Science.gov

Sample records for active neutron assay

  1. Determination of fission neutron transmission through waste matrix material using neutron signal correlation from active assay of {sup 239}Pu

    SciTech Connect

    Hollas, C.L.; Arnone, G.; Brunson, G.; Coop, K.

    1996-09-01

    The accuracy of TRU (transuranic) waste assay using the differential die-away technique depends upon significant corrections to compensate for the effects of the matrix material in which the TRU waste is located. The authors have used a new instrument, the Combined Thermal/Epithermal Neutron (CTEN) instrument for the assay of TRU waste, to develop methods to improve the accuracy of these corrections. Neutrons from a pulsed 14-MeV neutron generator are moderated in the walls of the CTEN cavity and induce fission in the TRU material. The prompt neutrons from these fission events are detected in cadmium-wrapped {sup 3}He neutron detectors. They report new methods of data acquisition and analysis to extract correlation in the neutron signals resulting form fission during active interrogation. They use the correlation information in conjunction with the total number of neutrons to determine the fraction of fission neutrons transmitted through the matrix material into the {sup 3}He detectors. This determination allows them to cleanly separate the matrix effects into two processes: matrix modification upon the neutron interrogating flux and matrix modification upon the fraction of fission neutrons transmitted to the neutron detectors. This transmission information is also directly applied in a neutron multiplicity analysis in the passive assay of {sup 240}Pu.

  2. A passive-active neutron device for assaying remote-handled transuranic waste

    SciTech Connect

    Estep, R.J.; Coop, K.L.; Deane, T.M.; Lujan, J.E.

    1989-01-01

    A combined passive-active neutron assay device was constructed for assaying remote-handled transuranic waste. A study of matrix and source position effects in active assays showed that a knowledge of the source position alone is not sufficient to correct for position-related errors in highly moderating or absorbing matrices. An alternate function for the active assay of solid fuel pellets was derived, although the efficacy of this approach remains to be established. 4 refs., 7 figs., 1 tab.

  3. Capability and limitation study of the DDT passive-active neutron waste assay instrument

    SciTech Connect

    Nicholas, N.J.; Coop, K.L.; Estep, R.J.

    1992-05-01

    The differential-dieaway-technique passive-active neutron assay system is widely used by transuranic waste generators to certify their drummed waste for eventual shipment to the Waste Isolation Pilot Plant (WIPP). Stricter criteria being established for waste emplacement at the WIPP site has led to a renewed interest in improvements to and a better understanding of current nondestructive assay (NDA) techniques. Our study includes the effects of source position, extreme matrices, high neutron backgrounds, and source self-shielding to explore the system`s capabilities and limitations and to establish a basis for comparison with other NDA systems. 11 refs.

  4. Capability and limitation study of the DDT passive-active neutron waste assay instrument

    SciTech Connect

    Nicholas, N.J.; Coop, K.L.; Estep, R.J.

    1992-05-01

    The differential-dieaway-technique passive-active neutron assay system is widely used by transuranic waste generators to certify their drummed waste for eventual shipment to the Waste Isolation Pilot Plant (WIPP). Stricter criteria being established for waste emplacement at the WIPP site has led to a renewed interest in improvements to and a better understanding of current nondestructive assay (NDA) techniques. Our study includes the effects of source position, extreme matrices, high neutron backgrounds, and source self-shielding to explore the system's capabilities and limitations and to establish a basis for comparison with other NDA systems. 11 refs.

  5. 233U Assay A Neutron NDA System

    SciTech Connect

    Hensley, D.C.; Lucero, A.J.; Pierce, L.

    1998-11-17

    The assay of highly enriched {sup 233}U material presents some unique challenges. Techniques which apply to the assay of materials of Pu or enriched {sup 235}U do not convert easily over to the assay of {sup 233}U. A specialized neutron assay device is being fabricated to exploit the singles neutron signal, the weak correlated neutron signal, and an active correlated signal. These pieces of information when combined with {gamma} ray isotopics information should give a good overall determination of {sup 233}U material now stored in bldg. 3019 at the Oak Ridge National Laboratory.

  6. Application of active and passive neutron non destructive assay methods to concrete radioactive waste drums

    NASA Astrophysics Data System (ADS)

    Jallu, F.; Passard, C.; Brackx, E.

    2011-09-01

    This paper deals with the application of non-destructive neutron measurement methods to control and characterize 200 l radioactive waste drums filled with a concrete matrix. Due to its composition, and particularly to hydrogen, concrete penalizes the use of such methods to quantify uranium (U) and plutonium (Pu) components, which are mainly responsible of the α-activity of the waste. The determination of the alpha activity is the main objective of neutron measurements, in view to verify acceptance criteria in surface storage. Calibration experiments of the Active Neutron Interrogation (ANI) method lead to Detection Limit Masses (DLM) of about 1 mg of 239Pu eff in the total counting mode, and of about 10 mg of 239Pu eff in the coincidence counting mode, in case of a homogeneous Pu source and measurement times between one and two hours. Monte Carlo calculation results show a very satisfactory agreement between experimental values and calculated ones. Results of the application of passive and active neutron methods to control two real drums are presented in the last part of the paper. They show a good agreement between measured data and values declared by the waste producers. The main difficulties that had to be overcome are the low neutron signal in passive and active coincidence counting modes due to concrete, the analysis of the passive neutron signal in presence of 244Cm in the drum, which is a strong spontaneous fission neutron emitter, the variation of the active background with the concrete composition, and the analysis of the active prompt neutron signal due to the simultaneous presence of U and Pu in the drums.

  7. Mobile neutron/gamma waste assay system for characterization of waste containing transuranics, uranium, and fission/activation products

    SciTech Connect

    Davidson, D.R.; Haggard, D.; Lemons, C.

    1994-12-31

    A new integrated neutron/gamma assay system has been built for measuring 55-gallon drums at Pacific Northwest Laboratory. The system is unique because it allows simultaneous measurement of neutrons and gamma-rays. This technique also allows measurement of transuranics (TRU), uranium, and fission/activation products, screening for shielded Special Nuclear Material prior to disposal, and critically determinations prior to transportation. The new system is positioned on a platform with rollers and installed inside a trailer or large van to allow transportation of the system to the waste site instead of movement of the drums to the scanner. The ability to move the system to the waste drums is particularly useful for drum retrieval programs common to all DOE sites and minimizes transportation problems on the site. For longer campaigns, the system can be moved into a facility. The mobile system consists of two separate subsystems: a passive Segmented Gamma Scanner (SGS) and a {open_quotes}clam-shell{close_quotes} passive neutron counter. The SGS with high purity germanium detector and {sup 75}Se transmission source simultaneously scan the height of the drum allowing identification of unshieled {open_quotes}hot spots{close_quotes} in the drum or segments where the matrix is too dense for the transmission source to penetrate. Dense segments can flag shielding material that could be used to hide plutonium or uranium during the gamma analysis. The passive nuetron counter with JSR-12N Neutron Coincidence Analyzer measures the coincident neutrons from the spontaneous fission of even isotopes of plutonium. Because high-density shielding produces minimal absorption of neutrons, compared to gamma rays, the passive neutron portion of the system can detect shielded SNM. Measurements to evaluate the performance of the system are still underway at Pacific Northwest Laboratory.

  8. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.

    1995-01-03

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.

  9. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, Jerald D.; Aryaeinejad, Rahmat; Greenwood, Reginald C.

    1995-01-01

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.

  10. Assay of the Martian Regolith with Neutrons

    NASA Technical Reports Server (NTRS)

    Drake, Darrell M.; Reedy, R.; Jakowsky, B.; Clark, B.; Squyres, S.

    1998-01-01

    Different aspects of assaying Martian regolith using neutrons have been investigated. The epithermal portion of moderated neutrons spectra is dramatically effected by the presence of hydrogen (usually in the form of water). A simple analytic formula has been derived to describe the amplitude of this portion of the neutron spectrum as a function of water concentration. Several demonstration experiments have been performed and modeled with a Monte Carlo code. Results of these experiments generally agreed with the calculations to within 20%. In addition to He-3 detectors, lithium-glass scintillators and U-238 fission ion chambers were investigated to determine their applicability to space experiments.

  11. Neutron Generators for Spent Fuel Assay

    SciTech Connect

    Ludewigt, Bernhard A

    2010-12-30

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  12. Determination of platinum and palladium in geological materials by neutron-activation analysis after fire-assay preconcentration

    USGS Publications Warehouse

    Rowe, J.J.; Simon, F.O.

    1971-01-01

    Fire-asay preconcentration followed by neutron-activation analysis permits the determination of as little as 0.5 ppM of platinum and 0.5 ppM of palladium on a 20-g sample. Platinum and palladium are separated with carriers and beta-counted. Results for the platinum and palladium content of seven U.S.G.S. standard rocks are presented. ?? 1971.

  13. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  14. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  15. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  16. Neutron Assay System for Confinement Vessel Disposition

    SciTech Connect

    Frame, Katherine C; Bourne, Mark M; Crooks, William J; Evans, Louise; Mayo, Douglas R; Miko, David K; Salazar, William R; Stange, Sy; Valdez, Jose I; Vigil, Georgiana M

    2012-07-13

    Waste will be removed from confinement vessels remaining from 1970s-era experiments. Los Alamos has 9+ spherical confinement vessels remaining from experiments. Each vessel contains {approx} 500 lbs of radioactive debris such as actinide metals and oxides, metals, powdered silica, graphite, and wires and hardware. In order to dispose of the vessels, debris and contamination must be removed. Neutron assay system was designed to assay vessels before and after cleanout. System requirements are: (1) Modular and moveable; (2) Capable of detecting {approx}100g {sup 239}Pu equivalent in a 2-inch thick steel sphere with 6 foot diameter; and (3) Capable of safeguards-quality assays. Initial design parameters arethe use of 4-atm {sup 3}He tubes with length of 6 feet, and {sup 3}He tubes embedded in polyethelene for moderation. This paper describes the calibration of the Confinement Vessel Assay System (CVAS) and quantification of its uncertainties. Assay uncertainty depends on five factors: (1) Statistical uncertainty in the assay measurement; (2) Statistical uncertainty in the background measurement; (3) Statistical uncertainty in the isotopics determination - This should be much smaller than the other uncertainties; (4) Systematic uncertainty due to position bias; and (5) Systematic uncertainty due to fluctuations in cosmic ray spallation. This one can be virtually eliminated by performing the background measurement with an empty vessel - but that may not be possible. We used modeling and experiments to quantify the systematic uncertainties. The calibration assumes a uniform distribution of material, but reality will be different. MCNPX modeling was used to quantify the positional bias. The model was benchmarked to build confidence in its results. Material at top of vessel is 44% greater than amount assayed, according to singles. Material near 19-tube detector is 38% less than amount assayed, according to singles. Cosmic ray spallation contributes significantly to the

  17. Active Well Neutron Coincidence Assays for U-235 Content in HB-Line Desicooler Repackage Campaign at the Savannah River Site

    SciTech Connect

    DEWBERRY, RAYMOND

    2004-07-15

    At HB-Line of the Savannah River Site, 4.3 kg of U-235 have been repackaged from FB-Line Desicooler material into a cement matrix in individual one-gallon paint cans for disposition as solid waste. The 4.3 kg of U-235 material were packaged into 172 paint cans with U-235 contents ranging from 8.9 g up to 32 g. Prior to transfer to the Solid Waste Facilities, verification measurements of selected cans were performed to assure valid control of the solid waste. The HB-Line-DOE Sampling Plan designated confirmatory assays, and a total of 67 paint cans were assayed to verify the contents. The Analytical Development Section of the Savannah River National Laboratory selected an active well coincidence neutron counter as the best instrument available to accomplish the assays. The instrument was set up at-line in the thermal excitation mode, and three standard samples that contained 8.9-, 28.5-, and 32.4-g of U-235 were counted for twenty hours of acquisition time each. A linear calibration based on the observed doubles rates was installed in the instrument. Subsequent verification measurements were performed on the selected samples using fifteen one-minute active acquisitions. Of the 67 samples assayed, 53 verification measurements were within the limits greater than or less than 32 per cent prescribed by the sample plan. Eleven samples had results that were biased low by as much as 95 percent, and three samples had results that were biased high and outside of the prescribed range. Because of the extremely variable nature of the cement matrix these results were not unexpected. From the observed data we were able to use the singles rates to develop a correction factor that we could apply to the doubles rates of the eleven negatively biased results that brought each verification measurement back into the prescribed range. The three samples that had large positive biases in the verification measurements were observed in the passive acquisition mode to confirm contributions

  18. Assay of Low-Enriched Uranium using Spontaneous Fission Neutrons

    SciTech Connect

    Zucker, M. S.; Fainberg, A.

    1980-01-01

    Low-enriched uranium oxide in bulk containers can be assayed for safeguards purposes, using the neutrons from spontaneous fission of 238U as a signature, to complement enrichment and mass measurement. The penetrability of the fast fission neutrons allows the inner portion of bulk samples to register. The measurement may also be useful for measuring moisture content, of significance in process control. The apparatus used can be the same as for neutron correlation counting for Pu assay. The neutron multiplication observed in 238U is of intrinsic interest.

  19. Assay of the Martian Regolith with Neutrons

    NASA Technical Reports Server (NTRS)

    Drake, Darrell M.

    1997-01-01

    The purpose of the research is to combine experiments and Monte Carlo transport of neutrons through volume of soil in an attempt to model neutron leakage from planetary surfaces. Emphasis is given to the change of neutron spectra as a function of water content and location. During the first stage of effort, two experiments were conducted in which leakage of neutrons from a Pu-Be source through about 30 g/cm(exp 2) of soil were measured with several counters. A Monte Carlo code, MCNP, has been used to model many of the 100 individual runs of the experiment. Hydrogen is the element that has the most dramatic effect on the neutron spectrum and its effect on the neutron spectrum is almost the same whether it is in the form of water or polyethylene. In order to simulate various water configurations, sheets of polyethylene have been used between layers of soil as well as water in several concentrations up to 18%. Comparison of experimental results to theoretical predictions made with the MCNP code were disappointing for low concentrations of water. We have made extensive calculations to see if room return could be the cause of the discrepancies. Water concentrations of the 'dry' soil were measured by two different laboratories and differed only by 0.5%. We have made calculations to optimize the next experiment and are investigating other methods of determining the water content of 'dry' soil.

  20. European Neutron Activation System.

    2013-01-11

    Version 03 EASY-2010 (European Activation System) consists of a wide range of codes, data and documentation all aimed at satisfying the objective of calculating the response of materials irradiated in a neutron flux. The main difference from the previous version is the upper energy limit, which has increased from 20 to 60 MeV. It is designed to investigate both fusion devices and accelerator based materials test facilities that will act as intense sources of high-energymore » neutrons causing significant activation of the surrounding materials. The very general nature of the calculational method and the data libraries means that it is applicable (with some reservations) to all situations (e.g. fission reactors or neutron sources) where materials are exposed to neutrons below 60 MeV. EASY can be divided into two parts: data and code development tools and user tools and data. The former are required to develop the latter, but EASY users only need to be able to use the inventory code FISPACT and be aware of the contents of the EAF library (the data source). The complete EASY package contains the FISPACT-2007 inventory code, the EAF-2003, EAF-2005, EAF-2007 and EAF-2010 libraries, and the EASY User Interface for the Window version. The activation package EASY-2010 is the result of significant development to extend the upper energy range from 20 to 60 MeV so that it is capable of being used for IFMIF calculations. The EAF-2010 library contains 66,256 reactions, almost five times more than in EAF-2003 (12,617). Deuteron-induced and proton-induced cross section libraries are also included, and can be used with EASY to enable calculations of the activation due to deuterons and proton [2].« less

  1. Neutron Assay System for Confinement Vessel Disposition

    SciTech Connect

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Valdez, Jose I.; Vigil, Georgiana M.

    2012-07-13

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the CVs. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of special nuclear material (SNM) in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le}100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements.

  2. Computed neutron coincidence counting applied to passive waste assay

    SciTech Connect

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.

    1997-11-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs.

  3. Simulation of spatial fuel assay using HANARO neutron beam

    PubMed

    Lee; Chang; Lee; Kim

    2000-10-01

    A sensitivity simulation of neutron tomography was performed for the analysis of the spatial distribution of nuclear materials in the HANARO fuel rod. The internal distribution of the nuclear materials in the fuel rod is very important for the increase of the safety and economics of fuel burnup in the reactor. The neutron radiography facility installed at HANARO will be used for the spatial fuel analysis with a real-time image processing system. Monte Carlo simulation was performed to study the feasibility and sensitivity of the HANARO neutron beam for the spatial fuel assay and to find the optimum conditions for neutron detection. From the sensitivity simulation, the location of the nuclear materials in the rod was evident as expected. PMID:11003495

  4. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  5. Neutron Activation Analysis: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    MacLellan, Ryan

    2011-04-01

    The role of neutron activation analysis in low-energy low-background experimentsis discussed in terms of comparible methods. Radiochemical neutron activation analysis is introduce. The procedure of instrumental neutron activation analysis is detailed especially with respect to the measurement of trace amounts of natural radioactivity. The determination of reactor neutron spectrum parameters required for neutron activation analysis is also presented.

  6. Neutron Activation Analysis: Techniques and Applications

    SciTech Connect

    MacLellan, Ryan

    2011-04-27

    The role of neutron activation analysis in low-energy low-background experimentsis discussed in terms of comparible methods. Radiochemical neutron activation analysis is introduce. The procedure of instrumental neutron activation analysis is detailed especially with respect to the measurement of trace amounts of natural radioactivity. The determination of reactor neutron spectrum parameters required for neutron activation analysis is also presented.

  7. Expected precision for neutron multiplicity assay using higher order moments

    SciTech Connect

    Ensslin, N.; Gavron, A.; Harker, W.C.

    1997-11-01

    This paper reports on the development of a new Figure of Merit code that can calculate the expected precision in neutron multiplicity assay using higher order moments. The code is used to provide a first look at the quadruple coincidence count rate and its expected precision. The results are good enough to warrant further study of potential applications of quadruple (quad) coincidences for large multiplying plutonium items. Also, the new code makes it possible to estimate the multiplicity assay precision if only randomly-triggered moments are used. This approach is described briefly, along with the current status of the investigation.

  8. Neutron activated switch

    DOEpatents

    Barton, David M.

    1991-01-01

    A switch for reacting quickly to a neutron emission. A rod consisting of fissionable material is located inside a vacuum tight body. An adjustable contact is located coaxially at an adjustable distance from one end of the rod. Electrical leads are connected to the rod and to the adjustable contact. With a vacuum drawn inside the body, a neutron bombardment striking the rod causes it to heat and expand longitudinally until it comes into contact with the adjustable contact. This circuit closing occurs within a period of a few microseconds.

  9. Enhanced NIF neutron activation diagnostics

    SciTech Connect

    Yeamans, C. B.; Bleuel, D. L.; Bernstein, L. A.

    2012-10-15

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the {sup 89}Zr/{sup 89m}Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  10. Enhanced NIF neutron activation diagnostics.

    PubMed

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  11. Enhanced NIF neutron activation diagnosticsa)

    NASA Astrophysics Data System (ADS)

    Yeamans, C. B.; Bleuel, D. L.; Bernstein, L. A.

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the 89Zr/89mZr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  12. TRU Waste Assay Methodology with the Combined Thermal Epithermal Neutron (CTEN) System

    SciTech Connect

    Veilleux, J. M.; Enter, J. A.

    2003-02-27

    The CTEN assay system is designed to measure plutonium bearing 208-L waste drums and make the transuranic versus low-level waste determination. The system was certified for Waste Isolation Pilot Plant operations and the Environmental Protection Agency approved the CTEN in 2002. It is the only system capable of making the transuranic/low-level waste (TRU/LLW) determination since it can routinely assay below 100 nCi/g. The system conducts a measurement by using either (or both) an active 14 MeV neutron pulse to induce fission in 239Pu and 241Pu or measures the spontaneous fission properties of 238Pu, 240Pu and 242Pu. When the coincidence neutron signal is combined with mass fraction data from a gamma system, the result is the total plutonium mass. The system's lower limit of detection is as low as 2 mg of weapons grade plutonium, making it an ideal platform to make the TRU/LLW determination. Analysis of an assay is made with visual basic application driven subroutines and Micros oft Excel spreadsheets. Input values and calculations include: the raw neutron scaler and coincidence counts; mass fraction information; plutonium mass; alpha, total and TRU activity; thermal power, 239Pu Equivalent Curies; fissile gram equivalent mass; decay heat; and uncertainties associated with each parameter. A general diagnostic analysis is performed for each assay to facilitate a technical review of the results. The results of analysis from 372 waste drums are summarized. The results indicate that modifying current operating procedures involving the use of acceptable knowledge isotope data and use of the lower detection limit could increase the number of certifiable assays from 38% to 66%.

  13. Design and operation of a passive neutron monitor for assaying the TRU content of solid wastes

    SciTech Connect

    Brodzinski, R.L.; Brown, D.P.; Rieck, H.G. Jr.; Rogers, L.A.

    1984-02-01

    A passive neutron monitor has been designed and built for determining the residual transuranic (TRU) and plutonium content of chopped leached fuel hulls and other solid wastes from spent Fast Flux Test Facility (FFTF) fuel. The system was designed to measure as little as 8 g of plutonium or 88 mg of TRU in a waste package as large as a 208-l drum which could be emitting up to 220,000 R/hr of gamma radiation. For practical purposes, maximum assay times were chosen to be 10,000 sec. The monitor consists of 96 /sup 10/BF/sub 3/ neutron sensitive proportional counting tubes each 5.08 cm in diameter and 183 cm in active length. Tables of neutron emission rates from both spontaneous fission and (..cap alpha..,n) reactions on oxygen are given for all contributing isotopes expected to be present in spent FFTF fuel. Tables of neutron yeilds from isotopic compositions predicted for various exposures and cooling times are also given. Methods of data reduction and sources, magnitude, and control of errors are discussed. Backgrounds and efficiencies have been measured and are reported. A section describing step-by-step operational procedures is included. Guidelines and procedures for quality control and troubleshooting are also given. 13 references, 15 figures, 4 tables.

  14. Neutron Activation Analysis of Water - A Review

    NASA Technical Reports Server (NTRS)

    Buchanan, John D.

    1971-01-01

    Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.

  15. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    SciTech Connect

    Chichester, D. L.; Seabury, E. H.

    2009-03-10

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  16. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    SciTech Connect

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  17. The design of a high-efficiency neutron counter for waste drums to provide optimized sensitivity for plutonium assay

    SciTech Connect

    Menlove, H.O.; Beddingfield, D.H.; Pickrell, M.M.

    1997-11-01

    An advanced passive neutron counter has been designed to improve the accuracy and sensitivity for the nondestructive assay of plutonium in scrap and waste containers. The High-Efficiency Neutron Counter (HENC) was developed under a Cooperative Research Development Agreement between the Los Alamos National Laboratory and Canberra Industries. The primary goal of the development was to produce a passive assay system for 200-L drums that has detectability limits and multiplicity counting features that are superior to previous systems. A detectability limit figure of merit (FOM) was defined that included the detector efficiency, the neutron die-away time, and the detector`s active volume and density that determine the cosmic-ray background. Monte Carlo neutron calculations were performed to determine the parameters to provide an optimum FOM. The system includes the {sup 252}Cf {open_quotes}add-a-source{close_quotes} feature to improve the accuracy as well as statistical filters to reduce the cosmic-ray spallation neutron background. The final decision gave an efficiency of 32% for plutonium with a detector {sup 3}He tube volume that is significantly smaller than for previous high-efficiency systems for 200-L drums. Because of the high efficiency of the HENC, we have incorporated neutron multiplicity counting for matrix corrections for those cases where the plutonium is localized in nonuniform hydrogenous materials. The paper describes the design and performance testing of the advanced system. 5 refs., 8 figs., 3 tabs.

  18. DNA Methyltransferase Activity Assays: Advances and Challenges

    PubMed Central

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice. PMID:26909112

  19. DNA Methyltransferase Activity Assays: Advances and Challenges.

    PubMed

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice.

  20. A combined thermal/epithermal neutron interrogation device to assay fissle materials in large containers

    SciTech Connect

    Coop, K.L.

    1989-01-01

    We used Monte Carlo techniques to investigate the neutronic properties of a device designed to interrogate large waste containers with both thermal and epithermal neutrons. The interrogating spectrum is obtained by gradually slowing down neutrons from a pulsed source. Shortly after the pulse, the neutrons are predominantly at epithermal energies, becoming completely thermalized at later times. We calculated the effects of using different moderating materials, cavity sizes, and container matrices on the interrogating flux. Such a device could detect ''lumpy'' or cadmium-shielded uranium in non-hydrogenous matrices and could provide assays of finely divided fissile materials, regardless of hydrogen content. 6 refs., 6 figs., 3 tabs.

  1. Assessing the Feasibility of Using Neutron Resonance Transmission Analysis (NRTA) for Assaying Plutonium in Spent Fuel Assemblies

    SciTech Connect

    D. L. Chichester; J. W. Sterbentz

    2012-07-01

    Neutron resonance transmission analysis (NRTA) is an active-interrogation nondestructive assay (NDA) technique capable of assaying spent nuclear fuel to determine plutonium content. Prior experimental work has definitively shown the technique capable of assaying plutonium isotope composition in spent-fuel pins to a precision of approximately 3%, with a spatial resolution of a few millimeters. As a Grand Challenge to investigate NDA options for assaying spent fuel assemblies (SFAs) in the commercial fuel cycle, Idaho National Laboratory has explored the feasibility of using NRTA to assay plutonium in a whole SFA. The goal is to achieve a Pu assay precision of 1%. The NRTA technique uses low-energy neutrons from 0.1-40 eV, at the bottom end of the actinide-resonance range, in a time-of-flight arrangement. Isotopic composition is determined by relating absorption of the incident neutrons to the macroscopic cross-section of the actinides of interest in the material, and then using this information to determine the areal density of the isotopes in the SFA. The neutrons used for NRTA are produced using a pulsed, accelerator-based neutron source. Distinguishable resonances exist for both the plutonium (239,240,241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Based on extensive modeling of the problem using Monte Carlo-based simulation codes, our preliminary results suggest that by rotating an SFA to acquire four symmetric views, sufficient neutron transmission can be achieved to assay a SFA. In this approach multiple scan information for the same pins may also be unfolded to potentially allow the determination of plutonium for sub-regions of the assembly. For a 17 ? 17 pressurized water reactor SFA, a simplistic preliminary

  2. Analysis of initial in-plant active neutron multiplicity measurements

    SciTech Connect

    Ensslin, N.; Krick, M.S.; Harker, W.C.

    1993-08-01

    This paper analyzes initial in-plant measurements made by active neutron multiplicity counting, a new technique currently under development for the assay of bulk uranium containing kilograms of {sup 235}U. The measurements were made at Savannah River and Y-12 using active well coincidence counters and prototype multiplicity electronics and software from Los Alamos. For one of the sets of highly enriched uranium samples measured to data, we improved the assay accuracy by an order-of-magnitude by adding the multiplicity analysis to the conventional coincidence analysis. This paper summarizes our results and describes areas where further work is needed.

  3. Computer-automated neutron activation analysis system

    SciTech Connect

    Minor, M.M.; Garcia, S.R.

    1983-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. 5 references.

  4. Application of neutron multiplicity counting to waste assay

    SciTech Connect

    Pickrell, M.M.; Ensslin, N.; Sharpe, T.J.

    1997-11-01

    This paper describes the use of a new figure of merit code that calculates both bias and precision for coincidence and multiplicity counting, and determines the optimum regions for each in waste assay applications. A {open_quotes}tunable multiplicity{close_quotes} approach is developed that uses a combination of coincidence and multiplicity counting to minimize the total assay error. An example is shown where multiplicity analysis is used to solve for mass, alpha, and multiplication and tunable multiplicity is shown to work well. The approach provides a method for selecting coincidence, multiplicity, or tunable multiplicity counting to give the best assay with the lowest total error over a broad spectrum of assay conditions. 9 refs., 6 figs.

  5. Reduction of bias in neutron multiplicity assay using a weighted point model

    SciTech Connect

    Geist, W. H.; Krick, M. S.; Mayo, D. R.

    2004-01-01

    Accurate assay of most common plutonium samples was the development goal for the nondestructive assay technique of neutron multiplicity counting. Over the past 20 years the technique has been proven for relatively pure oxides and small metal items. Unfortunately, the technique results in large biases when assaying large metal items. Limiting assumptions, such as unifoh multiplication, in the point model used to derive the multiplicity equations causes these biases for large dense items. A weighted point model has been developed to overcome some of the limitations in the standard point model. Weighting factors are detemiined from Monte Carlo calculations using the MCNPX code. Monte Carlo calculations give the dependence of the weighting factors on sample mass and geometry, and simulated assays using Monte Carlo give the theoretical accuracy of the weighted-point-model assay. Measured multiplicity data evaluated with both the standard and weighted point models are compared to reference values to give the experimental accuracy of the assay. Initial results show significant promise for the weighted point model in reducing or eliminating biases in the neutron multiplicity assay of metal items. The negative biases observed in the assay of plutonium metal samples are caused by variations in the neutron multiplication for neutrons originating in various locations in the sample. The bias depends on the mass and shape of the sample and depends on the amount and energy distribution of the ({alpha},n) neutrons in the sample. When the standard point model is used, this variable-multiplication bias overestimates the multiplication and alpha values of the sample, and underestimates the plutonium mass. The weighted point model potentially can provide assay accuracy of {approx}2% (1 {sigma}) for cylindrical plutonium metal samples < 4 kg with {alpha} < 1 without knowing the exact shape of the samples, provided that the ({alpha},n) source is uniformly distributed throughout the

  6. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOEpatents

    Menlove, Howard O.; Stewart, James E.

    1986-01-01

    Apparatus and method for the direct, nondestructive evaluation of the .sup.235 U nuclide content of samples containing UF.sub.6, UF.sub.4, or UO.sub.2 utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1.sigma.) for cylinders containing UF.sub.6 with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF.sub.6 takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures.

  7. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOEpatents

    Menlove, H.O.; Stewart, J.E.

    1985-02-04

    Apparatus and method for the direct, nondestructive evaluation of the /sup 235/U nuclide content of samples containing UF/sub 6/, UF/sub 4/, or UO/sub 2/ utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1sigma) for cylinders containing UF/sub 6/ with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF/sub 6/ takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures. 4 figs., 1 tab.

  8. Neutron activation analysis of a penny

    NASA Astrophysics Data System (ADS)

    Stevens, Richard E.

    2000-04-01

    Neutron activation analysis has been used for many years as an analysis tool and as an educational tool to teach students about nuclear properties. This article presents an exercise in the neutron activation analysis of a penny which, due to the simplicity of the resulting gamma-ray spectra, is appropriate for general physics classes. Students express a great deal of interest both in seeing the reactor in use as well as determining the composition of something that is familiar to them.

  9. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge

    SciTech Connect

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  10. Neutron counter based on beryllium activation

    SciTech Connect

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M.; Scholz, M.; Igielski, A.; Karpinski, L.; Pytel, K.

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  11. Neutron counter based on beryllium activation

    NASA Astrophysics Data System (ADS)

    Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.

    2014-08-01

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  12. Assay and Inhibition of Diacylglycerol Lipase Activity

    PubMed Central

    Johnston, Meghan; Bhatt, Shachi R.; Sikka, Surina; Mercier, Richard W.; West, Jay M.; Makriyannis, Alexandros; Gatley, S. John; Duclos, Richard I.

    2012-01-01

    A series of N-formyl-α-amino acid esters of β-lactone derivatives structurally related to tetrahydrolipstatin (THL) and O-3841 were synthesized that inhibit human and murine diacylglycerol lipase (DAGL) activities. New ether lipid reporter compounds were developed for an in vitro assay to efficiently screen inhibitors of 1,2-diacyl-sn-glycerol hydrolysis and related lipase activities using fluorescence resonance energy transfer (FRET). A standardized thin layer chromatography (TLC) radioassay of diacylglycerol lipase activity utilizing the labeled endogenous substrate [1″-14C]1-stearoyl-2-arachidonoyl-sn-glycerol with phosphorimaging detection was used to quantify inhibition by following formation of the initial product [1″-14C]2-arachidonoylglycerol and further hydrolysis under the assay conditions to [1-14C]arachidonic acid. PMID:22738638

  13. Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameters assay

    NASA Astrophysics Data System (ADS)

    Adeli, Ruhollah; Shirmardi, Seyed Pezhman; Ahmadi, Seyed Javad

    2016-10-01

    In this investigation, epoxy resin with a low viscosity amine-based curing agent was chosen as matrix and additives were added to epoxy resin using low speed stirring with ultrasonic waves approach. The chemical stability of resin during fabrication of composites was studied with Fourier transform infrared spectroscopy (FTIR). The effect of B4C particle size (20 and 150 μm) on neutron shielding was investigated. Besides, in order to develop the high performance composites, the effect of ATH (flame retardant) and WO3 powders (for shielding from against gamma rays) on neutron shielding property is considered. The neutron experiments were based on foil activation analysis in thermal column of Tehran Research Reactor (TRR). According to experimental data, required shield thickness (B4C, 150 μm, 3 wt%) for 80% absorption of neutron fluence was calculated about 9.8 mm. Consequently, data show thermal neutron absorption is dependent also on the size of the boron compound filler and show a significant enhancement in shielding performance when using smaller particle size of B4C filler. Furthermore, data obviously show that the neutron attenuation coefficient of reinforced composites increases to 0.345 cm-1 for B4C (20 μm, 5 wt%)/ Epoxy composite shield. As clearly data indicate, adding WO3 and ATH additive had a significant influence on the thermal neutron attenuation property and hybrid shield shows an enhancement of more than 60% in shielding performance.

  14. Neutron and proton activation measurements from Skylab

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1974-01-01

    Radioactivity induced by high-energy protons and secondary neutrons (from nuclear interactions) in various samples returned from different locations in Skylab was measured directly by gamma-ray spectroscopy measurements of decay gamma rays from the samples. Incident fluxes were derived from the activation measurements, using known nuclear cross-section. Neutron and proton flux values were found to range from 0.2 to 5 particles/sq cm-sec, depending on the energy range and location in Skylab. The thermal neutron flux was less than 0.07 neutrons/sq cm-sec. The results are useful for data analysis and planning of future high-energy astronomy experiments.

  15. Miniature Neutron-Alpha Activation Spectrometer

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar; Holloway, James Paul; He, Zhong; Goldsten, John

    2002-10-01

    We are developing a miniature neutron-alpha activation spectrometer for in-situ analysis of chem-bio samples, including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform for Mars or outer-planet missions. In the neutron-activation mode, penetrating analysis will be performed of the whole sample using a γ spectrometer and in the α-activation mode, the sample surface will be analyzed using Rutherford-backscatter and x-ray spectrometers. Novel in our approach is the development of a switchable radioactive neutron source and a small high-resolution γ detector. The detectors and electronics will benefit from remote unattended operation capabilities resulting from our NEAR XGRS heritage and recent development of a Ge γ detector for MESSENGER. Much of the technology used in this instrument can be adapted to portable or unattended terrestrial applications for detection of explosives, chemical toxins, nuclear weapons, and contraband.

  16. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    SciTech Connect

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  17. Assay of DAGLα/β Activity.

    PubMed

    Bisogno, Tiziana

    2016-01-01

    The endocannabinoid 2-arachidonoylglycerol (2-AG) exerts its physiological action by binding to and functionally activating type-1 (CB1) and type-2 (CB2) cannabinoid receptors. It is thought to be produced through the action of sn-1 selective diacylglycerol lipase (DAGL) that catalyzes 2-AG biosynthesis from sn-2-arachidonate-containing diacylglycerols. Since 2-AG biosynthetic enzymes have been identified only recently, little information on methodological approaches for measuring DAGL activity is as yet available. Here, a highly sensitive radiometric assay to measure DAGL activity by using 1-oleoyl[1-(14)C]-2-arachidonoylglycerol as the substrate is reported. All the steps needed to perform lipid extraction, fractionation by thin-layer chromatography (TLC), and quantification of radiolabeled [(14)C]-oleic acid via scintillation counting are described in detail. PMID:27245901

  18. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  19. Neutron Yield Measurements via Aluminum Activation

    SciTech Connect

    1999-12-08

    Neutron activation of aluminum may occur by several neutron capture reactions. Four such reactions are described here: {sup 27}Al + n = {sup 28}Al, {sup 27}Al(n,{alpha}){sup 24}Na, {sup 27}Al(n, 2n){sup 26}Al and {sup 27}Al(n,p){sup 27}Mg. The radioactive nuclei {sup 28}Al, {sup 24}Na, and {sup 27}Mg, which are produced via the {sup 27}Al + n = {sup 28}Al, {sup 27}Al(n,{alpha}){sup 24}Na and {sup 27}Al(n,p){sup 27}Mg neutron reactions, beta decay to excited states of {sup 28}Si, {sup 24}Mg and {sup 27}Al respectively. These excited states then emit gamma rays as the nuclei de-excite to their respective ground states.

  20. A miniaturized fibrinolytic assay for plasminogen activators

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Nachtwey, D. S.; Damron, K. L.

    1991-01-01

    This report describes a micro-clot lysis assay (MCLA) for evaluating fibrinolytic activity of plasminogen activators (PA). Fibrin clots were formed in wells of microtiter plates. Lysis of the clots by PA, indicated by change in turbidity (optical density, OD), was monitored with a microplate reader at five minutes intervals. Log-log plots of PA dilution versus endpoint, the time at which the OD value was halfway between the maximum and minimum value for each well, were linear over a broad range of PA concentrations (2-200 International units/ml). The MCLA is a modification and miniaturization of well established fibrinolytic methods. The significant practical advantages of the MCLA are that it is a simple, relatively sensitive, non-radioactive, quantitative, kinetic, fibrinolytic micro-technique which can be automated.

  1. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics. [Patient application

    DOEpatents

    Barnard, R.W.; Jensen, D.H.

    1980-11-05

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or epithermal dieaway. Various calibration factors enhance the accuracy of the measurement.

  2. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics

    DOEpatents

    Barnard, Ralston W.; Jensen, Dal H.

    1982-01-01

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or eqithermal dieaway. Various calibration factors enhance the accuracy of the measurement.

  3. Neutron Fluence Monitoring by Foil Activation at the NBSR

    SciTech Connect

    Richard M. Lindstrom

    2000-11-12

    In a reactor facility such as the National Institute of Standards and Technology Center for Neutron Research, it is occasionally necessary to measure the intensity and characteristics of neutron fields, inside and outside the reactor vessel. Design of thermal- and cold-neutron beam guides and filters, neutron activation analysis, and health physics calibrations are the most common needs. To meet these requirements, routine procedures have been developed for efficient and transparent measurements of slow neutrons.

  4. Rho family and Rap GTPase activation assays.

    PubMed

    Jennings, Richard T; Knaus, Ulla G

    2014-01-01

    The detection of Ras superfamily GTPase activity in innate immune cells is important when studying signaling events elicited by various ligands and cellular processes. The development of high-affinity probes detecting the activated, GTP-bound form of small GTPases has significantly enhanced our understanding of initiation and termination of GTPase-regulated signaling pathways. These probes are created by fusing a high-affinity GTPase-binding domain derived from a specific downstream effector protein to glutathione S-transferase (GST). Such domains bind preferentially to the GTP-bound form of the upstream Rho or Ras GTPase. Coupling these probes to beads enables extraction of the complex and subsequent quantification of the active GTP-binding protein by immunoblotting. Although effector domains that discriminate efficiently between GDP- and GTP-bound states and highly specific antibodies are not yet available for every small GTPase, analysis of certain members of the Rho and Ras GTPase family is now routinely performed. Here, we describe affinity-based pulldown assays for detection of Rho GTPase (Rac1/2, Cdc42, RhoA/B) and Rap1/2 activity in stimulated neutrophils or macrophages.

  5. Analyte detection using an active assay

    DOEpatents

    Morozov, Victor; Bailey, Charles L.; Evanskey, Melissa R.

    2010-11-02

    Analytes using an active assay may be detected by introducing an analyte solution containing a plurality of analytes to a lacquered membrane. The lacquered membrane may be a membrane having at least one surface treated with a layer of polymers. The lacquered membrane may be semi-permeable to nonanalytes. The layer of polymers may include cross-linked polymers. A plurality of probe molecules may be arrayed and immobilized on the lacquered membrane. An external force may be applied to the analyte solution to move the analytes towards the lacquered membrane. Movement may cause some or all of the analytes to bind to the lacquered membrane. In cases where probe molecules are presented, some or all of the analytes may bind to probe molecules. The direction of the external force may be reversed to remove unbound or weakly bound analytes. Bound analytes may be detected using known detection types.

  6. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited)

    NASA Astrophysics Data System (ADS)

    Yeamans, C. B.; Gharibyan, N.

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  7. Evaluation of Am-Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    NASA Astrophysics Data System (ADS)

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; Peerani, Paolo

    2016-09-01

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with (α, n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured and theoretical spectra of various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. The singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis, being dominated by scattering which is highly dependent on item placement.

  8. Evaluation of Am–Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    DOE PAGES

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; Peerani, Paolo

    2016-05-25

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with ( α,n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured spectra ofmore » various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. Finally, the singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis.« less

  9. Physical basis for prompt-neutron activation analysis

    SciTech Connect

    Chrien, R.E.

    1982-01-01

    The technique called prompt ..gamma..-ray neutron activation analysis has been applied to rapid materials analysis. The radiation following the neutron radiation capture is prompt in the sense that the nuclear decay time is on the order of 10/sup -15/ second, and thus the technique is not strictly activation, but should be called radiation neutron capture spectroscopy or neutron capture ..gamma..-ray spectroscopy. This paper reviews the following: sources and detectors, theory of radiative capture, nonstatistical capture, giant dipole resonance, fast neutron capture, and thermal neutron capture ..gamma..-ray spectra. 14 figures.

  10. Neutron Unfolding Code System for Calculating Neutron Flux Spectra from Activation Data of Dosimeter Foils.

    1982-04-30

    Version 00 As a part of the measurement and analysis plan for the Dosimetry Experiment at the "JOYO" experimental fast reactor, neutron flux spectral analysis is performed using the NEUPAC (Neutron Unfolding Code Package) code system. NEUPAC calculates the neutron flux spectra and other integral quantities from the activation data of the dosimeter foils.

  11. Status Report on the Passive Neutron Enrichment Meter (PNEM) for UF6 Cylinder Assay

    SciTech Connect

    Miller, Karen A.; Swinhoe, Martyn T.; Menlove, Howard O.; Marlow, Johnna B.

    2012-05-02

    The Passive Neutron Enrichment Meter (PNEM) is a nondestructive assay (NDA) system being developed at Los Alamos National Laboratory (LANL). It was designed to determine {sup 235}U mass and enrichment of uranium hexafluoride (UF{sub 6}) in product, feed, and tails cylinders (i.e., 30B and 48Y cylinders). These cylinders are found in the nuclear fuel cycle at uranium conversion, enrichment, and fuel fabrication facilities. The PNEM is a {sup 3}He-based neutron detection system that consists of two briefcase-sized detector pods. A photograph of the system during characterization at LANL is shown in Fig. 1. Several signatures are currently being studied to determine the most effective measurement and data reduction technique for unfolding {sup 235}U mass and enrichment. The system collects total neutron and coincidence data for both bare and cadmium-covered detector pods. The measurement concept grew out of the success of the Uranium Cylinder Assay System (UCAS), which is an operator system at Rokkasho Enrichment Plant (REP) that uses total neutron counting to determine {sup 235}U mass in UF{sub 6} cylinders. The PNEM system was designed with higher efficiency than the UCAS in order to add coincidence counting functionality for the enrichment determination. A photograph of the UCAS with a 48Y cylinder at REP is shown in Fig. 2, and the calibration measurement data for 30B product and 48Y feed and tails cylinders is shown in Fig. 3. The data was collected in a low-background environment, meaning there is very little scatter in the data. The PNEM measurement concept was first presented at the 2010 Institute of Nuclear Materials Management (INMM) Annual Meeting. The physics design and uncertainty analysis were presented at the 2010 International Atomic Energy Agency (IAEA) Safeguards Symposium, and the mechanical and electrical designs and characterization measurements were published in the ESARDA Bulletin in 2011.

  12. A Spectrophotometric Assay Optimizing Conditions for Pepsin Activity.

    ERIC Educational Resources Information Center

    Harding, Ethelynda E.; Kimsey, R. Scott

    1998-01-01

    Describes a laboratory protocol optimizing the conditions for the assay of pepsin activity using the Coomasie Blue dye binding assay of protein concentration. The dye bonds through strong, noncovalent interactions to basic and aromatic amino acid residues. (DDR)

  13. Quantitative comparisons of in vitro assays for estrogenic activities.

    PubMed Central

    Fang, H; Tong, W; Perkins, R; Soto, A M; Prechtl, N V; Sheehan, D M

    2000-01-01

    Substances that may act as estrogens show a broad chemical structural diversity. To thoroughly address the question of possible adverse estrogenic effects, reliable methods are needed to detect and identify the chemicals of these diverse structural classes. We compared three assays--in vitro estrogen receptor competitive binding assays (ER binding assays), yeast-based reporter gene assays (yeast assays), and the MCF-7 cell proliferation assay (E-SCREEN assay)--to determine their quantitative agreement in identifying structurally diverse estrogens. We examined assay performance for relative sensitivity, detection of active/inactive chemicals, and estrogen/antiestrogen activities. In this examination, we combined individual data sets in a specific, quantitative data mining exercise. Data sets for at least 29 chemicals from five laboratories were analyzed pair-wise by X-Y plots. The ER binding assay was a good predictor for the other two assay results when the antiestrogens were excluded (r(2) is 0.78 for the yeast assays and 0.85 for the E-SCREEN assays). Additionally, the examination strongly suggests that biologic information that is not apparent from any of the individual assays can be discovered by quantitative pair-wise comparisons among assays. Antiestrogens are identified as outliers in the ER binding/yeast assay, while complete antagonists are identified in the ER binding and E-SCREEN assays. Furthermore, the presence of outliers may be explained by different mechanisms that induce an endocrine response, different impurities in different batches of chemicals, different species sensitivity, or limitations of the assay techniques. Although these assays involve different levels of biologic complexity, the major conclusion is that they generally provided consistent information in quantitatively determining estrogenic activity for the five data sets examined. The results should provide guidance for expanded data mining examinations and the selection of appropriate

  14. Active and passive mode calibration of the Combined Thermal Epithermal Neutron (CTEN) system

    SciTech Connect

    Veilleux, J. M.

    2002-06-01

    The Combined Thermal/Epithermal Neutron (CTEN) non-destructive assay (NDA) system was designed to assay transuranic waste by employing an induced active neutron interrogation and/or a spontaneous passive neutron measurement. This is the second of two papers, and focuses on the passive mode, relating the net double neutron coincidence measurement to the plutonium mass via the calibration constant. National Institute of Standards and Technology (NIST) calibration standards were used and the results verified with NIST-traceable verification standards. Performance demonstration program (PDP) 'empty' 208-L matrix drum was used for the calibration. The experimentally derived calibration constant was found to be 0.0735 {+-} 0.0059 g {sup 240}Pu effective per unit response. Using this calibration constant, the Waste Isolation Pilot Plant (WIPP) criteria was satisfied with five minute waste assays in the range from 3 to 177g Pu. CTEN also participated in the PDP Cycle 8A blind assay with organic sludge and metal matrices and passed the criteria for accuracy and precision in both assay modes. The WIPP and EPA audit was completed March 1, 2002 and full certification is awaiting the closeout of one finding during the audit. With the successful closeout of the audit, the CTEN system will have shown that it can provide very fast assays (five minutes or less) of waste in the range from the minimum detection limit (about 2 mg Pu) to 177 g Pu.

  15. Passive neutron assay of heterogeneous waste drums using the segmented Add-a-Source method

    SciTech Connect

    Menlove, H.O.

    1995-07-01

    We have developed passive neutron detectors that include the Add-a-Source (AS) technique to improve the accuracy of the nondestructive assay of plutonium in large waste containers. We have improved the AS by incorporating multiple positions for the {sup 252}Cf source on the exterior of a 200-L drum. The multiple positions give a better coverage of the drum and have the effect of segmenting the matrix as a function of fill height. We have applied the multiposition AS to the assay of drums with heterogeneous matrix combinations of concrete, polyethylene, wood, paper, and metal. The measurement errors caused by the matrix significantly reduced by the AS technique and anomalous shielding material in the drum can be flagged for more detailed investigation.

  16. Use of neutron reflection method to assay nuclear materials in solutions.

    PubMed

    Mohapatra, D K; Reddy, C P

    2001-11-01

    Neutron reflection methods are used in the chemical analysis of bulk samples, especially for the determination of contents in hydrogenous solutions. In these techniques albedo is measured by measuring either the activation of a foil, or count rate from a neutron detector. In the present paper Monte Carlo simulations are performed using this method for the possibility of detecting inadvertent criticality in the reprocessing plants and also estimation of 10B in heavy water, which is used as a moderator in PHWRs. PMID:11573803

  17. Active nondestructive assay of nuclear materials: principles and applications

    SciTech Connect

    Gozani, Tsahi

    1981-01-01

    The purpose of this book is to present, coherently and comprehensively, the wealth of available but scattered information on the principles and applications of active nondestructive analysis (ANDA). Chapters are devoted to the following: background and overview; interactions of neutrons with matter; interactions of ..gamma..-rays with matter; neutron production and sources; ..gamma..-ray production and sources; effects of neutron and ..gamma..-ray transport in bulk media; signatures of neutron- and photon-induced fissions; neutron and photon detection systems and electronics; representative ANDA systems; and instrument analysis, calibration, and measurement control for ANDA. Each chapter has an introductory section describing the relationship of the topic of that chapter to ANDA. Each chapter ends with a section that summarizes the main results and conclusions of the chapter, and a reference list.

  18. Active Neutron Shielding R&D for Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Henderson, Shawn; Monroe, Jocelyn; Fisher, Peter; Dmtpc Collaboration

    2011-04-01

    Neutrons are a dangerous background to direct dark matter detection searches because they can mimic exactly the signal signature. For this reason, it is desirable to measure the neutron flux directly at underground sites where dark matter experiments are active. We have developed a liquid scintillator-based neutron detector for this purpose, which is currently underground and taking data at the Waste Isolation Pilot Plant (WIPP) in NM. Before being commissioned underground, the response of this detector to neutrons with kinetic energies from 50 MeV to 800 MeV was determined in a beam test at the Los Alamos Neutron Science Center (LANSCE) in NM. The goal of this R&D is to (i) demonstrate the feasibility of a large scale active and passive neutron shield for dark matter searches and (ii) to measure the neutron energy spectrum underground at WIPP above 50 MeV neutron kinetic energies.

  19. Development of a neutron measurement system in unified non-destructive assay for the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Seo, Hee; Park, Se-Hwan; Won, Byung-Hee; Ahn, Seong-Kyu; Shin, Hee-Sung; Na, Sang-Ho; Song, Dae-Yong; Kim, Ho-Dong; Lee, Seung Kyu

    2013-12-01

    The Korea Atomic Energy Research Institute (KAERI) has made an effort to develop pyroprocessing technology to resolve an on-going problem in Korea, i.e., the management of spent nuclear fuels. To this end, a test-bed facility for pyroprocessing, called PRIDE (PyRoprocessing Integrated inactive DEmonstration facility), is being constructed at KAERI. The main objective of PRIDE is to evaluate the performance of the unit processes, remote operation, maintenance, and proliferation resistance. In addition, integrating all unit processes into a one-step process is also one of the main goals. PRIDE can also provide a good opportunity to test safeguards instrumentations for a pyroprocessing facility such as nuclear material accounting devices, surveillance systems, radiation monitoring systems, and process monitoring systems. In the present study, a non-destructive assay (NDA) system for the testing of nuclear material accountancy of PRIDE was designed by integrating three different NDA techniques, i.e., neutron, gamma-ray, and mass measurements. The developed neutron detection module consists of 56 3He tubes and 16 AMPTEK A111 signal processing circuits. The amplifiers were matched in terms of the gain and showed good uniformity after a gain-matching procedure (%RSD=0.37%). The axial and the radial efficiency distributions within the cavity were then measured using a 252Cf neutron source and were compared with the MCNPX calculation results. The measured efficiency distributions showed excellent agreement with the calculations, which confirmed the accuracy of the MCNPX model of the system.

  20. Total body nitrogen analysis. [neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1975-01-01

    Studies of two potential in vivo neutron activation methods for determining total and partial body nitrogen in animals and humans are described. A method using the CO-11 in the expired air as a measure of nitrogen content was found to be adequate for small animals such as rats, but inadequate for human measurements due to a slow excretion rate. Studies on the method of measuring the induced N-13 in the body show that with further development, this method should be adequate for measuring muscle mass changes occurring in animals or humans during space flight.

  1. Biochemical assays on plasminogen activators and hormones from kidney sources

    NASA Technical Reports Server (NTRS)

    Barlow, Grant H.; Lewis, Marian L.; Morrison, Dennis R.

    1988-01-01

    Investigations were established for the purpose of analyzing the conditioned media from human embryonic kidney cell subpopulations separated in space by electrophoresis. This data is based on the experiments performed on STS-8 on the continuous flow electrophoresis system. The primary biological activity that was analyzed was plasminogen activator activity, but some assays for erythropoeitin and human granulocyte colony stimulating activity were also performed. It is concluded that a battery of assays are required to completely define the plasminogen activator profile of a conditioned media from cell culture. Each type of assay measures different parts of the mixture and are influenced by different parameters. The functional role of each assay is given along with an indication of which combination of assays are required to answer specific questions. With this type of information it is possible by combinations of assays with mathematical analysis to pinpoint a specific component of the system.

  2. Analysis of active neutron multiplicity data for Y-12 skull oxide samples

    SciTech Connect

    Krick, M.S.; Ensslin, N.; Ceo, R.N.; May, P.K.

    1996-09-01

    Previous work on active neutron multiplicity measurements and analyses is summarized. New active multiplicity measurements are described for samples of Y-12 skull oxide using an Active Well Coincidence Counter and MSR4 multiplicity electronics. Neutron multiplication values for the samples were determined from triples/doubles ratios. Neutron multiplication values were also obtained from Monte Carlo calculations using the MCNP code and the results compared with the experimental values. A calibration curve of AmLi source-sample coupling vs neutron multiplication was determined and used for active multiplicity assay of the skull oxides. The results are compared with those obtained from assay with the conventional calibration-curve technique, where the doubles rate is calibrated vs the {sup 235}U mass. The coupling-multiplication relationship determined for the skull oxides is compared with that determined earlier for pure high-enrichment uranium metal and pure uranium oxide. Conclusions are drawn about the application of active multiplicity techniques to uranium assay. Additional active multiplicity measurements and calculations are recommended.

  3. Neutron activation analysis of Etruscan pottery

    SciTech Connect

    Whitehead, J.; Silverman, A.; Ouellet, C.G.; Clark, D.D.; Hossain, T.Z

    1992-07-01

    Neutron activation analysis (NAA) has been widely used in archaeology for compositional analysis of pottery samples taken from sites of archaeological importance. Elemental profiles can determine the place of manufacture. At Cornell, samples from an Etruscan site near Siena, Italy, are being studied. The goal of this study is to compile a trace element concentration profile for a large number of samples. These profiles will be matched with an existing data bank in an attempt to understand the place of origin for these samples. The 500 kW TRIGA reactor at the Ward Laboratory is used to collect NAA data for these samples. Experiments were done to set a procedure for the neutron activation analysis with respect to sample preparation, selection of irradiation container, definition of activation and counting parameters and data reduction. Currently, we are able to analyze some 27 elements in samples of mass 500 mg with a single irradiation of 4 hours and two sequences of counting. Our sensitivity for many of the trace elements is better than 1 ppm by weight under the conditions chosen. In this talk, details of our procedure, including quality assurance as measured by NIST standard reference materials, will be discussed. In addition, preliminary results from data treatment using cluster analysis will be presented. (author)

  4. An Analysis Technique for Active Neutron Multiplicity Measurements Based on First Principles

    SciTech Connect

    Evans, Louise G; Goddard, Braden; Charlton, William S; Peerani, Paolo

    2012-08-13

    Passive neutron multiplicity counting is commonly used to quantify the total mass of plutonium in a sample, without prior knowledge of the sample geometry. However, passive neutron counting is less applicable to uranium measurements due to the low spontaneous fission rates of uranium. Active neutron multiplicity measurements are therefore used to determine the {sup 235}U mass in a sample. Unfortunately, there are still additional challenges to overcome for uranium measurements, such as the coupling of the active source and the uranium sample. Techniques, such as the coupling method, have been developed to help reduce the dependence of calibration curves for active measurements on uranium samples; although, they still require similar geometry known standards. An advanced active neutron multiplicity measurement method is being developed by Texas A&M University, in collaboration with Los Alamos National Laboratory (LANL) in an attempt to overcome the calibration curve requirements. This method can be used to quantify the {sup 235}U mass in a sample containing uranium without using calibration curves. Furthermore, this method is based on existing detectors and nondestructive assay (NDA) systems, such as the LANL Epithermal Neutron Multiplicity Counter (ENMC). This method uses an inexpensive boron carbide liner to shield the uranium sample from thermal and epithermal neutrons while allowing fast neutrons to reach the sample. Due to the relatively low and constant fission and absorption energy dependent cross-sections at high neutron energies for uranium isotopes, fast neutrons can penetrate the sample without significant attenuation. Fast neutron interrogation therefore creates a homogeneous fission rate in the sample, allowing for first principle methods to be used to determine the {sup 235}U mass in the sample. This paper discusses the measurement method concept and development, including measurements and simulations performed to date, as well as the potential

  5. Photon and neutron active interrogation of highly enriched uranium.

    SciTech Connect

    Myers, W. L.; Goulding, C. A.; Hollas, C. L.; Moss, C. E.

    2004-01-01

    The physics of photon and neutron active interrogation of highly enriched uranium (HEU) using the delayed neutron reinterrogation method is described in this paper. Two sets of active interrogation experiments were performed using a set of subcritical configurations of cocentric HEU metal hemishells. One set of measurements utilized a pulsed 14-MeV neutron generator as the active source. The second set of measurements utilized a linear accelerator-based bremsstrahlung photon source as an active interrogation source. The neutron responses were measured for both sets of experiments. The operational details and results for both measurement sets are described.

  6. ACTIV87: Fast Neutron Activation Cross Section File

    1993-08-01

    4. HISTORICAL BACKGROUND AND INFORMATION ACTIV87 is a compilation of fast neutron induced activation reaction cross-sections. The compilation covers energies from threshold to 20 MeV and is based on evaluated data taken from other evaluated data libraries and individual evaluations. The majority of these evaluations were performed by using available experimental data. The aforementioned available experimental data were used in the selection of needed parameters for theoretical computations and for normalizing the results of suchmore » computations. Theoretical calculations were also used for interpolation and extrapolation of experimental cross-section data. All of the evaluated data curves were compared with experimental data that had been reported over the four year period preceding 1987. Only those cross-sections not in contradiction with experimental data that was current in 1987 were retained in the activation file, ACTIV87. In cases of several conflicting evaluations, that evaluation was chosen which best corresponded to the experimental data. A few evaluated curves were renormalized in accordance with the results of the latest precision measurements. 5. APPLICATION OF THE DATA 6. SOURCE AND SCOPE OF DATA The following libraries and individual files of evaluated neutron cross-section data were used for the selection of the activation cross-sections: the BOSPOR Library, the Activation File of the Evaluated Nuclear Data Library, the Evaluated Neutron Data File (ENDF/B-V) Activation File, the International Reactor Dosimetry File (IRDF-82), and individual evaluations carried out under various IAEA research contracts. The file of selected reactions contains 206 evaluated cross-section curves of the (n,2n), (n,p) and (n,a) reactions which lead to radioactive products and may be used in many practical applications of neutron activation analysis. Some competing activation reactions, usually with low cross-section values, are given for completeness.« less

  7. Neutron activation analysis in archaeological chemistry

    SciTech Connect

    Harbottle, G.

    1987-01-01

    Neutron activation analysis has proven to be a convenient way of performing the chemical analysis of archaeologically-excavated artifacts and materials. It is fast and does not require tedious laboratory operations. It is multielement, sensitive, and can be made nondestructive. Neutron activation analysis in its instrumental form, i.e., involving no chemical separation, is ideally suited to automation and conveniently takes the first step in data flow patterns that are appropriate for many taxonomic and statistical operations. The future will doubtless see improvements in the practice of NAA in general, but in connection with archaeological science the greatest change will be the filling, interchange and widespread use of data banks based on compilations of analytical data. Since provenience-oriented data banks deal with materials (obsidian, ceramics, metals, semiprecious stones, building materials and sculptural media) that participated in trade networks, the analytical data is certain to be of interest to a rather broad group of archaeologists. It is to meet the needs of the whole archaeological community that archaeological chemistry must now turn.

  8. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  9. Utilization of the intense pulsed neutron source (IPNS) at Argonne National Laboratory for neutron activation analysis

    SciTech Connect

    Heinrich, R.R.; Greenwood, L.R.; Popek, R.J.; Schulke, A.W. Jr.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) neutron scattering facility (NSF) has been investigated for its applicability to neutron activation analysis. A polyethylene insert has been added to the vertical hole VT3 which enhances the thermal neutron flux by a factor of two. The neutron spectral distribution at this position has been measured by the multiple-foil technique which utilized 28 activation reactions and the STAYSL computer code. The validity of this spectral measurement was tested by two irradiations of National Bureau of Standards SRM-1571 (orchard leaves), SRM-1575 (pine needles), and SRM-1645 (river sediment). The average thermal neutron flux for these irradiations normalized to 10 ..mu..amp proton beam is 4.0 x 10/sup 11/ n/cm/sup 2/-s. Concentrations of nine trace elements in each of these SRMs have been determined by gamma-ray spectrometry. Agreement of measured values to certified values is demonstrated to be within experiment error.

  10. Neutron activation of NIF Final Optics Assemblies

    NASA Astrophysics Data System (ADS)

    Sitaraman, S.; Dauffy, L.; Khater, H.; Brereton, S.

    2010-08-01

    Analyses were performed to characterize the radiation field in the vicinity of the Final Optics Assemblies (FOAs) at the National Ignition Facility (NIF) due to neutron activation following Deuterium-Deuterium (DD), Tritium-Hydrogen-Deuterium (THD), and Deuterium-Tritium (DT) shots associated with different phases of the NIF operations. The activation of the structural components of the FOAs produces one of the larger sources of gamma radiation and is a key factor in determining the stay out time between shots to ensure worker protection. This study provides estimates of effective dose rates in the vicinity of a single FOA and concludes that the DD and THD targets produce acceptable dose rates within10 minutes following a shot while about 6-days of stay out time is suggested following DT shots. Studies are ongoing to determine the combined effects of multiple FOAs and other components present in the Target Bay on stay-out time and worker dose.

  11. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    SciTech Connect

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  12. Monkey Feeding Assay for Testing Emetic Activity of Staphylococcal Enterotoxin.

    PubMed

    Seo, Keun Seok

    2016-01-01

    Staphylococcal enterotoxins (SEs) are unique bacterial toxins that cause gastrointestinal toxicity as well as superantigenic activity. Since systemic administration of SEs induces superantigenic activity leading to toxic shock syndrome that may mimic enterotoxic activity of SEs such as vomiting and diarrhea, oral administration of SEs in the monkey feeding assay is considered as a standard method to evaluate emetic activity of SEs. This chapter summarizes and discusses practical considerations of the monkey feeding assay used in studies characterizing classical and newly identified SEs.

  13. Mineral exploration and soil analysis using in situ neutron activation

    USGS Publications Warehouse

    Senftle, F.E.; Hoyte, A.F.

    1966-01-01

    A feasibility study has been made to operate by remote control an unshielded portable positive-ion accelerator type neutron source to induce activities in the ground or rock by "in situ" neutron irradiation. Selective activation techniques make it possible to detect some thirty or more elements by irradiating the ground for periods of a few minutes with either 3-MeV or 14-MeV neutrons. The depth of penetration of neutrons, the effect of water content of the soil on neutron moderation, gamma ray attenuation in the soil and other problems are considered. The analysis shows that, when exploring for most elements of economic interest, the reaction 2H(d,n)3He yielding ??? 3-MeV neutrons is most practical to produce a relatively uniform flux of neutrons of less than 1 keV to a depth of 19???-20???. Irradiation with high energy neutrons (??? 14 MeV) can also be used and may be better suited for certain problems. However, due to higher background and lower sensitivity for the heavy minerals, it is not a recommended neutron source for general exploration use. Preliminary experiments have been made which indicate that neutron activation in situ is feasible for a mineral exploration or qualititative soil analysis. ?? 1976.

  14. The Impact of Gate Width Setting and Gate Utilization Factors on Plutonium Assay in Passive Correlated Neutron Counting

    DOE PAGES

    Henzlova, Daniela; Menlove, Howard Olsen; Croft, Stephen; Favalli, Andrea; Santi, Peter Angelo

    2015-06-15

    In the field of nuclear safeguards, passive neutron multiplicity counting (PNMC) is a method typically employed in non-destructive assay (NDA) of special nuclear material (SNM) for nonproliferation, verification and accountability purposes. PNMC is generally performed using a well-type thermal neutron counter and relies on the detection of correlated pairs or higher order multiplets of neutrons emitted by an assayed item. To assay SNM, a set of parameters for a given well-counter is required to link the measured multiplicity rates to the assayed item properties. Detection efficiency, die-away time, gate utilization factors (tightly connected to die-away time) as well as optimummore » gate width setting are among the key parameters. These parameters along with the underlying model assumptions directly affect the accuracy of the SNM assay. In this paper we examine the role of gate utilization factors and the single exponential die-away time assumption and their impact on the measurements for a range of plutonium materials. In addition, we examine the importance of item-optimized coincidence gate width setting as opposed to using a universal gate width value. Finally, the traditional PNMC based on multiplicity shift register electronics is extended to Feynman-type analysis and application of this approach to Pu mass assay is demonstrated.« less

  15. The Impact of Gate Width Setting and Gate Utilization Factors on Plutonium Assay in Passive Correlated Neutron Counting

    SciTech Connect

    Henzlova, Daniela; Menlove, Howard Olsen; Croft, Stephen; Favalli, Andrea; Santi, Peter Angelo

    2015-06-15

    In the field of nuclear safeguards, passive neutron multiplicity counting (PNMC) is a method typically employed in non-destructive assay (NDA) of special nuclear material (SNM) for nonproliferation, verification and accountability purposes. PNMC is generally performed using a well-type thermal neutron counter and relies on the detection of correlated pairs or higher order multiplets of neutrons emitted by an assayed item. To assay SNM, a set of parameters for a given well-counter is required to link the measured multiplicity rates to the assayed item properties. Detection efficiency, die-away time, gate utilization factors (tightly connected to die-away time) as well as optimum gate width setting are among the key parameters. These parameters along with the underlying model assumptions directly affect the accuracy of the SNM assay. In this paper we examine the role of gate utilization factors and the single exponential die-away time assumption and their impact on the measurements for a range of plutonium materials. In addition, we examine the importance of item-optimized coincidence gate width setting as opposed to using a universal gate width value. Finally, the traditional PNMC based on multiplicity shift register electronics is extended to Feynman-type analysis and application of this approach to Pu mass assay is demonstrated.

  16. Assay of nitrogenase activity in intact plant systems.

    PubMed

    Jain, M K; Vlassak, K

    1975-01-01

    Nitrogenase activity was assayed in intact system of Cichorium intybus, a non-leguminous commercially cultivated crop, Dahlia pinnata and Helianthus annus, and Taraxacum officinale, a common weed plant. The assay was made in fabricated cylinders which could accomodate pot with plants. In such kind of assay along with rhizosphere microflora, the nitrogen fixed by phyllosphere nitrogen fixing microflora could also be accounted, which otherwise was difficult to be accounted for. PMID:1211718

  17. Performance assessment of self-interrogation neutron resonance densitometry for spent nuclear fuel assay

    NASA Astrophysics Data System (ADS)

    Hu, Jianwei; Tobin, Stephen J.; LaFleur, Adrienne M.; Menlove, Howard O.; Swinhoe, Martyn T.

    2013-11-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is one of several nondestructive assay (NDA) techniques being integrated into systems to measure spent fuel as part of the Next Generation Safeguards Initiative (NGSI) Spent Fuel Project. The NGSI Spent Fuel Project is sponsored by the US Department of Energy's National Nuclear Security Administration to measure plutonium in, and detect diversion of fuel pins from, spent nuclear fuel assemblies. SINRD shows promising capability in determining the 239Pu and 235U content in spent fuel. SINRD is a relatively low-cost and lightweight instrument, and it is easy to implement in the field. The technique makes use of the passive neutron source existing in a spent fuel assembly, and it uses ratios between the count rates collected in fission chambers that are covered with different absorbing materials. These ratios are correlated to key attributes of the spent fuel assembly, such as the total mass of 239Pu and 235U. Using count rate ratios instead of absolute count rates makes SINRD less vulnerable to systematic uncertainties. Building upon the previous research, this work focuses on the underlying physics of the SINRD technique: quantifying the individual impacts on the count rate ratios of a few important nuclides using the perturbation method; examining new correlations between count rate ratio and mass quantities based on the results of the perturbation study; quantifying the impacts on the energy windows of the filtering materials that cover the fission chambers by tallying the neutron spectra before and after the neutrons go through the filters; and identifying the most important nuclides that cause cooling-time variations in the count rate ratios. The results of these studies show that 235U content has a major impact on the SINRD signal in addition to the 239Pu content. Plutonium-241 and 241Am are the two main nuclides responsible for the variation in the count rate ratio with cooling time. In short, this work

  18. Experimental neutronics tests for a neutron activation system for the European ITER TBM

    SciTech Connect

    Klix, A.; Fischer, U.; Gehre, D.; Kleizer, G.; Raj, P.; Rovni, I.; Ruecker, Tom

    2014-08-21

    We are investigating methods for neutron flux measurement in the ITER TBM. In particular we have tested sets of activation materials leading to induced gamma activities with short half-lives of the order of tens of seconds up to minutes and standard activation materials. Packages of activation foils have been irradiated with the intense neutron generator of Technical University of Dresden in a pure DT neutron field as well as in a neutronics mock-up of the European ITER HCLL TBM. An important aim was to check whether the gamma activity induced in the activation foils in these packages could be measured simultaneously. It was indeed possible to identify gamma lines of interest in gamma-ray measurements immediately after extraction from the irradiation.

  19. Assay of fissile materials using a combined thermal/epithermal neutron interrogation technique

    SciTech Connect

    Coop, K.L.; Caldwell, J.T.; Goulding, C.A. )

    1987-01-01

    The authors have developed and built a prototype device to assay fissile materials using a technique that interrogates samples with both thermal and epithermal neutrons. The technique is based on that used in the lead slowing down spectrometer. However, the device is much smaller and less expensive, with poorer energy resolution than a true lead slowing down spectrometer. It is believed that this development may be uniquely suited for the very difficult problem of determining the fissile content in nuclear waste derived from irradiated breeder reactor fuel rods. The waste is of highly variable composition, ranging from absorbed solutions to discrete Pieces several grams in size, embedded in different matrices. The nuclear material is mixed uranium/plutonium fuel of variable enrichment and burnup. While this device was developed specifically to assay remote handled waste, it may be of value for other safeguards applications. One problem in particular for which it may be useful is determining whether enriched uranium is being concealed with lead and cadmium shielding in a box or package.

  20. Neutron activation diagnostics at the National Ignition Facility (invited)

    SciTech Connect

    Bleuel, D. L.; Yeamans, C. B.; Bernstein, L. A.; Bionta, R. M.; Caggiano, J. A.; Drury, O. B.; Hagmann, C. A.; Hatarik, R.; Knittel, K. M.; McNaney, J. M.; Moran, M.; Schneider, D. H. G.; Casey, D. T.; Frenje, J. A.; Johnson, M. Gatu; Cooper, G. W.; Knauer, J. P.; Leeper, R. J.; Ruiz, C. L.

    2012-10-15

    Neutron yields are measured at the National Ignition Facility (NIF) by an extensive suite of neutron activation diagnostics. Neutrons interact with materials whose reaction cross sections threshold just below the fusion neutron production energy, providing an accurate measure of primary unscattered neutrons without contribution from lower-energy scattered neutrons. Indium samples are mounted on diagnostic instrument manipulators in the NIF target chamber, 25-50 cm from the source, to measure 2.45 MeV deuterium-deuterium fusion neutrons through the {sup 115}In(n,n'){sup 115m} In reaction. Outside the chamber, zirconium and copper are used to measure 14 MeV deuterium-tritium fusion neutrons via {sup 90}Zr(n,2n), {sup 63}Cu(n,2n), and {sup 65}Cu(n,2n) reactions. An array of 16 zirconium samples are located on port covers around the chamber to measure relative yield anisotropies, providing a global map of fuel areal density variation. Neutron yields are routinely measured with activation to an accuracy of 7% and are in excellent agreement both with each other and with neutron time-of-flight and magnetic recoil spectrometer measurements. Relative areal density anisotropies can be measured to a precision of less than 3%. These measurements reveal apparent bulk fuel velocities as high as 200 km/s in addition to large areal density variations between the pole and equator of the compressed fuel.

  1. Nanochannel-based electrochemical assay for transglutaminase activity.

    PubMed

    Fernández, Iñigo; Sánchez, Alfredo; Díez, Paula; Martínez-Ruiz, Paloma; Di Pierro, Prospero; Porta, Raffaele; Villalonga, Reynaldo; Pingarrón, José M

    2014-11-11

    A novel electrochemical assay to quantify transglutaminase activity is reported. The assay is based on the enzyme-controlled diffusion of Fe(CN)6(3-/4-) through amino-functionalized nanochannels of a mesoporous silica thin film on a Au surface in the presence of N-benzyloxycarbonyl-L-glutaminylglycine.

  2. Layered shielding design for an active neutron interrogation system

    NASA Astrophysics Data System (ADS)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  3. Active Neutron Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2009-05-01

    Portable electronic neutron generators (ENGs) may be used to interrogate suspicious items to detect, characterize, and quantify the presence fissionable material based upon the measurement of prompt and/or delayed emissions of neutrons and/or photons resulting from fission. The small size (<0.2 m3), light weight (<12 kg), and low power consumption (<50 W) of modern ENGs makes them ideally suited for use in field situations, incorporated into systems carried by 2-3 individuals under rugged conditions. At Idaho National Laboratory we are investigating techniques and portable equipment for performing active neutron interrogation of moderate sized objects less than ~2-4 m3 to detect shielded fissionable material. Our research in this area relies upon the use of pulsed deuterium-tritium ENGs and the measurement of die-away prompt fission neutrons and other neutron signatures in-between neutron pulses from the ENG and after the ENG is turned off.

  4. Improvement of non-destructive fissile mass assays in α low-level waste drums: A matrix correction method based on neutron capture gamma-rays and a neutron generator

    NASA Astrophysics Data System (ADS)

    Jallu, F.; Loche, F.

    2008-08-01

    Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low α-activity fissile masses (mainly 235U, 239Pu, 241Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating α low level waste (LLW) criterion of about 50 Bq[α] per gram of crude waste (≈50 μg Pu) in 118 l drums on the date the drums are conditioned. Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm -3) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix ( d = 0.253 g cm -3). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix. The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction method, which consists in identifying and quantifying

  5. Diced electrophoresis gel assay for screening enzymes with specified activities.

    PubMed

    Komatsu, Toru; Hanaoka, Kenjiro; Adibekian, Alexander; Yoshioka, Kentaro; Terai, Takuya; Ueno, Tasuku; Kawaguchi, Mitsuyasu; Cravatt, Benjamin F; Nagano, Tetsuo

    2013-04-24

    We have established the diced electrophoresis gel (DEG) assay as a proteome-wide screening tool to identify enzymes with activities of interest using turnover-based fluorescent substrates. The method utilizes the combination of native polyacrylamide gel electrophoresis (PAGE) with a multiwell-plate-based fluorometric assay to find protein spots with the specified activity. By developing fluorescent substrates that mimic the structure of neutrophil chemoattractants, we could identify enzymes involved in metabolic inactivation of the chemoattractants.

  6. Measuring MAP kinase activity in immune complex assays.

    PubMed

    Cherkasova, Vera A

    2006-11-01

    I present an overview of published methods for measuring mitogen activated protein (MAP) kinase activity on endogenous associated substrates, exogenously added substrates as well as determination of activation loop phosphorylation as a read-out of kinase activity in vivo. Detailed procedures for these assays are given for two MAP kinases (MAPKs) Fus3 and Kss1 and compared with other published protocols, including the protocols for Hog1 and Mpk1 MAPKs. Measuring kinase activity in immune complex assays can serve as an approach for identification of potential substrates of protein kinases as well as for detecting other kinase-associated proteins. PMID:16890454

  7. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population. PMID:26509624

  8. A dosimetry study of deuterium-deuterium neutron generator-based in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sowers, Daniel A.

    A neutron irradiation cavity for in vivo Neutron Activation Analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator which produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 x 108 +/-30% s-1. A moderator/reflector/shielding (5 cm high density polyethylene (HDPE), 5.3 cm graphite & 5.7 cm borated HDPE) assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeter (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and photon dose by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10 min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 +/- 0.8 mSv for neutron and 4.2 +/- 0.2 mSv for photon for 10 mins; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  9. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  10. DIVERSE ACTIVE WELL NEUTRON COINCIDENCE COUNTER UTILITY AT THE SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Dewberry, R; Saleem Salaymeh, S

    2007-01-08

    In this paper we describe use of the Aquila active well neutron coincidence counter for nuclear material assays of {sup 235}U in multiple analytical techniques at Savannah River Site (SRS), at the Savannah River National Laboratory (SRNL), and at Argonne West National Laboratory (AWNL). The uses include as a portable passive neutron counter for field measurements searching for evidence of {sup 252}Cf deposits and storage; as a portable active neutron counter using an external activation source for field measurements searching for trace {sup 235}U deposits and holdup; for verification measurements of U-Al reactor fuel elements; for verification measurements of uranium metal; and for verification measurements of process waste of impure uranium in a challenging cement matrix. The wide variety of uses described demonstrate utility of the technique for neutron coincidence verification measurements over the dynamic ranges of 100 g-5000 g for U metal, 200 g-1300 g for U-Al, and 8 g-35 g for process waste. In addition to demonstrating use of the instrument in both the passive and active modes, we also demonstrate its use in both the fast and thermal neutron modes.

  11. Self-shielding effects in neutron spectra measurements for neutron capture therapy by means of activation foils.

    PubMed

    Pytel, Krzysztof; Józefowicz, Krystyna; Pytel, Beatrycze; Koziel, Alina

    2004-01-01

    The design and optimisation of a neutron beam for neutron capture therapy (NCT) is accompanied by the neutron spectra measurements at the target position. The method of activation detectors was applied for the neutron spectra measurements. Epithermal neutron energy region imposes the resonance structure of activation cross sections resulting in strong self-shielding effects. The neutron self-shielding correction factor was calculated using a simple analytical model of a single absorption event. Such a procedure has been applied to individual cross sections from pointwise ENDF/B-VI library and new corrected activation cross sections were introduced to a spectra unfolding algorithm. The method has been verified experimentally both for isotropic and for parallel neutron beams. Two sets of diluted and non-diluted activation foils covered with cadmium were irradiated in the neutron field. The comparison of activation rates of diluted and non-diluted foils has demonstrated the correctness of the applied self-shielding model.

  12. Neutrons and Granite: Transport and Activation

    SciTech Connect

    Bedrossian, P J

    2004-04-13

    In typical ground materials, both energy deposition and radionuclide production by energetic neutrons vary with the incident particle energy in a non-monotonic way. We describe the overall balance of nuclear reactions involving neutrons impinging on granite to demonstrate these energy-dependencies. While granite is a useful surrogate for a broad range of soil and rock types, the incorporation of small amounts of water (hydrogen) does alter the balance of nuclear reactions.

  13. An in vivo assay for chemoattractant activity.

    PubMed

    Zetter, B R; Rasmussen, N; Brown, L

    1985-09-01

    We have devised an implantable device for the study of leukocyte chemoattraction. The device consists of a 0.25-mm thick patch of Dacron fabric coupled to a disc of ethylene vinyl acetate copolymer. Such polymers can release biologically active molecules at a constant rate for at least 18 days. Attracted cells invade and are trapped within the Dacron fabric. Upon removal from the host, the fabric patches are sectioned and stained to reveal the distribution of attracted cells. Distinct patterns of cellular accumulation can be seen for different chemoattractant molecules. These include the attraction of eosinophils by histamine, monocytes by tuftsin, and mast cells by glycyl-histidyl-lysine. Maximal accumulation of specific cell types occurs at postimplantation days 1 to 2 for neutrophils, days 3 to 5 for monocytes, and days 5 to 6 for macrophages and eosinophils. Control polymers fail to cause significant leukocyte accumulation, indicating that neither the polymer nor the Dacron fabric provokes an inflammatory response. PMID:3162062

  14. Pitfalls in the assay of carboxymethylcellulase activity. [Sclerotium rolfsii

    SciTech Connect

    Lindner, W.A.; Dennison, C.; Quicke, G.V.

    1983-02-01

    A purified endocellulase from Sclerotium rolfsii and a crude cellulase preparation from Trichoderma reesei are used to illustrate several pitfalls associated with the assay of carboxymethylcellulase activity and the subsequent attainment of linear enzyme dilution curves. It is shown that the nature of both the enzymes and the substrate make the assay unsuitable for use in the calculation of enzyme recovery and purity. (Refs. 16).

  15. Neutron activation studies and the effect of exercise on osteoporosis

    SciTech Connect

    Harrison, J.E.

    1984-01-01

    A technique is described to measure calcium content by in vivo neutron activation analysis of the trunk and upper thighs. In postmenopausal women, estrogen and calcium or fluoride reversed osteoporosis.

  16. Thermal neutron imaging in an active interrogation environment

    SciTech Connect

    Vanier,P.E.; Forman, L., and Norman, D.R.

    2009-03-10

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of xcitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  17. Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,

  18. Measurements of DT and DD neutron yields by neutron activation on TFTR

    SciTech Connect

    Barnes, C.W.; Larson, A.R.; LeMunyan, G.; Loughlin, M.J.

    1994-05-05

    A variety of elemental foils have been activated by neutron fluence from TFTR under conditions with the DT neutron yield per shot ranging from 10{sup 12} to over 10{sup 18}, and with the DT/(DD+DT) neutron ratio varying from 0.5% (from triton burnup) to unity. Linear response over this large dynamic range is obtained by reducing the mass of the foils and increasing the cooling time, all while accepting greatly improved counting statistics. Effects on background gamma-ray lines from foil-capsule-material contaminants. and the resulting lower limits on activation foil mass, have been determined. DT neutron yields from dosimetry standard reactions on aluminum, chromium, iron, nickel, zirconium, and indium are in agreement within the {plus_minus}9% (one-sigma,) accuracy of the measurements: also agreeing are yields from silicon foils using the ACTL library cross-section. While the ENDF/B-V library has too low a cross-section. Preliminary results from a variety of other threshold reactions are presented. Use of the {sup 115}In(n,n) {sup 115m}In reaction (0.42 times as sensitive to DT neutrons as DD neutrons) in conjunction with pure-DT reactions allows a determination of the DT/(DD+DT) ratio in trace tritium or low-power tritium beam experiments.

  19. In vivo neutron activation facility at Brookhaven National Laboratory

    SciTech Connect

    Ma, R.; Yasumura, Seiichi; Dilmanian, F.A.

    1997-11-01

    Seven important body elements, C, N, Ca, P, K, Na, and Cl, can be measured with great precision and accuracy in the in vivo neutron activation facilities at Brookhaven National Laboratory. The facilities include the delayed-gamma neutron activation, the prompt-gamma neutron activation, and the inelastic neutron scattering systems. In conjunction with measurements of total body water by the tritiated-water dilution method several body compartments can be defined from the contents of these elements, also with high precision. In particular, body fat mass is derived from total body carbon together with total body calcium and nitrogen; body protein mass is derived from total body nitrogen; extracellular fluid volume is derived from total body sodium and chlorine; lean body mass and body cell mass are derived from total body potassium; and, skeletal mass is derived from total body calcium. Thus, we suggest that neutron activation analysis may be valuable for calibrating some of the instruments routinely used in clinical studies of body composition. The instruments that would benefit from absolute calibration against neutron activation analysis are bioelectric impedance analysis, infrared interactance, transmission ultrasound, and dual energy x-ray/photon absorptiometry.

  20. Comparison of the luminescent ADP-Glo assay to a standard radiometric assay for measurement of protein kinase activity.

    PubMed

    Sanghera, Jasbinder; Li, Rick; Yan, Jun

    2009-12-01

    Many assay technologies have been developed and utilized to efficiently assay and screen against protein kinase targets. The radiometric assay format for assaying the protein kinase targets has been considered the "Gold Standard" format since it allows the direct readout of kinase functional activity and is a universal assay that is highly sensitive. However, the hazardous nature of the radiometric assay together with the regulatory hurdles has led to the development of alternative assay formats for assessing protein kinase activity measurements. The luminescent ADP-Glo assay has been developed as an alternative to radiometric format for assaying protein kinase targets. This assay allows the measurement of the ADP product formed during the kinase reaction. Therefore, the luminescent ADP-Glo assay is similar to the radiometric format in that it measures the direct product of the protein kinase reaction. Furthermore, since the ADP product is generated by all protein kinase reactions, this is a universal format that can be used for assaying any given protein kinase target. Analysis of data generated with multiple protein kinase targets and the luminescent ADP-Glo technology shows comparable results to the radiometric assay format. Therefore, the luminescent ADP-Glo assay is a robust new technology for evaluating catalytic function of protein kinases as well as other ATPases.

  1. Addressing Different Active Neutron Interrogation Signatures from Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2009-10-01

    In a continuing effort to examine portable methods for implementing active neutron interrogation for detecting shielded fissionable material research is underway to investigate the utility of analyzing multiple time-correlated signatures. Time correlation refers here to the existence of unique characteristics of the fission interrogation signature related to the start and end of an irradiation, as well as signatures present in between individual pulses of an irradiating source. Traditional measurement approaches in this area have typically worked to detect die-away neutrons after the end of each pulse, neutrons in between pulses related to the decay of neutron emitting fission products, or neutrons or gamma rays related to the decay of neutron emitting fission products after the end of an irradiation exposure. In this paper we discus the potential weaknesses of assessing only one signature versus multiple signatures and make the assertion that multiple complimentary and orthogonal measurements should be used to bolster the performance of active interrogation systems, helping to minimize susceptibility to the weaknesses of individual signatures on their own. Recognizing that the problem of detection is a problem of low count rates, we are exploring methods to integrate commonly used signatures with rarely used signatures to improve detection capabilities for these measurements. In this paper we will discuss initial activity in this area with this approach together with observations of some of the strengths and weaknesses of using these different signatures.

  2. Toxin activity assays, devices, methods and systems therefor

    DOEpatents

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    2016-04-05

    Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  3. A new robust kinetic assay for DAP epimerase activity.

    PubMed

    Hor, Lilian; Peverelli, Martin G; Perugini, Matthew A; Hutton, Craig A

    2013-10-01

    DAP epimerase is the penultimate enzyme in the lysine biosynthesis pathway. The most versatile assay for DAP epimerase catalytic activity employs a coupled DAP epimerase-DAP dehydrogenase enzyme system with a commercial mixture of DAP isomers as substrate. DAP dehydrogenase converts meso-DAP to THDP with concomitant reduction of NADP(+) to NADPH. We show that at high concentrations, accumulation of NADPH results in inhibition of DAPDH, resulting in spurious kinetic data. A new assay has been developed employing DAP decarboxylase that allows the reliable characterisation of DAP epimerase enzyme kinetics. PMID:23838343

  4. A calibration curve for immobilized dihydrofolate reductase activity assay.

    PubMed

    Singh, Priyanka; Morris, Holly; Tivanski, Alexei V; Kohen, Amnon

    2015-09-01

    An assay was developed for measuring the active-site concentration, activity, and thereby the catalytic turnover rate (k cat) of an immobilized dihydrofolate reductase model system (Singh et al., (2015), Anal. Biochem). This data article contains a calibration plot for the developed assay. In the calibration plot rate is plotted as a function of DHFR concentration and shows linear relationship. The concentration of immobilized enzyme was varied by using 5 different size mica chips. The dsDNA concentration was the same for all chips, assuming that the surface area of the mica chip dictates the resulting amount of bound enzyme (i.e. larger sized chip would have more bound DHFR). The activity and concentration of each chip was measured.

  5. Non-destructive assay of mechanical components using gamma-rays and thermal neutrons

    SciTech Connect

    Souza, Erica Silvani; Avelino, Mila R.

    2013-05-06

    This work presents the results obtained in the inspection of several mechanical components through neutron and gamma-ray transmission radiography. The 4.46 Multiplication-Sign 10{sup 5} n.cm{sup -2}.s{sup -1} thermal neutron flux available at the main port of the Argonauta research reactor in Instituto de Engenharia Nuclear has been used as source for the neutron radiographic imaging. The 412 keV {gamma}-ray emitted by {sup 198}Au, also produced in that reactor, has been used as interrogation agent for the gamma radiography. Imaging Plates - IP specifically designed to operate with thermal neutrons or with X-rays have been employed as detectors and storage devices for each of these radiations.

  6. Mining Chemical Activity Status from High-Throughput Screening Assays

    PubMed Central

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare. PMID:26658480

  7. A new assay system for guinea pig interferon biological activity.

    PubMed

    Yamamoto, Toshiko; Jeevan, Amminikutty; Ohishi, Kazue; Nojima, Yasuhiro; Umemori, Kiyoko; Yamamoto, Saburo; McMurray, David N

    2002-07-01

    We have developed an assay system for guinea pig interferon (IFN) based on reduction of viral cytopathic effect (CPE) in various cell lines. CPE inhibition was detected optimally in the guinea pig fibroblast cell line 104C1 infected with encephalomyocarditis virus (EMCV). The amount of biologically active guinea pig IFN was quantified by estimating viable cell numbers colorimetrically by means of a tetrazolium compound, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt (WST-1) and 1-methoxy-5-methylphenazinium methylsulfate (PMS). WST-1 color developed until stopped by the addition of sulfuric acid. This had no effect on the colorimetric assay, and the color was stable for at least 24 h. The acid also inactivated the EMCV and, thus, eliminated the viral hazard. Inhibition of CPE activity was highly correlated with the concentration of culture supernatants from BCG-vaccinated guinea pig splenocytes stimulated in vitro with tuberculin or an immunostimulatory oligoDNA. This assay detected guinea pig IFN and human IFN-alpha, but not IFN-gamma from human, mouse, rat, pig, or dog. This assay system has proved useful for the titration of guinea pig IFN, being easy to perform, free from viral hazard, relatively species specific, highly reproducible, and inexpensive.

  8. Neutron activation analysis for antimetabolites. [in food samples

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Determination of metal ion contaminants in food samples is studied. A weighed quantity of each sample was digested in a concentrated mixture of nitric, hydrochloric and perchloric acids to affect complete solution of the food products. The samples were diluted with water and the pH adjusted according to the specific analysis performed. The samples were analyzed by neutron activation analysis, polarography, and atomic absorption spectrophotometry. The solid food samples were also analyzed by neutron activation analysis for increased sensitivity and lower levels of detectability. The results are presented in tabular form.

  9. Human hair neutron activation analysis: Analysis on population level, mapping

    NASA Astrophysics Data System (ADS)

    Zhuk, L. I.; Kist, A. A.

    1999-01-01

    Neutron activation analysis is an outstanding analytical method having very wide applications in various fields. Analysis of human hair within last decades mostly based on neutron activation analysis is a very attractive illustration of the application of nuclear analytical techniques. Very interesting question is how the elemental composition differs in different areas or cities. In this connection the present paper gives average data and maps of various localities in the vicinity of drying-out Aral Sea and of various industrial cities in Central Asia.

  10. Triton burnup measurements in KSTAR using a neutron activation system

    NASA Astrophysics Data System (ADS)

    Jo, Jungmin; Cheon, MunSeong; Kim, Jun Young; Rhee, T.; Kim, Junghee; Shi, Yue-Jiang; Isobe, M.; Ogawa, K.; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-11-01

    Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a 3He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%-0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.

  11. Dehydrogenase activity of forest soils depends on the assay used

    NASA Astrophysics Data System (ADS)

    Januszek, Kazimierz; Długa, Joanna; Socha, Jarosław

    2015-01-01

    Dehydrogenases are exclusively intracellular enzymes, which play an important role in the initial stages of oxidation of soil organic matter. One of the most frequently used methods to estimate dehydrogenase activity in soil is based on the use of triphenyltetrazolium chloride as an artificial electron acceptor. The purpose of this study was to compare the activity of dehydrogenases of forest soils with varied physicochemical properties using different triphenyltetrazolium chloride assays. The determination was carried out using the original procedure by Casida et al., a modification of the procedure which involves the use of Ca(OH)2 instead of CaCO3, the Thalmann method, and the assay by Casida et al. without addition of buffer or any salt. Soil dehydrogenase activity depended on the assay used. Dehydrogenase determined by the Casida et al. method without addition of buffer or any salt correlated with the pH values of soils. The autoclaved strongly acidic samples of control soils showed high concentrations of triphenylformazan, probably due to chemical reduction of triphenyltetrazolium chloride. There is, therefore, a need for a sterilization method other than autoclaving, ie a process that results in significant changes in soil properties, thus helping to increase the chemical reduction of triphenyltetrazolium chloride.

  12. Active and passive computed tomography for nondestructive assay

    SciTech Connect

    Bernardi, R T; Camp, D E; Clard, D; Jackson, J A; Martz, H E, Decman, D J; Roberson, G P

    1998-10-28

    Traditional gamma-ray methods used to characterize nuclear waste introduce errors that are related to non-uniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by applying an active and passive tomographic technique (A&PCT) developed at the Lawrence Livermore National Laboratory (LLNL). The technique uses an external radioactive source and active tomography to map the attenuation within a waste barrel as a function of mono-energetic gamma-ray energy. Passive tomography is used to localize and identify specific radioactive waste within the same container. Reconstruction of the passive data using the attenuation maps at specific energies allows internal waste radioactivity to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste activity. LLNL and Bio-Imaging Research, Inc. have collaborated in a technology transfer effort to integrate an A&PCT assay system into a mobile waste characterization trailer. This mobile system has participated in and passed several formal DOE-sponsored performance demonstrations, tests and evaluations. The system is currently being upgraded with multiple detectors to improve throughput, automated gamma-ray analysis code to simplify the assay, and a new emission reconstruction code to improve accuracy

  13. A molecular beacon assay for measuring base excision repair activities.

    PubMed

    Maksimenko, Andrei; Ishchenko, Alexander A; Sanz, Guenhaël; Laval, Jacques; Elder, Rhoderick H; Saparbaev, Murat K

    2004-06-18

    The base excision repair (BER) pathway plays a key role in protecting the genome from endogenous DNA damage. Current methods to measure BER activities are indirect and cumbersome. Here, we introduce a direct method to assay DNA excision repair that is suitable for automation and industrial use, based on the fluorescence quenching mechanism of molecular beacons. We designed a single-stranded DNA oligonucleotide labelled with a 5'-fluorescein (F) and a 3'-Dabcyl (D) in which the fluorophore, F, is held in close proximity to the quencher, D, by the stem-loop structure design of the oligonucleotide. Following removal of the modified base or incision of the oligonucleotide, the fluorophore is separated from the quencher and fluorescence can be detected as a function of time. Several modified beacons have been used to validate the assay on both cell-free extracts and purified proteins. We have further developed the method to analyze BER in cultured cells. As described, the molecular beacon-based assay can be applied to all DNA modifications processed by DNA excision/incision repair pathways. Possible applications of the assay are discussed, including high-throughput real-time DNA repair measurements both in vitro and in living cells.

  14. BOREHOLE NEUTRON ACTIVATION: THE RARE EARTHS.

    USGS Publications Warehouse

    Mikesell, J.L.; Senftle, F.E.

    1987-01-01

    Neutron-induced borehole gamma-ray spectroscopy has been widely used as a geophysical exploration technique by the petroleum industry, but its use for mineral exploration is not as common. Nuclear methods can be applied to mineral exploration, for determining stratigraphy and bed correlations, for mapping ore deposits, and for studying mineral concentration gradients. High-resolution detectors are essential for mineral exploration, and by using them an analysis of the major element concentrations in a borehole can usually be made. A number of economically important elements can be detected at typical ore-grade concentrations using this method. Because of the application of the rare-earth elements to high-temperature superconductors, these elements are examined in detail as an example of how nuclear techniques can be applied to mineral exploration.

  15. Enzymatic assay for calmodulins based on plant NAD kinase activity

    SciTech Connect

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  16. Synthesis and Assay of SIRT1-Activating Compounds.

    PubMed

    Dai, H; Ellis, J L; Sinclair, D A; Hubbard, B P

    2016-01-01

    The NAD(+)-dependent deacetylase SIRT1 plays key roles in numerous cellular processes including DNA repair, gene transcription, cell differentiation, and metabolism. Overexpression of SIRT1 protects against a number of age-related diseases including diabetes, cancer, and Alzheimer's disease. Moreover, overexpression of SIRT1 in the murine brain extends lifespan. A number of small-molecule sirtuin-activating compounds (STACs) that increase SIRT1 activity in vitro and in cells have been developed. While the mechanism for how these compounds act on SIRT1 was once controversial, it is becoming increasingly clear that they directly interact with SIRT1 and enhance its activity through an allosteric mechanism. Here, we present detailed chemical syntheses for four STACs, each from a distinct structural class. Also, we provide a general protocol for purifying active SIRT1 enzyme and outline two complementary enzymatic assays for characterizing the effects of STACs and similar compounds on SIRT1 activity. PMID:27423864

  17. Imaging of heterogeneous materials by prompt gamma-ray neutron activation analysis

    SciTech Connect

    Staples, P.; Prettyman, T.; Lestone, J.

    1998-12-01

    The authors have used a tomographic gamma scanner (TGS) to produce tomographic prompt gamma-ray neutron activation analysis imaging (PGNAA) of heterogeneous matrices. The TGS was modified by the addition of graphite reflectors that contain isotopic neutron sources for sample interrogation. The authors are in the process of developing the analysis methodology necessary for a quantitative assay of large containers of heterogeneous material. This nondestructive analysis (NDA) technique can be used for material characterization and the determination of neutron assay correction factors. The most difficult question to be answered is the determination of the source-to-sample coupling term. To assist in the determination of the coupling term, the authors have obtained images for a range of sample that are very well characterized, such as, homogenous pseudo one-dimensional samples to three-dimensional heterogeneous samples. They then compare the measurements to MCNP calculations. For an accurate quantitative measurement, it is also necessary to determine the sample gamma-ray self attenuation at higher gamma-ray energies, namely pair production should be incorporated into the analysis codes.

  18. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    SciTech Connect

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  19. Status report of CPHS and neutron activities at Tsinghua University

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xing, Q.; Zheng, S.; Yang, Y.; Gong, H.; Xiao, Y.; Wu, H.; Guan, X.; Du, T.

    2016-11-01

    The Compact Pulsed Hadron Source (CPHS) project that was launched in September 2009 at Tsinghua University has reached a first commissioning stage in conjunction with ongoing activities to fulfill the eventual design goal of a ˜ 1013 n/s epithermal-to-cold neutron yield for education, instrumentation development, and industrial applications. Here, we report the latest progress on the commissioning and applications of 3MeV proton and neutron beam lines in the last one and half years, and the design, fabrication, engineering of the 13MeV/16kW proton accelerator system.

  20. Active helium target: Neutron scalar polarizability extraction via Compton scattering

    SciTech Connect

    Morris, Meg Hornidge, David; Annand, John; Strandberg, Bruno

    2015-12-31

    Precise measurement of the neutron scalar polarizabilities has been a lasting challenge because of the lack of a free-neutron target. Led by the University of Glasgow and the Mount Allison University groups of the A2 collaboration in Mainz, Germany, preparations have begun to test a recent theoretical model with an active helium target with the hope of determining these elusive quantities with small statistical, systematic, and model-dependent errors. Apparatus testing and background-event simulations have been carried out, with the full experiment projected to run in 2015. Once determined, these values can be applied to help understand quantum chromodynamics in the nonperturbative region.

  1. Development and testing of an active area neutron dosemeter.

    PubMed

    Brushwood, J M; Gow, J P D; Beeley, P A; Spyrou, N M

    2004-01-01

    This paper describes the design, development and testing of an active area neutron dosemeter (AAND). The classic moderator and central detector is retained but in AAND this arrangement is augmented by small thermal neutron detectors positioned within the moderating body. The outputs from these detectors are combined using an appropriately weighted linear superposition to fit both the ambient dose equivalent and the radiation weighting factor. Experimental verifications of both the modelled detector energy reponses and the overall AAND response are given. In the relatively soft D2O moderated 252Cf spectra, the AAND determined both the H*(10) and mean radiation weighting factor to better than +10%.

  2. Relative biological effectiveness of fast neutrons in a multiorgan assay for apoptosis in mouse.

    PubMed

    Lee, Hae-June; Kim, Joong-Sun; Moon, Changjong; Kim, Jong-Choon; Jo, Sung-Kee; Kim, Sung-Ho

    2008-04-01

    This study compared the effects of high linear energy transfer (LET) fast neutrons on the induction of apoptosis in several tissue types (hair follicle, intestine crypt, testis) of ICR mouse exposed to low LET 60Co gamma-rays. The changes that occurred from 0 to 24 h after exposing the mice to either 2 Gy of gamma-rays (2 Gy/min) or 0.8 Gy of neutrons (94 mGy/min, 35 MeV) were examined. The maximum frequency of apoptosis was observed at 8 or 12 h after irradiation. The mice that had received 0-8 Gy of gamma-rays or 0-1.6 Gy of neutrons were examined 8 h after irradiation. The best-fitting dose-response curves were linear-quadratic, and there was a significant relationship between the number of apoptotic cells and the dose. The stained products in the TUNEL-positive cells or bodies correlated with the typical morphologic characteristics of apoptosis observed by optical microscopy. In the follicles showing an apoptosis frequency between 2 and 14 per hair follicle, the relative biological effectiveness (RBE) of the neutrons in the small and large follicles was 2.09 +/- 0.31 and 2.15 +/- 0.18, respectively. In the intestine crypts showing an apoptosis frequency between 1 and 3 per crypt, the RBE of the neutrons was 4.03 +/- 0.06 and 3.87 +/- 0.04 in the base and total crypts, respectively. The RBE of the neutrons in the seminiferous tubule showing an apoptosis frequency between 0.5 and 2 per tubule was 5.18 +/- 0.06. The results determined the time-response relations and the RBE for fast neutron-induced apoptosis in several organs at the same time. The differences in RBE observed between the high and low LET radiation and it is believed that the difference in the DSB repair capacity in hair follicle, intestine crypt, and seminiferous tubule cells plays a role in determining the RBE of the high-LET radiation for the induced apoptotic cell formation.

  3. Fluorescence assay for evaluating microbicidal activity of hand antiseptics.

    PubMed

    Lopez-Gigosos, Rosa M; Mariscal, Alberto; Mariscal-Lopez, Eloisa; Gutierrez-Bedmar, Mario; Fernandez, Joaquin

    2015-11-01

    We developed a fluorescent β-d-glucuronidase activity (BGA)-based assay for detecting and quantifying Escherichia coli in samples to assess the biocide efficacy of hand antiseptics. The fluorescence level is proportional to the number of viable E. coli organisms present. We compared our assay results to those of the E. coli plate count method specified by the European standard for testing hygienic hand rub disinfectant products (EN1500). The plate count method requires excessive handling and materials and is not valid if the number of organisms per plate is too low or high for counting in many of the samples. We optimized the fluorescent assay based on the cleavage of 4-methylumbelliferyl-β-d-glucuronide by adding 4-nitrophenyl-β-d-glucuronide, a nonfluorogenic BGA substrate, to induce glucuronidase activity and reduce assay time. Furthermore, our method can be automated and eliminates the need for multiple dilutions. Fluorescence was temporally monitored, and the time required to reach a specific value of fluorescence was correlated with the initial number of viable E. coli organisms on the samples. There was a positive correlation (P < 0.05) with a high correlation coefficient (R(2) = 0.82) between the E. coli counts by plate count and fluorescence methods. Reported effects in fluorescent BGA were compared to the EN1500 plate count method with five hand disinfectants. We found our method more advantageous, because it was as sensitive as the EN1500 method, requires less time to complete, and is less expensive and less laborious than conventional plating techniques.

  4. Fluorescence assay for evaluating microbicidal activity of hand antiseptics.

    PubMed

    Lopez-Gigosos, Rosa M; Mariscal, Alberto; Mariscal-Lopez, Eloisa; Gutierrez-Bedmar, Mario; Fernandez, Joaquin

    2015-11-01

    We developed a fluorescent β-d-glucuronidase activity (BGA)-based assay for detecting and quantifying Escherichia coli in samples to assess the biocide efficacy of hand antiseptics. The fluorescence level is proportional to the number of viable E. coli organisms present. We compared our assay results to those of the E. coli plate count method specified by the European standard for testing hygienic hand rub disinfectant products (EN1500). The plate count method requires excessive handling and materials and is not valid if the number of organisms per plate is too low or high for counting in many of the samples. We optimized the fluorescent assay based on the cleavage of 4-methylumbelliferyl-β-d-glucuronide by adding 4-nitrophenyl-β-d-glucuronide, a nonfluorogenic BGA substrate, to induce glucuronidase activity and reduce assay time. Furthermore, our method can be automated and eliminates the need for multiple dilutions. Fluorescence was temporally monitored, and the time required to reach a specific value of fluorescence was correlated with the initial number of viable E. coli organisms on the samples. There was a positive correlation (P < 0.05) with a high correlation coefficient (R(2) = 0.82) between the E. coli counts by plate count and fluorescence methods. Reported effects in fluorescent BGA were compared to the EN1500 plate count method with five hand disinfectants. We found our method more advantageous, because it was as sensitive as the EN1500 method, requires less time to complete, and is less expensive and less laborious than conventional plating techniques. PMID:26276114

  5. Fluorescence Assay for Evaluating Microbicidal Activity of Hand Antiseptics

    PubMed Central

    Lopez-Gigosos, Rosa M.; Mariscal-Lopez, Eloisa; Gutierrez-Bedmar, Mario; Fernandez, Joaquin

    2015-01-01

    We developed a fluorescent β-d-glucuronidase activity (BGA)-based assay for detecting and quantifying Escherichia coli in samples to assess the biocide efficacy of hand antiseptics. The fluorescence level is proportional to the number of viable E. coli organisms present. We compared our assay results to those of the E. coli plate count method specified by the European standard for testing hygienic hand rub disinfectant products (EN1500). The plate count method requires excessive handling and materials and is not valid if the number of organisms per plate is too low or high for counting in many of the samples. We optimized the fluorescent assay based on the cleavage of 4-methylumbelliferyl-β-d-glucuronide by adding 4-nitrophenyl-β-d-glucuronide, a nonfluorogenic BGA substrate, to induce glucuronidase activity and reduce assay time. Furthermore, our method can be automated and eliminates the need for multiple dilutions. Fluorescence was temporally monitored, and the time required to reach a specific value of fluorescence was correlated with the initial number of viable E. coli organisms on the samples. There was a positive correlation (P < 0.05) with a high correlation coefficient (R2 = 0.82) between the E. coli counts by plate count and fluorescence methods. Reported effects in fluorescent BGA were compared to the EN1500 plate count method with five hand disinfectants. We found our method more advantageous, because it was as sensitive as the EN1500 method, requires less time to complete, and is less expensive and less laborious than conventional plating techniques. PMID:26276114

  6. BNL Activities in Advanced Neutron Source Development: Past and Present

    SciTech Connect

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  7. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    SciTech Connect

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  8. Neutron activation analysis; A sensitive test for trace elements

    SciTech Connect

    Hossain, T.Z. . Ward Lab.)

    1992-01-01

    This paper discusses neutron activation analysis (NAA), an extremely sensitive technique for determining the elemental constituents of an unknown specimen. Currently, there are some twenty-five moderate-power TRIGA reactors scattered across the United States (fourteen of them at universities), and one of their principal uses is for NAA. NAA is procedurally simple. A small amount of the material to be tested (typically between one and one hundred milligrams) is irradiated for a period that varies from a few minutes to several hours in a neutron flux of around 10{sup 12} neutrons per square centimeter per second. A tiny fraction of the nuclei present (about 10{sup {minus}8}) is transmuted by nuclear reactions into radioactive forms. Subsequently, the nuclei decay, and the energy and intensity of the gamma rays that they emit can be measured in a gamma-ray spectrometer.

  9. Prototyping an Active Neutron Veto for SuperCDMS

    SciTech Connect

    Calkins, Robert; Loer, Ben

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  10. Prototyping an active neutron veto for SuperCDMS

    SciTech Connect

    Calkins, Robert; Loer, Ben

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  11. Prototyping an active neutron veto for SuperCDMS

    NASA Astrophysics Data System (ADS)

    Calkins, Robert; Loer, Ben

    2015-08-01

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  12. Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis

    PubMed

    Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar

    2000-12-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.

  13. Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis

    PubMed

    Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar

    2000-12-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method. PMID:11077961

  14. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection.

  15. Identification of the fast and thermal neutron characteristics of transuranic waste drums

    SciTech Connect

    Storm, B.H. Jr.; Bramblett, R.L.; Hensley, C.

    1997-11-01

    Fissile and spontaneously fissioning material in transuranic waste drums can be most sensitively assayed using an active and passive neutron assay system such as the Active Passive Neutron Examination and Assay. Both the active and the passive assays are distorted by the presence of the waste matrix and containerization. For accurate assaying, this distortion must be characterized and accounted for. An External Matrix Probe technique has been developed that accomplishes this task. Correlations between in-drum neutron flux measurements and monitors in the Active Passive Neutron Examination and Assay chamber with various matrix materials provide a non-invasive means of predicting the thermal neutron flux in waste drums. Similarly, measures of the transmission of fast neutrons emitted from sources in the drum. Results obtained using the Lockheed Martin Specialty Components Active Passive Neutron Examination and Assay system are discussed. 12 figs., 1 tab.

  16. Automated conductimetric assay of human serum cholinesterase activity.

    PubMed

    Duffy, P; Wallach, J M

    1989-01-01

    Serum cholinesterase activity was determined by conductimetry using samples in the microliter range. Butyrylcholine iodide was demonstrated to be a convenient substrate for the conductimetric assay. Validation of the microassay was made by using either purified enzyme or control serum. In the range of 0-60 U/l, a linear relationship was demonstrated. Correlation with a reference spectrophotometric method was obtained with a slope of 1.18. An explanation of this value is proposed, as different hydrolysis rates were obtained with human sera, depending on the substrate used (butyrylthio- or butyryl-choline ester).

  17. Novel assay for direct fluorescent imaging of sialidase activity

    NASA Astrophysics Data System (ADS)

    Tomin, A.; Shkandina, T.; Bilyy, R.

    2011-07-01

    Here we describe a novel approach to sialidase activity estimation. Sialidases (EC 3.2.1.18, exo-α-sialidases), also known as neuraminidases, are the group of enzymes, which hydrolyze the glycoside bound between terminal sialic acid and subsequent carbohydrate residue in glycoproteins and glycolipids. Sialic acids are the group of monosaccharides with acidic properties, since they are acetylated or glycolylated derivates of neuraminic acid. Flu and some other viruses use neuraminidase activity to infect host cells. The level of sialylation was shown to be tightly connected with tumor cell invasiveness and metastatic potential, sialylation level also determines the clearance of aged or virus-infected cells. Thus, detection of sialidase activity is of primary importance for clinical diagnostics as well as life science research. The authors developed the assay for both visualization and estimation of sialidase activity in living cells. Previously known methods for sialidase activity detection required destruction of cellular material, or were low-sensitive, or provided no information on the activity localization in certain intracellular compartment. To overcome these problems, a fluorogenic neuraminidase substrate, 4-MUNA was utilized, and the method for detection of neuraminidase activity using fluorescent microscopy was proposed, it provided a high signal level and information on cellular localization of the studied enzyme. By using this approach the increase of sialidase activity on apoptotic cells was demonstrated in comparison to viable and primary necrotic cells.

  18. Synthesis, characterization, and neutron activation of holmium metallofullerenes

    SciTech Connect

    Cagle, D.W.; Thrash, T.P.; Wilson, L.J.; Alford, M.; Chibante, L.P.F.; Ehrhardt, G.J.

    1996-08-28

    Isolation of the first macroscopic quantities of endohedral holmium metallofullerenes (principally Ho@C{sub 82}, Ho{sub 2}@C{sub 82}, and Ho{sub 3}@C{sub 82} by LD-TOF mass spectrometry) has been accomplished by carbon-arc and preparative HPLC methodologies. The detailed procedure for production and isolation of the metallofullerenes includes a new technique whereby holmium-impregnated electrodes are prepared simply by soaking porous graphite rods in an ethanolic solution of Ho(NO{sub 3}){sub 3}.xH{sub 2}O. Monoisotopic {sup 165}Ho offers a unique combination of advantages for neutron-activation studies of metallofullerenes, and purified samples containing {sup 165}Ho@C{sub 82}, {sup 165}Ho{sub 2}@C{sub 82}, and {sup 165}Ho{sub 3}@C{sub 82} have been activated by high-flux neutron irradiation ({Phi} = 4 x 10{sup 13}n cm{sup -2} s{sup -1}) to generate {sup 166}Ho metallofullerenes, which undergo {beta}{sup -} decay to produce stable {sup 166}Er. Chemical workup of the irradiated samples, followed by re-irradiation, has been used to demonstrate that observed decomposition of holmium metallofullerenes is due mainly to `fast` neutron damage rather than to holmium atom nuclear recoil (E{sub max} = 200 eV). This implies that metallofullerene damage can be minimized by using neutron fluxes with the highest possible thermal component. 60 refs., 4 figs.

  19. Assaying the Kinase Activity of LRRK2 in vitro

    PubMed Central

    Lewis, Patrick A.

    2012-01-01

    Leucine Rich Repeat Kinase 2 (LRRK2) is a 2527 amino acid member of the ROCO family of proteins, possessing a complex, multidomain structure including a GTPase domain (termed ROC, for Ras of Complex proteins) and a kinase domain1. The discovery in 2004 of mutations in LRRK2 that cause Parkinson's disease (PD) resulted in LRRK2 being the focus of a huge volume of research into its normal function and how the protein goes awry in the disease state2,3. Initial investigations into the function of LRRK2 focused on its enzymatic activities4-6. Although a clear picture has yet to emerge of a consistent alteration in these due to mutations, data from a number of groups has highlighted the importance of the kinase activity of LRRK2 in cell death linked to mutations7,8. Recent publications have reported inhibitors targeting the kinase activity of LRRK2, providing a key experimental tool9-11. In light of these data, it is likely that the enzymatic properties of LRRK2 afford us an important window into the biology of this protein, although whether they are potential drug targets for Parkinson's is open to debate. A number of different approaches have been used to assay the kinase activity of LRRK2. Initially, assays were carried out using epitope tagged protein overexpressed in mammalian cell lines and immunoprecipitated, with the assays carried out using this protein immobilised on agarose beads4,5,7. Subsequently, purified recombinant fragments of LRRK2 in solution have also been used, for example a GST tagged fragment purified from insect cells containing residues 970 to 2527 of LRRK212. Recently, Daniëls et al. reported the isolation of full length LRRK2 in solution from human embryonic kidney cells, however this protein is not widely available13. In contrast, the GST fusion truncated form of LRRK2 is commercially available (from Invitrogen, see table 1 for details), and provides a convenient tool for demonstrating an assay for LRRK2 kinase activity. Several different

  20. Hormonal activity of polycyclic musks evaluated by reporter gene assay.

    PubMed

    Mori, Taiki; Iida, Mitsuru; Ishibashi, Hiroshi; Kohra, Shinya; Takao, Yuji; Takemasa, Takehiro; Arizono, Koji

    2007-01-01

    Synthetic musk fragrance compounds, such as polycyclic musks (PCMs), are a group of chemicals used extensively as personal care products, and can be found in the environment and the human body. PCMs, such as 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexa-methylcyclopenta-gamma-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyltetralin (AHTN), are known to have agonistic activities toward human estrogen receptor alpha (hERalpha) and hERbeta, and have antagonistic activity toward the human androgen receptor (hAR), as shown in several reporter gene assays. However, little is known about the interaction of PCMs with the human thyroid hormone receptor (hTR), and the hormonal effects of other PCMs except for HHCB and AHTN. In this study, we focus on the interactions of six PCMs, namely, HHCB, AHTN, 4-acetyl-1,1-dimethyl-6-tert-butyl-indan (ADBI), 6-acetyl-1,1,2,3,3,5-hexamethylindan (AHMI), 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone (DPMI), and 5-acetyl-1,1,2,6-tetramethyl-3-isopropy-lindan (ATII) with hERalpha, hAR, and hTRbeta by in vitro reporter gene assay using Chinese hamster ovary cells. All the samples were found to be agonists toward hERalpha, whereas no agonistic activities of these PCMs for hAR and hTRbeta were observed. No antagonistic activities for hERalpha and hTRbeta were observed at the concentrations tested. However, several PCMs, namely, HHCB, AHTN, ATII, ADBI, and AHMI, showed dose-dependent antagonistic activities for hAR, and the IC50 values of these compounds were estimated to be 1.0 x 10(-7), 1.5 x 10(-7), 1.4 x 10(-7), 9.8 x 10(-6), and 1.4 x 10(-7) M, respectively. The results suggest that these PCMs interact with hERalpha and hAR but have no hormonal effect on hTRbeta. This is the first report on the agonistic and antagonistic activities of ATII, ADBI, AHMI, and DPMI for hERalpha and hAR as determined by in vitro reporter gene assay using stably transfected Chinese hamster ovary cells.

  1. Automated filter paper assay for determination of cellulase activity.

    PubMed

    Decker, Stephen R; Adney, William S; Jennings, Edward; Vinzant, Todd B; Himmel, Michael E

    2003-01-01

    Recent developments in molecular breeding and directed evolution have promised great developments in industrial enzymes as demonstrated by exponential improvements in beta-lactamase and green fluorescent protein (GFP). Detection of and screening for improved enzymes are relatively easy if the target enzyme is expressible in a suitable high-throughput screening host and a clearly defined and usable screen or selection is available, as with GFP and beta-lactamase. Fungal cellulases, however, are difficult to measure and have limited expressibility in heterologous hosts. Furthermore, traditional cellulase assays are tedious and time-consuming. Multiple enzyme components, an insoluble substrate, and generally slow reaction rates have plagued cellulase researchers interested in creating cellulase mixtures with increased activities and/or enhanced biochemical properties. Although the International Union of Pure and Applied Chemists standard measure of cellulase activity, the filter paper assay (FPA), can be reproduced in most laboratories with some effort, this method has long been recognized for its complexity and susceptibility to operator error. Our current automated FPA method is based on a Cyberlabs C400 robotics deck equipped with customized incubation, reagent storage, and plate-reading capabilities that allow rapid evaluation of cellulases acting on cellulose and has a maximum throughput of 84 enzyme samples per day when performing the automated FPA.

  2. Activity-based assay for ricin-like toxins

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2007-02-06

    A method of detecting N-glycosylase activity in a sample involves incubating an oligodeoxyribonucleotide substrate containing a deoxyadenosine or deoxyuridine residue with the sample to be tested such that the N-glycosylase, if present, hydrolyzes the deoxyadenosine or deoxyuridine residue to result in an N-glycosylase product having an abasic site. A primer is annealed to the N-glycosylase product, and the primer is extended with a DNA polymerase, such as Taq DNA polymerase, that pauses at abasic sites. The resulting extension products are melted from the N-glycosylase product, allowed to form hairpins due to self-complementarity, and further extended in the presence of labeled precursors to result in labeled products. Extension products synthesized from undigested substrate as template do not result in labeled products. Thus, detection of labeled products results in detection of N-glycosylase activity. Oligodeoxyribonucleotide substrates, primer, and positive controls and a kit for N-glycosylase assay are also disclosed.

  3. Evaluation of immunostimulatory activity of Chyawanprash using in vitro assays.

    PubMed

    Madaan, Alka; Kanjilal, Satyajyoti; Gupta, Arun; Sastry, J L N; Verma, Ritu; Singh, Anu T; Jaggi, Manu

    2015-03-01

    Chyawanprash is an ayurvedic formulation used in Indian traditional medicinal system for its beneficial effect on human health. We investigated the immunostimulatory effects of Chyawanprash (CHY) using in vitro assays evaluating the secretion of cytokines such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1beta (IL-1β) and Macrophage Inflammatory Protein-1-alpha (MIP-1-α) from murine bone marrow derived Dendritic Cells (DC) which play pivotal role in immunostimulation. The effects of CHY on phagocytosis in murine macrophages (RAW264.7) and Natural Killer (NK) cell activity were also investigated. At non-cytotoxic concentrations (20-500 μg/ml), CHY enhanced the secretion of all the three cytokines from DC. CHY also stimulated both, macrophage (RAW264.7) as well as NK cell activity, in vitro. In conclusion, the data substantiates the immunoprotective role of CHY at cellular level mediated by immunostimulation in key immune cells viz. dendritic Cells, macrophages and NK cells.

  4. Neutron activation determination of iridium, gold, platinum, and silver in geologic samples

    USGS Publications Warehouse

    Millard, H.T.

    1987-01-01

    Low-level methods for the determination of iridium and other noble metals have become increasingly important in recent years due to interest in locating abundance anomalies associated with the Cretaceous and Tertiary (K-T) boundary. Typical iridium anomalies are in the range of 1 to 100 ??g/kg (ppb). Thus methods with detection limits near 0.1 ??g/kg should be adequate to detect K-T boundary anomalies. Radiochemical neutron activation analysis methods continue to be required although instrumental neutron activation analysis techniques employing elaborate gamma-counters are under development. In the procedure developed in this study samples irradiated in the epithermal neutron facility of the U. S. Geological Survey TRIGA Reactor (Denver, Colorado) are treated with a mini-fire assay technique. The iridium, gold, and silver are collected in a 1-gram metallic lead button. Primary contaminants at this stage are arsenic and antimony. These can be removed by heating the button with a mixture of sodium perioxide and sodium hydroxide. The resulting 0.2-gram lead bead is counted in a Compton suppression spectrometer. Carrier yields are determined by reirradiation of the lead beads. This procedure has been applied to the U.S.G.S. Standard Rock PCC-1 and samples from K-T boundary sites in the Western Interior of North America. ?? 1987 Akade??miai Kiado??.

  5. Assay of scrap plutonium oxide by thermal neutron multiplicity counting for IAEA verification of excess materials from nuclear weapons production

    SciTech Connect

    Stewart, J.E.; Krick, M.S.; Xiao, J.; LeMaire, R.J.; Fotin, V.; McRae, L.; Scott, D.; Westsik, G.

    1996-09-01

    The US Nonproliferation and Export Control Policy commits the US to placing under International Atomic Energy Agency (IAEA) safeguards excess nuclear materials no longer needed for the US nuclear deterrent. As of January 1,1996, the IAEA has completed Initial Physical Inventory Verification (IPIV) at the Oak Ridge Y-12 plant, the Hanford Plutonium Finishing Plant, and a plutonium storage vault at Rock Flats. Two IPIVs were performed at Hanford . This paper reports the results of thermal neutron multiplicity assay of plutonium residues during the second IPIV at Hanford. Using the Three Ring Multiplicity Counter (3RMC), measurements were performed on 69 individual cans of plutonium residues, each containing approximately 1 kg of material. Of the 69 items, 67 passed the IAEA acceptance criteria and two were selected for destructive analysis.

  6. A Fluorescence-based Assay of Phospholipid Scramblase Activity.

    PubMed

    Ploier, Birgit; Menon, Anant K

    2016-01-01

    Scramblases translocate phospholipids across the membrane bilayer bidirectionally in an ATP-independent manner. The first scramblase to be identified and biochemically verified was opsin, the apoprotein of the photoreceptor rhodopsin. Rhodopsin is a G protein-coupled receptor localized in rod photoreceptor disc membranes of the retina where it is responsible for the perception of light. Rhodopsin's scramblase activity does not depend on its ligand 11-cis-retinal, i.e., the apoprotein opsin is also active as a scramblase. Although constitutive and regulated phospholipid scrambling play an important role in cell physiology, only a few phospholipid scramblases have been identified so far besides opsin. Here we describe a fluorescence-based assay of opsin's scramblase activity. Opsin is reconstituted into large unilamellar liposomes composed of phosphatidylcholine, phosphatidylglycerol and a trace quantity of fluorescent NBD-labeled PC (1-palmitoyl-2-{6-[7-nitro-2-1,3-benzoxadiazole-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine). Scramblase activity is determined by measuring the extent to which NBD-PC molecules located in the inner leaflet of the vesicle are able to access the outer leaflet where their fluorescence is chemically eliminated by a reducing agent that cannot cross the membrane. The methods we describe have general applicability and can be used to identify and characterize scramblase activities of other membrane proteins. PMID:27684510

  7. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    SciTech Connect

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  8. Determination of indium in standard rocks by neutron activation analysis.

    PubMed

    Johansen, O; Steinnes, E

    1966-08-01

    A rapid neutron activation method for the determination of indium in rocks, based on 54 min (116m)In, is described. The method has been applied to a series of geochemical standards including granite G-1 and diabase W-1. The precision is better than +/- 5% for samples containing more than 5 x 10(-10)g indium. Good agreement with previously published values for G-1 and W-1 has been obtained.

  9. Neutron Flux Spectra Determination by Multiple Foil Activation - Iterative Method.

    1994-07-08

    Version 00 Neutron energy spectra are determined by an analysis of experimental activation detector data. As with the original CCC-112/SAND-II program, which was developed at Air Force Weapons Laboratory, this code system consists of four modules, CSTAPE, SLACTS, SLATPE, and SANDII. The first three modules pre-process the dosimetry cross sections and the trial function spectrum library. The last module, SANDII, actually performs the iterative spectrum characterization.

  10. Obsidian sources characterized by neutron-activation analysis.

    PubMed

    Gordus, A A; Wright, G A; Griffin, J B

    1968-07-26

    Concentrations of elements such as manganese, scandium, lanthanum, rubidium, samarium, barium, and zirconium in obsidian samples from different flows show ranges of 1000 percent or more, whereas the variation in element content in obsidian samples from a single flow appears to be less than 40 percent. Neutron-activation analysis of these elements, as well as of sodium and iron, provides a means of identifying the geologic source of an archeological artifact of obsidian.

  11. Determination of indium in standard rocks by neutron activation analysis.

    PubMed

    Johansen, O; Steinnes, E

    1966-08-01

    A rapid neutron activation method for the determination of indium in rocks, based on 54 min (116m)In, is described. The method has been applied to a series of geochemical standards including granite G-1 and diabase W-1. The precision is better than +/- 5% for samples containing more than 5 x 10(-10)g indium. Good agreement with previously published values for G-1 and W-1 has been obtained. PMID:18959988

  12. Cell-based flow cytometry assay to measure cytotoxic activity.

    PubMed

    Noto, Alessandra; Ngauv, Pearline; Trautmann, Lydie

    2013-12-17

    Cytolytic activity of CD8+ T cells is rarely evaluated. We describe here a new cell-based assay to measure the capacity of antigen-specific CD8+ T cells to kill CD4+ T cells loaded with their cognate peptide. Target CD4+ T cells are divided into two populations, labeled with two different concentrations of CFSE. One population is pulsed with the peptide of interest (CFSE-low) while the other remains un-pulsed (CFSE-high). Pulsed and un-pulsed CD4+ T cells are mixed at an equal ratio and incubated with an increasing number of purified CD8+ T cells. The specific killing of autologous target CD4+ T cells is analyzed by flow cytometry after coculture with CD8+ T cells containing the antigen-specific effector CD8+ T cells detected by peptide/MHCI tetramer staining. The specific lysis of target CD4+ T cells measured at different effector versus target ratios, allows for the calculation of lytic units, LU₃₀/10(6) cells. This simple and straightforward assay allows for the accurate measurement of the intrinsic capacity of CD8+ T cells to kill target CD4+ T cells.

  13. Quantitative detection of RT activity by PERT assay: feasibility and limits to a standardized screening assay for human vaccines.

    PubMed

    André, M; Morgeaux, S; Fuchs, F

    2000-06-01

    The detection of adventitious retroviruses has always been critical for assessing the safety concerns associated with viral vaccines. Assays for the enzymatic activity of reverse transcriptase (RT) are used as general methods for the detection of both known and unknown retroviruses. Several studies using newly-developed ultrasensitive PCR-based RT assays reported RT activity in viral vaccines grown in chicken cells. Here, we have assessed the performances of such a PCR-based RT assay--PERT assay--for the quantitative detection of RT activity in vaccines. Sensitivity, linearity and reproducibility of the method were studied on purified RT and viral vaccines treated to release RT from potentially contaminant retroviruses. The level of RT activity detected in chicken cell-derived vaccines was higher for live attenuated vaccines compared to inactivated ones. Contrary to other studies, RT activity was found in some mammalian cell-derived vaccines. AZT-TP sensitivity of RT activities detected in these vaccines and discrimination between retroviral and RT-like activities was further investigated. Feasibility and limits of PERT assay as a broad-spectrum retroviruses detection method in vaccines are discussed.

  14. NEUTRON ACTIVATION ANALYSIS APPLICATIONS AT THE SAVANNAH RIVER SITE USING AN ISOTOPIC NEUTRON SOURCE

    SciTech Connect

    Diprete, D; C Diprete, C; Raymond Sigg, R

    2006-08-14

    NAA using {sup 252}Cf is used to address important areas of applied interest at SRS. Sensitivity needs for many of the applications are not severe; analyses are accomplished using a 21 mg {sup 252}Cf NAA facility. Because NAA allows analysis of bulk samples, it offers strong advantages for samples in difficult-to-digest matrices when its sensitivity is sufficient. Following radiochemical separation with stable carrier addition, chemical yields for a number methods are determined by neutron activation of the stable carrier. In some of the cases where no suitable stable carriers exist, the source has been used to generate radioactive tracers to yield separations.

  15. Nondestructive assay using active and passive computed tomography

    SciTech Connect

    Roberson, G. P. ,LLNL

    1998-07-01

    The United States Department of Energy (DOE) has over 600,000 transuranic (TRU) waste drums temporarily stored at nearly 40 sites within the United States. Contents of these drums must be characterized before they are transported for permanent disposal. Traditional gamma-ray methods used to characterize nuclear waste introduce errors that are related to nonuniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by application of tomographic techniques, that measure these distributions. The Lawrence Livermore National Laboratory (LLNL) has developed two tomographic-based waste assay systems. They use external radioactive sources and tomography-protocol to map the attenuation within a waste drum as a function of mono-energetic gamma-ray energy in waste containers. Passive tomography is used to localize and identify specific radioactive waste contents within the same waste containers. Reconstruction of the passive data via the active images allows internal waste radioactivities in a drum to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste radioactivities. Calibration of both systems requires only point source measurements and are independent of matrix materials. The first system is housed at LLNL and was developed to study and validate research concepts. The second system is being developed with Bioimaging Research, Inc. (BIR) and is housed within a mobile waste characterization trailer. This system has traveled to three DOE facilities to demonstrate the active and passive computed tomography capability. Both systems have participated in and successfully passed the requirements of formal DOE-sponsored intercomparison studies. The systems have measured approximately 1 to 100 grains of plutonium within a variety of waste matrix materials. Laboratory and field results from these two systems over the past several years show that both systems

  16. Estimation of Performance of an Active Well Coincidence Counter Equipped with Boron-Coated Straw Neutron Detectors - 13401

    SciTech Connect

    Young, B.M.; Lacy, J.L.; Athanasiades, A.

    2013-07-01

    He-3, a very rare isotope of natural helium gas, has ideal properties for the detection of thermal neutrons. As such it has become the standard material for neutron detectors and sees ubiquitous use within many radiometric applications that require neutron sensitivity. Until recently, there has been a fairly abundant supply of He-3. However, with the reduction in nuclear weapons, production of tritium ceased decades ago and the stockpile has largely decayed away, reducing the available He-3 supply to a small fraction of that needed for neutron detection. A suitable and rapidly-deployable replacement technology for neutron detectors must be found. Many potential replacement technologies are under active investigation and development. One broad class of technologies utilizes B-10 as a neutron capture medium in coatings on the internal surfaces of proportional detectors. A particular implementation of this sort of technology is the boron-coated 'straw' (BCS) detectors under development by Proportional Technologies, Inc. (PTi). This technology employs a coating of B-10 enriched boron carbide (B{sub 4}C) on the inside of narrow tubes, roughly 4 mm in diameter. A neutron counter (e.g. a slab, a well counter, or a large assay counter designed to accommodate 200 liter drums) could be constructed by distributing these narrow tubes throughout the polyethylene body of the counter. One type of neutron counter that is of particular importance to safeguards applications is the Active Well Coincidence Counter (AWCC), which is a Los Alamos design that traditionally employs 42 He-3 detectors. This is a very flexible design which can accurately assay small samples of uranium- and plutonium-bearing materials. Utilizing the MCNPX code and benchmarking against measurements where possible, the standard AWCC has been redesigned to utilize the BCS technology. Particular aspects of the counter performance include the single-neutron ('singles') detection efficiency and the time constant for

  17. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  18. On the self-shielding factors in neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Trkov, A.; Žerovnik, G.; Snoj, L.; Ravnik, M.

    2009-11-01

    Whenever the sample size in neutron activation analysis cannot be made small enough, self-shielding effects need to be taken into account. When several resonance absorbers are present in the sample, resonance interference must also be considered. Estimation of the self-shielding factors by the Monte Carlo technique is too cumbersome for routine application. Various simplified approaches were compared to rigorous Monte Carlo calculations, pointing out their potential limitations. Good results are obtained using self-shielding factors calculated from evaluated nuclear data libraries and tabulated as a function of the dilution cross-section. The dilution cross-section depends on the material composition and the sample dimensions through the equivalence principle, which is well known in reactor physics. Resonance interference is calculated by solving the neutron spectrum slowing-down equation from cross-sections in 640-group representation. The MATSSF code was written for the purpose and is available on request.

  19. High-Throughput FRET Assay Yields Allosteric SERCA Activators

    PubMed Central

    Cornea, Razvan L.; Lockamy, Elizabeth L.; Gruber, Simon J.; Muretta, Joseph M.; Jin, Dongzhu; Chen, Jiqiu; Dahl, Russell; Bartfai, Tamas; Zsebo, Krisztina M.; Gillispie, Gregory D.; Thomas, David D.

    2013-01-01

    Using fluorescence resonance energy transfer (FRET), we performed a high-throughput screen (HTS) in a reconstituted membrane system, seeking compounds that reverse inhibition of sarco-/endoplasmic reticulum Ca-ATPase (SERCA) by its endogenous regulator, phospholamban (PLB). Such compounds have long been sought to correct aberrant Ca2+ regulation in heart failure. Donor-SERCA was reconstituted in phospholipid membranes with or without acceptor-PLB, and FRET was measured in a steady-state fluorescence microplate reader. A 20,000-compound library was tested in duplicate. Compounds that decreased FRET by more than three standard deviations were considered hits. From 43 primary hits (0.2%), 31 (72%) were found to be false positives upon more thorough testing. The remaining 12 hits were tested in assays of Ca-ATPase activity, and six of these activated SERCA significantly, by as much as 60%, and several also enhanced cardiomyocyte contractility. These compounds directly activated SERCA from heart and other tissues. These results validate our FRET approach and set the stage for medicinal chemistry and pre-clinical testing. We were concerned about the high rate of false positives, resulting from the low precision of steady-state fluorescence. Preliminary studies with a novel fluorescence lifetime plate reader show 20-fold higher precision. This instrument can dramatically increase the quality of future HT. PMID:22923787

  20. High-throughput FRET assay yields allosteric SERCA activators.

    PubMed

    Cornea, Razvan L; Gruber, Simon J; Lockamy, Elizabeth L; Muretta, Joseph M; Jin, Dongzhu; Chen, Jiqiu; Dahl, Russell; Bartfai, Tamas; Zsebo, Krisztina M; Gillispie, Gregory D; Thomas, David D

    2013-01-01

    Using fluorescence resonance energy transfer (FRET), we performed a high-throughput screen (HTS) in a reconstituted membrane system, seeking compounds that reverse inhibition of sarcoplasmic reticulum Ca-ATPase (SERCA) by its cardiac regulator, phospholamban (PLB). Such compounds have long been sought to correct aberrant Ca(2+) regulation in heart failure. Donor-SERCA was reconstituted in phospholipid membranes with or without acceptor-PLB, and FRET was measured in a steady-state fluorescence microplate reader. A 20 000-compound library was tested in duplicate. Compounds that decreased FRET by more than three standard deviations were considered hits. From 43 hits (0.2%), 31 (72%) were found to be false-positives upon more thorough FRET testing. The remaining 12 hits were tested in assays of Ca-ATPase activity, and six of these activated SERCA significantly, by as much as 60%, and several also enhanced cardiomyocyte contractility. These compounds directly activated SERCA from heart and other tissues. These results validate our FRET approach and set the stage for medicinal chemistry and preclinical testing. We were concerned about the high rate of false-positives, resulting from the low precision of steady-state fluorescence. Preliminary studies with a novel fluorescence lifetime plate reader show 20-fold higher precision. This instrument can dramatically increase the quality of future HTS.

  1. Characterization of hydrogen in concrete by cold neutron prompt gamma-ray activation analysis and neutron incoherent scattering

    SciTech Connect

    Paul, R.L.; Chen-Mayer, H.H.; Lindstrom, R.M.; Blaauw, M.

    2000-07-01

    A combination of cold neutron prompt gamma-ray activation analysis (PGAA) and neutron incoherent scattering (NIS) has been used for nondestructive characterization of hydrogen as a function of position in slabs of wet concrete of different composition. Hydrogen was determined by PGAA by scanning each sample across of 5 mm diameter neutron beam in 10 mm increments, and measuring the 2223 keV prompt gamma ray. NIS measurements were performed by scanning the samples across a 5 mm diameter neutron beam at 5 mm increments and detecting scattered neutrons. The measurements demonstrate the feasibility of the techniques for 2D compositional mapping of hydrogen and other elements in materials, and indicate the potential of these methods for monitoring the uniformity of drying concrete.

  2. Measurements of neutrons at JET by means of the activation methods

    NASA Astrophysics Data System (ADS)

    Prokopowicz, R.; Bienkowska, B.; Drozdowicz, K.; Jednorog, S.; Kowalska-Strzeciwilk, E.; Murari, A.; Popovichev, S.; Pytel, K.; Scholz, M.; Szydlowski, A.; Syme, B.; Tracz, G.; JET-EFDA Contributors

    2011-05-01

    The neutron diagnostics in tokamaks like Joint European Torus (JET) are essential in estimating fusion power. The neutron activation method, supported by neutron transport calculations, is particularly useful for the evaluation of the total neutron yield from a single plasma discharge. This paper presents the results of activation experiments and calculations carried out for JET plasmas, from the selection of the activation materials to their irradiations in the neutron field of JET discharges. Neutron transport calculations were performed, leading to activation coefficients for new materials. The results of the calculations were used to design new composite samples to obtain information on both the yield and the neutron spectrum. The neutron measurements using these new activation materials were performed during the last JET experimental campaigns. The results are compared with neutron transport calculations. Additionally, application of the cadmium difference method allows revelation of the part of thermal neutrons near the tokamak first wall. The advantages of new activation materials and benchmarking the activation method against neutron transport calculations are also discussed.

  3. Immunomodulatory assays to study structure-activity relationships of thalidomide.

    PubMed

    Shannon, E J; Morales, M J; Sandoval, F

    1997-01-01

    Thalidomide, which has a long history of tragedy because of its ability to cause severe birth defects, is very effective in alleviating erythema nodosum leprosum in leprosy patients and aphthous ulcers in AIDS patients. The causes of these inflammatory diseases and the mechanism by which thalidomide diminishes them are unknown. It has been suggested that modulation of the immune response plays an important role. We found that thalidomide exerts immunomodulatory activity in three bioassays. It suppresses an IgM plaque forming cell response in mice injected with sheep erythrocytes: it inhibits TNF-alpha production by LPS stimulated human mononuclear cells: and it enhances IL-2 production by Con-A stimulated human mononuclear cells. We employed these bioassays to compare the activity of 15 analogs of thalidomide with thalidomide itself. Eight of the compounds were derivatives of the glutarimide moiety of thalidomide and the others were phthalimide or derivatives of the phthalimide moiety of thalidomide. N-hydroxyphthalimide, a simple derivative of phthalimide, was more effective than thalidomide and was also the most effective of the compounds assayed in suppressing the IgM plaque and TNF-alpha responses, but it did not enhance the IL-2 response, instead, it significantly suppressed it.

  4. GTP-specific fab fragment-based GTPase activity assay.

    PubMed

    Kopra, Kari; Rozwandowicz-Jansen, Anita; Syrjänpää, Markku; Blaževitš, Olga; Ligabue, Alessio; Veltel, Stefan; Lamminmäki, Urpo; Abankwa, Daniel; Härmä, Harri

    2015-03-17

    GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.

  5. Mutagenic activity of isoxazolylnaphthoquinoneimines assayed by micronucleus bone marrow test.

    PubMed

    Sicardi, S M; Ferrato, E

    1995-05-01

    Studies were undertaken to evaluate the ability of various quinoneimines to induce micronuclei in bone marrow cells as a measure of their genotoxicity. Accordingly, 2-hydroxy-N-(3,4-dimethyl-5-isoxazolyl)-1,4-naphthoquinone-4-imine (I), its 2-acetyl derivative (II) and 2-[(5-methyl-3-isoxazolyl)amino]-N-(5-methyl-3-isoxazolyl)-1 ,4- naphthoquinone-4-imine (III), as well as two of their precursors, 2-hydroxynaphthoquinone (NQ-2-OH) and 3,4-dimethyl-5-aminoisoxazole (DMAI) were given by intraperitoneal injection at 5, 50, 100 and 200 mg/Kg doses to S.J.L. Swiss mice with 24 h sampling time. Compounds I and II displayed highly significant differences at 50, 100 and 200 mg/kg doses (p < 0.01) and their mutagenic dose response curves correlated closely with an inverted U-shaped form whose interpretation is still the subject of controversy. NQ-2-OH only produced a significant increase in micronucleus frequency at 50 mg/kg, whereas no mutagenic activity was found for compound III and DMAI at the doses assayed. At 50 mg/kg the order of relative mutagenic potencies was I > II > NQ-2-OH. Mechanisms advanced to explain loss of drug activity at high doses include capture saturation, enzymatic induction during metabolism and participation of an independent defense system. PMID:7753107

  6. Coincidence Prompt Gamma-Ray Neutron Activation Analysis

    SciTech Connect

    R.P. gandner; C.W. Mayo; W.A. Metwally; W. Zhang; W. Guo; A. Shehata

    2002-11-10

    The normal prompt gamma-ray neutron activation analysis for either bulk or small beam samples inherently has a small signal-to-noise (S/N) ratio due primarily to the neutron source being present while the sample signal is being obtained. Coincidence counting offers the possibility of greatly reducing or eliminating the noise generated by the neutron source. The present report presents our results to date on implementing the coincidence counting PGNAA approach. We conclude that coincidence PGNAA yields: (1) a larger signal-to-noise (S/N) ratio, (2) more information (and therefore better accuracy) from essentially the same experiment when sophisticated coincidence electronics are used that can yield singles and coincidences simultaneously, and (3) a reduced (one or two orders of magnitude) signal from essentially the same experiment. In future work we will concentrate on: (1) modifying the existing CEARPGS Monte Carlo code to incorporate coincidence counting, (2) obtaining coincidence schemes for 18 or 20 of the common elements in coal and cement, and (3) optimizing the design of a PGNAA coincidence system for the bulk analysis of coal.

  7. RADSAT Benchmarks for Prompt Gamma Neutron Activation Analysis Measurements

    SciTech Connect

    Burns, Kimberly A.; Gesh, Christopher J.

    2011-07-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. High-resolution gamma-ray spectrometers are used in these applications to measure the spectrum of the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used simulation tool for this type of problem, but computational times can be prohibitively long. This work explores the use of multi-group deterministic methods for the simulation of coupled neutron-photon problems. The main purpose of this work is to benchmark several problems modeled with RADSAT and MCNP to experimental data. Additionally, the cross section libraries for RADSAT are updated to include ENDF/B-VII cross sections. Preliminary findings show promising results when compared to MCNP and experimental data, but also areas where additional inquiry and testing are needed. The potential benefits and shortcomings of the multi-group-based approach are discussed in terms of accuracy and computational efficiency.

  8. A militarily fielded thermal neutron activation sensor for landmine detection

    NASA Astrophysics Data System (ADS)

    Clifford, E. T. H.; McFee, J. E.; Ing, H.; Andrews, H. R.; Tennant, D.; Harper, E.; Faust, A. A.

    2007-08-01

    The Canadian Department of National Defence has developed a teleoperated, vehicle-mounted, multi-sensor system to detect anti-tank landmines on roads and tracks in peacekeeping operations. A key part of the system is a thermal neutron activation (TNA) sensor which is placed above a suspect location to within a 30 cm radius and confirms the presence of explosives via detection of the 10.835 MeV gamma ray associated with thermal neutron capture on 14N. The TNA uses a 100 μg252Cf neutron source surrounded by four 7.62 cm×7.62 cm NaI(Tl) detectors. The system, consisting of the TNA sensor head, including source, detectors and shielding, the high-rate, fast pulse processing electronics and the data processing methodology are described. Results of experiments to characterize detection performance are also described. The experiments have shown that anti-tank mines buried 10 cm or less can be detected in roughly a minute or less, but deeper mines and mines significantly displaced horizontally take considerably longer time. Mines as deep as 30 cm can be detected for long count times (1000 s). Four TNA detectors are now in service with the Canadian Forces as part of the four multi-sensor systems, making it the first militarily fielded TNA sensor and the first militarily fielded confirmation sensor for landmines. The ability to function well in adverse climatic conditions has been demonstrated, both in trials and operations.

  9. W-026, acceptance test report imaging passive/active neutron(IPAN) (submittal {number_sign}54.3 - C3)

    SciTech Connect

    Watson, T.L.

    1997-02-21

    In the Spring of 1996, Site Acceptance Tests were performed for the 2 Imaging Passive/Active Neutron (IPAN) assay systems installed in the WRAP I Facility. This report includes the test documentation and the completed test checklists, with comments and resolutions. All testing was completed, with comments resolved by August 1996.

  10. Neutron and gamma-ray nondestructive examination of contact-handled transuranic waste at the ORNL TRU Waste Drum Assay Facility

    SciTech Connect

    Schultz, F.J.; Coffey, D.E.; Norris, L.B.; Haff, K.W.

    1985-03-01

    A nondestructive assay system, which includes the Neutron Assay System (NAS) and the Segmented Gamma Scanner (SGS), for the quantification of contact-handled (<200 mrem/h total radiation dose rate at contact with container) transuranic elements (CH-TRU) in bulk solid waste contained in 208-L and 114-L drums has been in operation at the Oak Ridge National Laboratory since April 1982. The NAS has been developed and demonstrated by Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) for use by most US Department of Energy Defense Plant (DOE-DP) sites. More research and development is required, however, before the NAS can provide complete assay results for other than routine defense waste. To date, 525 ORNL waste drums have been assayed, with varying degrees of success. The isotopic complexity of the ORNL waste creates a correspondingly complex assay problem. The NAS and SGS assay data are presented and discussed. Neutron matrix effects, the destructive examination facility, and enriched uranium fuel-element assays are also discussed.

  11. Neutron activation analysis of an Egyptian monazite ore sample

    NASA Astrophysics Data System (ADS)

    Eissa, E. A.; Rofail, N. B.; Ashmawy, L. S.; Hassan, A. M.

    1999-01-01

    The absolute sensitivity of a gamma-ray line following thermal or epithermal neutron activation is expressed as a product of four terms, namely, the intrinsic, irradiation, decay and measurement factors. The total absolute sensitivity is the sum of the absolute sensitivities due to thermal and epithermal activation. A. FORTRAN computer program was prepared on the TANDY 3000 NL PCA to calculate the total absolute sensitivity of the intensive gamma-ray lines from the thermal and epithermal neutron activation of all the naturally occurring nuclides. Another program was prepared for the determination of the total absolute sensitivity for gammarays emitted by radioactive daughters such as233Pa from233Th and239Np from239U. Long time irradiation periods (about 48 hours) for specimens of the monazite ore sample were carried out at the (ET-RR-1) reactor core periphery. The monazite ore sample was separated from the associating minerals in the sand of Abou-Khashaba of Rashied (Rosetta) area on the Mediterranean (North of Egypt). The separated monazite ore sample was provided by the Nuclear Material Authority of Egypt. The cadmium difference method was applied to thin gold foils for absolute thermal and epithermal neutron flux determination. The gamma-ray spectra were measured using a spectrometer with a HPGe coaxial detector. The evaluated absolute sensitivity tables were helpful in identifying the radioisotopes contributing to the gamma- ray spectra and in evaluating the elemental concentration of the monazite constitutents. Most of the rare earth elements were observed and their concentrations are reported. La, Ce, Nd, Sd and Th were found as major elements, U, Tb, Hf and Eu as minor elements.

  12. Neutron distribution and induced activity inside a Linac treatment room.

    PubMed

    Juste, B; Miró, R; Verdú, G; Díez, S; Campayo, J M

    2015-01-01

    Induced radioactivity and photoneutron contamination inside a radiation therapy bunker of a medical linear accelerator (Linac) is investigated in this work. The Linac studied is an Elekta Precise electron accelerator which maximum treatment photon energy is 15 MeV. This energy exceeds the photonuclear reaction threshold (around 7 MeV for high atomic number metals). The Monte Carlo code MCNP6 has been used for quantifying the neutron contamination inside the treatment room for different gantry rotation configuration. Walls activation processes have also been simulated. The approach described in this paper is useful to prevent the overexposure of patients and medical staff. PMID:26737878

  13. Neutron Activation Analysis and Product Isotope Inventory Code System.

    1990-10-31

    Version 00 NAC was designed to predict the neutron-induced gamma-ray radioactivity for a wide variety of composite materials. The NAC output includes the input data, a list of all reactions for each constituent element, and the end-of-irradiation disintegration rates for each reaction. NAC also compiles a product isotope inventory containing the isotope name, the disintegration rate, the gamma-ray source strength, and the absorbed dose rate at 1 meter from an unshielded point source. The inducedmore » activity is calculated as a function of irradiation and decay times; the effect of cyclic irradiation can also be calculated.« less

  14. Nondestructive assay of fission products in spent-fuel assemblies using gamma and photoneutron activation

    NASA Astrophysics Data System (ADS)

    Lakosi, L.; Veres, Á.

    1990-12-01

    Hard γ-radiation (above 1.078 MeV) from spent reactor fuel was detected by means of excitation of 115In to its 4.5 h half-life metastable state induced by the (γ, γ') reaction and subsequent counting of the 336 keV isomeric transition. Resonance-energy quanta were produced by Compton scattering in the source, i.e. the spent fuel itself. The sensitivity of the activation method above 1.67 MeV γ-energy was enhanced by introducing a Be photoneutron converter in order to produce neutrons for exploiting their much larger activation cross sections. For short cooling times (10-40 d) the hard-γ signature of the fuel was due to the fission product 140Ba 140La, detection of which facilitated monitoring of the reactor power which existed in the core just before reactor shutdown. A linear relationship was found between the γ-signal and the fissile content in the fuel. For 100-1000 d cooled fuel the 144Ce 144Pr content could be detected, which was only sensitive to the cooling time. Spent-fuel assemblies of both a research and a power reactor were assayed by these novel methods for reactor operational and nuclear-material safeguard purposes.

  15. Antioxidant activity of puha (Sonchus oleraceus L.) as assessed by the cellular antioxidant activity (CAA) assay.

    PubMed

    McDowell, Arlene; Thompson, Scott; Stark, Mirjam; Ou, Zong-Quan; Gould, Kevin S

    2011-12-01

    There is considerable interest in antioxidant dietary components that can be protective against degenerative diseases in humans. Puha (Sonchus oleraceus L.) is a rich source of polyphenols, and exhibits strong antioxidant activity as measured by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. However, the potential of puha to protect against degenerative diseases requires that low molecular weight antioxidants (LMWA) are absorbed by, and active in, human cells. The cellular antioxidant activity (CAA) assay was used to investigate the antioxidant activity of puha leaf extracts. Preparation methods of freezing and freeze-drying reduced the total polyphenolic content compared with fresh puha, but did not affect the LMWA potential as determined by the DPPH assay. The IC(50) values were 0.012 ± 0.003 mg/mL and 0.010 ± 0.005 mg/mL for freeze-dried and fresh puha leaves, respectively. Using the CAA assay, it was shown that LMWAs from foliar extracts of puha were effectively absorbed into HepG2 cells, and exerted antioxidant activity at levels comparable to those of extracts from blueberry fruits, the much-touted antioxidant superfood. Methylene blue staining of HepG2 cells indicated that puha extracts were not cytotoxic at concentrations below 100 mg DW/mL. The data indicate the potential of puha as a nutraceutical supplement for human health.

  16. Activation of cobalt by neutrons from the Hiroshima bomb

    SciTech Connect

    Kerr, G.D.; Dyer, F.F.; Emery, J.F.; Pace, J.V. III ); Brodzinski, R.L. ); Marcum, J. )

    1990-02-01

    A study has been completed of cobalt activation in samples from two new locations in Hiroshima. The samples consisted of a piece of steel from a bridge located at a distance of about 1300 m from the hypocenter and pieces of both steel and concrete from a building located at approximately 700 m. The concrete was analyzed to obtain information needed to calculate the cobalt activation in the two steel samples. Close agreement was found between calculated and measured values for cobalt activation of the steel sample from the building at 700 m. It was found, however, that the measured values for the bridge sample at 1300 m were approximately twice the calculated values. Thus, the new results confirm the existence of a systematic error in the transport calculations for neutrons from the Hiroshima bomb. 52 refs., 32 figs., 16 tabs.

  17. Evaluation of the genotoxic effects of the boron neutron capture reaction in human melanoma cells using the cytokinesis block micronucleus assay.

    PubMed

    Oliveira, N G; Castro, M; Rodrigues, A S; Gonçalves, I C; Cassapo, R; Fernandes, A P; Chaveca, T; Toscano-Rico, J M; Rueff, J

    2001-09-01

    The present work reports on the genotoxicity of the boron neutron capture (BNC) reaction in human metastatic melanoma cells (A2058) assessed by the cytokinesis block micronucleus assay (CBMN) using p-borono-L-phenylalanine (BPA) as the boron delivery agent. Different concentrations of BPA (0.48, 1.2 and 2.4 mM) and different fluences of thermal neutrons were studied. Substantial genotoxic potential of alpha and lithium particles generated inside or near the malignant cell by the BNC reaction was observed in a dose-response manner as measured by the frequency of micronucleated binucleated melanoma cells and by the number of micronuclei (MN) per binucleated cell. The distribution of the number of MN per micronucleated binucleated cell was also studied. The BNC reaction clearly modifies this distribution, increasing the frequency of micronucleated cells with 2 and, especially, > or =3 MN and conversely decreasing the frequency of micronucleated cells with 1 MN. A decrease in cell proliferation was also observed which correlated with MN formation. A discrete genotoxic and anti-proliferative contribution from both thermal neutron irradiation and BPA was observed and should be considered secondary. Additionally, V79 Chinese hamster cells (chromosomal aberrations assay) and human lymphocytes (CBMN assay) incubated with different concentrations of BPA alone did not show any evidence of genotoxicity. The presented results reinforce the usefulness of the CBMN assay as an alternative method for assessment of the deleterious effects induced by high LET radiation produced by the BNC reaction in human melanoma cells.

  18. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel-Design concept and experimental demonstration

    NASA Astrophysics Data System (ADS)

    Henzlova, D.; Menlove, H. O.; Rael, C. D.; Trellue, H. R.; Tobin, S. J.; Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong

    2016-01-01

    This paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. This paper describes the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. These features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.

  19. Neutron Activation Analysis for the Demonstration of Amphibolite Rock-Weathering Activity of a Yeast

    PubMed Central

    Rades-Rohkohl, E.; Hirsch, P.; Fränzle, O.

    1979-01-01

    Neutron activation analysis was employed in a survey of weathering abilities of rock surface microorganisms. A yeast isolated from an amphibolite of a megalithic grave was found actively to concentrate, in media and in or on cells, iron and other elements when grown in the presence of ground rock. This was demonstrated by comparing a spectrum of neutron-activated amphibolite powder (particle size, 50 to 100 μm) with the spectra of neutron-activated, lyophilized yeast cells which had grown with or without amphibolite powder added to different media. The most active yeast (IFAM 1171) did not only solubilize Fe from the rock powder, but significant amounts of Co, Eu, Yb, Ca, Ba, Sc, Lu, Cr, Th, and U were also mobilized. The latter two elements occurred as natural radioactive isotopes in this amphibolite. When the yeast cells were grown with neutron-activated amphibolite, the cells contained the same elements. Furthermore, the growth medium contained Fe, Co, and Eu which had been solubilized from the amphibolite. This indicates the presence, in this yeast strain, of active rockweathering abilities as well as of uptake mechanisms for solubilized rock components. PMID:16345472

  20. CALIBRATION OF THE HB LINE ACTIVE WELL NEUTRON COINCIDENCE COUNTER FOR MEASUREMENT OF LANL 3013 HIGHLY ENRICHED URANIUM PRODUCT SPLITS

    SciTech Connect

    Dewberry, R; Donald02 Williams, D; Rstephen Lee, R; David-W Roberts, D; Leah Arrigo, L

    2008-01-22

    In this paper we describe set-up, calibration, and testing of the F-Area Analytical Labs active well neutron coincidence counter(HV-221000-NDA-X-1-DK-AWCC-1)in SRNL for use in HB-Line to enable assay of 3013EU/Pu metal product. The instrument was required within a three-month window for availability upon receipt of LANL Category IV uranium oxide samples into the SRS HB-Line facility. We describe calibration of the instrument in the SRNL nuclear nondestructive assay facility in the range 10-400 g HEU for qualification and installation in HB-Line for assay of the initial suite of product samples.

  1. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    NASA Astrophysics Data System (ADS)

    Baljinnyam, N.; Jugder, B.; Norov, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.

    2011-06-01

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves) (0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the "Reference plant» data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  2. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    SciTech Connect

    Baljinnyam, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.; Jugder, B.; Norov, N.

    2011-06-28

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves)(0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the ''Reference plant? data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  3. Neutron activation analysis of major, minor, and trace elements in marine sediments

    SciTech Connect

    Stone, S.F.; Zeisler, R.; Koster, B.J.

    1988-01-01

    Neutron activation analysis (NAA) techniques are well established in the multielement assay of geological materials. Similarly, applications of NAA to the analysis of marine sediments have been described. The different emphasis on elemental composition in studying and monitoring the health of the environment, however, presents a new challenge to the analyst. To investigate as many elements as possible, previous multielement procedures need to be reevaluated and modified. In this work, the authors have utilized the NAA steps of a recently developed sequential analysis procedure that obtained concentrations for 45 biological and pollutant elements in marine bivalves. This procedure, with modification, was applied to samples of marine sediments collected for the National Oceanic and Atmospheric Administration (NOAA) National Status and Trends (NS T) specimen banking program.

  4. Indirect determination of Mn-BOPP concentrations using neutron activation analysis

    SciTech Connect

    Combs, M.J.; Oveissi, C.; Mulder, R.U.; Berr, S.

    1994-12-31

    ONe aspect of neutron capture therapy (NCT) is the determination of boron levels in tissues as a function of time. The objective of this work was the development of a simple instrumental neutron activation analysis method for the indirect determination of boron. One compound studied for use in NCT was Mn-BOPP because Mn 55 will neutron activate to Mn 56 which could serve as an indicator of boron levels. In addition, it can be used as a magnetic resonance imaging agent.

  5. Prompt-gamma neutron activation analysis system design: Effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...

  6. Prompt-gamma neutron activation analysis system design: effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation analysis (PGNAA) is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV, and D-T wi...

  7. Arginase Activity in Mitochondria - an Interfering Factor in Nitric Oxide Synthase Activity Assays

    PubMed Central

    Venkatakrishnan, Priya; Nakayasu, Ernesto S.; Almeida, Igor C.; Miller, R. Timothy

    2009-01-01

    Previously, in tightly controlled studies, using three independent, yet complementary techniques, we refuted the claim that a mitochondrial nitric oxide synthase (mtNOS) isoform exists within pure, rat liver mitochondria (MT). Of those techniques, the NOS-catalyzed [14C]-L-arginine to [14C]-L-citrulline conversion assay (NOS assay) with MT samples indicated a weak, radioactive signal that was NOS-independent [1]. Aliquots of samples from the NOS assays were then extracted with acetone, separated by high performance thin-layer chromatography (HPTLC) and exposed to autoradiography. Results obtained from these samples showed no radioactive band for L-citrulline. However, a fast-migrating, diffuse, radioactive band was observed in the TLC lanes loaded with MT samples. In this manuscript, we identify and confirm that this radioactive signal in MT samples is due to the arginase-catalyzed conversion of [14C]-L-arginine to [14C]-urea. The current results, in addition to reconfirming the absence of NOS activity in rat liver MT, also show the need to include arginase inhibitors in studies using MT samples in order to avoid confounding results when using NOS activity assays. (Supported by ES 011982 & 2G12RR008124 to RTM & UTEP, respectively). PMID:19896461

  8. Arginase activity in mitochondria - An interfering factor in nitric oxide synthase activity assays

    SciTech Connect

    Venkatakrishnan, Priya; Nakayasu, Ernesto S.; Almeida, Igor C.; Miller, R.T.

    2010-04-09

    Previously, in tightly controlled studies, using three independent, yet complementary techniques, we refuted the claim that a mitochondrial nitric oxide synthase (mtNOS) isoform exists within pure, rat liver mitochondria (MT). Of those techniques, the NOS-catalyzed [{sup 14}C]-L-arginine to [{sup 14}C]-L-citrulline conversion assay (NOS assay) with MT samples indicated a weak, radioactive signal that was NOS-independent . Aliquots of samples from the NOS assays were then extracted with acetone, separated by high performance thin-layer chromatography (HPTLC) and exposed to autoradiography. Results obtained from these samples showed no radioactive band for L-citrulline. However, a fast-migrating, diffuse, radioactive band was observed in the TLC lanes loaded with MT samples. In this manuscript, we identify and confirm that this radioactive signal in MT samples is due to the arginase-catalyzed conversion of [{sup 14}C]-L-arginine to [{sup 14}C]-urea. The current results, in addition to reconfirming the absence of NOS activity in rat liver MT, also show the need to include arginase inhibitors in studies using MT samples in order to avoid confounding results when using NOS activity assays.

  9. A precise method to determine the activity of a weak neutron source using a germanium detector.

    PubMed

    Duke, M J M; Hallin, A L; Krauss, C B; Mekarski, P; Sibley, L

    2016-10-01

    A standard high purity germanium (HPGe) detector was used to determine the previously unknown neutron activity of a weak americium-beryllium (AmBe) neutron source. γ rays were created through (27)Al(n,n'), (27)Al(n,γ) and (1)H(n,γ) reactions induced by the neutrons on aluminum and acrylic disks, respectively. These γ rays were measured using the HPGe detector. Given the unorthodox experimental arrangement, a Monte Carlo simulation was developed to model the efficiency of the detector system to determine the neutron activity from the measured γ rays. The activity of our neutron source was determined to be 307.4±5.0n/s and is consistent for the different neutron-induced γ rays.

  10. A precise method to determine the activity of a weak neutron source using a germanium detector.

    PubMed

    Duke, M J M; Hallin, A L; Krauss, C B; Mekarski, P; Sibley, L

    2016-10-01

    A standard high purity germanium (HPGe) detector was used to determine the previously unknown neutron activity of a weak americium-beryllium (AmBe) neutron source. γ rays were created through (27)Al(n,n'), (27)Al(n,γ) and (1)H(n,γ) reactions induced by the neutrons on aluminum and acrylic disks, respectively. These γ rays were measured using the HPGe detector. Given the unorthodox experimental arrangement, a Monte Carlo simulation was developed to model the efficiency of the detector system to determine the neutron activity from the measured γ rays. The activity of our neutron source was determined to be 307.4±5.0n/s and is consistent for the different neutron-induced γ rays. PMID:27474906

  11. Active detection of shielded SNM with 60-keV neutrons

    SciTech Connect

    Hagmann, C; Dietrich, D; Hall, J; Kerr, P; Nakae, L; Newby, R; Rowland, M; Snyderman, N; Stoeffl, W

    2008-07-08

    Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimental results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.

  12. CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Takada, M; Nunomiya, T; Nakamura, T; Matsumoto, T; Masuda, A

    2016-09-01

    A thin silicon sensor has been developed for active neutron personal dosemeters for use by aircrews and first responders. This thin silicon sensor is not affected by the funneling effect, which causes detection of cosmic protons and over-response to cosmic neutrons. There are several advantages to the thin silicon sensor: a decrease in sensitivity to gamma rays, an improvement of the energy detection limit for neutrons down to 0.8 MeV and an increase in the sensitivity to fast neutrons. Neutron response functions were experimentally obtained using 2.5 and 5 MeV monoenergy neutron beams and a (252)Cf neutron source. Simulation results using the Monte Carlo N-Particle transport code agree quite well with the experimental ones when an energy deposition region shaped like a circular truncated cone is used in place of a cylindrical region. PMID:27150515

  13. Assays to Measure PTEN Lipid Phosphatase Activity In Vitro from Purified Enzyme or Immunoprecipitates.

    PubMed

    Spinelli, Laura; Leslie, Nicholas R

    2016-01-01

    PTEN is a one of the most frequently mutated tumor suppressors in human cancers. It is essential for regulating diverse biological processes and through its lipid phosphatase activity regulates the PI 3-Kinase signaling pathway. Sensitive phosphatase assays are employed to study the catalytic activity of PTEN against phospholipid substrates. Here we describe protocols to assay PTEN lipid phosphatase activity using either purified enzyme (purified PTEN lipid phosphatase assay) or PTEN immunopurified from tissues or cultured cells (cellular IP PTEN lipid phosphatase assay) against vesicles containing radiolabeled PIP3 substrate. PMID:27514802

  14. A Kinematically Beamed, Low Energy Pulsed Neutron Source for Active Interrogation

    SciTech Connect

    Dietrich, D; Hagmann, C; Kerr, P; Nakae, L; Rowland, M; Snyderman, N; Stoeffl, W; Hamm, R

    2004-10-07

    We are developing a new active interrogation system based on a kinematically focused low energy neutron beam. The key idea is that one of the defining characteristics of SNM (Special Nuclear Materials) is the ability for low energy or thermal neutrons to induce fission. Thus by using low energy neutrons for the interrogation source we can accomplish three goals, (1) Energy discrimination allows us to measure the prompt fast fission neutrons produced while the interrogation beam is on; (2) Neutrons with an energy of approximately 60 to 100 keV do not fission 238U and Thorium, but penetrate bulk material nearly as far as high energy neutrons do and (3) below about 100keV neutrons lose their energy by kinematical collisions rather than via the nuclear (n,2n) or (n,n') processes thus further simplifying the prompt neutron induced background. 60 keV neutrons create a low radiation dose and readily thermal capture in normal materials, thus providing a clean spectroscopic signature of the intervening materials. The kinematically beamed source also eliminates the need for heavy backward and sideway neutron shielding. We have designed and built a very compact pulsed neutron source, based on an RFQ proton accelerator and a lithium target. We are developing fast neutron detectors that are nearly insensitive to the ever-present thermal neutron and neutron capture induced gamma ray background. The detection of only a few high energy fission neutrons in time correlation with the linac pulse will be a clear indication of the presence of SNM.

  15. Radionuclide characterization of reactor decommissioning waste and neutron-activated metals

    SciTech Connect

    Robertson, D.E.; Thomas, C.W.; Wynhoff, N.L.; Haggard, D.L.

    1993-06-01

    This study is providing the NRC and licensees with a more comprehensive data base for regulatory assessment of the radiological factors associated with reactor decommissioning and disposal of wastes generated during these activities. The objectives of this study are being accomplished during the actual decommissioning of Shippingport Station and the detailed analysis of neutron-activated materials from commercial reactors. The radiological characterization studies of Shippingport decommissioning materials have now been completed, and analyses of dismantled piping and scabbled concrete have shown that neutron activation products, dominated by {sup 60}Co, comprised the residual radionuclide inventory. Waste classification assessment have shown that all decommissioning materials (except reactor pressure vessel internals) could be disposed of as Class A waste. Spent fuel disassembly hardware from the Shippingport Core-3 was analyzed for long-lived activation products. {sup 94}Nb and {sup 63}Ni concentrations in Inconel-X750 and stainless steel components exceeded their Class C limits. Measurements and assessments of {sup 14}C in spent fuel disassembly hardware from three commercial nuclear power stations showed that this radionuclide never exceeded the Class C limit for all components. However, the {sup 63}Ni and {sup 94}Nb concentrations in some of these materials did exceed the Class C limits. These measurements are providing the basis for an assessment of the disposal options for these types of highly radioactive materials. Work is continuing on radiological characterization of spent PWR and BWR control rod assemblies. Three control rods, including a BWR cruciform control rod blade, a PWR control rod cluster assembly, and a PWR burnable poison rod assembly, have been characterized for their long-lived activation product concentrations and distribution by direct assay methods. These spent control rods could all be classified as Class C low-level waste.

  16. Radionuclide characterization of reactor decommissioning waste and neutron-activated metals

    SciTech Connect

    Robertson, D.E.; Thomas, C.W.; Wynhoff, N.L.; Haggard, D.L.

    1993-06-01

    This study is providing the NRC and licensees with a more comprehensive data base for regulatory assessment of the radiological factors associated with reactor decommissioning and disposal of wastes generated during these activities. The objectives of this study are being accomplished during the actual decommissioning of Shippingport Station and the detailed analysis of neutron-activated materials from commercial reactors. The radiological characterization studies of Shippingport decommissioning materials have now been completed, and analyses of dismantled piping and scabbled concrete have shown that neutron activation products, dominated by Co-60, comprised the residual radionuclide inventory. Waste classification assessment have shown that all decommissioning materials (except reactor pressure vessel internals) could be disposed of as Class A waste. Spent fuel disassembly hardware from the Shippingport Core-3 was analyzed for long-lived activation products. Nb-94 and Ni-63 concentrations in Inconel-X750 and stainless steel components exceeded their Class C limits. Measurements and assessments of C-14 in spent fuel disassembly hardware from three commercial nuclear power stations showed that this radionuclide never exceeded the Class C limit for al components. However, the Ni-63 and Nb-94 concentrations in some of these materials did exceed the Class C limits. These measurements are providing the basis for an assessment of the disposal options for these types of highly radioactive materials. Work is continuing on radiological characterization of spent PWR and BWR control rod assemblies. Three control rods, including a BWR cruciform control rod blade, a PWR control rod cluster assembly, and a PWR burnable poison rod assembly, have been characterized for their long-lived activation product concentrations and distribution by direct assay methods. These spent control rods could all be classified as Class C low-level waste. These rods are presently being sampled.

  17. Measurement of residual 60Co activity induced by atomic-bomb neutrons in Nagasaki and background contribution by environmental neutrons.

    PubMed

    Shizuma, Kiyoshi; Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Iwatani, Kazuo; Hasai, Hiromi; Oka, Takamitsu; Shimazaki, Tatsuya; Okumura, Yutaka; Fujita, Shoichiro; Watanabe, Tadaaki; Imanaka, Tetsuji

    2002-12-01

    Residual 60Co activity in five steel samples induced by neutrons from the Nagasaki atomic bomb has been measured within about 1000 m from the hypocenter. The chemical separation of cobalt and nickel from steel samples was performed, and cobalt-enriched samples were prepared for all samples. Gamma-ray measurements were carried out with a low-background well-type germanium detector. The gamma-ray spectra for five samples were compared with the spectrum of a control sample to ensure that the observed 60Co was actually induced by A-bomb neutrons. The activation of cobalt by environmental neutrons was also investigated. It has been shown that the present 60Co data are consistent with earlier Hashizume's data. PMID:12674203

  18. In-vivo neutron activation analysis: principles and clinical applications

    SciTech Connect

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress. It seems likely that by the end of this century there will have been significant progress with this research tool, and exciting insights obtained into the nature and dynamics of human body composition.

  19. Clinical applications of in vivo neutron-activation analysis

    SciTech Connect

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress.

  20. Tables for simplifying calculations of activities produced by thermal neutrons

    USGS Publications Warehouse

    Senftle, F.E.; Champion, W.R.

    1954-01-01

    The method of calculation described is useful for the types of work of which examples are given. It is also useful in making rapid comparison of the activities that might be expected from several different elements. For instance, suppose it is desired to know which of the three elements, cobalt, nickel, or vanadium is, under similar conditions, activated to the greatest extent by thermal neutrons. If reference is made to a cross-section table only, the values may be misleading unless properly interpreted by a suitable comparison of half-lives and abundances. In this table all the variables have been combined and the desired information can be obtained directly from the values of A 3??, the activity produced per gram per second of irradiation, under the stated conditions. Hence, it is easily seen that, under similar circumstances of irradiation, vanadium is most easily activated even though the cross section of one of the cobalt isotopes is nearly five times that of vanadium and the cross section of one of the nickel isotopes is three times that of vanadium. ?? 1954 Societa?? Italiana di Fisica.

  1. Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity

    SciTech Connect

    Hahn, K. D. Ruiz, C. L.; Fehl, D. L.; Chandler, G. A.; Knapp, P. F.; Smelser, R. M.; Torres, J. A.; Cooper, G. W.; Nelson, A. J.; Leeper, R. J.

    2014-04-15

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r{sup 2} decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm{sup 2} and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  2. A MEMBRANE FILTER PROCEDURE FOR ASSAYING CYTOTOXIC ACTIVITY IN HETEROTROPHIC BACTERIA ISOLATED FROM DRINKING WATER

    EPA Science Inventory

    Cytotoxic activity assays of Gram-negative, heterotrophic bacteria are often laborious and time consuming. The objective of this study was to develop in situ procedures for testing potential cytotoxic activities of heterotrophic bacteria isolated from drinking water systems. Wate...

  3. Determination of hydrogen in niobium by cold neutron prompt gamma ray activation analysis and neutron incoherent scattering

    SciTech Connect

    R.L. Paul; H.H. Cheu-Maya; G.R. Myneni

    2002-11-01

    The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.

  4. Active Neutron Interrogation of Non-Radiological Materials with NMIS

    SciTech Connect

    Walker, Mark E; Mihalczo, John T

    2012-02-01

    The Nuclear Materials Identification System (NMIS) at Oak Ridge National Laboratory (ORNL), although primarily designed for analyzing special nuclear material, is capable of identifying nonradiological materials with a wide range of measurement techniques. This report demonstrates four different measurement methods, complementary to fast-neutron imaging, which can be used for material identification: DT transmission, DT scattering, californium transmission, and active time-tagged gamma spectroscopy. Each of the four techniques was used to evaluate how these methods can be used to identify four materials: aluminum, polyethylene, graphite, and G-10 epoxy. While such measurements have been performed individually in the past, in this project, all four measurements were performed on the same set of materials. The results of these measurements agree well with predicted results. In particular, the results of the active gamma spectroscopy measurements demonstrate the technique's applicability in a future version of NMIS which will incorporate passive and active gamma-ray spectroscopy. This system, designated as a fieldable NMIS (FNMIS), is under development by the US Department of Energy Office of Nuclear Verification.

  5. Characterization of indoor cooking aerosol using neutron activation analysis

    SciTech Connect

    Wu, D.; Landsberger, S.; Larson, S. )

    1993-01-01

    Suspended particles in air are potentially harmful to human health, depending on their sizes and chemical composition. Residential indoor particles mainly come from (a) outdoor sources that are transported indoors, (b) indoor dust that is resuspended, and (c) indoor combustion sources, which include cigarette smoking, cooking, and heating. Jedrychowski stated that chronic phlegm in elderly women was strongly related to the cooking exposure. Kamens et al. indicated that cooking could generate small particles (<0.1 [mu]m), and cooking one meal could contribute [approximately]5 to 18% of total daytime particle volume exposure. Although cooking is a basic human activity, there are not many data available on the properties of particles generated by this activity. Some cooking methods, such as stir-frying and frying, which are the most favored for Chinese and other Far East people, generate a large quantity of aerosols. This research included the following efforts: 1. investigating particle number concentrations, distributions, and their variations with four different cooking methods and ventilation conditions; 2. measuring the chemical composition of cooking aerosol samples by instrumental neutron activation analysis.

  6. The role of neutron activation analysis in nutritional biomonitoring programs

    SciTech Connect

    Iyengar, V.

    1988-01-01

    Nutritional biomonitoring is a multidisciplinary task and an integral part of a more general bioenvironmental surveillance. In its comprehensive form, it is a combination of biological, environmental, and nutrient monitoring activities. Nutrient monitoring evaluates the input of essential nutrients required to maintain vital bodily functions; this includes vigilance over extreme fluctuations of nutrient intake in relation to the recommended dietary allowances and estimated safe and adequate daily dietary intakes and adherence to the goals of provisional tolerance limits. Environmental monitoring assesses the external human exposure via ambient pathways, namely, air, water, soil, food, etc. Biological monitoring quantifies a toxic agent and its metabolites in representative biologic specimens of an exposed organ to identify health effects. In practice, coordinating all three components of a nutritional biomonitoring program is complex, expensive, and tedious. Experience gained from the US National Health and Nutrition Examination Surveys demonstrates the problems involved. By far the most critical challenge faced here is the question of analytical quality control, particularly when trace element determinations are involved. Yet, measures to ensure reliability of analytical data are mandatory, and there are no short-cuts to this requirement. The purpose of this presentation is to elucidate the potential of neutron activation analysis (NAA) in nutritional biomonitoring activities.

  7. Real-Time Active Cosmic Neutron Background Reduction Methods

    SciTech Connect

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray-induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

  8. Real-time active cosmic neutron background reduction methods

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray‒induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory-Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the lowenergy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of manmade neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

  9. Electrochemical Assay for the Signal-on Detection of Human DNA Methyltransferase Activity

    PubMed Central

    Muren, Natalie B.; Barton, Jacqueline K.

    2013-01-01

    Strategies to detect human DNA methyltransferases are needed, given that aberrant methylation by these enzymes is associated with cancer initiation and progression. Here we describe a non-radioactive, antibody-free, electrochemical assay in which methyltransferase activity on DNA-modified electrodes confers protection from restriction for signal-on detection. We implement this assay with a multiplexed chip platform and show robust detection of both bacterial (SssI) and human (Dnmt1) methyltransferase activity. Essential to work with human methyltransferases, our unique assay design allows activity measurements on both unmethylated and hemimethylated DNA substrates. We validate this assay by comparison with a conventional radioactive method. The advantages of electrochemistry over radioactivity and fluorescence make this assay an accessible and promising new approach for the sensitive, label-free detection of human methyltransferase activity. PMID:24164112

  10. A microsystem to assay lysosomal enzyme activities in cultured retinal pigment epithelial cells.

    PubMed

    Cabral, L; Unger, W; Boulton, M; Marshall, J

    1988-11-01

    A microsystem to assay the activity of lysosomal enzymes in a small number of cultured RPE cells is described. The activities of acid phosphatase, a-mannosidase, B-glucuronidase and N-acetyl-B-glucosaminidase were estimated in different human RPE cultures of varying passages. Some biochemical characteristics for each of the enzyme assays were studied including the effect of pH, the saturating concentrations of the appropriate substrates and the relationship between the enzyme activity and the number of cells assayed. The method presented is straightforward, avoids complicated tissue fractionation procedures and is able to estimate enzyme activities in as few as 10(4) cells. PMID:3243083

  11. In Vitro Assay to Measure Phosphatidylethanolamine Methyltransferase Activity

    PubMed Central

    Zufferey, Rachel

    2016-01-01

    Phosphatidylethanolamine methyltransferases are biosynthetic enzymes that catalyze the transfer of one or more methyl group(s) from S-adenosyl-L-methionine onto phosphatidylethanolamine, monomethyl-phosphatidylethanolamine, or dimethyl-phosphatidylethanolamine to give either monomethyl-phosphatidylethanolamine, dimethyl-phosphatidylethanolamine or phosphatidylcholine. These enzymes are ubiquitous in animal cells, fungi, and are also found in approximately 10% of bacteria. They fulfill various important functions in cell physiology beyond their direct role in lipid metabolism such as in insulin resistance, diabetes, atherosclerosis, cell growth, or virulence. The present manuscript reports on a simple cell-free enzymatic assay that measures the transfer of tritiated methyl group(s) from S-[Methyl-3H]adenosyl-L-methionine onto phosphatidylethanolamine using whole cell extracts as an enzyme source. The resulting methylated forms of phosphatidylethanolamine are hydrophobic and thus, can be separated from water soluble S-[Methyl-3H]adenosyl-L-methionine by organic extraction. This assay can potentially be applied to any other cell types and used to test inhibitors/drugs specific to a phosphatidylethanolamine methyltransferase of interest without the need to purify the enzyme. PMID:26780155

  12. Measurements of activation induced by environmental neutrons using ultra low-level gamma-ray spectrometry.

    PubMed

    Martínez Canet, M J; Hult, M; Köhler, M; Johnston, P N

    2000-03-01

    The flux of environmental neutrons is being studied by activation of metal discs of selected elements. Near the earth's surface the total neutron flux is in the order of 10(-2) cm(-2)s(-1), which gives induced activities of a few mBq in the discs. Initial results from this technique, involving activation at ground level for several materials (W, Au, Ta, In, Re, Sm, Dy and Mn) and ultra low-level gamma-ray spectrometry in an underground laboratory located at 500 m.w.e., are presented. Diffusion of environmental neutrons in water is also measured by activation of gold at different depths.

  13. Computer programs for absolute neutron activation analysis on the nuclear data 6620 data acquisition system

    SciTech Connect

    Wade, J.W.; Emery, J.F.

    1982-03-01

    Five computer programs that provide multielement neutron activation analysis are discussed. The software package was designed for use on the Nuclear Data 6620 Data Acquisition System and interacts with existing Nuclear Data Corporation software. The programs were developed to make use of the capabilities of the 6620 system to analyze large numbers of samples and assist in a large sample workload that had begun in the neutron activation analysis facility of the Oak Ridge Research Reactor. Nuclear Data neutron activation software is unable to perform absolute activation analysis and therefore was inefficient and inadequate for our applications.

  14. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    SciTech Connect

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  15. Search for reaction-in-flight neutrons using thulium activation at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Grim, Gary; Rundberg, Robert; Tonchev, Anton; Fowler, Malcolm; Wilhelmy, Jerry; Archuleta, Tom; Bionta, Richard; Boswell, Mitzi; Gostic, Julie; Griego, Jeff; Knittel, Kenn; Klein, Andi; Moody, Ken; Shaughnessy, Dawn; Wilde, Carl; Yeamans, Charles

    2013-10-01

    We report on measurements of reaction-in-flight (RIF) neutrons at the National Ignition Facility. RIF neutrons are produced in cryogenically layered implision by up-scattered deuterium, or tritium ions that undergo subsequent fusion reactions. The rate of RIF neutron production is proportional to the fuel areal density (| | R) and ion-stopping length in the dense fuel assembly. Thus, RIF neutrons provide information on charge particle stopping in a strongly coupled plasma, where perturbative modeling breaks down. To measure RIF neutrons, a set of thulium activation foils was placed 50 cm from layered cryogenic implosions at the NIF. The reaction 169Tm(n,3n)167Tm has a neutron kinetic energy threshold of 14.96 MeV. We will present results from initial experiments performed during the spring of 2013. Prepared by LANL under Contract DE-AC-52-06-NA25396, TSPA, LA-UR-13-22085.

  16. Feasibility of culvert IED detection using thermal neutron activation

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; McFee, John E.; Clifford, Edward T. H.; Andrews, Hugh Robert; Mosquera, Cristian; Roberts, William C.

    2012-06-01

    Bulk explosives hidden in culverts pose a serious threat to the Canadian and allied armies. Culverts provide an opportunity to conceal insurgent activity, avoid the need for detectable surface disturbances, and limit the applicability of conventional sub-surface sensing techniques. Further, in spite of the large masses of explosives that can be employed, the large sensor{target separation makes detection of the bulk explosive content challeng- ing. Defence R&D Canada { Sueld and Bubble Technology Industries have been developing thermal neutron activation (TNA) sensors for detection of buried bulk explosives for over 15 years. The next generation TNA sensor, known as TNA2, incorporates a number of improvements that allow for increased sensor-to-target dis- tances, making it potentially feasible to detect large improvised explosive devices (IEDs) in culverts using TNA. Experiments to determine the ability of TNA2 to detect improvised explosive devices in culverts are described, and the resulting signal levels observed for relevant quantities of explosives are presented. Observations conrm that bulk explosives detection using TNA against a culvert-IED is possible, with large charges posing a detection challenge at least as dicult as that of a deeply buried anti-tank landmine. Because of the prototype nature of the TNA sensor used, it is not yet possible to make denitive statements about the absolute sensitivity or detection time. Further investigation is warranted.

  17. Urolithins display both antioxidant and pro-oxidant activities depending on assay system and conditions.

    PubMed

    Kallio, Tuija; Kallio, Johanna; Jaakkola, Mari; Mäki, Marianne; Kilpeläinen, Pekka; Virtanen, Vesa

    2013-11-13

    The biological effects of polyphenolic ellagitannins are mediated by their intestinal metabolites, urolithins. This study investigated redox properties of urolithins A and B using ORAC assay, three cell-based assays, copper-initiated pro-oxidant activity (CIPA) assay, and cyclic voltammetry. Urolithins were strong antioxidants in the ORAC assay, but mostly pro-oxidants in cell-based assays, although urolithin A was an antioxidant in cell culture medium. Parent compound ellagic acid was a strong extracellular antioxidant, but showed no response in the intracellular assay. The CIPA assay confirmed the pro-oxidant activity of ellagitannin metabolites. In the cell proliferation assay, urolithins but not ellagic acid decreased growth and metabolism of HepG2 liver cells. In cyclic voltammetry, the oxidation of urolithin A was partly reversible, but that of urolithin B was irreversible. These results illustrate how strongly measured redox properties depend on the employed assay system and conditions and emphasize the importance of studying pro-oxidant and antioxidant activities in parallel.

  18. A laser-induced repetitive fast neutron source applied for gold activation analysis

    SciTech Connect

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-15

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 Multiplication-Sign 10{sup 5} n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He{sup 4} nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T{sup 3}.

  19. A laser-induced repetitive fast neutron source applied for gold activation analysis.

    PubMed

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 10(5) n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He(4) nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T(3). PMID:23277984

  20. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  1. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...

  2. Neutron radiography activity in the european program cost 524: Neutron imaging techniques

    NASA Astrophysics Data System (ADS)

    Chirco, P.; Bach, P.; Lehmann, E.; Balasko, M.

    2001-07-01

    COST is a framework for scientific and technical cooperation, allowing the coordination of national research on a European level, including 32 member countries. Participation of institutes from non-COST countries is possible. From an initial 7 Actions in 1971, COST has grown to 200 Actions at the beginning of 2000. COST Action 524 is under materials domain, the title of which being "Neutron Imaging Techniques for the Detection of Defects in Materials", under the Chairmanship of Dr. P. Chirco (I.N.F.N.). The following countries are represented in the Management Committee of Action 524: Italy, France, Austria, Germany, United Kingdom, Hungary, Switzerland, Spain, Czech Republic, Slovenia, and Russia. The six working groups of this Action are working respectively on standardization of neutron radiography techniques, on aerospace application, on civil engineering applications, on comparison and integration of neutron imaging techniques with other NDT, on neutron tomography, and on non radiographic techniques such as neutron scattering techniques. A specific effort is devoted to standardization issues, with respect to other non European standards. Results of work performed in the COST frame are published or will be published in the review INSIGHT, edited by the British Institute of Non Destructive Testing.

  3. Antiviral activity of a Rac GEF inhibitor characterized with a sensitive HIV/SIV fusion assay

    SciTech Connect

    Pontow, Suzanne; Harmon, Brooke; Campbell, Nancy; Ratner, Lee

    2007-11-10

    A virus-dependent fusion assay was utilized to examine the activity of a panel of HIV-1, -2, and SIV isolates of distinct coreceptor phenotypes. This assay allowed identification of entry inhibitors, and characterization of an antagonist of a Rac guanine nucleotide exchange factor, as an inhibitor of HIV-mediated fusion.

  4. Assays to measure the activation of membrane tyrosine kinase receptors: focus on cellular methods.

    PubMed

    Minor, Lisa K

    2003-09-01

    Many methods have been explored as means to measure the activation and inhibition of tyrosine kinase receptors, in vitro using the isolated kinase domain, and in living cells. Kinase activity has been measured in enzyme assays using a peptide substrate, but with different detection systems. These include the radioactive FlashPlate assay, the fluorescent resonance energy transfer (FRET) assay, the dissociation-enhance lanthanide fluorescence immunoassay (DELFIA) and other formats. These methods have successfully identified inhibitors of receptor activity. Cell-based assays have recently emerged to measure receptor activation and inhibition. When membrane tyrosine kinase receptors become activated, they increase their state of phosphorylation. This phosphorylation may lead to an increase in tyrosine kinase-specific activity. Methods have been developed that take advantage of these properties. These include measuring the ligand-stimulated total tyrosine phosphorylation of the receptor using a DELFIA or an ELISA assay, measuring ligand-stimulated enzyme activation of the receptor by quantifying enzyme activity, and dimerization of the activated receptor using bioluminescence resonance energy transfer (BRET). Although cell-based assays are still in their infancy, these techniques may prove a valuable addition to the receptor screening strategy.

  5. Nondestructive assay of small PuO{sub 2} samples by neutron-gamma counting-expectations and achievements

    SciTech Connect

    Ottmar, H.; Schubert, A.; Cromboom, O.; Eberle, H.

    1995-12-31

    The accurate determination of the plutonium content in samples of plutonium oxide powders will constitute an important part of the analytical work at future on-site laboratories (OSL) to be installed at the Sellafield and the La Hague reprocessing plants. In this concept, the major part of the work has been assigned to neutron-gamma counter combining the techniques of passive neutron-coincidence counting and high-resolution gamma spectrometry. This paper reviews the development of this technique.

  6. Measurement of residual 152Eu activity induced by atomic bomb neutrons in Nagasaki and the contribution of environmental neutrons to this activity.

    PubMed

    Shizuma, Kiyoshi; Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Ishikawa, Masayori; Iwatani, Kazuo; Hasai, Hiromi; Oka, Takamitsu; Fujita, Shoichiro; Watanabe, Tadaaki; Yamashita, Tomoaki; Imanaka, Tetsuji

    2003-06-01

    Residual 152Eu activities induced by neutrons from the Nagasaki atomic bomb were measured for nine mineral samples located up to 1,061 m in the slant range and one control sample at 2,850 m from the hypocenter. A chemical separation to prepare europium-enriched samples was performed for all samples, and gamma ray measurements were carried out with a low background well-type germanium detector. In this paper, the measured specific activities of 152Eu are compared with activation calculations based on the DS86 neutron fluence and the 93Rev one. The calculated-to-measured ratios are also compared with those of 60Co and 36Cl. The present results indicate that the measurements agree to the calculation within a factor of three as observed in the nuclear tests at Nevada. The activation level of environmental neutrons and the detection limit for 152Eu are also discussed. PMID:13678342

  7. Development of active environmental and personal neutron dosemeters.

    PubMed

    Nakamura, T; Nunomiya, T; Sasaki, M

    2004-01-01

    For neutron dosimetry in the radiation environment surrounding nuclear facilities, two types of environmental neutron dosemeters, the high-sensitivity rem counter and the high-sensitivity multi-moderator, the so-called Bonner ball, have been developed and the former is commercially available from Fuji Electric Co. By using these detectors, the cosmic ray neutrons at sea level have been sequentially measured for about 3 y to investigate the time variation of neutron spectrum and ambient dose equivalent influenced by cosmic and terrestrial effects. Our Bonner ball has also been selected as the neutron detector in the International Space Station and has already been used to measure neutrons in the US experimental module. The real time wide-range personal neutron dosemeter which uses two silicon semiconductor detectors has been developed for personal dosimetry and is commercially available from Fuji Electric Co. This dosemeter has good characteristics, fitted to the fluence-to-dose conversion factor in the energy range from thermal energies to several tens of mega-electron-volts and is now widely used in various nuclear facilities.

  8. Active Interrogation for Spent Fuel

    SciTech Connect

    Swinhoe, Martyn Thomas; Dougan, Arden

    2015-11-05

    The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.

  9. Evaluation of potential endocrine activity of 2,4-dichlorophenoxyacetic acid using in vitro assays.

    PubMed

    Coady, Katherine K; Kan, H Lynn; Schisler, Melissa R; Gollapudi, B Bhaskar; Neal, Barbara; Williams, Amy; LeBaron, Matthew J

    2014-08-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system.

  10. [Methods of hygromycin B phosphotransferase activity assay in transgenic plant].

    PubMed

    Zhuo, Qin; Yang, Xiaoguang

    2004-07-01

    Hygromycin B phosphotransferase (HPT) is a widely used selectable marker protein of transgenic plant. Detection of its activity is critical to studies on the development of various transgenic plants, silence of inserted gene, marker-free system development and safety assessment of transgenic food. In this paper, several methods for detecting the activity of this enzyme were reviewed.

  11. Neutron Activation Analysis PRognosis and Optimization Code System.

    2004-08-20

    Version 00 NAAPRO predicts the results and main characteristics (detection limits, determination limits, measurement limits and relative precision of the analysis) of neutron activation analysis (instrumental and radiochemical). Gamma-ray dose rates for different points of time after sample irradiation and input count rate of the spectrometry system are also predicted. The code uses standard Windows user interface and extensive graphical tools for the visualization of the spectrometer characteristics (efficiency, response and background) and simulated spectrum.more » Optimization part is not included in the current version of the code. This release is designated NAAPRO, Version 01.beta. The MCNP code was used for generating detector responses. PREPRO-2000 and FCONV programs were used at the preparation of the program nuclear databases. A special program was developed for viewing, editing and updating of the program databases (not included into the present program package). The MCNP, PREPRO-2000 and FCONV software packages are not included in the NAAPRO package.« less

  12. A neutron activation technique for manganese measurements in humans.

    PubMed

    Bhatia, C; Byun, S H; Chettle, D R; Inskip, M J; Prestwich, W V

    2015-01-01

    Manganese (Mn) is an essential element for humans, animals, and plants and is required for growth, development, and maintenance of health. Studies show that Mn metabolism is similar to that of iron, therefore, increased Mn levels in humans could interfere with the absorption of dietary iron leading to anemia. Also, excess exposure to Mn dust, leads to nervous system disorders similar to Parkinson's disease. Higher exposure to Mn is essentially related to industrial pollution. Thus, there is a benefit in developing a clean non-invasive technique for monitoring such increased levels of Mn in order to understand the risk of disease and development of appropriate treatments. To this end, the feasibility of Mn measurements with their minimum detection limits (MDL) has been reported earlier from the McMaster group. This work presents improvement to Mn assessment using an upgraded system and optimized times of irradiation and counting for induced gamma activity of Mn. The technique utilizes the high proton current Tandetron accelerator producing neutrons via the (7)Li(p,n)(7)Be reaction at McMaster University and an array of nine NaI (Tl) detectors in a 4 π geometry for delayed counting of gamma rays. The neutron irradiation of a set of phantoms was performed with protocols having different proton energy, current and time of irradiation. The improved MDLs estimated using the upgraded set up and constrained timings are reported as 0.67 μgMn/gCa for 2.3 MeV protons and 0.71 μgMn/gCa for 2.0 MeV protons. These are a factor of about 2.3 times better than previous measurements done at McMaster University using the in vivo set-up. Also, because of lower dose-equivalent and a relatively close MDL, the combination of: 2.0 MeV; 300 μA; 3 min protocol is recommended as compared to 2.3 MeV; 400 μA; 45 s protocol for further measurements of Mn in vivo. PMID:25169978

  13. Interlaboratory comparison of four in vitro assays for assessing androgenic and antiandrogenic activity of environmental chemicals.

    PubMed Central

    Körner, Wolfgang; Vinggaard, Anne Marie; Térouanne, Béatrice; Ma, Risheng; Wieloch, Carise; Schlumpf, Margret; Sultan, Charles; Soto, Ana M

    2004-01-01

    We evaluated and compared four in vitro assays to detect androgen agonists and antagonists in an international interlaboratory study. Laboratory 1 used a cell proliferation assay (assay 1) with human mammary carcinoma cells stably transfected with human androgen receptor. The other laboratories used reporter gene assays, two based on stably transfected human prostate carcinoma cells (assay 2) or human mammary carcinoma cells (assay 4), and the third based on transient transfection of Chinese hamster ovary cells (assay 3). Four laboratories received four coded compounds and two controls: two steroidal androgens, two antiandrogens, an androgenic control, 5alpha-dihydrotestosterone (DHT), and an antiandrogenic control, bicalutamide (ICI 176,334). All laboratories correctly detected the androgenic activity of 4-androsten-3,17-dione and 17alpha-methyltestosterone. For both compounds, the calculated androgenic potencies relative to the positive control (RAPs) remained within one order of magnitude. However, laboratory 3 calculated a 50-fold higher RAP for 4-androsten-3,17-dione. All assays detected and quantified the antiandrogenic effect of vinclozolin [median inhibitory concentration (IC50) values ranging from 1.1 times symbol 10(-7) M to 4.7 times symbol 10(-7) M]. In assays 2 and 3, vinclozolin showed partial androgenic activity at the highest concentrations tested. For vinclozolin, calculated antiandrogenic potencies relative to bicalutamide (RAAPs) differed no more than a factor of 10, and IC50 values matched those of bicalutamide. Similarly, we found antiandrogenic activity for tris-(4-chlorophenyl)methanol. RAAP values were between 0.086 and 0.37. Three assays showed cytotoxicity for this compound at or above 1 times symbol 10(-5) M. In summary, all assays proved sensitive screening tools to detect and quantify androgen receptor-mediated androgenic and antiandrogenic effects of these chemicals accurately, with coefficients of variation between 8 and 90%. PMID

  14. Measurement of factor v activity in human plasma using a microplate coagulation assay.

    PubMed

    Tilley, Derek; Levit, Irina; Samis, John A

    2012-09-09

    In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase (1, 2). Manual FV assays have been described (3, 4), but they are time consuming and subjective. Automated FV assays have been reported (5-7), but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput (8, 9). Microplate assays have been reported for clot lysis (10), platelet aggregation (11), and coagulation Factors (12), but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405 nm during fibrin formation in human plasma (Figure 1) (13). The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only μl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80 pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections (14). DIC is associated with a poor prognosis and increases mortality

  15. Neutron intensity monitor with activation foil for p-Li neutron source for BNCT--Feasibility test of the concept.

    PubMed

    Murata, Isao; Otani, Yuki; Sato, Fuminobu

    2015-12-01

    Proton-lithium (p-Li) reaction is being examined worldwide as a candidate nuclear production reaction for accelerator based neutron source (ABNS) for BNCT. In this reaction, the emitted neutron energy is not so high, below 1 MeV, and especially in backward angles the energy is as low as about 100 keV. The intensity measurement was thus known to be difficult so far. In the present study, a simple method was investigated to monitor the absolute neutron intensity of the p-Li neutron source by employing the foil activation method based on isomer production reactions in order to cover around several hundreds keV. As a result of numerical examination, it was found that (107)Ag, (115)In and (189)Os would be feasible. Their features found out are summarized as follows: (107)Ag: The most convenient foil, since the half life is short. (115)In: The accuracy is the best at 0°, though it cannot be used for backward angles. And (189)Os: Suitable nuclide which can be used in backward angles, though the gamma-ray energy is a little too low. These would be used for p-Li source monitoring depending on measuring purposes in real BNCT scenes. PMID:26242557

  16. Present and Future Activities on Neutron Imaging in Argentina

    NASA Astrophysics Data System (ADS)

    Tartaglione, Aureliano; Blostein, Jerónimo; Cantargi, Florencia; Marín, Julio; Baruj, Alberto; Meyer, Gabriel; Santisteban, Javier; Sánchez, Fernando

    We present here a short review of the main work which has been done in the latest years in neutron imaging in Argentina, and the future plans for the development of this technique in the country, mainly focused in the design of a new neutron imaging instrument to be installed in the future research reactor RA10. We present here the results of the implementation of the technique in samples belonging to the Argentinean cultural heritage and experiments related with hydrogen storage. At the same time, the Argentinean RA10 project for the design and construction of a 30 MW multipurpose research reactor is rapidly progressing. It started to be designed by the National Atomic Energy Commission (CNEA) and the technology company INVAP SE, both from Argentina, in June 2010. The construction will start in the beginning of 2015 in the Ezeiza Atomic Center, at 36 km from Buenos Aires City, and is expected to be finished by 2020. One of the main aims of the project is to offer to the Argentinean scientific and technology system new capabilities based on neutron techniques. We present here the conceptual design of a neutron imaging facility which will use one of the cold neutron beams, and will be installed in the reactor hall. Preliminary simulation results show that at the farthest detection position, at about 17 m from the cold source, a uniform neutron beam on a detection screen with an intensity of about 108 n/cm2/s is expected.

  17. Improved mesh based photon sampling techniques for neutron activation analysis

    SciTech Connect

    Relson, E.; Wilson, P. P. H.; Biondo, E. D.

    2013-07-01

    The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

  18. Enzyme activity assays within microstructured optical fibers enabled by automated alignment

    PubMed Central

    Warren-Smith, Stephen C.; Nie, Guiying; Schartner, Erik P.; Salamonsen, Lois A.; Monro, Tanya M.

    2012-01-01

    A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women’s health. PMID:23243579

  19. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants. PMID:27424913

  20. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants.

  1. Response of thunderstorm activity in data of neutron monitoring at Tien Shan

    NASA Astrophysics Data System (ADS)

    Antonova, Valentina; Kryukov, Sergey; Lutsenko, Vadim

    2015-04-01

    We present results of the study of data of the monitoring of high-energy and thermal neutrons at Tien Shan at different stages of thunderstorm activity. The data of the neutron monitoring were used taking into account the barometric effect. The intensity of the neutron component of cosmic rays is recorded in seven energy ranges. The electric field has values of ~ 100 V/m under fair weather conditions. Standard deviation of minute values of the neutron monitor data at the high altitude station does not exceed 0.5-0.6 %. Found that the standard deviation of the data during thunderstorms always exceeds these values. We selected events during the passage of thunderstorm clouds over the high altitude station without lightning discharges or with a small number of them. It was found that the particle rate of the neutron monitor changes in antiphase with the electric field changes. Atmospheric electric field of positive polarity decreases the count rate of the neutron monitor, and negative polarity - increases. Change of the count rate occurs at values of electric field ≥ 10-15 kV/m and reaches 2 %. The neutron monitor at the high-altitude station has the ability to measure the energy of recorded particles through determination of their multiplicity. We experimentally established that the sensitivity of the detected particles to change in Ez increases with decreasing their energy. The upper energy threshold of sensitivity of neutrons to change electric field is ~10 GeV. The physical mechanism of effect is based on lead nucleus capture of soft negative muons with the subsequent generation of neutrons. It is known that 7% of the neutron monitor count rate caused by negative muons. Absence of this effect in thermal neutrons data confirms the conclusion since the main difference of the thermal neutrons detector from the neutron monitor is the absence of the lead. In the active phase of a thunderstorm in the formed thundercloud the picture of distribution of charges is

  2. Prompt Gamma-Ray Neutron Activation Analysis (PGNAA) for Elemental Analysis

    SciTech Connect

    Robin P. Gardner

    2006-04-11

    This research project was to improve the prompt gamma-ray neutron activation analysis (PGNAA) measurement approach for bulk analysis, oil well logging, and small sample thermal enutron bean applications.

  3. Analysis of body calcium (regional changes in body calcium by in vivo neutron activation analysis)

    NASA Technical Reports Server (NTRS)

    Suki, W.; Johnson, P. C.; Leblanc, A.; Evans, H. J.

    1981-01-01

    The effect of space flight on urine and fecal calcium loss was documented during the three long-term Skylab flights. Neutron activation analysis was used to determine regional calcium loss. Various designs for regional analysis were investigated.

  4. Characteristics and application of spherical-type activation detectors in neutron spectrum measurements at a boron neutron capture therapy (BNCT) facility

    NASA Astrophysics Data System (ADS)

    Lin, Heng-Xiao; Chen, Wei-Lin; Liu, Yuan-Hao; Sheu, Rong-Jiun

    2016-03-01

    A set of spherical-type activation detectors was developed aiming to provide better determination of the neutron spectrum at the Tsing Hua Open-pool Reactor (THOR) BNCT facility. An activation foil embedded in a specially designed spherical holder exhibits three advantages: (1) minimizing the effect of neutron angular dependence, (2) creating response functions with broadened coverage of neutron energies by introducing additional moderators or absorbers to the central activation foil, and (3) reducing irradiation time because of improved detection efficiencies to epithermal neutron beam. This paper presents the design concept and the calculated response functions of new detectors. Theoretical and experimental demonstrations of the performance of the detectors are provided through comparisons of the unfolded neutron spectra determined using this method and conventional multiple-foil activation techniques.

  5. Trace element analysis of K, U and Th in high purity materials by neutron activation analysis

    SciTech Connect

    Pillalamarri, Ila

    2005-09-08

    The concept and usage of 'high purity' are explained. Trace element analysis of K, U and Th by neutron activation analysis is described, the radio-isotopes and their corresponding gamma-rays used to identify the elements are listed. The interfering elements are described. The advantages and disadvantages of using neutron activation analysis are discussed. Some examples of trace impurity determinations in high purity materials are provided.

  6. NOTE: Total body-calcium measurements: comparison of two delayed-gamma neutron activation facilities

    NASA Astrophysics Data System (ADS)

    Ma, R.; Ellis, K. J.; Yasumura, S.; Shypailo, R. J.; Pierson, R. N., Jr.

    1999-06-01

    This study compares two independently calibrated delayed-gamma neutron activation (DGNA) facilities, one at the Brookhaven National Laboratory (BNL), Upton, New York, and the other at the Children's Nutrition Research Center (CNRC), Houston, Texas that measure total body calcium (TBCa). A set of BNL phantoms was sent to CNRC for neutron activation analysis, and a set of CNRC phantoms was measured at BNL. Both facilities showed high precision (<2%), and the results were in good agreement, within 5%.

  7. Convenient method of simultaneously analyzing aluminum and magnesium in pharmaceutical dosage forms using californium-252 thermal neutron activation

    SciTech Connect

    Landolt, R.R.; Hem, S.L.

    1983-05-01

    A commercial antacid suspension containing aluminum hydroxide and magnesium hydroxide products was used as a model sample to study the use of a californium-252 thermal neutron activation as a method for quantifying aluminum content as well as for the simultaneous assay of aluminum and magnesium. A 3.5-micrograms californium-252 source was used for the activation, and the induced aluminum-28 and magnesium-27 activity was simultaneously measured by sodium iodide crystal gamma-ray spectrometry using dual single-channel analyzers and scalers. The antacid suspension was contained in a chamber designed with the unique capability of serving as the container for counting the induced radioactivity in addition to being the irradiation chamber itself. This pilot study demonstrated that use of more intense californium-252 sources, which are commonly available, would provide a method that is competitive with the ethylenediaminetetraacetic acid titration method in precision and in other aspects as well.

  8. A sensitive and facile assay for the measurement of activated protein C activity levels in vivo.

    PubMed

    Orthner, C L; Kolen, B; Drohan, W N

    1993-05-01

    Activated protein C (APC) is a serine protease which plays an important role as a naturally occurring antithrombotic enzyme. APC, which is formed by thrombin-catalyzed limited proteolysis of the zymogen protein C, functions as an anticoagulant by proteolytic inactivation of the coagulation cofactors VIIIa and Va: APC is inhibited by several members of the serpin family as well a by alpha 2-macroglobulin. APC is being developed as a therapeutic for the prevention and treatment of thrombosis. We have developed an assay to quantify circulating levels of enzymatically active APC during its administration to patients, in healthy individuals, and in various disease states. This assay utilizes an EDTA-dependent anti-protein C monoclonal antibody (Mab) 7D7B10 to capture both APC and protein C from plasma, prepared from blood collected in an anticoagulant supplemented with the reversible inhibitor p-aminobenzamidine. Mab 7D7B10-derivatized agarose beads are added to the wells of a 96-well filtration plate, equilibrated with Tris-buffered saline, and incubated for 10 min with 200 microliters of plasma. After washing, APC and protein C are eluted from the immunosorbent beads with a calcium-containing buffer into the wells of a 96-well microtiter plate containing antithrombin III (ATIII) and heparin. The amidolytic activity of APC is then measured on a kinetic plate reader following the addition of L-pyroglutamyl-L-prolyl-L-arginine-p-nitroanilide (S-2366) substrate. The rate of substrate hydrolysis was proportional to APC concentration over a 200-fold concentration range (5.0 to 1,000 ng/ml) when measured continuously over a 15 to 30 min time period.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  10. Utilization of recycled neutron source to teach prompt gamma analysis activation-PGNA

    NASA Astrophysics Data System (ADS)

    Delgado-Correal, Camilo; Munera, Hector

    2008-03-01

    Neutron activation analysis based on prompt gamma ray emission has significantly developed during the past twenty years. The technique is particularly suited for the identification of low atomic number elements, as nitrogen that is a main component of drugs and explosives. Identification of these substances is important in the context of humanitarian demining, and in the control of illicit traffic of drugs and explosives. As a good example of recycling of radioactive sources, a ^241Am-Be neutron source emitting 10^7neutron/s, that was not longer in use for other purposes at Ingeominas, was used to build a neutron irradiator that can be used to teach prompt gamma ray analysis, and other nuclear techniques. We irradiated individual samples, each about 4 gram, of three different elements: nitrogen in urea, silicon in milled rock, and cadmium in cadmium oxide. The prompt gamma rays emitted in the nuclear reactions ^112Cd (neutron,gamma) ^113Cd, ^28Si (neutron,gamma) ^29Si and ^14N (neutron,gamma) ^15N were identified using a well-type NaI (Tl) detector, connected to a multi-channel analyzer.

  11. Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2008-10-01

    Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including >2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up.

  12. DOSE PROFILE MODELING OF IDAHO NATIONAL LABORATORY’S ACTIVE NEUTRON INTERROGATION TEST FACILITY

    SciTech Connect

    D. L. Chichester; E. H. Seabury; J. M. Zabriskie; J. Wharton; A. J. Caffrey

    2009-06-01

    A new research and development laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for DT fusion (14.1 MeV) neutron generators (2 x 108 neutrons per second), DD fusion (2.5 MeV) neutron generators (up to 2 x 106 neutrons per second), and 252Cf spontaneous fission neutron sources (6.7 x 107 neutrons per second, 30 micrograms). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for 252Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield wall and entrance maze and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  13. Determination of (n,γ) Cross Sections of 241Am by Cold Neutron Activation

    NASA Astrophysics Data System (ADS)

    Genreith, C.; Rossbach, M.; Révay, Zs.; Kudejova, P.

    2014-05-01

    Accurate cross section data of actinides are crucial for criticality calculations of GEN IV reactors and transmutation but also for analytical purposes such as nuclear waste characterization, decommissioning of nuclear installations and safeguard applications. Tabulated data are inconsistent and sometimes associated with large uncertainties. Neutron activation with external cold neutron beams from high flux reactors offers a chance for determination of accurate capture cross sections scalable to the whole 1/√{E}-region even for isotopes with low-lying resonances like 241Am. Preparation of 241Am samples for irradiation at the PGAA station of the FRM II in Garching has been optimized together with PTB in Braunschweig. Two samples were irradiated together with gold flux monitors to extract the thermal neutron capture cross section after appropriate corrections for attenuation of neutrons and photons in the sample. For one sample, the thermal ground state neutron capture cross section was measured as 663.0 ± 28.8 b. The thermal neutron capture cross section was calculated to 725.4 ± 34.4 b. For the other sample, a ground state neutron capture cross section of 649.9 ± 28.2 b was measured and a thermal neutron capture cross section of 711.1 ± 33.9 b was derived.

  14. Assessing Kinase Activity in Plants with In-Gel Kinase Assays.

    PubMed

    Wang, Pengcheng; Zhu, Jian-Kang

    2016-01-01

    The in-gel protein kinase assay is a powerful method to measure the protein phosphorylation activity of specific protein kinases. Any protein substrate can be embedded in polyacrylamide gels where they can be phosphorylated by protein kinases that are separated in the gel under denaturing conditions and then renatured. The kinase activity can be visualized in situ in the gels by autoradiography. This method has been used to compare the activities of protein kinases in parallel samples or to identify their potential substrates. Here, we describe in detail an in-gel kinase assay to measure the activity of some protein kinases in plants.

  15. SWAN - Detection of explosives by means of fast neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-10-01

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project "Accelerators & Detectors" (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  16. beta-Galactosidase activity assay using far-red-shifted fluorescent substrate DDAOG.

    PubMed

    Gong, Haibiao; Zhang, Bin; Little, Garrick; Kovar, Joy; Chen, Huaxian; Xie, Wen; Schutz-Geschwender, Amy; Olive, D Michael

    2009-03-01

    beta-Galactosidase (beta-gal) is commonly used as a reporter gene in biological research, and a wide variety of substrates have been developed to assay its activity. One substrate, 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) beta-d-galactopyranoside (DDAOG), can be cleaved by beta-gal to produce 7-hydroxy-9H(I,3-dichloro-9,9-dimethylacridin-2-one) (DDAO). On excitation, DDAO generates a far-red-shifted fluorescent signal. Using this substrate, we developed a beta-gal activity assay method. The DDAO signal was stable for at least 18h. The signal intensity was linearly related to both the enzyme amount and substrate concentration. An optimized buffer for the beta-gal/DDAOG assay was also formulated. When compared with the colorimetric substrate o-nitrophenyl-beta-d-galactopyranoside (ONPG), the signal-to-background ratio of the DDAOG method was approximately 12-fold higher. The beta-gal/DDAOG assay method was also tested in transiently transfected cells employing both pharmacologically and genetically inducible gene expression systems. The ability to detect signal induction is comparable to a similar assay using luciferase as the signal generating moiety. The beta-gal/DDAOG assay method should provide a fluorescent reporter assay system for the wide variety of beta-gal systems currently in use. PMID:19103143

  17. A novel prothrombin time assay for assessing the anticoagulant activity of oral factor Xa inhibitors.

    PubMed

    Barrett, Yu Chen; Wang, Zhaoqing; Knabb, Robert M

    2013-09-01

    Conventional prothrombin time (PT) assays have limited sensitivity and dynamic range in monitoring the anticoagulant activity of direct factor Xa inhibitors. Hence, new assays are needed. We modified a PT assay by adding calcium chloride (CaCl2) to the thromboplastin reagent to increase assay dynamic range and improve sensitivity. Effects of calcium and sodium ion concentrations, and sample handling, were evaluated to optimize assay performance. Increasing concentrations of calcium ions produced progressive increases in PT across the factor Xa inhibitor concentrations of 0 to 2500 nmol/L for razaxaban and apixaban. The greatest effect was seen when the thromboplastin reagent was diluted 1:2.25 with 100 mmol/L CaCl2 (thus selected for routine use). The optimized assay showed an interassay precision of 1.5 to 9.3 percentage coefficient of variation (%CV) for razaxaban and 3.1 to 4.6 %CV for apixaban. We conclude that the modified PT assay is likely to be suitable as a pharmacodynamic marker for activity at therapeutic concentrations of factor Xa inhibitors.

  18. A highly sensitive telomerase activity assay that eliminates false-negative results caused by PCR inhibitors.

    PubMed

    Yaku, Hidenobu; Murashima, Takashi; Miyoshi, Daisuke; Sugimoto, Naoki

    2013-01-01

    An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR) on magnetic beads (MBs) and subsequent application of cycling probe technology (CPT) is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGG)n-3') of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF) cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity.

  19. A highly sensitive telomerase activity assay that eliminates false-negative results caused by PCR inhibitors.

    PubMed

    Yaku, Hidenobu; Murashima, Takashi; Miyoshi, Daisuke; Sugimoto, Naoki

    2013-01-01

    An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR) on magnetic beads (MBs) and subsequent application of cycling probe technology (CPT) is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGG)n-3') of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF) cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity. PMID:24071983

  20. Matrix effects of TRU (transuranic) assays using the SWEPP PAN assay system

    SciTech Connect

    Smith, J.R.

    1990-08-01

    The Drum Assay System (DAS) at the Stored Waste Experimental Pilot Plant (SWEPP) is a second-generation active-passive neutron assay system. It has been used to assay over 5000 208-liter drums of transuranic waste from the Rocky Flats Plant (RFP). Data from these assays have been examined and compared with the assays performed at Rocky Flats, mainly utilize counting of {sup 239}Pu gamma rays. For the most part the passive assays are in very good agreement with the Rocky Flats assays. The active assays are strongly correlated with the results of the other two methods, but require matrix-dependent correction factors beyond those provided by the system itself. A set of matrix-dependent correction factors has been developed from the study of the assay results. 3 refs., 4 figs., 3 tabs.

  1. New immunocapture enzyme (ICE) assay for quantification of cancer procoagulant activity: studies of inhibitors.

    PubMed

    Mielicki, W P; Tagawa, M; Gordon, S G

    1994-04-01

    A new, sensitive and specific immunocapture enzyme (ICE) assay for quantitation of the enzymatic activity of cancer procoagulant (CP) has been developed. The assay had good reproducibility (inter- and intra-assay CV were 6.4% and 5.7% respectively) and was linear for concentrations of CP from 0.5 microgram/ml to 10 micrograms/ml (r2 = 0.995). Using this assay the inhibition of CP by iodoacetamide, mercuric chloride, E-64, leupeptin and antipain was demonstrated. There was no significant effect of cystatin and natural plasma proteinase inhibitors alpha 1-antitrypsin, alpha 1-antichymotrypsin, alpha 2-macroglobulin and antithrombin-III/heparin, on the activity of the CP.

  2. Time-resolved Förster-resonance-energy-transfer DNA assay on an active CMOS microarray

    PubMed Central

    Schwartz, David Eric; Gong, Ping; Shepard, Kenneth L.

    2008-01-01

    We present an active oligonucleotide microarray platform for time-resolved Förster resonance energy transfer (TR-FRET) assays. In these assays, immobilized probe is labeled with a donor fluorophore and analyte target is labeled with a fluorescence quencher. Changes in the fluorescence decay lifetime of the donor are measured to determine the extent of hybridization. In this work, we demonstrate that TR-FRET assays have reduced sensitivity to variances in probe surface density compared with standard fluorescence-based microarray assays. Use of an active array substrate, fabricated in a standard complementary metal-oxide-semiconductor (CMOS) process, provides the additional benefits of reduced system complexity and cost. The array consists of 4096 independent single-photon avalanche diode (SPAD) pixel sites and features on-chip time-to-digital conversion. We demonstrate the functionality of our system by measuring a DNA target concentration series using TR-FRET with semiconductor quantum dot donors. PMID:18515059

  3. Suggested improvements to the standard filter paper assay used to measure cellulase activity.

    PubMed

    Coward-Kelly, Guillermo; Aiello-Mazzari, Cateryna; Kim, Sehoon; Granda, Cesar; Holtzapple, Mark

    2003-06-20

    Two suggestions can be found in the literature to improve the reproducibility of the Mandels' filter paper assay: add supplemental cellobiase and increase the boiling time for color development. Here we provide data that strongly supports adding supplemental cellobiase. Adding supplemental cellobiase increased assay response by 56%. Cellulases from different sources have different cellobiase activities, which would cause significant variation in the assay response. There is no need for additional boiling time-5 minutes is sufficient. For maximum reproducibility, it is essential that the water bath vigorously boil so that temperature excursions are minimized.

  4. Suggested improvements to the standard filter paper assay used to measure cellulase activity.

    PubMed

    Coward-Kelly, Guillermo; Aiello-Mazzari, Cateryna; Kim, Sehoon; Granda, Cesar; Holtzapple, Mark

    2003-06-20

    Two suggestions can be found in the literature to improve the reproducibility of the Mandels' filter paper assay: add supplemental cellobiase and increase the boiling time for color development. Here we provide data that strongly supports adding supplemental cellobiase. Adding supplemental cellobiase increased assay response by 56%. Cellulases from different sources have different cellobiase activities, which would cause significant variation in the assay response. There is no need for additional boiling time-5 minutes is sufficient. For maximum reproducibility, it is essential that the water bath vigorously boil so that temperature excursions are minimized. PMID:12673775

  5. Heavy metal impurities impair the spectrophotometric assay of ribulose bisphosphate carboxylase activity.

    PubMed

    Walbot, V

    1977-01-01

    An inverse relationship between the concentration of ribose 5-phosphate and apparent ribulose bisphosphate carboxylase activity was observed. The Lilley-Walker assay spectrophotometric assay, in which the 3-phosphoglyceric acid-dependent oxidation of reduced pyridine nucleotide is measured, is shown to be highly sensitive to inhibition by heavy metals. Analysis of the purity of reagents showed that ribose 5-phosphate is often contaminated with lead in sufficient quantity to impair the assay. This noncompetitive inhibition by ribose 5-phosphate is independent of the competitive inhibition of this substrate as an ATP sink as described by Slabas and Walker. A method for checking reagent purity and removing heavy metal contaminants is described.

  6. Comparison of Impurities in Charcoal Sorbents Found by Neutron Activation Analysis

    SciTech Connect

    Doll, Charles G.; Finn, Erin C.; Cantaloub, Michael G.; Greenwood, Lawrence R.; Kephart, Jeremy; Kephart, Rosara F.

    2013-01-01

    Abstract: Neutron activation of gas samples in a reactor often requires a medium to retain sufficient amounts of the gas for analysis. Charcoal is commonly used to adsorb gas and hold it for activation; however, the amount of activated sodium in the charcoal after irradiation swamps most signals of interest. Neutron activation analysis (NAA) was performed on several commonly available charcoal samples in an effort to determine the activation background. The results for several elements, including the dominant sodium element, are reported. It was found that ECN charcoal had the lowest elemental background, containing sodium at 2.65 ± 0.05 ppm, as well as trace levels of copper and tungsten.

  7. Performance test results of noninvasive characterization of Resource Conservation and Recovery Act surrogate waste by prompt gamma neutron activation analysis

    SciTech Connect

    Gehrke, R.J.; Streier, G.G.

    1997-03-01

    During FY-96, a performance test was carried out with funding from the Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) to determine the noninvasive elemental assay capabilities of commercial companies for Resource Conservation and Recovery Act (RCRA) metals present in 8-gal drums containing surrogate waste. Commercial companies were required to be experienced in the use of prompt gamma neutron activation analysis (PGNAA) techniques and to have a prototype assay system with which to conduct the test assays. Potential participants were identified through responses to a call for proposals advertised in the Commerce Business Daily and through personal contacts. Six companies were originally identified. Two of these six were willing and able to participate in the performance test, as described in the test plan, with some subsidizing from the DOE MWFA. The tests were conducted with surrogate sludge waste because (1) a large volume of this type of waste awaits final disposition and (2) sludge tends to be somewhat homogeneous. The surrogate concentrations of the above RCRA metals ranged from {approximately} 300 ppm to {approximately} 20,000 ppm. The lower limit was chosen as an estimate of the expected sensitivity of detection required by noninvasive, pretreatment elemental assay systems to be of value for operational and compliance purposes and to still be achievable with state-of-the-art methods of analysis. The upper limit of {approximately} 20,000 ppm was chosen because it is the opinion of the author that assay above this concentration level is within current state-of-the-art methods for most RCRA constituents. This report is organized into three parts: Part 1, Test Plan to Evaluate the Technical Status of Noninvasive Elemental Assay Techniques for Hazardous Waste; Part 2, Participants` Results; and Part 3, Evaluation of and Comments on Participants` Results.

  8. Passive and Active Fast-Neutron Imaging in Support of Advanced Fuel Cycle Initiative Safeguards Campaign

    SciTech Connect

    Blackston, Matthew A; Hausladen, Paul

    2010-04-01

    Results from safeguards-related passive and active coded-aperture fast-neutron imaging measurements of plutonium and highly enriched uranium (HEU) material configurations performed at Idaho National Laboratory s Zero Power Physics Reactor facility are presented. The imaging measurements indicate that it is feasible to use fast neutron imaging in a variety of safeguards-related tasks, such as monitoring storage, evaluating holdup deposits in situ, or identifying individual leached hulls still containing fuel. The present work also presents the first demonstration of imaging of differential die away fast neutrons.

  9. Active-Interrogation Measurements of Induced-Fission Neutrons from Low-Enriched Uranium

    SciTech Connect

    J. L. Dolan; M. J. Marcath; M. Flaska; S. A. Pozzi; D. L. Chichester; A. Tomanin; P. Peerani; G. Nebbia

    2012-07-01

    Protection and control of nuclear fuels is paramount for nuclear security and safeguards; therefore, it is important to develop fast and robust controlling mechanisms to ensure the safety of nuclear fuels. Through both passive- and active-interrogation methods we can use fast-neutron detection to perform real-time measurements of fission neutrons for process monitoring. Active interrogation allows us to use different ranges of incident neutron energy to probe for different isotopes of uranium. With fast-neutron detectors, such as organic liquid scintillation detectors, we can detect the induced-fission neutrons and photons and work towards quantifying a sample’s mass and enrichment. Using MCNPX-PoliMi, a system was designed to measure induced-fission neutrons from U-235 and U-238. Measurements were then performed in the summer of 2010 at the Joint Research Centre in Ispra, Italy. Fissions were induced with an associated particle D-T generator and an isotopic Am-Li source. The fission neutrons, as well as neutrons from (n, 2n) and (n, 3n) reactions, were measured with five 5” by 5” EJ-309 organic liquid scintillators. The D-T neutron generator was available as part of a measurement campaign in place by Padova University. The measurement and data-acquisition systems were developed at the University of Michigan utilizing a CAEN V1720 digitizer and pulse-shape discrimination algorithms to differentiate neutron and photon detections. Low-enriched uranium samples of varying mass and enrichment were interrogated. Acquired time-of-flight curves and cross-correlation curves are currently analyzed to draw relationships between detected neutrons and sample mass and enrichment. In the full paper, the promise of active-interrogation measurements and fast-neutron detection will be assessed through the example of this proof-of-concept measurement campaign. Additionally, MCNPX-PoliMi simulation results will be compared to the measured data to validate the MCNPX-PoliMi code

  10. A portable active interrogation system using a switchable AmBe neutron source

    NASA Astrophysics Data System (ADS)

    Allen, Matthew; Hertz, Kristin; Kunz, Christopher; Mascarenhas, Nicholas

    2005-09-01

    Active neutron interrogation is an effective technique used to locate fissionable material. This paper discusses a portable system that utilizes a AmBe neutron source. The AmBe source consists of an americium alpha source and a beryllium target that can be switched into alignment to turn the source on and out of alignment to turn the source off. This offers a battery operated backpack portable source. The detector system that has been fabricated for use with this source is a fifteen tube 3He neutron detector. The results of initial experiments with the detector and MCNP calculations are discussed.

  11. Development of the prototype pneumatic transfer system for ITER neutron activation system.

    PubMed

    Cheon, M S; Seon, C R; Pak, S; Lee, H G; Bertalot, L

    2012-10-01

    The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.

  12. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. PMID:8083048

  13. Benchmark test of neutron transport calculations: Indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing

    SciTech Connect

    Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko; Oka, Takamitsu

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.

  14. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen.

  15. A high-throughput assay of NK cell activity in whole blood and its clinical application

    SciTech Connect

    Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung; Yoon, Joo Chun; Lee, Hyo Joon; Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan; Lee, Jae Myun; Lee, Kang Young; Kim, Jongsun

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.

  16. Simultaneous {sup 233}U and{sup 235}U characterization through the assay of delayed neutron temporal behavior

    SciTech Connect

    Sellers, M. T.; Corcoran, E. C.; Kelly, D. G.

    2012-07-01

    Aqueous solutions containing dissolved uranium-233 and uranium-235 were irradiated for 60's in the SLOWPOKE-2 reactor at the Royal Military College of Canada. The temporal behavior of the delayed neutrons produced was recorded by the Facility's Delayed Neutron Counting (DNC) system. The percentage of uranium-233 as a function of total fissile mass present in each sample ranged from 0 to 100% and was predicted by the DNC system with average absolute errors of {+-} 4%. Future work will upgrade the system electronics and software to reduce both uncertainties in timings and electrical noise. Mixture analysis will also be expanded to include plutonium-239 and fissile materials contained in non-aqueous matrices. (authors)

  17. Calibration of the Brookhaven National Laboratory delayed gamma neutron activation facility to measure total body calcium.

    PubMed

    Ma, R; Stamatelatos, I E; Yasumura, S

    2000-05-01

    Differences in body size and shape can cause large variances in the in vivo results of neutron activation analysis. To introduce corrections for body size for the delayed gamma neutron activation facility at Brookhaven National Laboratory, "reference man"-sized and "reference woman"-sized phantoms were constructed. Simulation results using the Monte Carlo Neutron and Photon Transport code also provided correction factors for people of different sizes. For individuals with a body mass index (BMI = weight (kg)/height (m)2) between 20 and 30, no correction was required. At BMIs greater than 30, the effects of neutron attenuation were significant and a correction factor of CF = -0.0192 x BMI + 1.5635 can be applied. PMID:10865727

  18. Medical applications of in vivo neutron inelastic scattering and neutron activation analysis: Technical similarities to detection of explosives and contraband

    NASA Astrophysics Data System (ADS)

    Kehayias, J. J.

    2001-07-01

    Nutritional status of patients can be evaluated by monitoring changes in elemental body composition. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used in vivo to assess elements characteristic of specific body compartments. There are similarities between the body composition techniques and the detection of hidden explosives and narcotics. All samples have to be examined in depth and the ratio of elements provides a "signature" of the chemical of interest. The N/H and C/O ratios measure protein and fat content in the body. Similarly, a high C/O ratio is characteristic of narcotics and a low C/O together with a strong presence of N is a signature of some explosives. The available time for medical applications is about 20 min—compared to a few seconds for the detection of explosives—but the permitted radiation exposure is limited. In vivo neutron analysis is used to measure H, O, C, N, P, Na, Cl, and Ca for the study of the mechanisms of lean tissue depletion with aging and wasting diseases, and to investigate methods of preserving function and quality of life in the elderly.

  19. How Do Detergents Work? A Qualitative Assay to Measure Amylase Activity

    ERIC Educational Resources Information Center

    Novo, M. Teresa; Casanoves, Marina; Garcia-Vallvé, Santi; Pujadas, Gerard; Mulero, Miquel; Valls, Cristina

    2016-01-01

    We present a practical activity focusing on two main goals: to give learners the opportunity to experience how the scientific method works and to increase their knowledge about enzymes in everyday situations. The exercise consists of determining the amylase activity of commercial detergents. The methodology is based on a qualitative assay using a…

  20. A novel live cell assay to measure diacylglycerol lipase α activity

    PubMed Central

    Singh, Praveen K.; Markwick, Rachel; Howell, Fiona V.; Williams, Gareth; Doherty, Patrick

    2016-01-01

    Diacylglycerol lipase α (DAGLα) hydrolyses DAG to generate the principal endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGLα dependent cannabinoid (CB) signalling has been implicated in numerous processes including axonal growth and guidance, adult neurogenesis and retrograde signalling at the synapse. Recent studies have implicated DAGLα as an emerging drug target for several conditions including pain and obesity. Activity assays are critical to the drug discovery process; however, measurement of diacylglycerol lipase (DAGL) activity using its native substrate generally involves low-throughput MS techniques. Some relatively high-throughput membrane based assays utilizing surrogate substrates have been reported, but these do not take into account the rate-limiting effects often associated with the ability of a drug to cross the cell membrane. In the present study, we report the development of a live cell assay to measure DAGLα activity. Two previously reported DAGLα surrogate substrates, p-nitrophenyl butyrate (PNPB) and 6,8-difluoro-4-methylumbelliferyl octanoate (DiFMUO), were evaluated for their ability to detect DAGLα activity in live cell assays using a human cell line stably expressing the human DAGLα transgene. Following optimization, the small molecule chromogenic substrate PNPB proved to be superior by providing lower background activity along with a larger signal window between transfected and parental cells when compared with the fluorogenic substrate DiFMUO. The assay was further validated using established DAGL inhibitors. In summary, the live cell DAGLα assay reported here offers an economical and convenient format to screen for novel inhibitors as part of drug discovery programmes and compliments previously reported high-throughput membrane based DAGL assays. PMID:27013337

  1. A novel live cell assay to measure diacylglycerol lipase α activity.

    PubMed

    Singh, Praveen K; Markwick, Rachel; Howell, Fiona V; Williams, Gareth; Doherty, Patrick

    2016-06-01

    Diacylglycerol lipase α (DAGLα) hydrolyses DAG to generate the principal endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGLα dependent cannabinoid (CB) signalling has been implicated in numerous processes including axonal growth and guidance, adult neurogenesis and retrograde signalling at the synapse. Recent studies have implicated DAGLα as an emerging drug target for several conditions including pain and obesity. Activity assays are critical to the drug discovery process; however, measurement of diacylglycerol lipase (DAGL) activity using its native substrate generally involves low-throughput MS techniques. Some relatively high-throughput membrane based assays utilizing surrogate substrates have been reported, but these do not take into account the rate-limiting effects often associated with the ability of a drug to cross the cell membrane. In the present study, we report the development of a live cell assay to measure DAGLα activity. Two previously reported DAGLα surrogate substrates, p-nitrophenyl butyrate (PNPB) and 6,8-difluoro-4-methylumbelliferyl octanoate (DiFMUO), were evaluated for their ability to detect DAGLα activity in live cell assays using a human cell line stably expressing the human DAGLα transgene. Following optimization, the small molecule chromogenic substrate PNPB proved to be superior by providing lower background activity along with a larger signal window between transfected and parental cells when compared with the fluorogenic substrate DiFMUO. The assay was further validated using established DAGL inhibitors. In summary, the live cell DAGLα assay reported here offers an economical and convenient format to screen for novel inhibitors as part of drug discovery programmes and compliments previously reported high-throughput membrane based DAGL assays.

  2. Cold neutron prompt gamma-ray activation analysis at NIST - an overview

    SciTech Connect

    Paul, R.L.; Lindstrom, R.M.

    1994-12-31

    An instrument for cold neutron capture prompt gamma-ray activation analysis (CNPGAA), located in the cold neutron research facility (CNRF) at the National Institute of Standards and Technology (NIST) has proven useful for the analysis of hydrogen and other elements in a wide variety of materials. The intent of this paper is to provide an overview of the instrument, focusing on recent improvements and the impact of these improvement on measurements.

  3. Determination of hydrogen in titanium alloys by cold neutron prompt gamma activation analysis

    SciTech Connect

    Paul, R.L.; Lindstrom, R.M.; Greenberg, R.R.; Privett, H.M. III; Richards, W.J.

    1996-11-01

    Cold neutron prompt gamma-ray activation analysis (CNPGAA) has proven useful for the analysis of hydrogen in titanium alloys. The analysis is nondestructive, measures the entire sample, and the results are independent of the chemical form of hydrogen present. The authors have used the technique to measure H mass fractions as low as 50 mg/kg in titanium-alloy jet-engine compressor blades and to measure hydrogen in standards for neutron tomography.

  4. Simulation of a Novel Active Target for Neutron-Unbound State Measurements

    NASA Astrophysics Data System (ADS)

    Frank, Nathan; MoNA Collaboration

    2013-10-01

    Measurement of nuclei at extreme ratios of protons to neutrons is challenging due to the low production rate. New facilities will increase the production of neutron-rich isotopes, but still not reach the neutron dripline for heavier nuclei. We simulated a carbon-based active target system that could be constructed to both increase statistics while preserving the experimental resolution. This simulation is an adaptation of the in-house MoNA Collaboration C + + based simulation tool to extract the decay energy of neutron-unbound states. A number of experiments of this type have been carried out at the National Superconducting Cyclotron Laboratory (NSCL). In most experiments, we produce neutron-unbound nuclei by bombarding a Beryllium target with a radioactive beam. The nucleus of interest immediately decays into a charged particle and one or more neutrons. In this simulation, we have constructed a carbon-based active target that provides a measurement of energy loss, which is used to calculate the nuclear interaction point within the target. This additional information is used to improve the resolution or preserve the resolution of a thinner target while increasing statistics. This presentation will cover some aspects of the simulation process as well as show a resolution improvement of up to about 4 with a ~700 mg/cm2 active target compared to a Be-target. The simulation utilized experimental settings from published work. Work supported by National Science Foundation Grant #0969173.

  5. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  6. Determination of Pulmozyme (dornase alpha) stability using a kinetic colorimetric DNase I activity assay.

    PubMed

    Lichtinghagen, Ralf

    2006-07-01

    An enzymatic activity assay was developed for the determination of dornase alpha human recombinant desoxyribonuclease (DNase I) stability. The method was adapted from a colorimetric endpoint enzyme activity assay for DNase I based on the degradation of a DNA/methyl green complex. With the described modifications the kinetic measurement of enzyme activity is feasible on an automated analyzer system within a rather short time. The development of this assay was based on the need for reliable detection of a possible loss of enzyme activity after transferring the commercial therapeutic agent into sealed glass vials required for a placebo-controlled study. The measuring range of this stability test was from 0 to 3000 U/L corresponding to 0-120% of the original enzyme activity; CV values of control solutions inside the measuring range were between 3% and 5%. The enzyme activity decreased less than 15% during the observation period of 180 days. In conclusion the current kinetic assay is a reliable method for a simple time-saving determination of DNase I activity to test Pulmozyme stability as required for quality control. As dornase alpha is used for inhalation, this method also proved its reliability in testing DNase stability during aerosolization with new inhalation devices (e-flow). PMID:16682175

  7. Implementation of an enhanced, permanently installed neutron activation diagnostic hardware for NIF

    NASA Astrophysics Data System (ADS)

    Jedlovec, Donald R.; Edwards, Ellen R.; Carrera, Jorge A.; Yeamans, Charles B.

    2015-08-01

    Neutron activation diagnostics are commonly employed as baseline neutron yield and relative spatial flux measurement instruments. Much insight into implosion performance has been gained by deployment of up to 19 identical activation diagnostic samples distributed around the target chamber at unique angular locations. Their relative simplicity and traceability provide neutron facilities with a diagnostic platform that is easy to implement and verify. However, the current National Ignition Facility (NIF) implementation relies on removable activation samples, creating a 1-2 week data turn-around time and considerable labor costs. The system described here utilizes a commercially-available lanthanum bromide (cerium-doped) scintillator with an integrated MCA emulator as the counting system and a machined zirconium-702 cap as the activation medium. The device is installed within the target bay and monitored remotely. Additionally, this system allows the placement of any activation medium tailored to the specific measurement needs. We discuss the design and function of a stand-alone and permanently installed neutron activation detector unit to measure the yield and average energy of a nominal 14 MeV neutron source with a pulse length less than one nanosecond.

  8. Improved sensitivity of an acid sphingomyelinase activity assay using a C6:0 sphingomyelin substrate.

    PubMed

    Chuang, Wei-Lien; Pacheco, Joshua; Cooper, Samantha; Kingsbury, Jonathan S; Hinds, John; Wolf, Pavlina; Oliva, Petra; Keutzer, Joan; Cox, Gerald F; Zhang, Kate

    2015-06-01

    Short-chain C6-sphingomyelin is an artificial substrate that was used in an acid sphingomyelinase activity assay for a pilot screening study of patients with Niemann-Pick disease types A and B. Using previously published multiplex and single assay conditions, normal acid sphingomyelinase activity levels (i.e. false negative results) were observed in two sisters with Niemann-Pick B who were compound heterozygotes for two missense mutations, p.C92W and p.P184L, in the SMPD1 gene. Increasing the sodium taurocholate detergent concentration in the assay buffer lowered the activity levels of these two patients into the range observed with other patients with clear separation from normal controls. PMID:26937397

  9. Activities of the OECD/NEA Expert Group on Assay Data for Spent Nuclear Fuel

    SciTech Connect

    Gauld, Ian C; Rugama, Yolanda

    2009-01-01

    Management of spent nuclear fuel is a key issue for many NEA member countries. In nuclear criticality safety, the decision of many countries to advance burnup credit as part of their licensing strategy has heightened recent interest in experimental data needed to validate computer codes used in burnup credit calculations. This paper discusses recent activities of an Expert Group on assay data, formed under the OECD/NEA/NSC/WPNCS (Working Party on Nuclear Criticality Safety) to help coordinate isotopic assay data activities and facilitate international collaboration between NEA member countries developing or implementing burnup credit methodologies. Recent activities of the Expert Group are described, focusing on the planned expansion of the Spent Fuel Isotopic Composition Database (SFCOMPO), and preparation of a state-of-the-art report on assay data that includes sections on recommended radiochemical analysis methods, techniques, and lessons learned from previous experiments.

  10. A modified ferrous oxidation-xylenol orange assay for lipoxygenase activity in rice grains.

    PubMed

    Timabud, Tarinee; Sanitchon, Jirawat; Pongdontri, Paweena

    2013-12-01

    Ferrous oxidation-xylenol orange assay reagent was reformulated by using spectral analysis of ferric-xylenol orange complex to detect low concentrations of lipoxygenase rice grain products. Reducing the levels of ferrous sulphate and xylenol orange in the FOX reagent enabled the detection of low concentrations of hydroperoxy fatty acid derived from lipoxygenase activity in the range of 0.1-1.5 μM. Protein, substrate and time courses of the modified FOX assay were studied to determine lipoxygenase activity in rice grain. The assay was also applicable as a high throughput technique for comparisons of lipoxygenase activity from various rice varieties. This has important implications for rapid screening for low-lipoxygenase containing rice cultivars in rice breeding program and grain quality during storage.

  11. An improved 96-well turbidity assay for T4 lysozyme activity.

    PubMed

    Toro, Tasha B; Nguyen, Thao P; Watt, Terry J

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: •Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays;•Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and•Incorporates a simplified expression and purification protocol for T4 lysozyme.

  12. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  13. Development of a spontaneously active dorsal root ganglia assay using multiwell multielectrode arrays.

    PubMed

    Newberry, Kim; Wang, Shuya; Hoque, Nina; Kiss, Laszlo; Ahlijanian, Michael K; Herrington, James; Graef, John D

    2016-06-01

    In vitro phenotypic assays of sensory neuron activity are important tools for identifying potential analgesic compounds. These assays are typically characterized by hyperexcitable and/or abnormally, spontaneously active cells. Whereas manual electrophysiology experiments provide high-resolution biophysical data to characterize both in vitro models and potential therapeutic modalities (e.g., action potential characteristics, the role of specific ion channels, and receptors), these techniques are hampered by their low throughput. We have established a spontaneously active dorsal root ganglia (DRG) platform using multiwell multielectrode arrays (MEAs) that greatly increase the ability to evaluate the effects of multiple compounds and conditions on DRG excitability within the context of a cellular network. We show that spontaneous DRG firing can be attenuated with selective Na(+) and Ca(2+) channel blockers, as well as enhanced with K(+) channel blockers. In addition, spontaneous activity can be augmented with both the transient receptor potential cation channel subfamily V member 1 agonist capsaicin and the peptide bradykinin and completely blocked with neurokinin receptor antagonists. Finally, we validated the use of this assay by demonstrating that commonly used neuropathic pain therapeutics suppress DRG spontaneous activity. Overall, we have optimized primary rat DRG cells on a multiwell MEA platform to generate and characterize spontaneously active cultures that have the potential to be used as an in vitro phenotypic assay to evaluate potential therapeutics in rodent models of pain. PMID:27052585

  14. Physical and chemical limitations to preparation of beta radioactive stents by direct neutron activation.

    PubMed

    Petelenz, Barbara; Rajchel, Bogusław; Bilski, Paweł; Misiak, Ryszard; Bartyzel, Mirosław; Wilczek, Krzysztof; Alber, Dorothea

    2003-02-01

    Pure beta emitters are the sources of choice for intracoronary irradiations in restenosis prevention. In this work we reconsidered preparation of low activity 32P sources by ion-implantation of stable 31P into highly biocompatible pure titanium stents, followed by neutron activation. Gamma-spectrometrical analysis has shown that during activations with high thermal neutrons flux production of gamma-active long-lived contaminants is much beyond the dosimetrically acceptable limit, mainly due to the competing (n,p) reactions induced by the fast neutrons on isotopes of the bulk stent material, and to a lesser extent due to (n,gamma) reactions on chemical impurities. A potential applicability of this method for obtaining alternative beta radioactive stents is discussed.

  15. Neutron Activation Analysis of Soil Samples from Different Parts of Edirne in Turkey*

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Dogan, C.; Camtakan, Z.

    2016-05-01

    The concentrations of constituent elements were determined in soil samples collected from different parts of the Maritza Basin, Edirne, Turkey. Neutron activation analysis, an extremely accurate technique, and the comparator method (using a standard) were applied for the first time in this region. After preparing the soil samples for neutron activation analysis, they were activated with thermal neutrons in a nuclear reactor, TRIGA-MARK II, at Istanbul Technical University. The activated samples were analyzed using a high-efficiency high-purity germanium detector, and gamma spectrometry was employed to determine the elemental concentration in the samples. Eight elements (chromium, manganese, cobalt, zinc, arsenic, molybdenum, cadmium, and barium) were qualitatively and quantitatively identified in 36 samples. The concentrations of some elements in the soil samples were high compared with values reported in the literature.

  16. Development of Enhanced, Permanently-Installed, Neutron Activation Diagnostic Hardware for NIF

    NASA Astrophysics Data System (ADS)

    Edwards, E. R.; Jedlovec, D. R.; Carrera, J. A.; Yeamans, C. B.

    2016-05-01

    Neutron activation diagnostics are baseline neutron yield and flux measurement instruments at the National Ignition Facility. Up to 19 activation samples are distributed around the target chamber. Currently the samples must be removed to be counted, creating a 1-2 week data turn-around time and considerable labor costs. An improved system consisting of a commercially available LaBr3(Ce) scintillator and Power over Ethernet electronics is under development. A machined zirconium-702 cap over the detector is the activation medium to measure the 90Zr(n,2n)89Zr reaction. The detectors are located at the current neutron activation diagnostic sites and monitored remotely. Because they collect data in real time yield values are returned within a few hours after a NIF shot.

  17. Determination of aluminium, silicon and magnesium in geological matrices by delayed neutron activation analysis based on k0 instrumental neutron activation analysis.

    PubMed

    Baidoo, I K; Dampare, S B; Opata, N S; Nyarko, B J B; Akaho, E H K; Quagraine, R E

    2013-12-01

    In this work, concentrations of silicon, aluminium and magnesium in geological matrices were determined by Neutron Activation Analysis based on k0-IAEA software. The optimum activation and delay times were found to be 5 min and 15-20 min respectively for the determination of Si via (29)Si (n,p) (29)Al reaction. The adopted irradiation scheme did not work for the determination of magnesium. Each sample was irradiated under a thermal neutron flux density of 5.0 × 10(11) ncm(-2)s(-1). Cadmium covered activation indicated that a permanent epithermal irradiation site for research reactors would be very useful for routine determination of silicon in environmental samples. PMID:23999324

  18. Absolute calibration method for laser megajoule neutron yield measurement by activation diagnostics

    NASA Astrophysics Data System (ADS)

    Landoas, Olivier; Yu Glebov, Vladimir; Rossé, Bertrand; Briat, Michelle; Disdier, Laurent; Sangster, Thomas C.; Duffy, Tim; Marmouget, Jean Gabriel; Varignon, Cyril; Ledoux, Xavier; Caillaud, Tony; Thfoin, Isabelle; Bourgade, Jean-Luc

    2011-07-01

    The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat à l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range.

  19. Zebrafish-based reporter gene assays reveal different estrogenic activities in river waters compared to a conventional human-derived assay.

    PubMed

    Sonavane, Manoj; Creusot, Nicolas; Maillot-Maréchal, Emmanuelle; Péry, Alexandre; Brion, François; Aїt-Aïssa, Selim

    2016-04-15

    Endocrine disrupting chemicals (EDCs) act on the endocrine system through multiple mechanisms of action, among them interaction with estrogen receptors (ERs) is a well-identified key event in the initiation of adverse outcomes. As the most commonly used estrogen screening assays are either yeast- or human-cell based systems, the question of their (eco)toxicological relevance when assessing risks for aquatic species can be raised. The present study addresses the use of zebrafish (zf) derived reporter gene assays, both in vitro (i.e. zf liver cell lines stably expressing zfERα, zfERβ1 and zfERβ2 subtypes) and in vivo (i.e. transgenic cyp19a1b-GFP zf embryos), to assess estrogenic contaminants in river waters. By investigating 20 French river sites using passive sampling, high frequencies of in vitro zfER-mediated activities in water extracts were measured. Among the different in vitro assays, zfERβ2 assay was the most sensitive and responsive one, enabling the detection of active compounds at all investigated sites. In addition, comparison with a conventional human-based in vitro assay highlighted sites that were able to active zfERs but not human ER, suggesting the occurrence of zf-specific ER ligands. Furthermore, a significant in vivo estrogenic activity was detected at the most active sites in vitro, with a good accordance between estradiol equivalent (E2-EQ) concentrations derived from both in vitro and in vivo assays. Overall, this study shows the relevance and usefulness of such novel zebrafish-based assays as screening tools to monitor estrogenic activities in complex mixtures such as water extracts. It also supports their preferred use compared to human-based assays to assess the potential risks caused by endocrine disruptive chemicals for aquatic species such as fish.

  20. Benchmarking of activation reaction distribution in an intermediate energy neutron field.

    PubMed

    Ogawa, Tatsuhiko; Morev, Mikhail N; Hirota, Masahiro; Abe, Takuya; Koike, Yuya; Iwai, Satoshi; Iimoto, Takeshi; Kosako, Toshiso

    2011-07-01

    Neutron-induced reaction rate depth profiles inside concrete shield irradiated by intermediate energy neutron were calculated using a Monte-Carlo code and compared with an experiment. An irradiation field of intermediate neutron produced in the forward direction from a thick (stopping length) target bombarded by 400 MeV nucleon(-1) carbon ions was arranged at the heavy ion medical accelerator in Chiba. Ordinary concrete shield of 90 cm thickness was installed 50 cm downstream the iron target. Activation detectors of aluminum, gold and gold covered with cadmium were inserted at various depths. Irradiated samples were extracted after exposure and gamma-ray spectrometry was performed for each sample. Comparison of experimental and calculated shows good agreement for both low- and high-energy neutron-induced reaction except for (27)Al(n,X)(24)Na reaction at the surface. PMID:21515619

  1. Chimeric RNA-DNA molecular beacon assay for ribonuclease H activity.

    PubMed

    Rizzo, J; Gifford, L K; Zhang, X; Gewirtz, A M; Lu, P

    2002-08-01

    Current methods to detect and assay ribonuclease H (RNase H) activity are indirect and time-consuming. Here we introduce a direct and sensitive method, based on the fluorescence quenching mechanism of molecular beacons, to assay RNA cleavage in RNA:DNA hybrids. An RNA-DNA chimeric beacon assay for RNase H enzymatic activity was developed. The substrate is a single-stranded RNA-DNA chimeric oligonucleotide labeled with a 5'-fluorescein and a 3'-DABCYL. The fluorophore (fluorescein) of the probe is held in close proximity to the quencher (DABCYL) by the RNA:DNA stem-loop structure. When the RNA sequence of the RNA:DNA hybrid stem is cleaved, the fluorophore is separated from the quencher and fluorescence can be detected as a function of time. Chimeric beacons with different stem lengths and sequences have been surveyed for this assay with E. coli RNase H. We found that the beacon kinetic parameters are in qualitative agreement with previously reported values using more cumbersome assays. This method permits real-time detection of RNase H activity and a convenient approach to RNase H kinetic and mechanistic study.

  2. Measurement of Separase Proteolytic Activity in Single Living Cells by a Fluorogenic Flow Cytometry Assay

    PubMed Central

    Haaß, Wiltrud; Kleiner, Helga; Müller, Martin C.; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang

    2015-01-01

    ESPL1/Separase, an endopeptidase, is required for centrosome duplication and separation of sister-chromatides in anaphase of mitosis. Overexpression and deregulated proteolytic activity of Separase as frequently observed in human cancers is associated with the occurrence of supernumerary centrosomes, chromosomal missegregation and aneuploidy. Recently, we have hypothesized that increased Separase proteolytic activity in a small subpopulation of tumor cells may serve as driver of tumor heterogeneity and clonal evolution in chronic myeloid leukemia (CML). Currently, there is no quantitative assay to measure Separase activity levels in single cells. Therefore, we have designed a flow cytometry-based assay that utilizes a Cy5- and rhodamine 110 (Rh110)-biconjugated Rad21 cleavage site peptide ([Cy5-D-R-E-I-M-R]2-Rh110) as smart probe and intracellular substrate for detection of Separase enzyme activity in living cells. As measured by Cy5 fluorescence the cellular uptake of the fluorogenic peptide was fast and reached saturation after 210 min of incubation in human histiocytic lymphoma U937 cells. Separase activity was recorded as the intensity of Rh110 fluorescence released after intracellular peptide cleavage providing a linear signal gain within a 90–180 min time slot. Compared to conventional cell extract-based methods the flow cytometric assay delivers equivalent results but is more reliable, bypasses the problem of vague loading controls and unspecific proteolysis associated with whole cell extracts. Especially suited for the investigaton of blood- and bone marrow-derived hematopoietic cells the flow cytometric Separase assay allows generation of Separase activity profiles that tell about the number of Separase positive cells within a sample i.e. cells that currently progress through mitosis and about the range of intercellular variation in Separase activity levels within a cell population. The assay was used to quantify Separase proteolytic activity in leukemic

  3. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression.

    PubMed

    Auld, Douglas S; Thorne, Natasha; Maguire, William F; Inglese, James

    2009-03-01

    High-throughput screening (HTS) assays used in drug discovery frequently use reporter enzymes such as firefly luciferase (FLuc) as indicators of target activity. An important caveat to consider, however, is that compounds can directly affect the reporter, leading to nonspecific but highly reproducible assay signal modulation. In rare cases, this activity appears counterintuitive; for example, some FLuc inhibitors, acting through posttranslational Fluc reporter stabilization, appear to activate gene expression. Previous efforts to characterize molecules that influence luciferase activity identified a subset of 3,5-diaryl-oxadiazole-containing compounds as FLuc inhibitors. Here, we evaluate a number of compounds with this structural motif for activity against FLuc. One such compound is PTC124 {3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid}, a molecule originally identified in a cell-based FLuc assay as having nonsense codon suppression activity [Welch EM, et al., Nature (2007) 447:87-91]. We find that the potency of FLuc inhibition for the tested compounds strictly correlates with their activity in a FLuc reporter cell-based nonsense codon assay, with PTC124 emerging as the most potent FLuc inhibitor (IC(50) = 7 +/- 1 nM). However, these compounds, including PTC124, fail to show nonsense codon suppression activity when Renilla reniformis luciferase (RLuc) is used as a reporter and are inactive against the RLuc enzyme. This suggests that the initial discovery of PTC124 may have been biased by its direct effect on the FLuc reporter, implicating firefly luciferase as a molecular target of PTC124. Our results demonstrate the value of understanding potential interactions between reporter enzymes and chemical compounds and emphasize the importance of implementing the appropriate control assays before interpreting HTS results.

  4. Modulating temporal control of NF-kappaB activation: implications for therapeutic and assay selection.

    PubMed

    Klinke, David J; Ustyugova, Irina V; Brundage, Kathleen M; Barnett, John B

    2008-06-01

    The activation of transcription factor NF-kappaB (nuclear factor-kappaB) plays a central role in the induction of many inflammatory response genes. This process is characterized by either oscillations or stable induction of NF-kappaB nuclear binding. Changes in dynamics of binding result in the expression of distinct subsets of genes leading to different physiological outcomes. We examined NF-kappaB DNA binding activity in lipopolysaccharide (LPS)-stimulated IC-21 cells by electromobility shift assay and nonradioactive transcription factor assay and interpreted the results using a kinetic model of NF-kappaB activation. Both assays detected damped oscillatory behavior of NF-kappaB with differences in sensitivity and reproducibility. 3,4-Dichloropropionaniline (DCPA) was used to modulate the oscillatory behavior of NF-kappaB after LPS stimulation. DCPA is known to inhibit the production of two NF-kappaB-inducible cytokines, IL-6 and tumor necrosis factor alpha, by reducing but not completely abrogating NF-kappaB-induced transcription. DCPA treatment resulted in a potentiation of early LPS-induced NF-kappaB activation. The nonradioactive transcription factor assay, which has a higher signal/noise ratio than the electromobility shift assay, combined with in silico modeling, produced results that revealed changes in NF-kappaB dynamics which, to the best of our knowledge, have never been previously reported. These results highlight the importance of cell type and stimulus specificity in transcription factor activity assessment. In addition, assay selection has important implications for network inference and drug discovery. PMID:18281385

  5. Modulating Temporal Control of NF-κB Activation: Implications for Therapeutic and Assay Selection

    PubMed Central

    Klinke, David J.; Ustyugova, Irina V.; Brundage, Kathleen M.; Barnett, John B.

    2008-01-01

    The activation of transcription factor NF-κB (nuclear factor-κB) plays a central role in the induction of many inflammatory response genes. This process is characterized by either oscillations or stable induction of NF-κB nuclear binding. Changes in dynamics of binding result in the expression of distinct subsets of genes leading to different physiological outcomes. We examined NF-κB DNA binding activity in lipopolysaccharide (LPS)-stimulated IC-21 cells by electromobility shift assay and nonradioactive transcription factor assay and interpreted the results using a kinetic model of NF-κB activation. Both assays detected damped oscillatory behavior of NF-κB with differences in sensitivity and reproducibility. 3,4-Dichloropropionaniline (DCPA) was used to modulate the oscillatory behavior of NF-κB after LPS stimulation. DCPA is known to inhibit the production of two NF-κB-inducible cytokines, IL-6 and tumor necrosis factor α, by reducing but not completely abrogating NF-κB-induced transcription. DCPA treatment resulted in a potentiation of early LPS-induced NF-κB activation. The nonradioactive transcription factor assay, which has a higher signal/noise ratio than the electromobility shift assay, combined with in silico modeling, produced results that revealed changes in NF-κB dynamics which, to the best of our knowledge, have never been previously reported. These results highlight the importance of cell type and stimulus specificity in transcription factor activity assessment. In addition, assay selection has important implications for network inference and drug discovery. PMID:18281385

  6. A protein chip membrane-capture assay for botulinum neurotoxin activity

    SciTech Connect

    Marconi, Severine; Ferracci, Geraldine; Berthomieu, Maelys; Kozaki, Shunji; Miquelis, Raymond; Boucraut, Jose; Seagar, Michael

    2008-12-15

    Botulinum neurotoxins A and B (BoNT/A and B) are neuromuscular blocking agents which inhibit neurotransmission by cleaving the intra-cellular presynaptic SNARE proteins SNAP-25 and VAMP2, localized respectively in plasma membrane and synaptic vesicles. These neurotoxins are both dangerous pathogens and powerful therapeutic agents with numerous clinical and cosmetic applications. Consequently there is a need for in vitro assays of their biological activity to screen for potential inhibitors and to replace the widely used in vivo mouse assay. Surface plasmon resonance (SPR) was used to measure membrane vesicle capture by antibodies against SNAP-25 and VAMP2. Substrate cleavage by BoNTs modified capture providing a method to assay toxin activity. Firstly using synaptic vesicles as a substrate, a comparison of the EC{sub 50}s for BoNT/B obtained by SPR, ELISA or flow cytometry indicated similar sensitivity although SPR assays were more rapid. Sonication of brain or neuronal cultures generated plasma membrane fragments with accessible intra-cellular epitopes adapted to measurement of BoNT/A activity. SPR responses were proportional to antigen concentration permitting detection of as little as 4 pM SNAP-25 in crude lysates. BoNT/A activity was assayed using monoclonal antibodies that specifically recognize a SNAP-25 epitope generated by the proteolytic action of the toxin. Incubation of intact primary cultured neurons with BoNT/A yielded an EC{sub 50} of 0.5 pM. The SPR biosensor method was sensitive enough to monitor BoNT/A and B activity in cells cultured in a 96-well format providing an alternative to experimental animals for toxicological assays.

  7. Selective activation of SHP2 activity by cisplatin revealed by a novel chemical probe-based assay

    SciTech Connect

    Kuo, Chun-Chen; Chu, Chi-Yuan; Lin, Jing-Jer; Lo, Lee-Chiang

    2010-01-01

    Src homology-2 (SH2) domain-containing phosphatase 2 (SHP2) is known to participate in several different signaling pathways to mediate cell growth, survival, migration, and differentiation. However, due to the lack of proper analytical tools, it is unclear whether the phosphatase activity of SHP2 is activated in most studies. We have previously developed an activity-based probe LCL2 that formed covalent linkage with catalytically active protein tyrosine phosphatases (PTPs). Here, by combining LCL2 with a SHP2 specific antibody, we established an assay system that enables the direct monitoring of SHP2 activity upon cisplatin treatment of cancer cells. The protocol is advantageous over conventional colorimetric or in-gel PTP assays as it is specific and does not require the use of radioisotope reagents. Using this assay, we found SHP2 activity was selectively activated by cisplatin. Moreover, the activation of SHP2 appeared to be specific for cisplatin as other DNA damage agents failed to activate the activity. Although the role of SHP2 activation by cisplatin treatments is still unclear to us, our results provide the first direct evidence for the activation of SHP2 during cisplatin treatments. More importantly, the concept of using activity-based probe in conjunction with target-specific antibodies could be extended to other enzyme classes.

  8. A nanostructure-initiator mass spectrometry-based enzyme activity assay

    PubMed Central

    Northen, Trent R.; Lee, Jinq-Chyi; Hoang, Linh; Raymond, Jason; Hwang, Der-Ren; Yannone, Steven M.; Wong, Chi-Huey; Siuzdak, Gary

    2008-01-01

    We describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme) assay in which enzyme substrates are immobilized on the mass spectrometry surface by using fluorous-phase interactions. This “soft” immobilization allows efficient desorption/ionization while also enabling the use of surface-washing steps to reduce signal suppression from complex biological samples, which results from the preferential retention of the tagged products and reactants. The Nimzyme assay is sensitive to subpicogram levels of enzyme, detects both addition and cleavage reactions (sialyltransferase and galactosidase), is applicable over a wide range of pHs and temperatures, and can measure activity directly from crude cell lysates. The ability of the Nimzyme assay to analyze complex mixtures is illustrated by identifying and directly characterizing β-1,4-galactosidase activity from a thermophilic microbial community lysate. The optimal enzyme temperature and pH were found to be 65°C and 5.5, respectively, and the activity was inhibited by both phenylethyl-β-d-thiogalactopyranoside and deoxygalactonojirimycin. Metagenomic analysis of the community suggests that the activity is from an uncultured, unsequenced γ-proteobacterium. In general, this assay provides an efficient method for detection and characterization of enzymatic activities in complex biological mixtures prior to sequencing or cloning efforts. More generally, this approach may have important applications for screening both enzymatic and inhibitor libraries, constructing and screening glycan microarrays, and complementing fluorous-phase organic synthesis. PMID:18319341

  9. [Detection of viable metabolically active yeast cells using a colorimetric assay].

    PubMed

    Růzicka, F; Holá, V

    2008-02-01

    The increasing concern of yeasts able to form biofilm brings about the need for susceptibility testing of both planktonic and biofilm cells. Detection of viability or metabolic activity of yeast cells after exposure to antimicrobials plays a key role in the assessment of susceptibility testing results. Colorimetric assays based on the color change of the medium in the presence of metabolically active cells proved suitable for this purpose. In this study, the usability of a colorimetric assay with the resazurin redox indicator for monitoring the effect of yeast inoculum density on the reduction rate was tested. As correlation between the color change rate and inoculum density was observed, approximate quantification of viable cells was possible. The assay would be of relevance to antifungal susceptibility testing in both planktonic and biofilm yeasts.

  10. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Volmert, Ben; Pantelias, Manuel; Mutnuru, R. K.; Neukaeter, Erwin; Bitterli, Beat

    2016-02-01

    In this paper, an overview of the Swiss Nuclear Power Plant (NPP) activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG) in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  11. Inhibition of Microglia Activation as a Phenotypic Assay in Early Drug Discovery

    PubMed Central

    Figuera-Losada, Mariana; Rojas, Camilo; Slusher, Barbara S.

    2014-01-01

    Complex biological processes such as inflammation, cell death, migration, proliferation, and the release of biologically active molecules can be used as outcomes in phenotypic assays during early stages of drug discovery. Although target-based approaches have been widely used over the past decades, a disproportionate number of first-in-class drugs have been identified using phenotypic screening. This review details phenotypic assays based on inhibition of microglial activation and their utility in primary and secondary screening, target validation, and pathway elucidation. The role of microglia, both in normal as well as in pathological conditions such as chronic neurodegenerative diseases, is reviewed. Methodologies to assess microglia activation in vitro are discussed in detail, and classes of therapeutic drugs known to decrease the proinflammatory and cytotoxic responses of activated microglia are appraised, including inhibitors of glutaminase, cystine/glutamate antiporter, nuclear factor κB, and mitogen-activated protein kinases. PMID:23945875

  12. Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space.

    PubMed

    Judson, Richard; Houck, Keith; Martin, Matt; Richard, Ann M; Knudsen, Thomas B; Shah, Imran; Little, Stephen; Wambaugh, John; Woodrow Setzer, R; Kothya, Parth; Phuong, Jimmy; Filer, Dayne; Smith, Doris; Reif, David; Rotroff, Daniel; Kleinstreuer, Nicole; Sipes, Nisha; Xia, Menghang; Huang, Ruili; Crofton, Kevin; Thomas, Russell S

    2016-08-01

    Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, responses of 1060 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a battery of 815 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress/cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least 2 viability/cytotoxicity assays within the concentration range tested (typically up to 100 μM) activated a median of 12% of assay endpoints whereas those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (eg, receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a greater number of specific biomolecular interactions are generally designed to be bioactive (pharmaceuticals or pesticidal active ingredients), whereas intentional food-use chemicals tended to show the fewest specific interactions. The analyses presented here provide context for use of these data in ongoing studies to predict in vivo toxicity from chemicals lacking extensive hazard assessment. PMID:27208079

  13. Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space.

    PubMed

    Judson, Richard; Houck, Keith; Martin, Matt; Richard, Ann M; Knudsen, Thomas B; Shah, Imran; Little, Stephen; Wambaugh, John; Woodrow Setzer, R; Kothya, Parth; Phuong, Jimmy; Filer, Dayne; Smith, Doris; Reif, David; Rotroff, Daniel; Kleinstreuer, Nicole; Sipes, Nisha; Xia, Menghang; Huang, Ruili; Crofton, Kevin; Thomas, Russell S

    2016-08-01

    Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, responses of 1060 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a battery of 815 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress/cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least 2 viability/cytotoxicity assays within the concentration range tested (typically up to 100 μM) activated a median of 12% of assay endpoints whereas those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (eg, receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a greater number of specific biomolecular interactions are generally designed to be bioactive (pharmaceuticals or pesticidal active ingredients), whereas intentional food-use chemicals tended to show the fewest specific interactions. The analyses presented here provide context for use of these data in ongoing studies to predict in vivo toxicity from chemicals lacking extensive hazard assessment.

  14. Investigation of the neutron activation of endohedral rare earth metallofullerenes

    SciTech Connect

    Shilin, V. A. Lebedev, V. T.; Kolesnik, S. G.; Kozlov, V. S.; Grushko, Yu. S.; Sedov, V. P.; Kukorenko, V. V.

    2011-12-15

    Endohedral lanthanide metallofullerenes and their water-soluble biocompatible derivatives have been synthesized. The effect that fast-neutron irradiation has on the stability and nuclear physical properties of endohedral metallofullerenes that are used as magnetocontrast materials ({sup 46}Sc, {sup 140}La, {sup 141}Nd, {sup 153}Sm, {sup 152}Eu, {sup 154}Eu, {sup 153}Sm, {sup 160}Tb, {sup 169}Yb, {sup 170}Tm (isomers I and III), and {sup 177}Lu) is studied. Our hypothesis, according to which carbon-shell relaxation is based on the fast nonradiative processes of an electron shake-off type, is confirmed.

  15. Testing of regolith of celestial bolides with active neutron gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Vostrukhin, Andrey; Mitrofanov, Igor; Golovin, Dmitry; Litvak, Maxim; Sanin, Anton

    2015-04-01

    Current space instruments for studying planet's surface include gamma ray spectrometers that detect natural radioactive isotopes as well as gamma-rays induced in subsurface by galactic cosmic rays. When measuring from celestial body's surface, statistics and amount of detected elements can be dramatically increased with active methods, where soil exposed to artificial flux of particles. One good example is the Russian Dynamic Albedo of Neutron (DAN) instrument onboard Martian Science Laboratory mission (Curiosity rover) developed in 2005-2011. It is the first active neutron spectrometer flown to another planet as part of a landed mission to investigate subsurface water distribution and which has now successfully operated for more than two years on the Martian surface. Presentation describes a number of space instruments for different landers and rovers being developed in Russian Space Research Institute for studying Moon and Mars, as well as method of active neutron and gamma spectrometry overview.

  16. Device and software used to carry out Cyclic Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Castro-García, M. P.; Rey-Ronco, M. A.; Alonso-Sánchez, T.

    2014-11-01

    This paper discusses the device and software used to carry out Cyclic Neutron Activation Analysis (CNAA). The aim of this investigation is defining through this device the fluorite content present on different samples from fluorspar concentration plant through the DGNAA (Delayed Gamma Neutron Activation Analysis) method. This device is made of americium-beryllium neutron source, NaI (2"×2") and BGO (2"×2") gamma rays detectors, multichannel and an automatic mechanism which moves the samples from activation and reading position. This mechanism is controlled by a software which allows moving the samples precisely and in a safe way (~ms), which it is very useful when the radioactive isotopes have to be detected with a half time less than 8s.

  17. A chemiluminescent microtiter plate assay for sensitive detection of protein kinase activity.

    PubMed

    Lehel, C; Daniel-Issakani, S; Brasseur, M; Strulovici, B

    1997-01-15

    A chemiluminescent protein kinase assay using biotinylated substrate peptides captured on a streptavidin-coated microtiter plate and monoclonal antibodies to detect their phosphorylation is described. Assay conditions were optimized and validated for sensitive measurement of protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II (CAM-KII), receptor interacting protein, and src activities. The newly developed chemiluminescent assay has several advantages over currently used radioactive or colorimetric methods. It is highly sensitive at low enzyme and substrate concentrations and high, close to physiological ATP levels. It is fast, simple to perform and amenable to automation and high-throughput drug screening. The assay is also robust, exhibiting minimum interference from solvents and test substances from various sources. Overall, among the presently available methods for the detection of protein kinase activity, chemiluminescence was found to provide the highest sensitivity under conditions most closely mimicking the intracellular environment. This assay is expected to be useful in both academic and industrial laboratories, especially in identifying novel classes of protein kinase inhibitors.

  18. A fluorescence-based assay to monitor transcriptional activity of NFAT in living cells.

    PubMed

    Rinne, Andreas; Blatter, Lothar A

    2010-09-01

    Ca(2+)-sensitive NFAT (nuclear factor of activated T-cells) transcription factors are implicated in many pathophysiological processes in different cell types. The precise control of activation varies with NFAT isoform and cell type. Here we present feasibility of an in vivo assay (NFAT-RFP) that reports transcriptional activity of NFAT via expression of red fluorescent protein (RFP) in individual cells. This new tool allows continuous monitoring of transcriptional activity of NFAT in a physiological context in living cells. Furthermore, NFAT-RFP can be used simultaneously with NFAT-GFP fusion proteins to monitor transcriptional activity and subcellular localization of NFAT in the same cell.

  19. A Chromogenic Assay Suitable for High-Throughput Determination of Limit Dextrinase Activity in Barley Malt Extracts.

    PubMed

    Bøjstrup, Marie; Marri, Lucia; Lok, Finn; Hindsgaul, Ole

    2015-12-23

    Twenty-four malt samples were assayed for limit dextrinase activity using a chromogenic assay developed recently in our group. The assay utilizes a small soluble chromogenic substrate which is hydrolyzed selectively by limit dextrinase in a coupled assay to release the chromophore 2-chloro-4-nitrophenol. The release of the chromophore, corresponding to the activity of limit dextrinase, can be followed by measuring the UV absorption at 405 nm. The 24 malt samples represented a wide variation of limit dextrinase activities, and these activities could be clearly differentiated by the assay. The results obtained were comparable with the results obtained from a commercially available assay, Limit-Dextrizyme from Megazyme International Ireland. Furthermore, the improved assay uses a soluble substrate. That makes it well suited for high-throughput screening as it can be handled in a 96-well plate format. PMID:26615836

  20. A barium based coordination polymer for the activity assay of deoxyribonuclease I.

    PubMed

    Song, Chan; Wang, Guan-Yao; Wang, Ya-Ling; Kong, De-Ming; Wang, Yong-Jian; Li, Yue; Ruan, Wen-Juan

    2014-10-01

    A new coordination polymer which shows an unusual 2D inorganic connectivity was constructed. This compound exhibits distinct fluorescence quenching ability to the dye-labeled single-stranded DNA probes with different lengths, based on which an analytical method was developed for the activity assay of deoxyribonuclease I.

  1. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of a biochar made from switchgrass on four soil enzymes (ß- glucosidase, ß-N-acetylglucosaminidase, lipase, and leucine aminopeptidase) to determine if biochar would consistently modify soil biological activities. Inconsistent results from enzyme assays of char-amended soils s...

  2. A chip-based assay for botulinum neurotoxin A activity in pharmaceutical preparations.

    PubMed

    Lévêque, Christian; Ferracci, Géraldine; Maulet, Yves; Grand-Masson, Chloé; Seagar, Michael; El Far, Oussama

    2015-05-01

    The production of botulinum neurotoxin A (BoNT/A) for therapeutic and cosmetic applications requires precise determination of batch potency, and the enzymatic activity of BoNT/A light chain is a crucial index that can be measured in vitro. We previously established a SNAP-25 chip-based assay using surface plasmon resonance (SPR) that is more sensitive than the standard mouse bioassay for the quantification of BoNT/A activity. We have now adapted this procedure for pharmaceutical preparations. The optimized SPR assay allowed multiple measurements on a single chip, including the kinetics of substrate cleavage. The activity of five different batches of a pharmaceutical BoNT/A preparation was determined in a blind study by SPR and found to be in agreement with data from the in vivo mouse lethality assay. Biosensor detection of specific proteolytic products has the potential to accurately monitor the activity of pharmaceutical BoNT/A preparations, and a single chip can be used to assay more than 100 samples.

  3. A specific mechanism for nonspecific activation in reporter-gene assays.

    PubMed

    Auld, Douglas S; Thorne, Natasha; Nguyen, Dac-Trung; Inglese, James

    2008-08-15

    The importance of bioluminescence in enabling a broad range of high-throughput screening (HTS) assay formats is evidenced by widespread use in industry and academia. Therefore, understanding the mechanisms by which reporter enzyme activity can be modulated by small molecules is critical to the interpretation of HTS data. In this Perspective, we provide evidence for stabilization of luciferase by inhibitors in cell-based luciferase reporter-gene assays resulting in the counterintuitive phenomenon of signal activation. These data were derived from our analysis of luciferase inhibitor compound structures and their prevalence in the Molecular Libraries Small Molecule Repository using 100 HTS experiments available in PubChem. Accordingly, we found an enrichment of luciferase inhibitors in luciferase reporter-gene activation assays but not in assays using other reporters. In addition, for several luciferase inhibitor chemotypes, we measured reporter stabilization and signal activation in cells that paralleled the inhibition determined using purified luciferase to provide further experimental support for these contrasting effects.

  4. First principle active neutron coincidence counting measurements of uranium oxide

    NASA Astrophysics Data System (ADS)

    Goddard, Braden; Charlton, William; Peerani, Paolo

    2014-03-01

    Uranium is present in most nuclear fuel cycle facilities ranging from uranium mines, enrichment plants, fuel fabrication facilities, nuclear reactors, and reprocessing plants. The isotopic, chemical, and geometric composition of uranium can vary significantly between these facilities, depending on the application and type of facility. Examples of this variation are: enrichments varying from depleted (~0.2 wt% 235U) to high enriched (>20 wt% 235U); compositions consisting of U3O8, UO2, UF6, metallic, and ceramic forms; geometries ranging from plates, cans, and rods; and masses which can range from a 500 kg fuel assembly down to a few grams fuel pellet. Since 235U is a fissile material, it is routinely safeguarded in these facilities. Current techniques for quantifying the 235U mass in a sample include neutron coincidence counting. One of the main disadvantages of this technique is that it requires a known standard of representative geometry and composition for calibration, which opens up a pathway for potential erroneous declarations by the State and reduces the effectiveness of safeguards. In order to address this weakness, the authors have developed a neutron coincidence counting technique which uses the first principle point-model developed by Boehnel instead of the "known standard" method. This technique was primarily tested through simulations of 1000 g U3O8 samples using the Monte Carlo N-Particle eXtended (MCNPX) code. The results of these simulations showed good agreement between the simulated and exact 235U sample masses.

  5. A TR-FRET-based functional assay for screening activators of CARM1.

    PubMed

    Zeng, Hao; Wu, Jiacai; Bedford, Mark T; Sbardella, Gianluca; Hoffmann, F Michael; Bi, Kun; Xu, Wei

    2013-05-10

    Epigenetics is an emerging field that demands selective cell-permeable chemical probes to perturb, especially in vivo, the activity of specific enzymes involved in modulating the epigenetic codes. Coactivator-associated arginine methyltransferase 1 (CARM1) is a coactivator of estrogen receptor α (ERα), the main target in human breast cancer. We previously showed that twofold overexpression of CARM1 in MCF7 breast cancer cells increased the expression of ERα-target genes involved in differentiation and reduced cell proliferation, thus leading to the hypothesis that activating CARM1 by chemical activators might be therapeutically effective in breast cancer. Selective, potent, cell-permeable CARM1 activators will be essential to test this hypothesis. Here we report the development of a cell-based, time-resolved (TR) FRET assay that uses poly(A) binding protein 1 (PABP1) methylation to monitor cellular activity of CARM1. The LanthaScreen TR-FRET assay uses MCF7 cells expressing GFP-PABP1 fusion protein through BacMam gene delivery system, methyl-PABP1 specific antibody, and terbium-labeled secondary antibody. This assay has been validated as reflecting the expression and/or activity of CARM1 and optimized for high throughput screening to identify CARM1 allosteric activators. This TR-FRET platform serves as a generic tool for functional screening of cell-permeable, chemical modulators of CARM1 for elucidation of its in vivo functions. PMID:23585185

  6. Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge.

    PubMed

    Sibag, Mark; Kim, Seung Hwan; Kim, Choah; Kim, Hee Jun; Cho, Jinwoo

    2015-06-01

    ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used. PMID:25892589

  7. Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge.

    PubMed

    Sibag, Mark; Kim, Seung Hwan; Kim, Choah; Kim, Hee Jun; Cho, Jinwoo

    2015-06-01

    ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used.

  8. Antioxidant Activity/Capacity Measurement. 3. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays.

    PubMed

    Apak, Reşat; Özyürek, Mustafa; Güçlü, Kubilay; Çapanoğlu, Esra

    2016-02-10

    There are many studies in which the antioxidant potential of different foods have been analyzed. However, there are still conflicting results and lack of information as a result of unstandardized assay techniques and differences between the principles of the methods applied. The measurement of antioxidant activity, especially in the case of mixtures, multifunctional or complex multiphase systems, cannot be evaluated satisfactorily using a simple antioxidant test due to the many variables influencing the results. In the literature, there are many antioxidant assays that are used to measure the total antioxidant activity/capacity of food materials. In this review, reactive oxygen and nitrogen species (ROS/RNS) scavenging assays are evaluated with respect to their mechanism, advantages, disadvantages, and potential use in food systems. On the other hand, in vivo antioxidant activity (AOA) assays including oxidative stress biomarkers and cellular-based assays are covered within the scope of this review. Finally, chromatographic and chemometric assays are reviewed, focusing on their benefits especially with respect to their time saving, cost-effective, and sensitive nature.

  9. Probing Planetary Bodies for Subsurface Volatiles: GEANT4 Models of Gamma Ray, Fast, Epithermal, and Thermal Neutron Response to Active Neutron Illumination

    NASA Astrophysics Data System (ADS)

    Chin, G.; Sagdeev, R.; Su, J. J.; Murray, J.

    2014-12-01

    Using an active source of neutrons as an in situ probe of a planetary body has proven to be a powerful tool to extract information about the presence, abundance, and location of subsurface volatiles without the need for drilling. The Dynamic Albedo of Neutrons (DAN) instrument on Curiosity is an example of such an instrument and is designed to detect the location and abundance of hydrogen within the top 50 cm of the Martian surface. DAN works by sending a pulse of neutrons towards the ground beneath the rover and detecting the reflected neutrons. The intensity and time of arrival of the reflection depends on the proportion of water, while the time the pulse takes to reach the detector is a function of the depth at which the water is located. Similar instruments can also be effective probes at the polar-regions of the Moon or on asteroids as a way of detecting sequestered volatiles. We present the results of GEANT4 particle simulation models of gamma ray, fast, epithermal, and thermal neutron responses to active neutron illumination. The results are parameterized by hydrogen abundance, stratification and depth of volatile layers, versus the distribution of neutron and gamma ray energy reflections. Models will be presented to approximate Martian, lunar, and asteroid environments and would be useful tools to assess utility for future NASA exploration missions to these types of planetary bodies.

  10. Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium

    SciTech Connect

    J. L. Dolan; M. J. Marcath; M. Flaska; S. A. Pozzi; D. L. Chichester; A. Tomanin; P. Peerani

    2014-02-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.

  11. 3D mapping of lithium in battery electrodes using neutron activation

    NASA Astrophysics Data System (ADS)

    He, Yuping; Downing, R. Gregory; Wang, Howard

    2015-08-01

    The neutron depth profiling technique based on the neutron activation reaction, 6Li (n, α) 3H, was applied with two dimensional (2D) pinhole aperture scans to spatially map lithium in 3D. The technique was used to study model LiFePO4 electrodes of rechargeable batteries for spatial heterogeneities of lithium in two cathode films that had undergone different electrochemical cycling histories. The method is useful for better understanding the functioning and failure of batteries using lithium as the active element.

  12. Determination of sodium in biological materials by instrumental neutron activation analysis.

    PubMed

    Cunningham, W C; Capar, S G; Anderson, D L

    1997-01-01

    A formalized method for determining sodium in biological materials by instrumental neutron activation analysis is presented. The method includes common procedures from the numerous options available to this historically nonformalized analytical technique. The number of procedural options is restricted to minimize the method's complexity, yet the method is still applicable to a variety of neutron activation facilities. High accuracy and precision are achieved by placing bounds on allowed uncertainty at critical stages of the analysis. Analytical results from the U.S. Food and Drug Administration laboratory and 4 other laboratories demonstrate the method's performance.

  13. Determination of elements in National Bureau of Standards' geological Standard Reference Materials by neutron activation analysis

    SciTech Connect

    Graham, C.C.; Glascock, M.D.; Carni, J.J.; Vogt, J.R.; Spalding, T.G.

    1982-08-01

    Instrumental neutron activation analysis (INAA) and prompt gamma neutron activation analysis (PGNAA) have been used to determine elemental concentrations in two recently issued National Bureau of Standards (NBS) Standard Reference Materials (SRM's). The results obtained are in good agreement with the certified and information values reported by NBS for those elements in each material for which comparisons are available. Average concentrations of 35 elements in SRM 278 obsidian rock and 32 elements in SRM 688 basalt rock are reported for comparison with results that may be obtained by other laboratories.

  14. HPLC-MTT assay: anticancer activity of aqueous garlic extract is from allicin.

    PubMed

    Lee, Jenny; Gupta, Shalini; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Bao-Shiang

    2013-05-15

    A strategy using reversed-phase high-performance liquid chromatography (HPLC), thin layer chromatography (TLC), mass spectrometry (MS), nuclear magnetic resonance (NMR), chemical synthesis, and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay to identify allicin as the active anticancer compound in aqueous garlic extract (AGE) is described. Changing the pH of AGE from 7.0 to 5.0 eliminated interfering molecules and enabled a clean HPLC separation of the constituents in AGE. MTT assay of the HPLC fractions identified an active fraction. Further analysis by TLC, MS, and NMR verified the active HPLC fraction as allicin. Chemically synthesized allicin was used to provide further confirmation. The results clearly identify the active compound in AGE as allicin.

  15. The Peptide Microarray-Based Resonance Light Scattering Assay for Sensitively Detecting Intracellular Kinase Activity.

    PubMed

    Li, Tao; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-01-01

    The peptide microarray technology is a robust, reliable, and efficient technique for large-scale determination of enzyme activities, and high-throughput profiling of substrate/inhibitor specificities of enzymes. Here, the activities of cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) in different cell lysates have been detected by a peptide microarray-based resonance light scattering (RLS) assay with gold nanoparticle (GNP) probes. Highly sensitive detection of PKA activity in 0.1 μg total cell proteins of SHG-44 (human glioma cell) cell lysate (corresponding to 200 cells) is achieved by a selected peptide substrate. The experimental results also demonstrate that the RLS assay can be employed to evaluate the chemical regulation of intracellular kinase activity. PMID:26490469

  16. Estimation of specific activity of 177Lu by 'saturation assay' principle using DOTA as ligand.

    PubMed

    Pillai, Ambikalmajan M R; Chakraborty, Sudipta; Das, Tapas

    2015-01-01

    Lutetium-177 is a widely used therapeutic radionuclide in targeted therapy and it is important to know its specific activity at the time of radiopharmaceutical preparation, especially for radiolabeling peptides. However, there are no direct methods for the experimental determination of the specific activity which can be readily applied in a hospital radiopharmacy. A new technique based on the 'saturation assay' principle using DOTA as the binding agent for the estimation of specific activity of (177)Lu is reported. The studies demonstrate the proof of principle of this new assay technique. The method is general and can be modified and applied for the estimation of specific activity of other metallic radionuclides by using DOTA or other suitable chelating agents.

  17. Metabolic activity of sodium, measured by neutron activation, in the hands of patients suffering from bone diseases: concise communication

    SciTech Connect

    Spinks, T.J.; Bewley, D.K.; Paolillo, M.; Vlotides, J.; Joplin, G.F.; Ranicar, A.S.O.

    1980-01-01

    Turnover of sodium in the human hand was studied by neutron activation. Patients suffering from various metabolic abnormalities affecting the skeleton, who were undergoing routine neutron activation for the measurement of calcium, were investigated along with a group of healthy volunteers. Neutron activation labels the sodium atoms simultaneously and with equal probability regardless of the turnover time of individual body compartments. The loss of sodium can be described either by a sum of two exponentials or by a single power function. Distinctions between patients and normal subjects were not apparent from the exponential model but were brought out by the power function. The exponent of time in the latter is a measure of clearance rate. The mean values of this parameter in (a) a group of patients suffering from acromegaly; (b) a group including Paget's disease, osteoporosis, Cushing's disease, and hyperparathyroidism; and (c) a group of healthy subjects, were found to be significantly different from each other.

  18. Estimated neutron-activation data for TFTR. Part II. Biological dose rate from sample-materials activation

    SciTech Connect

    Ku, L.; Kolibal, J.G.

    1982-06-01

    The neutron induced material activation dose rate data are summarized for the TFTR operation. This report marks the completion of the second phase of the systematic study of the activation problem on the TFTR. The estimations of the neutron induced activation dose rates were made for spherical and slab objects, based on a point kernel method, for a wide range of materials. The dose rates as a function of cooling time for standard samples are presented for a number of typical neutron spectrum expected during TFTR DD and DT operations. The factors which account for the variations of the pulsing history, the characteristic size of the object and the distance of observation relative to the standard samples are also presented.

  19. Advanced analysis techniques for uranium assay

    SciTech Connect

    Geist, W. H.; Ensslin, Norbert; Carrillo, L. A.; Beard, C. A.

    2001-01-01

    Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples count rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.

  20. Data set of optimal parameters for colorimetric red assay of epoxide hydrolase activity.

    PubMed

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-09-01

    The data presented in this article are related to the research article entitled "Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization" [1]. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to the corresponding vicinal diols. This article describes the optimal parameters for the colorimetric red assay to determine the enzymatic activity, with an emphasis on the characterization of the kinetic parameters, pH optimum and thermal stability of this enzyme. The effects of reagents that are not resistant to oxidation by sodium periodate on the reactions can generate false positives and interfere with the final results of the red assay. PMID:27366781

  1. Residual 152Eu and 60Co activities induced by neutrons from the Hiroshima atomic bomb.

    PubMed

    Shizuma, K; Iwatani, K; Hasai, H; Hoshi, M; Oka, T; Morishima, H

    1993-09-01

    Specific activities of 152Eu:Eu in stone samples exposed to the Hiroshima atomic bomb were determined for 70 samples up to a 1,500-m slant range from the epicenter. The specific activities of 60Co:Co were also determined for six samples near the Hiroshima hypocenter. First, the 152Eu data were investigated to find out the directional dependence of neutron activation. Directional anisotropy was not definite; however, there was an indication that the activation in the west-southwest was lower than in other directions. Second, measured 152Eu and 60Co radioactivity data were compared with activation calculations based on DS86 neutrons. It is clearly shown that the measured data are lower than the calculation near the hypocenter and vice versa at long distances beyond 1,000 m. The calculated-to-measured ratios of 152Eu are 1.6 at the hypocenter, 1.0 at approximately 900 m, and 0.05 at a 1,500-m slant range. Present results indicate that systematic errors exist in the DS86 neutrons concerning the source-term spectrum, neutron transport calculations in air, and/or activation measurements.

  2. Development and validation of an assay for urinary tissue factor activity.

    PubMed Central

    Lwaleed, B A; Chisholm, M; Francis, J L

    1999-01-01

    BACKGROUND: Activation of blood coagulation is a common complication of cancer and inflammation in both humans and experimental animals. Increased production of tissue factor--the principal initiator of the coagulation process--by endothelial cells, monocytes, and macrophages has been implicated in these conditions. AIM: To investigate whether urinary tissue factor (uTF) might reflect the state of monocyte/macrophage activation and be a useful diagnostic test. METHODS: Urine was centrifuged at 51,000 g to sediment tissue factor containing membrane vesicles. The tissue factor was then solubilised in beta-octyl-glucopyranoside and assayed in a specific chromogenic assay adapted for use in microtitre plates. RESULTS: The assay proved to be sensitive, specific, and reproducible. The normal range of uTF was relatively narrow and unaffected by age, sex, or cigarette smoking. Levels were not significantly influenced by storage of urine samples before assay or by the presence of fresh blood in the urine sample. CONCLUSIONS: This method may have diagnostic application in the study of haemostatic activation in patients with cancer and other disease states. Images PMID:10450183

  3. An optical assay of the transport activity of ClC-7

    PubMed Central

    Zanardi, Ilaria; Zifarelli, Giovanni; Pusch, Michael

    2013-01-01

    Osteoporosis, characterized by excessive osteoclast mediated bone resorption, affects millions of people worldwide representing a major public health problem. ClC-7 is a chloride-proton exchanger localized in lysosomes and in the resorption lacuna in osteoclasts where it is essential for bone resorption. Thus, drugs targeted at ClC-7 have been proposed for ameliorating osteoporosis. However, functional assays suited for high throughput screening (HTS) of ClC-7 function are lacking. Here we describe two complementary variants of purely optical assays of the transport activity of ClC-7, redirected to the plasma membrane employing a genetically encoded fluorescent Cl−/pH indicator fused to the ClC-7 protein. These simple and robust functional assays of ClC-7 transport are well-suited to be applied in HTS of small-molecule inhibitors and may help to develop drugs suited for the treatment of osteoporosis. PMID:23390581

  4. In vitro activity assays for MYST histone acetyltransferases and adaptation for high-throughput inhibitor screening

    PubMed Central

    McCullough, Cheryl E.; Marmorstein, Ronen

    2016-01-01

    Lysine acetylation is a post-translational modification that is carried out by acetyltransferases. The MYST proteins form the largest and most diverse family of acetyltransferases, which regulate gene expression, DNA repair, and cell cycle homeostasis, among other activities, by acetylating both histone and non-histone proteins. This chapter will describe methods for the preparation and biochemical characterization of MYST family acetyltransferases, including protocols for the preparation of recombinant protein, enzyme assays for measuring steady state parameters and binding assays to measure cofactor and inhibitor binding. We also provide details on adapting these assays for high throughput screening for small molecule MYST inhibitors. This chapter seeks to prepare researchers for some hurdles that they may encounter when studying the MYST proteins so that there may be better opportunity to plan appropriate controls and obtain high quality data. PMID:27372752

  5. Accurate and precise measurement of selenium by instrumental neutron activation analysis.

    PubMed

    Kim, In Jung; Watson, Russell P; Lindstrom, Richard M

    2011-05-01

    An accurate and precise measurement of selenium in Standard Reference Material (SRM) 3149, a primary calibration standard for the quantitative determination of selenium, has been accomplished by instrumental neutron activation analysis (INAA) in order to resolve a question arising during the certification process of the standard. Each limiting factor of the uncertainty in the activation analysis, including the sample preparation, irradiation, and γ-ray spectrometry steps, has been carefully monitored to minimize the uncertainty in the determined mass fraction. Neutron and γ-ray self-shielding within the elemental selenium INAA standards contributed most significantly to the uncertainty of the measurement. An empirical model compensating for neutron self-shielding and reducing the self-shielding uncertainty was successfully applied to these selenium standards. The mass fraction of selenium in the new lot of SRM 3149 was determined with a relative standard uncertainty of 0.6%.

  6. Assay of insulator enhancer-blocking activity with the use of transient transfection.

    PubMed

    Smirnov, N A; Didych, D A; Akopov, S B; Nikolaev, L G; Sverdlov, E D

    2013-08-01

    We used a transient transfection of cultured cells with linearized plasmids to analyze the enhancer-blocking activity of potential insulators including the standard cHS4 chicken beta-globin insulator and several DNA fragments selected from the human genome sequence. About 60-80% of the potential insulators do reveal the enhancer-blocking activity when probed by the transient transfection assay. The activity of different sequences is characterized by certain tissue specificity and by dependence on the orientation of the fragments relative to the promoter. Thus, the transfection model may be used for quantitative analysis of the enhancer-blocking activity of the potential insulators. PMID:24228877

  7. Plant Compounds Enhance the Assay Sensitivity for Detection of Active Bacillus cereus Toxin

    PubMed Central

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-01-01

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety. PMID:25767986

  8. Transactivation and Coactivator Recruitment Assays for Measuring Farnesoid X Receptor Activity.

    PubMed

    Hsu, Chia-Wen Amy; Zhao, Jinghua; Xia, Menghang

    2016-01-01

    The farnesoid X receptor (FXR) is a nuclear receptor responsible for homeostasis of bile acids, lipids, and glucose. Compounds that alter endogenous FXR signaling can be used as therapeutic candidates or identified as potentially hazardous compounds depending on exposure doses and health states. Therefore, there is an increasing need for high-throughput screening assays of FXR activity to profile large numbers of environmental chemicals and drugs. This chapter describes a workflow of FXR modulator identification and characterization. To identify compounds that modulate FXR transactivation at the cellular level, we first screen compounds from the Tox21 10 K compound library in an FXR-driven beta-lactamase reporter gene assay multiplexed with a cell viability assay in the same well of the 1536-well plates. The selected compounds are then tested biochemically for their ability to modulate FXR-coactivator binding interactions using a time-resolved fluorescence resonance energy transfer (TR-FRET) coactivator assay. The assay results from the workflow can be used to prioritize compounds for more extensive investigations. PMID:27518622

  9. Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin.

    PubMed

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-03-01

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety. PMID:25767986

  10. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells.

    PubMed

    James, Dominic I; Durant, Stephen; Eckersley, Kay; Fairweather, Emma; Griffiths, Louise A; Hamilton, Nicola; Kelly, Paul; O'Connor, Mark; Shea, Kerry; Waddell, Ian D; Ogilvie, Donald J

    2016-01-01

    After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years. PMID:27610220

  11. Direct assay of glutathione peroxidase activity using high-performance capillary electrophoresis.

    PubMed

    Pascual, P; Martinez-Lara, E; Bárcena, J A; López-Barea, J; Toribio, F

    1992-10-01

    A fast, sensitive and direct method has been developed for the determination of glutathione peroxidase activity (both selenium- and non-selenium-dependent) in cell-free preparations. The assay is based on the separation and quantitation of reduced and oxidized glutathione by capillary electrophoresis. The electrophoretic separation buffer was 100 mM sodium tetraborate (pH 8.2) containing 100 mM sodium dodecylsulphate. A micellar electrokinetic mechanism took place under these conditions, and a total mass recovery was observed for both peptides. The reproducibility of migration times was excellent (less than 3% variability). A linear detector response range was observed in the range 5-50 U/ml, and both the reproducibility and accuracy were satisfied. Samples out of this linear range could be analysed by either increasing the reaction time or diluting the enzyme preparation. The results obtained with the new direct capillary electrophoresis assay were compared with those derived from a reversed phase high-performance liquid chromatographic and spectrophotometric coupled assay. A very good agreement was found between the two direct assay methods in all samples. Capillary electrophoresis is a versatile technique that allows the automation of the glutathione peroxidase assay in a reproducible manner and within a relatively short time with sufficient accuracy and precision. PMID:1430007

  12. Transactivation and Coactivator Recruitment Assays for Measuring Farnesoid X Receptor Activity.

    PubMed

    Hsu, Chia-Wen Amy; Zhao, Jinghua; Xia, Menghang

    2016-01-01

    The farnesoid X receptor (FXR) is a nuclear receptor responsible for homeostasis of bile acids, lipids, and glucose. Compounds that alter endogenous FXR signaling can be used as therapeutic candidates or identified as potentially hazardous compounds depending on exposure doses and health states. Therefore, there is an increasing need for high-throughput screening assays of FXR activity to profile large numbers of environmental chemicals and drugs. This chapter describes a workflow of FXR modulator identification and characterization. To identify compounds that modulate FXR transactivation at the cellular level, we first screen compounds from the Tox21 10 K compound library in an FXR-driven beta-lactamase reporter gene assay multiplexed with a cell viability assay in the same well of the 1536-well plates. The selected compounds are then tested biochemically for their ability to modulate FXR-coactivator binding interactions using a time-resolved fluorescence resonance energy transfer (TR-FRET) coactivator assay. The assay results from the workflow can be used to prioritize compounds for more extensive investigations.

  13. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells

    PubMed Central

    James, Dominic I.; Durant, Stephen; Eckersley, Kay; Fairweather, Emma; Griffiths, Louise A.; Hamilton, Nicola; Kelly, Paul; O'Connor, Mark; Shea, Kerry; Waddell, Ian D.; Ogilvie, Donald J.

    2016-01-01

    After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years. PMID:27610220

  14. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    PubMed Central

    Israeli, Ma’ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. PMID:27548219

  15. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells

    PubMed Central

    James, Dominic I.; Durant, Stephen; Eckersley, Kay; Fairweather, Emma; Griffiths, Louise A.; Hamilton, Nicola; Kelly, Paul; O'Connor, Mark; Shea, Kerry; Waddell, Ian D.; Ogilvie, Donald J.

    2016-01-01

    After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years.

  16. Complementary non-radioactive assays for investigation of human flap endonuclease 1 activity

    PubMed Central

    Dorjsuren, Dorjbal; Kim, Daemyung; Maloney, David J.; Wilson, David M.; Simeonov, Anton

    2011-01-01

    FEN1, a key participant in DNA replication and repair, is the major human flap endonuclease that recognizes and cleaves flap DNA structures. Deficiencies in FEN1 function or deletion of the fen1 gene have profound biological effects, including the suppression of repair of DNA damage incurred from the action of various genotoxic agents. Given the importance of FEN1 in resolving abnormal DNA structures, inhibitors of the enzyme carry a potential as enhancers of DNA-interactive anticancer drugs. To facilitate the studies of FEN1 activity and the search for novel inhibitors, we developed a pair of complementary-readout homogeneous assays utilizing fluorogenic donor/quencher and AlphaScreen chemiluminescence strategies. A previously reported FEN1 inhibitor 3-hydroxy-5-methyl-1-phenylthieno[2,3-d]pyrimidine-2,4(1H,3H)-dione displayed equal potency in the new assays, in agreement with its published IC50. The assays were optimized to a low 4 µl volume and used to investigate a set of small molecules, leading to the identification of previously-unreported FEN1 inhibitors, among which aurintricarboxylic acid and NSC-13755 (an arylstibonic derivative) displayed submicromolar potency (average IC50 of 0.59 and 0.93 µM, respectively). The availability of these simple complementary assays obviates the need for undesirable radiotracer-based assays and should facilitate efforts to develop novel inhibitors for this key biological target. PMID:21062821

  17. Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin.

    PubMed

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-03-11

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety.

  18. Analysis of the neutron component at high altitude mountains using active and passive measurement devices.

    PubMed

    Hajek, M; Berger, T; Schoner, W; Vana, N

    2002-01-01

    The European Council directive 96/29/Euratom requires dosimetric precautions if the effective dose exceeds 1 mSv/a. On an average, this value is exceeded by aircrew members. Roughly half of the radiation exposure at flight altitudes is caused by cosmic ray-induced neutrons. Active (6LiI(Eu)-scintillator) and passive (TLDs) Bonner sphere spectrometers were used to determine the neutron energy spectra atop Mt. Sonnblick (3105 m) and Mt. Kitzsteinhorn (3029 m). Further measurements in a mixed radiation field at CERN as well as in a proton beam of 62 MeV at Paul Scherrer Institute, Switzerland, confirmed that not only neutrons but also charged particles contribute to the readings of active detectors, whereas TLD-600 and TLD-700 in pair allow the determination of the thermal neutron flux. Unfolding of the detector data obtained atop both mountains shows two relative maxima around 1 MeV and 85 MeV, which have to be considered for the assessment of the biologically relevant dose equivalent. By convoluting the spectra with appropriate conversion functions the neutron dose equivalent rate was determined to be 150 +/- 15 nSv/h. The total dose equivalent rate determined by the HTR-method was 210 +/- 15 nSv/h. The results are in good agreement with LET-spectrometer and Sievert counter measurements carried out simultaneously.

  19. Analysis of the neutron component at high altitude mountains using active and passive measurement devices

    NASA Astrophysics Data System (ADS)

    Hajek, M.; Berger, T.; Schöner, W.; Vana, N.

    2002-01-01

    The European Council directive 96/29/Euratom requires dosimetric precautions if the effective dose exceeds 1 mSv/a. On an average, this value is exceeded by aircrew members. Roughly half of the radiation exposure at flight altitudes is caused by cosmic ray-induced neutrons. Active ( 6LiI(Eu)-scintillator) and passive (TLDs) Bonner sphere spectrometers were used to determine the neutron energy spectra atop Mt. Sonnblick (3105 m) and Mt. Kitzsteinhorn (3029 m). Further measurements in a mixed radiation field at CERN as well as in a proton beam of 62 MeV at Paul Scherrer Institute, Switzerland, confirmed that not only neutrons but also charged particles contribute to the readings of active detectors, whereas TLD-600 and TLD-700 in pair allow the determination of the thermal neutron flux. Unfolding of the detector data obtained atop both mountains shows two relative maxima around 1 MeV and 85 MeV, which have to be considered for the assessment of the biologically relevant dose equivalent. By convoluting the spectra with appropriate conversion functions the neutron dose equivalent rate was determined to be 150±15 nSv/h. The total dose equivalent rate determined by the HTR-method was 210±15 nSv/h. The results are in good agreement with LET-spectrometer and Sievert counter measurements carried out simultaneously.

  20. Measuring neutron yield and ρR anisotropies with activation foils at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bleuel, D. L.; Bernstein, L. A.; Bionta, R. M.; Cooper, G. W.; Drury, O. B.; Hagmann, C. A.; Knittel, K. M.; Leeper, R. J.; Ruiz, C. L.; Schneider, D. H. G.; Yeamans, C. B.

    2013-11-01

    Neutron yields at the National Ignition Facility (NIF) are measured with a suite of diagnostics, including activation of ˜20-200 g samples of materials undergoing a variety of energy-dependent neutron reactions. Indium samples were mounted on the end of a Diagnostic Instrument Manipulator (DIM), 25-50 cm from the implosion, to measure 2.45 MeV D-D fusion neutron yield. The 336.2 keV gamma rays from the 4.5 hour isomer of 115mIn produced by (n,n') reactions are counted in high-purity germanium detectors. For capsules producing D-T fusion reactions, zirconium and copper are activated via (n,2n) reactions at various locations around the target chamber and bay, measuring the 14 MeV neutron yield to accuracies on order of 7%. By mounting zirconium samples on ports at nine locations around the NIF chamber, anisotropies in the primary neutron emission due to fuel areal density asymmetries can be measured to a relative precision of 3%.

  1. Solid-phase assay of lectin activity using HRP-conjugated glycoproteins.

    PubMed

    Kojima-Aikawa, Kyoko

    2014-01-01

    Various enzyme-conjugated probes have been widely used for detection of specific interactions between biomolecules. In the case of glycan-protein interaction, horseradish peroxidase (HRP)-conjugated glycoproteins (HRP-GPs) are useful for the detection of carbohydrate-binding activity of plant and animal lectins. In this chapter, a typical solid-phase assay of the carbohydrate-binding activity of Sophora japonica agglutinin I, a Gal/GalNAc-specific lectin, using HRP-conjugated asialofetuin is described. HRP-GPs are versatile tools for probing lectin activities in crude extracts, screening many samples at one time, and applicable not only for solid-phase binding assays but also samples which are dot- or Western-blotted onto the membrane. PMID:25117228

  2. Studies of neutron and proton nuclear activation in low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1982-01-01

    The expected induced radioactivity of experimental material in low Earth orbit was studied for characteristics of activating particles such as cosmic rays, high energy Earth albedo neutrons, trapped protons, and secondary protons and neutrons. The activation cross sections for the production of long lived radioisotopes and other existing nuclear data appropriate to the study of these reactions were compiled. Computer codes which are required to calculate the expected activation of orbited materials were developed. The decreased computer code used to predict the activation of trapped protons of materials placed in the expected orbits of LDEF and Spacelab II. Techniques for unfolding the fluxes of activating particles from the measured activation of orbited materials are examined.

  3. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    SciTech Connect

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V.

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV

  4. Considerations for an active and passive scanner to assay nuclear waste drums

    SciTech Connect

    Martz, H.E.; Azevedo, S.G.; Roberson, G.P.; Schneberk, D.J.; Koenig, Z.M.; Camp, D.C. )

    1990-06-08

    Radioactive wastes are generated at many DOE laboratories, military facilities, fuel fabrication and enrichment plants, reactors, hospitals, and university research facilities. At all of these sites, wastes must be separated, packaged, categorized, and packed into some sort of container--usually 208-L (55-gal) drums--for shipment to waste-storage sites. Prior to shipment, the containers must be labeled, assayed, and certified; the assay value determines the ultimate disposition of the waste containers. An accurate nondestructive assay (NDA) method would identify all the radioisotopes present and provide a quantitative measurement of their activity in the drum. In this way, waste containers could be routed in the most cost-effective manner and without having to reopen them. Currently, the most common gamma-ray method used to assay nuclear waste drums is segmented gamma-ray scanning (SGS) spectrometer that crudely measures only the amount of {sup 235}U or {sup 239}Pu present in the drum. This method uses a spatially-averaged, integrated, emitted gamma-ray-intensity value. The emitted intensity value is corrected by an assumed constant-attenuation value determined by a spatially-averaged, transmission (or active) measurement. Unfortunately, this typically results in an inaccurate determination of the radioactive activities within a waste drum because this measurement technique is valid only for homogeneous-attenuation or known drum matrices. However, since homogeneous-attenuation matrices are not common and may be unknown, other NDA techniques based on active and Passive CT (A PCT) are under development. The active measurement (ACT) yields a better attenuation matrix for the drum, while the passive measurement (PCT) more accurately determines the identity of the radioisotopes present and their activities. 9 refs., 2 figs.

  5. Expert system for transuranic waste assay

    SciTech Connect

    Zoolalian, M.L.; Gibbs, A.; Kuhns, J.D.

    1989-01-01

    Transuranic wastes are generated at the Savannah River Site (SRS) as a result of routine production of nuclear materials. These wastes contain Pu-238 and Pu-239 and are placed into lined 55-gallon waste drums. The drums are placed on monitored storage pads pending shipment to the Waste Isolation Pilot Plant in New Mexico. A passive-active neutron (PAN) assay system is used to determine the mass of the radioactive material within the waste drums. Assay results are used to classify the wastes as either low-level or transuranic (TRU). During assays, the PAN assay system communicates with an IBM-AT computer. A Fortran computer program, called NEUT, controls and performs all data analyses. Unassisted, the NEUT program cannot adequately interpret assay results. To eliminate this limitation, an expert system shell was used to write a new algorithm, called the Transuranic Expert System (TRUX), to drive the NEUT program and add decision making capabilities for analysis of the assay results. The TRUX knowledge base was formulated by consulting with human experts in the field of neutron assay, by direct experimentation on the PAN assay system, and by observing operations on a daily basis. TRUX, with its improved ability to interpret assay results, has eliminated the need for close supervision by a human expert, allowing skilled technicians to operate the PAN assay system. 4 refs., 1 fig., 4 tabs.

  6. Thiopurine methyl transferase activity: new extraction conditions for high-performance liquid chromatographic assay.

    PubMed

    Ganiere-Monteil, C; Pineau, A; Kergueris, M F; Azoulay, C; Bourin, M

    1999-04-30

    A new liquid-liquid extraction is described for thiopurine methyl transferase (TPMT, EC 2.1.1.67) activity determination: the use of a pH 9.5 NH4Cl buffer solution, before adding the solvent mixture, allows more rapid extraction, avoiding a centrifugation step, and reduces the global cost of analysis. After the extraction step, 6-methylmercaptopurine, synthesised during the enzymatic reaction, is determined by a liquid chromatographic assay. Analytical performance of the assay was tested on spiked erythrocyte lysates. The linear concentration range was 5-250 ng ml(-1) (r> or =0.997, slope=1.497, intercept=-0.367). The recoveries were 82.8, 89.9 and 82.2% for 75, 125 and 225 ng ml(-1), respectively. The coefficients of variation were < or =6.1% for within-day assay (n=6) and < or =9.5% for between-day assay precision (n=6; 14 days). TPMT activity was determined in a French adult Caucasian population (7 =70). The results ranged from 7.8 to 27.8 nmol h(-1) ml(-1) packed red blood cells and the frequency distribution histogram is similar to that previously published.

  7. Shuffler instruments for the nondestructive assay of fissile materials

    SciTech Connect

    Rinard, P.M.

    1991-05-01

    A shuffler is a nondestructive assay instrument used to determine the fissile content of materials. It places an isotopic source of neutrons near the material to induce fissions, withdraws the source, and counts the delayed neutrons. The source is shuffled until a sufficient number of delayed neutrons have been counted. The shuffler technique is generally applied to difficult assay cases. The amount of material present may be very small (a few milligrams), and thus it does not spontaneously emit neutrons of consequence; the amount of material is also below an active well counter's level of sensitivity. On the other hand, the fissile amount may be fairly large, but the rate of spontaneously emitted neutrons may still be low (so a passive neutron count will not work) or the highest assay precision may be desired (favoring a shuffler over an active well counter) even if the material is inhomogeneous (making it difficult to interrogate with thermal neutrons). In all these cases, gamma-ray backgrounds, self- shielding, or matrix effects can make gamma-ray assays impractical. Materials ranging from highly radioactive spent-fuel assemblies to low-level waste drums have been assayed with shufflers, as have leached hulls, various process materials, scrap, and waste. This report presents a theoretical background for shufflers and describes techniques for practical applications. Procedures for assaying mixtures of fissile isotopes, inhomogeneous materials, and flowing liquids are discussed. It is shown how the precision and limits of detection of a shuffler can be calculated for a given neutron background rate. A section on data analysis gives a stepwise procedure for converting the measured counts into an assay value, including random, systematic, and total uncertainties. 31 refs.

  8. TFT-Based Active Pixel Sensors for Large Area Thermal Neutron Detection

    NASA Astrophysics Data System (ADS)

    Kunnen, George

    Due to diminishing availability of 3He, which is the critical component of neutron detecting proportional counters, large area flexible arrays are being considered as a potential replacement for neutron detection. A large area flexible array, utilizing semiconductors for both charged particle detection and pixel readout, ensures a large detection surface area in a light weight rugged form. Such a neutron detector could be suitable for deployment at ports of entry. The specific approach used in this research, uses a neutron converter layer which captures incident thermal neutrons, and then emits ionizing charged particles. These ionizing particles cause electron-hole pair generation within a single pixel's integrated sensing diode. The resulting charge is then amplified via a low-noise amplifier. This document begins by discussing the current state of the art in neutron detection and the associated challenges. Then, for the purpose of resolving some of these issues, recent design and modeling efforts towards developing an improved neutron detection system are described. Also presented is a low-noise active pixel sensor (APS) design capable of being implemented in low temperature indium gallium zinc oxide (InGaZnO) or amorphous silicon (a-Si:H) thin film transistor process compatible with plastic substrates. The low gain and limited scalability of this design are improved upon by implementing a new multi-stage self-resetting APS. For each APS design, successful radiation measurements are also presented using PiN diodes for charged particle detection. Next, detection array readout methodologies are modeled and analyzed, and use of a matched filter readout circuit is described as well. Finally, this document discusses detection diode integration with the designed TFT-based APSs.

  9. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods.

    PubMed

    Xing, Jiali; Wang, Gang; Zhang, Qiuxiang; Liu, Xiaoming; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Chen, Wei

    2015-01-01

    Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA) assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs) of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS), reducing power (RP), and inhibition of linoleic acid peroxidation (ILAP). Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs. PMID:25789875

  10. neutron activation analysis using thermochromatography. III. analysis of samples of biological origin

    SciTech Connect

    Sattarov, G.; Davydov, A.V.; Khamatov, S.; Kist, A.A.

    1986-07-01

    The use of gas thermochromatography (GTC) in the radioactivation analysis of biological materials is discussed. A group separation of a number of highly volatile elements from sodium and bromine radionuclides has been achieved. The limit of detection of the elements by INAA and neutron activation analysis was estimated using GTC. The advantages of the procedure and the analytical parameters are discussed.

  11. Upgrade of the NIST Thermal Neutron Prompt-Gamma-Ray Activation Analysis Facility

    SciTech Connect

    E. A. Mackey; D. L. Anderson; G. Lamaze; R. M. Lindstrom; P. J. Liposky

    2000-11-12

    The thermal neutron prompt-gamma-ray activation analysis facility at the National Institute of Standards and Technology (NIST) was designed and built in the late 1970s. An upgrade of the facility to reduce background and enhance analytical sensitivities is in progress, and is described in this report.

  12. Neutron activation analysis of fluid inclusions for copper, manganese, and zinc

    USGS Publications Warehouse

    Czamanske, G.K.; Roedder, E.; Burns, F.C.

    1963-01-01

    Microgram quantities of copper, manganese, and zinc, corresponding to concentrations greater than 100 parts per million, were found in milligram quantities of primary inclusion fluid extracted from samples of quartz and fluorite from two types of ore deposits. The results indicate that neutron activation is a useful analytical method for studying the content of heavy metal in fluid inclusions.

  13. A neutron activation analysis of iridium concentration in Yamato carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Yabushita, S.; Wada, K.; Moriyama, H.; Takeuchi, K.

    1988-09-01

    Iridium concentration in extra-terrestrial bodies is an important quantity in relation to Ir-rich geological layers. Ir concentration of a Yamato carbonaceous chondrite (Y-793321) has been measured by a neutron activation method. The measurement yields a value (0.57±0.06) μg per gramme for the chondrite.

  14. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOEpatents

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  15. A high-content screening assay in transgenic zebrafish identifies two novel activators of fgf signaling.

    PubMed

    Saydmohammed, Manush; Vollmer, Laura L; Onuoha, Ezenwa Obi; Vogt, Andreas; Tsang, Michael

    2011-09-01

    Zebrafish have become an invaluable vertebrate animal model to interrogate small molecule libraries for modulators of complex biological pathways and phenotypes. We have recently described the implementation of a quantitative, high-content imaging assay in multi-well plates to analyze the effects of small molecules on Fibroblast Growth Factor (FGF) signaling in vivo. Here we have evaluated the capability of the assay to identify compounds that hyperactivate FGF signaling from a test cassette of agents with known biological activities. Using a transgenic zebrafish reporter line for FGF activity, we screened 1040 compounds from an annotated library of known bioactive agents, including FDA-approved drugs. The assay identified two molecules, 8-hydroxyquinoline sulfate and pyrithione zinc, that enhanced FGF signaling in specific areas of the brain. Subsequent studies revealed that both compounds specifically expanded FGF target gene expression. Furthermore, treatment of early stage embryos with either compound resulted in dorsalized phenotypes characteristic of hyperactivation of FGF signaling in early development. Documented activities for both agents included activation of extracellular signal-related kinase (ERK), consistent with FGF hyperactivation. To conclude, we demonstrate the power of automated quantitative high-content imaging to identify small molecule modulators of FGF. PMID:21932436

  16. A continuous spectrophotometric assay that distinguishes between phospholipase A1 and A2 activities[S

    PubMed Central

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Popowycz, Florence; Khatib, Abdallah; Queneau, Yves; Abousalham, Abdelkarim

    2016-01-01

    A new spectrophotometric assay was developed to measure, continuously and specifically, phospholipase A1 (PLA1) or phospholipase A2 (PLA2) activities using synthetic glycerophosphatidylcholines (PCs) containing α-eleostearic acid, either at the sn-1 position [1-α-eleostearoyl-2-octadecyl-rac-glycero-3-phosphocholine (EOPC)] or at the sn-2 position [1-octadecyl-2-α-eleostearoyl-rac-glycero-3-phosphocholine (OEPC)]. The substrates were coated onto the wells of microtiter plates. A nonhydrolyzable ether bond, with a non-UV-absorbing alkyl chain, was introduced at the other sn position to prevent acyl chain migration during lipolysis. Upon enzyme action, α-eleostearic acid is liberated and then solubilized into the micellar phase. The PLA1 or PLA2 activity was measured by the increase in absorbance at 272 nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. EOPC and OEPC differentiate, with excellent accuracy, between PLA1 and PLA2 activity. Lecitase®, guinea pig pancreatic lipase-related protein 2 (known to be a PLA1 enzyme), bee venom PLA2, and porcine pancreatic PLA2 were all used to validate the assay. Compared with current assays used for continuously measuring PLA1 or PLA2 activities and/or their inhibitors, the development of this sensitive enzymatic method, using coated PC substrate analogs to natural lipids and based on the UV spectroscopic properties of α-eleostearic acid, is a significant improvement. PMID:27194811

  17. Radiochemical neutron activation analysis for certification of ion-implanted phosphorus in silicon.

    PubMed

    Paul, Rick L; Simons, David S; Guthrie, William F; Lu, John

    2003-08-15

    A radiochemical neutron activation analysis procedure has been developed, critically evaluated, and shown to have the necessary sensitivity, chemical specificity, matrix independence, and precision to certify phosphorus at ion implantation levels in silicon. 32P, produced by neutron capture of 31P, is chemically separated from the sample matrix and measured using a beta proportional counter. The method is used here to certify the amount of phosphorus in SRM 2133 (Phosphorus Implant in Silicon Depth Profile Standard) as (9.58 +/- 0.16) x 10(14) atoms x cm(-2). A detailed evaluation of uncertainties is given.

  18. Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.

    SciTech Connect

    Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

    2007-12-01

    An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

  19. A New Automated Sample Transfer System for Instrumental Neutron Activation Analysis

    PubMed Central

    Ismail, S. S.

    2010-01-01

    A fully automated and fast pneumatic transport system for short-time activation analysis was recently developed. It is suitable for small nuclear research reactors or laboratories that are using neutron generators and other neutron sources. It is equipped with a programmable logic controller, software package, and 12 devices to facilitate optimal analytical procedures. 550 ms were only necessary to transfer the irradiated capsule (diameter: 15 mm, length: 50 mm, weight: 4 gram) to the counting chamber at a distance of 20 meters using pressurized air (4 bars) as a transport gas. PMID:20369063

  20. Luminescent and scintillating properties of lanthanum fluoride nanocrystals in response to gamma/neutron irradiation: codoping with Ce activator, Yb wavelength shifter, and Gd neutron captor

    NASA Astrophysics Data System (ADS)

    Vargas, J. M.; Blostein, J. J.; Sidelnik, I.; Rondón Brito, D.; Rodríguez Palomino, L. A.; Mayer, R. E.

    2016-09-01

    A novel concept for gamma radiation detection and spectroscopy, and detection of thermal neutrons based on co-doped lanthanum fluoride nanocrystals containing gadolinium is presented. The trends of colloidal synthesis of the mentioned material, LaF3 co-doped with Ce3+ as the activator, Yb3+ as the wavelength-shifter and Gd3+ as the neutron captor, is reported. Nanocrystals of the mentioned material were characterized by transmission electron microscopy, X ray diffraction, energy dispersive X ray spectroscopy, optical absorption, and photoluminescence spectroscopy. Gamma detection and its potential spectroscopy feature have been confirmed. The neutron detection capability has been confirmed by experiments performed using a 252Cf neutron source.

  1. Importance of neutron energy distribution in borehole activation analysis in relatively dry, low-porosity rocks

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.; Philbin, P.W.; Boynton, G.R.; Wager, R.E.

    1977-01-01

    To evaluate the importance of variations in the neutron energy distribution in borehole activation analysis, capture gamma-ray measurements were made in relatively dry, low-porosity gabbro of the Duluth Complex. Although sections of over a meter of solid rock were encountered in the borehole, there was significant fracturing with interstitial water leading to a substantial variation of water with depth in the borehole. The linear-correlation coefficients calculated for the peak intensities of several elements compared to the chemical core analyses were generally poor throughout the depth investigated. The data suggest and arguments are given which indicate that the variation of the thermal-to-intermediate-to-fast neutron flux density as a function of borehole depth is a serious source of error and is a major cause of the changes observed in the capture gamma-ray peak intensities. These variations in neutron energy may also cause a shift in the observed capture gamma-ray energy.

  2. Apparatus for the measurement of total body nitrogen using prompt neutron activation analysis with californium-252.

    PubMed

    Mackie, A; Hannan, W J; Smith, M A; Tothill, P

    1988-01-01

    Details of clinical apparatus designed for the measurement of total body nitrogen (as an indicator of body protein), suitable for the critically ill, intensive-care patient are presented. Californium-252 radio-isotopic neutron sources are used, enabling a nitrogen measurement by prompt neutron activation analysis to be made in 40 min with a precision of +/- 3.2% for a whole body dose equivalent of 0.145 mSv. The advantages of Californium-252 over alternative neutron sources are discussed. A comparison between two irradiation/detection geometries is made, leading to an explanation of the geometry adopted for the apparatus. The choice of construction and shielding materials to reduce the count rate at the detectors and consequently to reduce the pile-up contribution to the nitrogen background is discussed. Salient features of the gamma ray spectroscopy system to reduce spectral distortion from pulse pile-up are presented.

  3. Electrochemical cells for voltammetry, coulometry, and protein activity assays of small-volume biological samples.

    PubMed

    Feldman, B J; Gheller, S F; Bailey, G F; Newton, W E; Schultz, F A

    1990-02-15

    Cell designs, experimental protocols, and results for electrochemical investigation of small quantitites of biological materials under anaerobic conditions are reported. Three types of electrochemical experiments are considered: (i) cyclic voltammetry of 20- to 100-microliters samples; (ii) direct coulometry of 0.5- to 1.5-ml samples; and (iii) an electrochemically initiated protein activity assay which includes provision for analysis of gaseous reaction products and correlation with electron flux. The first two procedures are illustrated by measurement of the formal electrode potential (E0') and number of electrons transferred (n) in redox reactions of small quantities of biological and inorganic materials. The third procedure is illustrated by assaying the activity of the MoFe protein plus Fe protein complex from Azotobacter vinelandii nitrogenase for reduction of C2H2 to C2H4.

  4. Reconciling Apparent Variability in Effects of Biochar Amendment on Soil Enzyme Activities by Assay Optimization

    SciTech Connect

    Bailey, Vanessa L.; Fansler, Sarah J.; Smith, Jeffery L.; Bolton, Harvey

    2011-02-01

    Applying biochar to soils as an ameliorative substance and mechanism for C sequestration has received a great deal of interest in light of the sustained fertility observed in the Terra Preta soils of Brazil. The effects of synthetic biochars on biochemical processes needs to be better understood in order to determine if this is a reasonable practice in managed systems. The biochar studied was formed from the fast-pyrolysis of a switchgrass feedstock. Four soil enzymes were studied: β-glucosidase, β-N-acetylglucosaminidase, lipase, and leucine aminopeptidase. Both colorimetric and fluorescent assays were used for β-glucosidase and β-N-acetylglucosaminidase. Seven days after biochar was added to microcosms of a Palouse silt loam, the fluorescence-based assays indicated increased activities of the four enzymes, compared to non-amended soil. To clarify the mechanisms of the observed effects,in the absence of soil, purified enzymes or substrates were briefly exposed to biochar and then assayed. Except for β-N-acetylglucosaminidase, the exposure of substrate to biochar reduced the apparent activity of the remaining three enzymes in vitro, suggesting that sorption reactions between the substrate and biochar either removed the substrate from the assays or impeded the enzyme binding. The activity of purified β-N-acetylglucosaminidase increased significantly following biochar exposure, suggesting a chemical stimulation of enzyme functioning. We conclude that biochar added to soil acts as a substrate that can stimulate the soil microbial biomass and its activity. Our in vitro study suggests that biochar is not biochemically inert. Biochar amendments are likely to have effects that are currently difficult to predict, and that could impact overall soil function.

  5. Rapid parallel flow cytometry assays of active GTPases using effector beads

    PubMed Central

    Buranda, Tione; BasuRay, Soumik; Swanson, Scarlett; Agola, Jacob; Bondu, Virginie; Wandinger-Ness, Angela

    2013-01-01

    We describe a rapid assay for measuring the cellular activity of small GTPases in response to a specific stimulus. Effector functionalized beads are used to quantify in parallel multiple, GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus. PMID:23928044

  6. Gold nanorods-based FRET assay for ultrasensitive detection of DNA methylation and DNA methyltransferase activity.

    PubMed

    Wang, Gang Lin; Luo, Hong Qun; Li, Nian Bing

    2014-09-21

    A fluorescence method for the detection of DNA methylation and the assay of methyltransferase activity is proposed using gold nanorods as a fluorescence quencher on the basis of fluorescence resonance energy transfer. It is demonstrated that this method is capable of detecting methyltransferase with a detection limit of 0.25 U mL(-1), which might make this method a good candidate for monitoring DNA methylation in the future. PMID:25028809

  7. Kinetic assays for determining in vitro APS reductase activity in plants without the use of radioactive substances.

    PubMed

    Brychkova, Galina; Yarmolinsky, Dmitry; Sagi, Moshe

    2012-09-01

    Adenosine 5'-phosphosulfate (APS) reductase (APR; EC 1.8.4.9) catalyzes the two-electron reduction of APS to sulfite and AMP, a key step in the sulfate assimilation pathway in higher plants. In spite of the importance of this enzyme, methods currently available for detection of APR activity rely on radioactive labeling and can only be performed in a very few specially equipped laboratories. Here we present two novel kinetic assays for detecting in vitro APR activity that do not require radioactive labeling. In the first assay, APS is used as substrate and reduced glutathione (GSH) as electron donor, while in the second assay APS is replaced by an APS-regenerating system in which ATP sulfurylase catalyzes APS in the reaction medium, which employs sulfate and ATP as substrates. Both kinetic assays rely on fuchsin colorimetric detection of sulfite, the final product of APR activity. Incubation of the desalted protein extract, prior to assay initiation, with tungstate that inhibits the oxidation of sulfite by sulfite oxidase activity, resulted in enhancement of the actual APR activity. The reliability of the two methods was confirmed by assaying leaf extract from Arabidopsis wild-type and APR mutants with impaired or overexpressed APR2 protein, the former lacking APR activity and the latter exhibiting much higher activity than the wild type. The assays were further tested on tomato leaves, which revealed a higher APR activity than Arabidopsis. The proposed APR assays are highly specific, technically simple and readily performed in any laboratory.

  8. Recent upgrade of the in vivo neutron activation facility at Brookhaven National Laboratory

    SciTech Connect

    Ma, R.; Dilmanian, F.A..; Rarback, H.; Meron, M.; Kamen, Y.; Yasumura, S.; Weber, D.A.; Stamatelatos, I.E.; Lidofsky, L.J.; Pierson, R.N. Jr.

    1993-10-01

    The in vivo neutron activation facility at Brookhaven National Laboratory consists of a delayed- and a prompt-gamma neutron activation (DGNA and PGNA) system and an inelastic neutron scattering (INS) system. The total body contents of several basic elements, including potassium, calcium, chlorine, sodium, and phosphorus are measured at the DGNA system; total body carbon is measured at the INS system; and the nitrogen-tohydrogen ratio is measured at the PGNA system. Based on the elemental composition, body compartments, such as total body fat and total body protein can be computed with additional independently measured parameters, such as total body water, body size, and body weight. Information on elemental and compartmental body composition obtained through neutron activation analysis is useful, if not essential, for research on growth, malnutrition, aging diseases, such as osteoporosis and acquired immunodeficiency syndrome in which the progression of the illness is closely related to changes in major body compartments, such as bone, adipose tissue, and muscle. The DGNA system has been modified and upgraded several times since it was first built. Recently, all three systems underwent major upgrades. This upgrading and some preliminary studies carried out with the modified facilities are reported here.

  9. A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma.

    PubMed

    Goiffon, Reece J; Martinez, Sara C; Piwnica-Worms, David

    2015-02-10

    Myeloperoxidase (MPO) is a circulating cardiovascular disease (CVD) biomarker used to estimate clinical risk and patient prognosis. Current enzyme-linked immunosorbent assays (ELISA) for MPO concentration are costly and time-intensive. Here we report a novel bioluminescence assay, designated MPO activity on a polymer surface (MAPS), for measuring MPO activity in human plasma samples using the bioluminescent substrate L-012. The method delivers a result in under an hour and is resistant to confounding effects from endogenous MPO inhibitors. In a pilot clinical study, we compared MAPS and two clinical ELISAs using 72 plasma samples from cardiac catheterization patients. Results from parallel MAPS and ELISAs were concordant within 2±11 μg l(-1) MPO with similar uncertainty and reproducibility. Results between parallel MAPS and ELISA were in better agreement than those between independent ELISAs. MAPS may provide an inexpensive and rapid assay for determining MPO activity in plasma samples from patients with CVD or potentially other immune and inflammatory disorders.

  10. A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase.

    PubMed

    Yu, Kai; Hu, Sheng; Huang, Jun; Mei, Le-He

    2011-08-10

    A pH-sensitive colorimetric assay has been established to quantitatively measure glutamate decarboxylase (GAD) activity in bacterial cell extracts using a microplate format. GAD catalyzes the irreversible α-decarboxylation of L-glutamate to γ-aminobutyrate. The assay is based on the color change of bromocresol green due to an increase in pH as protons are consumed during the enzyme-catalyzed reaction. Bromocresol green was chosen as the indicator because it has a similar pK(a) to the acetate buffer used. The corresponding absorbance change at 620 nm was recorded with a microplate reader as the reaction proceeded. A difference in the enzyme preparation pH and optimal pH for GAD activity of 2.5 did not prevent this method from successfully allowing the determination of reaction kinetic parameters and the detection of improvements in enzymatic activity with a low coefficient of variance. Our assay is simple, rapid, requires minimal sample concentration and can be carried out in robotic high-throughput devices used as standard in directed evolution experiments. In addition, it is also applicable to other reactions that involve a change in pH.

  11. A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma

    PubMed Central

    Goiffon, Reece J.; Martinez, Sara C.; Piwnica-Worms, David

    2015-01-01

    Myeloperoxidase (MPO) is a circulating cardiovascular disease (CVD) biomarker used to estimate clinical risk and patient prognosis. Current enzyme-linked immunosorbent assays (ELISA) for MPO concentration are costly and time-intensive. Here we report a novel bioluminescence assay, designated MPO activity on a polymer surface (MAPS), for measuring MPO activity in human plasma samples using the bioluminescent substrate L-012. The method delivers a result in under an hour and is resistant to confounding effects from endogenous MPO inhibitors. In a pilot clinical study, we compared MAPS and two clinical ELISAs using 72 plasma samples from cardiac catheterization patients. Results from parallel MAPS and ELISAs were concordant within 2±11 μg l−1 MPO with similar uncertainty and reproducibility. Results between parallel MAPS and ELISA were in better agreement than those between independent ELISAs. MAPS may provide an inexpensive and rapid assay for determining MPO activity in plasma samples from patients with CVD or potentially other immune and inflammatory disorders. PMID:25666092

  12. Assessment of estrogenic activity in Tunisian water and wastewater by E-screen assay.

    PubMed

    Limam, Atef; Talorete, Terence P N; Ali, Mourad Ben Sik; Kawano, Mitsuko; Jenhani, Amel Ben Rejeb; Abe, Yukuo; Ghrabi, Ahmed; Isoda, Hiroko

    2007-01-01

    Wastewater and surface water samples from three wastewater treatment plants (WWTPs) and three rivers in Tunisia were assayed for estrogenic activity using the E-screen assay and enzyme-linked immunosorbent assay (ELISA). Results showed that all the Tunisian raw wastewater samples as well as the Roriche river water sample induced a strong proliferative response in human MCF-7 breast cancer cells. Tunisian raw wastewater had an average 17beta-estradiol content of 2,705.4 pg/ml, whereas that of the Roriche river was 36.7 pg/ml, which is sufficient for inducing endocrine-mediated responses in aquatic organisms. Results further showed that the Mornag WWTP, which uses the activated-sludge treatment system, has a higher estrogen removal efficiency than the stabilization ponds of the Gammart and pilot WWTPs. This study, which is the first of such studies in Tunisia, and probably the first in the North African region, underscores the need to detect and monitor the estrogenic activity of water and wastewater, given the scarcity of water in Tunisia and the detrimental impact of endocrine-disrupting compounds on the physiology of both animals and humans. PMID:18382414

  13. Development of a sensitive multi-well colorimetric assay for active NFκB

    PubMed Central

    Renard, Patricia; Ernest, Isabelle; Houbion, Andrée; Art, Muriel; Le Calvez, Hervé; Raes, Martine; Remacle, José

    2001-01-01

    The transcription factor nuclear factor κB (NFκB) is a key factor in the immune response triggered by a wide variety of molecules such as inflammatory cytokines, or some bacterial and viral products. This transcription factor represents a new target for the development of anti-inflammatory molecules, but this type of research is currently hampered by the lack of a convenient and rapid screening assay for NFκB activation. Indeed, NFκB DNA-binding capacity is traditionally estimated by radioactive gel shift assay. Here we propose a new DNA-binding assay based on the use of multi-well plates coated with a cold oligonucleotide containing the consensus binding site for NFκB. The presence of the DNA-bound transcription factor is then detected by anti-NFκB antibodies and revealed by colorimetry. This assay is easy to use, non-radioactive, highly reproducible, specific for NFκB, more sensitive than regular radioactive gel shift and very convenient for high throughput screening. PMID:11160941

  14. A Cell-Based Assay for Measuring Endogenous BcrAbl Kinase Activity and Inhibitor Resistance.

    PubMed

    Ouellette, Steven B; Noel, Brett M; Parker, Laurie L

    2016-01-01

    Kinase enzymes are an important class of drug targets, particularly in cancer. Cell-based kinase assays are needed to understand how potential kinase inhibitors act on their targets in a physiologically relevant context. Current cell-based kinase assays rely on antibody-based detection of endogenous substrates, inaccurate disease models, or indirect measurements of drug action. Here we expand on previous work from our lab to introduce a 96-well plate compatible approach for measuring cell-based kinase activity in disease-relevant human chronic myeloid leukemia cell lines using an exogenously added, multi-functional peptide substrate. Our cellular models natively express the BcrAbl oncogene and are either sensitive or have acquired resistance to well-characterized BcrAbl tyrosine kinase inhibitors. This approach measures IC50 values comparable to established methods of assessing drug potency, and its robustness indicates that it can be employed in drug discovery applications. This medium-throughput assay could bridge the gap between single target focused, high-throughput in vitro assays and lower-throughput cell-based follow-up experiments. PMID:27598410

  15. A Cell-Based Assay for Measuring Endogenous BcrAbl Kinase Activity and Inhibitor Resistance

    PubMed Central

    Ouellette, Steven B.; Noel, Brett M.; Parker, Laurie L.

    2016-01-01

    Kinase enzymes are an important class of drug targets, particularly in cancer. Cell-based kinase assays are needed to understand how potential kinase inhibitors act on their targets in a physiologically relevant context. Current cell-based kinase assays rely on antibody-based detection of endogenous substrates, inaccurate disease models, or indirect measurements of drug action. Here we expand on previous work from our lab to introduce a 96-well plate compatible approach for measuring cell-based kinase activity in disease-relevant human chronic myeloid leukemia cell lines using an exogenously added, multi-functional peptide substrate. Our cellular models natively express the BcrAbl oncogene and are either sensitive or have acquired resistance to well-characterized BcrAbl tyrosine kinase inhibitors. This approach measures IC50 values comparable to established methods of assessing drug potency, and its robustness indicates that it can be employed in drug discovery applications. This medium-throughput assay could bridge the gap between single target focused, high-throughput in vitro assays and lower-throughput cell-based follow-up experiments. PMID:27598410

  16. A nanostructure-initiator mass spectrometry-based enzyme activity assay

    SciTech Connect

    Siuzdak, Gary; Northen, Trent R.; Lee, Jinq-Chyi; Hoang, Linh; Raymond, Jason; Hwang, Der-Ren; Yannone, Steven M.; Wong, Chi-Huey; Siuzdak, Gary

    2008-03-10

    We describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme) assay in which enzyme substrates are immobilized on the mass spectrometry surface by using fluorous-phase interactions. This 'soft' immobilization allows efficient desorption/ionization while also enabling the use of surface-washing steps to reduce signal suppression from complex biological samples, which results from the preferential retention of the tagged products and reactants. The Nimzyme assay is sensitive to subpicogram levels of enzyme, detects both addition and cleavage reactions (sialyltransferase and galactosidase), is applicable over a wide range of pHs and temperatures, and can measure activity directly from crude cell lysates. The ability of the Nimzyme assay to analyze complex mixtures is illustrated by identifying and directly characterizing {beta}-1,4-galactosidase activity from a thermophilic microbial community lysate. The optimal enzyme temperature and pH were found to be 65 C and 5.5, respectively, and the activity was inhibited by both phenylethyl-{beta}-d-thiogalactopyranoside and deoxygalactonojirimycin. Metagenomic analysis of the community suggests that the activity is from an uncultured, unsequenced {gamma}-proteobacterium. In general, this assay provides an efficient method for detection and characterization of enzymatic activities in complex biological mixtures prior to sequencing or cloning efforts. More generally, this approach may have important applications for screening both enzymatic and inhibitor libraries, constructing and screening glycan microarrays, and complementing fluorous-phase organic synthesis. The interest in leveraging mass spectrometry for studying enzyme activities in complex biological samples derives from its high sensitivity and specificity; however, signal suppression and significant sample preparation requirements limit its overall utility (1). Here we describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme

  17. Study of proton and neutron activation of metal samples in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1984-01-01

    The analysis of the gamma-ray spectra taken from samples flown in Spacelab 1; the search for and review of neutron and proton activation cross-sections needed to analyze the results of the Long Duration Exposure Facility (LDEF) activation measurements; additional calculations of neutron induced activation for the LDEF samples; the data analysis plan for the LDEF and Spacelab 2 samples; the measurement of relevant cross-sections with activation of samples of V, Co, In, and Ta at the Indiana University Cyclotron Facility; and the preparation of an extended gamma-ray calibration source through the development of a proper technique to accurately deposit equal quantities of radioactive material onto a large number of point on the source are discussed.

  18. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.

    PubMed

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-11-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received.

  19. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.

    PubMed

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-11-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661

  20. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC

    PubMed Central

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-01-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661

  1. A simple liposome assay for the screening of zinc ionophore activity of polyphenols.

    PubMed

    Clergeaud, Gael; Dabbagh-Bazarbachi, Husam; Ortiz, Mayreli; Fernández-Larrea, Juan B; O'Sullivan, Ciara K

    2016-04-15

    An efficient liposomal system for screening the zinc ionophore activity of a selected library consisting of the most relevant dietary polyphenols is presented. The zinc ionophore activity was demonstrated by exploring the use of zinc-specific fluorophore FluoZin-3 loaded liposomes as simple membrane tools that mimic the cell membrane. The zinc ionophore activity was demonstrated as the capacity of polyphenols to transport zinc cations across the liposome membrane and increase the zinc-specific fluorescence of the encapsulated fluorophore FluoZin-3. In addition, the zinc chelation strength of the polyphenols was also tested in a competition assay based on the fluorescence quenching of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. Finally, the correlation between the chelation capacity and ionophore activity is demonstrated, thus underlining the sequestering or ionophoric activity that the phenolic compounds can display, thus, providing better knowledge of the importance of the structural conformation versus their biological activity. Furthermore, the assays developed can be used as tools for rapid, high-throughput screening of families of polyphenols towards different biometals. PMID:26617034

  2. A simple liposome assay for the screening of zinc ionophore activity of polyphenols.

    PubMed

    Clergeaud, Gael; Dabbagh-Bazarbachi, Husam; Ortiz, Mayreli; Fernández-Larrea, Juan B; O'Sullivan, Ciara K

    2016-04-15

    An efficient liposomal system for screening the zinc ionophore activity of a selected library consisting of the most relevant dietary polyphenols is presented. The zinc ionophore activity was demonstrated by exploring the use of zinc-specific fluorophore FluoZin-3 loaded liposomes as simple membrane tools that mimic the cell membrane. The zinc ionophore activity was demonstrated as the capacity of polyphenols to transport zinc cations across the liposome membrane and increase the zinc-specific fluorescence of the encapsulated fluorophore FluoZin-3. In addition, the zinc chelation strength of the polyphenols was also tested in a competition assay based on the fluorescence quenching of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. Finally, the correlation between the chelation capacity and ionophore activity is demonstrated, thus underlining the sequestering or ionophoric activity that the phenolic compounds can display, thus, providing better knowledge of the importance of the structural conformation versus their biological activity. Furthermore, the assays developed can be used as tools for rapid, high-throughput screening of families of polyphenols towards different biometals.

  3. Sensitive assay of GTP cyclohydrolase I activity in rat and human tissues using radioimmunoassay of neopterin

    SciTech Connect

    Sawada, M.; Horikoshi, T.; Masada, M.; Akino, M.; Sugimoto, T.; Matsuura, S.; Nagatsu, T.

    1986-04-01

    A highly sensitive and simple assay for the activity of GTP cyclohydrolase I (EC 3.5.4.16) was established using a newly developed radioimmunoassay. D-erythro-7,8-Dihydroneopterin triphosphate formed from GTP by GTP cyclohydrolase I was oxidized by iodine and dephosphorylated by alkaline phosphatase to D-erythro-neopterin, and quantified by a radioimmunoassay for D-erythro-neopterin. This method was highly sensitive and required only 0.2 mg of rat liver tissues for the measurement of the activity. It was reproducible and can be applied for the simultaneous assay of many samples. The activity of GTP cyclohydrolase I was measured in several rat tissues. For example, the enzyme activity in rat striatum (n = 5) was 13.7 +/- 1.5 pmol/mg protein per hour (mean +/- SE), and agreed well with those obtained by high-performance liquid chromatography with fluorescence detection. The activity in the autopsy human brains (caudate nucleus) was measured by this new method for the first time. The activity in the caudate nucleus from parkinsonian patients (n = 6) was 0.82 +/- 0.56 pmol/mg protein per hour which was significantly lower than the control value, 4.22 +/- 0.43 pmol/mg protein per hour (n = 10).

  4. neutron activation analysis using thermochromatography. II. thermochromatographic separation of elements in the analysis of geological samples

    SciTech Connect

    Sattarov, G.; Davydov, A.V.; Khamatov, S.; Kist, A.A.

    1986-07-01

    The use of gas thermochromatography (GTC) in the radioactivation analysis of difficulty soluble samples with a strongly activating substrate is discussed. The effect of sample coarseness and ore type on the rate of extraction of gold and accompanying elements was studied. The limits of detection of 22 elements were compared using neutron activation analysis with GTC and INAA. The analytical parameters of the procedure were estimated.

  5. Progress in high-throughput assays of MGMT and APE1 activities in cell extracts.

    PubMed

    Georgiadis, Panagiotis; Polychronaki, Nektaria; Kyrtopoulos, Soterios A

    2012-08-01

    DNA repair activity is of interest as a potential biomarker of individual susceptibility to genotoxic agents. In view of the current trend for exploitation of large cohorts in molecular epidemiology projects, there is a pressing need for the development of phenotypic DNA repair assays that are high-throughput, very sensitive, inexpensive and reliable. Towards this goal we have developed and validated two phenotypic assays for the measurement of two DNA repair enzymes in cell extracts: (1) O(6)-methylguanine-DNA-methyltransferase (MGMT), which repairs the O(6)-alkylguanine-type of adducts induced in DNA by alkylating genotoxins; and (2) apurinic/apyrimidinic endonuclease 1 (APE 1), which participates in base excision repair (BER) by causing a rate-limiting DNA strand cleavage 5' to the abasic sites. The MGMT assay makes use of the fact that: (a) the enzyme works by irreversibly transferring the alkyl group from the O(6) position of guanine to a cystein residue in its active site and thereby becomes inactivated and (b) that the free base O(6)-benzylguanine (BG) is a very good substrate for MGMT. In the new assay, cell extracts are incubated with BG tagged with biotin and the resulting MGMT-BG-biotin complex is immobilized on anti-MGMT-coated microtiter plates, followed by quantitation using streptavidin-conjugated alkaline phosphatase and a chemiluminescence-producing substrate. A one-step/one-tube phenotypic assay for APE1 activity has been developed based on the use of a fluorescent molecular beacon (partially self-complementary oligonucleotide with a hairpin-loop structure carrying a fluorophore and a quencher at each end). It also contains a single tetrahydrofuran residue (THF) which is recognized and cleaved by APE1, and the subsequently formed single-stranded oligomer becomes a fluorescence signal emitter. Both assays are highly sensitive, require very small amounts of protein extracts, are relatively inexpensive and can be easily automated. They have been

  6. [Detection of endotoxin activity in water environment and analysis of influence factors for TAL assay].

    PubMed

    Zhang, Can; Liu, Wen-jun; Zhang, Ming-lu; Tian, Fang; Sun, Wen; Qian, Ling-jia; Zhan, Rui

    2013-09-01

    Endotoxins, derived from cell walls of most Gram-negative bacteria and some cyanobacteria, are common pyrogen and highly immunogenic molecules, and related to many diseases. In this paper, a detection method for endotoxin activity in water environment using kinetic-turbid assay of Tachypleus Amebocyte Lysate (TAL) was established, the influence of pH and salts on TAL assay was investigated. Results showed that it was favorable for TAL assay in the pH range of 6.0-8.4, at low pHs, inhibition results were observed and opposite results were obtained at high pHs. The pH should be adjusted by Tris-HCl (pH = 7.4) buffer before the endotoxin detection. No significant interference was shown in the detection of water containing NaCl, Na2SO4, CaCl2, MgCl2 and KCl with a concentration of less than 50 mg x L(-1), however, the inhibition occurred at the concentration up to 1000-10,000 mg x L(-1). Only 2. 5 mg x L(-1) of FeCl, Fe2(SO4)3, AlCl3 and Al2 (SO4)3 caused significant inhibition. Endotoxin activities of ultrapure water, tap water and recreational water were detected by TAL assay, and their endotoxin activities were < 0.06 EU x mL(-1), 0.46 EU x mL(-1) and 432. 68 EU x mL(-1), respectively. PMID:24288979

  7. "Singing in the Tube"--audiovisual assay of plant oil repellent activity against mosquitoes (Culex pipiens).

    PubMed

    Adams, Temitope F; Wongchai, Chatchawal; Chaidee, Anchalee; Pfeiffer, Wolfgang

    2016-01-01

    Plant essential oils have been suggested as a promising alternative to the established mosquito repellent DEET (N,N-diethyl-meta-toluamide). Searching for an assay with generally available equipment, we designed a new audiovisual assay of repellent activity against mosquitoes "Singing in the Tube," testing single mosquitoes in Drosophila cultivation tubes. Statistics with regression analysis should compensate for limitations of simple hardware. The assay was established with female Culex pipiens mosquitoes in 60 experiments, 120-h audio recording, and 2580 estimations of the distance between mosquito sitting position and the chemical. Correlations between parameters of sitting position, flight activity pattern, and flight tone spectrum were analyzed. Regression analysis of psycho-acoustic data of audio files (dB[A]) used a squared and modified sinus function determining wing beat frequency WBF ± SD (357 ± 47 Hz). Application of logistic regression defined the repelling velocity constant. The repelling velocity constant showed a decreasing order of efficiency of plant essential oils: rosemary (Rosmarinus officinalis), eucalyptus (Eucalyptus globulus), lavender (Lavandula angustifolia), citronella (Cymbopogon nardus), tea tree (Melaleuca alternifolia), clove (Syzygium aromaticum), lemon (Citrus limon), patchouli (Pogostemon cablin), DEET, cedar wood (Cedrus atlantica). In conclusion, we suggest (1) disease vector control (e.g., impregnation of bed nets) by eight plant essential oils with repelling velocity superior to DEET, (2) simple mosquito repellency testing in Drosophila cultivation tubes, (3) automated approaches and room surveillance by generally available audio equipment (dB[A]: ISO standard 226), and (4) quantification of repellent activity by parameters of the audiovisual assay defined by correlation and regression analyses.

  8. "Singing in the Tube"--audiovisual assay of plant oil repellent activity against mosquitoes (Culex pipiens).

    PubMed

    Adams, Temitope F; Wongchai, Chatchawal; Chaidee, Anchalee; Pfeiffer, Wolfgang

    2016-01-01

    Plant essential oils have been suggested as a promising alternative to the established mosquito repellent DEET (N,N-diethyl-meta-toluamide). Searching for an assay with generally available equipment, we designed a new audiovisual assay of repellent activity against mosquitoes "Singing in the Tube," testing single mosquitoes in Drosophila cultivation tubes. Statistics with regression analysis should compensate for limitations of simple hardware. The assay was established with female Culex pipiens mosquitoes in 60 experiments, 120-h audio recording, and 2580 estimations of the distance between mosquito sitting position and the chemical. Correlations between parameters of sitting position, flight activity pattern, and flight tone spectrum were analyzed. Regression analysis of psycho-acoustic data of audio files (dB[A]) used a squared and modified sinus function determining wing beat frequency WBF ± SD (357 ± 47 Hz). Application of logistic regression defined the repelling velocity constant. The repelling velocity constant showed a decreasing order of efficiency of plant essential oils: rosemary (Rosmarinus officinalis), eucalyptus (Eucalyptus globulus), lavender (Lavandula angustifolia), citronella (Cymbopogon nardus), tea tree (Melaleuca alternifolia), clove (Syzygium aromaticum), lemon (Citrus limon), patchouli (Pogostemon cablin), DEET, cedar wood (Cedrus atlantica). In conclusion, we suggest (1) disease vector control (e.g., impregnation of bed nets) by eight plant essential oils with repelling velocity superior to DEET, (2) simple mosquito repellency testing in Drosophila cultivation tubes, (3) automated approaches and room surveillance by generally available audio equipment (dB[A]: ISO standard 226), and (4) quantification of repellent activity by parameters of the audiovisual assay defined by correlation and regression analyses. PMID:26412058

  9. Development of a QPatch Automated Electrophysiology Assay for Identifying KCa3.1 Inhibitors and Activators

    PubMed Central

    Jenkins, David Paul; Yu, Weifeng; Brown, Brandon M.; Løjkner, Lars Damgaard

    2013-01-01

    Abstract The intermediate-conductance Ca2+-activated K+ channel KCa3.1 (also known as KCNN4, IK1, or the Gárdos channel) plays an important role in the activation of T and B cells, mast cells, macrophages, and microglia by regulating membrane potential, cellular volume, and calcium signaling. KCa3.1 is further involved in the proliferation of dedifferentiated vascular smooth muscle cells and fibroblast and endothelium-derived hyperpolarization responses in the vascular endothelium. Accordingly, KCa3.1 inhibitors are therapeutically interesting as immunosuppressants and for the treatment of a wide range of fibroproliferative disorders, whereas KCa3.1 activators constitute a potential new class of endothelial function preserving antihypertensives. Here, we report the development of QPatch assays for both KCa3.1 inhibitors and activators. During assay optimization, the Ca2+ sensitivity of KCa3.1 was studied using varying intracellular Ca2+ concentrations. A free Ca2+ concentration of 1 μM was chosen to optimally test inhibitors. To identify activators, which generally act as positive gating modulators, a lower Ca2+ concentration (∼200 nM) was used. The QPatch results were benchmarked against manual patch-clamp electrophysiology by determining the potency of several commonly used KCa3.1 inhibitors (TRAM-34, NS6180, ChTX) and activators (EBIO, riluzole, SKA-31). Collectively, our results demonstrate that the QPatch provides a comparable but much faster approach to study compound interactions with KCa3.1 channels in a robust and reliable assay. PMID:24351043

  10. Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a

  11. Fe65 does not stabilize AICD during activation of transcription in a luciferase assay

    SciTech Connect

    Huysseune, Sandra; Kienlen-Campard, Pascal; Octave, Jean-Noel . E-mail: octave@nchm.ucl.ac.be

    2007-09-21

    The APP intracellular domain (AICD) could be involved in signaling via interaction with the adaptor protein Fe65, and with the histone acetyl transferase Tip60. However, the real function of AICD and Fe65 in regulation of transcription remains controversial. In this study, the human APPGal4 fusion protein was expressed in CHO cells and the transcriptional activity of AICDGal4 was measured in a luciferase-based reporter assay. AICDGal4 was stabilized by expression of Fe65 and levels of AICDGal4 controlled luciferase activity. On the contrary, when human APP was expressed in CHO cells, coexpression of Fe65 increased luciferase activity without affecting the amount of AICD fragment. AICD produced from APP was protected from degradation by orthophenanthroline, but not by lactacystine, indicating that AICD is not a substrate of the chymotryptic activity of the proteasome. It is concluded that Fe65 can control luciferase activity without stabilizing the labile AICD fragment.

  12. An easy-to-perform photometric assay for methyltransferase activity measurements.

    PubMed

    Schäberle, Till F; Siba, Christian; Höver, Thomas; König, Gabriele M

    2013-01-01

    Methyltransferases (MTs) catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to a suitable substrate. Such methylations are important modifications in secondary metabolisms, especially on natural products produced by polyketide synthases and nonribosomal peptide synthetases, many of which are of special interest due to their prominent pharmacological activities (e.g., lovastatin, cyclosporin). To gain basic biochemical knowledge on the methylation process, it is of immense relevance to simplify methods concerning experimental problems caused by a large variety in substrates. Here, we present a photometric method to analyze MT activity by measuring SAM consumption in a coupled enzyme assay.

  13. Neutron-induced nucleation inside bubble chambers using Freon 115 as the active medium

    NASA Astrophysics Data System (ADS)

    Ghilea, M. C.; Meyerhofer, D. D.; Sangster, T. C.

    2011-08-01

    Neutron imaging is used in inertial confinement fusion (ICF) experiments to measure the core symmetry of imploded targets. Liquid bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-target distance than typical scintillator arrays. Due to the fact that nucleation models used in gel detectors research cannot always give correct estimates for the neutron-induced bubble density inside a liquid bubble chamber, an improved theoretical model to describe the mechanism of bubble formation for Freon 115 as the active medium has been developed. It shows that the size of the critical radius for the nucleation process determines the mechanism of bubble formation and the sensitivity of the active medium to the 14.1-MeV incident neutrons resulting from ICF implosions. The bubble-growth mechanism is driven by the excitation of the medium electronic levels and not by electrons ejected from the medium's atoms as happens for the bubble chambers used to detect charged particles. The model accurately predicts the neutron-induced bubble density measured on OMEGA with both liquid bubble chambers and gel detectors.

  14. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants.

    PubMed

    Wan, Hongxia; Liu, Dong; Yu, Xiangying; Sun, Haiyan; Li, Yan

    2015-05-15

    A Caco-2 cell-based antioxidant activity (CAA) assay for quantitative evaluation of antioxidants was developed by optimizing seeding density and culture time of Caco-2 cells, incubation time and concentration of fluorescent probe (2',7'-dichlorofluorescin diacetate, DCFH-DA), incubation way and incubation time of antioxidants (pure phytochemicals) and DCFH-DA with cells, and detection time of fluorescence. Results showed that the CAA assay was of good reproducibility and could be used to evaluate the antioxidant activity of antioxidants at the following conditions: seeding density of 5 × 10(4)/well, cell culture time of 24h, co-incubation of 60 μM DCFH-DA and pure phytochemicals with Caco-2 cells for 20 min and fluorescence recorded for 90 min. Additionally, a significant correlation was observed between CAA values and rat plasma ORAC values following the intake of antioxidants for selected pure phytochemicals (R(2) = 0.815, p < 0.01), demonstrating the good biological relevance of CAA assay.

  15. A High-Content Assay for Biosensor Validation and for Examining Stimuli that Affect Biosensor Activity.

    PubMed

    Slattery, Scott D; Hahn, Klaus M

    2014-12-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules.

  16. A continuous assay for foot-and-mouth disease virus 3C protease activity.

    PubMed

    Jaulent, Agnès M; Fahy, Aodhnait S; Knox, Stephen R; Birtley, James R; Roqué-Rosell, Núria; Curry, Stephen; Leatherbarrow, Robin J

    2007-09-15

    Foot-and-mouth disease virus is a highly contagious pathogen that spreads rapidly among livestock and is capable of causing widespread agricultural and economic devastation. The virus genome is translated to produce a single polypeptide chain that subsequently is cleaved by viral proteases into mature protein products, with one protease, 3C(pro), carrying out the majority of the cleavages. The highly conserved nature of this protease across different viral strains and its crucial role in viral maturation and replication make it a very desirable target for inhibitor design. However, the lack of a convenient and high-throughput assay has been a hindrance in the characterization of potential inhibitors. In this article, we report the development of a continuous assay with potential for high throughput using fluorescence resonance energy transfer-based peptide substrates. Several peptide substrates containing the 3C-specific cleavage site were synthesized, varying both the positions and separation of the fluorescent donor and quencher groups. The best substrate, with a specificity constant k(cat)/K(M) of 57.6+/-2.0M(-1) s(-1), was used in inhibition assays to further characterize the protease's activity against a range of commercially available inhibitors. The inhibition profile of the enzyme showed characteristics of both cysteine and serine proteases, with the chymotrypsin inhibitor TPCK giving stoichiometric inhibition of the enzyme and allowing active site titration of the 3C(pro).

  17. Activation of chemical promutagens by Selenastrum capricornutum in the plant cell/microbe coincubation assay

    SciTech Connect

    Gentile, J.M.; Lippert, M.; Johnson, P.; Shafer, T. )

    1990-05-01

    The critical balance of organisms living in aquatic environments is influenced by the presence and relationship of plants to those environments. However, even though plants occupy a fundamental trophic level within aquatic ecosystems, few studies have focused upon the effect of xenobiotics on aquatic plants, and even fewer studies have dealt with xenobiotic metabolism by aquatic plants. It is well established that plants can metabolize chemicals into mutagens. The impact of these unique plant-activated chemical mutagens on ecosystems, food chains and, ultimately, human health is an important question that will require intensive and integrative investigation. The plant cell/microbe coincubation assay is particularly advantageous for use with unicellular algae. The conditions of this assay are such that chemical metabolism and subsequent mutagen detection can be followed in intact algal cells under simulated field conditions. The purpose of this research was to demonstrate that a unicellular algal species could be used effectively in the plant cell/microbe coincubation assay to activate model chemical mutagens.

  18. A Fluorometric Activity Assay for Light-Regulated Cyclic-Nucleotide-Monophosphate Actuators.

    PubMed

    Schumacher, Charlotte Helene; Körschen, Heinz G; Nicol, Christopher; Gasser, Carlos; Seifert, Reinhard; Schwärzel, Martin; Möglich, Andreas

    2016-01-01

    As a transformative approach in neuroscience and cell biology, optogenetics grants control over manifold cellular events with unprecedented spatiotemporal definition, reversibility, and noninvasiveness. Sensory photoreceptors serve as genetically encoded, light-regulated actuators and hence embody the cornerstone of optogenetics. To expand the scope of optogenetics, ever more naturally occurring photoreceptors are being characterized, and synthetic photoreceptors with customized, light-regulated function are being engineered. Perturbational control over intracellular cyclic-nucleotide-monophosphate (cNMP) levels is achieved via sensory photoreceptors that catalyze the making and breaking of these second messengers in response to light. To facilitate discovery, engineering and quantitative characterization of such light-regulated cNMP actuators, we have developed an efficient fluorometric assay. Both the formation and the hydrolysis of cNMPs are accompanied by proton release which can be quantified with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). This assay equally applies to nucleotide cyclases, e.g., blue-light-activated bPAC, and to cNMP phosphodiesterases, e.g., red-light-activated LAPD. Key benefits include potential for parallelization and automation, as well as suitability for both purified enzymes and crude cell lysates. The BCECF assay hence stands to accelerate discovery and characterization of light-regulated actuators of cNMP metabolism. PMID:26965118

  19. Visualizing repetitive diffusion activity of double-strand RNA binding proteins by single molecule fluorescence assays.

    PubMed

    Koh, Hye Ran; Wang, Xinlei; Myong, Sua

    2016-08-01

    TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. PMID:27012177

  20. Development of a protease activity assay using heat-sensitive Tus-GFP fusion protein substrates.

    PubMed

    Askin, Samuel P; Morin, Isabelle; Schaeffer, Patrick M

    2011-08-15

    Proteases are implicated in various diseases and several have been identified as potential drug targets or biomarkers. As a result, protease activity assays that can be performed in high throughput are essential for the screening of inhibitors in drug discovery programs. Here we describe the development of a simple, general method for the characterization of protease activity and its use for inhibitor screening. GFP was genetically fused to a comparatively unstable Tus protein through an interdomain linker containing a specially designed protease site, which can be proteolyzed. When this Tus-GFP fusion protein substrate is proteolyzed it releases GFP, which remains in solution after a short heat denaturation and centrifugation step used to eliminate uncleaved Tus-GFP. Thus, the increase in GFP fluorescence is directly proportional to protease activity. We validated the protease activity assay with three different proteases, i.e., trypsin, caspase 3, and neutrophil elastase, and demonstrated that it can be used to determine protease activity and the effect of inhibitors with small sample volumes in just a few simple steps using a fluorescence plate reader.

  1. A novel protease activity assay using a protease-responsive chaperone protein

    SciTech Connect

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  2. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons. PMID:1399639

  3. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons.

  4. Analysis of the size, shape, and spatial distribution of microinclusions by neutron-activation autoradiography

    SciTech Connect

    Flitsiyan, E.S.; Romanovskii, A.V.; Gurvich, L.G.; Kist, A.A.

    1987-02-01

    The local concentration and spatial distribution of some elements in minerals, rocks, and ores can be determined by means of neutron-activation autoradiography. The local element concentration is measured in this method by placing an activated section of the rock to be analyzed, together with an irradiated standard, against a photographic emulsion which acts as a radiation detector. The photographic density of the exposed emulsion varies as a function of the tested element content in the part of the sample next to the detector. In order to assess the value of neutron-activation autoradiography in the analysis of element distribution, we considered the main factors affecting the production of selective autoradiographs, viz., resolution, detection limit, and optimal irradiation conditions, holding time, and exposure.

  5. New models for carrying out cyclic neutron activation. Discussion of the theoretical response

    NASA Astrophysics Data System (ADS)

    Castro-García, M. P.; Rey-Ronco, M. A.; Alonso-Sánchez, T.

    2014-11-01

    This paper studies two specific procedures for analyzing mining samples through a neutron activation technique called DGNAA (Delayed Gamma Neutron Activation Analysis). This particular study is part of a broader line of research, whose overall objective is to find the optimal procedure for analyzing the fluorite content of samples taken from different parts of a fluorite concentration plant, using the DGNAA method [1-2]. The mining sample is fluorspar, which contains other minerals in addition to fluorite, such as silica, barite, iron oxides and silicates. The main contribution of the article is the development of a new method for determining the fluorite content in minerals and the increase of sensitivity in respect to the symmetrical method and single-cycle activation.

  6. The affect of industrial activities on zinc in alluvial Egyptian soil determined using neutron activation analysis.

    PubMed

    Abdel-Sabour, M F; Abdel-Basset, N

    2002-07-01

    Thirty-two surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted, moderately and highly polluted soils. The aim of this study was to evaluate total Zn content in alluvial soils of Nile Delta in Egypt by using the delayed neutron activation analysis technique (DNAA), in the irradiation facilities of the first Egyptian research reactor (ET-RR-1). The gamma-ray spectra were recorded with a hyper pure germanium detection system. The well resolved gamma-ray peak at 1116.0 keV was efficiently used for 65Zn content determination. Zn content in non-polluted soil samples ranged between 74.1 and 103.8 ppm with an average of 98.5 +/- 5.1 ppm. Zn content in moderately polluted soils ranged between 136.0 and 232.5 ppm with an average of 180.1 +/- 32.6 ppm. The highest Zn levels ranging from 240.0 and 733.0 ppm with an average of 410.3 +/- 54.4 ppm, were observed in soil samples collected from, either highly polluted agricultural soils exposed to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites. PMID:12211982

  7. Research on the chemical inactivation of antibiotic activity in assays of sterility and contamination of pharmaceuticals.

    PubMed

    Negretti, F; Casetta, P

    1991-01-01

    Membrane filtration, frequently used for removing antibacterial activity in assays of sterility and contamination of the antibiotics, presents the drawback of adsorption of antibiotic to membrane. The washing with large volumes of peptone water removes partially interferences with microbial growth. We evaluated the inactivating action of some chemical substances (albumin, calcium pantothenate, heparin, hydroxylamine, tri-valent iron) on the antimicrobial activity of membranes employed for antibiotic filtration. The results are not positive for the use of chemical substances in the antibiotic activity neutralization. In fact the per cent reduction of inhibition zones ranges from -61.5% to +20.0% and the inhibiting activity on the growth of colony forming units (CFU) oscillates from 89.6% to 100%. Discovery of new neutralizing substances and severe measures of asepsis in pharmaceutical production are recommended. PMID:12041793

  8. Comparative analysis of cholinesterase activities in food animals using modified Ellman and Michel assays

    PubMed Central

    Askar, Kasim Abass; Kudi, A. Caleb; Moody, A. John

    2011-01-01

    This study investigated correlations between modified Ellman and Michel assay methods for measuring cholinesterase (ChE) activities. It also established a foundation for the applicability of measuring ChE activities in food animal species as biochemical biomarkers for evaluating exposure to and effects of organophosphorus and carbamate pesticides. Measuring ChE activities in blood and tissue is currently the most important method of confirming the diagnosis of such exposure. The study also characterized the level of ChE activity in the selected organs/tissues of these animals and determined the best organ/tissue in which to measure ChE activity. The ChE activities were found to be higher in cattle than in sheep and higher in erythrocytes than in plasma and serum. The anticoagulant heparin significantly affects AChE activity in plasma compared with ethylenediamine tetra-acetic acid (EDTA). Of the different tissues tested, the mean of ChE activities was found to be highest in tissue from liver, followed by lung, muscle, kidney, and heart for sheep and cattle. In pigs, the ChE activities tested higher in kidney, liver, lung, muscle, and heart. The highest activities of ChE were found in pigs, followed by cattle and sheep. There was no significant difference between the modified Ellman and Michel method, but the percentage coefficient of variance (%CV) values were higher when the Michel method was used. PMID:22468023

  9. Estrogenic activity assessment of environmental chemicals using in vitro assays: identification of two new estrogenic compounds.

    PubMed Central

    Lascombe, I; Beffa, D; Rüegg, U; Tarradellas, J; Wahli, W

    2000-01-01

    Environmental chemicals with estrogenic activities have been suggested to be associated with deleterious effects in animals and humans. To characterize estrogenic chemicals and their mechanisms of action, we established in vitro and cell culture assays that detect human estrogen receptor [alpha] (hER[alpha])-mediated estrogenicity. First, we assayed chemicals to determine their ability to modulate direct interaction between the hER[alpha] and the steroid receptor coactivator-1 (SRC-1) and in a competition binding assay to displace 17ss-estradiol (E(2)). Second, we tested the chemicals for estrogen-associated transcriptional activity in the yeast estrogen screen and in the estrogen-responsive MCF-7 human breast cancer cell line. The chemicals investigated in this study were o,p'-DDT (racemic mixture and enantiomers), nonylphenol mixture (NPm), and two poorly analyzed compounds in the environment, namely, tris-4-(chlorophenyl)methane (Tris-H) and tris-4-(chlorophenyl)methanol (Tris-OH). In both yeast and MCF-7 cells, we determined estrogenic activity via the estrogen receptor (ER) for o,p'-DDT, NPm, and for the very first time, Tris-H and Tris-OH. However, unlike estrogens, none of these xenobiotics seemed to be able to induce ER/SRC-1 interactions, most likely because the conformation of the activated receptor would not allow direct contacts with this coactivator. However, these compounds were able to inhibit [(3)H]-E(2) binding to hER, which reveals a direct interaction with the receptor. In conclusion, the test compounds are estrogen mimics, but their molecular mechanism of action appears to be different from that of the natural hormone as revealed by the receptor/coactivator interaction analysis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:10903615

  10. Convenient method of simultaneously analyzing aluminum and magnesium in pharmaceutical dosage forms using californium-252 thermal neutron activation.

    PubMed

    Landolt, R R; Hem, S L

    1983-05-01

    A commercial antacid suspension containing aluminum hydroxide and magnesium hydroxide products was used as a model sample to study the use of a californium-252 thermal neutron activation as a method for quantifying aluminum content as well as for the simultaneous assay of aluminum and magnesium. A 3.5-micrograms californium-252 source was used for the activation, and the induced aluminum-28 and magnesium-27 activity was simultaneously measured by sodium iodide crystal gamma-ray spectrometry using dual single-channel analyzers and scalers. The antacid suspension was contained in a chamber designed with the unique capability of serving as the container for counting the induced radioactivity in addition to being the irradiation chamber itself. Ten replicate irradiations were performed, and the precision was compared with 10 replicate analyses of the antacid suspension using the official ethylenediaminetetraacetic acid titration method. For aluminum the precision was 1.4 versus 0.62% for the titration method. For the magnesium the precision was 5.3 versus 0.79% for the titration method. This pilot study demonstrated that use of more intense californium-252 sources, which are commonly available, would provide a method that is competitive with the ethylenediaminetetraacetic acid titration method in precision and in other aspects as well.

  11. A high-throughput assay for modulators of NNT activity in permeabilized yeast cells.

    PubMed

    Meadows, Nicholas A; Saxty, Barbara; Albury, Mary S; Kettleborough, Catherine A; Ashcroft, Frances M; Moore, Anthony L; Cox, Roger D

    2011-08-01

    Nicotinamide nucleotide transhydrogenase (NNT) mutant mice show glucose intolerance with impaired insulin secretion during glucose tolerance tests. Uncoupling of the β cell mitochondrial metabolism due to such mutations makes NNT a novel target for therapeutics in the treatment of pathologies such as type 2 diabetes. The authors propose that increasing NNT activity would help reduce deleterious buildup of reactive oxygen species in the inner mitochondrial matrix. They have expressed human Nnt cDNA for the first time in Saccharomyces cerevisiae, and transhydrogenase activity in mitochondria isolated from these cells is six times greater than is seen in wild-type mitochondria. The same mitochondria have partially uncoupled respiration, and the cells have slower growth rates compared to cells that do not express NNT. The authors have used NNT's role as a redox-driven proton pump to develop a robust fluorimetric assay in permeabilized yeast. Screening in parallel a library of known pharmacologically active compounds (National Institute of Neurological Disorders and Stroke collection) against NNT ± cells, they demonstrate a robust and reproducible assay suitable for expansion into larger and more diverse compound sets. The identification of NNT activators may help in the elucidation of the role of NNT in mammalian cells and assessing its potential as a therapeutic target for insulin secretion disorders.

  12. Mutagenic activity of sweepings and pigments from a household-wax factory assayed with Salmonella typhimurium.

    PubMed

    Varella, S D; Pozetti, G L; Vilegas, W; Varanda, E A

    2004-12-01

    The mutagenic activity of garbage originating from a household wax industry was determined by the Salmonella/microsome assay, using the bacterial strains TA100, TA98 and YG1024. The garbage was obtained by sweeping the floor of the factory at the end of the work shift. Organic compounds were extracted by ultrasound for 30 min in dichloromethane or 70% ethanol. After evaporation of solvent, these extracts (HFS: household-wax factory sweepings) were dissolved in DMSO, and were tested for the mutagenic activity at varying concentrations (HFS-ET: 0.08-0.68 mg/plate, HFS-DCM: 0.60-7.31 mg/plate). The colouring agents (pigments) used in the production of the wax were also dissolved in DMSO and tested with the assay. The concentrations tested for each pigment were: Amaranth: 0.46-3.65 mg/plate, Auramine: 0.15-1.2 mg/plate and Rhodamine B: 0.22-1.82 mg/plate. Both ET and DCM organic extracts had mutagenic activity, especially in the YG1024 strain. The pigments behaved in a similar way, demonstrating that YG1024 was the most sensitive strain for the detection of mutagenicity, and that metabolization increased the activity. Human exposure (occupational and non-occupational) to industrial residues generated during the household-wax manufacturing and packaging process should be monitored, since this type of garbage is normally deposited in the environment without any control.

  13. A History of In Vivo Neutron Activation Analysis in Measurement of Aluminum in Human Subjects.

    PubMed

    Mohseni, Hedieh K; Chettle, David R

    2016-01-01

    Aluminum, as an abundant metal, has gained widespread use in human life, entering the body predominantly as an additive to various foods and drinking water. Other major sources of exposure to aluminum include medical, cosmetic, and occupational routes. As a common environmental toxin, with well-known roles in several medical conditions such as dialysis encephalopathy, aluminum is considered a potential candidate in the causality of Alzheimer's disease. Aluminum mostly accumulates in the bone, which makes bone an indicator of the body burden of aluminum and an ideal organ as a proxy for the brain. Most of the techniques developed for measuring aluminum include bone biopsy, which requires invasive measures, causing inconvenience for the patients. There has been a considerable effort in developing non-invasive approaches, which allow for monitoring aluminum levels for medical and occupational purposes in larger populations. In vivo neutron activation analysis, a method based on nuclear activation of isotopes of elements in the body and their subsequent detection, has proven to be an invaluable tool for this purpose. There are definite challenges in developing in vivo non-invasive techniques capable of detecting low levels of aluminum in healthy individuals and aluminum-exposed populations. The following review examines the method of in vivo neutron activation analysis in the context of aluminum measurement in humans focusing on different neutron sources, interference from other activation products, and the improvements made in minimum detectable limits and patient dose over the past few decades.

  14. Consequences of Relativistic Neutron Outflow beyond the Accretion Disks of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Ekejiuba, I. E.; Okeke, P. N.

    1993-05-01

    Three channels of relativistic electron injection in the jets of extragalactic radio sources (EGRSs) are discussed. With the assumption that an active galactic nucleus (AGN) is powered by a spinning supermassive black hole of mass ~ 10(8) M_⊙ which sits at the center of the nucleus and ingests matter and energy through an accretion disk, a model for extracting relativistic neutrons from the AGN is forged. In this model, the inelastic proton--proton and proton--photon interactions within the accretion disk, of relativistic protons with background thermal protons and photons, respectively, produce copious amounts of relativistic neutrons. These neutrons travel ballistically for ~ 10(3gamma_n ) seconds and escape from the disk before they decay. The secondary particles produced from the neutron decays then interact with the ambient magnetic field and/or other particles to produce the radio emissions observed in the jets of EGRSs. IEE acknowledges the support of the World Bank and the Federal University of Technology, Yola, Nigeria as well as the hospitality of Georgia State University.

  15. Transitions, cross sections and neutron binding energy in 186Re by Prompt Gamma Activation Analysis

    NASA Astrophysics Data System (ADS)

    Lerch, A. G.; Hurst, A. M.; Firestone, R. B.; Revay, Zs.; Szentmiklosi, L.; McHale, S. R.; McClory, J. W.; Detwiler, B.; Carroll, J. J.

    2014-03-01

    The nuclide 186Re possesses an isomer with 200,000 year half-life while its ground state has a half-life of 3.718 days. It is also odd-odd and well-deformed nucleus, so should exhibit a variety of other interesting nuclear-structure phenomena. However, the available nuclear data is rather sparse; for example, the energy of the isomer is only known to within + 7 keV and, with the exception of the J?=1- ground state, every proposed level is tentative in the ENSDF. Previously, Prompt Gamma Activation Analysis (PGAA) was utilized to study natRe with 186,188Re being produced via thermal neutron capture. Recently, an enriched 185Re target was irradiated by thermal neutrons at the Budapest Research Reactor to build on those results. Prompt (primary and secondary) and delayed gamma-ray transitions were measured with a large-volume, Compton-suppressed HPGe detector. Absolute cross sections for each gamma transition were deduced and corrected for self attenuation within the sample. Fifty-two primary gamma-ray transitions were newly identified and used to determine a revised value of the neutron binding energy. DICEBOX was used to simulate the decay scheme and the total radiative thermal neutron capture cross section was found to be 97+/-3 b Supported by DTRA (Detwiler) through HDTRA1-08-1-0014.

  16. A fluorometric assay for measurement of mono-ADP-ribosyltransferase activity.

    PubMed

    Klebl, B M; Pette, D

    1996-08-01

    Using 1,N6-etheno NAD, a fluorescent analog of NAD, we extended an existing assay for NAD glycohydrolase to the measurement of mono-ADP-ribosyltransferase (mADP-RT) activity using agmatine as acceptor for ADP-ribose. The reaction products were analyzed by reversed-phase chromatography. In the presence of agmatine two newly formed fluorescent products were tentatively identified as ADP-ribosylagmatine anomers. Fluorescence intensity increased upon splitting the N-glycoside bondage of 1,N6-etheno NAD. Therefore, 1, N6-etheno AMP could be used for calibration. The nonradioactive assay yielded values nearly identical to those obtained with the [carbonyl-14C]NAD method. It proved to be highly reproducible, rapid, and suitable for an improved purification protocol yielding a 76,000-fold enriched mADP-RT preparation from rabbit skeletal muscle. The identity and high purity of the enzyme were confirmed immunochemically. The assay served to determine the pH optimum of the enzyme (pH 9.0) and its KM for 1,N6-etheno NAD (287 microM). PMID:8811894

  17. A Simple Assay to Screen Antimicrobial Compounds Potentiating the Activity of Current Antibiotics

    PubMed Central

    Iqbal, Junaid; Kazmi, Shahana Urooj; Khan, Naveed Ahmed

    2013-01-01

    Antibiotic resistance continues to pose a significant problem in the management of bacterial infections, despite advances in antimicrobial chemotherapy and supportive care. Here, we suggest a simple, inexpensive, and easy-to-perform assay to screen antimicrobial compounds from natural products or synthetic chemical libraries for their potential to work in tandem with the available antibiotics against multiple drug-resistant bacteria. The aqueous extract of Juglans regia tree bark was tested against representative multiple drug-resistant bacteria in the aforementioned assay to determine whether it potentiates the activity of selected antibiotics. The aqueous extract of J. regia bark was added to Mueller-Hinton agar, followed by a lawn of multiple drug-resistant bacteria, Salmonella typhi or enteropathogenic E. coli. Next, filter paper discs impregnated with different classes of antibiotics were placed on the agar surface. Bacteria incubated with extract or antibiotics alone were used as controls. The results showed a significant increase (>30%) in the zone of inhibition around the aztreonam, cefuroxime, and ampicillin discs compared with bacteria incubated with the antibiotics/extract alone. In conclusion, our assay is able to detect either synergistic or additive action of J. regia extract against multiple drug-resistant bacteria when tested with a range of antibiotics. PMID:23865073

  18. Quantifying microbial activity in deep subsurface sediments using a tritium based hydrognease enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Kallmeyer, J.

    2012-12-01

    Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that

  19. A neutron activation analysis procedure for the determination of uranium, thorium and potassium in geologic samples

    USGS Publications Warehouse

    Aruscavage, P. J.; Millard, H.T.

    1972-01-01

    A neutron activation analysis procedure was developed for the determination of uranium, thorium and potassium in basic and ultrabasic rocks. The three elements are determined in the same 0.5-g sample following a 30-min irradiation in a thermal neutron flux of 2??1012 n??cm-2??sec-1. Following radiochemical separation, the nuclides239U (T=23.5 m),233Th (T=22.2 m) and42K (T=12.36 h) are measured by ??-counting. A computer program is used to resolve the decay curves which are complex owing to contamination and the growth of daughter activities. The method was used to determine uranium, throium and potassium in the U. S. Geological Survey standard rocks DTS-1, PCC-1 and BCR-1. For 0.5-g samples the limits of detection for uranium, throium and potassium are 0.7, 1.0 and 10 ppb, respectively. ?? 1972 Akade??miai Kiado??.

  20. A real-time fluorogenic assay for the visualization of glycoside hydrolase activity in planta.

    PubMed

    Ibatullin, Farid M; Banasiak, Alicja; Baumann, Martin J; Greffe, Lionel; Takahashi, Junko; Mellerowicz, Ewa J; Brumer, Harry

    2009-12-01

    There currently exists a diverse array of molecular probes for the in situ localization of polysaccharides, nucleic acids, and proteins in plant cells, including reporter enzyme strategies (e.g. protein-glucuronidase fusions). In contrast, however, there is a paucity of methods for the direct analysis of endogenous glycoside hydrolases and transglycosidases responsible for cell wall remodeling. To exemplify the potential of fluorogenic resorufin glycosides to address this issue, a resorufin beta-glycoside of a xylogluco-oligosaccharide (XXXG-beta-Res) was synthesized as a specific substrate for in planta analysis of XEH activity. The resorufin aglycone is particularly distinguished for high sensitivity in muro assays due to a low pK(a) (5.8) and large extinction coefficient (epsilon 62,000 M(-1) cm(-1)), long-wavelength fluorescence (excitation 571 nm/emission 585 nm), and high quantum yield (0.74) of the corresponding anion. In vitro analyses demonstrated that XXXG-beta-Res is hydrolyzed by the archetypal plant XEH, nasturtium (Tropaeolum majus) NXG1, with classical Michaelis-Menten substrate saturation kinetics and a linear dependence on both enzyme concentration and incubation time. Further, XEH activity could be visualized in real time by observing the localized increase in fluorescence in germinating nasturtium seeds and Arabidopsis (Arabidopsis thaliana) inflorescent stems by confocal microscopy. Importantly, this new in situ XEH assay provides an essential complement to the in situ xyloglucan endotransglycosylase assay, thus allowing delineation of the disparate activities encoded by xyloglucan endotransglycosylase/hydrolase genes directly in plant tissues. The observation that XXXG-beta-Res is also hydrolyzed by diverse microbial XEHs indicates that this substrate, and resorufin glycosides in general, may find broad applicability for the analysis of wall restructuring by polysaccharide hydrolases during morphogenesis and plant-microbe interactions.

  1. The antioxidant activity of sulphurous thermal water protects against oxidative DNA damage: a comet assay investigation.

    PubMed

    Braga, P C; Ceci, C; Marabini, L; Nappi, G

    2013-04-01

    Various studies have recently shown that sulphurous waters acts against the oxidants released during respiratory bursts of human neutrophils, and free radicals such as HO•, O2¯•, Tempol and Fremy's salt. However, there is still a lack of data concerning their direct protection of DNA. The aim of this study was to investigate the antigenotoxicity effects of sulphurous water, which has never been previously investigated for this purpose, using the alkaline single cell gel electrophoresis (SCGE) approach (comet assay). The comet assay is a sensitive method for assessing DNA fragmentation in individual cells in genotoxicity studies but can also be used to investigate the activity of agents that protect against DNA damage. The extent of migration was measured by means of SCGE, and DNA damage was expressed as tail moment. All of these assays were made using natural sulphurous water, degassed sulphurous water (no detectable HS), and reconstituted sulphurous water (degassed plus NaHS). DNA damages was significantly inhibited by natural water with HS concentrations of 5.0 and 2.5 μg/mL. The use of degassed water did not lead to any significant differences from baseline values, whereas the reconstituted water led to significant results overlapping those obtained using natural water. These findings confirm the importance of the presence of an HS group (reductive activity) and indicate that, in addition to their known mucolytic activity and trophic effects on respiratory mucosa, HS groups in sulphurous water also protect against oxidative DNA damage and contribute to the water's therapeutic effects on upper and lower airway inflammatory diseases.

  2. Neutron-activation study of figurines, pottery, and workshop materials from the Athenian Agora, Greece. [Neutron reactions; France, Israel, Cyprus

    SciTech Connect

    Fillieres, D.; Harbottle, G.; Sayre, E.V.

    1983-01-01

    Ceramic specimens from the excavations of the Agora of ancient Athens, Greece, including material from factories, i.e., trial firing pieces, pottery and figurine wasters, datable to the Protogeometric, Subgeometric, and Classical Periods, and stylistically related figurines and pottery were analyzed by neutron activation. The factory material from the three distinct chronological periods separated respectively into three significantly different compositional groups, indicating either that separate sources of clay were used during each of these periods or that some other significant changes in the traditions of fabrication had occurred. Many of the figurines and sherds analyzed coincided in composition with one of these three groups and therefore were shown to be consistent with the output of Athenian workshops. Some specimens of Corinthian style formed a separate compositional group as did some other specimens that agreed in composition with a clay from Aegina. Comparison of these results with previous analyses on file in the Brookhaven Data Bank revealed a number of specimens that corresponded both in style and composition to the Agora material. Most significant was a sizable amount of Classical Greek pottery excavated in southern France, in Israel, and in Cyprus that conformed in composition to the Attic Classical Group. 6 figures, 2 tables.

  3. Utility of an appropriate reporter assay: Heliotrine interferes with GAL4/upstream activation sequence-driven reporter gene systems.

    PubMed

    Luckert, Claudia; Hessel, Stefanie; Lampen, Alfonso; Braeuning, Albert

    2015-10-15

    Reporter gene assays are widely used for the assessment of transcription factor activation following xenobiotic exposure of cells. A critical issue with such assays is the possibility of interference of test compounds with the test system, for example, by direct inhibition of the reporter enzyme. Here we show that the pyrrolizidine alkaloid heliotrine interferes with reporter signals derived from GAL4-based nuclear receptor transactivation assays by a mechanism independent of luciferase enzyme inhibition. These data highlight the necessity to conduct proper control experiments in order to avoid perturbation of reporter assays by test chemicals.

  4. An improved thyroid hormone reporter assay to determine the thyroid hormone-like activity of amiodarone, bithionol, closantel and rafoxanide.

    PubMed

    Matsubara, Kana; Sanoh, Seigo; Ohta, Shigeru; Kitamura, Shigeyuki; Sugihara, Kazumi; Fujimoto, Nariaki

    2012-01-01

    A number of environmental chemicals have been reported to exhibit thyroid hormone-like activity. Since thyroid hormones play a crucial role in development, it is important to identify chemicals in the environment that are capable of endocrine disruption of thyroid hormone homeostasis. In order to detect thyroid hormone-like activity, the growth of pituitary cell lines has been commonly used as a sensitive marker, albeit with limited specificity to thyroid hormones. Reporter gene assays using the thyroid hormone responsive element (TRE) connected to the luciferase reporter gene have also been developed. Thus far however, this type of assay appears to have limited sensitivity compared to cell growth assays. In the present study, we developed a highly sensitive TRE reporter gene assay by using a pituitary cell line, MtT/E-2, and by culturing cells in a serum-free medium. Our assay was developed in order to detect T3 activity at a concentration of 10(-11)M. This assay identified thyroid hormone-like activity from the antiarrhythmic drug, amiodarone, and from three anti-parasitic drugs, bithionol, closantel and rafoxanide, all commonly used in veterinary medicine. Thyroid hormone-like activity of these compounds was further confirmed by the induction of BCL3 gene expression in MtT/E-2, which is known to be regulated by thyroid hormones. Our improved assay was proved to be a sensitive tool for assessing thyroid hormone-like activity of environmental chemicals. PMID:22015988

  5. Herpes Murine Model as a Biological Assay to Test Dialyzable Leukocyte Extracts Activity

    PubMed Central

    Salinas-Jazmín, Nohemí; Estrada-Parra, Sergio; Becerril-García, Miguel Angel; Limón-Flores, Alberto Yairh; Vázquez-Leyva, Said; Pavón, Lenin; Velasco-Velázquez, Marco Antonio; Pérez-Tapia, Sonia Mayra

    2015-01-01

    Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that are released on disruption of peripheral blood leukocytes from healthy donors. DLEs improve clinical responses in infections, allergies, cancer, and immunodeficiencies. Transferon is a human DLE that has been registered as a hemoderivate by Mexican health authorities and commercialized nationally. To develop an animal model that could be used routinely as a quality control assay for Transferon, we standardized and validated a murine model of cutaneous HSV-1 infection. Using this model, we evaluated the activity of 27 Transferon batches. All batches improved the survival of HSV-1-infected mice, wherein average survival rose from 20.9% in control mice to 59.6% in Transferon-treated mice. The activity of Transferon correlated with increased serum levels of IFN-γ and reduced IL-6 and TNF-α concentrations. Our results demonstrate that (i) this mouse model of cutaneous herpes can be used to examine the activity of DLEs, such as Transferon; (ii) the assay can be used as a routine test for batch release; (iii) Transferon is produced with high homogeneity between batches; (iv) Transferon does not have direct virucidal, cytoprotective, or antireplicative effects; and (v) the protective effect of Transferon in vivo correlates with changes in serum cytokines. PMID:25984538

  6. A simple assay for determining activities of phosphopentomutase from a hyperthermophilic bacterium Thermotoga maritima.

    PubMed

    Moustafa, Hanan M A; Zaghloul, Taha I; Zhang, Y-H Percival

    2016-05-15

    Phosphopentomutase (PPM) catalyzes the interconversion of α-D-(deoxy)-ribose 1-phosphate and α-D-(deoxy)-ribose 5-phosphate. We developed a coupled or uncoupled enzymatic assay with an enzyme nucleoside phosphorylase for determining PPM activities on D-ribose 5-phosphate at a broad temperature range from 30 to 90 °C. This assay not only is simple and highly sensitive but also does not require any costly special instrument. Via this technology, an open reading frame TM0167 from a thermophilic bacterium Thermotoga maritima putatively encoding PPM was cloned. The recombinant PPM was overexpressed in Escherichia coli Rosetta. This enzyme has the highest activity at 90 °C. MnCl2 (0.1 mM) and 50 μM α-D-glucose 1,6-bisphosphate are cofactors. The kinetic parameters of Km and kcat are 1.2 mM and 185 s(-1) at 90 °C, respectively. The enzyme has a half-life time of up to 156 min at 90 °C. This enzyme is the most active and thermostable PPM reported to date. PMID:26924489

  7. Herpes murine model as a biological assay to test dialyzable leukocyte extracts activity.

    PubMed

    Salinas-Jazmín, Nohemí; Estrada-Parra, Sergio; Becerril-García, Miguel Angel; Limón-Flores, Alberto Yairh; Vázquez-Leyva, Said; Medina-Rivero, Emilio; Pavón, Lenin; Velasco-Velázquez, Marco Antonio; Pérez-Tapia, Sonia Mayra

    2015-01-01

    Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that are released on disruption of peripheral blood leukocytes from healthy donors. DLEs improve clinical responses in infections, allergies, cancer, and immunodeficiencies. Transferon is a human DLE that has been registered as a hemoderivate by Mexican health authorities and commercialized nationally. To develop an animal model that could be used routinely as a quality control assay for Transferon, we standardized and validated a murine model of cutaneous HSV-1 infection. Using this model, we evaluated the activity of 27 Transferon batches. All batches improved the survival of HSV-1-infected mice, wherein average survival rose from 20.9% in control mice to 59.6% in Transferon-treated mice. The activity of Transferon correlated with increased serum levels of IFN-γ and reduced IL-6 and TNF-α concentrations. Our results demonstrate that (i) this mouse model of cutaneous herpes can be used to examine the activity of DLEs, such as Transferon; (ii) the assay can be used as a routine test for batch release; (iii) Transferon is produced with high homogeneity between batches; (iv) Transferon does not have direct virucidal, cytoprotective, or antireplicative effects; and (v) the protective effect of Transferon in vivo correlates with changes in serum cytokines.

  8. Improved assay for cholesterol 7 alpha-hydroxylase activity using phospholipid liposome solubilized substrate

    SciTech Connect

    Junker, L.H.; Story, J.A.

    1985-10-01

    A persistent problem in measurement of cholesterol 7 alpha-hydroxylase (7 alpha-OHase) activity by isotope incorporation has been solubilization of cholesterol substrate. Solubilization with Tween 20, for example, resulted in a 75% reduction in 7 alpha-OHase activity after a 60 min incubation of substrate with microsomes. Incorporation of cholesterol substrate into small, unilamellar phospholipid vesicles (liposomes) prevented this effect, resulting in a 50% increase in activity over the same 60 min incubation at optimal concentrations. Using cholesterol in liposomes as substrate, standard assay conditions were determined to be: preparation of liposomes with 180 microM cholesterol substrate and 0.5 mg phospholipid/assay; incubation of these liposomes with 0.5 mg microsomal protein at 37 C for 60 min; addition of a NADPH generating system to start the reaction, and incubation at 37 C for 30 min before stopping the reaction and determining the amount of 7 alpha-hydroxycholesterol formed. This method provides a sensitive and reliable alternative to methods which require more sophisticated equipment and allows total control of substrate concentration in a form readily accessible to the enzyme.

  9. A plaque assay for malignant catarrhal fever virus and virus neutralizing activity.

    PubMed

    Hazlett, D T

    1980-05-01

    A cell-free strain of malignant catarrhal fever virus which produced a readily recognizable cytopathic effect was obtained by serial passage of the virus in a rabbit kidney cell line. Plaque assay of the virus was more rapid and gave higher titres 11 days postinoculation than tube titration, but the latter advantage decreased with a longer incubation period. Plaques were clear with sharp edges and measured 0.5 to 2 mm in diameter after 15 days. A plaque neutralization test was developed and successfully employed for the titration of malignant catarrhal fever virus neutralizing activity in the sera and nasal secretions of blue wildebeest.

  10. A chromism-based assay (CHROBA) technique for in situ detection of protein kinase activity.

    PubMed

    Tomizaki, Kin-ya; Jie, Xu; Mihara, Hisakazu

    2005-03-15

    A unique chromism-based assay technique (CHROBA) using photochromic spiropyran-containing peptides has been firstly established for detection of protein kinase A-catalyzed phosphorylation. The alternative method has advantages that avoid isolation and/or immobilization of kinase substrates to remove excess reagents including nonreactive isotope-labeled ATP or fluorescently-labeled anti-phosphoamino acid antibodies from the reaction mixture. Such a novel protocol based on thermocoloration of the spiropyran moiety in the peptide can offer not only an efficient screening method of potent kinase substrates but also a versatile analytical tool for monitoring other post-translational modification activities. PMID:15745830

  11. Determination of thorium in seawater by neutron activation analysis and mass spectrometry

    SciTech Connect

    Huh, Chih-An

    1987-01-01

    The recent development of neutron activation analysis and mass spectrometric methods for the determination of /sup 232/Th in seawater has made possible rapid sampling and analysis of this long-lived, non-radiogenic thorium isotope on small-volume samples. The marine geochemical utility of /sup 232/Th, whose concentration in seawater is extremely low, warrants the development of these sensitive techniques. The analytical methods and some results are presented and discussed in this article. 24 refs., 3 figs.

  12. Survey of trace elements in coals and coal-related materials by neutron activation analysis

    USGS Publications Warehouse

    Ruch, R.R.; Cahill, R.A.; Frost, J.K.; Camp, L.R.; Gluskoter, H.J.

    1977-01-01

    Utilizing primarily instrumental neutron activation analysis (INAA) and other analytical methods as many as 61 elements were quantitatively surveyed in 170 U.S. whole coals, 70 washed coals, and 40 bench samples. Data on areal and vertical distributions in various regions were obtained along with extensive information on the mode of occurrence of various elements in the coal matrix itself. ?? 1977 Akade??miai Kiado??.

  13. Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt

    NASA Astrophysics Data System (ADS)

    Badawy, Wael M.; Ali, Khaled; El-Samman, Hussein M.; Frontasyeva, Marina V.; Gundorina, Svetlana F.; Duliu, Octavian G.

    2015-07-01

    Instrumental neutron activation analysis was used to study geochemical peculiarities of the Siwa Oasis in the Western Egyptian Desert. A total of 34 elements were determined in soil and sediment samples (Na, Mg, Al, Cl, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Zr, Sb, I, Cs, Ba, La, Ce, Nd, Eu, Tb, Dy, Tm, Yb, Hf, Ta, Th, and U). For data interpretation Cluster analysis was applied. Comparison with the available literature data was carried out.

  14. Neutron activation analysis of modern pottery: Insights for archaeological provenance research

    SciTech Connect

    Neff, H.; Arnold, D.E.; Benco, N.L.; Thieme, M.S.

    1996-12-31

    Neutron activation analysis has been employed to characterize ceramics and raw material samples from modern pottery-making communities. The original study focused on several villages in the central highlands of Guatemala. More recently, NAA data have been collected from communities in the Valley of Oaxaca, Mexico, the northern Yucatan Peninsula, and northern Morocco. The results from all four studies can now be combined to yield a comparative perspective on paste preparation effects in archaeological provenance research.

  15. Epithermal Neutron Activation Analysis of Some Geological Samples of Different Origin

    SciTech Connect

    Duliu, O. G.; Cristache, C. I.; Oaie, G.; Ricman, C.; Culicov, O. A.; Frontasyeva, M. V.

    2010-01-21

    Instrumental Epithermal Neutron Activation Analysis was used to investigate the distribution of six major elements and 34 trace elements in a set of eight igneous and metamorphic rocks collected from Carpathian and Macin Mountainsas well as unconsolidated sediments collected from anoxic zone of the Black Sea. All experimental data were interpreted within the Upper Continental Core and Mid Ocean Ridge Basalt model system that allowed getting more information concerning samples origin as well as the environmental peculiarities.

  16. Determination of selected trace elements in foodstuffs and biological materials by destructive neutron activation analysis.

    PubMed

    Bayat, I; Etehadiyan, M; Ansar, M

    1995-01-01

    Concentration of trace elements in Nescafé, Fariman sugar, and Sadaf turmeric and mercury content in cancerous blood were determined by radiochemical, neutron activation analysis. By this separation method levels of 110mAg, 198Au, 203Hg, 76Se, 51Cr, 24Na, 42K, 99Mo, 122Sb, 82Br, 59Fe, 60Co were measured without interference in the gamma spectroscopy. A nondestructive method has also been used for the analysis of sodium, potassium, and bromine. PMID:8748216

  17. Neutron activation analysis for reference determination of the implantation dose of cobalt ions

    SciTech Connect

    Garten, R.P.H.; Bubert, H.; Palmetshofer, L.

    1992-05-15

    The authors prepared depth profilling reference materials by cobalt ion implantation at an ion energy of 300 keV into n-type silicon. The implanted Co dose was then determined by instrumental neutron activation analysis (INAA) giving an analytical dynamic range of almost 5 decades and uncertainty of 1.5%. This form of analysis allows sources of error (beam spreading, misalignment) to be corrected. 70 refs., 3 tabs.

  18. HPGe well-type detectors for neutron activation measurements on the Frascati Tokamak Upgrade tokamak

    SciTech Connect

    Bertalot, L.; Damiani, M.; Esposito, B.; Lagamba, L.; Podda, S.; Batistoni, P.; De Felice, P.; Biagini, R.

    1997-01-01

    We describe an improvement of the neutron activation system in operation on the Frascati Tokamak Upgrade (FTU) tokamak for the measurement of the total neutron yield. A HPGe well-type detector (200 cm{sup 3} active volume) is used to detect the photoemission from neutron activated samples ({sup 115m}In336.2 keV {gamma} rays from DD neutrons on indium for FTU). Due to their high geometrical efficiency, HPGe well-type detectors are particularly suited to the FTU low-level activity measurements. A particular effort has been devoted to the calibration of the measuring system. In particular, a multi-{gamma} calibration source (59{endash}1332 keV energy range) with a density of 7.31 g/cm{sup 3} consisting of a stack of indium foils has been prepared. This assures that the shape and volume of the calibration source are the same as those of the samples used in the actual measurements. The full-energy-peak efficiency at the {sup 115m}In336.2 keV line is 0.197 with an overall uncertainty of 2{percent} (1{sigma}). For a better characterization of the detector response as a function of the sample density, a further calibration source with the same geometry has been prepared in a gel aqueous solution (density {approximately}1 g/cm{sup 3}). The calibration curves for the well-type detector at the two different density values are compared. {copyright} {ital 1997 American Institute of Physics.}

  19. Comparative Antimicrobial Activities of Aerosolized Sodium Hypochlorite, Chlorine Dioxide, and Electrochemically Activated Solutions Evaluated Using a Novel Standardized Assay

    PubMed Central

    Thorn, R. M. S.; Robinson, G. M.

    2013-01-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard microbiological challenges were developed by surface-associating typed Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis spores, or a clinical methicillin-resistant S. aureus (MRSA) strain on stainless steel, polypropylene, or fabric. All test coupons were subjected to 20-min biocidal aerosols of chlorine-matched (100 ppm) sodium hypochlorite, chlorine dioxide, or ECAS within a standard aerosolization chamber using a commercial humidifier under defined conditions. Biocidal treatment type and material surface had a significant effect on the number of microorganisms recovered from various material surfaces following treatment exposure. Under the conditions of the assay, the order of antimicrobial efficacy of biocidal aerosol treatment was as follows: ECAS > chlorine dioxide > sodium hypochlorite. For all biocides, greater antimicrobial reductions were seen when treating stainless steel and fabric than when treating plastic-associated microorganisms. The experimental fogging system and assay protocol designed within this study were shown capable of differentiating the comparative efficacies of multiple chlorine-matched biocidal aerosols against a spectrum of target organisms on a range of test surface materials and would be appropriate for testing other biocidal aerosol treatments or material surfaces. PMID:23459480

  20. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.

    PubMed

    Aslam; Waker, A J

    2011-02-01

    The accelerator-based in vivo neutron activation facility at McMaster University has been used successfully for the measurement of several minor and trace elements in human hand bones due to their importance to health. Most of these in vivo measurements have been conducted at a proton beam energy (E(p)) of 2.00 MeV to optimise the activation of the selected element of interest with an effective dose of the same order as that received in chest X rays. However, measurement of other elements at the same facility requires beam energies other than 2.00 MeV. The range of energy of neutrons produced at these proton beam energies comes under the region where tissue-equivalent proportional counters (TEPCs) are known to experience difficulty in assessing the quality factor and dose equivalent. In this study, the response of TEPCs was investigated to determine the quality factor of neutron fields generated via the (7)Li(p, n)(7)Be reaction as a function of E(p) in the range 1.884-2.56 MeV at the position of hand irradiation in the facility. An interesting trend has been observed in the quality factor based on ICRP 60, Q(ICRP60), such that the maximum value was observed at E(p)=1.884 MeV (E(n)=33±16 keV) and then continued to decline with increasing E(p) until achieving a minimum value at E(p)=2.0 MeV despite a continuous increase in the mean neutron energy with E(p). This observation is contrary to what has been observed with direct fast neutrons where the quality factor was found to increase continuously with an increase in E(p) (i.e. increasing E(n)). The series of measurements conducted with thermal and fast neutron fields demonstrate that the (14)N(n, p)(14)C produced 580 keV protons in the detector play an important role in the response of the counter under 2.0 MeV proton energy (E(n) ≤ 250 keV). In contrast to the lower response of TEPCs to low-energy neutrons, the quality factor is overestimated in the range 1-2 depending on beam energy <2.0 MeV. This study provides

  1. FY15 Status Report on NEAMS Neutronics Activities

    SciTech Connect

    Lee, C. H.; Shemon, E. R.; Smith, M. A.; Connaway, H. M.; Aliberti, G.

    2015-09-30

    This report summarizes the current status of NEAMS activities in FY2015. The tasks this year are (1) to improve solution methods for steady-state and transient conditions, (2) to develop features and user friendliness to increase the usability and applicability of the code, (3) to improve and verify the multigroup cross section generation scheme, (4) to perform verification and validation tests of the code using SFRs and thermal reactor cores, and (5) to support early users of PROTEUS and update the user manuals.

  2. Comparison of in vitro hormone activities of selected phthalates using reporter gene assays.

    PubMed

    Shen, Ouxi; Du, Guizhen; Sun, Hong; Wu, Wei; Jiang, Yi; Song, Ling; Wang, Xinru

    2009-12-01

    Phthalates are widely used in the plastic industry and food packaging, imparting softness and flexibility to normally rigid plastic medical devices and children's toys. Even though phthalates display low general toxicity, there is increasing concern on the effects of endocrine system induced by some of phthalate compounds. The hormone activity of dibutyl phthalate (DBP), mono-n-butyl phthalate (MBP) and di-2-ethylhexyl phthalate (DEHP) were assessed using the luciferase reporter gene assays. The results showed that DBP, MBP and DEHP, not only exhibited potent antiandrogenic activity, with IC(50) value of 1.05x10(-6), 1.22x10(-7)M and exceeding 1x10(-4)M respectively, but also showed the androgenic activity with EC(50) value of 6.17x10(-6), 1.13x10(-5)M and exceeding 1x10(-4)M. We also found that all the three related chemicals possessed thyroid receptor (TR) antagonist activity with IC(50) of 1.31x10(-5), 2.77x10(-6)M and exceeding 1x10(-4)M respectively, and none showed TR agonist activity. These results indicate that TR might be the targets of industrial chemicals. In the ER mediate reporter gene assay, three chemicals showed no agonistic activity except for DBP, which appeared weakly estrogenic at the concentration of 1.0x10(-4)M. Together, the findings demonstrate that the three phthalates could simultaneously disrupt the function of two or more hormonal receptors. Therefore, these phthalates should be considered in risk assessments for human health.

  3. Study of proton and neutron activation of metal samples in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1984-01-01

    Progress in the following activities has been made: the analysis of the gamma ray spectra taken from samples flown in Spacelab 2; the search for and review of neutron and proton activation cross sections needed to analyze the results of the Long Duration Exposure Facility (LDEF) activation measurements; the consideration given to data analysis of the LDEF and Spacelab 2 samples; the plan to measure relevant cross sections with nuclear accelerator measurements; and the preparation of an extended gamma ray calibration sources continues through planning and direct measurement of gamma ray efficiency for a Ge(Li) as a function of position along the surface of the detector housing.

  4. Facility for Ground Tests with Active Neutron Instrumentation for the Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Litvak, Maxim; Jun, Insoo; Kozyrev, Alexander; Mitrofanov, Igor; Sanin, Anton; Shvetsov, Valery; Starr, Richard; Timoshenko, Gennady

    2015-04-01

    To conduct a feasibility study of active neutron and gamma spectrometers a special radiation test facility has been developed and built at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. It has total area of about 62 m2 and with height from floor to roof up to 3.5 m. To provide measurements with prototypes of space instruments developed for the nuclear planetology applications and to test capabilities of such instruments we have designed and constructed special soil targets similar to planetary material with known elemental composition, appropriate geometry and layered structure. Here we also present results of first experimental work performed with a spare flight model of the DAN/MSL instrument selected as a flight prototype of an active neutron spectrometer applicable for the future landed missions to various solid solar system bodies. In our experiment we have tested the capability of neutron activation methods to detect thin layers of water/water ice lying on top of planetary dry regolith or buried within a dry regolith at different depths.

  5. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  6. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

  7. Impurities analysis of polycrystalline silicon substrates: Neutronic Activation Analysis (NAA) and Secondary Ion Mass Spectrometry (SIMS)

    NASA Astrophysics Data System (ADS)

    Lounis, A.; Lenouar, K.; Gritly, Y.; Abbad, B.; Azzaz, M.; Taïbi, K.

    2010-01-01

    In this study we have determined the concentration of some impurities such as carbon, iron, copper, titanium, nickel of the flat product (polycrystalline silicon). These impurities generate a yield decrease in the photovoltaic components. The material (polycrystalline silicon) used in this work is manufactured by the Unit of Silicon Technology Development (UDTS Algiers, Algeria). The 80 kg ingot has been cutted into 16 briquettes in order to have plates (flat product) of 100 mm×100 mm dimensions. Each briquette is divided into three parts top (T), middle (M) and bottom (B). For this purpose, the following instrumental analysis techniques have been employed: neutronic analysis (neutronic activation analysis) and secondary ion mass spectrometry (SIMS). Masses of 80 mg are sampled and form of discs 18 mm in diameter, then exposed to a flux of neutron of 2.1012neutron cm-2 s-1 during 15 min. The energetic profile of incidental flux is constituted of fast neutrons (ΦR = 3.1012n.cm-2 s-1; E = 2 Mev), thermal neutrons (ΦTH = 1013n.cm-2 s-1; E = 0.025 ev) and epithermal neutrons (Φepi = 7.1011 n cm-2 s-1; E>4.9 ev), irradiation time 15 mn, after 20 mn of decrement, acquisitions of 300 s are carried out. The results are expressed by disintegration per second which does not exceed the 9000 Bq, 500 Bq and 2600 Bq, respectively for copper, titanium and nickel. It is observed that the impurities concentrations in the medium are higher. The impurities in the bottom of the ingots originate from the crucible. The impurities in the top originate from impurities dissolved in the liquid silicon, which have segregated to the top layer of the ingot and after solidification diffuse. Silicon corresponds to a mixture of three isotopes 28Si, 29Si and 30Si. These elements clearly appear on the mass spectrum (SIMS). The presence of iron and the one of nickel has been noticed.

  8. Lysozyme activity in earthworm (Lumbricus terrestris) coelomic fluid and coelomocytes: Enzyme assay for immunotoxicity of xenobiotics

    SciTech Connect

    Goven, A.J.; Chen, S.C.; Fitzpatrick, L.C. . Dept. of Biological Sciences); Venables, B.J. . Dept. of Biological Sciences TRAC Laboratories Inc., Denton, TX )

    1994-04-01

    Lysozyme activity in earthworm (Lumbricus terrestris) coelomic fluid and coelomocytes appears sufficiently sensitive for use as a nonmammalian biomarker to detect toxic effects of sublethal body burdens of Cu[sup 2+]. Lysozyme, a phylogenetically conserved enzyme, is capable of bactericidal activity via action on peptidoglycan of gram-positive bacterial cell walls and functions as a component of an organism's innate antimicrobial defense mechanism. Coelomic fluid and coelomocyte lysozyme activities, which exhibit temperature-response patterns similar to those of human saliva, plasma, serum and leukocyte extracts, were sensitive to Cu[sup 2+] exposure. Lysozyme activity of coelomic fluid and coelomocyte extracts from earthworms exposed for 5 d to CuSO[sub 4], using filter paper contact exposure, decreased with increasing sublethal Cu[sup 2+] concentrations of 0.05 and 0.1 [mu]g/cm[sup 2]. Compared to controls, coelomic fluid lysozyme activity was suppressed significantly at both exposure concentrations, whereas coelomocyte extract lysozyme activity was suppressed significantly at the 0.1-[mu]g/cm[sup 2] exposure concentration. Low inherent natural variability and sensitivity to sublethal Cu[sup 2+] body burdens indicate that lysozyme activity has potential as a biomarker for assaying immunotoxicity of metals.

  9. Chemical models for cytochrome P450 as a biomimetic metabolic activation system in mutation assays.

    PubMed

    Inami, Keiko; Mochizuki, Masataka

    2002-08-26

    DNA damage is a critical factor in carcinogenesis. The Ames assay is a short-term test that screens for DNA-damaging agents. To be detected in the assay, most carcinogens require oxidation by cytochrome P450, a component of the liver homogenate preparation (S9 mix) that is traditionally used to metabolize promutagens to an active form in vitro. A combination of iron(III) porphyrin plus an oxidant activates many promutagens by mimicking cytochrome P450 metabolism. We previously reported that the mutagenicity of the N-nitrosodialkylamines was detected following reaction with tetrakis(pentafluorophenyl)porphyrinatoiron(III) chloride (Fe(F(5)P)Cl) plus tert-butyl hydroperoxide (t-BuOOH), which yielded the same alcohols and aldehydes as the enzymatic reaction. In the present study, to extend the scope of biomimetic models, we tested the mutagenicity of other carcinogens exposed to chemical oxidation systems.We investigated the optimal assay conditions for the models in Salmonella typhimurium TA1538, a strain sensitive to frame-shift mutagens. We activated 2-aminofluorene (AF), benzo[a]pyrene (B[a]P), a tryptophane pyrolysate 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), and 2-acetylaminofluorene (AAF) with Fe(F(5)P)Cl plus an oxidant-t-BuOOH, m-chloroperoxybenzoic acid (mCPBA), or magnesium monoperoxyphthalate (MPPT)-and we noted the effect of three solvents-acetonitrile (CH(3)CN),1,4-dioxane, and N,N-dimethylformamide (DMF)-on AF activation. All the promutagens became mutagenic in the presence of Fe(F(5)P)Cl plus an oxidant, with the effectiveness of the oxidant varying with the chemical. Aromatic amines, for example, showed the strongest mutagenicity with t-BuOOH whereas polycyclic hydrocarbons showed the strongest mutagenicity with mCPBA. All the promutagens were mutagenic in the presence of Fe(F(5)P)Cl plus MPPT. For AF activation, the order of effectiveness of the solvents was CH(3)CN>1,4-dioxane>DMF. The results suggested that these systems would serve as

  10. Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila.

    PubMed

    Pircs, Karolina; Nagy, Peter; Varga, Agnes; Venkei, Zsolt; Erdi, Balazs; Hegedus, Krisztina; Juhasz, Gabor

    2012-01-01

    Levels of the selective autophagy substrate p62 have been established in recent years as a specific readout for basal autophagic activity. Here we compared different experimental approaches for using this assay in Drosophila larvae. Similar to the more commonly used western blots, quantifying p62 dots in immunostained fat body cells of L3 stage larvae detected a strong accumulation of endogenous p62 aggregates in null mutants for Atg genes and S6K. Importantly, genes whose mutation or silencing results in early stage lethality can only be analyzed by microscopy using clonal analysis. The loss of numerous general housekeeping genes show a phenotype in large-scale screens including autophagy, and the p62 assay was potentially suitable for distinguishing bona fide autophagy regulators from silencing of a DNA polymerase subunit or a ribosomal gene that likely has a non-specific effect on autophagy. p62 accumulation upon RNAi silencing of known autophagy regulators was dependent on the duration of the knockdown effect, unlike in the case of starvation-induced autophagy. The endogenous p62 assay was more sensitive than a constitutively overexpressed p62-GFP reporter, which showed self-aggregation and large-scale accumulation even in control cells. We recommend western blots for following the conversion of overexpressed p62-GFP reporters to estimate autophagic activity if sample collection from mutant larvae or adults is possible. In addition, we also showed that overexpressed p62 or Atg8 reporters can strongly influence the phenotypes of each other, potentially giving rise to false or contradicting results. Overexpressed p62 aggregates also incorporated Atg8 reporter molecules that might lead to a wrong conclusion of strongly enhanced autophagy, whereas expression of an Atg8 reporter transgene rescued the inhibitory effect of a dominant-negative Atg4 mutant on basal and starvation-induced autophagy. PMID:22952930

  11. Neutron activation analysis of airborne thorium liberated during welding operations

    SciTech Connect

    Glasgow, D.C.; Robinson, L.; Janjovic, J.T.

    1996-02-01

    Typically, reactive metals such as aluminum are welded using a thoriated tungsten welding electrode which is attached to a source of argon gas such that the local atmosphere around the weld is inert. The metal is heated by the arc formed between the electrode and the grounded component to be welded. During this process, some of the electrode is vaporized in the arc and is potentially liberated to the surrounding air. This situation may result in a hazardous airborne thorium level. Because the electrode is consumed during welding, the electrode tip must be repeatedly dressed by grinding the tip to a fine point so that the optimal welding conditions are maintained. These grinding activities may also release thorium to the air. Data generated in the 1950s suggested that these electrodes posed no significant health hazard and seemed to justify their exemption from licensing requirements for source material. Since that time, other studies have been performed and present conflicting results as to the level of risk. Values both above and below the health protection limit in use in the United States, have been reported in the literature recently. This study is being undertaken to provide additional data which may be useful in evaluating both the chemical toxicity risk and radiological dose assessment criteria associated with thoriated tungsten welding operations.

  12. Neutron activation analysis of airborne thorium liberated during welding operations

    SciTech Connect

    Glasgow, D.C.; Robinson, L.; Jankovic, J.T.

    1996-12-31

    Typically, reactive metals such as aluminum are welded using a thoriated tungsten welding electrode that is attached to a source of argon gas such that the local atmosphere around the weld is inert. The metal is heated by the arc formed between the electrode and the grounded component to be welded. During this process, some of the electrode is vaporized in the arc and may be liberated to the surrounding air. This situation may result in a hazardous airborne thorium level. Because the electrode is consumed during welding, the electrode tip must be repeatedly dressed by grinding the tip to a fine point so that the optimal welding conditions are maintained. These grinding activities may also release thorium to the air. Data generated in the 1950s suggested that these electrodes posed no significant health hazard and seemed to justify their exemption from licensing requirements for source material. Since that time, other studies have been performed and present conflicting results as to the level of risk. Values both above and below the health protection limit in use in the United States have been reported in the literature recently. This study is being undertaken to provide additional data that may be useful in evaluating both the chemical toxicity risk and radiological dose assessment criteria associated with thoriated tungsten welding operations.

  13. A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions

    PubMed Central

    Schuster, Sabine; Roessler, Claudia; Meleshin, Marat; Zimmermann, Philipp; Simic, Zeljko; Kambach, Christian; Schiene-Fischer, Cordelia; Steegborn, Clemens; Hottiger, Michael O.; Schutkowski, Mike

    2016-01-01

    Sirtuins are NAD+ dependent lysine deacylases involved in many regulatory processes such as control of metabolic pathways, DNA repair and stress response. Modulators of sirtuin activity are required as tools for uncovering the biological function of these enzymes and as potential therapeutic agents. Systematic discovery of such modulators is hampered by the lack of direct and continuous activity assays. The present study describes a novel continuous assay based on the increase of a fluorescence signal subsequent to sirtuin mediated removal of a fluorescent acyl chain from a modified TNFα-derived peptide. This substrate is well recognized by human sirtuins 1–6 and represents the best sirtuin 2 substrate described so far with a kcat/KM-value of 176 000 M−1s−1. These extraordinary substrate properties allow the first determination of Ki-values for the specific Sirt2 inhibitory peptide S2iL5 (600 nM) and for the quasi-universal sirtuin inhibitor peptide thioxo myristoyl TNFα (80 nM). PMID:26940860

  14. Evaluation and analysis of dengue virus enhancing and neutralizing activities using simple high-throughput assays.

    PubMed

    Li, Xiao-Quan; Chen, Jing; Huang, Yan-Fen; Ding, Xi-Xia; Liu, Li-Dong; Qiu, Li-Wen; Pan, Yu-Xian; Deng, Yong-Qiang; Hu, Dong-Mei; Di, Biao; Qin, Cheng-Feng; Che, Xiao-Yan

    2013-07-01

    The risk of antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is a major obstacle for the development of dengue vaccine candidates. Here, we described a novel approach for assessment of ADE by measuring DENV nonstructural protein 1 (NS1) production in culture supernatants with Fcγ receptor-expressing K562 cells in ELISA format (ELISA-ADE). Enhancing activities quantified by measurement of kinetics of NS1 production were in a good agreement with the results of the virus titration assay. In conjunction with the previously established enzyme-linked immunospot-based micro-neutralization test (ELISPOT-MNT) in 96-well format, the observable dose-response profiles of enhancing and neutralizing activities against all four DENV serotypes were produced with two flaviviral envelope cross-reactive monoclonal antibodies and four primary DENV-1-infected human sera. The simple high-throughput ELISA-ADE assay offers advantages for quantitative measurement of infection enhancement that can potentially be applied to large-scale seroepidemiological studies of DENV infection and vaccination.

  15. A sensitive hydroosmotic toad bladder assay. Affinity and intrinsic activity of neurohypophyseal peptides.

    PubMed

    Eggena, P; Schwartz, I L; Walter, R

    1968-09-01

    A sensitive and precise method for assaying the water permeability response evoked by neurohypophyseal hormones and their synthetic analogues on the isolated urinary bladder of the toad (Bufo marinus L.) is described. The method permits detection of 8-arginine-vasotocin at concentrations as low as 10(-12)M. This sensitivity, not achieved heretofore with this tissue, results largely from minimizing interference of inhibitory substances by means of an "in vitro circulation assembly." The precision of the method derives from a direct comparison between the cumulative dose-response curve of an agonist of unknown potency acting on one hemibladder and that of a reference compound acting on the contralateral hemibladder. Crystalline deamino-oxytocin is used as the reference standard in this assay. The intrinsic activity of 2-(O-methyltyrosine)-oxytocin, as defined by the maximal response, is 12% lower than that of deamino-oxytocin. All other hormonal peptides investigated have the same intrinsic activity as deamino-oxytocin, even 5-valine-oxytocin, in spite of its extremely low affinity. A comparison of the potencies of 8-arginine-vasotocin vs. 8-arginine-vasopressin, 8-ornithine-vasotocin vs. 8-ornithine-vasopressin, 8-alanine-oxytocin vs. 8-alanine-oxypressin, and deamino-8-alanine-oxytocin vs. deamino-8-alanine-oxypressin suggests that an isoleucine residue in position 3 imparts a higher specificity for binding of the hormonal peptide molecule to the bladder receptor than a phenylalanine residue in this locus.

  16. A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYS

    EPA Science Inventory

    AbstractTITLE: A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYSABSTRACT BODY: Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characte...

  17. Multi-tiered Approach to Development of Increased Throughput Assay Models to Assess Endocrine-Disrupting Activity of Chemicals

    EPA Science Inventory

    Screening for endocrine-disrupting chemicals (EDCs) requires sensitive, scalable assays. Current high-throughput screening (HTPS) approaches for estrogenic and androgenic activity yield rapid results, but many are not sensitive to physiological hormone concentrations, suggesting ...

  18. The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay.

    PubMed

    Evandri, M G; Battinelli, L; Daniele, C; Mastrangelo, S; Bolle, P; Mazzanti, G

    2005-09-01

    Essential oils from Melaleuca alternifolia (tea-tree oil) and Lavandula angustifolia (lavender oil) are commonly used to treat minor health problems. Tea-tree oil possesses broad-spectrum antimicrobial activity, and is increasingly used for skin problems. Lavender oil, traditionally used as an antiseptic agent, is now predominantly used as a relaxant, carminative, and sedative in aromatherapy. Despite their growing use no data are available on their mutagenic potential. In this study, after determining the chemical composition of tea-tree oil and lavender oil, by gas-chromatography and mass spectrometry, we investigated their mutagenic and antimutagenic activities by the bacterial reverse mutation assay in Salmonella typhimurium TA98 and TA100 strains and in Escherichia coli WP2 uvrA strain, with and without an extrinsic metabolic activation system. Neither essential oil had mutagenic activity on the two tested Salmonella strains or on E. coli, with or without the metabolic activation system. Conversely, lavender oil exerted strong antimutagenic activity, reducing mutant colonies in the TA98 strain exposed to the direct mutagen 2-nitrofluorene. Antimutagenicity was concentration-dependent: the maximal concentration (0.80 mg/plate) reduced the number of histidine-independent revertant colonies by 66.4%. Lavender oil (0.80 mg/plate) also showed moderate antimutagenicity against the TA98 strain exposed to the direct mutagen 1-nitropyrene. Its antimutagenic property makes lavender oil a promising candidate for new applications in human healthcare. PMID:15907354

  19. The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay.

    PubMed

    Evandri, M G; Battinelli, L; Daniele, C; Mastrangelo, S; Bolle, P; Mazzanti, G

    2005-09-01

    Essential oils from Melaleuca alternifolia (tea-tree oil) and Lavandula angustifolia (lavender oil) are commonly used to treat minor health problems. Tea-tree oil possesses broad-spectrum antimicrobial activity, and is increasingly used for skin problems. Lavender oil, traditionally used as an antiseptic agent, is now predominantly used as a relaxant, carminative, and sedative in aromatherapy. Despite their growing use no data are available on their mutagenic potential. In this study, after determining the chemical composition of tea-tree oil and lavender oil, by gas-chromatography and mass spectrometry, we investigated their mutagenic and antimutagenic activities by the bacterial reverse mutation assay in Salmonella typhimurium TA98 and TA100 strains and in Escherichia coli WP2 uvrA strain, with and without an extrinsic metabolic activation system. Neither essential oil had mutagenic activity on the two tested Salmonella strains or on E. coli, with or without the metabolic activation system. Conversely, lavender oil exerted strong antimutagenic activity, reducing mutant colonies in the TA98 strain exposed to the direct mutagen 2-nitrofluorene. Antimutagenicity was concentration-dependent: the maximal concentration (0.80 mg/plate) reduced the number of histidine-independent revertant colonies by 66.4%. Lavender oil (0.80 mg/plate) also showed moderate antimutagenicity against the TA98 strain exposed to the direct mutagen 1-nitropyrene. Its antimutagenic property makes lavender oil a promising candidate for new applications in human healthcare.

  20. Immobilization and activity assay of cytochrome P450 on patterned lipid membranes

    SciTech Connect

    Ueda, Yoshihiro; Morigaki, Kenichi . E-mail: morigaki-kenichi@aist.go.jp; Tatsu, Yoshiro; Yumoto, Noboru; Imaishi, Hiromasa . E-mail: himaish@kobe-u.ac.jp

    2007-04-20

    We report on a methodology for immobilizing cytochrome P450 on the surface of micropatterned lipid bilayer membranes and measuring the enzymatic activity. The patterned bilayer comprised a matrix of polymeric lipid bilayers and embedded fluid lipid bilayers. The polymeric lipid bilayer domains act as a barrier to confine fluid lipid bilayers in defined areas and as a framework to stabilize embedded membranes. The fluid bilayer domains, on the other hand, can contain lipid compositions that facilitate the fusion between lipid membranes, and are intended to be used as the binding agent of microsomes containing rat CYP1A1. By optimizing the membrane compositions of the fluid bilayers, we could selectively immobilize microsomal membranes on these domains. The enzymatic activity was significantly higher on lipid bilayer substrates compared with direct adsorption on glass. Furthermore, competitive assay experiment between two fluorogenic substrates demonstrated the feasibility of bioassays based on immobilized P450s.