Lincoln, Don

      2016-07-12

      Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

    9. High intensity neutrino beams

      SciTech Connect

      Ichikawa, A. K.

      2015-07-15

      High-intensity proton accelerator complex enabled long baseline neutrino oscillation experiments with a precisely controlled neutrino beam. The beam power so far achieved is a few hundred kW with enourmorous efforts of accelerator physicists and engineers. However, to fully understand the lepton mixing structure, MW-class accelerators are desired. We describe the current intensity-frontier high-energy proton accelerators, their plans to go beyond and technical challenges in the neutrino beamline facilities.

    10. Neutrinos: Nature's Ghosts?

      SciTech Connect

      Lincoln, Don

      2013-06-18

      Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

    11. Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows

      SciTech Connect

      Tamborra, Irene; Raffelt, Georg G.; Hüdepohl, Lorenz; Janka, Hans-Thomas E-mail: raffelt@mpp.mpg.de E-mail: thj@mpa-garching.mpg.de

      2012-01-01

      Motivated by recent hints for sterile neutrinos from the reactor anomaly, we study active-sterile conversions in a three-flavor scenario (2 active + 1 sterile families) for three different representative times during the neutrino-cooling evolution of the proto-neutron star born in an electron-capture supernova. In our ''early model'' (0.5 s post bounce), the ν{sub e}-ν{sub s} MSW effect driven by Δm{sup 2} = 2.35eV{sup 2} is dominated by ordinary matter and leads to a complete ν{sub e}-ν{sub s} swap with little or no trace of collective flavor oscillations. In our ''intermediate'' (2.9 s p.b.) and ''late models'' (6.5 s p.b.), neutrinos themselves significantly modify the ν{sub e}-ν{sub s} matter effect, and, in particular in the late model, νν refraction strongly reduces the matter effect, largely suppressing the overall ν{sub e}-ν{sub s} MSW conversion. This phenomenon has not been reported in previous studies of active-sterile supernova neutrino oscillations. We always include the feedback effect on the electron fraction Y{sub e} due to neutrino oscillations. In all examples, Y{sub e} is reduced and therefore the presence of sterile neutrinos can affect the conditions for heavy-element formation in the supernova ejecta, even if probably not enabling the r-process in the investigated outflows of an electron-capture supernova. The impact of neutrino-neutrino refraction is strong but complicated, leaving open the possibility that with a more complete treatment, or for other supernova models, active-sterile neutrino oscillations could generate conditions suitable for the r-process.

    12. Neutrino-nucleus interactions

      SciTech Connect

      Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

      2011-01-01

      The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

    13. Tests of neutrino stability

      NASA Astrophysics Data System (ADS)

      Bahcall, J. N.; Petcov, S. V.; Toshev, S.; Valle, J. W. F.

      1986-12-01

      A possible solution of the solar neutrino problem is that electron neutrinos decay in transit from the sun. The phenomenological consequences of this hypothesis for solar neutrino experiments with detectors of 2H, 40Ar, 71Ga, 98Mo, and electron-neutrino scattering are discussed. The postulated fast decay can occur in models of majoron type without violating laboratory, cosmological, or astrophysical constraints. Address after January 1st, 1987: Department de Física Teòrica, Universitat de Valencia, Burjassot, Valencia, Spain.

    14. Muons and neutrinos

      NASA Technical Reports Server (NTRS)

      Stanev, T.

      1986-01-01

      The first generation of large and precise detectors, some initially dedicated to search for nucleon decay has accumulated significant statistics on neutrinos and high-energy muons. A second generation of even better and bigger detectors are already in operation or in advanced construction stage. The present set of experimental data on muon groups and neutrinos is qualitatively better than several years ago and the expectations for the following years are high. Composition studies with underground muon groups, neutrino detection, and expected extraterrestrial neutrino fluxes are discussed.

    15. Solar atmosphere neutrino oscillations

      SciTech Connect

      Fogli, G.L.; Lisi, E.; Mirizzi, A.; Montanino, D.; Serpico, P.D.; /Fermilab

      2007-02-01

      The Sun is a source of high energy neutrinos (E > 10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations on the solar atmosphere neutrino fluxes observable at Earth. We find that peculiar matter oscillation effects in the Sun do exist, but are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged ''vacuum'' oscillations, dominated by a single mixing parameter (the angle {theta}{sub 23}).

    16. Plant species richness increases phosphatase activities in an experimental grassland

      NASA Astrophysics Data System (ADS)

      Hacker, Nina; Wilcke, Wolfgang; Oelmann, Yvonne

      2014-05-01

      Plant species richness has been shown to increase aboveground nutrient uptake requiring the mobilization of soil nutrient pools. For phosphorus (P) the underlying mechanisms for increased P release in soil under highly diverse grassland mixtures remain obscure because aboveground P storage and concentrations of inorganic and organic P in soil solution and differently reactive soil P pools are unrelated (Oelmann et al. 2011). The need of plants and soil microorganisms for P can increase the exudation of enzymes hydrolyzing organically bound P (phosphatases) which might represent an important release mechanism of inorganic P in a competitive environment such as highly diverse grassland mixtures. Our objectives were to test the effects of i) plant functional groups (legumes, grasses, non-leguminous tall and small herbs), and of (ii) plant species richness on microbial P (Pmic) and phosphatase activities in soil. In autumn 2013, we measured Pmic and alkaline phosphomonoesterase and phosphodiesterase activities in soil of 80 grassland mixtures comprising different community compositions and species richness (1, 2, 4, 8, 16, 60) in the Jena Experiment. In general, Pmic and enzyme activities were correlated (r = 0.59 and 0.46 for phosphomonoesterase and phosphodiesterase activities, respectively; p

    17. Light sterile neutrinos from a late phase transition

      NASA Astrophysics Data System (ADS)

      Vecchi, Luca

      2016-12-01

      Light sterile neutrinos represent a well-motivated extension of the 3-neutrino paradigm. However, the impressive agreement between standard cosmology and data casts doubts on their existence. Here, we present a class of scenarios that robustly avoids this tension. In these models the sterile neutrinos are light, chiral states of a new sector interacting with the Standard Model via the right-handed neutrino portal, and crucially active-sterile neutrino oscillations require a phase transition in the hidden sector. We explore the hidden-couplings/critical-temperature plane and identify regions where several sterile neutrinos can be accommodated. A late phase transition is usually preferred and may also ward off a potential threat posed by the formation of topologically stable defects.

    18. Astrophysical High-Energy Neutrinos and Gamma-Ray Bursts

      SciTech Connect

      Murase, Kohta

      2008-10-22

      High-energy neutrinos from gamma-ray bursts (GRBs) have been expected in various scenarios. Many predictions for prompt and afterglow emission were done in the pre-Swift era. After the launch of Swift, several new discoveries such as flares have allowed us to expect additional new possibilities of high-energy neutrino emission from GRBs. In this paper, we overview various predictions of GRB neutrino emission, and discuss feature prospects. High-energy neutrino signals may be detected by future-coming large neutrino detectors such as IceCube and KM3Net. If detected, they should be very useful to know the nature of cosmic-ray acceleration sites. It would also help us to reveal the possible connection between ultra-high-energy cosmic rays (UHECRs) and GRBs. Finally, we also compare a prediction of GRB neutrinos with several predictions for other sources such as active galactic nuclei (AGN) and clusters of galaxies.

    19. BEAMING NEUTRINOS AND ANTI-NEUTRINOS ACROSS THE EARTH TO DISENTANGLE NEUTRINO MIXING PARAMETERS

      SciTech Connect

      Fargion, Daniele; D'Armiento, Daniele; Paggi, Paolo; Desiati, Paolo E-mail: paolo.desiati@icecube.wisc.edu

      2012-10-10

      A result from MINOS seemed to indicate that the mass splitting and mixing angle of anti-neutrinos is different from that of neutrinos, suggesting a charge-parity-time (CPT) violation in the lepton sector. However, more recent MINOS data reduced the {nu}{sub {mu}}-{nu}-bar{sub {mu}} differences leading to a narrow discrepancy nearly compatible with no CPT violation. However, the last few years of OPERA activity on the appearance of a tau lepton (one unique event) still has not been probed and more tools may be required to disentangle a list of parameters ({mu}-{tau} flavor mixing, tau appearance, any eventual CPT violation, {theta}{sub 13} angle value, and any hierarchy neutrino mass). Atmospheric anisotropy in muon neutrino spectra in the DeepCore, at ten to tens of GeV (unpublished), can hardly reveal asymmetry in the eventual {nu}{sub {mu}}-{nu}-bar{sub {mu}} oscillation parameters. Here we considered how the longest baseline neutrino oscillation available, crossing most of Earth's diameter, may improve the measurement and at best disentangle any hypothetical CPT violation occurring between the earliest (2010) and the present (2012) MINOS bounds (with 6{sigma} a year), while testing {tau} and even the appearance of {tau}-bar at the highest rate. The {nu}{sub {mu}} and {nu}-bar{sub {mu}} disappearance correlated with the tau appearance is considered for those events at the largest distances. We thus propose a beam of {nu}{sub {mu}} and {nu}-bar{sub {mu}} crossing through the Earth, within an OPERA-like experiment from CERN (or Fermilab), in the direction of the IceCube-DeepCore {nu} detector at the South Pole. The ideal energy lies at 21 GeV to test the disappearance or (for any tiny CPT violation) the partial {nu}-bar{sub {mu}} appearance. Such a tuned detection experiment may lead to a strong signature of {tau} or {tau}-bar generation even within its neutral current noise background events: nearly one {tau}-bar or two {tau} a day. The tau appearance signal is

    20. Determining the neutrino mass hierarchy with cosmology

      SciTech Connect

      De Bernardis, Francesco; Kitching, Thomas D.; Heavens, Alan; Melchiorri, Alessandro

      2009-12-15

      The combination of current large-scale structure and cosmic microwave background anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with cosmic microwave background constraints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are nondegenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierarchy. Finally we show that if a particular neutrino hierarchy is assumed then this could bias cosmological parameter constraints, for example, the dark energy equation of state parameter, by > or approx. 1{sigma}, and the sum of masses by 2.3{sigma}. We finally discuss the impact of uncertainties on the theoretical modeling of nonlinearities. The results presented in this analysis are obtained under an approximation to the nonlinear power spectrum. This significant source of uncertainty needs to be addressed in future work.

    1. Measurement of Metabolic Activity in Dormant Spores of Bacillus Species

      DTIC Science & Technology

      2015-01-14

      SECURITY CLASSIFICATION OF: Spores of Bacillus megaterium and Bacillus subtilis were harvested shortly after release from sporangia, incubated under...Dec-2014 Approved for Public Release; Distribution Unlimited Final Report: Measurement of Metabolic Activity in Dormant Spores of Bacillus Species...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 spores, Bacillus , spore dormancy, 3-phosphoglycerate REPORT DOCUMENTATION PAGE 11

    2. High Energy Neutrinos with a Mediterranean Neutrino Telescope

      SciTech Connect

      Borriello, E.; Cuoco, A.; Mangano, G.; Miele, G.; Pastor, Sergio; Pisanti, O.; Serpico, Pasquale Dario; /Fermilab

      2007-09-01

      The high energy neutrino detection by a km{sup 3} Neutrino Telescope placed in the Mediterranean sea provides a unique tool to both determine the diffuse astrophysical neutrino flux and the neutrino nucleon cross section in the extreme kinematical region, which could unveil the presence of new physics. Here is performed a brief analysis of possible NEMO site performances.

    3. Extremely high energy cosmic neutrinos and relic neutrinos

      SciTech Connect

      Quigg, Chris; /Fermilab /CERN

      2006-03-01

      I review the essentials of ultrahigh-energy neutrino interactions, show how neutral-current detection and flavor tagging can enhance the scientific potential of neutrino telescopes, and sketch new studies on neutrino encounters with dark matter relics and on gravitational lensing of neutrinos.

    4. Sterile neutrinos and indirect dark matter searches in IceCube

      SciTech Connect

      Argüelles, Carlos A.; Kopp, Joachim E-mail: jkopp@fnal.gov

      2012-07-01

      If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

    5. Cosmological Neutrino Mass Detection: The Best Probe of Neutrino Lifetime

      SciTech Connect

      Serpico, Pasquale D.

      2007-04-27

      Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence, on neutrino secret interactions with (quasi)massless particles as in Majoron models. On the other hand, neutrino decay may provide a way out to explain a discrepancy < or approx. 0.1 eV between cosmic neutrino bounds and lab data.

    6. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

      SciTech Connect

      Serpico, Pasquale D.; /Fermilab

      2007-01-01

      Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

    7. Short distance neutrino oscillations with Borexino

      NASA Astrophysics Data System (ADS)

      Caminata, A.; Agostini, M.; Altenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Cavalcante, P.; Chepurnov, A.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; di Noto, L.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

      2016-07-01

      The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr) and anti-neutrinos (Ce). Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the νe (or ν̅e) into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence.

    8. Muon and neutrino fluxes

      NASA Technical Reports Server (NTRS)

      Edwards, P. G.; Protheroe, R. J.

      1985-01-01

      The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

    9. The Sudbury Neutrino Observatory

      SciTech Connect

      Hime, A.

      1996-09-01

      A report is given on the status of the Sudbury Neutrino Observatory, presently under construction in the Creighton nickel mine near Sudbury, Ontario in Canada. Focus is upon the technical factors involving a measurement of the charged-current and neutral-current interactions of solar neutrinos on deuterium.

    10. Neutrinos and dark matter

      SciTech Connect

      Ibarra, Alejandro

      2015-07-15

      Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

    11. Summary: Neutrinos and nonaccelerator physics

      SciTech Connect

      Hoffman, C.M.

      1991-01-01

      This paper contains brief synopsis of the following major topics discussed in the neutrino and nonaccelerator parallel sessions: dark matter; neutrino oscillations at accelerators and reactors; gamma-ray astronomy; double beta decay; solar neutrinos; and the possible existence of a 17-KeV neutrino. (LSP)

    12. Magnetically active biosorbent for chromium species removal from aqueous media.

      PubMed

      Abdel-Fattah, Tarek M; Mahmoud, Mohamed E; Osmam, Maher M; Ahmed, Somia B

      2014-01-01

      A magnetically active composite as adsorbent was synthesized via a facile in situ one-pot impregnation of magnetic nano-iron oxide (Fe₃O₄) on the surface of activated carbon (AC) for the formation of AC-Fe₃O₄. Baker(')s yeast was physically loaded on the resultant adsorbent AC-Fe₃O₄ to form a novel yeast coated magnetic composite AC-Fe₃O₄-Yst as biosorbent. The two synthesized adsorbents were characterized by using a scanning electron microscope (SEM) and assessed using Langmuir, the Brunauer-Emmet-Teller (BET) and Dubinin-Radushkevich (D-R) isotherm models. The validity and applicability of these two sorbents in adsorptive removal of chromium species, Cr(VI) and Cr(III), from aqueous solutions under the effect of a magnetic field were studied and evaluated in the presence of various controlling parameters in order to identify the optimal pH, contact time, mass dose and chromium concentrations for such adsorption process. Also, single and multi-stage micro-column techniques were used to study the potential applications of AC-Fe₃O₄ as magnetically active adsorbents and AC-Fe₃O₄-Yst as magnetically active biosorbents, for the removal of chromium species from various real water samples.

    13. Whole Blood Cholinesterase Activity in 20 Species of Wild Birds.

      PubMed

      Horowitz, Igal H; Yanco, Esty G; Landau, Shmulik; Nadler-Valency, Rona; Anglister, Nili; Bueller-Rosenzweig, Ariela; Apelbom-Halbersberg, Tal; Cuneah, Olga; Hanji, Vera; Bellaiche, Michel

      2016-06-01

      Clinical signs of organophosphate and carbamate intoxication in wild birds can be mistaken for those of other diseases, thus potentially delaying diagnosis and implementation of life-saving treatment. The objective of this study was to determine the reference interval for blood cholinesterase activity in 20 different wild avian species from 7 different orders, thereby compiling a reference database for wildlife veterinarians. Blood was collected from birds not suspected of having organophosphate or carbamate toxicosis, and the modified Michel method, which determines the change in blood pH that directly correlates with cholinesterase activity, was used to measure blood cholinesterase levels. Results of change in blood pH values ranged from 0.11 for the white-tailed eagle ( Haliaeetus albicilla ) to 0.90 for the honey buzzard ( Pernis apivorus ). The results showed that even within the same family, interspecies differences in normal cholinesterase blood activity were not uncommon. The findings emphasized the importance of determining reference intervals for avian blood cholinesterase activity at the species level.

    14. Chemical constituents and biological activities of two Iranian Cystoseira species.

      PubMed

      Yegdaneh, Afsaneh; Ghannadi, Alireza; Dayani, Ladan

      2016-07-01

      The marine environment represents approximately half of the global biodiversity and could provide unlimited biological resources for the production of therapeutic drugs. Marine seaweeds comprise few thousands of species representing a considerable part of the littoral biomass. Extracts of the Cystoseira indica and Cystoseira merica were subjected to phytochemical and cytotoxicity evaluation. The amount of total phenol was determined with Folin-Ciocalteu reagent. Cytotoxicity was characterized by IC50 of human cancer cell lines including MCF-7 (human breast adenocarcinoma), HeLa (cervical carcinoma), and HT-29 (human colon adenocarcinoma) using Sulforhodamin assay. Antioxidant activities were evaluated using 2,2-diphenylpicrylhydrazyl (DPPH) method. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant constituents in these Cystoseira species while cyanogenic and cardiac glycosides were the least ones. C. indica had the higher content of total phenolics and also showed higher antioxidant activity. Cytotoxic results showed that both species inhibited cell growth effectively, especially against MCF-7 cell line. The present findings suggest potential pharmacological applications of selected seaweeds but require further investigation and identification of their bioactive principles.

    15. Chemical constituents and biological activities of two Iranian Cystoseira species

      PubMed Central

      Yegdaneh, Afsaneh; Ghannadi, Alireza; Dayani, Ladan

      2016-01-01

      The marine environment represents approximately half of the global biodiversity and could provide unlimited biological resources for the production of therapeutic drugs. Marine seaweeds comprise few thousands of species representing a considerable part of the littoral biomass. Extracts of the Cystoseira indica and Cystoseira merica were subjected to phytochemical and cytotoxicity evaluation. The amount of total phenol was determined with Folin-Ciocalteu reagent. Cytotoxicity was characterized by IC50 of human cancer cell lines including MCF-7 (human breast adenocarcinoma), HeLa (cervical carcinoma), and HT-29 (human colon adenocarcinoma) using Sulforhodamin assay. Antioxidant activities were evaluated using 2,2-diphenylpicrylhydrazyl (DPPH) method. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant constituents in these Cystoseira species while cyanogenic and cardiac glycosides were the least ones. C. indica had the higher content of total phenolics and also showed higher antioxidant activity. Cytotoxic results showed that both species inhibited cell growth effectively, especially against MCF-7 cell line. The present findings suggest potential pharmacological applications of selected seaweeds but require further investigation and identification of their bioactive principles. PMID:27651811

    16. Contribution of gallium experiments to the understanding of solar physics and neutrino physics

      SciTech Connect

      Gavrin, V. N.

      2013-10-15

      The results of gallium measurements of solar neutrino and measurements with artificial sources of neutrinos are presented. Conclusions are drawn from these results, and the potential of the SAGE experiment for studying transitions of active neutrinos to sterile states for {Delta}m{sup 2} > 0.5 eV{sup 2} and a sensitivity of a few percent to the disappearance of electron neutrinos is examined.

    17. Phytochemical profiles, antioxidant and antimicrobial activities of three Potentilla species

      PubMed Central

      2013-01-01

      Background Extracts from Potentilla species have been applied in traditional medicine and exhibit antioxidant, hypoglycemic, anti-inflammatory, antitumor and anti-ulcerogenic properties, but little has been known about the diversity of phytochemistry and pharmacology on this genus. This study investigated and compared the phytochemical profiles, antioxidant and antimicrobial activities of leaf extracts from three Potentilla species (Potentilla fruticosa, Potentilla glabra and Potentilla parvifolia) in order to discover new resources for lead structures and pharmaceutical products. Methods Chemical composition and content of six phenolic compounds were evaluated and determined by RP-HPLC; Total phenolic and total flavonoid content were determined using Folin-Ciocalteau colourimetric method and sodium borohydride/chloranil-based method (SBC); Antioxidant activities were determined using DPPH, ABTS and FRAP assays; Antimicrobial properties were investigated by agar dilution and mycelial growth rate method. Results The results showed hyperoside was the predominant phenolic compound in three Potentilla species by RP-HPLC assay, with the content of 8.86 (P. fruticosa), 2.56 (P. glabra) and 2.68 mg/g (P. parvifolia), respectively. The highest content of total identified phenolic compounds (hyperoside, (+)-catechin, caffeic acid, ferulic acid, rutin and ellagic acid) was observed in P. parvifolia (14.17 mg/g), follow by P. fruticosa (10.01 mg/g) and P. glabra (7.01 mg/g). P. fruticosa possessed the highest content of total phenolic (84.93 ± 0.50 mmol gallic acid equivalent/100 g) and total flavonoid (84.14 ± 0.03 mmol quercetin equivalent/100 g), which were in good correlation with its significant DPPHIC50 (16.87 μg/mL), ABTS (2763.48 μmol Trolox equivalent/g) and FRAP (1398.70 μmol Trolox equivalent/g) capacities. Furthermore, the effective methodology to distinguish the different species of Potentilla was also established by chromatographic fingerprint analysis for

    18. Long-Baseline Neutrino Experiments

      SciTech Connect

      Diwan, M. V.; Galymov, V.; Qian, X.; Rubbia, A.

      2016-10-19

      We review long-baseline neutrino experiments in which neutrinos are detected after traversing macroscopic distances. Over such distances neutrinos have been found to oscillate among flavor states. Experiments with solar, atmospheric, reactor, and accelerator neutrinos have resulted in a coherent picture of neutrino masses and mixing of the three known flavor states. We will summarize the current best knowledge of neutrino parameters and phenomenology with our focus on the evolution of the experimental technique. We will proceed from the rst evidence produced by astrophysical neutrino sources to the current open questions and the goals of future research

    19. Gallium and Reactor Neutrino Anomalies

      NASA Astrophysics Data System (ADS)

      Acero, M. A.; Giunti, C.; Laveder, M.

      2009-03-01

      The observed deficit in the Gallium radioactive source experiments may be interpreted as a possible indication of active-sterile ν mixing. In the effective framework of two-neutrino mixing we obtain sin2ϑ≳0.03 and Δm≳0.1 eV. The compatibility of this result with the data of the Bugey reactor ν disappearance experiments is studied. It is found that the Bugey data present a hint of neutrino oscillations with 0.02≲sin2ϑ≲0.08 and Δm≈1.8 eV, which is compatible with the Gallium allowed region of the mixing parameters. This hint persists in the combined analysis of Gallium, Bugey, and Chooz data.

    20. Antimicrobial activity of some Clerodendrum species from Egypt.

      PubMed

      Abouzid, Sameh F; Wahba, Haytham M; Elshamy, Ali; Cos, Paul; Maes, Louis; Apers, Sandra; Pieters, Luc; Shahat, Abdelaaty A

      2013-01-01

      Chloroformic and methanolic extracts of four Clerodendrum species cultivated in Egypt were screened for antimicrobial activities. Chloroformic extracts of the flowers of Clerodendrum chinense and Clerodendrum splendens were active against Plasmodium falciparum (IC50 < 10 µg mL(-1)). Chloroformic extracts of the stem and flowers of C. chinense were active against Trypanosoma cruzi (IC50 = 1.21 and 1.12 µg mL(-1), respectively) with marginal cytotoxicity. Chloroformic extracts of the leaves of C. chinense and C. splendens showed promising activities against T. cruzi (IC50 = 3.39 and 1.98 µg mL(-1), respectively) without cytotoxic effect on a human cell line. None of the selected plants showed significant activity against Gram-negative or Gram-positive bacteria or Candida albicans. Verbascoside, a phenyl propanoid glycoside isolated from the leaves of C. chinense, showed marginal activity against T. cruzi. Rengyolone, a cyclohexyl ethanoid isolated from the leaves of C. chinense, showed a broad but not specific activity against the tested organisms.

    1. Astroparticle physics with solar neutrinos.

      PubMed

      Nakahata, Masayuki

      2011-01-01

      Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the "solar neutrino problem". Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. (Communicated by Toshimitsu Yamazaki, M.J.A.).

    2. Astroparticle physics with solar neutrinos

      PubMed Central

      NAKAHATA, Masayuki

      2011-01-01

      Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

    3. Supernova Neutrino Type Identification with Adding Sodium Chloride in LVD

      NASA Astrophysics Data System (ADS)

      Ashikhmin, V. V.; Manukovskiy, K. V.; Ryazhskaya, O. G.; Shakiryanova, I. R.; Yudin, A. V.

      2013-11-01

      The main goal of LVD detector is the search for neutrino bursts from gravitational stellar collapses in our Galaxy. It is shown that the addition of kitchen salt in the structure of LVD can both significantly improve the neutrino type identification and increase the active mass of the detector.

    4. Neutrino-neutrino interactions in a supernova and their effect on neutrino flavor conversions

      SciTech Connect

      Dighe, Amol

      2011-11-23

      The neutrino-neutrino interactions inside a supernova core give rise to nonlinear collective effects that significantly influence the neutrino flavor conversions inside the star. I shall describe these interactions, the new oscillation phenomena they generate, and their effect on the neutrino fluxes arriving at the earth.

    5. Antiinflammatory activities of Hungarian Stachys species and their iridoids.

      PubMed

      Háznagy-Radnai, Erzsébet; Balogh, Ágnes; Czigle, Szilvia; Máthé, Imre; Hohmann, Judit; Blazsó, Gábor

      2012-04-01

      The antiinflammatory activities of aqueous extracts prepared from the aerial parts of ten Hungarian Stachys species were investigated in vivo in the carrageenan-induced paw oedema test after intraperitoneal and oral administration to rats. Some of the extracts were found to display significant antiphlogistic effects when administered intraperitoneally and orally; in particular, the extracts of S. alpina, S. germanica, S. officinalis and S. recta demonstrated high activity following intraperitoneal administration. At the same dose of 5.0 mg/kg, these extracts exhibited similar or greater potency than that of the positive control diclofenac-Na. The main iridoids present in the investigated extracts, ajugoside, aucubin, acetylharpagide, harpagide and harpagoside, were also assayed in the same test, and high dose-dependent antiphlogistic effects were recorded for aucubin and harpagoside. These results led to the conclusion that most probably iridoids are responsible for the antiinflammatory effect of Stachys species, but other active constituents or their synergism must also be implicated in the antiinflammatory effect.

    6. Cosmology at the frontier of neutrino physics

      SciTech Connect

      Swanson, Molly E. C.; Percival, Will J.; Lahav, Ofer

      2012-06-20

      Combining measurements of the galaxy power spectrum and the cosmic microwave background (CMB) is a powerful means of constraining the summed mass of neutrino species {Sigma}m{sub v}, but is subject to systematic uncertainties due to non-linear structure formation, redshift-space distortions and galaxy bias. We empirically test the robustness of neutrino mass results to these effects by separately analyzing power spectra of red and blue galaxies from the Sloan Digital Sky Survey (SDSS-II) Data Release 7 (DR7), combined with the CMB five-year Wilkinson Microwave Anisotropy Probe (WMAP5) data. The between upper limits on neutrino mass for red and blue galaxies is approximately 1{sigma} from the value expected from mock catalogs for most models and k ranges tested. This indicates good agreement for current data but hints at possible issues for nextgeneration surveys. More details are available in [1].

    7. Large Roads Reduce Bat Activity across Multiple Species

      PubMed Central

      Kitzes, Justin; Merenlender, Adina

      2014-01-01

      Although the negative impacts of roads on many terrestrial vertebrate and bird populations are well documented, there have been few studies of the road ecology of bats. To examine the effects of large roads on bat populations, we used acoustic recorders to survey bat activity along ten 300 m transects bordering three large highways in northern California, applying a newly developed statistical classifier to identify recorded calls to the species level. Nightly counts of bat passes were analyzed with generalized linear mixed models to determine the relationship between bat activity and distance from a road. Total bat activity recorded at points adjacent to roads was found to be approximately one-half the level observed at 300 m. Statistically significant road effects were also found for the Brazilian free-tailed bat (Tadarida brasiliensis), big brown bat (Eptesicus fuscus), hoary bat (Lasiurus cinereus), and silver-haired bat (Lasionycteris noctivagans). The road effect was found to be temperature dependent, with hot days both increasing total activity at night and reducing the difference between activity levels near and far from roads. These results suggest that the environmental impacts of road construction may include degradation of bat habitat and that mitigation activities for this habitat loss may be necessary to protect bat populations. PMID:24823689

    8. Large roads reduce bat activity across multiple species.

      PubMed

      Kitzes, Justin; Merenlender, Adina

      2014-01-01

      Although the negative impacts of roads on many terrestrial vertebrate and bird populations are well documented, there have been few studies of the road ecology of bats. To examine the effects of large roads on bat populations, we used acoustic recorders to survey bat activity along ten 300 m transects bordering three large highways in northern California, applying a newly developed statistical classifier to identify recorded calls to the species level. Nightly counts of bat passes were analyzed with generalized linear mixed models to determine the relationship between bat activity and distance from a road. Total bat activity recorded at points adjacent to roads was found to be approximately one-half the level observed at 300 m. Statistically significant road effects were also found for the Brazilian free-tailed bat (Tadarida brasiliensis), big brown bat (Eptesicus fuscus), hoary bat (Lasiurus cinereus), and silver-haired bat (Lasionycteris noctivagans). The road effect was found to be temperature dependent, with hot days both increasing total activity at night and reducing the difference between activity levels near and far from roads. These results suggest that the environmental impacts of road construction may include degradation of bat habitat and that mitigation activities for this habitat loss may be necessary to protect bat populations.

    9. Sterile Neutrino Production Through a Matter Effect Enhancement at Long Baselines

      NASA Astrophysics Data System (ADS)

      Bramante, Joseph

      2013-06-01

      If sterile neutrinos have a neutral coupling to standard model fermions, matter effect resonant transitions to sterile neutrinos and excess neutral-current events could manifest at long baseline experiments. Assuming a single sterile neutrino with a neutral coupling to fermionic matter, we re-examine bounds on sterile neutrino production at long baselines from the MINOS result Pνμ →νs < 0.22 (90% CL). We demonstrate that sterile neutrinos with a neutral vector coupling to fermionic matter could evade the MINOS limit, allowing a higher fraction of active to sterile neutrino conversion at long baselines. Scanning the parameter space of sterile neutrino matter effect fits of the LSND and MiniBooNe data, we show that in the case of a vector singlet coupling of sterile neutrinos to matter, some favored parametrizations of these fits would create neutral-current event excesses above standard model predictions at long baseline experiments (e.g. MINOS and OPERA).

    10. Theory of oscillations and sterile neutrinos

      NASA Astrophysics Data System (ADS)

      Palazzo, Antonio

      2014-11-01

      We present a concise review of the theoretical status of neutrino oscillations within the (standard) 3-flavor framework and the (non-standard) 4-flavor scheme endowed with one additional sterile species (the so-called 3+1 scheme). We emphasize the slight overall preference that recently emerged for CP-violation in the 3-flavor analysis and highlight the unique role of the global data combination in the near future. After a brief introduction of the motivations for light (eV) sterile neutrinos, we discuss the bounds on their mixing with the electron neutrinos, attainable from the solar sector. The upper limit so obtained is independent of the reactor neutrino fluxes, whose calculations are affected by systematic uncertainties not completely under control. Finally, we highlight the possibility to explore sub-eV "super-light" sterile neutrinos exploiting the θ13-dedicated reactor experiments also commenting on the robustness of the 3- flavor results within the enlarged 3+1 scheme.

    11. Lectin activity in mycelial extracts of Fusarium species.

      PubMed

      Bhari, Ranjeeta; Kaur, Bhawanpreet; Singh, Ram S

      2016-01-01

      Lectins are non-immunogenic carbohydrate-recognizing proteins that bind to glycoproteins, glycolipids, or polysaccharides with high affinity and exhibit remarkable ability to agglutinate erythrocytes and other cells. In the present study, ten Fusarium species previously not explored for lectins were screened for the presence of lectin activity. Mycelial extracts of F. fujikuroi, F. beomiformii, F. begoniae, F. nisikadoi, F. anthophilum, F. incarnatum, and F. tabacinum manifested agglutination of rabbit erythrocytes. Neuraminidase treatment of rabbit erythrocytes increased lectin titers of F. nisikadoi and F. tabacinum extracts, whereas the protease treatment resulted in a significant decline in agglutination by most of the lectins. Results of hapten inhibition studies demonstrated unique carbohydrate specificity of Fusarium lectins toward O-acetyl sialic acids. Activity of the majority of Fusarium lectins exhibited binding affinity to d-ribose, l-fucose, d-glucose, l-arabinose, d-mannitol, d-galactosamine hydrochloride, d-galacturonic acid, N-acetyl-d-galactosamine, N-acetyl-neuraminic acid, 2-deoxy-d-ribose, fetuin, asialofetuin, and bovine submaxillary mucin. Melibiose and N-glycolyl neuraminic acid did not inhibit the activity of any of the Fusarium lectins. Mycelial extracts of F. begoniae, F. nisikadoi, F. anthophilum, and F. incarnatum interacted with most of the carbohydrates tested. F. fujikuroi and F. anthophilum extracts displayed strong interaction with starch. The expression of lectin activity as a function of culture age was investigated. Most species displayed lectin activity on the 7th day of cultivation, and it varied with progressing of culture age.

    12. Probing neutrinos from Planck and forthcoming galaxy redshift surveys

      SciTech Connect

      Takeuchi, Yoshitaka; Kadota, Kenji E-mail: kadota.kenji@f.nagoya-u.jp

      2014-01-01

      We investigate how much the constraints on the neutrino properties can be improved by combining the CMB, the photometric and spectroscopic galaxy redshift surveys which include the CMB lensing, galaxy lensing tomography, galaxy clustering and redshift space distortion observables. We pay a particular attention to the constraint on the neutrino mass in view of the forthcoming redshift surveys such as the Euclid satellite and the LSST survey along with the Planck CMB lensing measurements. Combining the transverse mode information from the angular power spectrum and the longitudinal mode information from the spectroscopic survey with the redshift space distortion measurements can determine the total neutrino mass with the projected error of O(0.02) eV. Our analysis fixes the mass splittings among the neutrino species to be consistent with the neutrino oscillation data, and we accordingly study the sensitivity of our parameter estimations on the minimal neutrino mass. The cosmological measurement of the total neutrino mass can distinguish between the normal and inverted mass hierarchy scenarios if the minimal neutrino mass ∼<0.005 eV with the predicted 1–σ uncertainties taken into account.

    13. Non-linear evolution of the cosmic neutrino background

      SciTech Connect

      Villaescusa-Navarro, Francisco; Viel, Matteo; Peña-Garay, Carlos E-mail: spb@ias.edu E-mail: viel@oats.inaf.it

      2013-03-01

      We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with

    14. Improved ex vivo method for microbiocidal activity across vertebrate species

      PubMed Central

      French, Susannah S.; Neuman-Lee, Lorin A.

      2012-01-01

      Summary The field of ecoimmunology is currently undergoing rapid expansion, whereby biologists from a wide range of ecological disciplines are increasingly interested in assessing immunocompetence in their study organisms. One of the key challenges to researchers is determining what eco-immune measures to use in a given experiment. Moreover, there are limitations depending on study species, requirements for specific antibodies, and relevance of the methodology to the study organism. Here we introduce an improved ex vivo method for microbiocidal activity across vertebrate species. The utility of this assay is that it determines the ability of an organism to remove a pathogen that could be encountered in the wild, lending ecological relevancy to the technique. The applications of this microbiocidal assay are broad, as it is readily adaptable to different types of microbes as well as a wide variety of study species. We describe a method of microbiocidal analysis that will enable researchers across disciplines to effectively employ this method to accurately quantify microbial killing ability, using readily available microplate absorbance readers. PMID:23213440

    15. Anticancer activities of selected species of North American lichen extracts.

      PubMed

      Shrestha, Gajendra; El-Naggar, Atif M; St Clair, Larry L; O'Neill, Kim L

      2015-01-01

      Cancer is the second leading cause of human deaths in the USA. Despite continuous efforts to treat cancer over the past 50 years, human mortality rates have not decreased significantly. Natural products, such as lichens, have been good sources of anticancer drugs. This study reports the cytotoxic activity of crude extracts of 17 lichen species against Burkitt's lymphoma (Raji) cells. Out of the 17 lichen species, extracts from 14 species showed cytotoxicity against Raji cells. On the basis of IC50 values, we selected Xanthoparmelia chlorochroa and Tuckermannopsis ciliaris to study the mechanism of cell death. Viability of normal lymphocytes was not affected by the extracts of X. chlorochroa and T. ciliaris. We found that extracts from both lichens decreased proliferation, accumulated cells at the G0 /G1 stage, and caused apoptosis in a dose-dependent manner. Both lichen extracts also caused upregulation of p53. The T. ciliaris extract upregulated the expression of TK1 but X. chlorochroa did not. We also found that usnic, salazinic, constictic, and norstictic acids were present in the extract of X. chlorochroa, whereas protolichesterinic acid in T. ciliaris extracts. Our data demonstrate that lichen extracts merit further research as a potential source of anticancer drugs.

    16. Dynamics of neutrino lumps in growing neutrino quintessence

      NASA Astrophysics Data System (ADS)

      Casas, Santiago; Pettorino, Valeria; Wetterich, Christof

      2016-11-01

      We investigate the formation and dissipation of large-scale neutrino structures in cosmologies where the time evolution of dynamical dark energy is stopped by a growing neutrino mass. In models where the coupling between neutrinos and dark energy grows with the value of the scalar cosmon field, the evolution of neutrino lumps depends on the neutrino mass. For small masses the lumps form and dissolve periodically, leaving only a small backreaction of the neutrino structures on the cosmic evolution. This process heats the neutrinos to temperatures far above the photon temperature, such that neutrinos acquire again an almost relativistic equation of state. The present equation of state of the combined cosmon-neutrino fluid is very close to -1 . By contrast, for larger neutrino masses, the lumps become stable. The highly concentrated neutrino structures entail a large backreaction similar to the case of a constant neutrino-cosmon coupling. A present average neutrino mass of around 0.5 eV seems to be compatible with observations so far. For masses lower than this value, neutrino-induced gravitational potentials remain small, making the lumps difficult to detect.

    17. Phenomenological study of extended seesaw model for light sterile neutrino

      NASA Astrophysics Data System (ADS)

      Nath, Newton; Ghosh, Monojit; Goswami, Srubabati; Gupta, Shivani

      2017-03-01

      We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ˜ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m ν , depends on the Dirac neutrino mass matrix ( M D ), Majorana neutrino mass matrix ( M R ) and the mass matrix ( M S ) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M D and observe that maximum five zeros in M D can lead to viable zero textures in m ν . For this study we consider four different forms for M R (one diagonal and three off diagonal) and two different forms of ( M S ) containing one zero. Remarkably we obtain only two allowed forms of m ν ( m eτ = 0 and m ττ = 0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m ν in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m ν . We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z 8 × Z 2.

    18. Reactive oxygen species-activated nanomaterials as theranostic agents

      PubMed Central

      Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

      2015-01-01

      Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use. PMID:26328770

    19. Characterization and chillproofing activity of two enzymes from Streptomyces species.

      PubMed

      Etok, C A; Eka, O U

      1996-01-01

      Two enzymes, amylase and protease of Streptomyces species were purified by a combination of ion exchange chromatography and gel filtration and characterized. The amylase had an exoaction on starch yielding maltose as a major end product and was identified as beta-amylase. The purified amylase had a molecular weight of 48,000 and was maximally active at 35 degrees C and at pH 6.0. On the other hand, protease had a molecular weight of 21,000 and was most active at pH 10.0 and at a temperature of 30 degrees C. The Km or MICHAELIS constant of amylase for maize starch was 0.333 mg/ml while that of protease for casein was 2.5 mg/ml. The feasibility of using the purified protease for various industrial application especially in the chillproofing of beer is discussed.

    20. ALDH2 Mediates 5-Nitrofuran Activity in Multiple Species

      PubMed Central

      Zhou, Linna; Ishizaki, Hironori; Spitzer, Michaela; Taylor, Kerrie L.; Temperley, Nicholas D.; Johnson, Stephen L.; Brear, Paul; Gautier, Philippe; Zeng, Zhiqiang; Mitchell, Amy; Narayan, Vikram; McNeil, Ewan M.; Melton, David W.; Smith, Terry K.; Tyers, Mike; Westwood, Nicholas J.; Patton, E. Elizabeth

      2012-01-01

      Summary Understanding how drugs work in vivo is critical for drug design and for maximizing the potential of currently available drugs. 5-nitrofurans are a class of prodrugs widely used to treat bacterial and trypanosome infections, but despite relative specificity, 5-nitrofurans often cause serious toxic side effects in people. Here, we use yeast and zebrafish, as well as human in vitro systems, to assess the biological activity of 5-nitrofurans, and we identify a conserved interaction between aldehyde dehydrogenase (ALDH) 2 and 5-nitrofurans across these species. In addition, we show that the activity of nifurtimox, a 5-nitrofuran anti-trypanosome prodrug, is dependent on zebrafish Aldh2 and is a substrate for human ALDH2. This study reveals a conserved and biologically relevant ALDH2-5-nitrofuran interaction that may have important implications for managing the toxicity of 5-nitrofuran treatment. PMID:22840776

    1. Flavor ratios of extragalactic neutrinos and neutrino shortcuts in extra dimensions

      SciTech Connect

      Aeikens, Elke; Päs, Heinrich; Pakvasa, Sandip; Sicking, Philipp

      2015-10-02

      The recent measurement of high energy extragalactic neutrinos by the IceCube Collaboration has opened a new window to probe non-standard neutrino properties. Among other effects, sterile neutrino altered dispersion relations (ADRs) due to shortcuts in an extra dimension can significantly affect astrophysical flavor ratios. We discuss two limiting cases of this effect, first active-sterile neutrino oscillations with a constant ADR potential and second an MSW-like resonant conversion arising from geodesics oscillating around the brane in an asymmetrically warped extra dimension. We demonstrate that the second case has the potential to suppress significantly the flux of specific flavors such as ν{sub μ} or ν{sub τ} at high energies.

    2. Neutrino lighthouse at Sagittarius A*

      NASA Astrophysics Data System (ADS)

      Bai, Y.; Barger, A. J.; Barger, V.; Lu, R.; Peterson, A. D.; Salvado, J.

      2014-09-01

      We investigate whether a subset of high-energy events observed by IceCube may be due to neutrinos from Sagittarius A*. We check both spatial and temporal coincidences of IceCube events with other transient activities of Sagittarius A*. Among the seven IceCube shower events nearest to the Galactic center, we have found that event 25 has a time very close to (around three hours after) the brightest x-ray flare of Sagittarius A* observed by the Chandra X-ray Observatory with a p-value of 0.9%. Furthermore, two of the seven events occurred within one day of each other (there is a 1.6% probability that this would occur for a random distribution in time). Thus, the determination that some IceCube events occur at similar times as x-ray flares and others occur in a burst could be the smoking gun that Sagittarius A* is a point source of very-high-energy neutrinos. We point out that if IceCube Galactic center neutrino events originate from charged pion decays, then TeV gamma rays should come from neutral pion decays at a similar rate. We show that the CTA, HAWC, H.E.S.S. and VERITAS experiments should be sensitive enough to test this.

    3. Neutrinos: Nature's Identity Thieves?

      ScienceCinema

      Lincoln, Don

      2016-07-12

      The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

    4. Submarine neutrino communication

      NASA Astrophysics Data System (ADS)

      Huber, Patrick

      2010-09-01

      We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

    5. Neutrinos: Nature's Identity Thieves?

      SciTech Connect

      Lincoln, Don

      2013-07-11

      The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

    6. Looking for Sterile Neutrinos via Neutral-Current Disappearance with NOvA

      NASA Astrophysics Data System (ADS)

      Yang, Shaokai; NOvA Collaboration

      2017-01-01

      Contradictory evidence has been presented on the issue of neutrino mixing between the three known active neutrinos and light sterile neutrinos. The excess of events as seen by the LSND and MiniBooNE experiments interpreted as short-baseline neutrino oscillations, the collective evidence of the reactor neutrino anomaly, and the gallium anomaly all point towards sterile neutrinos with mass at the 1 eV level. While these results are tantalizing, they are not conclusive as they are in tension with null results from other short-baseline experiments, and with disappearance searches in long-baseline and atmospheric experiments. Resolving the issue of the existence of light sterile neutrinos has profound implications for both particle physics and cosmology. The NOvA (NuMI Off-Axis νe Appearance) experiment may help clarify the situation by searching for disappearance of active neutrinos from the NuMI (Neutrinos from the Main Injector) beam over a baseline of 810 km. In this talk, we will describe a method of how NOvA can look for oscillations into sterile neutrinos, with focus on disappearance of neutral current (NC) neutrino events, will present the first analysis result of this search, discuss their implications in constraining the existence of light sterile neutrinos, and the planned updates to this analysis.

    7. Quasi-Elastic Scattering with Neutrinos in MINERvA

      NASA Astrophysics Data System (ADS)

      Osta, Jyotsna; Hurtado, Kenyi; Minerva Collaboration

      2014-09-01

      MINERvA is a few GeV neutrino-nucleus scattering experiment designed to study low energy neutrino interactions both in support of neutrino oscillation experiments as well as a pure weak probe of the nuclear medium. The experiment uses a fine-grained, high resolution detector. The active region is composed of plastic scintillator with additional targets of helium, carbon, iron, lead and water placed upstream of the active region. We present preliminary results from the double differential cross section analysis that aims to study quasi-elastic scattering of neutrinos in the phase space of the muon transverse and longitudinal momenta. This analysis uses the low energy neutrino dataset recorded from November 2009 to April 2012.

    8. Atmospheric neutrino oscillations and tau neutrinos in ice

      SciTech Connect

      Giordano, Gerardo; Mocioiu, Irina; Mena, Olga

      2010-06-01

      The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show here that cascade measurements in the Ice Cube Deep Core Array can provide strong evidence for tau neutrino appearance in atmospheric neutrino oscillations. Controlling systematic uncertainties will be the limiting factor in the analysis. A careful study of these tau neutrinos is crucial, since they constitute an irreducible background for astrophysical neutrino detection.

    9. Anticholinesterase and Antityrosinase Activities of Ten Piper Species from Malaysia

      PubMed Central

      Salleh, Wan Mohd Nuzul Hakimi Wan; Hashim, Nur Athirah; Ahmad, Farediah; Heng Yen, Khong

      2014-01-01

      Purpose: The aim of this study was to investigate acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and antityrosinase activities of extracts from ten Piper species namely; P. caninum, P. lanatum, P. abbreviatum, P. aborescens, P. porphyrophyllum, P. erecticaule, P. ribesioides, P. miniatum, P. stylosum, and P. majusculum. Methods: Anticholinesterase and antityrosinase activities were evaluated against in vitro Ellman spectroscopy method and mushroom tyrosinase, respectively. Results: The EtOAc extract of P. erecticaule showed the highest AChE and BChE inhibitory with 22.9% and 70.9% inhibition, respectively. In antityrosinase activity, all extracts of P. porphyrophyllum showed the highest inhibitory effects against mushroom tyrosinase, compared to standard, kojic acid. Conclusion: This study showed that P. erecticaule and P. porphyrophyllum have potential AChE/BChE and tyrosinase inhibition activities. The respective extracts can be explored further for the development of novel lead as AChE/BChE and tyrosinase inhibitors in therapeutic management of Alzheimer’s disease. PMID:25671185

    10. Sterile Neutrino Searches in MINOS and MINOS+ Experiments

      SciTech Connect

      Huang, Junting

      2015-05-01

      This dissertation presents the searches on sterile neutrinos using the data collected in MINOS+ Experiment from September 2013 to September 2014, and the full data set of MINOS Experiment collected from 2005 to 2012. Anomalies in short baseline experiments, such as LSND and MiniBooNE, showed hints of sterile neutrinos, a type of neutrino that does not interact with the Standard Model particles. In this work, two models are considered: 3+1 and large extra dimension (LED). In the 3+1 model, one sterile neutrino state is added into the standard oscillation scheme consisting of three known active neutrino states ve, vμ and vτ. In the LED model, sterile neutrinos arise as Kaluza-Klein (KK) states due to assumed large extra dimensions. Mixing between sterile and active neutrino states may modify the oscillation patterns observed in the MINOS detectors. Both searches yield null results. For 3+1, a combined fit of MINOS and MINOS+ data gives a stronger limit on θ24 in the range of 10-2 eV2 < Δm412 < 1 eV2 than previous experiments. For LED, with the complete MINOS data set, the size of extra dimensions is constrained to be smaller than ~ 0.35 μm at 90% C.L. in the limit of a vanishing lightest neutrino mass.

    11. Lightest sterile neutrino abundance within the νMSM

      NASA Astrophysics Data System (ADS)

      Asaka, Takehiko; Shaposhnikov, Mikhail; Laine, Mikko

      2007-01-01

      We determine the abundance of the lightest (dark matter) sterile neutrinos created in the Early Universe due to active-sterile neutrino transitions from the thermal plasma. Our starting point is the field-theoretic formula for the sterile neutrino production rate, derived in our previous work [JHEP 06(2006)053], which allows to systematically incorporate all relevant effects, and also to analyse various hadronic uncertainties. Our numerical results differ moderately from previous computations in the literature, and lead to an absolute upper bound on the mixing angles of the dark matter sterile neutrino. Comparing this bound with existing astrophysical X-ray constraints, we find that the Dodelson-Widrow scenario, which proposes sterile neutrinos generated by active-sterile neutrino transitions to be the sole source of dark matter, is only possible for sterile neutrino masses lighter than 3.5 keV (6 keV if all hadronic uncertainties are pushed in one direction and the most stringent X-ray bounds are relaxed by a factor of two). This upper bound may conflict with a lower bound from structure formation, but a definitive conclusion necessitates numerical simulations with the non-equilibrium momentum distribution function that we derive. If other production mechanisms are also operative, no upper bound on the sterile neutrino mass can be established.

    12. ICFA neutrino panel report

      SciTech Connect

      Long, K.

      2015-07-15

      In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: <<neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments. >>>In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel’s findings from the three Regional Town Meetings. The Panel’s initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

    13. ICFA neutrino panel report

      NASA Astrophysics Data System (ADS)

      Long, K.

      2015-07-01

      In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments." In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel's findings from the three Regional Town Meetings. The Panel's initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

    14. Detecting the Neutrino

      NASA Astrophysics Data System (ADS)

      Arns, Robert G.

      In 1930 Wolfgang Pauli suggested that a new particle might be required to make sense of the radioactive-disintegration mode known as beta decay. This conjecture initially seemed impossible to verify since the new particle, which became known as the neutrino, was uncharged, had zero or small mass, and interacted only insignificantly with other matter. In 1951 Frederick Reines and Clyde L. Cowan, Jr., of the Los Alamos Scientific Laboratory undertook the difficult task of detecting the free neutrino by observing its inverse beta-decay interaction with matter. They succeeded in 1956. The neutrino was accepted rapidly as a fundamental particle despite discrepancies in reported details of the experiments and despite the absence of independent verification of the result. This paper describes the experiments, examines the nature of the discrepancies, and discusses the circumstances of the acceptance of the neutrino's detection by the physics community.

    15. The Sudbury Neutrino Observatory

      NASA Astrophysics Data System (ADS)

      Ewan, G. T.

      1992-04-01

      The Sudbury Neutrino Observatory (SNO) detector is a 1000 ton heavy water (D2O) Cherenkov detector designed to study neutrinos from the sun and other astrophysical sources. The use of heavy water allows both electron neutrinos and all other types of neutrinos to be observed by three complementary reactions. The detector will be sensitive to the electron neutrino flux and energy spectrum shape and to the total neutrino flux irrespective of neutrino type. These measurements will provide information on both vacuum neutrino oscillations and matter-enhanced oscillations, the MSW effect. In the event of a supernova it will be very sensitive to muon and tau neutrinos as well as the electron neutrinos emitted in the initial burst, enabling sensitive mass measurements as well as providing details of the physics of stellar collapse. On behalf of the Sudbury Neutrino Observatory (SNO) Collaboration : H.C . Evans, G.T . Ewan, H.W. Lee, J .R . Leslie, J .D. MacArthur, H .-B . Mak, A.B . McDonald, W. McLatchie, B.C . Robertson, B. Sur, P. Skensved (Queen's University) ; C.K . Hargrove, H. Mes, W.F. Davidson, D. Sinclair, 1 . Blevis, M. Shatkay (Centre for Research in Particle Physics) ; E.D. Earle, G.M. Milton, E. Bonvin, (Chalk River Laboratories); J .J . Simpson, P. Jagam, J . Law, J .-X . Wang (University of Guelph); E.D . Hallman, R.U. Haq (Laurentian University); A.L. Carter, D. Kessler, B.R . Hollebone (Carleton University); R. Schubank . C.E . Waltha m (University of British Columbia); R.T. Kouzes, M.M. Lowry, R.M. Key (Princeton University); E.W. Beier, W. Frati, M. Newcomer, R. Van Berg (University of Penn-sylvania), T.J . Bowles, P.J . Doe, S.R . Elliott, M.M. Fowler, R.G.H. Robertson, D.J . Vieira, J .B . Wilhelmy, J .F. Wilker-son, J .M. Wouters (Los Alamos National Laboratory) ; E. Norman, K. Lesko, A. Smith, R. Fulton, R. Stokstad (Lawrence Berkeley Laboratory), N.W. Tanner, N. JCIILY, P. Trent, J . Barton, D.L . Wark (University of Oxford).

    16. Research in Neutrino Physics

      SciTech Connect

      Busenitz, Jerome

      2014-09-30

      We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for θ13 based on 100 days of data from the far detector. Our data indicates that θ13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2(2θ13) = 0.086 ± 0.041 (stat) ± 0.030 (syst). The null oscillation hypothesis is excluded at the 94.6% C.L. This result has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2(2θ13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will

    17. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

      SciTech Connect

      BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

      2000-05-11

      Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

    18. Cosmological and supernova neutrinos

      SciTech Connect

      Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

      2014-06-24

      The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

    19. Cosmological and supernova neutrinos

      NASA Astrophysics Data System (ADS)

      Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

      2014-06-01

      The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

    20. Radiochemical solar neutrino experiments

      NASA Astrophysics Data System (ADS)

      Gavrin, V. N.; Cleveland, B. T.

      2011-12-01

      Radiochemical experiments have been crucial to solar neutrino research. Even today, they provide the only direct measurement of the rate of the proton-proton fusion reaction, p+p→d+e++νe, which generates most of the Sun's energy. We first give a little history of radiochemical solar neutrino experiments with emphasis on the gallium experiment SAGE - the only currently operating detector of this type. The combined result of all data from the Ga experiments is a capture rate of 67.6±3.7 SNU. For comparison to theory, we use the calculated flux at the Sun from a standard solar model, take into account neutrino propagation from the Sun to the Earth and the results of neutrino source experiments with Ga, and obtain 67.3-3.5+3.9 SNU. Using the data from all solar neutrino experiments we calculate an electron neutrino pp flux of ϕpp♁=(3.41-0.77+0.76)×1010/(cm-s), which agrees well with the prediction from a detailed solar model of ϕpp♁=(3.30-0.14+0.13)×1010/(cm-s). Four tests of the Ga experiments have been carried out with very intense reactor-produced neutrino sources and the ratio of observed to calculated rates is 0.88±0.05. One explanation for this unexpectedly low result is that the cross section for neutrino capture by the two lowest-lying excited states in 71Ge has been overestimated. We end with consideration of possible time variation in the Ga experiments and an enumeration of other possible radiochemical experiments that might have been.

    1. Electromagnetic properties of massive neutrinos

      SciTech Connect

      Dobrynina, A. A. Mikheev, N. V.; Narynskaya, E. N.

      2013-10-15

      The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

    2. Neutrino Experiments: Hierarchy, CP, CPT

      NASA Astrophysics Data System (ADS)

      Gupta, Manmohan; Randhawa, Monika; Singh, Mandip

      We present an overview of our recent investigations regarding the prospects of ongoing neutrino experiments as well as future experiments in determining few of the most important unknowns in the field of neutrino physics, specifically the neutrino mass ordering and leptonic CP-violation phase. The effect of matter oscillations on the neutrino oscillation probabilities has been exploited in resolving the degeneracy between the neutrino mass ordering and the CP violation phase in the leptonic sector. Further, we estimate the extent of extrinsic CP and CPT violation in the experiments with superbeams as well as neutrino factories.

    3. Neutrinos beyond the Standard Model

      SciTech Connect

      Valle, J.W.F.

      1989-08-01

      I review some basic aspects of neutrino physics beyond the Standard Model such as neutrino mixing and neutrino non-orthogonality, universality and CP violation in the lepton sector, total lepton number and lepton flavor violation, etc.. These may lead to neutrino decays and oscillations, exotic weak decay processes, neutrinoless double /beta/ decay, etc.. Particle physics models are discussed where some of these processes can be sizable even in the absence of measurable neutrino masses. These may also substantially affect the propagation properties of solar and astrophysical neutrinos. 39 refs., 4 figs.

    4. Experimental High Energy Neutrino Astrophysics

      SciTech Connect

      Distefano, Carla

      2005-10-12

      Neutrinos are considered promising probes for high energy astrophysics. More than four decades after deep water Cerenkov technique was proposed to detect high energy neutrinos. Two detectors of this type are successfully taking data: BAIKAL and AMANDA. They have demonstrated the feasibility of the high energy neutrino detection and have set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km3 size detectors have already started: in the South Pole, the IceCube neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

    5. Nonthermal cosmic neutrino background

      NASA Astrophysics Data System (ADS)

      Chen, Mu-Chun; Ratz, Michael; Trautner, Andreas

      2015-12-01

      We point out that, for Dirac neutrinos, in addition to the standard thermal cosmic neutrino background (C ν B ), there could also exist a nonthermal neutrino background with comparable number density. As the right-handed components are essentially decoupled from the thermal bath of standard model particles, relic neutrinos with a nonthermal distribution may exist until today. The relic density of the nonthermal (nt) background can be constrained by the usual observational bounds on the effective number of massless degrees of freedom Neff and can be as large as nν nt≲0.5 nγ. In particular, Neff can be larger than 3.046 in the absence of any exotic states. Nonthermal relic neutrinos constitute an irreducible contribution to the detection of the C ν B and, hence, may be discovered by future experiments such as PTOLEMY. We also present a scenario of chaotic inflation in which a nonthermal background can naturally be generated by inflationary preheating. The nonthermal relic neutrinos, thus, may constitute a novel window into the very early Universe.

    6. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

      SciTech Connect

      R. Raja et al.

      2001-08-08

      The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

    7. Core-collapse supernova neutrinos and neutrino properties

      SciTech Connect

      Gava, J.; Volpe, C.

      2008-08-29

      Core-collapse supernovae are powerful neutrino sources. The observation of a future (extra-)galactic supernova explosion or of the relic supernova neutrinos might provide important information on the supernova dynamics, on the supernova formation rate and on neutrino properties. One might learn more about unknown neutrino properties either from indirect effects in the supernova (e.g. on the explosion or on in the r-process) or from modifications of the neutrino time or energy distributions in a detector on Earth. Here we will discuss in particular possible effects of CP violation in the lepton sector. We will also mention the interest of future neutrino-nucleus interaction measurements for the precise knowledge of supernova neutrino detector response to electron neutrinos.

    8. Prospect for Relic Neutrino Searches

      NASA Astrophysics Data System (ADS)

      Gelmini, Graciela B.

      2006-03-01

      Neutrinos from the Big Bang are theoretically expected to be the most abundant particles in the Universe after the photons of the Cosmic Microwave Background (CMB). Unlike the relic photons, relic neutrinos have not so far been observed. The Cosmic Neutrino Background (CνB) is the oldest relic from the Big Bang, produced a few seconds after the Bang itself. Due to their impact in cosmology, relic neutrinos may be revealed indirectly in the near future through cosmological observations. In this talk we concentrate on other proposals, made in the last 30 years, to try to detect the CνB directly, either in laboratory searches (through tiny accelerations they produce on macroscopic targets) or through astrophysical observations (looking for absorption dips in the flux of Ultra-High Energy (UHE) neutrinos, due to the annihilation of these neutrinos with relic neutrinos at the Z-resonance). We concentrate mainly on the first possibility. We show that, given present bounds on neutrino masses, lepton number in the Universe and gravitational clustering of neutrinos, all expected laboratory effects of relic neutrinos are far from observability, awaiting future technological advances to reach the necessary sensitivity. The problem for astrophysical searches is that sources of UHE neutrinos at the extreme energies required may not exist. If they do exist, we could reveal the existence, and possibly the mass spectrum, of relic neutrinos, with detectors of UHE neutrinos (such as ANITA, Auger, EUSO, OWL, RICE and SalSA).

    9. Testing keV sterile neutrino dark matter in future direct detection experiments

      NASA Astrophysics Data System (ADS)

      Campos, Miguel D.; Rodejohann, Werner

      2016-11-01

      We determine constraints on sterile neutrino warm dark matter through direct detection experiments, taking XENON100, XENON1T, and DARWIN as examples. If keV-scale sterile neutrinos scatter inelastically with bound electrons of the target material, an electron recoil signal is generated. This can be used to set limits on the sterile neutrino mass and its mixing with the active sector. While not competitive with astrophysical constraints from x-ray data, the constraints are the first direct laboratory bounds on sterile neutrino warm dark matter and will be in some parts of parameter space the strongest limits on keV-scale neutrinos.

    10. Friedberg-Lee symmetry and tribimaximal neutrino mixing in the inverse seesaw mechanism

      NASA Astrophysics Data System (ADS)

      Chan, Aik Hui; Low, Hwee Boon; Xing, Zhi-Zhong

      2009-10-01

      The inverse seesaw mechanism with three pairs of gauge-singlet neutrinos offers a natural interpretation of the tiny masses of three active neutrinos at the TeV scale. We combine this picture with the newly proposed Friedberg-Lee (FL) symmetry in order to understand the observed pattern of neutrino mixing. We show that the FL symmetry requires only two pairs of the gauge-singlet neutrinos to be massive, implying that one active neutrino must be massless. We propose a phenomenological ansatz with broken FL symmetry and exact μ-τ symmetry in the gauge-singlet neutrino sector, and obtain the tribimaximal neutrino mixing pattern by means of the inverse seesaw relation. We demonstrate that nonunitary corrections to this result can possibly reach the percent level, and a soft breaking of μ-τ symmetry can give rise to CP violation in such a TeV-scale seesaw scenario.

    11. Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations.

      PubMed

      Fukuda, S; Fukuda, Y; Ishitsuka, M; Kajita, T; Kameda, J; Kaneyuki, K; Kobayashi, K; Koshio, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Toshito, T; Totsuka, Y; Yamada, S; Earl, M; Habig, A; Kearns, E; Messier, M D; Scholberg, K; Stone, J L; Sulak, L R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, D; Gajewski, W; Kropp, W R; Mine, S; Price, L R; Smy, M; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D

      2000-11-06

      The previously published atmospheric neutrino data did not distinguish whether muon neutrinos were oscillating into tau neutrinos or sterile neutrinos, as both hypotheses fit the data. Using data recorded in 1100 live days of the Super-Kamiokande detector, we use three complementary data samples to study the difference in zenith angle distribution due to neutral currents and matter effects. We find no evidence favoring sterile neutrinos, and reject the hypothesis at the 99% confidence level. On the other hand, we find that oscillation between muon and tau neutrinos suffices to explain all the results in hand.

    12. No-neutrino double beta decay: more than one neutrino

      SciTech Connect

      Rosen, S.P.

      1983-01-01

      Interference effects between light and heavy Majorana neutrinos in the amplitude for no-neutrino double beta decay are discussed. The effects include an upper bound on the heavy neutrino mass, and an A dependence for the effective mass extracted from double beta decay. Thus the search for the no-neutrino decay mode should be pursued in several nuclei, and particularly in Ca/sup 48/, where the effective mass may be quite large.

    13. Lepton asymmetry and neutrino oscillations interplay

      NASA Astrophysics Data System (ADS)

      Kirilova, Daniela

      2013-03-01

      We discuss the interplay between lepton asymmetry L and ν oscillations in the early Universe. Neutrino oscillations may suppress or enhance previously existing L. On the other hand L is capable to suppress or enhance neutrino oscillations. The mechanism of L enhancement in MSW resonant ν oscillations in the early Universe is numerically analyzed. L cosmological effects through ν oscillations are discussed. We discuss how L may change the cosmological BBN constraints on neutrino and show that BBN model with ν_e leftrightarrow ν_s oscillations is extremely sensitive to L - it allows to obtain the most stringent constraints on L value. We discuss also the cosmological role of active-sterile ν mixing and L in connection with the indications about additional relativistic density in the early Universe, pointed out by BBN, CMB and LSS data and the analysis of global ν data.

    14. ANTARES: a high energy neutrino undersea telescope.

      NASA Astrophysics Data System (ADS)

      Hernandez, J. J.

      1999-07-01

      Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration, formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological defects, Q-balls, etc.). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented.

    15. Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters

      SciTech Connect

      Fernandez-Martinez, Enrique; Giordano, Gerardo; Mocioiu, Irina; Mena, Olga

      2010-11-01

      The main goal of the IceCube Deep Core array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.

    16. Neutrino Cloud Instabilities Just above the Neutrino Sphere of a Supernova.

      PubMed

      Sawyer, R F

      2016-02-26

      Most treatments of neutrino flavor evolution, above a surface of the last scattering, take identical angular distributions on this surface for the different initial (unmixed) flavors, and for particles and antiparticles. Differences in these distributions must be present, as a result of the species-dependent scattering cross sections lower in the star. These lead to a new set of nonlinear equations, unstable even at the initial surface with respect to perturbations that break all-over spherical symmetry. There could be important consequences for explosion dynamics as well as for the neutrino pulse in the outer regions.

    17. Simulating nonlinear neutrino flavor evolution

      NASA Astrophysics Data System (ADS)

      Duan, H.; Fuller, G. M.; Carlson, J.

      2008-10-01

      We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev Smirnov Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle θ13.

    18. Hadronization processes in neutrino interactions

      SciTech Connect

      Katori, Teppei; Mandalia, Shivesh

      2015-10-15

      Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

    19. Anthelmintic activity of the latex of Ficus species.

      PubMed

      de Amorin, A; Borba, H R; Carauta, J P; Lopes, D; Kaplan, M A

      1999-03-01

      The latex of some species of Ficus (Moraceae) has been traditionally used as vermifuge in Central and South America. It has been accepted that anthelmintic activity is due to a proteolytic fraction called ficin. In the present study, the anthelmintic activity of the latex of Ficus insipida Willd. and Ficus carica L. has been investigated in NIH mice naturally infected with Syphacia obvelata, Aspiculuris tetraptera and Vampirolepis nana. The latex of F. insipida, administered by intragastric route in doses of 4 ml/kg/day during three consecutive days, were effective in the removal of 38.6% of the total number of S. obvelata, being inexpressive in the removal of A. tetraptera (8.4%) and segments of V. nana (6.3%). The latex of F. carica, administered in doses of 3 ml/kg/day, during three consecutive days, was effective in the removal of S. obvelata (41.7%) and it did not produce significant elimination of A. tetraptera (2.6%) and V. nana (8.3%). The observed high acute toxicity with hemorrhagic enteritis, in addition to a weak anthelmintic efficacy, do not recommend the use of these lattices in traditional medicine.

    20. Generation and remote delivery of plasma activated species

      NASA Astrophysics Data System (ADS)

      Maguire, Paul; Mahony, Charles; Kelsey, Colin; Rutherford, David; Mariotti, Davide; Macias-Montero, Manuel; Perez-Martin, Fatima; Diver, Declan

      2016-09-01

      Plasma interactions with microdroplets offer new opportunities to deliver active chemical agents and nanoparticles to remote substrates downstream with many potential applications from cancer theranostics and wound healing in biomedicine, gentle food decontamination and seed germination in plasma agriculture to catalyst production and photonic structures fabrication, among others. We demonstrate plasma-liquid based pristine nanomaterials synthesis in flight and subsequent delivery up to 120mm from the atmospheric pressure plasma source. Monosized and non-aggregating metal nanoparticles are formed in the rf plasma in less than 100us, representing an increase in precursor reduction rate that is many (>4) orders of magnitude faster than that observed with standard colloidal chemistry or via high energy radiolytic techniques. Also the collection and purification limitations of the latter are avoided. Plasma activated liquid including OH radicals and H2O2 are transported over 120mm and have demonstrated high efficacy bacterial decontamination. These results will be compared with charge species and radical transport from the rf plasma without microdroplets. Reaction models based on high solvated surface electron concentrations will be presented. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

    1. Sterile neutrinos at a Neutrino Factory

      SciTech Connect

      Lopez-Pavon, Jacobo

      2010-03-30

      We study the potential of a Neutrino Factory (NF) to constrain the parameters of the (3+1)-scheme with a O(1)eV{sup 2} largest mass square difference, considering two set-ups: a NF with 50 GeV (20 GeV) stored muons, with two detectors of the Hybrid-MIND type located at L = 3000(4000), 7500 km. We show that the best sensitivity to sterile neutrinos can be achieved through the nu{sub m}u->nu{sub m}u and the nu{sub m}u->nu{sub t}au channels which can constrain theta{sub 34}<=12 deg. (14 deg.) and theta{sub 24}<=7.5 deg. (8 deg.) with the 50 GeV (20 GeV) NF. We also study the CP-violation in this new context showing that the CP-asymmetries in the nu{sub m}u->nu{sub t}au channel can give us the chance to see a clear new CP-violation signal associated with the sterile neutrinos.

    2. Discovering Engangered Species. A Learning and Activity Book.

      ERIC Educational Resources Information Center

      Field, Nancy; Machlis, Sally

      Up to 33 million species share the earth; no one knows the exact number for sure. All over the world, many species are becoming extinct. This workbook is designed to help children become more aware of the concept of extinction, and to develop personal strategies for helping with the problem of endangered species. Included are 31 activities…

    3. Massive neutrinos in cosmology: Analytic solutions and fluid approximation

      SciTech Connect

      Shoji, Masatoshi; Komatsu, Eiichiro

      2010-06-15

      We study the evolution of linear density fluctuations of free-streaming massive neutrinos at redshift of z<1000, with an explicit justification on the use of a fluid approximation. We solve the collisionless Boltzmann equation in an Einstein de-Sitter (EdS) universe, truncating the Boltzmann hierarchy at l{sub max}=1 and 2, and compare the resulting density contrast of neutrinos {delta}{sub {nu}}{sup fluid} with that of the exact solutions of the Boltzmann equation that we derive in this paper. Roughly speaking, the fluid approximation is accurate if neutrinos were already nonrelativistic when the neutrino density fluctuation of a given wave number entered the horizon. We find that the fluid approximation is accurate at subpercent levels for massive neutrinos with m{sub {nu}>}0.05 eV at the scale of k < or approx. 1.0h Mpc{sup -1} and redshift of z<100. This result validates the use of the fluid approximation, at least for the most massive species of neutrinos suggested by the neutrino oscillation experiments. We also find that the density contrast calculated from fluid equations (i.e., continuity and Euler equations) becomes a better approximation at a lower redshift, and the accuracy can be further improved by including an anisotropic stress term in the Euler equation. The anisotropic stress term effectively increases the pressure term by a factor of 9/5.

    4. Neutrino sea scope takes shape

      NASA Astrophysics Data System (ADS)

      Cartlidge, Edwin

      2016-03-01

      A consortium of European physicists building a vast neutrino detector on the floor of the Mediterranean Sea has unveiled the science it will carry out. The Cubic Kilometre Neutrino Telescope (KM3NeT) will use strings of radiation detectors arranged in a 3D network to measure the light emitted when neutrinos very occasionally interact with the surrounding sea water.

    5. Gravitational Lensing of Supernova Neutrinos

      SciTech Connect

      Mena, Olga; Mocioiu, Irina; Quigg, Chris; /Fermilab

      2006-10-01

      The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

    6. High-energy neutrino fluxes from AGN populations inferred from X-ray surveys

      NASA Astrophysics Data System (ADS)

      Jacobsen, Idunn B.; Wu, Kinwah; On, Alvina Y. L.; Saxton, Curtis J.

      2015-08-01

      High-energy neutrinos and photons are complementary messengers, probing violent astrophysical processes and structural evolution of the Universe. X-ray and neutrino observations jointly constrain conditions in active galactic nuclei (AGN) jets: their baryonic and leptonic contents, and particle production efficiency. Testing two standard neutrino production models for local source Cen A (Koers & Tinyakov and Becker & Biermann), we calculate the high-energy neutrino spectra of single AGN sources and derive the flux of high-energy neutrinos expected for the current epoch. Assuming that accretion determines both X-rays and particle creation, our parametric scaling relations predict neutrino yield in various AGN classes. We derive redshift-dependent number densities of each class, from Chandra and Swift/BAT X-ray luminosity functions (Silverman et al. and Ajello et al.). We integrate the neutrino spectrum expected from the cumulative history of AGN (correcting for cosmological and source effects, e.g. jet orientation and beaming). Both emission scenarios yield neutrino fluxes well above limits set by IceCube (by ˜4-106 × at 1 PeV, depending on the assumed jet models for neutrino production). This implies that: (i) Cen A might not be a typical neutrino source as commonly assumed; (ii) both neutrino production models overestimate the efficiency; (iii) neutrino luminosity scales with accretion power differently among AGN classes and hence does not follow X-ray luminosity universally; (iv) some AGN are neutrino-quiet (e.g. below a power threshold for neutrino production); (v) neutrino and X-ray emission have different duty cycles (e.g. jets alternate between baryonic and leptonic flows); or (vi) some combination of the above.

    7. Neutrino oscillations refitted

      NASA Astrophysics Data System (ADS)

      Forero, D. V.; Tórtola, M.; Valle, J. W. F.

      2014-11-01

      Here, we update our previous global fit of neutrino oscillations by including the recent results that have appeared since the Neutrino 2012 conference. These include the measurements of reactor antineutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle θ23 is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with an emphasis on the increasing sensitivity to the C P phase, thanks to the interplay between accelerator and reactor data. In the Appendix, we present the updated results obtained after the inclusion of new reactor data presented at the Neutrino 2014 conference. We discuss their impact on the global neutrino analysis.

    8. Neutrinos from supernovae.

      NASA Astrophysics Data System (ADS)

      Burrows, A. S.

      First, the author presents a short history of supernova neutrino theory. Then, the theory of core collapse supernovae is reviewed. Because of the profound opacity to light of the dense core that experiences collapse, we "see" this core directly only through its neutrino signature. Every bump and wiggle echoes the internal convulsions of the event and can provide clues about both the supernova mechanism and the neutron star that remains. The author discusses the only neutrino observations of a supernova so far, SN 1987A. While the agreement with calculations has been gratifying, there remain, of course, plenty of outstanding issues in supernova theory to be tested. These are high-lighted throughout the text. Since neutrinos give us the only real access to the physics inside the collapse, it is important that observation of these particles continue. In an appendix the author describes some of the available or contemplated neutrino detectors capable of good time resolution and therefore of shedding light on supernova mechanisms.

    9. Neutrino fluctuat nec mercitur: are fossil neutrinos detectable

      SciTech Connect

      De Rujula, A

      1980-04-01

      A brief report is presented on the question whether light (few eV to approx. 100 eV) neutrinos left over from the big bang are detectable. The answer is perhaps. If the weak current of leptons, like those of quarks, are not diagonal in mass eigenstates, a neutrino will decay into a lighter neutrino and a monochromatic photon. The corresponding photon line may be detectable provided: neutrinos are heavy enough to participate in galaxy clustering and neutrino lifetimes are, as in some weak interaction models, short enough.

    10. Coherent neutrino-nucleus scattering and new neutrino interactions

      NASA Astrophysics Data System (ADS)

      Lindner, Manfred; Rodejohann, Werner; Xu, Xun-Jie

      2017-03-01

      We investigate the potential to probe new neutrino physics with future experiments measuring coherent neutrino-nucleus scattering. Experiments with high statistics should become feasible soon and allow to constrain parameters with unprecedented precision. Using a benchmark setup for a future experiment probing reactor neutrinos, we study the sensitivity on neutrino non-standard interactions and new exotic neutral currents (scalar, tensor, etc). Compared to Fermi interaction, percent and permille level strengths of the new interactions can be probed, superseding for some observables the limits from future neutrino oscillation experiments by up to two orders of magnitude.

    11. Effects of kination and scalar-tensor cosmologies on sterile neutrinos

      SciTech Connect

      Rehagen, Thomas; Gelmini, Graciela B. E-mail: gelmini@physics.ucla.edu

      2014-06-01

      We study the effects of kination and scalar-tensor pre-Big Bang Nucleosynthesis cosmologies on the non-resonant production of sterile neutrinos. We show that if the peak of the production rate of sterile neutrinos occurs during a non-standard cosmological phase, the relic number density of sterile neutrinos could be reduced with respect to the number expected in the standard cosmology. Consequently, current bounds on active-sterile neutrino mixing derived from the relic energy density of sterile neutrinos could be greatly relaxed. In particular, we show that the sterile neutrinos which could explain the anomalies found in short-baseline neutrino experiments are compatible with recent joint Planck upper limits on their contribution to the energy density of the Universe in a scalar-tensor or a low-reheating temperature pre-Big Bang Nucleosynthesis cosmology.

    12. Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter

      SciTech Connect

      Reddy, Sanjay

      2013-09-06

      It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as key input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.

    13. NEUTRINO FACTORY AND BETA BEAM EXPERIMENTS AND DEVELOPMENT.

      SciTech Connect

      ALBRIGHT, C.; BERG, J.S.; FERNOW, R.; GALLARDO, J.; KAHN, S.; KIRK, H.; ET AL.

      2004-09-21

      The long-term prospects for fully exploring three-flavor mixing in the neutrino sector depend upon an ongoing and increased investment in the appropriate accelerator R&D. Two new concepts have been proposed that would revolutionize neutrino experiments, namely the Neutrino Factory and the Beta Beam facility. These new facilities would dramatically improve our ability to test the three-flavor mixing framework, measure CP violation in the lepton sector, and perhaps determine the neutrino mass hierarchy, and, if necessary, probe extremely small values of the mixing angle {theta}{sub 13}. The stunning sensitivity that could be achieved with a Neutrino Factory is described, together with our present understanding of the corresponding sensitivity that might be achieved with a Beta Beam facility. In the Beta Beam case, additional study is required to better understand the optimum Beta Beam energy, and the achievable sensitivity. Neither a Neutrino Factory nor a Beta Beam facility could be built without significant R&D. An impressive Neutrino Factory R&D effort has been ongoing in the U.S. and elsewhere over the last few years and significant progress has been made towards optimizing the design, developing and testing the required accelerator components, and significantly reducing the cost. The recent progress is described here. There has been no corresponding activity in the U.S. on Beta Beam facility design and, given the very limited resources, there is little prospect of starting a significant U.S. Beta Beam R&D effort in the near future. However, the Beta Beam concept is interesting, and progress on its development in Europe should be followed. The Neutrino Factory R&D program has reached a critical stage in which support is required for two crucial international experiments and a third-generation international design study. If this support is forthcoming, a Neutrino Factory could be added to the Neutrino Community's road map in about a decade.

    14. Price for environmental neutrino-superluminality

      NASA Astrophysics Data System (ADS)

      Dvali, Gia; Vikman, Alexander

      2012-02-01

      We ask whether the recent OPERA results on neutrino superluminality could be an environmental effect characteristic of the local neighborhood of our planet, without the need of violation of the Poincaré-invariance at a fundamental level. We show, that model-indepenently, such a possibility implies the existence of new gravitational degrees of freedom. Namely, this explanation requires the existence of a new spin-2 field of a planetary Compton wave-length that is coupled to neutrinos and the rest of the matter asymmetrically, both in the magnitude and in the sign. Sourced by the earth this field creates an effective metric on which neutrinos propagate superluminally, whereas other species are much less sensitive to the background. Such a setup, at an effective field theory level, passes all immediate phenomenological tests, but at the expense of sacrificing calculability for some of the phenomena that are under perturbative control in ordinary gravity. The natural prediction is an inevitable appearance of a testable long-range gravity-type fifth force. Despite phenomenological viability, the sign asymmetry of the coupling we identify as the main potential obstacle for a consistent UV-completion. We also discuss the possible identification of this field with a Kaluza-Klein state of an extra dimension in which neutrino can propagate.

    15. "Invented Invaders": An Engaging Activity to Teach Characteristics Control of Invasive Species

      ERIC Educational Resources Information Center

      Lampert, Evan

      2015-01-01

      Invasive species, defined as exotic species that reach pest status, are major threats to global biodiversity. Although invasive species can belong to any taxonomic group, general characteristics such as rapid growth and reproduction are shared by many invasive species. "Invented Invaders" is a collaborative activity in which students…

    16. Antifungal activities of azole agents against the Malassezia species.

      PubMed

      Miranda, Karla Carvalho; de Araujo, Crystiane Rodrigues; Costa, Carolina Rodrigues; Passos, Xisto Sena; de Fátima Lisboa Fernandes, Orionalda; do Rosário Rodrigues Silva, Maria

      2007-03-01

      In this paper, we identified 95 Malassezia isolates by morphological and biochemical criteria and assessed the in vitro activity of fluconazole, itraconazole, ketoconazole and voriconazole by broth microdilution against these species using slightly modified Leeming-Notman medium. The Malassezia isolates were identified as M. furfur (74), M. sympodialis (11), M. obtusa (8) and M. globosa (2). The modified Leeming-Notman medium used for susceptibility testing allowed good growth of Malassezia spp. Visual reading of the minimal inhibitory concentration (MIC) was readily achieved until Day 5 of incubation at 32 degrees C. Although high MIC values of 16 microg/mL for fluconazole were observed in 9.5% of Malassezia isolates, in general these microorganisms were susceptible to all drugs studied. Interestingly, one M. globosa isolate showed high MIC values for voriconazole, itraconazole and fluconazole. For the 95 strains, the MIC ranges were <0.03-4 microg/mL for ketoconazole, <0.03 to >16 microg/mL for voriconazole, <0.125 to >64 microg/mL for fluconazole and <0.03-16 microg/mL for itraconazole. In summary, the good reproducibility and visual readings obtained using modified Leeming-Notman medium suggest that this medium should be proposed for antifungal testing of drugs against Malassezia spp.

    17. Improvement of cosmological neutrino mass bounds

      NASA Astrophysics Data System (ADS)

      Giusarma, Elena; Gerbino, Martina; Mena, Olga; Vagnozzi, Sunny; Ho, Shirley; Freese, Katherine

      2016-10-01

      The most recent measurements of the temperature and low-multipole polarization anisotropies of the cosmic microwave background from the Planck satellite, when combined with galaxy clustering data from the Baryon Oscillation Spectroscopic Survey in the form of the full shape of the power spectrum, and with baryon acoustic oscillation measurements, provide a 95% confidence level (C.L.) upper bound on the sum of the three active neutrinos ∑mν<0.183 eV , among the tightest neutrino mass bounds in the literature, to date, when the same data sets are taken into account. This very same data combination is able to set, at ˜70 % C.L., an upper limit on ∑mν of 0.0968 eV, a value that approximately corresponds to the minimal mass expected in the inverted neutrino mass hierarchy scenario. If high-multipole polarization data from Planck is also considered, the 95% C.L. upper bound is tightened to ∑mν<0.176 eV . Further improvements are obtained by considering recent measurements of the Hubble parameter. These limits are obtained assuming a specific nondegenerate neutrino mass spectrum; they slightly worsen when considering other degenerate neutrino mass schemes. Low-redshift quantities, such as the Hubble constant or the reionization optical depth, play a very important role when setting the neutrino mass constraints. We also comment on the eventual shifts in the cosmological bounds on ∑mν when possible variations in the former two quantities are addressed.

    18. The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties

      SciTech Connect

      Väänänen, Daavid; Volpe, Cristina E-mail: volpe@ipno.in2p3.fr

      2011-10-01

      Core-collapse supernova neutrinos undergo a variety of phenomena when they travel from the high neutrino density region and large matter densities to the Earth. We perform analytical calculations of the supernova neutrino fluxes including collective effects due to the neutrino-neutrino interactions, the Mikheev-Smirnov-Wolfenstein (MSW) effect due to the neutrino interactions with the background matter and decoherence of the wave packets as they propagate in space. We predict the numbers of one- and two-neutron charged and neutral-current electron-neutrino scattering on lead events. We show that, due to the energy thresholds, the ratios of one- to two-neutron events are sensitive to the pinching parameters of neutrino fluxes at the neutrinosphere, almost independently of the presently unknown neutrino properties. Besides, such events have an interesting sensitivity to the spectral split features that depend upon the presence/absence of energy equipartition among neutrino flavors. Our calculations show that a lead-based observatory like the Helium And Lead Observatory (HALO) has the potential to pin down important characteristics of the neutrino fluxes at the neutrinosphere, and provide us with information on the neutrino transport in the supernova core.

    19. Detecting supernova neutrinos with iron and lead detectors

      NASA Astrophysics Data System (ADS)

      Bandyopadhyay, Abhijit; Bhattacharjee, Pijushpani; Chakraborty, Sovan; Kar, Kamales; Saha, Satyajit

      2017-03-01

      Supernova (SN) neutrinos can excite the nuclei of various detector materials beyond their neutron emission thresholds through charged current (CC) and neutral current (NC) interactions. The emitted neutrons, if detected, can be a signal for the supernova event. Here we present the results of our study of SN neutrino detection through the neutron channel in 208Pb and 56Fe detectors for realistic neutrino fluxes and energies given by the recent Basel/Darmstadt simulations for an 18 solar mass progenitor SN at a distance of 10 kpc. We find that, in general, the number of neutrons emitted per kiloton (kTon) of detector material for the neutrino luminosities and average energies of the different neutrino species as given by the Basel/Darmstadt simulations are significantly lower than those estimated in previous studies based on the results of earlier SN simulations. At the same time, we highlight the fact that, although the total number of neutrons produced per kTon in a 56Fe detector is more than an order of magnitude lower than that for 208Pb, the dominance of the flavor blind NC events in the case of 56Fe, as opposed to the dominance of νe induced CC events in the case of 208Pb, offers a complementarity between the two detector materials so that simultaneous detection of SN neutrinos in a 208Pb and a sufficiently large 56Fe 56 detector suitably instrumented for neutron detection may allow estimating the fraction of the total μ and τ flavored neutrinos in the SN neutrino flux and thereby probing the emission mechanism as well as flavor oscillation scenarios of the SN neutrinos.

    20. Reactor Neutrino Spectra

      NASA Astrophysics Data System (ADS)

      Hayes, Anna C.; Vogel, Petr

      2016-10-01

      We present a review of the antineutrino spectra emitted from reactors. Knowledge of these spectra and their associated uncertainties is crucial for neutrino oscillation studies. The spectra used to date have been determined either by converting measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that make up the spectra, using modern databases as input. The uncertainties in the subdominant corrections to β-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

    1. Sterile neutrinos with secret interactions—lasting friendship with cosmology

      SciTech Connect

      Chu, Xiaoyong; Dasgupta, Basudeb; Kopp, Joachim E-mail: bdasgupta@theory.tifr.res.in

      2015-10-01

      Sterile neutrinos with mass ≅ 1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A'. However, even this scenario is restricted by structure formation constraints when A'-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such ''secret'' interactions. We carefully dissect their evolution in the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space—one at very small A' coupling, one at relatively large A' coupling—where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A' coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A' boson couples also to the dark matter in the Universe.

    2. Sterile neutrinos with secret interactions — lasting friendship with cosmology

      SciTech Connect

      Chu, Xiaoyong; Dasgupta, Basudeb; Kopp, Joachim

      2015-10-06

      Sterile neutrinos with mass ≃1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A{sup ′}. However, even this scenario is restricted by structure formation constraints when A{sup ′}-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such “secret” interactions. We carefully dissect their evolution in the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space — one at very small A{sup ′} coupling, one at relatively large A{sup ′} coupling — where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A{sup ′} coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A{sup ′} boson couples also to the dark matter in the Universe.

    3. Implications of Fermi-LAT observations on the origin of IceCube neutrinos

      SciTech Connect

      Wang, Bin; Li, Zhuo; Zhao, Xiaohong E-mail: zhaoxh@ynao.ac.cn

      2014-11-01

      The IceCube (IC) collaboration recently reported the detection of TeV-PeV extraterrestrial neutrinos whose origin is yet unknown. By the photon-neutrino connection in pp and pγ interactions, we use the Fermi-LAT observations to constrain the origin of the IC detected neutrinos. We find that Galactic origins, i.e., the diffuse Galactic neutrinos due to cosmic ray (CR) propagation in the Milky Way, and the neutrinos from the Galactic point sources, may not produce the IC neutrino flux, thus these neutrinos should be of extragalactic origin. Moreover, the extragalactic gamma-ray bursts (GRBs) may not account for the IC neutrino flux, the jets of active galactic nuclei may not produce the IC neutrino spectrum, but the starburst galaxies (SBGs) may be promising sources. As suggested by the consistency between the IC detected neutrino flux and the Waxman-Bahcall bound, GRBs in SBGs may be the sources of both the ultrahigh energy, ∼> 10{sup 19}eV, CRs and the 1–100 PeV CRs that produce the IC detected TeV-PeV neutrinos.

    4. Are neutrinos their own antiparticles?

      SciTech Connect

      Kayser, Boris; /Fermilab

      2009-03-01

      We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

    5. Neutrino Detection Primer

      DTIC Science & Technology

      1988-03-01

      particle accelerators. They arise as decay products of pions, K- mesons , and other unstable particles produced in the primary collisions of high energy...34 \\ = GF • (1-9) Here h is Planck’s constant, c the velocity of light , G the weak 1-11 interaction constant, and F the flux of neutrinos to be detected...momentum of a body (a ferromagnet, 4-1 say), F the neutrino flux, h the reduced Planck constant, c the speed of light , one has for the torque on the

    6. The ANTARES neutrino telescope

      NASA Astrophysics Data System (ADS)

      Distefano, Carla

      The ANTARES collaboration has completed in 2008 the construction of an underwater high-energy neutrino telescope in the Mediterranean Sea, located 40 km off the French coast at a depth of 2500 m. The detector consists of 885 optical modules, which are distributed in 12 detector lines, various calibration systems and devices for environmental measurements. With an instrumented volume of about 0.05 km3, ANTARES is the largest Cherenkov neutrino detector currently operating in the Northern hemisphere. A general overview on the ANTARES telescope is given. The preliminary results from the various physics analyses on the collected data will be presented.

    7. Cost-effective design for a neutrino factory

      SciTech Connect

      Alex Bogacz

      2006-01-01

      There have been active efforts in the U.S., Europe, and Japan on the design of a neutrino factory. This type of facility produces intense beams of neutrinos from the decay of muons in a high-energy storage ring. In the U.S., a second detailed feasibility study (FS2) for a neutrino factory was completed in 2001. Since that report was published, new ideas in bunching, cooling, and acceleration of muon beams have been developed. We have incorporated these ideas into a new facility design, which we designate as study 2B (ST2B), that should lead to significant cost savings over the FS2 design.

    8. Lepton number violation by heavy Majorana neutrino in B decays

      NASA Astrophysics Data System (ADS)

      Asaka, Takehiko; Ishida, Hiroyuki

      2016-12-01

      Heavy Majorana neutrinos are predicted in addition to ordinary active neutrinos in the models with the seesaw mechanism. We investigate the lepton number violation (LNV) in B decays induced by such a heavy neutrino N with GeV-scale mass. Especially, we consider the decay channel B+ →μ+ N →μ+μ+π- and derive the sensitivity limits on the mixing angle Θμ by the future search experiments at Belle II and in e+e- collisions at the Future Circular Collider (FCC-ee).

    9. Results and Status of the T2K and NOvA long-baseline neutrino experiments

      NASA Astrophysics Data System (ADS)

      Muether, Mathew

      2016-03-01

      The discovery of neutrino oscillations and the resulting implication that neutrinos have mass, recently awarded the Nobel Prize in Physics, has bolstered a world-wide effort to exploit this effect as a handle on the properties of neutrinos. In the decades since the initial discovery of neutrino oscillations, great strides have been made in understanding the nature of these elusive particles, yet important and fundamental questions remain open, such as: How are the neutrino masses ordered? And Do neutrinos and antineutrinos oscillate differently? The current generation of accelerator based long-baseline neutrino oscillation experiments, T2K in Japan and NOvA in the United States, are actively pursuing the answers to these questions. In this talk, I will review the recent results and current status of the T2K and NOvA long-baseline neutrino experiments.

    10. Neutrino flux predictions for cross section measurements

      SciTech Connect

      Hartz, Mark

      2015-05-15

      Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

    11. HALO the helium and lead observatory for supernova neutrinos

      NASA Astrophysics Data System (ADS)

      Duba, C. A.; Duncan, F.; Farine, J.; Habig, A.; Hime, A.; Robertson, R. G. H.; Scholberg, K.; Shantz, T.; Virtue, C. J.; Wilkerson, J. F.; Yen, S.

      2008-11-01

      The Helium and Lead Observatory (HALO) is a supernova neutrino detector under development for construction at SNOLAB. It is intended to fulfill a niche as a long term, low cost, high livetime, and low maintenance, dedicated supernova detector. It will be constructed from 80 tonnes of lead, from the decommissioning of the Deep River Cosmic Ray Station, and instrumented with approximately 384 meters of 3He neutron detectors from the final phase of the SNO experiment. Charged- and Neutral-Current neutrino interactions in lead expel neutrons from the lead nuclei making a burst of detected neutrons the signature for the detection of a supernova. Existing neutrino detectors are mostly of the water Cerenkov and liquid scintillator types, which are primarily sensitive to electron anti-neutrinos via charged-current interactions on the hydrogen nuclei in these materials. By contrast, the large neutron excess of a heavy nucleus like Pb acts to Pauli-block pranglen transitions induced by electron anti-neutrinos, making HALO primarily sensitive to electron neutrinos. While any supernova neutrino data would provide an invaluable window into supernova dynamics, the electron neutrino CC channel has interesting sensitivity to particle physics through flavour-swapping and spectral splitting due to MSW-like collective neutrino-neutrino interactions in the core of the supernova, the only place in the universe where there is a sufficient density of neutrinos for this to occur. Such data could provide a test for θ13 ≠ 0 and an inverted neutrino mass hierarchy. In addition, the ratio of 1-neutron to 2-neutron events would be a measure of the temperature of the cooling neutron star. For the 80 tonne detector, a supernova at 10 kpc is estimated to produce 43 detected neutrons in the absence of collective ν-ν interactions, and many more in their presence. The high neutrino cross-section and low neutron absorption cross-section of lead, along with the modest cost of lead, makes this

    12. Constraints on the neutrino parameters by future cosmological 21 cm line and precise CMB polarization observations

      SciTech Connect

      Oyama, Yoshihiko; Kohri, Kazunori; Hazumi, Masashi E-mail: kohri@post.kek.jp

      2016-02-01

      Observations of the 21 cm line radiation coming from the epoch of reionization have a great capacity to study the cosmological growth of the Universe. Besides, CMB polarization produced by gravitational lensing has a large amount of information about the growth of matter fluctuations at late time. In this paper, we investigate their sensitivities to the impact of neutrino property on the growth of density fluctuations, such as the total neutrino mass, the effective number of neutrino species (extra radiation), and the neutrino mass hierarchy. We show that by combining a precise CMB polarization observation such as Simons Array with a 21 cm line observation such as Square kilometer Array (SKA) phase 1 and a baryon acoustic oscillation observation (Dark Energy Spectroscopic Instrument:DESI) we can measure effects of non-zero neutrino mass on the growth of density fluctuation if the total neutrino mass is larger than 0.1 eV. Additionally, the combinations can strongly improve errors of the bounds on the effective number of neutrino species σ (N{sub ν}) ∼ 0.06−0.09 at 95 % C.L.. Finally, by using SKA phase 2, we can determine the neutrino mass hierarchy at 95 % C.L. if the total neutrino mass is similar to or smaller than 0.1 eV.

    13. Anti-neutrino imprint in solar neutrino flare

      NASA Astrophysics Data System (ADS)

      Fargion, D.

      2006-10-01

      A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

    14. Using neutrinos as a probe of the strong interaction

      SciTech Connect

      Morfin, J.G.; /Fermilab

      2005-01-01

      Neutrino scattering experiments have been studying QCD for over 30 years. From the Gargamelle experiments in the early 70's, through the subsequent bubble chamber and electronic detector experiments in the 80's and 90's, neutrino scattering experiments have steadily accumulated increasing statistics and minimized their systematic errors. While the most recent study of QCD with neutrinos is from the TeVatron neutrino beam (the NuTeV experiment with results presented by Martin Tzanov at this Workshop), near-future studies will shift to the Main Injector based NuMI facility also at Fermilab. The NuMI Facility at Fermilab provides an extremely intense beam of neutrinos making it an ideal place for high statistics (anti)neutrino-nucleon/nucleus scattering experiments. The MINERvA experiment at Fermilab is a collaboration of elementary-particle and nuclear physicists planning to use a fully active fine-grained solid scintillator detector to measure absolute exclusive cross-sections and nuclear effects in v - A interactions as well as a systematic study of the resonance-DIS transition region and DIS with an emphasis on the extraction of high-xBj parton distribution functions. Further in the future an intense proton source, the Fermilab Proton Driver, will increase neutrino interaction rates by a further factor of 5-20.

    15. Long Baseline Neutrino Experiments

      NASA Astrophysics Data System (ADS)

      Mezzetto, Mauro

      2016-05-01

      Following the discovery of neutrino oscillations by the Super-Kamiokande collaboration, recently awarded with the Nobel Prize, two generations of long baseline experiments had been setup to further study neutrino oscillations. The first generation experiments, K2K in Japan, Minos in the States and Opera in Europe, focused in confirming the Super-Kamiokande result, improving the precision with which oscillation parameters had been measured and demonstrating the ντ appearance process. Second generation experiments, T2K in Japan and very recently NOνA in the States, went further, being optimized to look for genuine three neutrino phenomena like non-zero values of θ13 and first glimpses to leptonic CP violation (LCPV) and neutrino mass ordering (NMO). The discovery of leptonic CP violation will require third generation setups, at the moment two strong proposals are ongoing, Dune in the States and Hyper-Kamiokande in Japan. This review will focus a little more in these future initiatives.

    16. Supernovae and neutrinos

      SciTech Connect

      John F. Beacom

      2002-09-19

      A long-standing problem in supernova physics is how to measure the total energy and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

    17. Stochastic neutrino mixing mechanism

      NASA Astrophysics Data System (ADS)

      Guzzo, M. M.; de Holanda, P. C.; Peres, O. L. G.; Zavanin, E. M.

      2013-05-01

      We propose a mechanism which provides an explanation of the Gallium and antineutrino reactor anomalies. Differently from original Pontecorvo’s hypothesis, this mechanism is based on the phenomenological assumption in which the admixture of neutrino mass eigenstates in the moments of neutrino creation and detection can assume different configurations around the admixture parametrized by the usual values of the mixing angles θ12, θ23, and θ13. For simplicity, we assume a Gaussian distribution for the mixing angles in such a way that the average value of this distribution is given by the usual values of the mixing angles, and the width of the Gaussian is denoted by α. We show that the proposed mechanism provides a possible explanation for very short-baseline neutrino disappearance, necessary to accommodate Gallium and antineutrino reactor anomalies, which is not allowed in usual neutrino oscillations based on Pontecorvo’s original hypotheses. We also can describe high-energy oscillation experiments, like LSND, Fermi, and NuTeV, assuming a weakly energy dependent width parameter, α(E), that nicely fits all experimental results.

    18. Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span.

      PubMed Central

      Grube, K; Bürkle, A

      1992-01-01

      Poly(ADP-ribosyl)ation is a eukaryotic posttranslational modification of proteins that is strongly induced by the presence of DNA strand breaks and plays a role in DNA repair and the recovery of cells from DNA damage. We compared poly(ADP-ribose) polymerase (PARP; EC 2.4.2.30) activities in Percoll gradient-purified, permeabilized mononuclear leukocytes from mammalian species of different maximal life span. Saturating concentrations of a double-stranded octameric oligonucleotide were applied to provide a direct and maximal stimulation of PARP. Our results on 132 individuals from 13 different species yield a strong positive correlation between PARP activity and life span (r = 0.84; P << 0.001), with human cells displaying approximately 5 times the activity of rat cells. Intraspecies comparisons with both rat and human cells from donors of all age groups revealed some decline of PARP activity with advancing age, but it was only weakly correlated. No significant polymer degradation was detectable under our assay conditions, ruling out any interference by poly(ADP-ribose) glycohydrolase activity. By Western blot analysis of mononuclear leukocytes from 11 species, using a crossreactive antiserum directed against the extremely well-conserved NAD-binding domain, no correlation between the amount of PARP protein and the species' life spans was found, suggesting a greater specific enzyme activity in longer-lived species. We propose that a higher poly(ADP-ribosyl)ation capacity in cells from long-lived species might contribute to the efficient maintenance of genome integrity and stability over their longer life span. Images PMID:1465394

    19. Axion-Assisted Production of Sterile Neutrino Dark Matter

      SciTech Connect

      Berlin, Asher; Hooper, Dan

      2016-10-12

      Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our universe's dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. In this letter, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axion-like field. As the energy density of the axion-like particles is diluted by Hubble expansion, the degree of mixing is reduced at late times, suppressing the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. We present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.

    20. Measuring the activity of a {sup 51}Cr neutrino source based on the gamma-radiation spectrum

      SciTech Connect

      Gorbachev, V. V. Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

      2015-12-15

      A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of {sup 51}Cr is presented.

    1. Toroidal magnetized iron neutrino detector for a neutrino factory

      SciTech Connect

      Bross, A.; Wands, R.; Bayes, R.; Laing, A.; Soler, F. J. P.; Cervera Villanueva, A.; Ghosh, T.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Burguet-Castell, J.

      2013-08-01

      A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large $\\theta_{13}$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $\\delta_{CP}$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $\\delta_{CP}$.

    2. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

      NASA Astrophysics Data System (ADS)

      Adrián-Martínez, S.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Hallewell, G.; Hamal, M.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Petrovic, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration

      2012-08-01

      The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of Δ m322 = (3.1 ± 0.9) ṡ10-3eV2 is obtained, in good agreement with the world average value.

    3. Report on the Brookhaven Solar Neutrino Experiment

      DOE R&D Accomplishments Database

      Davis, R. Jr.; Evans, J. C. Jr.

      1976-09-22

      This report is intended as a brief statement of the recent developments and results of the Brookhaven Solar Neutrino Experiment communicated through Professor G. Kocharov to the Leningrad conference on active processes on the sun and the solar neutrino problem. The report summarizes the results of experiments performed over a period of 6 years, from April 1970 to January 1976. Neutrino detection depends upon the neutrino capture reaction /sup 37/Cl(..nu..,e/sup -/)/sup 37/Ar producing the isotope /sup 37/Ar (half life of 35 days). The detector contains 3.8 x 10/sup 5/ liters of C/sub 2/Cl/sub 4/ (2.2 x 10/sup 30/ atoms of /sup 37/Cl) and is located at a depth of 4400 meters of water equivalent (m.w.e.) in the Homestake Gold Mine at Lead, South Dakota, U.S.A. The procedures for extracting /sup 37/Ar and the counting techniques used were described in previous reports. The entire recovered argon sample was counted in a small gas proportional counter. Argon-37 decay events were characterized by the energy of the Auger electrons emitted following the electron capture decay and by the rise-time of the pulse. Counting measurements were continued for a period sufficiently long to observe the decay of /sup 37/Ar.

    4. Brief introduction of the neutrino event generators

      SciTech Connect

      Hayato, Yoshinari

      2015-05-15

      The neutrino interaction simulation programs (event generators) play an important role in the neutrino experiments. This article briefly explains what is the neutrino event generator and how it works.

    5. On the Detection of the Free Neutrino

      DOE R&D Accomplishments Database

      Reines, F.; Cowan, C. L., Jr.

      1953-08-06

      The experiment previously proposed [to Detect the Free Neutrino] has been initiated, with a Hanford pile as a neutrino source. It appears probable that neutrino detection has been accomplished, and confirmatory work is in progress. (K.S.)

    6. Mosquito larvicidal activity of active constituent derived from Chamaecyparis obtusa leaves against 3 mosquito species.

      PubMed

      Jang, Young-Su; Jeon, Ju-Hyun; Lee, Hoi-Seon

      2005-12-01

      Mosqutio larvicidal activity of Chamaecyparis obtusa leaf-derived materials against the 4th-stage larvae of Aedes aegypti (L.), Ochlerotatus togoi (Theobald), and Culex pipiens pallens (Coquillett) was examined in the laboratory. A crude methanol extract of C. obtusa leaves was found to be active (percent mortality rough) against the 3 species larvae; the hexane fraction of the methanol extract showed a strong larvicidal activity (100% mortality) at 100 ppm. The bioactive component in the C. obtusa leaf extract was characterized as beta-thujaplicin by spectroscopic analyses. The LC50 value of beta-thujaplicin was 2.91, 2.60, and 1.33 ppm against Ae. aegypti, Oc. togoi, and Cx. pipiens pallens larvae. This naturally occurring C. obtusa leaves-derived compound merits further study as a potential mosquito larval control agent or lead compound.

    7. Neutrino Physics and Astrophysics with the Antares Neutrino Telescope

      NASA Astrophysics Data System (ADS)

      Spurio, M.

      2015-01-01

      The ANTARES detector is currently the largest operating neutrino telescope in the Northern Hemisphere. Its scientific target is the detection of ultra-high energy cosmic neutrinos through measurement of Cherenkov radiation from neutrino-induced charged leptons. Here, an overview of the results of various analyses will be given, in particular for the searches of point-like sources and the opportunities for multi-messenger astronomy.

    8. Probing Neutrino Properties with Long-Baseline Neutrino Beams

      SciTech Connect

      Marino, Alysia

      2015-06-29

      This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinosμ) and the appearance of electron neutrinose), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of νe appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of νμ disappearance and νe appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.

    9. Killer activity of yeasts isolated from natural environments against some medically important Candida species.

      PubMed

      Vadkertiová, Renata; Sláviková, Elena

      2007-01-01

      Twenty-five yeast cultures, mainly of human origin, belonging to four pathogenic yeast species--Candida albicans, Candida krusei, Candida parapsilosis, and Candida tropicalis were tested for their sensitivity to ten basidiomycetous and eleven ascomycetous yeast species isolated from the water and soil environments and from tree leaves. The best killer activity among basidiomycetous species was exhibited by Rhodotorula glutinis, and R. mucilaginosa. The other carotenoid producing species Cystofilobasidium capitatum, Sporobolomyces salmonicolor, and S. roseus were active only against about 40% of the tested strains and exhibited weak activity. The broadest killer activity among ascomycetous yeasts was shown by the strains Pichia anomala and Metschnikowia pulcherrima. The species Debaryomyces castellii, Debaryomyces hansenii, Hanseniaspora guilliermondii, Pichia membranifaciens, and Williopsis californica did not show any killer activity. The best killer activity exhibited the strains isolated from leafy material. The lowest activity pattern was found among strains originating from soil environment.

    10. Daughters mimic sterile neutrinos (almost!) perfectly

      NASA Astrophysics Data System (ADS)

      Hasenkamp, Jasper

      2014-09-01

      Since only recently, cosmological observations are sensitive to hot dark matter (HDM) admixtures with sub-eV mass, mhdmeff < eV, that are not fully-thermalised, Δ Neff < 1. We argue that their almost automatic interpretation as a sterile neutrino species is neither from theoretical nor practical parsimony principles preferred over HDM formed by decay products (daughters) of an out-of-equilibrium particle decay. While daughters mimic sterile neutrinos in Neff and mhdmeff, there are opportunities to assess this possibility in likelihood analyses. Connecting cosmological parameters and moments of momentum distribution functions, we show that—also in the case of mass-degenerate daughters with indistinguishable main physical effects—the mimicry breaks down when the next moment, the skewness, is considered. Predicted differences of order one in the root-mean-squares of absolute momenta are too small for current sensitivities.

    11. Artificial neutrino source based on the 37Ar isotope

      NASA Astrophysics Data System (ADS)

      Barsanov, V. I.; Dzhanelidze, A. A.; Zlokazov, S. B.; Kotelnikov, N. A.; Markov, S. Yu.; Selin, V. V.; Shakirov, Z. N.; Abdurashitov, D. N.; Veretenkin, E. P.; Gavrin, V. N.; Gorbachev, V. V.; Ibragimova, T. V.; Kalikhov, A. V.; Mirmov, I. N.; Shikhin, A. A.; Yants, V. E.; Khomyakov, Yu. S.; Cleveland, B. T.

      2007-02-01

      In April 2004, a neutrino source was produced by irradiating a 330-kg piece of pressed calcium oxide at the fast-neutron reactor BN-600 (Zarechny, Russia) for six months. The 37Ar isotope was obtained via the (n, α) reaction on 40Ca, and 37Ar was extracted from an aqueous solution of nitric acid in which the solid target was dissolved. After that, 37Ar was purified and sealed into a capsule. This source was used to measure the neutrino-capture rate in metalic gallium for neutrinos from 37Ar decay, which have an energy close to that of the main line of solar 7Be neutrinos (863 keV). The target of the SAGE Gallium-Germanium Neutrino Telescope was irradiated by using this source at the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences). The source activity was measured by several methods during its production, in the course of irradiation, and after its completion. The weighted mean of the activity for six measurements was 409 ± 2 kCi at the beginning of irradiation of the gallium target (04:00 Moscow time, 30.04.2004). The scatter in the activity values obtained by different methods does not exceed 5%.

    12. Artificial neutrino source based on the {sup 37}Ar isotope

      SciTech Connect

      Barsanov, V. I.; Dzhanelidze, A. A.; Zlokazov, S. B.; Kotelnikov, N. A.; Markov, S. Yu.; Selin, V. V.; Shakirov, Z. N.; Abdurashitov, D. N.; Veretenkin, E. P.; Gavrin, V. N.; Gorbachev, V. V.; Ibragimova, T. V.; Kalikhov, A. V.; Mirmov, I. N. Shikhin, A. A.; Yants, V. E.; Khomyakov, Yu. S.; Cleveland, B. T.

      2007-02-15

      In April 2004, a neutrino source was produced by irradiating a 330-kg piece of pressed calcium oxide at the fast-neutron reactor BN-600 (Zarechny, Russia) for six months. The {sup 37}Ar isotope was obtained via the (n, {alpha}) reaction on {sup 40}Ca, and {sup 37}Ar was extracted from an aqueous solution of nitric acid in which the solid target was dissolved. After that, {sup 37}Ar was purified and sealed into a capsule. This source was used to measure the neutrino-capture rate in metalic gallium for neutrinos from {sup 37}Ar decay, which have an energy close to that of the main line of solar {sup 7}Be neutrinos (863 keV). The target of the SAGE Gallium-Germanium Neutrino Telescope was irradiated by using this source at the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences). The source activity was measured by several methods during its production, in the course of irradiation, and after its completion. The weighted mean of the activity for six measurements was 409 {+-} 2 kCi at the beginning of irradiation of the gallium target (04:00 Moscow time, 30.04.2004). The scatter in the activity values obtained by different methods does not exceed 5%.

    13. Higgs production through sterile neutrinos

      NASA Astrophysics Data System (ADS)

      Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

      2016-10-01

      In scenarios with sterile (right-handed) neutrinos with an approximate “lepton-number-like” symmetry, the heavy neutrinos (the mass eigenstates) can have masses around the electroweak scale and couple to the Higgs boson with, in principle, unsuppressed Yukawa couplings, while the smallness of the light neutrinos’ masses is guaranteed by the approximate symmetry. The on-shell production of the heavy neutrinos at lepton colliders, together with their subsequent decays into a light neutrino and a Higgs boson, constitutes a resonant contribution to the Higgs production mechanism. This resonant mono-Higgs production mechanism can contribute significantly to the mono-Higgs observables at future lepton colliders. A dedicated search for the heavy neutrinos in this channel exhibits sensitivities for the electron neutrino Yukawa coupling as small as ˜ 5 × 10-3. Furthermore, the sensitivity is enhanced for higher center-of-mass energies, when identical integrated luminosities are considered.

    14. Unparticle physics and neutrino phenomenology

      SciTech Connect

      Barranco, J.; Bolanos, A.; Miranda, O. G.; Moura, C. A.; Rashba, T. I.

      2009-04-01

      We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.

    15. Solar neutrino experiments: An update

      SciTech Connect

      Hahn, R.L.

      1993-12-31

      The situation in solar neutrino physics has changed drastically in the past few years, so that now there are four neutrino experiments in operation, using different methods to look at different regions of the solar neutrino energy spectrum. These experiments are the radiochemical {sup 37}Cl Homestake detector, the realtime Kamiokande detector, and the different forms of radiochemical {sup 71}Ga detectors used in the GALLEX and SAGE projects. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models (although in the case of the gallium detectors, the statistical errors are still relatively large). This paper reviews the basic principles of operation of these neutrino detectors, reports their latest results and discusses some theoretical interpretations. The progress of three realtime neutrino detectors that are currently under construction, SuperKamiok, SNO and Borexino, is also discussed.

    16. Neutrino Non-standard Interactions

      NASA Astrophysics Data System (ADS)

      Girardelli, David; Guzzo, Marcelo

      The quantum neutrino oscillation phenomenon is not perfectly described by the actual standard physics models. Experimental results of different neutrino sources like reactors, accelerators and supernovae, indicate a non-negligible flux error if compared to the predicted theoretical models. This work aims to propose different non-standard neutrino in- teractions and predict LBNE potential in analyze it. That approach could give a better understanding of the quantum neutrino oscillation phenomenon. As an example, we can use the weak leptonic number violation that generate new interactions that is not possible using the Standard Model. This violation is directly related with a change in the Flavor neutrino Hamiltonian and consequently connected with the quantum neutrino oscillation.

    17. Atmospheric electron neutrinos in the MINOS far detector

      SciTech Connect

      Speakman, Benjamin Phillip

      2007-01-01

      Neutrinos produced as a result of cosmic-ray interactions in the earth's atmosphere offer a powerful probe into the nature of this three-membered family of low-mass, weakly-interacting particles. Ten years ago, the Super-Kamiokande Experiment has confirmed earlier indications that neutrinos undergo lepton-flavor oscillations during propagation, proving that they are massive contrary to the previous Standard Model assumptions. The Soudan Underground Laboratory, located in northern Minnesota, was host to the Soudan2 Experiment, which has made important contributions to atmospheric neutrino research. This same lab has more recently been host to the MINOS far detector, a neutrino detector which serves as the downstream element of an accelerator-based long-baseline neutrino-oscillation experiment. This thesis has examined 418.5 live days of atmospheric neutrino data (fiducial exposure of 4.18 kton-years) collected in the MINOS far detector prior to the activation of the NuMI neutrino beam, with a specific emphasis on the investigation of electron-type neutrino interactions. Atmospheric neutrino interaction candidates have been selected and separated into showering or track-like events. The showering sample consists of 89 observed events, while the track-like sample consists of 112 observed events. Based on the Bartol atmospheric neutrino flux model of Barr et al. plus a Monte Carlo (MC) simulation of interactions in the MINOS detector, the expected yields of showering and track-like events in the absence of neutrino oscillations are 88.0 ± 1.0 and 149.1 ± 1.0 respectively (where the uncertainties reflect only the limited MC statistics). Major systematic uncertainties, especially those associated with the flux model, are cancelled by forming a double ratio of these observed and expected yields: R$data\\atop{trk/shw}$/R$MC\\atop{trk/shw}$ = 0.74$+0.12\\atop{-1.0}$(stat.) ± 0.04 (syst.) This double ratio should be equal to unity in the absence of oscillations, and the

    18. Astrophysical and cosmological constraints to neutrino properties

      NASA Technical Reports Server (NTRS)

      Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

      1989-01-01

      The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

    19. Antitrypanosomal activity of some pregnane glycosides isolated from Caralluma species.

      PubMed

      Abdel-Sattar, Essam; Shehab, Naglaa G; Ichino, Chikara; Kiyohara, Hiroaki; Ishiyama, Aki; Otoguro, Kazuhiko; Omura, Satoshi; Yamada, Haruki

      2009-06-01

      Pregnane glycosides previously isolated from genus Caralluma (C. Penicillata, C. tuberculata and C. russelliana) were tested for their antitrypanosomal activity. Penicilloside E showed the highest antitrypanosomal activity (IC(50) 1.01 microg/ml) followed by caratuberside C (IC(50) 1.85 microg/ml), which exhibited the highest selectivity index (SI 12.04). It was noticed that acylation is required for the antitrypanosomal activity while glycosylation at C-20 has no significant effect on the activity.

    20. Advancements in Solar Neutrino Physics

      NASA Astrophysics Data System (ADS)

      Miramonti, Lino; Antonelli, Vito

      2013-03-01

      We review the results of solar neutrino physics, with particular attention to the data obtained and the analyses performed in the last decades, which were determinant to solve the solar neutrino problem (SNP), proving that neutrinos are massive and oscillating particles and contributing to refine the solar models. We also discuss the perspectives of the presently running experiments in this sector and of the ones planned for the near future and the impact they can have on elementary particle physics and astrophysics.

    1. Muon colliders and neutrino factories

      SciTech Connect

      Geer, S.; /Fermilab

      2010-09-01

      Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

    2. Sterile neutrinos: fact or fiction?

      NASA Astrophysics Data System (ADS)

      Huber, Patrick

      2017-01-01

      In this talk I will critically review some of the anomalies which in combination could point to the existence of a eV-scale sterile neutrino. Each of these anomalies is well below the 5 sigma level individually and may have explanations besides sterile neutrinos. At the same time each anomaly requires a separate explanation if it is not caused by a sterile neutrino. To further complicate the gpicture, some data sets are in mutual disagreement.

    3. Quantum coherence of relic neutrinos.

      PubMed

      Fuller, George M; Kishimoto, Chad T

      2009-05-22

      We argue that in at least a portion of the history of the Universe the relic background neutrinos are spatially extended, coherent superpositions of mass states. We show that an appropriate quantum mechanical treatment affects the neutrino mass values derived from cosmological data. The coherence scale of these neutrino flavor wave packets can be an appreciable fraction of the causal horizon size, raising the possibility of spacetime curvature-induced decoherence.

    4. Muon Colliders and Neutrino Factories

      SciTech Connect

      Geer, Steve; /Fermilab

      2009-11-01

      Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

    5. Search for Majorana neutrinos with the SNO+ detector at SNOLAB

      NASA Astrophysics Data System (ADS)

      Maio, A.; SNO+ Collaboration

      2015-02-01

      The SNO+ experiment is adapting the Sudbury Neutrino Observatory (SNO) detector, in order to use isotope-loaded liquid scintillator as the active medium. SNO+ has multiple scientific goals, the main one being the search for neutrinoless double beta decay, the most promising signature for the possible Majorana character of neutrinos and for the absolute neutrino mass. Measurements of neutrinos from the Sun, the Earth, Supernovae and nuclear reactors are additional goals of the experiment. The detector consists of a 12m diameter spherical vessel, filled with 780 tonnes of Tellurium-loaded liquid scintillator, and surrounded by about 9500 PMTs. It is shielded by a large volume of ultra-pure water and the underground location at SNOLAB, Canada. This talk will review the Physics goals and current status of SNO+.

    6. Sterile neutrinos and right-handed currents in KATRIN

      NASA Astrophysics Data System (ADS)

      Barry, James; Heeck, Julian; Rodejohann, Werner

      2014-07-01

      Kurie-plot experiments allow for neutrino-mass measurements based on kinematics in an almost model-independent manner. A future tritium-based KATRIN-like experiment can be sensitive to light sterile neutrinos with masses below 18 keV, which are among the prime candidates for warm dark matter. Here we consider such keV neutrinos in left-right symmetric extensions, i.e. coupled to right-handed currents, which allow for an enhanced contribution to beta decay even for small active-sterile mixing, without violating astrophysical X-ray constraints. The modified spectral shape is in principle distinguishable from the standard contribution — especially for sterile neutrino masses below 9 keV, which can lead to a distinct peak. We compare the sensitivity to constraints from the LHC and neutrinoless double beta decay.

    7. Nonstandard neutrino interactions in supernovae

      NASA Astrophysics Data System (ADS)

      Stapleford, Charles J.; Väänänen, Daavid J.; Kneller, James P.; McLaughlin, Gail C.; Shapiro, Brandon T.

      2016-11-01

      Nonstandard interactions (NSI) of neutrinos with matter can significantly alter neutrino flavor evolution in supernovae with the potential to impact explosion dynamics, nucleosynthesis, and the neutrinos signal. In this paper, we explore, both numerically and analytically, the landscape of neutrino flavor transformation effects in supernovae due to NSI and find a new, heretofore unseen transformation processes can occur. These new transformations can take place with NSI strengths well below current experimental limits. Within a broad swath of NSI parameter space, we observe symmetric and standard matter-neutrino resonances for supernovae neutrinos, a transformation effect previously only seen in compact object merger scenarios; in another region of the parameter space we find the NSI can induce neutrino collective effects in scenarios where none would appear with only the standard case of neutrino oscillation physics; and in a third region the NSI can lead to the disappearance of the high density Mikheyev-Smirnov-Wolfenstein resonance. Using a variety of analytical tools, we are able to describe quantitatively the numerical results allowing us to partition the NSI parameter according to the transformation processes observed. Our results indicate nonstandard interactions of supernova neutrinos provide a sensitive probe of beyond the Standard Model physics complementary to present and future terrestrial experiments.

    8. High-energy neutrino astrophysics

      NASA Astrophysics Data System (ADS)

      Halzen, Francis

      2017-03-01

      The chargeless, weakly interacting neutrinos are ideal astronomical messengers as they travel through space without scattering, absorption or deflection. But this weak interaction also makes them notoriously di cult to detect, leading to neutrino observatories requiring large-scale detectors. A few years ago, the IceCube experiment discovered neutrinos originating beyond the Sun with energies bracketed by those of the highest energy gamma rays and cosmic rays. I discuss how these high-energy neutrinos can be detected and what they can tell us about the origins of cosmic rays and about dark matter.

    9. Neutrino helicity asymmetries in leptogenesis

      SciTech Connect

      Bento, Luis; Santos, Francisco C.

      2005-05-01

      It is pointed out that the heavy singlet neutrinos characteristic of leptogenesis develop asymmetries in the abundances of the two helicity states as a result of the same mechanism that generates asymmetries in the standard lepton sector. Neutrinos and standard leptons interchange asymmetries in collisions with each other. It is shown that an appropriate quantum number, B-L{sup '}, combining baryon, lepton and neutrino asymmetries, is not violated as fast as the standard B-L. This suppresses the washout effects relevant for the derivation of the final baryon asymmetry. One presents detailed calculations for the period of neutrino thermal production in the framework of the singlet seesaw mechanism.

    10. Supernova neutrinos and explosive nucleosynthesis

      SciTech Connect

      Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

      2014-05-09

      Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

    11. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island.

      PubMed

      Park, Myung Soo; Lee, Seobihn; Oh, Seung-Yoon; Cho, Ga Youn; Lim, Young Woon

      2016-10-01

      A total of 28 strains of 19 Penicillium species were isolated in a survey of extracellular enzyme-producing fungi from macroalgae along the coast of Jeju Island of Korea. Penicillium species were identified based on morphological and β-tubulin sequence analyses. In addition, the halo-tolerance and enzyme activity of all strains were evaluated. The diversity of Penicillium strains isolated from brown algae was higher than the diversity of strains isolated from green and red algae. The commonly isolated species were Penicillium antarcticum, P. bialowiezense, P. brevicompactum, P. crustosum, P. oxalicum, P. rubens, P. sumatrense, and P. terrigenum. While many strains showed endoglucanase, β-glucosidase, and protease activity, no alginase activity was detected. There was a positive correlation between halo-tolerance and endoglucanase activity within Penicillium species. Among 19 Penicillium species, three species-P. kongii, P. olsonii, and P. viticola-have not been previously recorded in Korea.

    12. Supernova heavy element nucleosynthesis: Can it tell us about neutrino masses?

      SciTech Connect

      Fuller, George M.

      1997-05-20

      Here we describe a new probe of neutrino properties based on heavy element nucleosynthesis. This technique is in many ways akin to the familiar light element Primordial Nucleosynthesis probe of conditions in the early universe. Our new probe is based on the fact that neutrino masses and vacuum mixings can engender matter-enhanced neutrino flavor transformation in the post core bounce supernova environment. Transformations of the type {nu}{sub {mu}}{sub (r)}<-->{nu}{sub e} in this site will have significant effects on the synthesis of the rapid neutron capture (r-Process) elements and the light p-nuclei. We suggest that an understanding of the origin of these nuclides, combined with the measured abundances of these species, may provide a ''Rosetta Stone'' for neutrino properties. Heavy element nucleosynthesis abundance considerations give either constraints/evidence for neutrino masses and flavor mixings, or strong constraints on the site of origin of r-Process nucleosynthesis. The putative limits on neutrino characteristics are complimentary to those derived from laboratory neutrino oscillation studies and solar and atmospheric neutrino experiments. Preliminary studies show that the existence of r-Process nuclei in the abundances observed in the Galaxy cannot be understood unless neutrinos have small masses (possibly in the cosmologically significant range)

    13. Probing neutrino nature at Borexino detector with chromium neutrino source

      NASA Astrophysics Data System (ADS)

      Sobków, W.; Błaut, A.

      2016-10-01

      In this paper, we indicate a possibility of utilizing the intense chromium source (˜ 370 PBq) in probing the neutrino nature in low energy neutrino experiments with the ultra-low threshold and background real-time Borexino detector located near the source (˜ 8 m). We analyse the elastic scattering of electron neutrinos (Dirac or Majorana, respectively) on the unpolarised electrons in the relativistic neutrino limit. We assume that the incoming neutrino beam is the superposition of left-right chiral states produced by the chromium source. Left chiral neutrinos may be detected by the standard V - A and non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while right chiral ones partake only in the exotic V + A and S_R, P_R, T_R interactions. Our model-independent study is carried out for the flavour (current) neutrino eigenstates. We compute the expected event number for the standard V-A interaction of the left chiral neutrinos using the current experimental values of standard couplings and in the case of left-right chiral superposition. We show that the significant decrement in the event number due to the interference terms between the standard and exotic interactions for the Majorana neutrinos may appear. We also demonstrate how the presence of the exotic couplings affects the energy spectrum of outgoing electrons, both for the Dirac and Majorana cases. The 90~% C.L. sensitivity contours in the planes of corresponding exotic couplings are found. The presence of interferences in the Majorana case gives the stronger constraints than for the Dirac neutrinos, even if the neutrino source is placed outside the detector.

    14. Prospecting with neutrinos

      NASA Astrophysics Data System (ADS)

      Bell, Peter M.

      One of the latest attempts to explore the interface between physics and geophysics is the extravagant scheme of Alvaro De Rújula, Sheldon Glashow, Robert Wilson, and Georges Charpak, to be published in Physics Reports. In what these theoretical and experimental physicists described recently as “our mad project” (Physics Today, August 1983), a high-energy neutrino beam is to be used as a geophysical prospecting tool.The beam would be able to look for oil, natural gas, and high-atomic-number metal ores, and it would be able to profile the vertical density distribution of the earth. De Rújula et al. come to this project from the world of big physics machines, so it is natural to expect that the “Geotron,” the field instrument to supply and focus the neutrino beam, is to be big also.

    15. Gravity triggered neutrino condensates

      SciTech Connect

      Barenboim, Gabriela

      2010-11-01

      In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate for the seesaw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful seesaw scenario.

    16. The Enigmatic Neutrino

      NASA Astrophysics Data System (ADS)

      Lincoln, Don; Miceli, Tia

      2015-09-01

      Through a century of work, physicists have refined a model to describe all fundamental particles, the forces they share, and their interactions on a microscopic scale. This masterpiece of science is called the Standard Model. While this theory is incredibly powerful, we know of at least one particle that exhibits behaviors that are outside of its scope and remain unexplained. These particles are called neutrinos and they are the enigmatic ghosts of the quantum world. Interacting only via the weak nuclear force, literally billions of them pass through you undetected every second. While we understand that particular spooky behavior, we do not understand in any fundamental way how it is that neutrinos can literally change their identity, much as if a house cat could turn into a lion and then a tiger before transitioning back into a house cat again.

    17. A Hands-On Activity to Introduce the Effects of Transmission by an Invasive Species

      ERIC Educational Resources Information Center

      May, Barbara Jean

      2013-01-01

      This activity engages students to better understand the impact of transmission by invasive species. Using dice, poker chips, and paper plates, an entire class mimics the spread of an invasive species within a geographic region. The activity can be modified and conducted at the K-16 levels.

    18. Protective activity of propofol, Diprivan and intralipid against active oxygen species.

      PubMed Central

      Mathy-Hartert, M; Deby-Dupont, G; Hans, P; Deby, C; Lamy, M

      1998-01-01

      We separately studied the antioxidant properties of propofol (PPF), Diprivan (the commercial form of PPF) and intralipid (IL) (the vehicle solution of PPF in Diprivan) on active oxygen species produced by phorbol myristate acetate (10(-6) M)-stimulated human polymorphonuclear leukocytes (PMN: 5 x 10(5) cells/assay), human endothelial cells (5 x 10(5) cells/assay) or cell-free systems (NaOCl or H2O2/peroxidase systems), using luminol (10(-4) M)-enhanced chemiluminescence (CL). We also studied the protective effects of Diprivan on endothelial cells submitted to an oxidant stress induced by H2O2/MPO system: cytotoxicity was assessed by the release of preincorporated 51Cr. Propofol inhibited the CL produced by stimulated PMN in a dose dependent manner (until 5 x 10(-5) M, a clinically relevant concentration), while Diprivan and IL were not dose-dependent inhibitors. The CL produced by endothelial cells was dose-dependently inhibited by Diprivan and PPF, and weakly by IL (not dose-dependent). In cell free systems, dose-dependent inhibitions were obtained for the three products with a lower effect for IL. Diprivan efficaciously protected endothelial cells submitted to an oxidant stress, while IL was ineffective. By HPLC, we demonstrated that PPF was not incorporated into the cells. The drug thus acted by scavenging the active oxygen species released in the extracellular medium. IL acted in the same manner, but was a less powerful antioxidant. PMID:9883967

    19. Birth of Neutrino Astrophysics

      SciTech Connect

      2010-05-07

      Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

    20. Experimental Neutrino Physics

      ScienceCinema

      Walter, Chris [Duke University, Durham, North Carolina, United States

      2016-07-12

      In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

    1. Neutrinos and flavor symmetries

      SciTech Connect

      Tanimoto, Morimitsu

      2015-07-15

      We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

    2. Birth of Neutrino Astrophysics

      ScienceCinema

      None

      2016-07-12

      Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

    3. Natural Neutrino Dark Energy

      SciTech Connect

      Gurwich, Ilya

      2010-06-23

      1 construct a general description for neutrino dark energy models, that do not require exotic particles or strange couplings. With the help of the above, this class of models is reduced to a single function with several constraints. It is shown that these models lead to some concrete predictions that can be verified (or disproved) within the next decade, using results from PLANK, EUCLID and JDEM.

    4. Higher-order massive neutrino perturbations in large-scale structure

      NASA Astrophysics Data System (ADS)

      Führer, Florian; Wong, Yvonne Y. Y.

      2015-03-01

      We develop a higher-order perturbation theory for large-scale structure formation involving a free-streaming hot or warm dark matter species. We focus on the case of mixed cold dark matter and massive neutrinos, although our approach is applicable also to a single warm dark matter species. In order to capture the suppressed growth of neutrino density perturbations on small scales, we account for the full momentum dependence of the phase space distribution using the Vlasov equation, and derive from it a formal closed-form nonlinear equation for the neutrino density. Using a systematic perturbative expansion of this equation we compute high-order corrections to the neutrino density contrast without the explicit need to track the perturbed neutrino momentum distribution. We calculate the leading-order total matter bispectrum for several neutrino masses. Using our result as a benchmark, we test the accuracy of the fluid approximation and a linear approximation used in perturbative and N-body analyses, as well as a new hybrid approach that combines the exact linear evolution with the nonlinear structure of the fluid equations. Aiming at lesssim 1% accuracy, we find that the total matter bispectrum with a low neutrino mass m = 0.046 eV can be reproduced by all but the fluid approximation, while for larger neutrino masses m=0.46 → 0.93 eV only the hybrid approach has the desired accuracy on a large range of scales. This result serves as a cautionary note that approximate nonlinear models of neutrino clustering that reproduce the gross features of some observables may not suffice for precision calculations, nor are they guaranteed to apply to other observables. All of the approximation schemes fail to reproduce the bispectrum of the neutrino density perturbations at better than 20% accuracy across all scales, indicating that an exact treatment of nonlinear neutrino perturbations is necessary.

    5. Preliminary results from the Russian-American gallium experiment Cr-neutrino source measurement

      SciTech Connect

      Elliott, S.R.; Abdurashitov, J.N.; Bowles, T.J.

      1995-12-31

      The Russian-American Gallium Experiment has been collecting solar neutrino data since early 1990. The flux measurement of solar neutrinos is well below that expected from solar models. We discuss the initial results of a measurement of experimental efficiencies by exposing the gallium target to neutrinos from an artificial source. The capture rate of neutrinos from this source is very close to that which is expected. The result can be expressed as a ratio of the measured capture rate to the anticipated rate from the source activity. This ratio is 0.93 + 0.15, {minus}0.17 where the systematic and statistical errors have been combined. To first order the experimental efficiencies are in agreement with those determined during solar neutrino measurements and in previous auxiliary measurements. One must conclude that the discrepancy between the measured solar neutrino flux and that predicted by the solar models can not arise from an experimental artifact. 17 refs., 3 figs., 1 tab.

    6. Animal Related Activities as Determinants of Species Knowledge

      ERIC Educational Resources Information Center

      Randler, Christoph

      2010-01-01

      Previous work has established a relationship between knowledge and environmental concern. Different factors may contribute to this knowledge and animal-related leisure activities may also contribute to this knowledge. 390 participants in Leipzig, Germany were interviewed to assess their animal-related leisure activities, their demographic status…

    7. Antimicrobial activity of some Salvia species essential oils from Iran.

      PubMed

      Yousefzadi, Morteza; Sonboli, Ali; Karimic, Farah; Ebrahimi, Samad Nejad; Asghari, Behvar; Zeinalia, Amineh

      2007-01-01

      The aerial parts of Salvia multicaulis, S. sclarea and S. verticillata were collected at full flowering stage. The essential oils were isolated by hydrodistillation and analyzed by combination of capillary GC and GC-MS. The in vitro antimicrobial activity of the essential oils were studied against eight Gram-positive and Gram-negative bacteria (Bacillus subtilis, Bacillus pumulis, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) and three fungi (Candida albicans, Saccharomyces cerevisiae and Aspergillus niger). The results of antibacterial activity tests of the essential oils according to the disc diffusion method and MIC values indicated that all the samples have moderate to high inhibitory activity against the tested bacteria except for P. aeruginosa which was totally resistant. In contrast to antibacterial activity, the oils exhibited no or slight antifungal property, in which only the oil of S. multicaulis showed weak activity against two tested yeasts, C. albicans and S. cerevisiae.

    8. Comparison of compounds of three Rubus species and their antioxidant activity.

      PubMed

      Caidan, Rezeng; Cairang, Limao; Pengcuo, Jiumei; Tong, Li

      2015-12-01

      Rubus amabilis, Rubus niveus Thunb., and Rubus sachalinensis are three Rubus species that are alternatively found in Manubzhithang, a Tibetan medicine, in different areas of China. The current study analyzed HPLC/UV chromatograms and it compared compounds of these three Rubus species in contrast to reference substances such as 2,6-dimethoxy-4-hydroxyphenol-1-O-β-D-glucopyranoside, procyanidin B4, and isovitexin-7-O-glucoside. The three Rubus species produced similar peaks in chromatograms. The antioxidant activity of the three Rubus species was determined using an assay for DPPH free radical scavenging activity. Results indicated that the three Rubus species extracts had almost the same level of free radical scavenging activity. Thus, findings indicated the rationality of substituting these species for one another as an ingredient in Manubzhithang.

    9. Radiative neutrino mass model with degenerate right-handed neutrinos

      NASA Astrophysics Data System (ADS)

      Kashiwase, Shoichi; Suematsu, Daijiro

      2016-03-01

      The radiative neutrino mass model can relate neutrino masses and dark matter at a TeV scale. If we apply this model to thermal leptogenesis, we need to consider resonant leptogenesis at that scale. It requires both finely degenerate masses for the right-handed neutrinos and a tiny neutrino Yukawa coupling. We propose an extension of the model with a U(1) gauge symmetry, in which these conditions are shown to be simultaneously realized through a TeV scale symmetry breaking. Moreover, this extension can bring about a small quartic scalar coupling between the Higgs doublet scalar and an inert doublet scalar which characterizes the radiative neutrino mass generation. It also is the origin of the Z_2 symmetry which guarantees the stability of dark matter. Several assumptions which are independently supposed in the original model are closely connected through this extension.

    10. Neutrino mass and mixing: Summary of the neutrino sessions

      SciTech Connect

      Bowles, T.J.

      1993-01-01

      A great deal of experimental and theoretical effort is underway to use neutrinos as a probe for Physics Beyond the Standard Model. Most of these efforts center on the questions of the possible existence of non zero neutrino mass and mixing. Sessions at the Moriond conferences have dealt with these questions at most of the meetings during the last several years and this year was no exception. Presentations covering most of the current and planned research in this field were presented and discussed. Although there is, at present, no definitive evidence for a non zero neutrino mass and mixing, several unresolved problems (in particular solar neutrinos) do seem to be indicating the likely existence of new neutrino properties. It is likely that before the end of this decade, efforts now being initiated will be able to determine whether or not the hints we are now seeing are really due to new physics.

    11. Measurement of neutrino flux from neutrino-electron elastic scattering

      SciTech Connect

      Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman,; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.

      2016-06-10

      Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

    12. Measurement of neutrino flux from neutrino-electron elastic scattering

      DOE PAGES

      Park, J.; Aliaga, L.; Altinok, O.; ...

      2016-06-10

      Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9%more » to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less

    13. Measurement of neutrino flux from neutrino-electron elastic scattering

      NASA Astrophysics Data System (ADS)

      Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

      2016-06-01

      Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

    14. Current status of new SAGE project with 51Cr neutrino source

      NASA Astrophysics Data System (ADS)

      Gavrin, V.; Cleveland, B.; Danshin, S.; Elliott, S.; Gorbachev, V.; Ibragimova, T.; Kalikhov, A.; Knodel, T.; Kozlova, Yu.; Malyshkin, Yu.; Matveev, V.; Mirmov, I.; Nico, J.; Robertson, R. G. H.; Shikhin, A.; Sinclair, D.; Veretenkin, E.; Wilkerson, J.

      2015-03-01

      A very short-baseline neutrino oscillation experiment with an intense 51Cr neutrino source is currently under construction at the Baksan Neutrino Observatory of the Institute for Nuclear Research RAS (BNO). The experiment, which is based on the existing SAGE experiment, will use an upgraded Gallium-Germanium Neutrino Telescope (GGNT) and an artificial 51Cr neutrino source with activity ˜3 MCi to search for transitions of active neutrinos to sterile states with Δ m 2 ˜1 eV2. The neutrino source will be placed in the center of a liquid Ga metal target that is divided into two concentric zones, internal and external. The average path length of neutrinos in each zone will be the same and the neutrino capture rate will be measured separately in each zone. The oscillation signature, which comes from the ratio of events in the near and far gallium volumes, will be largely free of systematic errors, such as may occur from cross section and source strength uncertainties, and will provide a clean signal of electron neutrino disappearance into a sterile state at baselines of about 0.6 and 2.0 m. The sensitivity to the disappearance of electron neutrinos is expected to be a few percent. Construction of this set of new facilities, including a two-zone tank for irradiation of 50 tons of Ga metal with the intense 51Cr source, as well as additional modules of the GGNT counting and extraction systems, is close to completion. To check the new facilities they will first be used for SAGE solar neutrino measurements.

    15. Reconciling BICEP2 and Planck results with right-handed Dirac neutrinos in the fundamental representation of grand unified E6

      NASA Astrophysics Data System (ADS)

      Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Vlcek, Brian J.

      2014-06-01

      The tensor-to-scalar ratio (r = 0.20+0.07-0.05) inferred from the excess B-mode power observed by the Background Imaging of Cosmic Extragalactic Polarization (BICEP2) experiment is almost twice as large as the 95% CL upper limits derived from temperature measurements of the WMAP (r < 0.13) and Planck (r < 0.11) space missions. Very recently, it was suggested that additional relativistic degrees of freedom beyond the three active neutrinos and photons can help to relieve this tension: the data favor an effective number of light neutrino species Neff = 3.86±0.25. Since the BICEP2 ratio implies the energy scale of inflation (V*1/4 ~ 2 × 1016 GeV) is comparable to the grand unification scale, in this paper we investigate whether we can accommodate the required Neff with three right-handed (partners of the left-handed standard model) neutrinos living in the fundamental representation of a grand unified exceptional E6 group. We show that the superweak interactions of these Dirac states (through their coupling to a TeV-scale Z' gauge boson) lead to decoupling of right-handed neutrino just above the QCD cross over transition: 175 MeVlesssimTνRdeclesssim250 MeV. For decoupling in this transition region, the contribution of the three right-handed neutrinos to Neff is suppressed by heating of the left-handed neutrinos (and photons). Consistency (within 1σ) with the favored Neff is achieved for 4.5 TeV < MZ' < 7.5 TeV. The model is fully predictive and can be confronted with future data from LHC14.

    16. Reconciling BICEP2 and Planck results with right-handed Dirac neutrinos in the fundamental representation of grand unified E{sub 6}

      SciTech Connect

      Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Vlcek, Brian J.

      2014-06-17

      The tensor-to-scalar ratio (r=0.20{sub −0.05}{sup +0.07}) inferred from the excess B-mode power observed by the Background Imaging of Cosmic Extragalactic Polarization (BICEP2) experiment is almost twice as large as the 95% CL upper limits derived from temperature measurements of the WMAP (r<0.13) and Planck (r<0.11) space missions. Very recently, it was suggested that additional relativistic degrees of freedom beyond the three active neutrinos and photons can help to relieve this tension: the data favor an effective number of light neutrino species N{sub eff}=3.86±0.25. Since the BICEP2 ratio implies the energy scale of inflation (V{sub ∗}{sup 1/4}∼2×10{sup 16} GeV) is comparable to the grand unification scale, in this paper we investigate whether we can accommodate the required N{sub eff} with three right-handed (partners of the left-handed standard model) neutrinos living in the fundamental representation of a grand unified exceptional E{sub 6} group. We show that the superweak interactions of these Dirac states (through their coupling to a TeV-scale Z{sup ′} gauge boson) lead to decoupling of right-handed neutrino just above the QCD cross over transition: 175 MeV≲T{sub ν{sub R}{sup dec}}≲250 MeV. For decoupling in this transition region, the contribution of the three right-handed neutrinos to N{sub eff} is suppressed by heating of the left-handed neutrinos (and photons). Consistency (within 1σ) with the favored N{sub eff} is achieved for 4.5 TeV

    17. The enriched chromium neutrino source for GALLEX

      SciTech Connect

      Hartmann, F.X.; Hahn, R.L.

      1991-01-18

      The preparation and study of an intense source of neutrinos in the form of neutron irradiated materials which are enriched in Cr-50 for use in the GALLEX solar neutrino experiment are discussed. Chromyl fluoride gas is enriched in the Cr-50 isotope by gas centrifugation and subsequently converted to a very stable form of chromium oxide. The results of neutron activation analyses of such chromium samples indicate low levels of any long-lived activities, but show that short-lived activities, in particular Na-24, may be of concern. These results show that irradiating chromium oxide enriched in Cr-50 is preferable to irradiating either natural chromium or argon gas as a means of producing a neutrino source to calibrate the GALLEX detector. These results of the impurity level analysis of the enriched chromyl fluoride gas and its conversion to the oxide are also of interest to work in progress by other members of the Collaboration investigating an alternative conversion of the enriched gas to chromium metal. 35 refs., 12 figs., 5 tabs.

    18. Antioxidant, antimicrobial, and anticancer activity of 3 Umbilicaria species.

      PubMed

      Kosanić, Marijana; Ranković, Branislav; Stanojković, Tatjana

      2012-01-01

      The aim of this study is to investigate in vitro antioxidant, antimicrobial, and anticancer activity of the acetone extracts of the lichens Umbilicaria crustulosa, U. cylindrica, and U. polyphylla. Antioxidant activity was evaluated by 5 separate methods: free radical scavenging, superoxide anion radical scavenging, reducing power, determination of total phenolic compounds, and determination of total flavonoid content. Of the lichens tested, U. polyphylla had largest free radical scavenging activity (72.79% inhibition at a concentration of 1 mg/mL), which was similar as standard antioxidants in the same concentration. Moreover, the tested extracts had effective reducing power and superoxide anion radical scavenging. Total content of phenol and flavonoid in extracts was determined as pyrocatechol equivalent, and as rutin equivalent, respectively. The strong relationships between total phenolic and flavonoid contents and the antioxidant effect of tested extracts were observed. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was extract of U. polyphylla with minimum inhibitory concentration values ranging from 1.56 to 12.5 mg/mL. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method. All extracts were found to be strong anticancer activity toward both cell lines with IC₅₀ values ranging from 28.45 to 97.82 μg/mL. The present study shows that tested lichen extracts demonstrated a strong antioxidant, antimicrobial, and anticancer effects. That suggests that lichens may be used as possible natural antioxidant, antimicrobial, and anticancer agents.

    19. The supernova neutrino readout of MicroBooNE

      NASA Astrophysics Data System (ADS)

      Crespo Anadon, Jose Ignacio; MicroBooNE Collaboration

      2017-01-01

      The MicroBooNE detector is currently the largest liquid argon time projection chamber (LArTPC) operative worldwide. In the case of a nearby (a few kiloparsecs away) core-collapse supernova, the emitted neutrinos would induce on the order of tens of interactions within the MicroBooNE TPC. This would constitute the first detection of supernova neutrinos with the LArTPC technology, offering a unique sensitivity to the electron neutrino flux. Due to the low energy of the events (tens of MeV), the detector size (89 tons of active volume) and the location near surface, MicroBooNE cannot trigger on supernova neutrinos and therefore relies on an external alert generated by other neutrino detectors (the SuperNova Early Warning System, or SNEWS). A continuous readout is being commissioned in MicroBooNE in which the data are temporarily stored in buffers, waiting for the SNEWS alert to save them permanently. In order to cope with the large data rate produced by the TPC and the PMT systems, online zero-suppression algorithms have been developed. This talk will explain the continuous supernova readout of MicroBooNE, which is of interest to the future short and long baseline neutrino programs which will bring additional LArTPCs online in the coming years.

    20. Sterile Neutrinos in a 6x6 Matrix

      NASA Astrophysics Data System (ADS)

      Goldman, T.; McKellar, B. H. J.; Stephenson, G. J., Jr.

      2006-10-01

      An early study of neutrino mixing within the see-saw framework considered random mass matrices in what is now known as the sterile sector[1]. The mixing angles in the lepton sector were found to be closely distributed about the CKM angles that were assumed. In that work, rank 3 was assumed for the weak isospin zero Majorana mass matrix in the sterile neutrino sector. We report here on the character of new results using a reduced rank (``singular'') sterile matrix. We find that an additional flavor misalignment in the sterile sector can produce several interesting effects, including: 1) mass eigenstates that lead to very large flavor mixing among active neutrinos, and 2) small values for the 1-3 mixing angle parameter[2]. We also discuss the limits that current observations place on the mass scale of light sterile neutrinos in this model. [1]T. Goldman and G. J. Stephenson, Jr., ``How Large Are the Neutrino Mixing Angles?'' Phys. Rev. D 24, 236 (1981). [2]G. J. Stephenson, Jr. , T. Goldman, B. H. J. McKellar and M. Garbutt, ``Large Mixing from Small: Pseudo-Dirac Neutrinos and the Singular Seesaw,'' Int. J.Mod.Phys.A20 (2005) 6373; [hep-ph/0404015].

    1. Dust Obscured Blazars as sources of high-energy neutrinos

      NASA Astrophysics Data System (ADS)

      Maggi, G.; de Vries, K. D.; van Eijndhoven, N.

      2016-08-01

      Active Galactic Nuclei (AGN) are believed to be among the most promising sources of the ultra-high-energy cosmic ray flux. A hadronic component which is accelerated in the high energy environment of an AGN immediately implies the production of high-energy neutrinos. Nevertheless, no clear correlation between AGN and the high-energy cosmic-neutrino flux obtained by IceCube has been found so-far, putting strong limits on the neutrino production at AGN. We discuss a specific type of AGN for which an enhanced neutrino production is expected. This specific sub-set is given by AGN with their high-energy jet directed toward Earth, which is obscured by surrounding dust or gas, defining Dust Obscured Blazars. This type of AGN is predicted to have an enhanced neutrino emission due to the interaction of a possible hadronic component inside the AGN-jet with the surrounding matter. From two different galaxy catalogs, we have selected a sample of nearby sources with the characteristics of Dust Obscured Blazars. This selection is based on observations in the X-ray and radio bands. The data is consequently used to investigate the column density of the surrounding matter, providing an estimate for the neutrino production enhancement due to the nucleon-matter interactions in a beam dump scenario for various dust or gas compositions.

    2. Is There a Massive Neutrino?

      ERIC Educational Resources Information Center

      Selvin, Paul

      1991-01-01

      Discussed is the question of whether "heavy" neutrinos really do exist based on the evidence supplied by four research groups. The implications of its existence on the disciplines of particle physics, astrophsyics, and cosmology are discussed. Background information on the different types of neutrinos is provided. (KR)

    3. Neutrino cross-sections: Experiments

      SciTech Connect

      Sánchez, F.

      2015-07-15

      Neutrino-nucleus cross-sections are as of today the main source of systematic errors for oscillation experiments together with neutrino flux uncertainties. Despite recent experimental and theoretical developments, future experiments require even higher precisions in their search of CP violation. We will review the experimental status and explore possible future developments required by next generation of experiments.

    4. Neutrino Scattering from 12C

      NASA Astrophysics Data System (ADS)

      Hayes, Anna

      2017-01-01

      Neutrino scattering cross-sections from 12C, which have been measure for pion decay-at-rest and pion decay-in-flight neutrino energies, are difficult to reproduce theoretically. In this talk I discuss the physics issues involved and show the importance of a proper treatment of the conservation of the vector current.

    5. Biodegradable Plastic-degrading Activity of Various Species of Paraphoma.

      PubMed

      Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Koike, Hideaki; Sato, Toyozo; Moriwaki, Jouji; Morita, Tomotake; Watanabe, Takashi; Yoshida, Shigenobu; Kitamoto, Hiroko

      2016-07-01

      The fungal strain B47-9, isolated from barley, was previously selected as an effective degrader of various biodegradable plastic (BP) films such as poly(butylene succinate-co-adipate) (PBSA) and poly(butylene succinate) (PBS). The strain has not been identified based on mycological methods because it does not form fruiting bodies, which are the key to morphological identification. Here, we performed molecular phylogenetic analyses of the nuclear ribosomal RNA gene regions and their internal transcribed spacer region of B47-9 and related fungi. The results suggest that B47-9 is closely related to the genus Paraphoma. Investigation of the abilities of six strains belonging to the genus Paraphoma to degrade BPs indicated that all strains could degrade PBSA and PBS films to varying degrees. Based on our approach, we conclude that strain B47-9 is a species belonging to the genus Paraphoma.

    6. Constraining neutrino oscillation parameters with current solar and atmospheric data

      NASA Astrophysics Data System (ADS)

      Maltoni, M.; Schwetz, T.; Tórtola, M. A.; Valle, J. W.

      2003-01-01

      We analyze the impact of recent solar and atmospheric data on the determination of the neutrino oscillation parameters, taking into account that both the solar νe and the atmospheric νμ may convert to a mixture of active and sterile neutrinos. We use the most recent global solar neutrino data, including the 1496-day Super-K neutrino data sample, and we investigate in detail the impact of the recent Sudbury Neutrino Observatory (SNO) neutral current, spectral, and day/night data by performing also an analysis using only the charged current rate from SNO. We confirm the clear preference of the pure active large mixing angle solution of the solar neutrino problem and obtain that the LOW solution, vacuum oscillation, small mixing angle, and just-so2 solutions are disfavored with a Δχ2=9, 9, 23, 31, respectively. Furthermore, we find that the global solar data constrains the admixture of a sterile neutrino to be less than 44% at 99% C.L. A pure sterile solution is ruled out with respect to the active one at 99.997% C.L. By performing an improved fit of the atmospheric data, we also update the corresponding regions of oscillation parameters. We find that the recent atmospheric Super-K (1489-day) and MACRO data have a strong impact on constraining a sterile component in atmospheric oscillations: if the νμ is restricted to the atmospheric mass states only a sterile admixture of 16% is allowed at 99% C.L., while a bound of 35% is obtained in the unconstrained case. Pure sterile oscillations are disfavored with a Δχ2=34.6 compared to the pure active case.

    7. Anti-inflammatory activity of four Bolivian Baccharis species (Compositae).

      PubMed

      Abad, M J; Bessa, A L; Ballarin, B; Aragón, O; Gonzales, E; Bermejo, P

      2006-02-20

      Hexanic, dichloromethanic, ethanolic and aqueous extracts from Baccharis obtusifolia HBK, Baccharis latifolia (R. et P.) Pers., Baccharis pentlandii D.C. and Baccharis subulata Wedd., plants used in the traditional medicine of South America have been studied for their in vitro anti-inflammatory activity in cellular systems. Calcium ionophore A23187-stimulated mouse peritoneal macrophages were validated as a source of cyclooxygenase-1 (COX-1) (prostaglandin E2, PGE2) and 5-lipoxygenase (5-LOX) (leukotriene C4, LTC4), and mouse peritoneal macrophages stimulated with Escherichia coli lipopolysaccharide (LPS) were used for testing cyclooxygenase-2 (COX-2) (PGE2), nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha) activity. Most of the extracts tested were active in all assays.

    8. Antifungal Activity of Eugenol against Penicillium, Aspergillus, and Fusarium Species.

      PubMed

      Campaniello, Daniela; Corbo, Maria Rosaria; Sinigaglia, Milena

      2010-06-01

      The antifungal activity of eugenol in a model system against aspergilli (Aspergillus niger, Aspergillus terreus, and Emericella nidulans), penicilli (Penicillium expansum, Penicillium glabrum, and Penicillium italicum), and fusaria (Fusarium oxysporum and Fusarium avenaceum) was investigated. Minimum detection time (time to attain a colony diameter of 1 cm) and the kinetic parameters were evaluated. The effectiveness of the active compound seemed to be strain or genus dependent; 100 mg/liter represented a critical value for P. expansum, P. glabrum, P. italicum, A. niger, and E. nidulans because a further increase of eugenol resulted in fungistatic activity. The radial growth of A. terreus and F. avenaceum was inhibited at 140 mg/liter, and growth of F. oxysporum was completely inhibited at 150 mg/liter.

    9. Neutrino Flavor Identification in SALSA

      NASA Astrophysics Data System (ADS)

      Miočinović, Predrag

      The proposed Saltdome Shower Array (SalSA) experiment will detect coherent Cherenkov radio signals from high-energy neutrino interactions in a naturally occurring salt dome. By identifying the number and the angular profile of radio emissions in any given event, distinction can be made between charged-current (CC) and neutral-current (NC) neutrino interactions. Additionally, the flavor of the neutrino can be identified in the case of charged-current interactions. Preliminary results for nominal GZK neutrino flux indicate that ~25% of all events can be correctly identified as coming from charged-current interactions of νμ's or ντ's. These charged-current initiated events can further be separated by the flavor of the original neutrino, either νμ's or ντ's.

    10. Oscillations of solar atmosphere neutrinos

      SciTech Connect

      Fogli, G. L.; Lisi, E.; Mirizzi, A.; Montanino, D.; Serpico, P. D.

      2006-11-01

      The Sun is a source of high-energy neutrinos (E(greater-or-similar sign)10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and calculate their observable fluxes at Earth, as well as their event rates in a kilometer-scale detector in water or ice. We find that peculiar three-flavor oscillation effects in matter, which can occur in the energy range probed by solar atmosphere neutrinos, are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, we find that the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged vacuum oscillations, dominated by a single mixing parameter (the angle {theta}{sub 23})

    11. Solar Neutrinos with Exotic Scattering

      NASA Astrophysics Data System (ADS)

      Pulido, João

      The possibility of unconventional neutrino scattering in the Sun via flavor changing neutral currents as a possible source of the solar neutrino deficit is investigated. If the effect is really significant, a resonant process will occur. Taking into account the neutrino deficit reported by the solar neutrino experiments (Kamiokande II, SAGE Gallex), one finds Δ2m21 = (0.6-1.4) × 10-5 eV2 with no vacuum mixing and 0.16 ≤ fex ≤ 0.34 where fex is the lepton violating coupling. Our understanding of the neutrino phenomenon in the Sun may be improved through accuracy improvements in experiments measuring νee- elastic scattering or others searching for exotic lepton decays.

    12. Review of Low Energy Neutrinos

      NASA Astrophysics Data System (ADS)

      Vergados, J. D.

      2007-04-01

      Some issues regarding low energy neutrinos are reviewed. We focus on three aspects i)We show that by employing very low energy (a few keV) electron neutrinos, neutrino disappearance oscillations can be investigated by detecting recoiling electrons with low threshold spherical gaseous TPC's. In such an experiment, which is sensitive to the small mixing angle θ13, the novel feature is that the oscillation length is so small that the full oscillation takes place inside the detector. Thus one can determine accurately all the oscillation parameters and, in particular, measure or set a good limit on θ13. ii) Low threshold gaseous TPC detectors can also be used in detecting nuclear recoils by exploiting the neutral current interaction. Thus these robust and stable detectors can be employed in supernova neutrino detection. iii) The lepton violating neutrinoless double decay is investigated focusing on how the absolute neutrino mass can be extracted from the data.

    13. Challenges Confronting Superluminal Neutrino Models

      NASA Astrophysics Data System (ADS)

      Evslin, Jarah

      2012-12-01

      This talk opens the CosPA2011 session on OPERA's superluminal neutrino claim. I summarize relevant observations and constraints from OPERA, MINOS, ICARUS, KamLAND, IceCube and LEP as well as observations of SN1987A. I selectively review some models of neutrino superluminality which have been proposed since OPERA's announcement, focusing on a neutrino dark energy model. Powerful theoretical constraints on these models arise from Cohen-Glashow bremsstrahlung and from phase space requirements for the initial neutrino production. I discuss these constraints and how they might be evaded in models in which the maximum velocities of both neutrinos and charged leptons are equal but only superluminal inside of a dense medium.

    14. The KATRIN Neutrino Mass Experiment

      NASA Astrophysics Data System (ADS)

      Parno, Diana; Katrin Collaboration

      2017-01-01

      While neutrino oscillation experiments have demonstrated that the particles have non-zero mass, the absolute neutrino mass scale is still unknown. The Karlsruhe Tritium Neutrino experiment (KATRIN) is designed to improve on previous laboratory limits by an order of magnitude, probing the effective neutrino mass with a sensitivity approaching 0.2 eV at 90% confidence via the kinematics of tritium beta decay. At the same time, KATRIN has the potential to scan for sterile neutrinos at eV and keV scales. After years of preparation, all major components are now on site and commissioning is underway. I will report on the current status of the experiment, including recent results and preparations for the introduction of tritium later this year. US participation in KATRIN is supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER41020.

    15. Neutrinos Get Under Your Skin

      SciTech Connect

      Kayser, Boris

      2005-08-30

      The enigmatic neutrinos are among the most abundant of the tiny particles that make up our universe. They are a billion times more abundant than the particles of which the earth and we humans are made. Thus, to understand the universe, we must understand the neutrinos. Moving ghostlike, almost invisibly, through matter, these particles are very hard to pin down and study. However, dramatic progress has recently been made. In this lecture, the neutrinos will be introduced. Their behavior, so different from that of everyday objects, will be explained, and recent discoveries will be described. The open questions about neutrinos, forthcoming attempts to answer these questions, and the role of neutrinos in shaping the universe and making human life possible, will all be explained.

    16. Neutrino Cross Sections at Solar Energies

      NASA Astrophysics Data System (ADS)

      Strigari, Louis

      2017-01-01

      I will review neutrino nucleus cross section measurements and uncertainties for energies applicable to solar neutrinos. I will discuss how these cross sections are important for interpreting solar neutrino experimental data, and highlight the most important neutrino-nucleus interactions that will be relevant for forthcoming dark matter direct detection experiments. NSF PHY-1522717.

    17. Neutrino mass models and CP violation

      SciTech Connect

      Joshipura, Anjan S.

      2011-10-06

      Theoretical ideas on the origin of (a) neutrino masses (b) neutrino mass hierarchies and (c) leptonic mixing angles are reviewed. Topics discussed include (1) symmetries of neutrino mass matrix and their origin (2) ways to understand the observed patterns of leptonic mixing angles and (3)unified description of neutrino masses and mixing angles in grand unified theories.

    18. Theory and phenomenology of supernova neutrinos

      SciTech Connect

      Lunardini, Cecilia

      2015-07-15

      The theory and phenomenology of supernova neutrinos is reviewed, with focus on the most recent advancements on the neutrino flux predicted by supernova numerical models, on neutrino oscillations inside the star and in the Earth, and on the physics of the diffuse supernova neutrino background. Future directions of research are briefly summarized.

    19. Do laboratory species protect endangered species? Interspecies variation in responses to 17β-estradiol, a model endocrine active compound.

      PubMed

      Jorgenson, Z G; Buhl, K; Bartell, S E; Schoenfuss, H L

      2015-01-01

      Although the effects of estrogens on model laboratory species are well documented, their utility as surrogates for other species, including those listed as endangered, are less clear. Traditionally, conservation policies are evaluated based on model organism responses but are intended to protect all species in an environment. We tested the hypothesis that the endangered Rio Grande silvery minnow (Hybognathus amarus) is more vulnerable to endocrine disruption-as assessed through its larval predator-escape performance, survival, juvenile sex ratios, and whole-body vitellogenin concentration-than the commonly used toxicological model species fathead minnow (Pimephales promelas) and the bluegill sunfish (Lepomis macrochirus). Fish were exposed concurrently for 21 days to the model endocrine active compound (EAC) 17ß-estradiol (E2) at 10 ng E2/L and 30 ng E2/L in a flow-through system using reconstituted water that simulated the physicochemical conditions of the Middle Rio Grande in New Mexico, USA. No significant differences were observed between the fathead and silvery minnow in larval predator-escape response or juvenile sex ratio. Rio Grande silvery minnow survival decreased significantly at day 14 compared with the other two species; by day 21, both cyprinid species (silvery minnow and fathead minnow) exhibited a significant decrease in survival compared with bluegill sunfish, a member of the family Centrarchidae. Male Rio Grande silvery minnow showed a significant increase in whole-body vitellogenin concentration in the 10 ng/L treatment, whereas fathead minnow and bluegill sunfish showed no significant increases in vitellogenin concentrations across treatments. Our study showed response differences to estrogen exposures between the two cyprinid species and further divergence in responses between the families Cyprinidae and Centrarchidae. These results suggest that commonly used laboratory model organisms may be less sensitive to EACs than the endangered Rio

    20. Do laboratory species protect endangered species? Interspecies variation in responses to 17β-estradiol, a model endocrine active compound

      USGS Publications Warehouse

      Jorgenson, Zachary G.; Buhl, Kevin J.; Bartell, Stephen E.; Schoenfuss, Heiko L.

      2015-01-01

      Although the effects of estrogens on model laboratory species are well documented, their utility as surrogates for other species, including those listed as endangered, are less clear. Traditionally, conservation policies are evaluated based on model organism responses but are intended to protect all species in an environment. We tested the hypothesis that the endangered Rio Grande silvery minnow (Hybognathus amarus) is more vulnerable to endocrine disruption—as assessed through its larval predator-escape performance, survival, juvenile sex ratios, and whole-body vitellogenin concentration—than the commonly used toxicological model species fathead minnow (Pimephales promelas) and the bluegill sunfish (Lepomis macrochirus). Fish were exposed concurrently for 21 days to the model endocrine active compound (EAC) 17ß-estradiol (E2) at 10 ng E2/L and 30 ng E2/L in a flow-through system using reconstituted water that simulated the physicochemical conditions of the Middle Rio Grande in New Mexico, USA. No significant differences were observed between the fathead and silvery minnow in larval predator-escape response or juvenile sex ratio. Rio Grande silvery minnow survival decreased significantly at day 14 compared with the other two species; by day 21, both cyprinid species (silvery minnow and fathead minnow) exhibited a significant decrease in survival compared with bluegill sunfish, a member of the family Centrarchidae. Male Rio Grande silvery minnow showed a significant increase in whole-body vitellogenin concentration in the 10 ng/L treatment, whereas fathead minnow and bluegill sunfish showed no significant increases in vitellogenin concentrations across treatments. Our study showed response differences to estrogen exposures between the two cyprinid species and further divergence in responses between the families Cyprinidae and Centrarchidae. These results suggest that commonly used laboratory model organisms may be less sensitive to EACs than the endangered

    1. Measurement of the Charged-Current Quasi-Elastic Cross-Section for Electron Neutrinos on a Hydrocarbon Target

      SciTech Connect

      Wolcott, Jeremy

      2016-01-01

      event generator, we also report on an unpredicted photon-like process we observe in a similar kinematic regime. The absence of this process from models for neutrino interactions is a potential stumbling block for future on-axis neutrino oscillation experiments. We include kinematic and particle species identi cation characterizations which can be used in building models to help address this shortcoming.

    2. A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. IV. The neutrino signal

      SciTech Connect

      Müller, Bernhard; Janka, Hans-Thomas E-mail: bjmuellr@mpa-garching.mpg.de

      2014-06-10

      Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ☉}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ν-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ≳ 10 M {sub ☉} as observed in previous 1D and 2D simulations with state-of-the-art neutrino transport. We establish a roughly linear scaling of 〈E{sub ν-bar{sub e}}〉 with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ∼10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.

    3. Particle Astrophysics with Cosmic Neutrinos

      NASA Astrophysics Data System (ADS)

      Kheirandish, Ali

      IceCube's discovery of cosmic neutrinos offers a unique view of our universe and provides powerful insights into some of the most energetic and enigmatic objects in the cosmos. Cosmic neutrinos reveal an unobstructed view at wavelengths where the universe is opaque to photons. The existence of the cosmic-neutrino flux has challenged our understanding of the universe. It is somewhat counterintuitive that the most surprising property of the observed flux is its magnitude. An immediate inference from the large neutrino flux observed by IceCube, which is predominantly extragalactic in origin, is that the total energy density of neutrinos in the high-energy universe is similar to that of photons. The matching energy densities of the extragalactic gamma-ray flux detected by Fermi and the high-energy neutrino flux measured by IceCube suggest the possibility of a common origin. Therefore, rather than detecting some exotic sources, it looks more likely that IceCube observes the same universe as astronomers do. The finding implies that a large fraction of the energy in the non-thermal universe originates in hadronic processes, indicating a larger level than previously thought. The focus of this dissertation is on identifying the sources of high-energy cosmic neutrinos observed in IceCube. Moreover, with the lack of confirmation to date of any source (type of sources) as the dominant contributor to the observed neutrino flux, we have studied prospects for observing different sources in IceCube by considering both transient and steady sources in the sky. Finally, we introduce new techniques to study the strength of neutrino dark matter interactions with the properties of high-energy cosmic neutrinos.

    4. Long-baseline Neutrino Oscillation at DUNE

      NASA Astrophysics Data System (ADS)

      Worcester, Elizabeth; DUNE Collaboration Collaboration

      2017-01-01

      The Deep Underground Neutrino Experiment (DUNE) is a long-baseline neutrino oscillation experiment with primary physics goals of determining the neutrino mass hierarchy and measuring δc P with sufficient sensitivity to discover CP violation in neutrino oscillation. CP violation sensitivity in DUNE requires careful understanding of systematic uncertainty, with contributions expected from uncertainties in the neutrino flux, neutrino interactions, and detector effects. In this presentation, we will describe the expected sensitivity of DUNE to long-baseline neutrino oscillation parameters, how various aspects of the experimental design contribute to that sensitivity, and the planned strategy for constraining systematic uncertainty in these measurements.

    5. Muon Neutrino Disappearance Measurement at MINOS+

      NASA Astrophysics Data System (ADS)

      Carroll, Thomas; Minos+ Collaboration

      2017-01-01

      The MINOS experiment ran from 2003 until 2012 and produced some of the best precision measurements of the atmospheric neutrino oscillation parameters Δm322 and θ23 using muon neutrino disappearance of beam and atmospheric neutrinos and electron neutrino appearance of beam neutrinos. The MINOS+ experiment succeeded MINOS in September 2013. For almost three years MINOS+ collected data from the Medium Energy NuMI neutrino beam at Fermilab. Results of the muon neutrino disappearance analysis from the first two years of MINOS+ data will be presented. These results will be compared to and combined with the MINOS measurement.

    6. ANTARES deep sea neutrino telescope results

      SciTech Connect

      Mangano, Salvatore; Collaboration: ANTARES Collaboration

      2014-01-01

      The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.

    7. The Project 8 Radiofrequency Tritium Neutrino Experiment

      NASA Astrophysics Data System (ADS)

      Monreal, Benjamin

      The Project 8 experiment aims to determine the electron neutrino mass by measuring the spectrum of tritium beta decay electrons near the 18.6 keV endpoint. Unlike past tritium experiments, which used electrostatic and magnetostatic spectrometers, Project 8 will detect decay electrons nondestructively via their cyclotron radiation emission in a magnetic field. An individual electron is expected to emit a detectable pulse of microwaves at a frequency which depends on the electron energy. Precise measurement of these pulse frequencies is a novel spectroscopy technique particularly well-suited for the high rate, high precision, low background needs of a tritium experiment. The collaboration is currently operating a prototype designed to detect single 83mKr conversion electron decays in an 0.9T magnetic field. We report on recent activities on the prototype, and on progress towards the design of a large tritium experiment with new neutrino-mass sensitivity.

    8. Enzyme activities in plasma, kidney, liver, and muscle of five avian species

      USGS Publications Warehouse

      Franson, J.C.; Murray, H.C.; Bunck, C.

      1985-01-01

      Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH) were determined in plasma, kidney, liver, and muscle from five species of captive birds. Few differences occurred in plasma activities between sexes but considerable differences occurred between species. All five enzymes were detected in each of the tissues sampled. Relative enzyme activities in liver, kidney, and muscle were similar for each species. CPK activity was much higher in muscle than in liver or kidney and, of the five enzymes studied, may be the best indicator of muscle damage. Most of the other enzymes were more evenly distributed among the three tissues, and no organ-specific enzyme could be identified for liver or kidney. Because of interspecific variations in plasma enzyme activities, it is important to establish baseline values for each species to ensure accurate interpretation of results.

    9. Characterization of Serum Phospholipase A2 Activity in Three Diverse Species of West African Crocodiles

      PubMed Central

      Merchant, Mark; Juneau, Kate; Gemillion, Jared; Falconi, Rodolfo; Doucet, Aaron; Shirley, Matthew H.

      2011-01-01

      Secretory phospholipase A2, an enzyme that exhibits substantial immunological activity, was measured in the serum of three species of diverse West African crocodiles. Incubation of different volumes of crocodile serum with bacteria labeled with a fluorescent fatty acid in the sn-2 position of membrane lipids resulted in a volume-dependent liberation of fluorescent probe. Serum from the Nile crocodile (Crocodylus niloticus) exhibited slightly higher activity than that of the slender-snouted crocodile (Mecistops cataphractus) and the African dwarf crocodile (Osteolaemus tetraspis). Product formation was inhibited by BPB, a specific PLA2 inhibitor, confirming that the activity was a direct result of the presence of serum PLA2. Kinetic analysis showed that C. niloticus serum produced product more rapidly than M. cataphractus or O. tetraspis. Serum from all three species exhibited temperature-dependent PLA2 activities but with slightly different thermal profiles. All three crocodilian species showed high levels of activity against eight different species of bacteria. PMID:22110960

    10. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

      NASA Astrophysics Data System (ADS)

      Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

      2016-07-01

      The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

    11. The solar-neutrino problem, 1995.

      NASA Astrophysics Data System (ADS)

      Berezinsky, V.

      1995-12-01

      The status of the solar-neutrino problem (SNP), as is seen in 1995, is reviewed. Basically, there are two principal solutions to the SNP: (i) with standard neutrino (neutrino of SM of electroweak interactions) and (ii) with non-standard neutrino (neutrino beyond the SM). Actually, one can distinguish three solar-neutrino problems: the deficit of 8B neutrinos, the deficit of 7Be neutrinos and the HOMESTAKE/KAMIOKANDE conflict. The first problem probably can be solved with small correlated changes of nuclear cross-sections and the change of the central temperature of the Sun. The deficit of 7Be neutrinos looks like the key problem. The HOMESTAKE/KAMIOKANDE conflict strongly disfavours or excludes the standard neutrino (nuclear/astrophysical solution to the SNP). MSW conversion gives a most plausible explanation to the SNP.

    12. Collective neutrino oscillations in turbulent backgrounds

      SciTech Connect

      Reid, Giles; Adams, Jenni; Seunarine, Suruj

      2011-10-15

      Using a Kolmogorov turbulence model, we investigate the effects of fluctuations in matter and neutrino density in the region near a supernova core on the flavor oscillations of neutrinos emitted in the core collapse in a single-angle, two-flavor approximation. Deviation from a smooth background neutrino density causes significant alterations in the final flavor state of the neutrino ensemble after 400 km, but even very large fluctuations in the matter density do not strongly affect the state of the neutrinos after the collective phase. In both cases, there is a strong effect on the neutrino flavor evolution at intermediate radii, with the flavor evolution becoming much more chaotic. The effect of fluctuations also depends strongly on the initial neutrino spectra. We conclude that the true neutrino fluxes arriving at Earth from core-collapse supernova could differ considerably from predictions of neutrino fluxes based on approximate models with smoothly decreasing matter and neutrino densities.

    13. Hydrazide derivatives produce active oxygen species as hydrazine.

      PubMed

      Timperio, Anna Maria; Rinalducci, Sara; Zolla, Lello

      2005-12-01

      It is well documented that some hydrazines are quite sensitive to oxidation and may serve as the electron donor for the reduction of oxygen, whereas hydrazides are not believed to react directly with oxygen. Data presented in this paper show that both hydrazides and hydrazines share an N-N moiety, which is assumed to react with atmospheric oxygen and produce oxygen radicals, at various degrees of efficiency. Since spectrometric measurements of hydrazide just after solubilization showed that the molecular mass remains constant in the absence of oxygen, we can conclude that hydrazides do not react with the oxygen through a slow spontaneous hydrolytic release of hydrazine. However, hydrazine is more reactive than hydrazide, which requires hours rather than minutes to produce measurable quantities of radical species. Differences were also apparent for various substituted derivatives. The reaction was significantly enhanced by the presence of metal ions. Data reported here demonstrate that hydrazides cause irreversible damage to the prosthetic group of proteins as well as causing degradation of the polypeptide chain into small fragments.

    14. No Effect of Host Species on Phenoloxidase Activity in a Mycophagous Beetle

      PubMed Central

      Formica, Vincent; Chan, Amanda Kar-Men

      2015-01-01

      Ecological immunology is an interdisciplinary field that helps elucidate interactions between the environment and immune response. The host species individuals experience have profound effects on immune response in many species of insects. However, this conclusion comes from studies of herbivorous insects even though species of mycophagous insects also inhabit many different host species. The goal of this study was to determine if fungal host species as well as individual, sex, body size, and host patch predict one aspect of immune function, phenoloxidase activity (PO). We sampled a metapopulation of Bolitotherus cornutus, a mycophagous beetle in southwestern Virginia. B. cornutus live on three species of fungus that differ in nutritional quality, social environment, and density. A filter paper phenoloxidase assay was used to quantify phenoloxidase activity. Overall, PO activity was significantly repeatable among individuals (0.57) in adult B. cornutus. While there was significant variance among individuals in PO activity, there were surprisingly no significant differences in PO activity among subpopulations, beetles living on different host species, or between the sexes; there was also no effect of body size. Our results suggest that other factors such as age, genotype, disease prevalence, or natal environment may be generating variance among individuals in PO activity. PMID:26513243

    15. Malassezia globosa tends to grow actively in summer conditions more than other cutaneous Malassezia species.

      PubMed

      Akaza, Narifumi; Akamatsu, Hirohiko; Takeoka, Shiori; Sasaki, Yasuyuki; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko

      2012-07-01

      Malassezia globosa is a major pathogen of Malassezia folliculitis (MF) and the predominant species on human skin. The aim of this study was to clarify the differences between M. globosa and other cutaneous Malassezia species, M. restricta, M. dermatis, M. sympodialis and M. furfur. The optimum growth temperature, effects of compounds of sweat and free fatty acids on growth, and lipase activities of five cutaneous Malassezia species were determined. The growth of M. globosa was promoted strongly by the compounds of sweat and high temperature unlike that of other cutaneous Malassezia species. This result clarified that M. globosa tended to grow actively in summer conditions more than other cutaneous Malassezia species. Furthermore, M. globosa showed high lipase activity. We consider these characteristics of M. globosa to relate to the pathogenesis of MF.

    16. Neutrinos and duality

      SciTech Connect

      Lalakulich, O.; Leitner, T.; Buss, O.; Mosel, U.; Praet, Ch.; Jachowicz, N.; Ryckebusch, J.

      2009-11-25

      A phenomenological study of Bloom-Gilman duality is performed in electron and neutrino scattering on nuclei. In the resonance region the structure functions are calculated within the phenomenological models of Ghent and Giessen groups, where only the resonance contribution is taken into account, and the background one is neglected. Structure functions F{sub 2} in the resonance region are compared with the DIS ones, extracted directly from the experimental data. The results show, that within the models considered the Bloom-Gilman duality does not work well for nuclei: the integrated strength in the resonance region is considerably lower than in the DIS one.

    17. Search for the Neutrino Less Double Beta Decay

      SciTech Connect

      Efremenko, Yuri

      2016-07-11

      During the past few years our understanding of neutrino properties has reached a new level, with experiments such as Super-K, SNO, KamLAND, and others obtaining exciting results. Major questions such as “Do neutrinos have mass?” and “Do neutrinos oscillate?” now have positive answers. However, an extensive program of neutrino research remains. Undoubtedly, the most important of these is the question pointed out by the National Research Council in its February 2002 report “Connecting Quarks with the Cosmos”, specifically: What are the masses of neutrinos and how have they shaped the evolution of the Universe? The MAJORANA collaboration has proposed to build the world’s most sensitive one-ton scale experiment to search for neutrino less double beta decay to answer this question. In its initial stage, the collaboration is building a prototype MAJORANA DEMONSTRATOR (MJD) experiment consisting of detectors made out of enriched Ge76 with a total sensitive mass of ~30 kg. This will accomplish two goals. First, it will test not yet confirmed claim for observation of neutrino-less double beta decay. Second, it will establish that the selected technology is capable of extension to a one-ton experiment with sufficient sensitivity to measure neutrino mass mββ down to 10 meV. To achieve the last goal, collaboration must demonstrate that a background level of 1 count per year per 4 keV per ton of detector is achievable. The University of Tennessee (UT) neutrino group has made a major commitment to the MJD. P.I. accepted the responsibility for one of the major tasks of the experiment, “Materials and Assay Task” which is crucial to the achievement of low background levels required for the experiment. In addition, the UT group is committed to construct, commission, and operate the MJD active veto system. Those activities were supported by NP-DOE via program funding for “Search for the Neutrino Less Double Beta Decay” at the University

    18. Identification of endangered or threatened Costa Rican tree species by wood anatomy and fluorescence activity.

      PubMed

      Moya, Róger; Wiemann, Michael C; Olivares, Carlos

      2013-09-01

      A total of 45 native Costa Rican tree species are threatened or in danger of extinction, but the Convention on International Trade Endangered Species (CITES) includes only eight of these in its Appendices. However, the identification of other species based on their wood anatomy is limited. The present study objective was to describe and to compare wood anatomy and fluorescence activity in some endangered or threatened species of Costa Rica. A total of 45 (22 endangered and 23 threatened with extinction) wood samples of these species, from the xylaria of the Instituto Tecnológico de Costa Rica and the Forest Products Laboratory in Madison, Wisconsin, were examined. Surface fluorescence was positive in eight species, water extract fluorescence was positive in six species and ethanol extract fluorescence was positive in 24 species. Almost all species were diffuse porous except for occasional (Cedrela odorata, C. fissilis, Cordia gerascanthus) or regular (C. salvadorensis and C. tonduzii) semi-ring porosity. A dendritic vessel arrangement was found in Sideroxylon capari, and pores were solitary in Guaiacum sanctum and Vantanea barbourii. Vessel element length was shortest in Guaiacum sanctum and longest in Humiriastrum guianensis, Minquartia guianensis and Vantanea barbourii. Finally, anatomical information and fluorescence activity were utilized to construct an identification key of species, in which fluorescence is a feature used in identification.

    19. Simulating nonlinear cosmological structure formation with massive neutrinos

      NASA Astrophysics Data System (ADS)

      Banerjee, Arka; Dalal, Neal

      2016-11-01

      We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.

    20. Supernovae, Neutrinos and the Chirality of Amino Acids

      PubMed Central

      Boyd, Richard N.; Kajino, Toshitaka; Onaka, Takashi

      2011-01-01

      A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids. PMID:21747686

    1. Supernovae, neutrinos and the chirality of amino acids.

      PubMed

      Boyd, Richard N; Kajino, Toshitaka; Onaka, Takashi

      2011-01-01

      A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the (14)N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.

    2. Cold dark matter from heavy right-handed neutrino mixing

      SciTech Connect

      Anisimov, Alexey; Di Bari, Pasquale

      2009-10-01

      We show that, within the seesaw mechanism, an almost decoupled right-handed (RH) neutrino species N{sub DM} with mass M{sub DM} > or approx. 100 GeV can play the role of dark matter (DM). The N{sub DM}'s can be produced from nonadiabatic conversions of thermalized (source) RH neutrinos with mass M{sub S} lower than M{sub DM}. This is possible if a nonrenormalizable operator is added to the minimal type I seesaw Lagrangian. The observed DM abundance can be reproduced for M{sub DM}{delta}{sup 1/4}{approx}10{sup -13}{lambda}{sub eff}{xi}, where {lambda}{sub eff} is a very high energy new physics scale, {delta}{identical_to}(M{sub DM}-M{sub S})/M{sub DM}, and {xi} < or approx. 1 is a parameter determined by the RH neutrino couplings.

    3. Diuretic and natriuretic activity of two mistletoe species in rats

      PubMed Central

      Jadhav, Namita; Patil, C. R.; Chaudhari, K. B.; Wagh, J. P.; Surana, S. J.; Jadhav, R. B.

      2010-01-01

      In different cultural groups, the hemiparasitic plants of the families Loranthaceae and Viscaceae (mistletoes) are frequently used in the treatment of hypertension and/or as diuretic agents. However, it remains unclear as to what commonality makes them diuretic agents or a remedy for hypertension. In this article, the diuretic activity of methanol extracts of Viscum articulatum (VA) Burm. f. and Helicanthus elastica (HE) (Ders.) Dans. in rats is reported. The extracts were administered orally at doses of 100, 200 and 400 mg/kg to rats that had been fasted and deprived of water for 18 hours. Investigations were carried out for diuretic, saluretic and natriuretic effects. The polyphenolic and triterpenoid contents were determined quantitatively using chemical assays and high performance liquid chromatography (HPLC) analysis, respectively. The extracts of VA and HE demonstrated significant and dose-dependent diuretic activity in rats. It was found that while VA mimics the furosemide pattern, HE demonstrated a dose-dependent increase in diuresis, along with an increase in potassium-sparing effects. Phytochemical analysis revealed that polyphenolics and triterpenoids, such as oleanolic acid and lupeol, are the major phytochemicals involved. It was also found that in different combinations, these phytochemicals differed in the way they influenced the electrolyte excretion. A higher content of polyphenolics in association with lower triterpenoid content was found to favor potassium-sparing effects. PMID:21808540

    4. Neutrino Oscillation Searches with the Soudan 2 Detector.

      NASA Astrophysics Data System (ADS)

      Gallagher, Hugh Michael

      The Soudan 2 detector is a 963 ton iron tracking calorimeter located 2341 feet underground in Soudan Mine State Park, Soudan, Minnesota. Data taken from 1989 until 1993 is analyzed to search for atmospheric neutrino oscillations. In 1.5 fiducial kiloton-years exposure, 169 neutrino events have been identified. These events are classified as to the neutrino interaction that produced them, and a comparison is made of the number of 'track' events, which are primarily caused by the quasi-elastic scattering of nu _mu, to 'shower' events, which are primarily caused by the quasi-elastic scattering of nu_{e}. This track-to-shower ratio is also calculated for a sample of Monte Carlo events which is analyzed in the same manner as the data. These are compared in the form of a 'ratio of ratios'; R = (track/shower) _{data}/(track/shower) _{MC}. The ratio of ratios is sensitive to neutrino oscillations, a value less than one can indicate that muon neutrinos are oscillating into one of the other species. The ratio of ratios measured in this data set is R = 0.75 +/- 0.16 stat. +/- 0.14 syst.

    5. Daily activity and light exposure levels for five species of lemurs at the Duke Lemur Center.

      PubMed

      Rea, Mark S; Figueiro, Mariana G; Jones, Geoffrey E; Glander, Kenneth E

      2014-01-01

      Light is the primary synchronizer of all biological rhythms, yet little is known about the role of the 24-hour luminous environment on nonhuman primate circadian patterns, making it difficult to understand the photic niche of the ancestral primate. Here we present the first data on proximate light-dark exposure and activity-rest patterns in free-ranging nonhuman primates. Four individuals each of five species of lemurs at the Duke Lemur Center (Eulemur mongoz, Lemur catta, Propithecus coquereli, Varecia rubra, and Varecia variegata variegata) were fitted with a Daysimeter-D pendant that contained light and accelerometer sensors. Our results reveal common as well as species-specific light exposure and behavior patterns. As expected, all five species were more active between sunrise and sunset. All five species demonstrated an anticipatory increase in their pre-sunrise activity that peaked at sunrise with all but V. rubra showing a reduction within an hour. All five species reduced activity during mid-day. Four of the five stayed active after sunset, but P. coquereli began reducing their activity about 2 hours before sunset. Other subtle differences in the recorded light exposure and activity patterns suggest species-specific photic niches and behaviors. The eventual application of the Daysimeter-D in the wild may help to better understand the adaptive evolution of ancestral primates.

    6. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

      PubMed Central

      He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; Mineo, Yuki; Haruta, Masatake; Hutchings, Graham J.; Kiely, Christopher J.

      2016-01-01

      The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. Correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst. PMID:27671143

    7. Biological assessment for rare and endangered plant species: Related to CERCLA characterization activities

      SciTech Connect

      Sackschewsky, M.R.

      1992-04-01

      Environmental characterization in support of hazardous, radioactive, and mixed waste cleanup (in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980) can involve a large number of both nonintrusive and intrusive activities. Many of these activities could have a detrimental impact on listed plant species. These impacts can be minimized by following simple conservation policies while conducting the various field activities. For instance, frequent off-road vehicular traffic and have a severe impact on native habitats and, therefore, should be kept to a minimum. Personnel performing the field activities should be trained to preserve, respect, and minimize their impact on native habitat while performing work in the field. In addition, areas where sampling is planned should be surveyed for the presence of listed plant species before the initiation of the field activities. Extremely distributed areas could be exempted from this requirement provided adequate habitat assessments have been performed by qualified personnel. Twelve special status plant species are known to survive on or very near the Hanford Site. None of these species currently are listed as Federal Threatened or Endangered Species. However, four local species currently are candidates for federal protection. These species are the Northern Wormwood (Artemisia campestris ssp. borealis var. wormskioldii), Persistantsepal Yellowcress (Rorippa columbiae), Hoover`s Desert Parsley (Lomatium tuberosum), and Columbia Milkvetch (Astragalus columbianus).

    8. Biological assessment for rare and endangered plant species: Related to CERCLA characterization activities

      SciTech Connect

      Sackschewsky, M.R.

      1992-04-01

      Environmental characterization in support of hazardous, radioactive, and mixed waste cleanup (in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980) can involve a large number of both nonintrusive and intrusive activities. Many of these activities could have a detrimental impact on listed plant species. These impacts can be minimized by following simple conservation policies while conducting the various field activities. For instance, frequent off-road vehicular traffic and have a severe impact on native habitats and, therefore, should be kept to a minimum. Personnel performing the field activities should be trained to preserve, respect, and minimize their impact on native habitat while performing work in the field. In addition, areas where sampling is planned should be surveyed for the presence of listed plant species before the initiation of the field activities. Extremely distributed areas could be exempted from this requirement provided adequate habitat assessments have been performed by qualified personnel. Twelve special status plant species are known to survive on or very near the Hanford Site. None of these species currently are listed as Federal Threatened or Endangered Species. However, four local species currently are candidates for federal protection. These species are the Northern Wormwood (Artemisia campestris ssp. borealis var. wormskioldii), Persistantsepal Yellowcress (Rorippa columbiae), Hoover's Desert Parsley (Lomatium tuberosum), and Columbia Milkvetch (Astragalus columbianus).

    9. Species-Specific Differences and Structure-Activity Relationships in the Debromination of PBDE Congeners in Three Fish Species

      PubMed Central

      Roberts, Simon C.; Noyes, Pamela D.; Gallagher, Evan P.

      2011-01-01

      Previous studies have suggested that there may be species-specific differences in the metabolism of polybrominated diphenyl ethers (PBDEs) among different fish species. In this study, we investigated the in vitro hepatic metabolism of eleven individual PBDE congeners (tri- through decaBDEs) in three different fish species: rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and Chinook salmon (O. tschwatcha). In addition, we evaluated the influence of PBDE structural characteristics (i.e., bromine substitution patterns) on metabolism. Six of the eleven congeners we evaluated, BDEs 99, 153, 183, 203, 208, and 209, were metabolically debrominated to lower brominated congeners. All of the congeners that were metabolized contained at least one meta-substituted bromine. Metabolites were not detected for congeners without one meta-substituted bromine (e.g., BDEs 28, 47, and 100). Metabolite formation rates were generally 10–100 times faster in carp than in trout and salmon. BDEs 47, 49, 101, 154, and 183 were the major metabolites observed in all three species with the exception of BDE 47, which was only detected in carp. Carp demonstrated a preference towards meta-debromination, while trout and salmon debrominated meta- and para- bromine atoms to an equal extent. We compared glutathione-S-transferase (GST) and deiodinase (DI) activity among all three species as these enzyme systems have been hypothesized to play a role in PBDE debromination among teleosts. Carp exhibited a preference for meta-deiodination of the thyroid hormone thyroxine, which was consistent with the preference for meta-debromination of PBDEs observed in carp. PMID:21291240

    10. Large mixing induced by the strong coupling with a single bulk neutrino

      NASA Astrophysics Data System (ADS)

      Lam, C. S.

      2002-03-01

      The neutrino is a good probe of extra dimensions. Large mixing and the apparent lack of very complicated oscillation patterns may be an indication of large couplings between the brane and a single bulk neutrino. A simple and realistic five-dimensional model of this kind is discussed. It requires a sterile neutrino in addition to three active neutrinos on the brane, all coupled strongly to one common bulk neutrino, but not directly among themselves. Mindful that sterile neutrinos are disfavored in the atmospheric and solar data, we demand induced mixing to occur among the active neutrinos, but not between the active and the sterile. The size R of the extra dimension is arbitrary in this model, otherwise it contains six parameters which can be used to fit the three neutrino masses and the three mixing angles. However, in the model these six parameters must be suitably ordered, so a successful fit is not guaranteed. It turns out that not only can the data be fitted, but, as a result of the ordering, a natural connection between the smallness of the reactor angle θ13 and the smallness of the mass-gap ratio ΔM2solar/ΔM2atmospheric can be derived.

    11. Analyzing Atmospheric Neutrino Oscillations

      SciTech Connect

      Escamilla, J.; Ernst, D. J.; Latimer, D. C.

      2007-10-26

      We provide a pedagogic derivation of the formula needed to analyze atmospheric data and then derive, for the subset of the data that are fully-contained events, an analysis tool that is quantitative and numerically efficient. Results for the full set of neutrino oscillation data are then presented. We find the following preliminary results: 1.) the sub-dominant approximation provides reasonable values for the best fit parameters for {delta}{sub 32}, {theta}{sub 23}, and {theta}{sub 13} but does not quantitatively provide the errors for these three parameters; 2.) the size of the MSW effect is suppressed in the sub-dominant approximation; 3.) the MSW effect reduces somewhat the extracted error for {delta}{sub 32}, more so for {theta}{sub 23} and {theta}{sub 13}; 4.) atmospheric data alone constrains the allowed values of {theta}{sub 13} only in the sub-dominant approximation, the full three neutrino calculations requires CHOOZ to get a clean constraint; 5.) the linear in {theta}{sub 13} terms are not negligible; and 6.) the minimum value of {theta}{sub 13} is found to be negative, but at a statistically insignificant level.

    12. LSND neutrino oscillation results

      SciTech Connect

      Louis, W.C.; LSND Collaboration

      1996-10-01

      The LSND (Liquid Scintillator Neutrino Detector) experiment at Los Alamos has conducted a search for muon antineutrino {r_arrow} electron antineutrino oscillations using muon neutrinos from antimuon decay at rest. The electron antineutrinos are detected via the reaction electron antineutrino + proton {r_arrow} positron + neutron, correlated with the 2.2-MeV gamma from neutron + proton {r_arrow} deuteron + gamma. The use of tight cuts to identify positron events with correlated gamma rays yields 22 events with positron energy between 36 and 60 MeV and only 4.6 {+-} 0.6 background events. The probability that this excess is due entirely to a statistical fluctuation is 4.1 {times} 10{sup -8}. A chi-squared fit to the entire positron sample results in a total excess of 51.8 {sup +18.7}{sub -16.9} {+-} 8.0 events with positron energy between 20 and 60 MeV. If attributed to muon antineutrino {r_arrow} electron antineutrino oscillations, this corresponds to an oscillation probability (averaged over the experimental energy and spatial acceptance) of (0.31 {+-} 0.12 {+-} 0.05){percent}. 10 refs., 7 figs., 1 tab.

    13. In vitro antiplasmodial and phytochemical study of five Artemisia species from Iran and in vivo activity of two species.

      PubMed

      Ramazani, Ali; Sardari, Soroush; Zakeri, Sedigheh; Vaziri, Behrouz

      2010-08-01

      The extract from Artemisia annua, containing artemisinin, has been proven active against multidrug resistant Plasmodium falciparum in previous studies. The purpose of this paper was to study five Artemisia species from Iran for their in vitro and in vivo antimalarial property and detection of artemisinin in the active species by chromatographic and spectroscopic methods including nuclear magnetic resonance (NMR) spectroscopy. Dried plants were extracted by 80% ethanol, and total extracts were investigated for antiplasmodial property and artemisinin content by TLC, HPLC, and (1)H-NMR techniques. Two plants (A. annua L. and Artemisia absinthium L.) showed good antiplasmodial activity against multidrug resistant and sensitive strain of P. falciparum. A. absinthium and A. annua at concentrations of 200 mg/kg for 4 days reduced parasitemia in BALB/C mice infected with Plasmodium bergei by 94.28% and 83.28%, respectively, but we could not detect artemisinin in all plants studied in this research. The antiplasmodial property of these two herbs is possibly related to essential oils that present in high amounts in their extracts.

    14. Two new iridoids from selected Penstemon species--antimicrobial activity.

      PubMed

      Zajdel, Sybilla M; Graikou, Konstantia; Sotiroudis, Georgios; Głowniak, Kazimierz; Chinou, Ioanna

      2013-01-01

      Eighteen secondary metabolites, belonging to three different chemical groups, were isolated from the methanolic extracts of the aerial parts of selected penstemon plants [Penstemon fruticosus (Pursh) Greene var. fruticosus, Penstemon palmeri Gray and Penstemon venustus Doug. ex Lindl.], and their structures were elucidated on the basis of spectral evidence. Six iridoid glucosides (1-6), three phenylpropanoid glucosides (13-15) and two acetophenone derivatives (16,17), obtained from P. fruticosus, five iridoids (2, 7-10), one phenylpropanoid glucoside (15) and two acetophenones (16, 18), isolated from P. palmeri while three iridoids (2, 11, 12) and three phenylpropanoids (13-15) were identified in P. venustus. Two of the iridoid glucosides (4, 5) from P. fruticosus are new natural products named accordingly as cis- and trans- forms of 10-O-p-methoxycinnamoylaucubin. All isolated compounds, as well as crude methanolic extracts, were evaluated for their antimicrobial activities against six Gram-positive and Gram-negative bacteria and three human pathogenic fungi.

    15. Status of the neutrino mass experiment KATRIN

      SciTech Connect

      Bornschein, L.; Bornschein, B.; Sturm, M.; Roellig, M.; Priester, F.

      2015-03-15

      The most sensitive way to determine the neutrino mass scale without further assumptions is to measure the shape of a tritium beta spectrum near its kinematic end-point. Tritium is the nucleus of choice because of its low endpoint energy, superallowed decay and simple atomic structure. Within an international collaboration the Karlsruhe Tritium Neutrino experiment (KATRIN) is currently being built up at KIT. KATRIN will allow a model-independent measurement of the neutrino mass scale with an expected sensitivity of 0.2 eV/c{sup 2} (90% CL). KATRIN will use a source of ultrapure molecular tritium. This contribution presents the status of the KATRIN experiment, thereby focusing on its Calibration and Monitoring System (CMS), which is the last component being subject to research/development. After a brief overview of the KATRIN experiment in Section II the CMS is introduced in Section III. In Section IV the Beta Induced X-Ray Spectroscopy (BIXS) as method of choice to monitor the tritium activity of the KATRIN source is described and first results are presented.

    16. Report on solar neutrino experiments

      SciTech Connect

      Davis, R. Jr.; Cleveland, B.T.; Rowley, J.K.

      1984-01-01

      A summary is given of the status of solar neutrino research that includes results of the Brookhaven chlorine detector, a discussion of the development of the gallium, bromine, and lithium radiochemical detectors, and some proposals for direct counting detectors. The gallium and bromine radiochemical detectors are developed and are capable of giving critical information of interest about neutrino physics and the fusion reactions in the interior of the sun. A plan for building these detectors is outlined and a rough cost estimate is given. A review is given of the plans in the Soviet Union in solar neutrino research.

    17. Neutrino interactions in neutron matter

      NASA Astrophysics Data System (ADS)

      Cipollone, Andrea

      2012-12-01

      Neutrino flow is the dominant mechanism of energy transfer in the latest stages of supernovae explosions and in compact stars. The Standard Model of particle physics and accelerator data, provide a satisfactory description of neutrino physics in vacuum up to TeV scale. Nevertheless modeling the dynamics of neutrino interaction in the nuclear environment involves severe difficulties. This thesis in mainly aimed at obtaining the weak response of infinite matter, using both the Correlated Basis Function theory and Landau Theory of Fermi liquid to take into account properly nucleon-nucleon hard core potential and long range correlation (quasi-particle, collective modes, ecc.)

    18. Recovery of cholinesterase activity in five avian species exposed to dicrotophos, an organophosphorus pesticide

      USGS Publications Warehouse

      Fleming, W.J.; Grue, C.E.

      1981-01-01

      The responses of brain and plasma cholinesterase (ChE) activities were examined in mallard ducks, bobwhite quail, barn owls, starlings, and common grackles given oral doses of dicrotophos, an organophosphorus insecticide. Up to an eightfold difference in response of brain ChE activity to dicrotophos was found among these species. Brain ChE activity recovered to within 2 SD of normal within 26 days after being depressed 55 to 64%. Recovery of brain ChE activity was similar among species and followed the model Y = a + b (log10X).

    19. PREFACE: 1st Franco-Algerian Workshop on Neutrino Physics

      NASA Astrophysics Data System (ADS)

      Mebarki, N.; Mimouni, J.; Vanucci, F.; Aissaoui, H.

      2015-04-01

      The first Franco-Algerian workshop on neutrino physics was held on 22-23 October 2013 at the University of Mentouri, Constantine, Algeria. It was jointly organized by the Laboratory of Mathematical and Subatomic Physics (LPMS) and the Direction of Scientific Research (DGRSTD) for the Algerian side, and for the French part by the IN2P3, CNRS and CEA IRFU. It is one of a series of international scientific meetings organized every two years by the LPMS at Constantine on high energy physics (theoretical, nuclear physics, classical and quantum cosmology, astrophysics, mathematical physics and quantum computing etc...) to maintain a high quality in scientific research and education at Algerian universities. This specific meeting brought together experts in particle physics, astrophysics and cosmology from France and Algeria. It touched upon several theoretical, phenomenological as well as experimental aspects of the neutrinos. The workshop participants were mostly young researchers from many universities and research institutes in Algeria. The physics of neutrinos is a very active field in particle physics, hence the importance for the High Energy community in Algeria to gain expertise in this ''strategic'' area at the intersection of various topics in theoretical physics and high energy astrophysics (SM physics, CP violation, in general, SNe explosions, baryogenesis...). The neutrino proposed by Pauli back in 1930 as a ''desperate remedy'' to save the law of energy conservation in beta decay had a bright early history. Discovered in 1956 in the Cowan-Reines experiment despite all odds, this elusive particle which enabled us to understand the chiral nature of the weak interactions which later lead to the electro-weak unification finally appears to hold a key role in understanding subatomic physics as well as the structure and structuration of the Universe. It is also, after the discovery of the Higgs particle at the LHC in 2012, the only grey area left today in the

    20. Supernova neutrino nucleosynthesis of light elements with neutrino oscillations.

      PubMed

      Yoshida, Takashi; Kajino, Toshitaka; Yokomakura, Hidekazu; Kimura, Keiichi; Takamura, Akira; Hartmann, Dieter H

      2006-03-10

      Light element synthesis in supernovae through neutrino-nucleus interactions, i.e., the v process, is affected by neutrino oscillations in the supernova environment. There is a resonance of 13-mixing in the O/C layer, which increases the rates of charged-current -process reactions in the outer He-rich layer. The yields of 7Li and 11B increase by about a factor of 1.9 and 1.3, respectively, for a normal mass hierarchy and an adiabatic 13-mixing resonance, compared to those without neutrino oscillations. In the case of an inverted mass hierarchy and a nonadiabatic 13-mixing resonance, the increase in the 7Li and 11B yields is much smaller. Observations of the 7Li/11B ratio in stars showing signs of supernova enrichment could thus provide a unique test of neutrino oscillations and constrain their parameters and the mass hierarchy.

    1. Probing neutrino flavor transition mechanism with ultrahigh energy astrophysical neutrinos

      NASA Astrophysics Data System (ADS)

      Lai, Kwang-Chang; Lin, Guey-Lin; Liu, Tsung-Che

      2014-02-01

      Observation of ultrahigh energy astrophysical neutrinos and identification of their flavors have been proposed for future neutrino telescopes. The flavor ratio of astrophysical neutrinos observed on the Earth depends on both the initial flavor ratio at the source and flavor transitions taking place during propagations of these neutrinos. The flavor transition mechanisms are well classified with our model-independent parametrization. We find that a new parameter R ≡ϕe/(ϕμ+ϕτ) can probe directly the flavor transition in the framework of our model-independent parametrization, without the assumption of the νμ-ντ symmetry. A few flavor-transition models are employed to test our parametrization with this new observable. The observational constraints on flavor transition mechanisms by the new observable are discussed through our model-independent parametrization.

    2. Testing sterile neutrinos with new fixed target experiment at CERN SPS

      NASA Astrophysics Data System (ADS)

      Gorbunov, D. S.

      2015-03-01

      We discuss the recently proposed new fixed target experiment at CERN with SPS beam of 400 GeV protons aimed at searches for sterile neutrinos produced in charmed hadron decays. The three sterile neutrino introduced to the Standard Model can explain the active neutrino masses and mixings by means of seesaw type I mechanism, baryon asymmetry of the Universe by making use of leptogenesis via sterile-active neutrino oscillations in the primordial plasma, and dark matter phenomenon due to a relic component of the lightest sterile neutrino. The new beam-dump with detector placed as close to the target as possible will allow to test many other extensions of the Standard Model with new unstable yet long-lived particles at GeV mass scale.

    3. Contrasting activity patterns of two related octopus species, Octopus macropus and Octopus vulgaris.

      PubMed

      Meisel, Daniela V; Byrne, Ruth A; Kuba, Michael; Mather, Jennifer; Ploberger, Werner; Reschenhofer, Erhard

      2006-08-01

      Octopus macropus and Octopus vulgaris have overlapping habitats and are exposed to similar temporal changes. Whereas the former species is described as nocturnal in the field, there are conflicting reports about the activity time of the latter one. To compare activity patterns, the authors tested both species in the laboratory. Octopuses were exposed to a light-dark cycle and held under constant dim light for 7 days each. O. macropus showed nocturnal and light-cued activity. According to casual observations, O. vulgaris started out nocturnal but had switched to mostly diurnal when the experiment began. Individual variation of its activity was found. The different activity patterns of O. macropus and O. vulgaris might reflect their lifestyles, the latter species being more generalist.

    4. The many aspects of neutrino physics

      SciTech Connect

      Frieman, J.A.

      1992-01-01

      In mid-November, over seventy physicists gathered at Fermilab for an informal workshop on the Many Aspects of Neutrino Physics, which dovetailed with and also helped lay the groundwork for the succeeding more narrowly focused conference on Long Baseline Neutrino Oscillations. The workshop indeed covered many of the interrelated aspects of neutrino physics: 17 keV neutrinos (experiments, theoretical models, and astrophysical constraints), neutrino properties (double beta decay experiments, neutrino magnetic moments), neutrinos from/as weakly interacting massive particles (WIMPs) in cosmology and astrophysics, atmospheric neutrinos, and solar neutrinos. In the following, I provide a brief and thoroughly biased account of only some of the many interesting developments discussed at the workshop.

    5. Antioxidant activity and phenolic content of leaf infusions of Myrtaceae species from Cerrado (Brazilian Savanna).

      PubMed

      Takao, L K; Imatomi, M; Gualtieri, S C J

      2015-11-01

      There is considerable interest in identifying new antioxidants from plant materials. Several studies have emphasized the antioxidant activity of species belonging to the Myrtaceae family. However, there are few reports on these species from the Cerrado (Brazilian savanna). In this study, the antioxidant activity and phenolic content of 12 native Myrtaceae species from the Cerrado were evaluated (Blepharocalyx salicifolius, Eugenia bimarginata, Eugenia dysenterica, Eugenia klotzschiana, Hexachlamys edulis, Myrcia bella, Myrcia lingua, Myrcia splendens, Myrcia tomentosa, Psidium australe, Psidium cinereum, and Psidium laruotteanum). Antioxidant potential was assessed using the antioxidant activity index (AAI) by the DPPH method and total phenolic content (TPC) by the Folin-Ciocalteu assay. There was a high correlation between TPC and AAI values. Psidium laruotteanum showed the highest TPC (576.56 mg GAE/g extract) and was the most potent antioxidant (AAI = 7.97, IC50 = 3.86 µg·mL-1), with activity close to that of pure quercetin (IC50 = 2.99 µg·mL-1). The extracts of nine species showed IC50 of 6.24-8.75 µg·mL-1. Most species showed TPC and AAI values similar to or higher than those for Camellia sinensis, a commonly consumed tea with strong antioxidant properties. The results reveal that the analyzed Myrtaceae species from the Cerrado possess high phenolic contents and antioxidant activities. Thus, they are a potential source of new natural antioxidants.

    6. Digestive enzyme activity of two stonefly species (Insecta, Plecoptera) and their feeding habits.

      PubMed

      de Figueroa, J M Tierno; Trenzado, C E; López-Rodríguez, M J; Sanz, A

      2011-11-01

      The digestive enzymes of two stoneflies species, Hemimelaena flaviventris and Isoperla morenica, were studied for the first time. These species are temporary water inhabitants and exhibit great feeding plasticity. Although they are traditionally referred to as predators, a previous study revealed that H. flaviventris incorporates some diatoms into its diet in addition to feeding usually on several prey, and I. morenica (in that study under the name of I. curtata) only feeds on animals occasionally. The enzymatic activities of digestive amylase, lipase, protease, trypsin and chymotrypsin were determined for each species at the same developmental stage. The results show that H. flaviventris has a greater digestive enzymatic pool and higher relative and absolute protease, lipase and trypsin activities than I. morenica. The latter has a relative higher amylase activity. As higher amylase activity is typical of phytophagous species and higher protease activity typical of carnivorous species; these results reveal that H. flaviventris is a more efficient zoophagous species than I. morenica. The ecological implications of these findings, including the higher secondary production of H. flaviventris in its habitat, are discussed.

    7. Majorana neutrinos and magnetic fields

      NASA Astrophysics Data System (ADS)

      Schechter, J.; Valle, J. W. F.

      1981-10-01

      It is stressed that if neutrinos are massive they are probably of "Majorana" type. This implies that their magnetic-moment form factor vanishes identically so that the previously discussed phenomenon of spin rotation in a magnetic field would not appear to take place. We point out that Majorana neutrinos can, however, have transition moments. This enables an inhomogeneous magnetic field to rotate both spin and "flavor" of a neutrino. In this case the spin rotation changes particle to antiparticle. The spin-flavor-rotation effect is worked out in detail. We also discuss the parametrization and calculation of the electromagnetic form factors of Majorana neutrinos. Our discussion takes into account the somewhat unusual quantum theory of massive Majorana particles.

    8. Group velocity of neutrino waves

      NASA Astrophysics Data System (ADS)

      Indumathi, D.; Kaul, Romesh K.; Murthy, M. V. N.; Rajasekaran, G.

      2012-03-01

      We follow up on the analysis of Mecozzi and Bellini (arxiv:arXiv:1110.1253v1) where they showed, in principle, the possibility of superluminal propagation of neutrinos, as indicated by the recent OPERA result. We refine the analysis by introducing wave packets for the superposition of energy eigenstates and discuss the implications of their results with realistic values for the mixing and mass parameters in a full three neutrino mixing scenario. Our analysis shows the possibility of superluminal propagation of neutrino flavour in a very narrow range of neutrino parameter space. Simultaneously this reduces the number of observable events drastically. Therefore, the OPERA result cannot be explained in this frame-work.

    9. Direct measurements of neutrino mass

      SciTech Connect

      Robertson, R.G.H.

      1991-01-01

      Some recent developments in the experimental search for neutrino mass are discussed. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 9.3 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. Hime and Jelley report finding new evidence for a 17-keV neutrino in the {Beta} decay of {sup 35}S and {sup 63}Ni. Many other experiments are being reported and the situation is still unresolved. 56 refs., 1 fig., 3 tabs.

    10. Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling

      SciTech Connect

      Huedepohl, L.; Mueller, B.; Janka, H.-T.; Marek, A.; Raffelt, G. G.

      2010-06-25

      An 8.8M{sub {center_dot}}electron-capture supernova was simulated in spherical symmetry consistently from collapse through explosion to essentially complete deleptonization of the forming neutron star. The evolution time ({approx}9 s) is short because high-density effects suppress our neutrino opacities. After a short phase of accretion-enhanced luminosities ({approx}200 ms), luminosity equipartition among all species becomes almost perfect and the spectra of {nu}{sub e} and {nu}{sub {mu},{tau}}very similar, ruling out the neutrino-driven wind as r-process site. We also discuss consequences for neutrino flavor oscillations.

    11. Neutrino signal of electron-capture supernovae from core collapse to cooling.

      PubMed

      Hüdepohl, L; Müller, B; Janka, H-T; Marek, A; Raffelt, G G

      2010-06-25

      An 8.8M{⊙} electron-capture supernova was simulated in spherical symmetry consistently from collapse through explosion to essentially complete deleptonization of the forming neutron star. The evolution time (∼9  s) is short because high-density effects suppress our neutrino opacities. After a short phase of accretion-enhanced luminosities (∼200  ms), luminosity equipartition among all species becomes almost perfect and the spectra of ν{e} and ν{μ,τ} very similar, ruling out the neutrino-driven wind as r-process site. We also discuss consequences for neutrino flavor oscillations.

    12. The experimental status of neutrino masses and mixings

      SciTech Connect

      Robertson, R.G.H.

      1992-01-01

      We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

    13. Neutrino mass and mixing, and non-accelerator experiments

      SciTech Connect

      Robertson, R.G.H.

      1992-01-01

      We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indication that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

    14. The Latest Neutrino Oscillation Results from Super-Kamiokande

      SciTech Connect

      Sobel, Henry W.

      2006-02-08

      Super-Kamiokande is the world's largest water Cherenkov detector, with a net mass of 50,000 tons. The scientific goals of the experiment include searches for proton decays, and studies of neutrinos from various sources. In this paper we review some of the latest results from our neutrino oscillations studies using atmospheric neutrinos, solar neutrinos and neutrinos from the KEK neutrino beam.

    15. Optical and X-ray early follow-up of ANTARES neutrino alerts

      NASA Astrophysics Data System (ADS)

      Adrián-Martínez, S.; Ageron, M.; Albert, A.; Samarai, I. Al; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaš, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vecchi, M.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Klotz, A.; Boer, M.; Le Van Suu, A.; Akerlof, C.; Zheng, W.; Evans, P.; Gehrels, N.; Kennea, J.; Osborne, J. P.; Coward, D. M.

      2016-02-01

      High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or X-ray counterpart to a neutrino signal, the images provided by the follow-up observations are analysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with X-ray images taken with a maximum delay of 24 hours after the neutrino trigger have been analysed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert.

    16. The evolution of protected species studies to determine effects of offshore oil and gas activities

      SciTech Connect

      Lang, W.; Fairfield, C. )

      1990-01-09

      The Minerals Management Service (MMS) Environmental Studies Program (ESP) was initiated in 1973 to help ensure that the environmental information on which Outer Continental Shelf (OCS) oil and gas development decisions are based is the most definitive that can be assembled at the time. The majority of ESP studies are designed to provide information on the status of the environment, and to identify the extent of potential impact of OCS development activities. Federal OCS activities must comply with several environmental' acts, including the Marine Mammal Protection Act and the Endangered Species Act. In response to these acts, MMS has funded a significant amount of research on protected species. The basic intent of these studies is to determine if proposed OCS activities will affect protected species and whether means exist to mitigate any effects found. Over the 15 years of the ESP, protected species studies have evolved from literature syntheses and relatively simple survey efforts, to more complex studies attempting to understand complicated behavioral and physiological responses to OCS effects (e.g. noise, spilled oil), and to evaluate protected species within the context of habitat characterization. This last goal has produced a need for multidisciplinary field research. Two major field efforts have been undertaken in the Beaufort Sea and Georges Bank areas. The question of if' protected species are present has generally been answered for key OCS regions; the next step for effective environmental decision making is to understand why' protected species are present.

    17. Mold-inhibitory activity of different yeast species during airtight storage of wheat grain.

      PubMed

      Adel Druvefors, Ulrika; Schnürer, Johan

      2005-02-01

      The yeast Pichia anomala J121 inhibits spoilage by Penicillium roqueforti in laboratory and pilot studies with high-moisture wheat in malfunctioning airtight storage. We tested the biocontrol ability of an additional 57 yeast species in a grain mini silo system. Most yeast species grew to CFU levels comparable to that of P. anomala J121 after 14 days of incubation (>10(6) CFU g(-1)). Of the 58 species, 38 (63 strains) had no mold-inhibitory effects (Pen. roqueforti levels >10(5) CFU g(-1)). Among these were 11 species (18 strains) that did not grow on the wheat grain. Several of the non-inhibiting yeast species have previously been reported as biocontrol agents in other postharvest environments. Weak inhibitory activity, reducing Pen. roqueforti levels to between 10(4) and 10(5) CFU g(-1), was observed with 11 species (12 strains). Candida silvicola and Pichia guillermondii reduced Pen. roqueforti to <10(4) CFU g(-1). Candida fennica, Candida pelliculosa, Candida silvicultrix, P. anomala (29 strains), Pichia burtonii, Pichia farinosa and Pichia membranifaciens strongly inhibited Pen. roqueforti (<10(3) CFU g(-1)) in the mini silos, but none had higher biocontrol activity than P. anomala strain J121. This report is the first of biocontrol activity of C. fennica and C. silvicultrix. The ability of 27 yeast species to grow to high CFU values without inhibiting mold growth suggests that nutrient competition may not be the main mode of action of P. anomala J121.

    18. 40 years of neutrino physics

      NASA Astrophysics Data System (ADS)

      Reines, Frederick

      Wolfgang Pauli and Enrico Fermi pioneered the hypothesis and characteristics of the weak interaction and the elementary particle called the neutrino. Since its discovery some forty years ago the neutrino has been shown to be a fundamental constituent of matter with a surprisingly rich, and in very many ways unexpected, set of characteristics ranging from basic roles in the generation of energy in the sun to supernovæ.

    19. Proposed geological solar neutrino measurement

      SciTech Connect

      Cowan, G.A.; Haxton, W.C.

      1982-01-01

      It may be possible to measure the boron-8 solar neutrino flux, averaged over the past several million years, from the concentration of technetium-98 in molybdenum-rich ore. This geochemical experiment could provide the first test of nonstandard solar models that suggest a relation between the chlorine-37 solar neutrino puzzle and the most recent glacial epoch. The necessary conditions for achieving a meaningful measurement are identified and discussed.

    20. Solar Neutrinos: Status and Prospects

      NASA Astrophysics Data System (ADS)

      Haxton, W. C.; Hamish Robertson, R. G.; Serenelli, Aldo M.

      2013-08-01

      We describe the current status of solar neutrino measurements and of the theory—both neutrino physics and solar astrophysics—employed in interpreting measurements. Important recent developments include Super-Kamiokande's determination of the ν-e elastic scattering rate for 8B neutrinos to 3%; the latest Sudbury Neutrino Observatory (SNO) global analysis in which the inclusion of low-energy data from SNO I and II significantly narrowed the range of allowed values for the neutrino mixing angle θ12; Borexino results for both the 7Be and proton-electron-proton (pep) neutrino fluxes, the first direct measurements constraining the rate of proton-proton (pp) I and pp II burning in the Sun; global reanalyses of solar neutrino data that take into account new reactor results on θ13; a new decadal evaluation of the nuclear physics of the pp chain and CNO cycle defining best values and uncertainties in the nuclear microphysics input to solar models; recognition of an emerging discrepancy between two tests of solar metallicity, helioseismological mappings of the sound speed in the solar interior, and analyses of the metal photoabsorption lines based on our best current description of the Sun's photosphere; a new round of standard solar model calculations optimized to agree either with helioseismology or with the new photospheric analysis; and, motivated by the solar abundance problem, the development of nonstandard, accreting solar models, in order to investigate possible consequences of the metal segregation that occurred in the proto-solar disk. We review this progress and describe how new experiments such as SNO+ could help us further exploit neutrinos as a unique probe of stellar interiors.

    1. Probing supernova physics with neutrino oscillations

      NASA Astrophysics Data System (ADS)

      Minakata, H.

      2002-08-01

      We point out that solar neutrino oscillations with large mixing angle as evidenced in current solar neutrino data have a strong impact on strategies for diagnosing collapse-driven supernova (SN) through neutrino observations. Such oscillations induce a significant deformation of the energy spectra of neutrinos, thereby allowing us to obtain otherwise inaccessible features of SN neutrino spectra. We demonstrate that one can determine temperatures and luminosities of non-electron flavor neutrinos by observing bar{nu}_{e} from galactic SN in massive water Cherenkov detectors by the charged current reactions on protons.

    2. Status of non-standard neutrino interactions.

      PubMed

      Ohlsson, Tommy

      2013-04-01

      The phenomenon of neutrino oscillations has been established as the leading mechanism behind neutrino flavor transitions, providing solid experimental evidence that neutrinos are massive and lepton flavors are mixed. Here we review sub-leading effects in neutrino flavor transitions known as non-standard neutrino interactions (NSIs), which is currently the most explored description for effects beyond the standard paradigm of neutrino oscillations. In particular, we report on the phenomenology of NSIs and their experimental and phenomenological bounds as well as an outlook for future sensitivity and discovery reach.

    3. On LBNE neutrino flux systematic uncertainties

      SciTech Connect

      Lebrun, Paul L. G.; Hylen, James; Marchionni, Alberto; Fields, Laura; Bashyal, Amit; Park, Seongtae; Watson, Blake

      2015-10-15

      The systematic uncertainties in the neutrino flux of the Long-Baseline Neutrino Experiment, due to alignment uncertanties and tolerances of the neutrino beamline components, are estimated. In particular residual systematics are evaluated in the determination of the neutrino flux at the far detector, assuming that the experiment will be equipped with a near detector with the same target material of the far detector, thereby canceling most of the uncertainties from hadroproduction and neutrino cross sections. This calculation is based on a detailed Geant4-based model of the neutrino beam line that includes the target, two focusing horns, the decay pipe and ancillary items, such as shielding.

    4. Neutrino scattering and flavor transformation in supernovae.

      PubMed

      Cherry, John F; Carlson, J; Friedland, Alexander; Fuller, George M; Vlasenko, Alexey

      2012-06-29

      We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse supernova environments. We show that the standard treatment for collective neutrino flavor transformation is adequate at late times but could be inadequate in early epochs of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy and composition, will require a new approach in neutrino flavor transformation modeling.

    5. Neutrinos and Beyond

      SciTech Connect

      Huber, Patrick

      2016-09-16

      Scientifically, this grant supported the further development and maintenance of GLoBES, which serves as standard tool for all long-baseline oscillation experiments, including DUNE. A strong focus was on the oscillation physics in long-baseline experiments including the difficult issues of optimization and systematics as well as search for new physics. Sterile neutrinos at the eV-scale, their phenomenological implications and possibilities to test their existence represented another major topic. In particular, we have performed the to-date most accurate computation of the antineutrino spectrum resulting from fissions in a nuclear reactor. In synergy with this research area we also explored potential applications to nuclear non-proliferation safeguards.

    6. Impact of neutrino properties on the estimation of inflationary parameters from current and future observations

      NASA Astrophysics Data System (ADS)

      Gerbino, Martina; Freese, Katherine; Vagnozzi, Sunny; Lattanzi, Massimiliano; Mena, Olga; Giusarma, Elena; Ho, Shirley

      2017-02-01

      We study the impact of assumptions about neutrino properties on the estimation of inflationary parameters from cosmological data, with a specific focus on the allowed contours in the ns/r plane, where ns is the scalar spectral index and r is the tensor-to-scalar ratio. We study the following neutrino properties: (i) the total neutrino mass Mν=∑i mi (where the index i =1 , 2, 3 runs over the three neutrino mass eigenstates); (ii) the number of relativistic degrees of freedom Neff at the time of recombination; and (iii) the neutrino hierarchy. Whereas previous literature assumed three degenerate neutrino masses or two massless neutrino species (approximations that clearly do not match neutrino oscillation data), we study the cases of normal and inverted hierarchy. Our basic result is that these three neutrino properties induce <1 σ shift of the probability contours in the ns/r plane with both current or upcoming data. We find that the choice of neutrino hierarchy (normal, inverted, or degenerate) has a negligible impact. However, the minimal cutoff on the total neutrino mass Mν ,min=0 that accompanies previous works using the degenerate hierarchy does introduce biases in the ns/r plane and should be replaced by Mν ,min=0.059 eV as required by oscillation data. Using current cosmic microwave background (CMB) data from Planck and Bicep/Keck, marginalizing over the total neutrino mass Mν and over r can lead to a shift in the mean value of ns of ˜0.3 σ toward lower values. However, once baryon acoustic oscillation measurements are included, the standard contours in the ns/r plane are basically reproduced. Larger shifts of the contours in the ns/r plane (up to 0.8 σ ) arise for nonstandard values of Neff. We also provide forecasts for the future CMB experiments Cosmic Origins Explorer (COrE, satellite) and Stage-IV (ground-based) and show that the incomplete knowledge of neutrino properties, taken into account by a marginalization over Mν, could induce a shift

    7. Extraterrestrial high energy neutrino fluxes

      NASA Technical Reports Server (NTRS)

      Stecker, F. W.

      1979-01-01

      Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

    8. Voids in massive neutrino cosmologies

      SciTech Connect

      Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo; Sutter, P.M. E-mail: villaescusa@oats.inaf.it E-mail: sutter@oats.inaf.it

      2015-11-01

      Cosmic voids are a promising environment to characterize neutrino-induced effects on the large-scale distribution of matter in the universe. We perform a comprehensive numerical study of the statistical properties of voids, identified both in the matter and galaxy distributions, in massive and massless neutrino cosmologies. The matter density field is obtained by running several independent N-body simulations with cold dark matter and neutrino particles, while the galaxy catalogs are modeled by populating the dark matter halos in simulations via a halo occupation distribution (HOD) model to reproduce the clustering properties observed by the Sloan Digital Sky Survey (SDSS) II Data Release 7. We focus on the impact of massive neutrinos on the following void statistical properties: number density, ellipticities, two-point statistics, density and velocity profiles. Considering the matter density field, we find that voids in massive neutrino cosmologies are less evolved than those in the corresponding massless neutrinos case: there is a larger number of small voids and a smaller number of large ones, their profiles are less evacuated, and they present a lower wall at the edge. Moreover, the degeneracy between σ{sub 8} and Ω{sub ν} is broken when looking at void properties. In terms of the galaxy density field, we find that differences among cosmologies are difficult to detect because of the small number of galaxy voids in the simulations. Differences are instead present when looking at the matter density and velocity profiles around these voids.

    9. Neutrino mass from triton decay

      NASA Astrophysics Data System (ADS)

      Weinheimer, Christian

      2006-07-01

      Since the discovery of neutrino flavor oscillation in different fields and by many different experiments we believe that neutrinos have non-vanishing masses in contrast to their current description within the Standard Model of particle physics. However, the absolute values of the neutrino masses, which are as important for particle physics as they are for cosmology and astrophysics, cannot be determined by oscillation experiments alone. There are a few ways to determine the neutrino mass scale, but the only model-independent method is the investigation of the electron energy spectrum of a β decay near its endpoint with tritium being the ideal isotope for the classical spectrometer set-up. The tritium β decay experiments at Mainz and Troitsk have recently been finished. At Mainz all relevant systematic uncertainties have been investigated by dedicated experiments yielding an upper limit of m(ν)<2.3eV/c (90% C.L.). The new Karlsruhe Tritium Neutrino Experiment (KATRIN) will enhance the sensitivity on the neutrino mass by an ultra-precise measurement of the tritium β decay spectrum near the endpoint by another order of magnitude down to 0.2 eV/c2 by using a very strong windowless gaseous molecular tritium source and a huge ultra-high resolution electrostatic spectrometer of MAC-E-Filter type. The recent achievements in test experiments show, that this very challenging experiment is feasible.

    10. High-energy neutrino astronomy

      NASA Astrophysics Data System (ADS)

      Montaruli, Teresa

      2012-07-01

      Neutrino astronomy, conceptually conceived four decades ago, has entered an exciting phase for providing results on the quest for the sources of the observed highest energy particles. IceCube and ANTARES are now completed and are scanning in space and time possible signals of high energy neutrinos indicating the existence of such sources. DeepCore, inside IceCube, is a playground for vetoed neutrino measurement with better potential below 1 TeV. A larger and denser detector is now being discussed. ARA, now in test phase, will be composed by radio stations that could cover up to ~ 100 km2 and aims at the highest energy region of cosmogenic neutrinos. The non observation of cosmic events is on one side a source of disappointment, on the other it represents by itself an important result. If seen in the context of a multi-messenger science, the combination of photon and cosmic ray experiment results brings invaluable information. The experimental upper bounds of the cubic-kilometer telescope IceCube are now below the theoretical upper bounds for extragalactic fluxes of neutrinos from optically thin sources. These are responsible for accelerating the extragalactic cosmic rays. Such limits constrain the role of gamma-ray bursts, described by the fireball picture, as sources of ultra-high energy cosmic rays. Neutrino telescopes are exciting running multi-task experiments that produce astrophysics and particle physics results some of which have been illustrated at this conference and are summarized in this report.

    11. Multi-wavelength follow-up of ANTARES neutrino alerts

      NASA Astrophysics Data System (ADS)

      Mathieu, Aurore

      2015-10-01

      Transient sources are often associated with the most violent phenomena in the Universe, where the acceleration of hadrons may occur. Such sources include gamma-ray bursts (GRBs), active galactic nuclei (AGN) or core-collapse supernovae (CCSNe), and are promising candidates for the production of high energy cosmic rays and neutrinos. The ANTARES telescope, located in the Mediterranean sea, aims at detecting these high energy neutrinos, which could reveal the presence of a cosmic ray accelerator. However, to enhance the sensitivity to transient sources, a method based on multi-wavelength follow-up of neutrino alerts has been developed within the ANTARES collaboration. This program, denoted as TAToO, triggers a network of robotic optical telescopes and the Swift-XRT with a delay of only a few seconds after a neutrino detection. The telescopes start an observation program of the corresponding region of the sky in order to detect a possible electromagnetic counterpart to the neutrino event. The work presented in this thesis covers the development and implementation of an optical image analysis pipeline, as well as the analysis of optical and X-ray data to search for fast transient sources, such as GRB afterglows, and slowly varying transient sources, such as CCSNe.

    12. Kinetic equations for baryogenesis via sterile neutrino oscillation

      SciTech Connect

      Asaka, Takehiko; Eijima, Sintaro; Ishida, Hiroyuki E-mail: eijima@muse.sc.niigata-u.ac.jp

      2012-02-01

      We investigate baryogenesis in the νMSM (neutrino Minimal Standard Model), which is the SM extended by three right-handed neutrinos with masses below the electroweak scale. The baryon asymmetry of the universe can be generated by the mechanism via flavor oscillation of right-handed (sterile) neutrinos which are responsible to masses of active neutrinos confirmed by various experiments. We present the kinetic equations for the matrix of densities of leptons which describe the generation of asymmetries. Especially, the momentum dependence of the matrix of densities is taken into account. By solving these equations numerically, it is found that the momentum distribution is significantly distorted from the equilibrium one, since the production for the modes with lower momenta k << T (T is the temperature of the universe) is enhanced, while suppressed for higher modes. As a result, the most important mode for the yields of sterile neutrinos as well as the baryon asymmetry is k ≅ 2T, which is smaller than (k) inferred from the thermal average. The comparison with the previous works is also discussed.

    13. Neutrinos secretly converting to lighter particles to please both KATRIN and the cosmos

      SciTech Connect

      Farzan, Yasaman; Hannestad, Steen E-mail: sth@phys.au.dk

      2016-02-01

      Within the framework of the Standard Model of particle physics and standard cosmology, observations of the Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO) set stringent bounds on the sum of the masses of neutrinos. If these bounds are satisfied, the upcoming KATRIN experiment which is designed to probe neutrino mass down to ∼ 0.2 eV will observe only a null signal. We show that the bounds can be relaxed by introducing new interactions for the massive active neutrinos, making neutrino masses in the range observable by KATRIN compatible with cosmological bounds. Within this scenario, neutrinos convert to new stable light particles by resonant production of intermediate states around a temperature of T∼ keV in the early Universe, leading to a much less pronounced suppression of density fluctuations compared to the standard model.

    14. Atmospheric Neutrinos in the MINOS Far Detector

      SciTech Connect

      Howcroft, Caius Leo Frederick

      2004-12-01

      The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for vμ and $\\bar{v}$μ are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

    15. Physics prospects of the Jinping neutrino experiment

      NASA Astrophysics Data System (ADS)

      Beacom, John F.; Chen, Shaomin; Cheng, Jianping; Doustimotlagh, Sayed N.; Gao, Yuanning; Gong, Guanghua; Gong, Hui; Guo, Lei; Han, Ran; He, Hong-Jian; Huang, Xingtao; Li, Jianmin; Li, Jin; Li, Mohan; Li, Xueqian; Liao, Wei; Lin, Guey-Lin; Liu, Zuowei; McDonough, William; Šrámek, Ondřej; Tang, Jian; Wan, Linyan; Wang, Yuanqing; Wang, Zhe; Wang, Zongyi; Wei, Hanyu; Xi, Yufei; Xu, Ye; Xu, Xun-Jie; Yang, Zhenwei; Yao, Chunfa; Yeh, Minfang; Yue, Qian; Zhang, Liming; Zhang, Yang; Zhao, Zhihong; Zheng, Yangheng; Zhou, Xiang; Zhu, Xianglei; Zuber, Kai

      2017-02-01

      The China Jinping Underground Laboratory (CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detectors and a total fiducial mass of 2000 tons for solar neutrino physics (equivalently, 3000 tons for geo-neutrino and supernova neutrino physics), the Jinping neutrino experiment will have the potential to identify the neutrinos from the CNO fusion cycles of the Sun, to cover the transition phase for the solar neutrino oscillation from vacuum to matter mixing, and to measure the geo-neutrino flux, including the Th/U ratio. These goals can be fulfilled with mature existing techniques. Efforts on increasing the target mass with multi-modular neutrino detectors and on developing the slow liquid scintillator will increase the Jinping discovery potential in the study of solar neutrinos, geo-neutrinos, supernova neutrinos, and dark matter. Supported by the National Natural Science Foundation of China (11235006, 11475093, 11135009, 11375065, 11505301, and 11620101004), the Tsinghua University Initiative Scientific Research Program (20121088035, 20131089288, and 20151080432), the Key Laboratory of Particle & Radiation Imaging (Tsinghua University), the CAS Center for Excellence in Particle Physics (CCEPP), U.S. National Science Foundation Grant PHY-1404311 (Beacom), and U.S. Department of Energy under contract DE-AC02-98CH10886 (Yeh).

    16. Diel Patterns of Activity for Insect Pollinators of Two Oil Palm Species (Arecales : Arecaceae).

      PubMed

      Auffray, Thomas; Frérot, Brigitte; Poveda, Roberto; Louise, Claude; Beaudoin-Ollivier, Laurence

      2017-01-01

      The pollination of two oil palm species, Elaeis guineensis Jacquin and Elaeis oleifera Cortés (Arecales: Arecaceae), depends on a mutualistic relation with insects, which use male inflorescences as a brood site, and visits female inflorescences lured by the emitted odor, which is similar to that of males. Although the activity of visiting the inflorescences by these insects is critical for the adequate natural pollination of the host plant, their activity is poorly documented. In the present study, we determine the diel activity of two specialized pollinator weevils (Coleoptera: Curculionidae) on inflorescences of their respective host-palm: Elaeidobius kamerunicus Faust specialized on E. guineensis, and Grasidius hybridus O'Brien and Beserra specialized on E. oleifera. The average timing of activity was studied by using passive interception traps. Then the pattern and the duration were refined by using aspiration trapping within the active period for each insect species at the male and female inflorescences. All the experiments were conducted in an Ecuadorian oil palm plantation, located close to Amazonian forest. El. kamerunicus and G. hybridus were found to be the pollinators of E. guineensis and E. oleifera, respectively. The two species differed in their diel pattern of activity: E. kamerunicus was active in the morning and G. hybridus during a short period at dusk. For both palm species, insect visits were synchronous on both male and female inflorescences. The synchronicity is discussed as a strategy to maintain the relation mutualistic between partners. These findings increase our understanding of the oil palm pollination system.

    17. Active Oxygen Species Generator by Low Pressure Silent Discharge and its Application to Water Treatment

      NASA Astrophysics Data System (ADS)

      Tanaka, Masaaki; Ikeda, Akira; Tanimura, Yasuhiro; Ohta, Koji; Yoshiyasu, Hajimu

      We have proposed the new water treatment using the active oxygen species such as an atomic oxygen with the oxidation power that is stronger than ozone. Based on the results of simulations we designed the silent discharge type active oxygen generator with a water ejector, which is operated on the discharge conditions of low pressure of 6.6kPa. and high temperature of about 200°C. The experimental results are as follows. (1) The yield of the active oxygen increases with the increase of the discharge tube temperature and the decrease of the gas pressure. (2) The life time of active oxygen is tens msec. (3) The active oxygen oxidizes efficiently the formic acid compared with ozone. It is assumed from these results that the active oxygen species having a strong oxidation power is generated.

    18. SEARCHES FOR TIME-DEPENDENT NEUTRINO SOURCES WITH ICECUBE DATA FROM 2008 TO 2012

      SciTech Connect

      Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Arguelles, C.; Baker, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arlen, T. C.; Archinger, M.; Baum, V.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K.-H.; Collaboration: IceCube Collaboration; and others

      2015-07-01

      In this paper searches for flaring astrophysical neutrino sources and sources with periodic emission with the IceCube neutrino telescope are presented. In contrast to time-integrated searches, where steady emission is assumed, the analyses presented here look for a time-dependent signal of neutrinos using the information from the neutrino arrival times to enhance the discovery potential. A search was performed for correlations between neutrino arrival times and directions, as well as neutrino emission following time-dependent light curves, sporadic emission, or periodicities of candidate sources. These include active galactic nuclei, soft γ-ray repeaters, supernova remnants hosting pulsars, microquasars, and X-ray binaries. The work presented here updates and extends previously published results to a longer period that covers 4 years of data from 2008 April 5 to 2012 May 16, including the first year of operation of the completed 86 string detector. The analyses did not find any significant time-dependent point sources of neutrinos, and the results were used to set upper limits on the neutrino flux from source candidates.

    19. Cosmic constraint on massive neutrinos in viable f( R) gravity with producing Λ CDM background expansion

      NASA Astrophysics Data System (ADS)

      Lu, Jianbo; Liu, Molin; Wu, Yabo; Wang, Yan; Yang, Weiqiang

      2016-12-01

      Tensions between several cosmic observations were found recently, such as the inconsistent values of H0 (or σ 8) were indicated by the different cosmic observations. Introducing the massive neutrinos in Λ CDM could potentially solve the tensions. Viable f( R) gravity producing Λ CDM background expansion with massive neutrinos is investigated in this paper. We fit the current observational data: Planck-2015 CMB, RSD, BAO, and SNIa to constrain the mass of neutrinos in viable f( R) theory. The constraint results at 95% confidence level are: Σ m_ν <0.202 eV for the active-neutrino case, m_{ν , sterile}^eff<0.757 eV with N_eff<3.22 for the sterile neutrino case. For the effects due to the mass of the neutrinos, the constraint results on model parameter at 95% confidence level become f_{R0}× 10^{-6}> -1.89 and f_{R0}× 10^{-6}> -2.02 for two cases, respectively. It is also shown that the fitting values of several parameters much depend on the neutrino properties, such as the cold dark matter density, the cosmological quantities at matter-radiation equality, the neutrino density and the fraction of baryonic mass in helium. Finally, the constraint result shows that the tension between direct and CMB measurements of H_0 gets slightly weaker in the viable f( R) model than that in the base Λ CDM model.

    20. Searches for Time-dependent Neutrino Sources with IceCube Data from 2008 to 2012

      NASA Astrophysics Data System (ADS)

      Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Baker, M.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zoll, M.; IceCube Collaboration

      2015-07-01

      In this paper searches for flaring astrophysical neutrino sources and sources with periodic emission with the IceCube neutrino telescope are presented. In contrast to time-integrated searches, where steady emission is assumed, the analyses presented here look for a time-dependent signal of neutrinos using the information from the neutrino arrival times to enhance the discovery potential. A search was performed for correlations between neutrino arrival times and directions, as well as neutrino emission following time-dependent light curves, sporadic emission, or periodicities of candidate sources. These include active galactic nuclei, soft γ-ray repeaters, supernova remnants hosting pulsars, microquasars, and X-ray binaries. The work presented here updates and extends previously published results to a longer period that covers 4 years of data from 2008 April 5 to 2012 May 16, including the first year of operation of the completed 86 string detector. The analyses did not find any significant time-dependent point sources of neutrinos, and the results were used to set upper limits on the neutrino flux from source candidates.