Science.gov

Sample records for active neutron coincidence

  1. Coincidence Prompt Gamma-Ray Neutron Activation Analysis

    SciTech Connect

    R.P. gandner; C.W. Mayo; W.A. Metwally; W. Zhang; W. Guo; A. Shehata

    2002-11-10

    The normal prompt gamma-ray neutron activation analysis for either bulk or small beam samples inherently has a small signal-to-noise (S/N) ratio due primarily to the neutron source being present while the sample signal is being obtained. Coincidence counting offers the possibility of greatly reducing or eliminating the noise generated by the neutron source. The present report presents our results to date on implementing the coincidence counting PGNAA approach. We conclude that coincidence PGNAA yields: (1) a larger signal-to-noise (S/N) ratio, (2) more information (and therefore better accuracy) from essentially the same experiment when sophisticated coincidence electronics are used that can yield singles and coincidences simultaneously, and (3) a reduced (one or two orders of magnitude) signal from essentially the same experiment. In future work we will concentrate on: (1) modifying the existing CEARPGS Monte Carlo code to incorporate coincidence counting, (2) obtaining coincidence schemes for 18 or 20 of the common elements in coal and cement, and (3) optimizing the design of a PGNAA coincidence system for the bulk analysis of coal.

  2. Investigating Coincidence Techniques in Biomedical Applications of Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Gramer, R.; Tandel, S. K.; Reinhardt, C. J.

    2004-05-01

    While neutron activation analysis has been widely used in biomedical applications for some time, the use of non-radioactive tracer techniques, to monitor, for example, organ blood flow, is more recent. In these studies, pre-clinical animal models are injected with micro-spheres labeled with stable isotopes of elements that have a high neutron absorption cross-section. Subsequently, samples of blood and/or tissue from different locations in the body are subjected to neutron activation analysis to measure the propagation of the labeled micro-spheres through the body. Following irradiation, the counting (with high-resolution Ge detectors) is typically delayed by a few days to dissipate short-lived activity in the samples and improve signal-to-noise for the peaks of interest in the activation spectrum. The aim of the present study was to investigate whether coincidence techniques (for isotopes which decay via two-photon cascades) could improve signal-to-noise and turn-around times. The samples were irradiated at the 1 MW research reactor at the UMass Lowell Radiation Laboratory. The analysis of the multi-parameter coincidence data recorded in event-mode will be presented and compared with the standard method of recording singles spectra.

  3. First principle active neutron coincidence counting measurements of uranium oxide

    NASA Astrophysics Data System (ADS)

    Goddard, Braden; Charlton, William; Peerani, Paolo

    2014-03-01

    Uranium is present in most nuclear fuel cycle facilities ranging from uranium mines, enrichment plants, fuel fabrication facilities, nuclear reactors, and reprocessing plants. The isotopic, chemical, and geometric composition of uranium can vary significantly between these facilities, depending on the application and type of facility. Examples of this variation are: enrichments varying from depleted (~0.2 wt% 235U) to high enriched (>20 wt% 235U); compositions consisting of U3O8, UO2, UF6, metallic, and ceramic forms; geometries ranging from plates, cans, and rods; and masses which can range from a 500 kg fuel assembly down to a few grams fuel pellet. Since 235U is a fissile material, it is routinely safeguarded in these facilities. Current techniques for quantifying the 235U mass in a sample include neutron coincidence counting. One of the main disadvantages of this technique is that it requires a known standard of representative geometry and composition for calibration, which opens up a pathway for potential erroneous declarations by the State and reduces the effectiveness of safeguards. In order to address this weakness, the authors have developed a neutron coincidence counting technique which uses the first principle point-model developed by Boehnel instead of the "known standard" method. This technique was primarily tested through simulations of 1000 g U3O8 samples using the Monte Carlo N-Particle eXtended (MCNPX) code. The results of these simulations showed good agreement between the simulated and exact 235U sample masses.

  4. Analysis of calibration data for the uranium active neutron coincidence counting collar with attention to errors in the measured neutron coincidence rate

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Burr, Tom; Favalli, Andrea; Nicholson, Andrew

    2016-03-01

    The declared linear density of 238U and 235U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar - Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of 235U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to model the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. We find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters.

  5. Active neutron coincidence counting for the assay of MTR fuel elements

    SciTech Connect

    Sher, R.

    1983-02-01

    The active well coincidence counter (AWCC) and the neutron coincidence collar (CC) were investigated for their suitability to assay materials testing reactor (MTR) fuel elements. The AWCC was used with its special insert to hold the fuel element and interrogation source. The CC was modified by the addition of polyethylene liners 2.5 cm (1 in.) thick on the sides. For a typical MTR element (approx. 220 g /sup 235/U) and 1000-s count times, statistical errors were approx. 1.6% for the CC and approx. 0.6% for AWCC. For either instrument, the change in count rate corresponding to the removal or addition of one fuel plate (with an 18-plate element) was approx. 3.8%; thus, either instrument can detect removal of one plate. The AWCC can also detect removal of one plate in count times that are considerably less than 1000 s. Various functions were investigated to fit the coincidence count rate vs /sup 235/U mass curve for the AWCC. Programs have been written for the Hewlett-Packard HP-97 calculator to calculate the calibration constants of these functions by a least-squares technique. Coincidence count rates in the AWCC depend on the orientation of the plates of the fuel elements because of the counting efficiency variation in the insert. To lessen this dependence, the MTR element should be counted with its plates positioned vertically, that is, parallel to the radius of the device. For the collar, the effect of plate orientation is much smaller.

  6. Implementation of the active neutron Coincidence Collar for the verification of unirradiated PWR and BWR fuel assemblies

    SciTech Connect

    Menlove, H.O.; Keddar, A.

    1982-01-01

    An active neutron interrogation technique has been developed for the measurement of the /sup 235/U content in fresh fuel assemblies. The method employs an AmLi neutron source to induce fission reactions in the fuel assembly and coincidence counting of the resulting fission reaction neutrons. When no interrogation source is present, the passive neutron coincidence rate gives a measure of the /sup 238/U by the spontaneous fission reactions. The system can be applied to the fissile content determination in fresh fuel assemblies for accountability, criticality control, and safeguards purposes. Field tests have been performed by International Atomic Energy Agency (IAEA) staff using the Coincidence Collar to verify the /sup 235/U content in light-water-reactor fuel assemblies. The results gave an accuracy of 1 to 2% in the active mode (/sup 235/U) and 2 to 3% in the passive mode (/sup 238/U) under field conditions.

  7. Isotopic ratio of 129I/127I in seaweed measured by neutron activation analysis with gamma-gamma coincidence.

    PubMed

    Toh, Y; Hatsukawa, Y; Oshima, M; Shinohara, N; Hayakawa, T; Kushita, K; Ueno, T

    2002-07-01

    129I is a long-lived (1.6 x 10(7) y) radionuclide that is produced in nature as the result of spontaneous fission of heavy elements and reaction of xenon with cosmic rays. Recently, however, artificial sources from nuclear power plants and nuclear test explosions have become a significant component of environmental radioactive iodine. Coincidence gamma-ray detection using Ge detectors makes it possible to simultaneously resolve the numerous gamma-rays produced by neutron activation. In this study, the coincidence gamma-ray detection technique was combined with neutron activation analysis to determine the radioactive iodine composition of seaweed. The ratio of 129I/127I in this common Japanese food item collected from the Ibaraki prefecture has been derived without the need for radiochemical purification. The isotopic ratio of 129I/127I in Kajime algae is 3.5(5) x 10(-10).

  8. Cosmic Coincidences: Investigations for Neutron Background Suppression

    PubMed Central

    Heimbach, Craig R.

    2007-01-01

    Two experimental investigations were made in order to reduce background counts in neutron detectors. Each investigation relied upon the fact that neutron background is largely due to cosmic ray interactions with the air and ground. The first attempt was to look at neutron arrival times. Neutron events close in time were taken to have been of a common origin due to cosmic rays. The second investigation was similar, but based on coincident neutron/muon events. The investigations showed only a small effect, not practical for the suppression of neutron background. PMID:27110457

  9. Cosmic Coincidences: Investigations for Neutron Background Suppression.

    PubMed

    Heimbach, Craig R

    2007-01-01

    Two experimental investigations were made in order to reduce background counts in neutron detectors. Each investigation relied upon the fact that neutron background is largely due to cosmic ray interactions with the air and ground. The first attempt was to look at neutron arrival times. Neutron events close in time were taken to have been of a common origin due to cosmic rays. The second investigation was similar, but based on coincident neutron/muon events. The investigations showed only a small effect, not practical for the suppression of neutron background.

  10. CALIBRATION OF THE HB LINE ACTIVE WELL NEUTRON COINCIDENCE COUNTER FOR MEASUREMENT OF LANL 3013 HIGHLY ENRICHED URANIUM PRODUCT SPLITS

    SciTech Connect

    Dewberry, R; Donald02 Williams, D; Rstephen Lee, R; David-W Roberts, D; Leah Arrigo, L

    2008-01-22

    In this paper we describe set-up, calibration, and testing of the F-Area Analytical Labs active well neutron coincidence counter(HV-221000-NDA-X-1-DK-AWCC-1)in SRNL for use in HB-Line to enable assay of 3013EU/Pu metal product. The instrument was required within a three-month window for availability upon receipt of LANL Category IV uranium oxide samples into the SRS HB-Line facility. We describe calibration of the instrument in the SRNL nuclear nondestructive assay facility in the range 10-400 g HEU for qualification and installation in HB-Line for assay of the initial suite of product samples.

  11. Description and performance characteristics for the neutron Coincidence Collar for the verification of reactor fuel assemblies

    SciTech Connect

    Menlove, H.O.

    1981-08-01

    An active neutron interrogation method has been developed for the measurement of /sup 235/U content in fresh fuel assemblies. The neutron Coincidence Collar uses neutron interrogation with an AmLi neutron source and coincidence counting the induced fission reaction neutrons from the /sup 235/U. This manual describes the system components, operation, and performance characteristics. Applications of the Coincidence Collar to PWR and BWR types of reactor fuel assemblies are described.

  12. Neutron coincidence counting with digital signal processing

    NASA Astrophysics Data System (ADS)

    Bagi, Janos; Dechamp, Luc; Dransart, Pascal; Dzbikowicz, Zdzislaw; Dufour, Jean-Luc; Holzleitner, Ludwig; Huszti, Joseph; Looman, Marc; Marin Ferrer, Montserrat; Lambert, Thierry; Peerani, Paolo; Rackham, Jamie; Swinhoe, Martyn; Tobin, Steve; Weber, Anne-Laure; Wilson, Mark

    2009-09-01

    Neutron coincidence counting is a widely adopted nondestructive assay (NDA) technique used in nuclear safeguards to measure the mass of nuclear material in samples. Nowadays, most neutron-counting systems are based on the original-shift-register technology, like the (ordinary or multiplicity) Shift-Register Analyser. The analogue signal from the He-3 tubes is processed by an amplifier/single channel analyser (SCA) producing a train of TTL pulses that are fed into an electronic unit that performs the time- correlation analysis. Following the suggestion of the main inspection authorities (IAEA, Euratom and the French Ministry of Industry), several research laboratories have started to study and develop prototypes of neutron-counting systems with PC-based processing. Collaboration in this field among JRC, IRSN and LANL has been established within the framework of the ESARDA-NDA working group. Joint testing campaigns have been performed in the JRC PERLA laboratory, using different equipment provided by the three partners. One area of development is the use of high-speed PCs and pulse acquisition electronics that provide a time stamp (LIST-Mode Acquisition) for every digital pulse. The time stamp data can be processed directly during acquisition or saved on a hard disk. The latter method has the advantage that measurement data can be analysed with different values for parameters like predelay and gate width, without repeating the acquisition. Other useful diagnostic information, such as die-away time and dead time, can also be extracted from this stored data. A second area is the development of "virtual instruments." These devices, in which the pulse-processing system can be embedded in the neutron counter itself and sends counting data to a PC, can give increased data-acquisition speeds. Either or both of these developments could give rise to the next generation of instrumentation for improved practical neutron-correlation measurements. The paper will describe the

  13. Shift-register coincidence electronics system for thermal neutron counters

    SciTech Connect

    Swansen, J.E.; Collinsworth, P.R.; Krick, M.S.

    1980-04-01

    An improved shift-register, coincidence-counting logic circuit, developed for use with thermal neutron well counters, is described in detail. A distinguishing feature of the circuit is its ability to operate usefully at neutron counting rates of several hundred kHz. A portable electronics package incorporating the new coincidence logic and support circuits is also described.

  14. Introduction to Neutron Coincidence Counter Design Based on Boron-10

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-01-22

    The Department of Energy Office of Nonproliferation Policy (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is ultimately to design, build and demonstrate a boron-lined proportional tube based alternative system in the configuration of a coincidence counter. This report, providing background information for this project, is the deliverable under Task 1 of the project.

  15. Neutron coincidence detectors employing heterogeneous materials

    DOEpatents

    Czirr, J. Bartley; Jensen, Gary L.

    1993-07-27

    A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.

  16. Self-regulating neutron coincidence counter

    DOEpatents

    Baron, N.

    1980-06-16

    A device for accurately measuring the mass of /sup 240/Pu and /sup 239/Pu in a sample having arbitrary moderation and mixed with various contaminants. The device utilizes a thermal neutron well counter which has two concentric rings of neutron detectors separated by a moderating material surrounding the well. Neutron spectroscopic information derived by the two rings of detectors is used to measure the quantity of /sup 239/Pu and /sup 240/Pu in device which corrects for background radiation, deadtime losses of the detector and electronics and various other constants of the system.

  17. Characteristic evaluation of a Lithium-6 loaded neutron coincidence spectrometer.

    PubMed

    Hayashi, M; Kaku, D; Watanabe, Y; Sagara, K

    2007-01-01

    Characteristics of a (6)Li-loaded neutron coincidence spectrometer were investigated from both measurements and Monte Carlo simulations. The spectrometer consists of three (6)Li-glass scintillators embedded in a liquid organic scintillator BC-501A, which can detect selectively neutrons that deposit the total energy in the BC-501A using a coincidence signal generated from the capture event of thermalised neutrons in the (6)Li-glass scintillators. The relative efficiency and the energy response were measured using 4.7, 7.2 and 9.0 MeV monoenergetic neutrons. The measured ones were compared with the Monte Carlo calculations performed by combining the neutron transport code PHITS and the scintillator response calculation code SCINFUL. The experimental light output spectra were in good agreement with the calculated ones in shape. The energy dependence of the detection efficiency was reproduced by the calculation. The response matrices for 1-10 MeV neutrons were finally obtained.

  18. Computed neutron coincidence counting applied to passive waste assay

    SciTech Connect

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.

    1997-11-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs.

  19. Fast-neutron coincidence-counter manual

    SciTech Connect

    Ensslin, N.; Atwell, T.L.; Lee, D.M.; Erkkila, B.; Marshall, R.S.; Morgan, A.; Shonrock, C.; Tippens, B.; Van Lyssel, T.

    1982-03-01

    The fast neutron counter (FNC) described in this report is a computer-based assay system employing fast-pulse counting instrumentation. It is installed below a glove box in the metal electrorefining area of the Los Alamos National Laboratory Plutonium Processing Facility. The instrument was designed to assay plutonium salts and residues from this process and to verify the mass of electrorefined metal. Los Alamos National Laboratory Groups Q-1, Q-3, and CMB-11 carried out a joint test and evaluation plan of this instrument between May 1978 and May 1979. The results of that evaluation, a description of the FNC, and operating instructions for further use are given in this report.

  20. Neutron depth profiling by large angle coincidence spectroscopy

    SciTech Connect

    Vacik, J.; Cervena, J.; Hnatowicz, V.; Havranek, V.; Fink, D.

    1995-12-31

    Extremely low concentrations of several technologically important elements (mainly lithium and boron) have been studied by a modified neutron depth profiling technique. Large angle coincidence spectroscopy using neutrons to probe solids with a thickness not exceeding several micrometers has proved to be a powerful analytical method with an excellent detection sensitivity. Depth profiles in the ppb atomic range are accessible for any solid material. A depth resolution of about 20 nanometers can be achieved.

  1. Technical basis for the use of a correlated neutron source in the uranium neutron coincidence collar

    DOE PAGES

    Root, Margaret A.; Menlove, Howard Olsen; Lanza, Richard C.; ...

    2017-01-16

    Active neutron coincidence systems are commonly used by international inspectorates to verify a material balance across the various stages of the nuclear fuel cycle. The Uranium Neutron Coincidence Collar (UNCL) is one such instrument; it is used to measure the linear density of 235U (g 235U/cm of active length in assembly) in fresh light water reactor fuel in nuclear fuel fabrication facilities. The UNCL and other active neutron interrogation detectors have historically relied on americium lithium (241AmLi) sources to induce fission within the sample in question. Californium-252 is under consideration as a possible alternative to the traditional 241AmLi source. Finally,more » this work relied upon a combination of experiments and Monte Carlo simulations to demonstrate the technical basis for the replacement of 241AmLi sources with 252Cf sources by evaluating the statistical uncertainty in the measurements incurred by each source and assessing the penetrability of neutrons from each source for the UNCL.« less

  2. Uranium Neutron Coincidence Collar Model Utilizing 3He

    SciTech Connect

    Siciliano, Edward R.; Rogers, Jeremy L.; Schweppe, John E.; Lintereur, Azaree T.; Kouzes, Richard T.

    2012-07-30

    The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube based alternative system in a configuration typically used for 3He-based coincidence counter applications. The specific application selected for boron-lined tube replacement in this project was one of the Uranium Neutron Coincidence Collar (UNCL) designs. This report, providing results for model development of a UNCL, is a deliverable under Task 2 of the project. The current UNCL instruments utilize 3He tubes. As the first step in developing and optimizing a boron-lined proportional counter based version of the UNCL, models of eight different 3He-based UNCL detectors currently in use were developed and evaluated. A comparison was made between the simulated results and measured efficiencies for those systems with values reported in the literature. The reported experimental measurements for efficiencies and die-away times agree to within 10%.

  3. A new opportunity: coincident spectroscopy in neutron-deficient actinides

    NASA Astrophysics Data System (ADS)

    Gothe, Oliver; Gates, J. M.; Gregorich, K. E.; Baartman, B.; Fallon, P.; Esker, N. E.; Kwarsick, J.; Machiavelli, A. O.; Mudder, P. R.; Olive, D. T.; Pang, G.; Rissanen, J.; Nitsche, H.

    2014-09-01

    Due to high γ-ray background rates heavy element production facilities are usually not sensitive to the electron capture decay of neutron deficient actinides. We have developed new capabilities at the Berkeley Gas Filled Separator (BGS) that allow us to study these isotopes. The highly selective and efficient separation of compound nucleus evaporation residue products using the BGS couple with a rapid delivery to a low-background detector facility, opens up many new possibilities for nuclear decay and structure studies in the neutron deficient actinides. The decay of these actinides produces vacancies in the K-shell resulting in x-rays uniquely identifying the Z of the decay products. We present the first results of this new methodology in studying the nuclear structure of fermium-254 by observing the gamma rays in coincidence with fermium x-rays. Coincident gamma-decay spectroscopy gives us a new tool to study the nuclear structure of previously inaccessible systems.

  4. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    SciTech Connect

    Hu, Jianwei; Croft, Stephen; McElroy, Robert Dennis

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non-3He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  5. High-level neutron coincidence counter maintenance manual

    SciTech Connect

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

  6. Passive neutron coincidence counting with plastic scintillators for the characterization of radioactive waste drums

    SciTech Connect

    Deyglun, C.; Simony, B.; Perot, B.; Carasco, C.; Saurel, N.; Colas, S.; Collot, J.

    2015-07-01

    The quantification of radioactive material is essential in the fields of safeguards, criticality control of nuclear processes, dismantling of nuclear facilities and components, or radioactive waste characterization. The Nuclear Measurement Laboratory (LMN) of CEA is involved in the development of time-correlated neutron detection techniques using plastic scintillators. Usually, 3He proportional counters are used for passive neutron coincidence counting owing to their high thermal neutron capture efficiency and gamma insensitivity. However, the global {sup 3}He shortage in the past few years has made these detectors extremely expensive. In addition, contrary to {sup 3}He counters for which a few tens of microseconds are needed to thermalize fast neutrons, in view to maximize the {sup 3}He(n,p){sup 3}H capture cross section, plastic scintillators are based on elastic scattering and therefore the light signal is formed within a few nanoseconds, correlated pulses being detected within a few dozen- or hundred nanoseconds. This time span reflects fission particles time of flight, which allows reducing accordingly the duration of the coincidence gate and thus the rate of random coincidences, which may totally blind fission coincidences when using {sup 3}He counters in case of a high (α,n) reaction rate. However, plastic scintillators are very sensitive to gamma rays, requiring the use of a thick metallic shield to reduce the corresponding background. Cross talk between detectors is also a major issue, which consists on the detection of one particle by several detectors due to elastic or inelastic scattering, leading to true but undesired coincidences. Data analysis algorithms are tested to minimize cross-talk in simultaneously activated detectors. The distinction between useful fission coincidences and the correlated background due to cross-talk, (α,n) and induced (n,2n) or (n,n'γ) reactions, is achieved by measuring 3-fold coincidences. The performances of a passive

  7. Determining activities of radionuclides from coincidence signatures

    NASA Astrophysics Data System (ADS)

    Warren, Glen A.; Smith, L. Eric; Aalseth, Craig E.; Ellis, Edward; Hossbach, Todd W.; Valsan, Andrei B.

    2006-05-01

    The spectral analysis of simultaneously observed photons in separate detectors may provide an invaluable tool for radioisotope identification applications. A general recursive method to determine the activity of an isotope from the observed coincidence signature rate is discussed. The method coherently accounts for effects of true coincidence summing within a single detector and detection efficiencies. A verification of the approach with computer simulations is also discussed.

  8. Cosmic ray neutron background reduction using localized coincidence veto neutron counting

    DOEpatents

    Menlove, Howard O.; Bourret, Steven C.; Krick, Merlyn S.

    2002-01-01

    This invention relates to both the apparatus and method for increasing the sensitivity of measuring the amount of radioactive material in waste by reducing the interference caused by cosmic ray generated neutrons. The apparatus includes: (a) a plurality of neutron detectors, each of the detectors including means for generating a pulse in response to the detection of a neutron; and (b) means, coupled to each of the neutrons detectors, for counting only some of the pulses from each of the detectors, whether cosmic ray or fission generated. The means for counting includes a means that, after counting one of the pulses, vetos the counting of additional pulses for a prescribed period of time. The prescribed period of time is between 50 and 200 .mu.s. In the preferred embodiment the prescribed period of time is 128 .mu.s. The veto means can be an electronic circuit which includes a leading edge pulse generator which passes a pulse but blocks any subsequent pulse for a period of between 50 and 200 .mu.s. Alternately, the veto means is a software program which includes means for tagging each of the pulses from each of the detectors for both time and position, means for counting one of the pulses from a particular position, and means for rejecting those of the pulses which originate from the particular position and in a time interval on the order of the neutron die-away time in polyethylene or other shield material. The neutron detectors are grouped in pods, preferably at least 10. The apparatus also includes means for vetoing the counting of coincidence pulses from all of the detectors included in each of the pods which are adjacent to the pod which includes the detector which produced the pulse which was counted.

  9. Manganese-56 coincidence-counting facility precisely measures neutron-source strength

    NASA Technical Reports Server (NTRS)

    De Volpi, A.; Larsen, R. N.; Porges, K. G. A.

    1969-01-01

    Precise measurement of neutron-source strength is provided by a manganese 56 coincidence-counting facility using the manganese-bath technique. This facility combines nuclear instrumentation with coincidence-counting techniques to handle a wide variety of radioisotope-counting requirements.

  10. Detection system for electron-proton coincidences in neutron decay

    NASA Astrophysics Data System (ADS)

    Broussard, Leah; Nab Collaboration; Ucnb Collaboration; Tristan Collaboration

    2017-01-01

    By precisely measuring angular correlations in neutron decay, we can perform precise tests of the Standard Model and search for new physics beyond the Standard Model. The upcoming Nab and UCNB experiments will measure the correlations a and b, and B, respectively, in neutron decay. The collaborations have jointly developed a prototype detection system based on thick, large area silicon detectors which meets experimental requirements of 3 keV FWHM energy resolution, rise times of 50 ns, and energy thresholds below 10 keV. We will present results of characterization of the prototype and an update on the development of the final, fully instrumented detection system. We also present a study of very thin deadlayer silicon drift detectors in development by the TRISTAN collaboration, and their possible applicability to neutron decay correlation experiments.

  11. Field test and evaluation of the passive neutron coincidence collar for prototype fast reactor fuel subassemblies

    SciTech Connect

    Menlove, H.O.; Keddar, A.

    1982-08-01

    The passive neutron Coincidence Collar, which was developed for the verification of plutonium content in fast reactor fuel subassemblies, has been field tested using Prototype Fast Reactor fuel. For passive applications, the system measures the /sup 240/Pu-effective mass from the spontaneous fission rate, and in addition, a self-interrogation technique is used to determine the fissile content in the subassembly. Both the passive and active modes were evaluated at the Windscale Works in the United Kingdom. The results of the tests gave a standard deviation 0.75% for the passive count and 3 to 7% for the active measurement for a 1000-s counting time. The unit will be used in the future for the verification of plutonium in fresh fuel assemblies.

  12. Fluorescent atom coincidence spectroscopy of extremely neutron-deficient barium isotopes

    NASA Astrophysics Data System (ADS)

    Wells, S. A.; Evans, D. E.; Griffith, J. A. R.; Eastham, D. A.; Groves, J.; Smith, J. R. H.; Tolfree, D. W. L.; Warner, D. D.; Billowes, J.; Grant, I. S.; Walker, P. M.

    1988-09-01

    Fluorescent atom coincidence spectroscopy (FACS) has been used to measure the nuclear mean square radii and moments of the extremely neutron-deficient isotopes 120-124Ba. At N=65 an abrupt change in nuclear mean square charge radii is observed which can be understood in terms of the occupation of the spin-orbit partner g7/25/2[413] neutron and g9/29/2[404] proton orbitals and the consequent enhancement of the n-p interaction.

  13. Sensitive neutron detection method using delayed coincidence transitions in existing iodine-containing detectors

    NASA Astrophysics Data System (ADS)

    Yakushev, E.; Rozov, S.; Drokhlyansky, A.; Filosofov, D.; Kalaninova, Z.; Timkin, V.; Ponomarev, D.

    2017-03-01

    This work explains a new, highly sensitive method for the detection of neutrons, which uses the T1/2 = 845 ns delay in the decay of 128I at the 137.8 keV energy level, resulting from the capture of thermal neutrons by iodine nuclei in NaI and CsI scintillation detectors. The use of delayed coincidence techniques with a several μs delay time window for delayed events allows for the highly effective discrimination of neutron events from any existing background signals. A comparison of ambient neutron measurements between those identified through the suggested method from a cylindrical, ø 63 mm × 63 mm NaI(Tl) scintillator and those from a low-background proportional 3He counter experimentally demonstrates the efficacy of this neutron detection method. For an isotropic, 4 π , thermal neutron flux of 1 ncm-2s-1 , the absolute sensitivity of the NaI detector was found to be 6.5 ± 1 countss-1 with an accidental coincidence background of 0.8 eventsday-1 for any delay time window of Δt = 1 μs . The proposed method can provide low-background experiments, using NaI or CsI, with measurements of the rate and stability of incoming neutron flux to a greater accuracy than 10-8 ncm-2s-1 .

  14. The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting

    SciTech Connect

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.; Goddard, Braden; Stewart, Scott

    2016-01-13

    In neutron coincidence counting using the shift register autocorrelation technique, a predelay is inserted before the opening of the (R+A)-gate. Operationally the purpose of the predelay is to ensure that the (R+A)- and A-gates have matched effectiveness, otherwise a bias will result when the difference between the gates is used to calculate the accidentals corrected net reals coincidence rate. The necessity for the predelay was established experimentally in the early practical development and deployment of the coincidence counting method. The choice of predelay for a given detection system is usually made experimentally, but even today long standing traditional values (e.g., 4.5 µs) are often used. This, at least in part, reflects the fact that a deep understanding of why a finite predelay setting is needed and how to control the underlying influences has not been fully worked out. We attempt, in this paper, to gain some insight into the problem. One aspect we consider is the slowing down, thermalization, and diffusion of neutrons in the detector moderator. The other is the influence of deadtime and electronic transients. These may be classified as non-ideal detector behaviors because they are not included in the conventional model used to interpret measurement data. From improved understanding of the effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting, the performance of both future and current coincidence counters may be improved.

  15. The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting

    DOE PAGES

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.; ...

    2016-01-13

    In neutron coincidence counting using the shift register autocorrelation technique, a predelay is inserted before the opening of the (R+A)-gate. Operationally the purpose of the predelay is to ensure that the (R+A)- and A-gates have matched effectiveness, otherwise a bias will result when the difference between the gates is used to calculate the accidentals corrected net reals coincidence rate. The necessity for the predelay was established experimentally in the early practical development and deployment of the coincidence counting method. The choice of predelay for a given detection system is usually made experimentally, but even today long standing traditional values (e.g.,more » 4.5 µs) are often used. This, at least in part, reflects the fact that a deep understanding of why a finite predelay setting is needed and how to control the underlying influences has not been fully worked out. We attempt, in this paper, to gain some insight into the problem. One aspect we consider is the slowing down, thermalization, and diffusion of neutrons in the detector moderator. The other is the influence of deadtime and electronic transients. These may be classified as non-ideal detector behaviors because they are not included in the conventional model used to interpret measurement data. From improved understanding of the effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting, the performance of both future and current coincidence counters may be improved.« less

  16. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOEpatents

    Menlove, H.O.; Stewart, J.E.

    1985-02-04

    Apparatus and method for the direct, nondestructive evaluation of the /sup 235/U nuclide content of samples containing UF/sub 6/, UF/sub 4/, or UO/sub 2/ utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1sigma) for cylinders containing UF/sub 6/ with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF/sub 6/ takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures. 4 figs., 1 tab.

  17. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOEpatents

    Menlove, Howard O.; Stewart, James E.

    1986-01-01

    Apparatus and method for the direct, nondestructive evaluation of the .sup.235 U nuclide content of samples containing UF.sub.6, UF.sub.4, or UO.sub.2 utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1.sigma.) for cylinders containing UF.sub.6 with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF.sub.6 takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures.

  18. Moisture corrections in neutron coincidence counting of PuO/sub 2/

    SciTech Connect

    Stewart, J.E.; Menlove, H.O.

    1987-01-01

    Passive neutron coincidence counting is capable of 1% assay accuracy for pure, well-characterized PuO/sub 2/ samples that contain plutonium masses from a few tens of grams to several kilograms. Moisture in the sample can significantly bias the assay high by changing the (..cap alpha..,n) neutron production, the sample multiplication, and the detection efficiency. Monte Carlo calculations and an analytical model of coincidence counting have been used to quantify the individual and cumulative effects of moisture biases for two PuO/sub 2/ sample sizes and a range of moisture levels from 0 to 9 wt %. Results of the calculations suggest a simple correction procedure for moisture bias that is effective from 0 to 3 wt % H/sub 2/O. The procedure requires that the moisture level in the sample be known before the coincidence measurement.

  19. Fast neutron detection with coincidence counting of recoil tracks in CR-39

    NASA Astrophysics Data System (ADS)

    Lengar, I.; Skvarč, J.; Ilić, R.

    2002-06-01

    Unpredictable background is often the major drawback in the assessment of low fluences of fast neutrons with solid state nuclear track detectors. The problem can be effectively solved by counting coincidence tracks in two detector foils that are in close contact during the irradiation. The detection of fast neutrons performed with a pair of CR-39 detector foils, subsequent chemical etching and evaluation of the etched tracks by an automatic track counting system was studied. After counting, only tracks produced by the same recoil nuclei in the surface layers of both detector foils were taken into account. In this way, the background due to objects that cannot be separated from tracks by an automatic counting system was drastically reduced. Emphasis was given to determining the properties of such a coincidence fast neutron detector based on utilisation of CR-39. The response of the coincidence detector was found to be 3×10 -5 tracks/neutron and is comparable with a detector based on counting tracks in a single foil of CR-39. The lower neutron detection limit was found to be 2×10 4 cm -2 with a counting area of 10 cm 2, and is two orders of magnitude lower than that obtained with a detector based on counting tracks in a single foil of CR-39.

  20. Safeguards Technology Factsheet 3He-free Neutron Coincidence Counter

    SciTech Connect

    Henzlova, Daniela; Menlove, Howard Olsen

    2016-04-21

    A full scale thermal neutron coincidence counter (High Level Neutron Counter – Boron: HLNB) based on 3He alternative detection technology was designed and built at LANL and field tested at Plutonium Conversion Development Facility (PCDF) of Japan Atomic Energy Agency (JAEA) during FY15. HLNB is based on boron-lined proportional plates that replace the traditional 3He proportional tubes and was designed as a direct alternative to 3He-based High Level Neutron Coincidence Counter (HLNC-II). During the JAEA field trial the HLNB demonstrated comparable performance to HLNC-II, which represents a key development in the area of 3He alternative technologies and provides a complete demonstration of the technology for nuclear safeguards applications including high mass MOX samples.

  1. A Coincident Search for Radio and Gravitational Waves from Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Cardena, Brett

    2011-05-01

    The merger of neutron star-neutron star binary pairs may be accompanied by the prompt emission of a coherent low-frequency radio pulse. This radio transient is produced as synchrotron radiation caused by the spin and rotation of the surface charge density of a pulsar through the magnetosphere of a larger neutron star, usually referred to as a Magnetar . This type of merger event would also result in the release of a gravitational coalescence wave-form. We will discuss a coincident radio transient and gravitational wave search. This search is being conducted by two radio telescope arrays: The Long Wave Array (LWA) and the Eight-meter-wavelength Transient Array (ETA) in coordination with the Laser Interferometer Gravitational-Wave Observatory (LIGO). We will outline this ongoing coincident search and discuss some preliminary results.

  2. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  3. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  4. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  5. Measurement of U-235 Fission Neutron Spectra Using a Multiple Gamma Coincidence Technique

    SciTech Connect

    Ji Chuncheng; Kegel, G.H.R.; Egan, J.J.; DeSimone, D.J.; Alimeti, A.; Roldan, C.F.; McKittrick, T.M.; Kim, D.-S.; Chen, X.; Tremblay, S.E.

    2005-05-24

    The Los Alamos Model of Madland and Nix predicts the shape of the fission neutron energy spectrum for incident primary neutrons of different energies. Verifications of the model normally are limited to measurements of the fission neutron spectra for energies higher than that of the primary neutrons because the low-energy spectrum is distorted by the admixture of elastically and inelastically scattered neutrons. This situation can be remedied by using a measuring technique that separates fission from scattering events. One solution consists of using a fissile sample so thin that fission fragments can be observed indicating the occurrence of a fission event. A different approach is considered in this paper. It has been established that a fission event is accompanied by the emission of between seven and eight gamma rays, while in a scattering interaction, between zero and two gammas are emitted, so that a gamma multiplicity detector should supply a datum to distinguish a fission event from a scattering event. We proceed as follows: A subnanosecond pulsed and bunched proton beam from the UML Van de Graaff generates nearly mono-energetic neutrons by irradiating a thin metallic lithium target. The neutrons irradiate a 235U sample. Emerging neutron energies are measured with a time-of-flight spectrometer. A set of four BaF2 detectors is located close to the 235U sample. These detectors together with their electronic components identify five different events for each neutron detected, i.e., whether four, three, two, one, or none of the BaF2 detectors received one (or more) gamma rays. We present work, preliminary to the final measurements, involving feasibility considerations based on gamma-ray coincidence measurements with four BaF2 detectors, and the design of a Fission-Scattering Discriminator under construction.

  6. Fast Neutron Dose Evaluation Using CR39 by Coincidence Counting Process

    SciTech Connect

    Vilela, Eudice; Freitas, F. F. de; Brandao, J. O. C.; Santos, J. A. L.

    2008-08-07

    The solid state nuclear tracks detection (SSNTD) technique is widely used in the area of radiation dosimetry. Different materials can be used applying this technique as glass and the most used in the dosimetry field that are the polycarbonates, CR39 and Makrofol-DE. Both are very rich in hydrogenous, that enables the SSNTD to detect fast neutrons through recoils of protons in the own detector material, without need of converters. The low reproducibility of its backgroundhas often been the major drawback in the assessment of low fluences of fast neutrons with SSNTDs. This problem can be effectively solved by counting coincidence of tracks in two detectors foils irradiated in close contact. After processing and counting only tracks produced by the same recoil nuclei on the surfaces of both detectors are considered as a track. This procedure enables the reduction of the background counts in the response of the detectors. In this work a preliminary study on the application of the coincidence technique for neutron dosimetry is presented. The CR39 material was investigated aiming to achieve the personal dose equivalent for fast neutrons. Using this method of analysis a significant reduction on the lower detectable dose was observed resulting even one order of magnitude smaller value. Reading, however, needs to be automated due to the large areas necessary to achieve a satisfactory number of tracks for statistical significance of results.

  7. A new NCNPX PTRAC coincidence capture file capability: a tool for neutron detector design

    SciTech Connect

    Evans, Louise G; Schear, Melissa A; Hendricks, John S; Swinhoe, Martyn T; Tobin, Stephen J; Croft, Stephen

    2011-01-13

    The existing Monte Carlo N-Particle (MCNPX) particle tracking (PTRAC) coincidence capture file allows a full list of neutron capture events to be recorded in any simulated detection medium. The originating event history number (e.g. spontaneous fission events), capture time, location and source particle number are tracked and output to file for post-processing. We have developed a new MCNPX PTRAC coincidence capture file capability to aid detector design studies. New features include the ability to track the nuclides that emitted the detected neutrons as well as induced fission chains in mixed samples before detection (both generation number and nuclide that underwent induced fission). Here, the power of this tool is demonstrated using a detector design developed for the non-destructive assay (NDA) of spent nuclear fuel. Individual capture time distributions have been generated for neutrons originating from Curium-244 source spontaneous fission events and induced fission events in fissile nuclides of interest: namely Plutonium-239, Plutonium-241, and Uranium-235. Through this capability, a full picture for the attribution of neutron capture events in the detector can be simulated.

  8. A new MCNPX PTRAC coincidence capture file capability: a tool for neutron detector design

    SciTech Connect

    Evans, Louise G; Schear, Melissa A; Hendricks, John S; Swinhoe, Martyn T; Tobin, Stephen J; Croft, Stephen

    2010-12-14

    The existing MCNPX{trademark} PTRAC coincidence capture file allows a full list of neutron capture events to be recorded in any simulated detection medium. The originating event history number (e.g. spontaneous fission events), capture time, location and source particle number are tracked and output to file for post-processing. We have developed a new MCNPX PTRAC coincidence capture file capability to aid detector design studies. New features include the ability to track the isotopes that emitted the detected neutrons as well as induced fission chains in mixed samples before detection (both generation number and isotope). Here, the power of this tool is demonstrated using a detector design that has been developed for the non-destructive assay (NDA) of spent nuclear fuel. Individual capture time distributions have been generated for neutrons originating from Curium-244 source spontaneous fission events and induced fission events in fissile isotopes of interest: namely Plutonium-239, Plutonium-241, and Uranium-235. Through this capability, a full picture for the attribution of neutron capture events in the detector can be simulated.

  9. A new MCNPX PTRAC coincidence capture file capability: a tool for neutron detector design

    SciTech Connect

    Evans, Louise G; Schear, Melissa A; Hendricks, John S; Swinhoe, Martyn T; Tobin, Stephen J; Croft, Stephen

    2011-02-16

    The existing Monte Carlo N-Particle (MCNPX) particle tracking (PTRAC) coincidence capture file allows a full list of neutron capture events to be recorded in any simulated detection medium. The originating event history number (e.g. spontaneous fission events), capture time, location and source particle number are tracked and output to file for post-processing. We have developed a new MCNPX PTRAC coincidence capture file capability to aid detector design studies. New features include the ability to track the nuclides that emitted the detected neutrons as well as induced fission chains in mixed samples before detection (both generation number and nuclide that underwent induced fission). Here, the power of this tool is demonstrated using a detector design developed for the non-destructive assay (NDA) of spent nuclear fuel. Individual capture time distributions have been generated for neutrons originating from Curium-244 source spontaneous fission events and induced fission events in fissile nuclides of interest: namely Plutonium-239, Plutonium-241, and Uranium-235. Through this capability, a full picture for the attribution of neutron capture events in the detector can be simulated.

  10. The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) Front Anti-Coincidence Counter (FACC) Testing

    NASA Astrophysics Data System (ADS)

    Chen, Mingqian

    The searching for proton decay (PDK) is going on current Water Cherenkov (WCh) detectors such as Super-Kamiokande. However, PDK-like backgrounds produced by the neutrino interactions will limit the sensitivity of the detectors. The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is going to measure the neutron yield of neutrino interactions in gadolinium-loaded water by the Booster Neutrino Beam (BNB) with known characteristics. In this thesis, neutrino, neutrino oscillations, Dirac neutrino and Majorana neutrino and neutrino interactions are introduced. ANNIE experiment is also introduced. And two modes of proton decays are discussed. The ANNIE experiment requires detection of the neutrons produced by the BNB interactions with water. However, dirt muons produced by the interaction of the BNB with the rock and dirt upstream of the ANNIE hall will cause a correlated background. Therefore, the Front Anti-Coincidence Counter (FACC) was built to measure the rock muons. This thesis details the design, installation, and commissioning of the ANNIE FACC.

  11. LANL Efforts on Neutron Coincidence Modeling of INL Pulsed Neutron Data

    SciTech Connect

    Stewart, Scott; Thron, Jonathan L.; Swinhoe, Martyn T.; Geist, William H.; Charlton, William S.

    2012-06-25

    Overview of this presentation is: (1) pulsed histogram analysis, (2) creation of SPNS, (3) use of SPNS for modeling pulsed neutron data, (4) creation of MUDI, (5) calculated accidentals correction using GUAM + MUDI, (6) background subtraction analysis, and (7) current/figure work with MCNP.

  12. Measurement of the Fast Neutron Response for {sup 4}He Scintillation Detectors Using a Coincidence Scattering Method

    SciTech Connect

    Kelley, R.P.; Lewis, J.M.; Murer, D.; Enqvist, A.; Jordan, K.A.

    2015-07-01

    Previous work has measured the neutron response of pressurized {sup 4}He scintillation detectors, however these studies only examine the response as a function of incident neutron energy. Since the detection mechanism in {sup 4}He detectors is elastic scattering, and the interacting neutron will only deposit a fraction of its incident kinetic energy in the detector gas, an examination of the response of the detector output to deposited energy is necessary to transform these detectors into instruments for neutron spectrometry. Using a combined time-of-flight (TOF) and coincidence scattering method, this paper further characterizes the {sup 4}He light response to fast neutrons by examining the scintillation light yield as a function of deposited energy, measuring the light response up to 5 MeV. These {sup 4}He detectors are simple in design, and are manufactured by Arktis Radiation Detectors in several sizes. The specific model used in this experiment had an active volume 20 cm long with an inner diameter of 4.4 cm, giving a total active volume of 304 cm{sup 3}. The key components include the active volume, filled with 150 bar of helium-4 gas, and photomultiplier tubes (PMTs) mounted at either end of the active volume. The detector body is made of stainless steel. The detector response was experimentally measured using a two-detector coincidence arrangement with a {sup 252}Cf source. Two {sup 4}He detectors were vertically mounted, and the source was placed at a horizontal distance from the center of the bottom detector, forming a right angle. By requiring coincidence between the two detectors, it was confirmed that each neutron interacting in the second (top) detector must first have undergone a scattering interaction in the first (bottom) detector, and the time-of-flight (TOF) technique could then be used to determine the energy of the neutron as it traveled between the two detectors by the difference in time between the two detector events. More importantly, with

  13. Characterizations of double pulsing in neutron multiplicity and coincidence counting systems

    NASA Astrophysics Data System (ADS)

    Koehler, Katrina E.; Henzl, Vladimir; Croft, Stephen S.; Henzlova, Daniela; Santi, Peter A.

    2016-10-01

    Passive neutron coincidence/multiplicity counters are subject to non-ideal behavior, such as double pulsing and dead time. It has been shown in the past that double-pulsing exhibits a distinct signature in a Rossi-alpha distribution, which is not readily noticed using traditional Multiplicity Shift Register analysis. However, it has been assumed that the use of a pre-delay in shift register analysis removes any effects of double pulsing. In this work, we use high-fidelity simulations accompanied by experimental measurements to study the effects of double pulsing on multiplicity rates. By exploiting the information from the double pulsing signature peak observable in the Rossi-alpha distribution, the double pulsing fraction can be determined. Algebraic correction factors for the multiplicity rates in terms of the double pulsing fraction have been developed. We discuss the role of these corrections across a range of scenarios.

  14. Performance of a coincidence based blood activity monitor

    SciTech Connect

    Moses, W.W.

    1989-12-01

    A new device has been constructed that measures the positron emitting radio-tracer concentration in arterial blood by extracting blood with a peristaltic pump, then measuring the activity concentration by detecting coincident pairs of 511 keV photons with a pair of heavy inorganic scintillators attached to photomultiplier tubes. The sensitivity of this device is experimentally determined to be 610 counts/second per {mu}Ci/ml, and has a paralyzing dead time of 1.2 {mu}s, so is capable of measuring blood activity concentration as high as 1 mCi/ml. Its performance is compared to two other blood monitoring methods: discrete blood samples counted with a well counter and device that uses a plastic scintillator to directly detect positrons. The positron detection efficiency of this device for {sup 18}F is greater than the plastic scintillation counter, and also eliminates the radioisotope dependent correction factors necessary to convert count rate to absolute concentration. Coincident photon detection also has the potential of reducing the background compared to direct positron detection, thereby increasing the minimum detectable isotope concentration. 10 refs., 6 figs.

  15. Neutron activation system for spectral measurements of pulsed ion diode neutron production

    SciTech Connect

    Hanson, D.L.; Kruse, L.W.

    1980-02-01

    A neutron energy spectrometer has been developed to study intense ion beam-target interactions in the harsh radiation environment of a relativistic electron beam source. The main component is a neutron threshold activation system employing two multiplexed high efficiency Ge(Li) detectors, an annihilation gamma coincidence system, and a pneumatic sample transport. Additional constraints on the neutron spectrum are provided by total neutron yield and time-of-flight measurements. A practical lower limit on the total neutron yield into 4..pi.. required for a spectral measurement with this system is approx. 10/sup 10/ n where the neutron yield is predominantly below 4 MeV and approx. 10/sup 8/ n when a significant fraction of the yield is above 4 MeV. Applications of this system to pulsed ion diode neutron production experiments on Hermes II are described.

  16. Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z

    NASA Astrophysics Data System (ADS)

    Lahmann, B.; Milanese, L. M.; Han, W.; Gatu Johnson, M.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D.; Hahn, K. D.; Jones, B.

    2016-11-01

    A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protons at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. These results are in excellent agreement with previous work applied to DT neutrons.

  17. Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z.

    PubMed

    Lahmann, B; Milanese, L M; Han, W; Gatu Johnson, M; Séguin, F H; Frenje, J A; Petrasso, R D; Hahn, K D; Jones, B

    2016-11-01

    A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protons at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. These results are in excellent agreement with previous work applied to DT neutrons.

  18. Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z

    SciTech Connect

    Lahmann, B.; Milanese, L. M.; Han, W.; Gatu Johnson, M.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D.; Hahn, K. D.; Jones, B.

    2016-07-20

    A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protons at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. In conclusion, these results are in excellent agreement with previous work applied to DT neutrons.

  19. Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z

    DOE PAGES

    Lahmann, B.; Milanese, L. M.; Han, W.; ...

    2016-07-20

    A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protonsmore » at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. In conclusion, these results are in excellent agreement with previous work applied to DT neutrons.« less

  20. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  1. Evaluation of B10Plus+* proportional detectors for neutron coincidence counting

    SciTech Connect

    Beddingfield, David H.; Yoon, Seokryung

    2015-07-01

    GE-Reuter-Stokes (GERS) has developed a new line of neutron proportional counters, the B10Plus+* proportional counter. The detector design is intended to serve as a cost-effective alternative to traditional {sup 3}He proportional counters in a variety of applications. The detector is a hybrid design 10B-lined tube optimized with the addition of a small quantity of 3He gas to improve the detector performance and efficiency. As a demonstration of the B10Plus+* detector, GERS has constructed a Uranium Neutron Collar (UNCL) system consisting of B-10Plus+* proportional counters. GERS has designed and built a demonstration UNCL system intended to match the performance of a Type-I UNCL design in Pressurized Water Reactor (PWR) geometry operating in thermal mode. GERS offered their system on loan to the International Atomic Energy Agency (IAEA) Safeguards Division of Technical and Scientific Services for an assessment of the detector technology and the demonstration system. We have characterized the demonstration UNCL system and compared its performance with a traditional Type-I UNCL design in regular use by the IAEA. This paper summarizes our findings and observations during the characterization and testing activity. (authors)

  2. Determination of the 235U Mass and Enrichment within Small UF6 Cylinders via a Neutron Coincidence Well Counting System

    SciTech Connect

    McElroy, Robert Dennis; Croft, Dr. Stephen; Young, Brian M; Venkataraman, Ram

    2011-01-01

    The construction of three new uranium enrichment facilities in the United States has sparked renewed interest in the development and enhancement of methods to determine the enrichment and fissile mass content of UF6 cylinders. We describe the design and examine the expected performance of a UF6 bottle counter developed for the assay of Type 5A cylinders. The counter, as designed and subsequently constructed, is a tall passive neutron well counter with a clam-shell configuration and graphite end plugs operated in fast neutron mode. Factory performance against expectation is described. The relatively high detection efficiency and effectively 4 detection geometry provide a near-ideal measurement configuration, making the UF6 bottle counter a valuable tool for the evaluation of the neutron coincidence approach to UF6 cylinder assay. The impacts of non-uniform filling, voids, enrichment, and mixed enrichments are examined

  3. Neutron production in coincidence with fragments from the 40Ca + H reaction at Elab=357A and 565A MeV

    NASA Astrophysics Data System (ADS)

    Tuve, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Knott, C. N.; Insolia, A.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Russo, G. V.; Soutoul, A.; Testard, O.; Tricomi, A.; Tull, C. E.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.

    1999-01-01

    Neutron production, in coincidence with fragments emitted in the 40Ca+H reaction at Elab=357A and 565A MeV, has been measured using a 3-module version of the multifunctional neutron spectrometer MUFFINS. The mean neutron multiplicities for neutrons detected in the angular range covered by MUFFINS (0°-3.2°) have been estimated from the comparison between the neutron cross sections, in coincidence with the fragments, and the elemental cross sections. We have found evidence for a preequilibrium emission of prompt neutrons in superposition to a ``slower'' deexcitation of the equilibrated remnant by emission of nucleons and fragments, as already seen in inclusive rapidity distributions. The energy dependence of the inclusive neutron production cross sections, measured in a previous work, is here interpreted as due to the stronger neutron focusing in the forward direction at the higher energy. Comparison with a BNV+phase space coalescence model is discussed.

  4. Neutron production in coincidence with fragments from the 4Ca+H reactions at Elab=357 and 565 A MeV

    NASA Astrophysics Data System (ADS)

    Tuvà, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Insolia, A.; Knott, C. N.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Russo, G. V.; Soutoul, A.; Testard, O.; Tricomi, A.; Tull, C. E.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.

    2000-04-01

    In the frame of the Transport Collaboration neutrons in coincidence with charged fragments produced in the 40Ca+H reaction at Elab=357 and 565 A MeV have been measured at the Heavy Ion Spectrometer System (HISS) facility of the Lawrence Berkeley National Laboratory, using the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range about the beam in the forward direction (0°-3.2°). In this contribution we report absolute neutron production cross sections in coincidence with charged fragments (10⩽Z⩽20). The neutron multiplicities have been estimated from the comparison between the neutron cross sections, in coincidence with the fragments, and the elemental cross sections. We have found evidence for a pre-equilibrium emission of prompt neutrons in superposition to a `slower' deexcitation of the equilibrated remnant by emission of nucleons and fragments, as already seen in the inclusive rapidity distributions.

  5. Neutron Production in Coincidence with Fragments from the {sup 40}Ca + H Reactions at E{sub lab} = 357 and 565 A MeV

    SciTech Connect

    Tuve, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H.J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T.G.; Insolia, A.; Knott, C.N.; Lindstrom, P.J.; Mitchell, J.W.; Potenza, R.; Russo, G.V.; Soutoul, A.; Testard, O.; Tricomi, A.; Tull, C.E.; Waddington, C.J.; Webber, W.R.; Wefel, J.P.

    2000-12-31

    In the frame of the Transport Collaboration neutrons in coincidence with charged fragments produced in the {sup 40}Ca + H reaction at E{sub lab} = 357 and 565 AMeV have been measured at the Heavy Ion Spectrometer System (HISS) facility of the Lawrence Berkeley National Laboratory, using the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range about the beam in the forward direction (0? - 3.2?). In this contribution we report absolute neutron production cross sections in coincidence with charged fragments (10 {<=} Z {<=} 20). The neutron multiplicities have been estimated from the comparison between the neutron cross sections, in coincidence with the fragments, and the elemental cross sections. We have found evidence for a pre-equilibrium emission of prompt neutrons in superposition to a 'slower' deexcitation of the equilibrated remnant by emission of nucleons and fragments, as already seen in the inclusive rapidity distributions.

  6. Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

    SciTech Connect

    Menlove, Howard Olsen; Henzlova, Daniela

    2016-08-25

    This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. The comparison data is presented in this report.

  7. Neutron activated switch

    DOEpatents

    Barton, David M.

    1991-01-01

    A switch for reacting quickly to a neutron emission. A rod consisting of fissionable material is located inside a vacuum tight body. An adjustable contact is located coaxially at an adjustable distance from one end of the rod. Electrical leads are connected to the rod and to the adjustable contact. With a vacuum drawn inside the body, a neutron bombardment striking the rod causes it to heat and expand longitudinally until it comes into contact with the adjustable contact. This circuit closing occurs within a period of a few microseconds.

  8. Pulsed neutron generator for use with pulsed neutron activation techniques

    SciTech Connect

    Rochau, G.E.

    1980-01-01

    A high-output, transportable, pulsed neutron generator has been developed by Sandia National Laboratories for use with Pulsed Neutron Activation (PNA) techniques. The PNA neutron generator generates > 10/sup 10/ 14 MeV D-T neutrons in a 1.2 millisecond pulse. Each operation of the unit will produce a nominal total neutron output of 1.2 x 10/sup 10/ neutrons. The generator has been designed to be easily repaired and modified. The unit requires no additional equipment for operation or measurement of output.

  9. Enhanced NIF neutron activation diagnostics.

    PubMed

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  10. Enhanced NIF neutron activation diagnostics

    SciTech Connect

    Yeamans, C. B.; Bleuel, D. L.; Bernstein, L. A.

    2012-10-15

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the {sup 89}Zr/{sup 89m}Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  11. (56)Mn, (60)Co, (18)F and (22)Na activity measurements by coincidence technique at VNIIM.

    PubMed

    Evgeny, Tereshchenko; Nikolay, Moiseev; Alexander, Kolodka

    2016-03-01

    For modernization of the Russian national activity standard at the Ionizing Radiation Department of the D.I. Mendeleyev Institute for Metrology, a prototype 4π(LS)-γ(NaI) coincidence arrangement was created, and applied to the standardization of long-lived (60)Co and (22)Na and short-lived (56)Mn and (18)F. Efficiency variation was performed using "grey filters", high voltage variation and variation of low threshold. The main metrological characteristics of the setup were determined: long-term stability, background, dead time, resolution time and temperature dependence. The results obtained have practical applications. The (18)F solution with well-known activity is required for calibration of ionizing chamber used in nuclear medicine. The (56)Mn is used for calibration of manganese bath equipment used in neutron laboratory. The results obtained are in good agreement with 4πγ(NaI)-counting and 4πβ(PC)-γ(NaI) methods of Russian national radioactivity standard. The combined uncertainty (k=2) of results was estimated in the range 1-2%.

  12. Direct fissile assay of highly enriched UF/sub 6/ using random self-interrogation and neutron coincidence response

    SciTech Connect

    Stewart, J.E.; Menlove, H.O.

    1983-01-01

    A new nondestructive method for direct assay of /sup 235/U mass contained in Model 5A uranium hexafluoride (UF/sub 6/) product storage cylinders has been successfully tested in the laboratory and under field conditions. The technique employs passive neutron self-interrogation and uses the ratio of coincidences-to-totals counts as a measure of bulk fissile mass. The accuracy of the method is 6.8% (1 sigma) based on field measurements of 44 Model 5A cylinders, 11 of which were either only partially filled or contained reactor return material. The cylinders contained UF/sub 6/ with enrichments from 5.96% to 97.6%. Count times were 3 to 6 min depending on /sup 235/U mass. Samples ranged from below 1 kg to over 16 kg of /sup 235/U. Because the method relies primarily on fast neutron self-interrogation, complete sampling of the UF/sub 6/ takes place. This feature alleviates inhomogeneity problems and offers increased assurance of the presence of stated amounts of bulk fissile material as compared with current verification methods.

  13. Application of neutron-activation analysis to geological materials

    SciTech Connect

    Laul, J.C.; Wogman, N.A.

    1980-12-01

    Neutron activation analysis (NAA) is an extremely sensitive, selective, and precise method, which yields a wealth of elemental information from even a small-sized sample. By varying neutron fluxes, irradiation times, decay and counting intervals in instrumental NAA, it is possible to accurately determine about 35 elements in a geological aliquot. When INAA is coupled with coincidence-noncoincidence Ge(Li)-Na(Tl) counting, it enhances the sensitivities of various elements by order of magnitude. The attractive features of INAA are that it is fast, nondestructive and economical.

  14. Neutron Activation Analysis of Water - A Review

    NASA Technical Reports Server (NTRS)

    Buchanan, John D.

    1971-01-01

    Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.

  15. Neutron Coincidence Counting Studies

    SciTech Connect

    Rogers, Jeremy L.; Ely, James H.; Kouzes, Richard T.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-08-31

    The efficiency comparison for measured and simulated responses of a 10B-lined proportional counter and a 3He proportional counter in a close, symmetrical geometry are presented. The measurement geometry was modeled in MCNPX to validate the methods used for simulating the response of both the 3He and 10B-lined tubes. The MCNPX models agree within 1% with the 3He tube measurements and within 3% for the 10B-lined tubes when a 0.75-µm boron-metal lining is used.

  16. NaI detector neutron activation spectra for PGNAA applications

    PubMed

    Gardner; El; Zheng; Hayden; Mayo

    2000-10-01

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes 128I and 24Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2" x 2", 5" x 5", 6" x 6", and 1" x 6" NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known.

  17. Neutronics activities for next generation devices

    SciTech Connect

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized.

  18. Active Well Coincidence Counter measurements of enriched uranium fuel assemblies in scanning and stationary modes

    SciTech Connect

    Krick, M.S.; Cowder, L. ); Maltsev, V.; Chernikov, A.; Mokeenko, P.; D'yadkov, K.; Ivanov, V. Nuclear Power Plant, Zarechnyy ); Lagattu, A.; Lopatin, Y.; Czock, K.; Rundquist, D.; Pedraza, L. )

    1991-01-01

    Enriched uranium fuel assemblies were measured with an Active Well Coincidence Counter (AWCC) at the Beloyarskaya Nuclear Power Plant. Special AWCC inserts, electronics, and software were used. Stationary and scanning measurements were performed to establish calibrations and performance specifications for the assay of {sup 235}U and {sub 235}U/cm for BN600 fuel. 6 refs., 7 figs., 2 tabs.

  19. The Feynman-Y Statistic in Relation to Shift-Register Neutron Coincidence Counting: Precision and Dead Time

    SciTech Connect

    Croft, Stephen; Santi, Peter A.; Henzlova, Daniela; Hauck, Danielle K.; Favalli, Andrea

    2012-07-13

    The Feynman-Y statistic is a type of autocorrelation analysis. It is defined as the excess variance-to-mean ratio, Y = VMR - 1, of the number count distribution formed by sampling a pulse train using a series of non-overlapping gates. It is a measure of the degree of correlation present on the pulse train with Y = 0 for Poisson data. In the context of neutron coincidence counting we show that the same information can be obtained from the accidentals histogram acquired using the multiplicity shift-register method, which is currently the common autocorrelation technique applied in nuclear safeguards. In the case of multiplicity shift register analysis however, overlapping gates, either triggered by the incoming pulse stream or by a periodic clock, are used. The overlap introduces additional covariance but does not alter the expectation values. In this paper we discuss, for a particular data set, the relative merit of the Feynman and shift-register methods in terms of both precision and dead time correction. Traditionally the Feynman approach is applied with a relatively long gate width compared to the dieaway time. The main reason for this is so that the gate utilization factor can be taken as unity rather than being treated as a system parameter to be determined at characterization/calibration. But because the random trigger interval gate utilization factor is slow to saturate this procedure requires a gate width many times the effective 1/e dieaway time. In the traditional approach this limits the number of gates that can be fitted into a given assay duration. We empirically show that much shorter gates, similar in width to those used in traditional shift register analysis can be used. Because the way in which the correlated information present on the pulse train is extracted is different for the moments based method of Feynman and the various shift register based approaches, the dead time losses are manifested differently for these two approaches. The resulting

  20. Background and Source Term Identification in Active Neutron Interrogation Methods

    DTIC Science & Technology

    2011-03-24

    low MeV neutron energy range, the increased numbers of neutrons from scattering ...reactions for low neutron energy . For U-235, low energy neutrons (thermal neutrons ) are more likely to cause fission than inelastic scattering or...manner. Active neutron interrogation is a sought after method for this since the resulting high energy gamma rays produced by inelastic scattering

  1. Active dendrites mediate stratified gamma-range coincidence detection in hippocampal model neurons

    PubMed Central

    Das, Anindita; Narayanan, Rishikesh

    2015-01-01

    Hippocampal pyramidal neurons exhibit gamma-phase preference in their spikes, selectively route inputs through gamma frequency multiplexing and are considered part of gamma-bound cell assemblies. How do these neurons exhibit gamma-frequency coincidence detection capabilities, a feature that is essential for the expression of these physiological observations, despite their slow membrane time constant? In this conductance-based modelling study, we developed quantitative metrics for the temporal window of integration/coincidence detection based on the spike-triggered average (STA) of the neuronal compartment. We employed these metrics in conjunction with quantitative measures for spike initiation dynamics to assess the emergence and dependence of coincidence detection and STA spectral selectivity on various ion channel combinations. We found that the presence of resonating conductances (hyperpolarization-activated cyclic nucleotide-gated or T-type calcium), either independently or synergistically when expressed together, led to the emergence of spectral selectivity in the spike initiation dynamics and a significant reduction in the coincidence detection window (CDW). The presence of A-type potassium channels, along with resonating conductances, reduced the STA characteristic frequency and broadened the CDW, but persistent sodium channels sharpened the CDW by strengthening the spectral selectivity in the STA. Finally, in a morphologically precise model endowed with experimentally constrained channel gradients, we found that somatodendritic compartments expressed functional maps of strong theta-frequency selectivity in spike initiation dynamics and gamma-range CDW. Our results reveal the heavy expression of resonating and spike-generating conductances as the mechanism underlying the robust emergence of stratified gamma-range coincidence detection in the dendrites of hippocampal and cortical pyramidal neurons. PMID:26018187

  2. Determining Yankee Nuclear Power Station neutron activation

    SciTech Connect

    Heider, K.J.; Morrissey, K.J. )

    1993-01-01

    The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is a determination of the extent of radiological contamination of the Yankee site. Included in this effort was determination of the extent of neutron activation of plant components. This paper describes the determination of the neutron activation of the Yankee reactor vessel, associated internals, and surrounding structures. The Yankee reactor vessel is a 600-MW(thermal) stainless steel-lined, carbon steel vessel with stainless steel internal components designed by Westinghouse. The reactor vessel is surrounded and supported by a carbon steel neutron shield tank that was filled with chromated water during plant operation. A 5-ft-thick concrete biological shield wall surrounds the neutron shield tank. A project is under way to remove the reactor vessel internals from the reactor vessel.

  3. Development of a method for activity measurements of 232Th daughters with a multidetector gamma-ray coincidence spectrometer.

    PubMed

    Antovic, N; Svrkota, N

    2009-06-01

    The method for activity measurements of the (232)Th daughters, developed at the six-crystal gamma-ray coincidence spectrometer PRIPYAT-2M and based on coincidence counting of the 583 and 2615 keV photons from cascade transitions which follow beta(-)-decay of (208)Tl, as well as on counting the 911 keV photons which follow beta(-)-decay of (228)Ac in the integral and non-coincidence mode of counting, is presented.

  4. Neutron counter based on beryllium activation

    SciTech Connect

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M.; Scholz, M.; Igielski, A.; Karpinski, L.; Pytel, K.

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  5. Primary activity measurements with a 4πβ-4πγ coincidence counting system.

    PubMed

    Nedjadi, Youcef; Bailat, Claude J; Bochud, François O

    2012-01-01

    The radioactive concentrations of (166m)Ho, (134)Cs and (133)Ba solutions have been standardised using a 4πβ-4πγ coincidence counting system we have recently set up. The detection in the beta channel is performed using various geometries of a UPS-89 plastic scintillator optically coupled to a selected low-noise 1in. diameter photomultiplier tube. The light-tight thin capsule that encloses this beta detector is housed within the well of a 5in.×5in. NaI(Tl) monocrystal detector. The beta detection efficiency can be varied either by optical filtering or electronic discrimination when the electrons loose all their energy in the plastic scintillator. This 4πβ-4πγ coincidence system improves on our 4πβ(PC)-γ system in that its sample preparation is less labour intensive, it yields larger beta- and gamma-counting efficiencies thus enabling the standardisation of low activity sources with good statistics in reasonable time, and it makes standardising short-lived radionuclides easier. The resulting radioactive concentrations of (166m)Ho, (134)Cs and (133)Ba are found to agree with those measured with other primary measurement methods thus validating our 4πβ-4πγ coincidence counting system.

  6. Neutron Activation Analysis, A Titanium Material Study

    NASA Astrophysics Data System (ADS)

    Dresser, Charles

    2011-04-01

    In order to obtain faster and more accurate measurements of radioactive contaminates within a sample of titanium we expose it to a neutron flux. This flux will activate the stable and quasi stable (those with extremely long half lives) isotopes into resultant daughter cells that are unstable which will result in shorter half lives on the order of minutes to days. We measured the resulting decays in the Germanium Crystal Detector and obtained a complex gamma spectrum. A mathematical model was used to recreate the production of the measured isotopes in the neutron flux and the resultant decays. Using this model we calculated the mass percent of the contaminate isotopes inside our titanium sample. Our mathematical model accounted for two types of neutron activation, fast or thermal activation, since this would determine which contaminate was the source of our signals. By looking at the percent abundances, neutron absorption cross-sections and the resulting mass percents of each contaminate we are able to determine the exact source of our measured signals. Additionally we implemented a unique ratio method to cross check the mathematical model. Our results have verified that for fast neutron activation and thermal neutron activation the method is accurate.

  7. Coincidence gate utilization factors for neutron correlation counters with up to three components in the die-away profile

    SciTech Connect

    Croft, S.; McElroy, R.D.; Kane, S.C.

    2007-07-01

    We present analytical expressions for the gate utilization factors (GUFs), up to fourth order, for both signal triggered and random triggered histograms based on a three-component capture time profile. These are useful for refined design performance calculations of passive neutron multiplicity counters using shift register correlation analysis. To our knowledge, these expressions are new. (authors)

  8. Evaluation of Am-Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    NASA Astrophysics Data System (ADS)

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; Peerani, Paolo

    2016-09-01

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with (α, n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured and theoretical spectra of various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. The singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis, being dominated by scattering which is highly dependent on item placement.

  9. Evaluation of Am–Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    SciTech Connect

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; Peerani, Paolo

    2016-05-25

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with ( α,n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured spectra of various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. Finally, the singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis.

  10. Evaluation of Am–Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    DOE PAGES

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; ...

    2016-05-25

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with ( α,n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured spectra ofmore » various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. Finally, the singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis.« less

  11. Neutron and proton activation measurements from Skylab

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1974-01-01

    Radioactivity induced by high-energy protons and secondary neutrons (from nuclear interactions) in various samples returned from different locations in Skylab was measured directly by gamma-ray spectroscopy measurements of decay gamma rays from the samples. Incident fluxes were derived from the activation measurements, using known nuclear cross-section. Neutron and proton flux values were found to range from 0.2 to 5 particles/sq cm-sec, depending on the energy range and location in Skylab. The thermal neutron flux was less than 0.07 neutrons/sq cm-sec. The results are useful for data analysis and planning of future high-energy astronomy experiments.

  12. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  13. Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation

    PubMed Central

    Chua, Yansong; Morrison, Abigail

    2016-01-01

    The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be

  14. Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation.

    PubMed

    Chua, Yansong; Morrison, Abigail

    2016-01-01

    The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be

  15. Miniature Neutron-Alpha Activation Spectrometer

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar; Holloway, James Paul; He, Zhong; Goldsten, John

    2002-10-01

    We are developing a miniature neutron-alpha activation spectrometer for in-situ analysis of chem-bio samples, including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform for Mars or outer-planet missions. In the neutron-activation mode, penetrating analysis will be performed of the whole sample using a γ spectrometer and in the α-activation mode, the sample surface will be analyzed using Rutherford-backscatter and x-ray spectrometers. Novel in our approach is the development of a switchable radioactive neutron source and a small high-resolution γ detector. The detectors and electronics will benefit from remote unattended operation capabilities resulting from our NEAR XGRS heritage and recent development of a Ge γ detector for MESSENGER. Much of the technology used in this instrument can be adapted to portable or unattended terrestrial applications for detection of explosives, chemical toxins, nuclear weapons, and contraband.

  16. Overview of Ignitor Neutronics and Activation

    NASA Astrophysics Data System (ADS)

    Rollet, S.; Batistoni, P.; Forrest, R.

    1999-11-01

    The Ignitor experiment is designed to produce D-T plasmas where ignition can take place and the physics of α-particles can be studied. After a first period of operation without significant neutron production, a second phase in deuterium with 2.5 MeV neutron production rate up to 10^17 n/s is planned. This will be followed by operations at increasing percentages of tritium, leading to short, but intense 14 MeV neutron production, up to ≈ 3 × 10^19 n/s. To calculate the neutron fluxes in all the machine components, including the streaming through the ports, a detailed description of the actual Ignitor machine is implemented in the MCNP-4B Monte Carlo code. These fluxes are then used as input for the FISPACT-97 code for the analysis of the activation at the end of life (EOL) and at intermediate times for safety assessment purposes. The estimated neutron emission pulse results in rather modest neutron fluences (≈ 10^18 n/cm^2 on the first wall at EOL). Therefore, radiation damage in the device components is not a concern, with the possible exception of the toroidal magnet insulator. On the other hand, the neutron flux on the first wall can be as high as that of a demonstration reactor (≈ 10^14 n/s/cm^2), inducing, in the absence of a blanket, considerable activation. The shielding strategy and possible solutions to prevent/reduce the activation of the cryostat are presented.

  17. Proposed neutron activation analysis facilities in the Advanced Neutron Source

    SciTech Connect

    Robinson, L.; Dyer, F.F.; Emery, J.F.

    1990-01-01

    A number of analytical chemistry experimental facilities are being proposed for the Advanced Neutron Source. Experimental capabilities will include gamma-ray analysis and neutron depth profiling. This paper describes the various systems proposed and some of their important characteristics.

  18. The ancient Egyptian civilization: maximum and minimum in coincidence with solar activity

    NASA Astrophysics Data System (ADS)

    Shaltout, M.

    It is proved from the last 22 years observations of the total solar irradiance (TSI) from space by artificial satellites, that TSI shows negative correlation with the solar activity (sunspots, flares, and 10.7cm Radio emissions) from day to day, but shows positive correlations with the same activity from year to year (on the base of the annual average for each of them). Also, the solar constant, which estimated fromth ground stations for beam solar radiations observations during the 20 century indicate coincidence with the phases of the 11- year cycles. It is known from sunspot observations (250 years) , and from C14 analysis, that there are another long-term cycles for the solar activity larger than 11-year cycle. The variability of the total solar irradiance affecting on the climate, and the Nile flooding, where there is a periodicities in the Nile flooding similar to that of solar activity, from the analysis of about 1300 years of the Nile level observations atth Cairo. The secular variations of the Nile levels, regularly measured from the 7 toth 15 century A.D., clearly correlate with the solar variations, which suggests evidence for solar influence on the climatic changes in the East African tropics The civilization of the ancient Egyptian was highly correlated with the Nile flooding , where the river Nile was and still yet, the source of the life in the Valley and Delta inside high dry desert area. The study depends on long -time historical data for Carbon 14 (more than five thousands years), and chronical scanning for all the elements of the ancient Egyptian civilization starting from the firs t dynasty to the twenty six dynasty. The result shows coincidence between the ancient Egyptian civilization and solar activity. For example, the period of pyramids building, which is one of the Brilliant periods, is corresponding to maximum solar activity, where the periods of occupation of Egypt by Foreign Peoples corresponding to minimum solar activity. The decline

  19. Coincidence/Multiplicity Photofission Measurements

    SciTech Connect

    J.L. Jones; M.T. Swinhoe; S.J. Tobin; W. H. Geist; D.R. Norman; R.B. Rothrock; C.R. Freeman; K. J. Haskell

    2009-09-01

    An series of experiments using the Idaho National Laboratory (INL) photonuclear inspection system and a Los Alamos National Laboratory (LANL)-supplied, list-mode data acquisition method have shown enhanced performance utilizing pulsed photofission-induced, neutron coincidence counting between pulses of an up-to-10-MeV electron accelerator for nuclear material detection and identification. The enhanced inspection methodology has applicability to homeland security, treaty-related support, and weapon dismantlement applications. For the latter, this technology can directly support of Department of Energy/NA241 programmatic mission objectives relative to future Rocky Ridge-type testing campaigns for active inspection systems.

  20. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  1. Coincident postsynaptic activity gates presynaptic dopamine release to induce plasticity in Drosophila mushroom bodies

    PubMed Central

    Ueno, Kohei; Suzuki, Ema; Naganos, Shintaro; Ofusa, Kyoko; Horiuchi, Junjiro; Saitoe, Minoru

    2017-01-01

    Simultaneous stimulation of the antennal lobes (ALs) and the ascending fibers of the ventral nerve cord (AFV), two sensory inputs to the mushroom bodies (MBs), induces long-term enhancement (LTE) of subsequent AL-evoked MB responses. LTE induction requires activation of at least three signaling pathways to the MBs, mediated by nicotinic acetylcholine receptors (nAChRs), NMDA receptors (NRs), and D1 dopamine receptors (D1Rs). Here, we demonstrate that inputs from the AL are transmitted to the MBs through nAChRs, and inputs from the AFV are transmitted by NRs. Dopamine signaling occurs downstream of both nAChR and NR activation, and requires simultaneous stimulation of both pathways. Dopamine release requires the activity of the rutabaga adenylyl cyclase in postsynaptic MB neurons, and release is restricted to MB neurons that receive coincident stimulation. Our results indicate that postsynaptic activity can gate presynaptic dopamine release to regulate plasticity. DOI: http://dx.doi.org/10.7554/eLife.21076.001 PMID:28117664

  2. Neutron Yield Measurements via Aluminum Activation

    SciTech Connect

    1999-12-08

    Neutron activation of aluminum may occur by several neutron capture reactions. Four such reactions are described here: {sup 27}Al + n = {sup 28}Al, {sup 27}Al(n,{alpha}){sup 24}Na, {sup 27}Al(n, 2n){sup 26}Al and {sup 27}Al(n,p){sup 27}Mg. The radioactive nuclei {sup 28}Al, {sup 24}Na, and {sup 27}Mg, which are produced via the {sup 27}Al + n = {sup 28}Al, {sup 27}Al(n,{alpha}){sup 24}Na and {sup 27}Al(n,p){sup 27}Mg neutron reactions, beta decay to excited states of {sup 28}Si, {sup 24}Mg and {sup 27}Al respectively. These excited states then emit gamma rays as the nuclei de-excite to their respective ground states.

  3. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited)

    NASA Astrophysics Data System (ADS)

    Yeamans, C. B.; Gharibyan, N.

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  4. Fast neutron activation analysis by means of low voltage neutron generator

    NASA Astrophysics Data System (ADS)

    Medhat, M. E.

    A description of D-T neutron generator (NG) is presented. This machine can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. Procedure of neutron flux determination and efficiency calculation is described. Examples of testing some Egyptian natural cosmetics are given.

  5. Glycine-activated currents are changed by coincident membrane depolarization in developing rat auditory brainstem neurones

    PubMed Central

    Backus, Kurt H; Deitmer, Joachim W; Friauf, Eckhard

    1998-01-01

    During early ontogeny, glycine receptors (GlyRs) exert depolarizing responses which may be of developmental relevance. We have used the gramicidin-perforated patch technique to elucidate the mechanism of glycine-activated currents in developing neurones of the rat lateral superior olive (LSO). When the holding potential was set to −60 mV, perforated-patch recordings revealed glycine-induced inward currents in 59%, outward currents in 5% and biphasic currents in 34% of the LSO neurones tested (n = 44). The biphasic currents were characterized by a transient outward phase which was followed by an inward phase. Ion substitution experiments showed that both Cl− and HCO3− contributed to the glycine- induced biphasic current responses. In the biphasic responses, the reversal potential of the glycine-induced current (Egly) depended on the response phase. A strong shift of Egly from a mean of −72 mV during the outward phase of the glycine response to a mean of −51 mV during the inward phase was observed, suggesting a shift of an ion gradient. When the membrane potential was depolarized, ‘tail’ currents were induced in the presence of glycine. An increased duration or amplitude of the evoked depolarizations resulted in a proportional enlargement of these tail currents, indicating that they were produced by a shift of an ion gradient. Since changes of the HCO3− gradient are negligible, because of the carbonic anhydrase activity, we suggest that these tail currents were caused by a shift of the Cl− gradient. We conclude that Cl− accumulates intracellularly during the activation of GlyRs and, consequently, Egly moves towards more positive values. Coincident depolarizing stimuli enhanced intracellular Cl− accumulation and the shift of Egly, thereby switching hyperpolarizing to depolarizing action. This change could assist in an activity-dependent strengthening and refinement of glycinergic synapses during the maturation of inhibitory connectivity. PMID

  6. Coincidence imaging system with electron optics

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Jakubek, Jan; Krejci, Frantisek; Zemlicka, J.; Horacek, M.; Radlicka, T.; Vlcek, I.

    2011-05-01

    As a part of multiple-detector system for coincidence instrumental neutron activation analysis (CINAA) a new method which includes a devoted electron optic unit has been built. In order to achieve higher sensitivity, enhanced contrast and higher spatial resolution the new coincidence imaging arrangement newly incorporates to electron optic unit, source, the gamma detector and the Timepix electron detector. The electron optic unit can be configured for different electron energies. The description of the assembled apparatus, calibration and performance for different electron energies are presented.

  7. First satellite measurements of chemical changes in coincidence with sprite activity

    NASA Astrophysics Data System (ADS)

    Arnone, Enrico; São Sabbas, Fernanda; Kero, Antti; Soula, Serge; Carlotti, Massimo; Chanrion, Olivier; Dinelli, Bianca Maria; Papandrea, Enzo; Castelli, Elisa; Neubert, Torsten

    2010-05-01

    The last twenty years have seen the discovery of electric discharges in the Earth's atmosphere above thunderstorms, the so-called sprites and jets. It has been suggested that they impact the atmospheric chemistry and possibly affect the ozone layer through their repeated occurrence. Whereas theoretical studies and laboratory experiments suggest enhancement of such gasses as nitrogen oxides by up to hundreds of percent within sprites, a definitive detection of their chemical effects have to date been unsuccessful. In this paper, we report on the first measurements of atmospheric chemical perturbations recorded in coincidence with sprite activity. A striking event occurred on 25 August 2003 when the MIPAS spectrometer onboard the Envisat satellite recorded spectroscopic measurements soon after a sequence of 11 sprites observed above Corsica (France) by Eurosprite ground facilities (details of the convective system are discussed in a companion paper by São Sabbas et al.). The measurements show an enhancement of ambient nitrous oxide by 80% at 52 km altitude in the region above the parent thunderstorm. The recorded chemical changes imply sprites can exert significant modification of the atmospheric chemistry at a regional scale, confirming model and laboratory predictions of sprite-chemistry, and requiring a new estimate of their global impact. The results of the analysis and their implications are discussed.

  8. Neutron activation for semiconductor materials characterization at Eastman Kodak Company

    SciTech Connect

    Hossain, T.Z.

    1988-01-01

    Several neutron activation analysis (NAA) procedures have been used to establish process parameters in the manufacture of semiconductor devices. In addition to instrumental NAA (INAA), techniques such as neutron depth profiling and neutron-activated accelerator mass spectrometry have been used to obtain depth distribution of elements of interest.

  9. Eulogy for a neutron activation analysis facility

    SciTech Connect

    Lepel, E.A.

    2000-07-01

    A relatively inexpensive facility for neutron activation analysis (NAA) was developed in the early 1970s at Pacific Northwest National Laboratory (PNNL). With the availability of large {sup 252}Cf sources, a subcritical facility was designed that could contain up to 100 mg of {sup 252}Cf (T{sub 1/2} = 2.645 yr and a spontaneous fission yield of 2.34 x 10{sup 9} n/s{center_dot}mg{sup {minus}1}). The {sup 252}Cf source was surrounded by a hexagonal array of {sup 235}U enriched fuel rods, which provided a 10- to 20-fold multiplication of the neutrons emitted from the {sup 252}Cf source. This assembly was located near the bottom of a 1.52-m-diam x 6.10-m-deep water-filled pool. The Neutron Multiplier Facility (NMF) was operational from November 1977 to April 1998--a period of 20.4 yr. The NMF began operation with {approximately}100 mg of {sup 252}Cf, and because of decay of the {sup 252}Cf, it had decreased to 0.34 mg at the time of shutdown. Decommissioning of the NMF began April 1998 and was completed in October 1999.

  10. Total body nitrogen analysis. [neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1975-01-01

    Studies of two potential in vivo neutron activation methods for determining total and partial body nitrogen in animals and humans are described. A method using the CO-11 in the expired air as a measure of nitrogen content was found to be adequate for small animals such as rats, but inadequate for human measurements due to a slow excretion rate. Studies on the method of measuring the induced N-13 in the body show that with further development, this method should be adequate for measuring muscle mass changes occurring in animals or humans during space flight.

  11. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  12. Coincident frequencies and relative phases among brain activity and hormonal signals

    PubMed Central

    Solís-Ortíz, Silvia; Campos, Rafael G; Félix, Julián; Obregón, Octavio

    2009-01-01

    Background Fourier transform is a basic tool for analyzing biological signals and is computed for a finite sequence of data sample. The electroencephalographic (EEG) signals analyzed with this method provide only information based on the frequency range, for short periods. In some cases, for long periods it can be useful to know whether EEG signals coincide or have a relative phase between them or with other biological signals. Some studies have evidenced that sex hormones and EEG signals show oscillations in their frequencies across a period of 28 days; so it seems of relevance to seek after possible patterns relating EEG signals and endogenous sex hormones, assumed as long time-periodic functions to determine their typical periods, frequencies and relative phases. Methods In this work we propose a method that can be used to analyze brain signals and hormonal levels and obtain frequencies and relative phases among them. This method involves the application of a discrete Fourier Transform on previously reported datasets of absolute power of brain signals delta, theta, alpha1, alpha2, beta1 and beta2 and the endogenous estrogen and progesterone levels along 28 days. Results Applying the proposed method to exemplary datasets and comparing each brain signal with both sex hormones signals, we found a characteristic profile of coincident periods and typical relative phases. For the corresponding coincident periods the progesterone seems to be essentially in phase with theta, alpha1, alpha2 and beta1, while delta and beta2 go oppositely. For the relevant coincident periods, the estrogen goes in phase with delta and theta and goes oppositely with alpha2. Conclusion Findings suggest that the procedure applied here provides a method to analyze typical frequencies, or periods and phases between signals with the same period. It generates specific patterns for brain signals and hormones and relations among them. PMID:19284671

  13. Neutron activation analysis in archaeological chemistry

    SciTech Connect

    Harbottle, G.

    1987-01-01

    Neutron activation analysis has proven to be a convenient way of performing the chemical analysis of archaeologically-excavated artifacts and materials. It is fast and does not require tedious laboratory operations. It is multielement, sensitive, and can be made nondestructive. Neutron activation analysis in its instrumental form, i.e., involving no chemical separation, is ideally suited to automation and conveniently takes the first step in data flow patterns that are appropriate for many taxonomic and statistical operations. The future will doubtless see improvements in the practice of NAA in general, but in connection with archaeological science the greatest change will be the filling, interchange and widespread use of data banks based on compilations of analytical data. Since provenience-oriented data banks deal with materials (obsidian, ceramics, metals, semiprecious stones, building materials and sculptural media) that participated in trade networks, the analytical data is certain to be of interest to a rather broad group of archaeologists. It is to meet the needs of the whole archaeological community that archaeological chemistry must now turn.

  14. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    SciTech Connect

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  15. Activity determination of a 201Tl solution by 4πβ-γ and sum-peak coincidence methods

    NASA Astrophysics Data System (ADS)

    Ruzzarin, A.; da Silva, M. A. L.; Iwahara, A.; da Silva, R. L.; Filho, O. L. T.; Poledna, R.; Lopes, R. T.

    2016-07-01

    201Tl is used in nuclear medicine in cardiac imaging for evaluating the injury level in cardiac muscle at rest and exercise. In this work the activity concentration of a 201 Tl radioactive solution has been absolutely determined using the 4πβ-γ coincidence and sum-peak coincidence methods. The presence of 202Tl radioactive impurity that imposes some difficult in the activity measurements was taken into account in the measurements. In the sum-peak method a planar germanium detector was used. The half-lives were evaluated by the reference source method and the results obtained were (3.033 ± 0.004) d and (12.320 ± 0.163) d, respectively, for 201Tl and 202Tl.

  16. Analysis of active neutron multiplicity data for Y-12 skull oxide samples

    SciTech Connect

    Krick, M.S.; Ensslin, N.; Ceo, R.N.; May, P.K.

    1996-09-01

    Previous work on active neutron multiplicity measurements and analyses is summarized. New active multiplicity measurements are described for samples of Y-12 skull oxide using an Active Well Coincidence Counter and MSR4 multiplicity electronics. Neutron multiplication values for the samples were determined from triples/doubles ratios. Neutron multiplication values were also obtained from Monte Carlo calculations using the MCNP code and the results compared with the experimental values. A calibration curve of AmLi source-sample coupling vs neutron multiplication was determined and used for active multiplicity assay of the skull oxides. The results are compared with those obtained from assay with the conventional calibration-curve technique, where the doubles rate is calibrated vs the {sup 235}U mass. The coupling-multiplication relationship determined for the skull oxides is compared with that determined earlier for pure high-enrichment uranium metal and pure uranium oxide. Conclusions are drawn about the application of active multiplicity techniques to uranium assay. Additional active multiplicity measurements and calculations are recommended.

  17. Mineral exploration and soil analysis using in situ neutron activation

    USGS Publications Warehouse

    Senftle, F.E.; Hoyte, A.F.

    1966-01-01

    A feasibility study has been made to operate by remote control an unshielded portable positive-ion accelerator type neutron source to induce activities in the ground or rock by "in situ" neutron irradiation. Selective activation techniques make it possible to detect some thirty or more elements by irradiating the ground for periods of a few minutes with either 3-MeV or 14-MeV neutrons. The depth of penetration of neutrons, the effect of water content of the soil on neutron moderation, gamma ray attenuation in the soil and other problems are considered. The analysis shows that, when exploring for most elements of economic interest, the reaction 2H(d,n)3He yielding ??? 3-MeV neutrons is most practical to produce a relatively uniform flux of neutrons of less than 1 keV to a depth of 19???-20???. Irradiation with high energy neutrons (??? 14 MeV) can also be used and may be better suited for certain problems. However, due to higher background and lower sensitivity for the heavy minerals, it is not a recommended neutron source for general exploration use. Preliminary experiments have been made which indicate that neutron activation in situ is feasible for a mineral exploration or qualititative soil analysis. ?? 1976.

  18. Copper activation deuterium-tritium neutron yield measurements at the National Ignition Facility.

    PubMed

    Cooper, G W; Ruiz, C L; Leeper, R J; Chandler, G A; Hahn, K D; Nelson, A J; Torres, J A; Smelser, R M; McWatters, B R; Bleuel, D L; Yeamans, C B; Knittel, K M; Casey, D T; Frenje, J A; Gatu Johnson, M; Petrasso, R D; Styron, J D

    2012-10-01

    A DT neutron yield diagnostic based on the reactions, (63)Cu(n,2n)(62)Cu(β(+)) and (65)Cu(n,2n)( 64) Cu(β(+)), has been fielded at the National Ignition Facility (NIF). The induced copper activity is measured using a NaI γ-γ coincidence system. Uncertainties in the 14-MeV DT yield measurements are on the order of 7% to 8%. In addition to measuring yield, the ratio of activities induced in two, well-separated copper samples are used to measure the relative anisotropy of the fuel ρR to uncertainties as low as 5%.

  19. Experimental neutronics tests for a neutron activation system for the European ITER TBM

    SciTech Connect

    Klix, A.; Fischer, U.; Gehre, D.; Kleizer, G.; Raj, P.; Rovni, I.; Ruecker, Tom

    2014-08-21

    We are investigating methods for neutron flux measurement in the ITER TBM. In particular we have tested sets of activation materials leading to induced gamma activities with short half-lives of the order of tens of seconds up to minutes and standard activation materials. Packages of activation foils have been irradiated with the intense neutron generator of Technical University of Dresden in a pure DT neutron field as well as in a neutronics mock-up of the European ITER HCLL TBM. An important aim was to check whether the gamma activity induced in the activation foils in these packages could be measured simultaneously. It was indeed possible to identify gamma lines of interest in gamma-ray measurements immediately after extraction from the irradiation.

  20. Utilization of a /sup 252/Cf-/sup 235/U fueled subcritical multiplier for neutron activation analysis. Rev

    SciTech Connect

    Wogman, N.A.; Lepel, E.A.

    1984-02-01

    A /sup 252/Cf neutron activation analysis facility developed in 1975 has been used for the routine multielement analysis of a wide variety of solid and liquid samples. The present neutron flux is on the order of 10/sup 9/ thermal neutrons per cm/sup 2/ per second. Following activation, the radioisotopes are analyzed through their photon emissions with lithium drifted germanium detectors, anticoincidence shielded germanium detectors and NaI(T1) coincidence spectrometers. Although over 65 elements have been measured in environmental materials with this system, typical analyses include the elements Na, Al, Cl, K, Ca, Ti, V, Mn, Br, Sr, Rb, Ba, and Dy. Detection limits range from the sub parts per million upward. Over 8000 samples have been analyzed at an amortized neutron cost per sample of $31.

  1. NEUTRON MULTIPLICITY AND ACTIVE WELL NEUTRON COINCIDENCE VERIFICATION MEASUREMENTS PERFORMED FOR MARCH 2009 SEMI-ANNUAL DOE INVENTORY

    SciTech Connect

    Dewberry, R.; Ayers, J.; Tietze, F.; Klapper, K.

    2010-02-05

    The Analytical Development (AD) Section field nuclear measurement group performed six 'best available technique' verification measurements to satisfy a DOE requirement instituted for the March 2009 semi-annual inventory. The requirement of (1) yielded the need for SRNL Research Operations Department Material Control & Accountability (MC&A) group to measure the Pu content of five items and the highly enrich uranium (HEU) content of two. No 14Q-qualified measurement equipment was available to satisfy the requirement. The AD field nuclear group has routinely performed the required Confirmatory Measurements for the semi-annual inventories for fifteen years using sodium iodide and high purity germanium (HpGe) {gamma}-ray pulse height analysis nondestructive assay (NDA) instruments. With appropriate {gamma}-ray acquisition modeling, the HpGe spectrometers can be used to perform verification-type quantitative assay for Pu-isotopics and HEU content. The AD nuclear NDA group is widely experienced with this type of measurement and reports content for these species in requested process control, MC&A booking, and holdup measurements assays Site-wide. However none of the AD HpGe {gamma}-ray spectrometers have been 14Q-qualified, and the requirement of reference 1 specifically excluded a {gamma}-ray PHA measurement from those it would accept for the required verification measurements. The requirement of reference 1 was a new requirement for which the Savannah River National Laboratory (SRNL) Research Operations Department (ROD) MC&A group was unprepared. The criteria for exemption from verification were: (1) isotope content below 50 grams; (2) intrinsically tamper indicating or TID sealed items which contain a Category IV quantity of material; (3) assembled components; and (4) laboratory samples. Therefore all (SRNL) Material Balance Area (MBA) items with greater than 50 grams total Pu or greater than 50 grams HEU were subject to a verification measurement. The pass/fail criteria of reference 7 stated 'The facility will report measured values, book values, and statistical control limits for the selected items to DOE SR...', and 'The site/facility operator must develop, document, and maintain measurement methods for all nuclear material on inventory'. These new requirements exceeded SRNL's experience with prior semi-annual inventory expectations, but allowed the AD nuclear field measurement group to demonstrate its excellent adaptability and superior flexibility to respond to unpredicted expectations from the DOE customer. The requirements yielded five SRNL items subject to Pu verification and two SRNL items subject to HEU verification. These items are listed and described in Table 1.

  2. Neutron activation analysis at the Californium User Facility for Neutron Science

    SciTech Connect

    Martin, R.C.; Smith, E.H.; Glasgow, D.C.; Jerde, E.A.; Marsh, D.L.; Zhao, L.

    1997-12-01

    The Californium User Facility (CUF) for Neutron Science has been established to provide {sup 252}Cf-based neutron irradiation services and research capabilities including neutron activation analysis (NAA). A major advantage of the CUF is its accessibility and controlled experimental conditions compared with those of a reactor environment The CUF maintains the world`s largest inventory of compact {sup 252}Cf neutron sources. Neutron source intensities of {le} 10{sup 11} neutrons/s are available for irradiations within a contamination-free hot cell, capable of providing thermal and fast neutron fluxes exceeding 10{sup 8} cm{sup {minus}2} s{sup {minus}1} at the sample. Total flux of {ge}10{sup 9} cm{sup {minus}2} s{sup {minus}1} is feasible for large-volume irradiation rabbits within the {sup 252}Cf storage pool. Neutron and gamma transport calculations have been performed using the Monte Carlo transport code MCNP to estimate irradiation fluxes available for sample activation within the hot cell and storage pool and to design and optimize a prompt gamma NAA (PGNAA) configuration for large sample volumes. Confirmatory NAA irradiations have been performed within the pool. Gamma spectroscopy capabilities including PGNAA are being established within the CUF for sample analysis.

  3. Layered shielding design for an active neutron interrogation system

    NASA Astrophysics Data System (ADS)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  4. Active Neutron Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2009-05-01

    Portable electronic neutron generators (ENGs) may be used to interrogate suspicious items to detect, characterize, and quantify the presence fissionable material based upon the measurement of prompt and/or delayed emissions of neutrons and/or photons resulting from fission. The small size (<0.2 m3), light weight (<12 kg), and low power consumption (<50 W) of modern ENGs makes them ideally suited for use in field situations, incorporated into systems carried by 2-3 individuals under rugged conditions. At Idaho National Laboratory we are investigating techniques and portable equipment for performing active neutron interrogation of moderate sized objects less than ~2-4 m3 to detect shielded fissionable material. Our research in this area relies upon the use of pulsed deuterium-tritium ENGs and the measurement of die-away prompt fission neutrons and other neutron signatures in-between neutron pulses from the ENG and after the ENG is turned off.

  5. A dosimetry study of deuterium-deuterium neutron generator-based in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sowers, Daniel A.

    A neutron irradiation cavity for in vivo Neutron Activation Analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator which produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 x 108 +/-30% s-1. A moderator/reflector/shielding (5 cm high density polyethylene (HDPE), 5.3 cm graphite & 5.7 cm borated HDPE) assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeter (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and photon dose by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10 min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 +/- 0.8 mSv for neutron and 4.2 +/- 0.2 mSv for photon for 10 mins; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  6. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  7. Neutron activation analysis of some building materials

    NASA Astrophysics Data System (ADS)

    Salagean, M. N.; Pantelica, A. I.; Georgescu, I. I.; Muntean, M. I.

    1999-01-01

    Concentrations of As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Mo, Na, Nd, Rb, Sb, Sc, Sr, Ta, Tb, Th, U. Yb, W and Zn in seven Romanian building materials were determined by the Instrumental Neutron Activation Analysis (INAA) method using the VVR-S Reactor of NIPNE- Bucharest. Raw matarials used in cement obtaining ≈ 75% of limestone and ≈ 25% of clay, cement samples from three different factories, furnace slag, phosphogypsum, and a type of brick have been analyzed. The brick was compacted from furnace slay, fly coal ash, phosphogypsum, lime and cement. The U, Th and K concentrations determined in the brick are in agreement with the natural radioactivity measurements of226Ra,232Th and40K. These specific activities were found about twice and 1.5 higher than the accepted levels in the case of226Ra and232Th, as well as40K, respectively. By consequence, the investigated brick is considered a radioactive waste. The rather high content of Co, Cr, K, Th, and Zh in the brick is especially due to the slag and fly ash, the main componets. The presence of U, Th and K in slag is mainly correlated with the limestone and dolomite as fluxes in matallurgy.

  8. Activities on Nuclear Data Measurements at Pohang Neutron Facility

    NASA Astrophysics Data System (ADS)

    Kim, Guinyun

    2009-03-01

    We report the activities of the Pohang Neutron Facility which consists of an electron linear accelerator, a water-cooled Ta target, and a 12-m time-of-flight path. It has been equipped with a four-position sample changer controlled remotely by a CAMAC data acquisition system, which allows simultaneous accumulation of the neutron time of flight spectra from 4 different detectors. It can be possible to measure the neutron total cross-sections in the neutron energy range from 0.1 eV to few hundreds eV by using the neutron time-of-flight method. A 6LiZnS(Ag) glass scintillator was used as a neutron detector. The neutron flight path from the water-cooled Ta target to the neutron detector was 12.1 m. The background level was determined by using notch-filters of Co, In, Ta, and Cd sheets. In order to reduce the gamma rays from bremsstrahlung and those from neutron capture, we employed a neutron-gamma separation system based on their different pulse shapes. The present measurements of several samples (Ta, Mo) are in general agreement with the evaluated data in ENDF/B-VI. We measured the thermal neutron capture cross-sections and the resonance integrals of the 186W(n,γ)187W reaction and the 98Mo(n,γ)99Mo reaction by the activation method using the 197Au(n,γ)198Au monitor reaction as a single comparator. We also report the isomeric yield ratios for the 44 m, gSc isomeric pairs produced from four different photonuclear reactions 45Sc(γ,n)44m,gSc, natTi(γ,xn1p)44m,gSc, natFe(γ,xn5p)52m,gMn, and 103Rh(γ,4n)99m,gRh by using the activation method.

  9. Active Neutron-Based Interrogation System with D-D Neutron Source for Detection of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Misawa, T.; Yagi, T.; Pyeon, C. H.; Kimura, M.; Masuda, K.; Ohgaki, H.

    2015-10-01

    The detection of special nuclear materials (SNM) is an important issue for nuclear security. The interrogation systems used in a sea port and an airport are developed in the world. The active neutron-based interrogation system is the one of the candidates. We are developing the active neutron-based interrogation system with a D-D fusion neutron source for the nuclear security application. The D-D neutron source is a compact discharge-type fusion neutron source called IEC (Inertial-Electrostatic Confinement fusion) device which provides 2.45 MeV neutrons. The nuclear materials emit the highenergy neutrons by fission reaction. High-energy neutrons with energies over 2.45 MeV amount to 30% of all the fission neutrons. By using the D-D neutron source, the detection of SNMs is considered to be possible with the attention of fast neutrons if there is over 2.45 MeV. Ideally, neutrons at En>2.45 MeV do not exist if there is no nuclear materials. The detection of fission neutrons over 2.45 MeV are hopeful prospect for the detection of SNM with a high S/N ratio. In the future, the experiments combined with nuclear materials and a D-D neutron source will be conducted. Furthermore, the interrogation system will be numerically investigated by using nuclear materials, a D-D neutron source, and a steel container.

  10. Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code

    NASA Astrophysics Data System (ADS)

    Tzika, F.; Stamatelatos, I. E.

    2004-01-01

    Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample.

  11. Neutrons and Granite: Transport and Activation

    SciTech Connect

    Bedrossian, P J

    2004-04-13

    In typical ground materials, both energy deposition and radionuclide production by energetic neutrons vary with the incident particle energy in a non-monotonic way. We describe the overall balance of nuclear reactions involving neutrons impinging on granite to demonstrate these energy-dependencies. While granite is a useful surrogate for a broad range of soil and rock types, the incorporation of small amounts of water (hydrogen) does alter the balance of nuclear reactions.

  12. Neutron activation studies and the effect of exercise on osteoporosis

    SciTech Connect

    Harrison, J.E.

    1984-01-01

    A technique is described to measure calcium content by in vivo neutron activation analysis of the trunk and upper thighs. In postmenopausal women, estrogen and calcium or fluoride reversed osteoporosis.

  13. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    NASA Astrophysics Data System (ADS)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-06-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  14. Neutron-activation analysis applied to copper ores and artifacts

    NASA Technical Reports Server (NTRS)

    Linder, N. F.

    1970-01-01

    Neutron activation analysis is used for quantitative identification of trace metals in copper. Establishing a unique fingerprint of impurities in Michigan copper would enable identification of artifacts made from this copper.

  15. Elemental analysis of combustion products by neutron activation

    SciTech Connect

    Heft, R.E.; Koszykowski, R.F.

    1980-01-01

    This paper gives a brief description of the neutron activation analysis method, which is being used to determine the elemental profile of combustion products from coal-fired power plants, oil shale retorting, and underground coal gasification. (DLC)

  16. Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,

  17. Enhanced Photofission-based, Coincidence/Multiplicity Inspection Measurements

    SciTech Connect

    J.L. Jones; D.R. Norman; K.J. Haskell; M.T. Swinhoe; S.J. Tobin; W.H. Geist; R.B. Rothrock; C.R. Freeman

    2010-07-01

    An enhanced active interrogation system has been developed that integrates a transportable Idaho National Laboratory (INL) photonuclear inspection system, using a pulsed bremsstrahlung source and a reconfigurable neutron detection system, with a Los Alamos National Laboratory (LANL) list-mode data acquisition system. A series of active interrogation experiments have shown enhanced nuclear material detection and identification utilizing pulsed photofission-induced, neutron coincidence/multiplicity counting between pulses of an up-to-10-MeV electron accelerator. This paper describes the integrated inspection system and presents some key shielded and unshielded nuclear material inspection results. The enhanced inspection methodology has applicability to homeland security and possible nuclear weapon dismantlement treaties.

  18. Active and passive mode calibration of the Combined Thermal Epithermal Neutron (CTEN) system

    SciTech Connect

    Veilleux, J. M.

    2002-06-01

    The Combined Thermal/Epithermal Neutron (CTEN) non-destructive assay (NDA) system was designed to assay transuranic waste by employing an induced active neutron interrogation and/or a spontaneous passive neutron measurement. This is the second of two papers, and focuses on the passive mode, relating the net double neutron coincidence measurement to the plutonium mass via the calibration constant. National Institute of Standards and Technology (NIST) calibration standards were used and the results verified with NIST-traceable verification standards. Performance demonstration program (PDP) 'empty' 208-L matrix drum was used for the calibration. The experimentally derived calibration constant was found to be 0.0735 {+-} 0.0059 g {sup 240}Pu effective per unit response. Using this calibration constant, the Waste Isolation Pilot Plant (WIPP) criteria was satisfied with five minute waste assays in the range from 3 to 177g Pu. CTEN also participated in the PDP Cycle 8A blind assay with organic sludge and metal matrices and passed the criteria for accuracy and precision in both assay modes. The WIPP and EPA audit was completed March 1, 2002 and full certification is awaiting the closeout of one finding during the audit. With the successful closeout of the audit, the CTEN system will have shown that it can provide very fast assays (five minutes or less) of waste in the range from the minimum detection limit (about 2 mg Pu) to 177 g Pu.

  19. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity.

    PubMed

    Sipkens, Jessica A; Hahn, Nynke; van den Brand, Carlien S; Meischl, Christof; Cillessen, Saskia A G M; Smith, Desirée E C; Juffermans, Lynda J M; Musters, René J P; Roos, Dirk; Jakobs, Cornelis; Blom, Henk J; Smulders, Yvo M; Krijnen, Paul A J; Stehouwer, Coen D A; Rauwerda, Jan A; van Hinsbergh, Victor W M; Niessen, Hans W M

    2013-11-01

    Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01-2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47(phox) expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨ m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨ m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47(phox), and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47(phox) in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47(phox) was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.

  20. Neutron threshold activation detectors (TAD) for the detection of fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  1. Out of control: Diminished prefrontal activity coincides with impaired motor performance due to choking under pressure

    PubMed Central

    Lee, Taraz G.; Grafton, Scott T.

    2014-01-01

    There are three non-exclusive theoretical explanations for the paradoxical collapse of performance due to large financial incentives. It has been proposed that “choking under pressure” is either due to distraction, interference via an increase in top-down control and performance monitoring, or excessive levels of arousal in the face of large losses. Given the known neural architecture involved in executive control and reward, we used fMRI of human participants during incentivized motor performance to provide evidence to support and/or reconcile these competing models in a visuomotor task. We show that the execution of a pre-trained motor task during neuroimaging is impaired by high rewards. BOLD activity occurring prior to movement onset is increased in dorsolateral prefrontal cortex and functional connectivity between this region and motor cortex is likewise increased just prior to choking. However, the extent of this increase in functional connectivity is inversely related to a participant's propensity to choke, suggesting that a failure in exerting top-down influence on motor control underlies choking under pressure due to large incentives. These results are consistent with a distraction account of choking and suggest that frontal influences on motor activity are necessary to protect performance from vulnerability under pressure. PMID:25449744

  2. Out of control: diminished prefrontal activity coincides with impaired motor performance due to choking under pressure.

    PubMed

    Lee, Taraz G; Grafton, Scott T

    2015-01-15

    There are three non-exclusive theoretical explanations for the paradoxical collapse of performance due to large financial incentives. It has been proposed that "choking under pressure" is either due to distraction, interference via an increase in top-down control and performance monitoring, or excessive levels of arousal in the face of large losses. Given the known neural architecture involved in executive control and reward, we used fMRI of human participants during incentivized motor performance to provide evidence to support and/or reconcile these competing models in a visuomotor task. We show that the execution of a pre-trained motor task during neuroimaging is impaired by high rewards. BOLD activity occurring prior to movement onset is increased in dorsolateral prefrontal cortex and functional connectivity between this region and motor cortex is likewise increased just prior to choking. However, the extent of this increase in functional connectivity is inversely related to a participant's propensity to choke, suggesting that a failure in exerting top-down influence on motor control underlies choking under pressure due to large incentives. These results are consistent with a distraction account of choking and suggest that frontal influences on motor activity are necessary to protect performance from vulnerability under pressure.

  3. In vivo neutron activation facility at Brookhaven National Laboratory

    SciTech Connect

    Ma, R.; Yasumura, Seiichi; Dilmanian, F.A.

    1997-11-01

    Seven important body elements, C, N, Ca, P, K, Na, and Cl, can be measured with great precision and accuracy in the in vivo neutron activation facilities at Brookhaven National Laboratory. The facilities include the delayed-gamma neutron activation, the prompt-gamma neutron activation, and the inelastic neutron scattering systems. In conjunction with measurements of total body water by the tritiated-water dilution method several body compartments can be defined from the contents of these elements, also with high precision. In particular, body fat mass is derived from total body carbon together with total body calcium and nitrogen; body protein mass is derived from total body nitrogen; extracellular fluid volume is derived from total body sodium and chlorine; lean body mass and body cell mass are derived from total body potassium; and, skeletal mass is derived from total body calcium. Thus, we suggest that neutron activation analysis may be valuable for calibrating some of the instruments routinely used in clinical studies of body composition. The instruments that would benefit from absolute calibration against neutron activation analysis are bioelectric impedance analysis, infrared interactance, transmission ultrasound, and dual energy x-ray/photon absorptiometry.

  4. Integrated Active Fire Retrievals and Biomass Burning Emissions Using Complementary Near-Coincident Ground, Airborne and Spaceborne Sensor Data

    NASA Technical Reports Server (NTRS)

    Schroeder, Wilfrid; Ellicott, Evan; Ichoku, Charles; Ellison, Luke; Dickinson, Matthew B.; Ottmar, Roger D.; Clements, Craig; Hall, Dianne; Ambrosia, Vincent; Kremens, Robert

    2013-01-01

    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge between ground and spaceborne data sets providing high quality reference information to support satellite fire retrieval error analyses and fire emissions estimates. We found excellent agreement between peak fire radiant heat flux data (less than 1% error) derived from near-coincident ground radiometers and AMS. Both MODIS and GOES imager active fire products were negatively influenced by the presence of thick smoke, which was misclassified as cloud by their algorithms, leading to the omission of fire pixels beneath the smoke, and resulting in the underestimation of their retrieved fire radiative power (FRP) values for the burn plot, compared to the reference airborne data. Agreement between airborne and spaceborne FRP data improved significantly after correction for omission errors and atmospheric attenuation, resulting in as low as 5 difference between AquaMODIS and AMS. Use of in situ fuel and fire energy estimates in combination with a collection of AMS, MODIS, and GOES FRP retrievals provided a fuel consumption factor of 0.261 kg per MJ, total energy release of 14.5 x 10(exp 6) MJ, and total fuel consumption of 3.8 x 10(exp 6) kg. Fire emissions were calculated using two separate techniques, resulting in as low as 15 difference for various species

  5. Simulation and calibration of an active neutron dosemeter.

    PubMed

    Bergmeier, F; Volnhals, M; Wielunski, M; Rühm, W

    2014-10-01

    Here the latest development stages of the HMGU active neutron dosemeter are presented. This work includes the comparison of the dosemeter's response function, calculated with Geant4, and the measurements in monoenergetic neutron fields at the Physikalisch Technische Bundesanstalt in Braunschweig, Germany. These results were used to match the response function and the count-to-dose conversion factors of the dosemeter to the Hp(10) personal dose equivalent.

  6. Mobile neutron/gamma waste assay system for characterization of waste containing transuranics, uranium, and fission/activation products

    SciTech Connect

    Davidson, D.R.; Haggard, D.; Lemons, C.

    1994-12-31

    A new integrated neutron/gamma assay system has been built for measuring 55-gallon drums at Pacific Northwest Laboratory. The system is unique because it allows simultaneous measurement of neutrons and gamma-rays. This technique also allows measurement of transuranics (TRU), uranium, and fission/activation products, screening for shielded Special Nuclear Material prior to disposal, and critically determinations prior to transportation. The new system is positioned on a platform with rollers and installed inside a trailer or large van to allow transportation of the system to the waste site instead of movement of the drums to the scanner. The ability to move the system to the waste drums is particularly useful for drum retrieval programs common to all DOE sites and minimizes transportation problems on the site. For longer campaigns, the system can be moved into a facility. The mobile system consists of two separate subsystems: a passive Segmented Gamma Scanner (SGS) and a {open_quotes}clam-shell{close_quotes} passive neutron counter. The SGS with high purity germanium detector and {sup 75}Se transmission source simultaneously scan the height of the drum allowing identification of unshieled {open_quotes}hot spots{close_quotes} in the drum or segments where the matrix is too dense for the transmission source to penetrate. Dense segments can flag shielding material that could be used to hide plutonium or uranium during the gamma analysis. The passive nuetron counter with JSR-12N Neutron Coincidence Analyzer measures the coincident neutrons from the spontaneous fission of even isotopes of plutonium. Because high-density shielding produces minimal absorption of neutrons, compared to gamma rays, the passive neutron portion of the system can detect shielded SNM. Measurements to evaluate the performance of the system are still underway at Pacific Northwest Laboratory.

  7. Addressing Different Active Neutron Interrogation Signatures from Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2009-10-01

    In a continuing effort to examine portable methods for implementing active neutron interrogation for detecting shielded fissionable material research is underway to investigate the utility of analyzing multiple time-correlated signatures. Time correlation refers here to the existence of unique characteristics of the fission interrogation signature related to the start and end of an irradiation, as well as signatures present in between individual pulses of an irradiating source. Traditional measurement approaches in this area have typically worked to detect die-away neutrons after the end of each pulse, neutrons in between pulses related to the decay of neutron emitting fission products, or neutrons or gamma rays related to the decay of neutron emitting fission products after the end of an irradiation exposure. In this paper we discus the potential weaknesses of assessing only one signature versus multiple signatures and make the assertion that multiple complimentary and orthogonal measurements should be used to bolster the performance of active interrogation systems, helping to minimize susceptibility to the weaknesses of individual signatures on their own. Recognizing that the problem of detection is a problem of low count rates, we are exploring methods to integrate commonly used signatures with rarely used signatures to improve detection capabilities for these measurements. In this paper we will discuss initial activity in this area with this approach together with observations of some of the strengths and weaknesses of using these different signatures.

  8. Extending neutron activation analysis to materials with high concentrations of neutron absorbing elements

    NASA Astrophysics Data System (ADS)

    Chilian, Cornelia

    The purpose of this study was to investigate epithermal neutron self-shielding for all nuclides used in Neutron Activation Analysis, NAA. The study started with testing the theory and measuring the nuclear factors characterizing thermal and epithermal self-shielding for 1 mL cylindrical samples containing the halogens Cl, Br and I irradiated in a mixed thermal and epithermal neutron spectrum. For mono-element samples, both thermal and epithermal experimental self-shielding factors were well fitted by sigmoid functions. As a result, to correct thermal neutron self-shielding, the sigmoid uses a single parameter, mth, which can be directly calculated for any element from the sample size, the weighted sum of the thermal absorption cross-sections, sigmaabs, of the elements in the sample and a constant kth characteristic of the irradiation site. However, to correct epithermal self-shielding, the parameter mep, a function of sample geometry and composition, irradiation conditions and nuclear characteristics, needs to be measured for each activated nuclide. Since the preliminary tests were positive and showed that self-shielding, as high as 30%, could be corrected with an accuracy of about 1%, except in cases with significant epithermal shielding of one element by another, we pursued the study with the verification of two additional aspects. First, the dependency of the self-shielding parameters mth, and mep, on the properties of the irradiation site was evaluated using three different irradiation sites of a SLOWPOKE reactor, and it was concluded that the amount of both thermal and epithermal self-shielding varied by less than 10% from one site to another. Second, the variation of the self-shielding parameters, mth, and mep, with the size of the cylinder, as r( r+h), was tested for h/r ratios from 0.02 to 6.0, and this geometry dependence was confirmed even in slightly non-isotropic neutron fields. These results allowed separating from the mep parameter the amount of

  9. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron.

    PubMed

    Fantidis, J G; Nicolaou, G E; Potolias, C; Vordos, N; Bandekas, D V

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were carried out to compare the performance of the proposed PGNAA system using four different neutron sources ((241)Am/Be, (252)Cf, (241)Am/B, and DT neutron generator). Among the different systems the (252)Cf neutron based PGNAA system has the best performance.

  10. Neutron activation analysis for antimetabolites. [in food samples

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Determination of metal ion contaminants in food samples is studied. A weighed quantity of each sample was digested in a concentrated mixture of nitric, hydrochloric and perchloric acids to affect complete solution of the food products. The samples were diluted with water and the pH adjusted according to the specific analysis performed. The samples were analyzed by neutron activation analysis, polarography, and atomic absorption spectrophotometry. The solid food samples were also analyzed by neutron activation analysis for increased sensitivity and lower levels of detectability. The results are presented in tabular form.

  11. Required conditions for and coincident 1/1-mode activity associated with the nonlocal electron heat transport effect on TFTR

    SciTech Connect

    Kissick, M.W.; Callen, J.D.; Fredrickson, E.D.

    1997-08-01

    A database of 71 distinct and randomly collected cold pulse cases from TFTR is analyzed. Observations show a striking parameter regime cutoff for the presence of nonlocal transient transport and coincident MHD (1/1-mode) activity as well as for changes in the radial speed of the nonlocal transport effect and changes in the sawtooth period. A nontrivial link is demonstrated between electron heat transport and MHD properties through observation of a common cutoff in the parameter n{sub e}(0)/T{sub e}(0){sup 1/2} and a common threshold in injection size for radial speed and sawtooth period changes. Auxiliary heating (via energetic neutral beams) destroys whatever process is responsible for the nonlocal transport effect, unless the discharge contains significant amounts of injected tritium. These observations are preliminary, but they represent important circumstantial evidence for mysterious propagation of changes in some MHD-related phenomenon as being responsible for a large fraction of electron heat transport. This propagation is then probably a function of n{sub e}(0)/T{sub e}(0){sup 1/2}, ion mass, and possibly beam power. An analysis of Ohmic cases shows that the cutoff in n{sub e}(0)/T{sub e}{sup 1/2} indicates the nonlocal transport effects may occur when the electrons are collisionally thermally decoupled from the ions.

  12. Non-destructive analysis of impure HEU-carbon samples using an Active Well Coincidence Counter (AWCC)

    SciTech Connect

    Hartwell, J.K.; McLaughlin, G.D.

    1998-07-01

    Highly enriched uranium-containing graphite-based material from the Los Alamos National Laboratory (LANL) is currently stored at the Idaho National Engineering and Environmental Laboratory (INEEL). Measurements to verify the uranium content of these samples are required prior to their disposition to the Y-12 facility in Tennessee. The stored materials vary significantly in their matrix purity and in their {sup 235}U content and enrichment. A set of 26 samples selected from the LANL material inventory were analyzed non-destructively using an Active Well Coincidence Counter (AWCC) calibrated versus pure UO{sub 3} standards. A correction, calculated from published data and the approximate carbon-to-uranium atom ratios of each sample, was applied for the response enhancement from the carbon matrix. In some cases this correction was as high as 30%. Eight of the 26 sample that had been analyzed in the AWCC were destructively analyzed to provide a benchmark for the non-destructive analyses. The average recovery (NDA/Destructive results) was 0.997 {+-} 0.115. One sample had a destructive result that lay outside a 3-sigma interval about the NDA result.

  13. Triton burnup measurements in KSTAR using a neutron activation system

    NASA Astrophysics Data System (ADS)

    Jo, Jungmin; Cheon, MunSeong; Kim, Jun Young; Rhee, T.; Kim, Junghee; Shi, Yue-Jiang; Isobe, M.; Ogawa, K.; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-11-01

    Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a 3He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%-0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.

  14. Coincident emission of neutrons and charged particles after π- absorption in 6Li, 7Li, 12C, 59Co and 197Au

    NASA Astrophysics Data System (ADS)

    Heusi, P.; Isaak, H. P.; Pruys, H. S.; Engfer, R.; Hermes, E. A.; Kozlowski, T.; Sennhauser, U.; Walter, H. K.

    1983-10-01

    Energy spectra d 3W/d E1 d E2 d cos ϑ of neutron-neutron and neutron-charged particle pairs (nn, np, nd, nt) emitted after the absorption of stopped negative pions in 6Li, 7Li, 12C, 59Co and 197Au have been measured for opening angles between 50° and 180°. Particle pairs emitted from light nuclei without energy loss due to final-state interactions were identified by the energy balance. Pion absorption on two nucleons (quasi-deuteron mechanism) was found to be the main process. The yields of nucleon pairs from quasi-free absorption on a quasi-deuteron are 0.52 ± 0.09 per π-stop, 0.57 ± 0.10 per π-stop and 0.19 ± 0.04 per π-stop for 6Li, 7Li and 12C, respectively. The ratio R of np to pp pairs that absorb the pion was determined for quasi-free absorption on p-shell nucleons of 12C: R(p-shell) = 6.3 ± 1.4. For pion absorption on s-shell nucleons of lithium lower limits R(s-shell) > 4.4 for 6Li and R(s-shell) > 7.8 for 7Li were determined. These values are larger than the statistical ratios Rstat = 2 N/( Z - 1) of np to pp pairs in the nucleus. Lower limits for the probability for pion absorption on heavier clusters ( 3He, α) are W(hc) > 0.16 per π-stop for 6Li, W(hc) > 0.11 per π-stop for 7Li and W( α) > 0.01 per π-stop for 12C. The shape of the energy spectra of pairs emitted directly after quasi-free absorption on 2 or 4 nucleons could be explained by a simple model for the momentum distribution of the absorbing nucleons. The results are in agreement with the parameters of the momentum distributions known from other reactions. Energy spectra and opening-angle distributions were compared with the intranuclear cascade calculations of Chiang, Hüfner and Hachenberg. For 59Co and 197Au the spectra are strongly influenced by the final-state interactions; lower limits of R > 1.8 for 59Co and R > 2.5 for 197Au were determined.

  15. BOREHOLE NEUTRON ACTIVATION: THE RARE EARTHS.

    USGS Publications Warehouse

    Mikesell, J.L.; Senftle, F.E.

    1987-01-01

    Neutron-induced borehole gamma-ray spectroscopy has been widely used as a geophysical exploration technique by the petroleum industry, but its use for mineral exploration is not as common. Nuclear methods can be applied to mineral exploration, for determining stratigraphy and bed correlations, for mapping ore deposits, and for studying mineral concentration gradients. High-resolution detectors are essential for mineral exploration, and by using them an analysis of the major element concentrations in a borehole can usually be made. A number of economically important elements can be detected at typical ore-grade concentrations using this method. Because of the application of the rare-earth elements to high-temperature superconductors, these elements are examined in detail as an example of how nuclear techniques can be applied to mineral exploration.

  16. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    SciTech Connect

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  17. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection.

  18. Coincident Activity of Converging Pathways Enables Simultaneous Long-Term Potentiation and Long-Term Depression in Hippocampal CA1 Network In Vivo

    PubMed Central

    Cao, Jun; Zhang, Xia; Xu, Lin

    2008-01-01

    Memory is believed to depend on activity-dependent changes in the strength of synapses, e.g. long-term potentiation (LTP) and long-term depression (LTD), which can be determined by the sequence of coincident pre- and postsynaptic activity, respectively. It remains unclear, however, whether and how coincident activity of converging efferent pathways can enable LTP and LTD in the pathways simultaneously. Here, we report that, in pentobarbital-anesthetized rats, stimulation (600 pulses, 5 Hz) to Schaffer preceding to commissural pathway within a 40-ms timing window induced similar magnitudes of LTP in both pathways onto synapses of CA1 neurons, with varied LTP magnitudes after reversal of the stimulation sequence. In contrast, in urethane-anesthetized or freely-moving rats, the stimulation to Schaffer preceding to commissural pathway induced Schaffer LTP and commissural LTD simultaneously within a 40-ms timing window, without affecting synaptic efficacy in the reversed stimulation sequence. Coincident activity of Schaffer pathways confirmed the above findings under pentobarbital and urethane anesthesia. Thus, coincident activity of converging afferent pathways tends to switch the pathways to be LTP only or LTP/LTD depending on the activity states of the hippocampus. This network rule strengthens the view that activity-dependent synaptic plasticity may well contribute to memory process of the hippocampal network with flexibility or stability from one state to another. PMID:18682723

  19. Neutron-activation study of figurines, pottery, and workshop materials from the Athenian Agora, Greece. [Neutron reactions; France, Israel, Cyprus

    SciTech Connect

    Fillieres, D.; Harbottle, G.; Sayre, E.V.

    1983-01-01

    Ceramic specimens from the excavations of the Agora of ancient Athens, Greece, including material from factories, i.e., trial firing pieces, pottery and figurine wasters, datable to the Protogeometric, Subgeometric, and Classical Periods, and stylistically related figurines and pottery were analyzed by neutron activation. The factory material from the three distinct chronological periods separated respectively into three significantly different compositional groups, indicating either that separate sources of clay were used during each of these periods or that some other significant changes in the traditions of fabrication had occurred. Many of the figurines and sherds analyzed coincided in composition with one of these three groups and therefore were shown to be consistent with the output of Athenian workshops. Some specimens of Corinthian style formed a separate compositional group as did some other specimens that agreed in composition with a clay from Aegina. Comparison of these results with previous analyses on file in the Brookhaven Data Bank revealed a number of specimens that corresponded both in style and composition to the Agora material. Most significant was a sizable amount of Classical Greek pottery excavated in southern France, in Israel, and in Cyprus that conformed in composition to the Attic Classical Group. 6 figures, 2 tables.

  20. PIXE and neutron activation methods in human hair material analysis

    NASA Astrophysics Data System (ADS)

    Bǎdicǎ, T.; Ciortea, C.; Cojocaru, V.; Ivaşcu, M.; Petrovici, A.; Popa, A.; Popescu, I.; Sǎlǎgean, M.; Spiridon, S.

    1984-04-01

    In order to compare some of the nuclear methods in human hair material analysis, proton induced X-ray excitation and variant techniques of neutron activation analysis have been used. The elemental concentrations are compared with the IAEA-Vienna certified values. The efficiency and reliability of the methods used are briefly discussed.

  1. Compilation of detection sensitivities in thermal-neutron activation

    NASA Technical Reports Server (NTRS)

    Wahlgren, M. A.; Wing, J.

    1967-01-01

    Detection sensitivities of the chemical elements following thermal-neutron activation have been compiled from the available experimental cross sections and nuclear properties and presented in a concise and usable form. The report also includes the equations and nuclear parameters used in the calculations.

  2. Active helium target: Neutron scalar polarizability extraction via Compton scattering

    SciTech Connect

    Morris, Meg Hornidge, David; Annand, John; Strandberg, Bruno

    2015-12-31

    Precise measurement of the neutron scalar polarizabilities has been a lasting challenge because of the lack of a free-neutron target. Led by the University of Glasgow and the Mount Allison University groups of the A2 collaboration in Mainz, Germany, preparations have begun to test a recent theoretical model with an active helium target with the hope of determining these elusive quantities with small statistical, systematic, and model-dependent errors. Apparatus testing and background-event simulations have been carried out, with the full experiment projected to run in 2015. Once determined, these values can be applied to help understand quantum chromodynamics in the nonperturbative region.

  3. Active neutron multiplicity analysis and Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Krick, M. S.; Ensslin, N.; Langner, D. G.; Miller, M. C.; Siebelist, R.; Stewart, J. E.; Ceo, R. N.; May, P. K.; Collins, L. L., Jr.

    Active neutron multiplicity measurements of high-enrichment uranium metal and oxide samples have been made at Los Alamos and Y-12. The data from the measurements of standards at Los Alamos were analyzed to obtain values for neutron multiplication and source-sample coupling. These results are compared to equivalent results obtained from Monte Carlo calculations. An approximate relationship between coupling and multiplication is derived and used to correct doubles rates for multiplication and coupling. The utility of singles counting for uranium samples is also examined.

  4. Status report of CPHS and neutron activities at Tsinghua University

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xing, Q.; Zheng, S.; Yang, Y.; Gong, H.; Xiao, Y.; Wu, H.; Guan, X.; Du, T.

    2016-11-01

    The Compact Pulsed Hadron Source (CPHS) project that was launched in September 2009 at Tsinghua University has reached a first commissioning stage in conjunction with ongoing activities to fulfill the eventual design goal of a ˜ 1013 n/s epithermal-to-cold neutron yield for education, instrumentation development, and industrial applications. Here, we report the latest progress on the commissioning and applications of 3MeV proton and neutron beam lines in the last one and half years, and the design, fabrication, engineering of the 13MeV/16kW proton accelerator system.

  5. Neutron Field Measurements in Phantom with Foil Activation Methods.

    DTIC Science & Technology

    1986-11-29

    jI25 Ii III uumu ullli~ S....- - Lb - w * .qJ’ AD-A 192 122 ulJ. IL (pj DNA-TR-87- 10 N EUTRON FIELD MEASUREMENTS IN PHANTOM WITH FOIL ACTIVATION...SAND II Measurements in Phantom 6 4 The 5-Foil Neutron Dosimetry Method 29 5 Comparison of SAND II and Simple 5-Foil Dosimetry Method 34 6 Thermal ...quite reasonable. The monkey phantom spectrum differs from the NBS U-235 fission spectrum in that the former has a I/E tail plus thermal -neutron peak

  6. Prototyping an active neutron veto for SuperCDMS

    NASA Astrophysics Data System (ADS)

    Calkins, Robert; Loer, Ben

    2015-08-01

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  7. Prototyping an Active Neutron Veto for SuperCDMS

    SciTech Connect

    Calkins, Robert; Loer, Ben

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  8. Neutron activation analysis; A sensitive test for trace elements

    SciTech Connect

    Hossain, T.Z. . Ward Lab.)

    1992-01-01

    This paper discusses neutron activation analysis (NAA), an extremely sensitive technique for determining the elemental constituents of an unknown specimen. Currently, there are some twenty-five moderate-power TRIGA reactors scattered across the United States (fourteen of them at universities), and one of their principal uses is for NAA. NAA is procedurally simple. A small amount of the material to be tested (typically between one and one hundred milligrams) is irradiated for a period that varies from a few minutes to several hours in a neutron flux of around 10{sup 12} neutrons per square centimeter per second. A tiny fraction of the nuclei present (about 10{sup {minus}8}) is transmuted by nuclear reactions into radioactive forms. Subsequently, the nuclei decay, and the energy and intensity of the gamma rays that they emit can be measured in a gamma-ray spectrometer.

  9. Identification of oxygen-19 during in vivo neutron activation analysis of water phantoms.

    PubMed

    Tahir, Syed N A; Chettle, David R

    2015-12-01

    Hand bone equivalent phantoms (250 ml) carrying selenium in various amounts were irradiated and counted for in vivo neutron activation analysis (IVNAA) by employing a 4π NaI(TI) based detection system. During the analysis of counting data, a feature at a higher energy than the gamma ray peak from (77m)Se (0.162 MeV) was observed at 0.197 MeV. Further investigations were made by preparing water phantoms containing only de-ionized water in 250 ml and 1034 ml quantities. Neutrons were produced by the (7)Li(p,n)(7)Be reaction using the high beam current Tandetron accelerator. Phantoms were irradiated at a fixed proton energy of 2.3 MeV and proton currents of 400 μA and 550 μA for 30 s and 22 s respectively. The counting data saved using the 4π NaI(TI) detection system for 10 s intervals in anticoincidence, coincidence and singles modes of detection were analyzed. Areas under gamma peaks at energies 0.197 MeV and 1.357 MeV were computed and half-lives from the number of counts for the two peaks were established. It was concluded that during neutron activation of water phantoms, oxygen-18 is activated, producing short-lived radioactive 19O having T(1/2)  =  26.9 s. Induced activity from 19O may contribute spectral interference in the gamma ray spectrum. This effect may need to be taken into account by researchers while carrying out IVNAA of biological subjects.

  10. Development of NANA: A Fast-Scintillator, Coincidence Gamma-ray Array for Radioactive Source Characterisation and Absolute Activity Measurements at the UK National Physical Laboratory

    NASA Astrophysics Data System (ADS)

    Regan, P. H.; Shearman, R.; Judge, S. M.; Lorusso, G.; Main, P.; Bell, S.; Collins, S. M.; Ivanov, P.; Jerome, S. M.; Keightley, J. D.; Larijani, C.; Lotay, G.; Pearce, A. K.

    2015-06-01

    A multi-detector modular coincidence gamma-ray spectrometer is being designed and constructed for use at the UK's National Physical Laboratory (NPL) for use in direct measurement and metrological standardisation of nuclear decay activities. In its first generation, the NPL National Nuclear Array (NANA) will consist of twelve individual halide scintillation detectors placed in a high-efficiency geometry around a well-defined central point source position. This brief conference paper provides details of the measured detector module and coincidence energy and timing responses for the LaBr3(Ce) detectors which will be used in the NANA array. Preliminary GEANT4 simulations of the array's full energy peak efficiency and expected gamma-ray coincidence response are also presented.

  11. Multiple channel programmable coincidence counter

    DOEpatents

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  12. Activation Counter Using Liquid Light-Guide for Dosimetry of Neutron Burst

    NASA Astrophysics Data System (ADS)

    Hayashi, Mitsunobu; Kawarabayashi, Jun; Tomita, Hideki; Asai, Keisuke; Maeda, Shigetaka; Tsuji, Hiroki; Iguchi, Tetsuo

    2009-08-01

    A novel activation counter is proposed using a liquid light-guide (LLG) and a suitable group of activation foils for dosimetry of neutron burst. The LLG that works as a position sensitive radiation detector, has been covered with appropriate activation materials whose threshold energies are different to each other, with a distance of a few tens of cm between them. Since the induced activities of activation foils irradiated by neutrons are detected independently by the LLG, the neutron energy distribution and its flux can be derived from the activities and their neutron cross-sections by numerical de-convolution calculation. The proposed activation counter would be suitable for the dosimetry of intense neutron burst including fast neutrons because the LLG and the activation foils have a high tolerance for radiation damage. We have designed the system configuration of the proposed activation counter. The preliminary results of the responses due to thermal and fast neutrons have been obtained successfully.

  13. BARYON LOADING OF ACTIVE GALACTIC NUCLEUS JETS MEDIATED BY NEUTRONS

    SciTech Connect

    Toma, K.; Takahara, F.

    2012-08-01

    Plasmas of geometrically thick, black hole (BH) accretion flows in active galactic nuclei (AGNs) are generally collisionless for protons, and involve magnetic field turbulence. Under such conditions a fraction of protons can be accelerated stochastically and create relativistic neutrons via nuclear collisions. These neutrons can freely escape from the accretion flow and decay into protons in the dilute polar region above the rotating BH to form relativistic jets. We calculate geometric efficiencies of the neutron energy and mass injections into the polar region, and show that this process can deposit luminosity as high as L{sub j}{approx}2 Multiplication-Sign 10{sup -3} M-dot c{sup 2} and mass loading M-dot{sub j}{approx}6 Multiplication-Sign 10{sup -4} M-dot for the case of the BH mass M {approx} 10{sup 8} M{sub Sun }, where M-dot is the mass accretion rate. The terminal Lorentz factors of the jets are {Gamma} {approx} 3, and they may explain the AGN jets having low luminosities. For higher luminosity jets, which can be produced by additional energy inputs such as Poynting flux, the neutron decay still can be a dominant mass loading process, leading to, e.g., {Gamma} {approx} 50 for L{sub j,tot}{approx}3 Multiplication-Sign 10{sup -2} M-dot c{sup 2}.

  14. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    NASA Astrophysics Data System (ADS)

    Nasrabadi, M. N.; Jalali, M.; Mohammadi, A.

    2007-10-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required.

  15. Optimization of Neutron Activation of Carbon at the NIF

    NASA Astrophysics Data System (ADS)

    Padalino, S.; Polsin, D.; Russ, M.; Sangster, T.; LLE Collaboration

    2011-10-01

    To determine the rhoR of ignition scale targets at the NIF, a carbon activation diagnostic is being developed to measure tertiary neutron yield. It has been shown theoretically that the ratio of the tertiary yield to the primary yield is directly related to rhoR and is nearly independent of hot-spot electron temperature. Due to carbon's 20.3 MeV reaction threshold, it is insensitive to 14.7 MeV primary neutrons which are measured by other means and allows for an unambiguous determination of the tertiary to primary ratio. The energy distribution of the 20 to 30 MeV DT neutrons folded with the (n,2n) cross section in this energy region determines the degree in which carbon will be activated. However, the published 12C(n,2n) cross sections in this energy range are bifurcated. To set upper and lower limits on the sensitivity of the activation diagnostic, a finite element calculation was used to determine the limits of the method's usefulness at differing primary yields and solid angles for the NIF chamber. It was further used to verify MCNPX activation calculations. This work was funded in part by the USDOE through LLE.

  16. Nondestructive neutron activation analysis of volcanic samples: Hawaii

    SciTech Connect

    Zoller, W.H.; Finnegan, D.L.; Crowe, B.

    1986-01-01

    Samples of volcanic emissions have been collected between and during eruptions of both Kilauea and Mauna Loa volcanoes during the last three years. Airborne particles have been collected on Teflon filters and acidic gases on base-impregnated cellulose filters. Chemically neutral gas-phase species are collected on charcoal-coated cellulose filters. The primary analytical technique used is nondestructive neutron activation analysis, which has been used to determine the quantities of up to 35 elements on the different filters. The use of neutron activation analysis makes it possible to analyze for a wide range of elements in the different matrices used for the collection and to learn about the distribution between particles and gas phases for each of the elements.

  17. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    SciTech Connect

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  18. Determination of indium in standard rocks by neutron activation analysis.

    PubMed

    Johansen, O; Steinnes, E

    1966-08-01

    A rapid neutron activation method for the determination of indium in rocks, based on 54 min (116m)In, is described. The method has been applied to a series of geochemical standards including granite G-1 and diabase W-1. The precision is better than +/- 5% for samples containing more than 5 x 10(-10)g indium. Good agreement with previously published values for G-1 and W-1 has been obtained.

  19. Obsidian sources characterized by neutron-activation analysis.

    PubMed

    Gordus, A A; Wright, G A; Griffin, J B

    1968-07-26

    Concentrations of elements such as manganese, scandium, lanthanum, rubidium, samarium, barium, and zirconium in obsidian samples from different flows show ranges of 1000 percent or more, whereas the variation in element content in obsidian samples from a single flow appears to be less than 40 percent. Neutron-activation analysis of these elements, as well as of sodium and iron, provides a means of identifying the geologic source of an archeological artifact of obsidian.

  20. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  1. Neutron radiation tolerance of Au-activated silicon

    NASA Technical Reports Server (NTRS)

    Joyner, W. T.

    1987-01-01

    Double injection devices prepared by the introduction of deep traps, using the Au activation method have been found to tolerate gamma irradiation into the Gigarad (Si) region without significant degradation of operating characteristics. Silicon double injection devices, using deep levels creacted by Au diffusion, can tolerate fast neutron irradiation up to 10 to the 15th n/sq cm. Significant parameter degradation occurs at 10 to the 16th n/sq cm. However, since the actual doping of the basic material begins to change as a result of the transmutation of silicon into phosphorus for neutron fluences greater than 10 to the 17th/sq cm, the radiation tolerance of these devices is approaching the limit possible for any device based on initially doped silicon.

  2. RADSAT Benchmarks for Prompt Gamma Neutron Activation Analysis Measurements

    SciTech Connect

    Burns, Kimberly A.; Gesh, Christopher J.

    2011-07-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. High-resolution gamma-ray spectrometers are used in these applications to measure the spectrum of the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used simulation tool for this type of problem, but computational times can be prohibitively long. This work explores the use of multi-group deterministic methods for the simulation of coupled neutron-photon problems. The main purpose of this work is to benchmark several problems modeled with RADSAT and MCNP to experimental data. Additionally, the cross section libraries for RADSAT are updated to include ENDF/B-VII cross sections. Preliminary findings show promising results when compared to MCNP and experimental data, but also areas where additional inquiry and testing are needed. The potential benefits and shortcomings of the multi-group-based approach are discussed in terms of accuracy and computational efficiency.

  3. Determination of europium content in Li2SiO3(Eu) by neutron activation analysis using Am-Be neutron source.

    PubMed

    Naik, Yeshwant; Tapase, Anant Shamrao; Mhatre, Amol; Datrik, Chandrashekhar; Tawade, Nilesh; Kumar, Umesh; Naik, Haladhara

    2016-12-01

    Circulardiscs of Li2SiO3 doped with europium were prepared and a new activation procedure for the neutron dose estimation in a breeder blanket of fusion reactor is described. The amount of europium in the disc was determined by neutron activation analysis (NAA) using an isotopic neutron source. The average neutron absorption cross section for the reaction was calculated using neutron distribution of the Am-Be source and available neutron absorption cross section data for the (151)Eu(n,γ)(152m)Eu reaction, which was used for estimation of europium in the pallet. The cross section of the elements varies with neutron energy, and the flux of the neutrons in each energy range seen by the nuclei under investigation also varies. Neutron distribution spectrum of the Am-Be source was worked out prior to NAA and the effective fractional flux for the nuclear reaction considered for the flux estimation was also determined.

  4. Neutron activation analysis of certified samples by the absolute method

    NASA Astrophysics Data System (ADS)

    Kadem, F.; Belouadah, N.; Idiri, Z.

    2015-07-01

    The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

  5. A coincidence detection system based on real-time software

    NASA Astrophysics Data System (ADS)

    Ayuso, Sindulfo; José Blanco, Juan; Medina, José; Gómez-Herrero, Raúl; García-Población, Oscar; García Tejedor, Ignacio

    2016-09-01

    Conventional real-time coincidence systems use electronic circuitry to detect coincident pulses (hardware coincidence). In this work, a new concept of coincidence system based on real-time software (software coincidence) is presented. This system is based on the recurrent supervision of the analogue-to-digital converters status, which is described in detail. A prototype has been designed and built using a low-cost development platform. It has been applied to two different experimental sets for cosmic ray muon detection. Experimental muon measurements recorded simultaneously using conventional hardware coincidence and our software coincidence system have been compared, yielding identical results. These measurements have also been validated using simultaneous neutron monitor observations. This new software coincidence system provides remarkable advantages such as higher simplicity of interconnection and adjusting. Thus, our system replaces, at least, three Nuclear Instrument Modules (NIMs) required by conventional coincidence systems, reducing its cost by a factor of 40 and eliminating pulse delay adjustments.

  6. Thermal neutron activation system for confirmatory nonmetallic land mine detection

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Cousins, Thomas; Jones, Trevor; Brisson, Jean R.; Jamieson, Terry; Waller, Ed; LeMay, Francois; Ing, Harry; Clifford, Edward T. H.; Selkirk, Barkley

    1998-09-01

    To detect and locate buried landmines, the Canadian Department of National Defence (DND) is developing a teleoperated, vehicle-mounted, multisensor system called ILDP. In operation, a suite of 4 detectors scan ahead of the vehicle. Their outputs are combined through data fusion to indicate the possibility of a mine at a particular location, within a 30 cm radius. A thermal neutron activation (TNA) sensor, mounted behind the vehicle, is used to confirm the presence of explosives via detection of the 10.83 MeV gamma-ray associated with neutron capture on 14N. The TNA system developed for this uses a 100 microgram 252Cf neutron source surrounded by four 7.62 cm X 7.62 cm NaI(Tl) detectors. A combination of the use of state-of-the art radiation transport codes for design, judicious choice of specialized shielding materials and development of high-rate, fast pulse processing electronics has led to a system which can; (1) confirm the presence of all surface-laid or shallowly-buried anti-tank mines in a few seconds to a minute (depending on mass of explosive) (2) confirm the presence of anti-tank mines down to 20 cm depth in less than 5 minutes. (3) confirm the presence of large (greater than 100 g Nitrogen) anti-personnel mines in less than five minutes (4) operate in adverse climatic conditions. These results have been verified in field trials using the prototype sensor. Work is now ongoing to miniaturize the electronics, make the system robust and easy to use and investigate the use of an electronic neutron generator expected to enter service by the year 2000.

  7. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, James E.

    1987-01-01

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a .sup.3 He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output ) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  8. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, J.E.

    1985-03-05

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a /sup 3/He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  9. Coarse-scaling adjustment of fine-group neutron spectra for epithermal neutron beams in BNCT using multiple activation detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-01-01

    In order to provide an improved and reliable neutron source description for treatment planning in boron neutron capture therapy (BNCT), a spectrum adjustment procedure named coarse-scaling adjustment has been developed and applied to the neutron spectrum measurements of both the Tsing Hua Open-pool Reactor (THOR) epithermal neutron beam in Taiwan and the High Flux Reactor (HFR) in The Netherlands, using multiple activation detectors. The coarse-scaling adjustment utilizes a similar idea as the well-known two-foil method, which adjusts the thermal and epithermal neutron fluxes according to the Maxwellian distribution for thermal neutrons and 1/ E distribution over the epithermal neutron energy region. The coarse-scaling adjustment can effectively suppress the number of oscillations appearing in the adjusted spectrum and provide better smoothness. This paper also presents a sophisticated 9-step process utilizing twice the coarse-scaling adjustment which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with satisfactory continuity and excellently matched reaction rates between measurements and calculation. The spectrum adjustment algorithm applied in this study is the same as the well-known SAND-II.

  10. Neutron activation analysis of total diet food composites for iodine

    SciTech Connect

    Allegrini, M.; Boyer, K.W.; Tanner, J.T.

    1981-09-01

    The iodine content of Total Diet food composites was measured using neutron activation analysis. The interfering element chlorine was separated using a modified combustion and gas phase procedure. The average recovery was 94.8% (standard deviation 2.9) for the 10 matrices that were tested. In addition, iodine was measured in National Bureau of Standards Standard Reference Materials, which have no certified values for this element. Preliminary findings of iodine content of adult Total Diet market baskets collected during Fiscal Year 1980 in different regions of the United States ranged from 292 to 901 ..mu..g/day for a 2900 kcal intake.

  11. Instrumental neutron activation analysis of archaeological ceramics: scale and interpretation.

    PubMed

    Bishop, Ronald L; Blackman, M James

    2002-08-01

    Instrumental neutron activation analysis has become a standard technique for the study of the production and distributional patterns of archaeological pottery. Questions once framed within the context of long distance exchange are now focused on issues of subregional and even intrasite levels. The increasing specificity at which these questions are poised requires a high level of analytical precision as we seek to observe statistically and archaeologically significant differences among groups of pottery produced from geographically closely spaced resources or the compositional differences that arise from production behaviors of the producers of the pottery.

  12. Coincidence Proportional Counter

    DOEpatents

    Manley, J H

    1950-11-21

    A coincidence proportional counter having a plurality of collecting electrodes so disposed as to measure the range or energy spectrum of an ionizing particle-emitting source such as an alpha source, is disclosed.

  13. Activation of cobalt by neutrons from the Hiroshima bomb

    SciTech Connect

    Kerr, G.D.; Dyer, F.F.; Emery, J.F.; Pace, J.V. III ); Brodzinski, R.L. ); Marcum, J. )

    1990-02-01

    A study has been completed of cobalt activation in samples from two new locations in Hiroshima. The samples consisted of a piece of steel from a bridge located at a distance of about 1300 m from the hypocenter and pieces of both steel and concrete from a building located at approximately 700 m. The concrete was analyzed to obtain information needed to calculate the cobalt activation in the two steel samples. Close agreement was found between calculated and measured values for cobalt activation of the steel sample from the building at 700 m. It was found, however, that the measured values for the bridge sample at 1300 m were approximately twice the calculated values. Thus, the new results confirm the existence of a systematic error in the transport calculations for neutrons from the Hiroshima bomb. 52 refs., 32 figs., 16 tabs.

  14. Neutron flux measurement using activated radioactive isotopes at the Baksan underground scintillation telescope

    NASA Astrophysics Data System (ADS)

    Kochkarov, M. M.; Alikhanov, I. A.; Boliev, M. M.; Dzaparova, I. M.; Novoseltseva, R. V.; Novoseltsev, Yu. F.; Petkov, V. B.; Volchenko, V. I.; Volchenko, G. V.; Yanin, A. F.

    2016-11-01

    Preliminary results of a neutron background measurement at the Baksan underground scintillation telescope (BUST) are presented. The external planes of the BUST are fully covered with standard scintillation detectors shielding the internal planes and suppressing thus background events due to cosmogenic and local radioactivity. The shielded internal planes were used as target for the neutron flux registration. The experimental method is based on the delayed coincidences between signals from any of the BUST counters. It is assumed that the first signal is due to inelastic interaction of a neutron with the organic scintillator, while the second signal comes from the decay of an unstable radioactive isotope formed when the fast neutron interacts with the 12C nuclei. Using the Monte-Carlo method (GEANT4) we also simulated propagation of neutrons through a layer of scintillator. The experimentally found muon induced neutron flux is j =1.3 -0.3 +0.7 ×10-10cm-2s-1 for neutron energies E ≥ 22MeV, which is in a qualitative agreement with similar measurements of other underground laboratories as well as with predictions of the GEANT4.

  15. Estimation of the activity generated by neutron activation in control rods of a BWR.

    PubMed

    Ródenas, José; Gallardo, Sergio; Abarca, Agustín; Juan, Violeta

    2010-01-01

    Control rods are activated by neutron reactions into the reactor. The activation is produced mainly in stainless steel and its impurities. The dose produced by this activity is not important inside the reactor, but it has to be taken into account when the rod is withdrawn from the reactor. Activation reactions produced have been modelled by the MCNP5 code based on the Monte Carlo method. The code gives the number of reactions that can be converted into activity.

  16. Instrumental neutron activation analysis of sectioned hair strands for arsenic

    SciTech Connect

    Guinn, V.P.

    1996-12-31

    Instrumental neutron activation analysis (INAA) is a valuable and proven method for the quantitative analysis of sectioned human head hair specimens for arsenic - and, if arsenic is found to be present at high concentrations, the approximate times when it was ingested. Reactor-flux thermal-neutron activation of the hair samples produces 26.3-h {sup 76}As, which is then detected by germanium gamma-ray spectrometry, measuring the 559.1-keV gamma-ray peak of {sup 76}As. Even normal levels of arsenic in hair, in the range of <1 ppm up to a few parts per million of arsenic can be measured - and the far higher levels associated with large internal doses of arsenic, levels approaching or exceeding 100 ppm arsenic, are readily and accurately measurable. However, all phases of forensic investigations of possible chronic (or in some cases, acute) arsenic poisoning are important, i.e., not just the analysis phase. All of these phases are discussed in this paper, based on the author`s experience and the experience of others, in criminal cases. Cases of chronic arsenic poisoning often reveal a series of two to four doses, perhaps a few months apart, with increasing doses.

  17. Prompt-gamma neutron activation analysis system design: effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation analysis (PGNAA) is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV, and D-T wi...

  18. Prompt-gamma neutron activation analysis system design: Effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...

  19. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    SciTech Connect

    Baljinnyam, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.; Jugder, B.; Norov, N.

    2011-06-28

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves)(0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the ''Reference plant? data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  20. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    NASA Astrophysics Data System (ADS)

    Baljinnyam, N.; Jugder, B.; Norov, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.

    2011-06-01

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves) (0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the "Reference plant» data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  1. Neutron activation analysis for the demonstration of amphibolite rock-weathering activity of a yeast.

    PubMed

    Rades-Rohkohl, E; Hirsch, P; Fränzle, O

    1979-12-01

    Neutron activation analysis was employed in a survey of weathering abilities of rock surface microorganisms. A yeast isolated from an amphibolite of a megalithic grave was found actively to concentrate, in media and in or on cells, iron and other elements when grown in the presence of ground rock. This was demonstrated by comparing a spectrum of neutron-activated amphibolite powder (particle size, 50 to 100 mum) with the spectra of neutron-activated, lyophilized yeast cells which had grown with or without amphibolite powder added to different media. The most active yeast (IFAM 1171) did not only solubilize Fe from the rock powder, but significant amounts of Co, Eu, Yb, Ca, Ba, Sc, Lu, Cr, Th, and U were also mobilized. The latter two elements occurred as natural radioactive isotopes in this amphibolite. When the yeast cells were grown with neutron-activated amphibolite, the cells contained the same elements. Furthermore, the growth medium contained Fe, Co, and Eu which had been solubilized from the amphibolite. This indicates the presence, in this yeast strain, of active rockweathering abilities as well as of uptake mechanisms for solubilized rock components.

  2. Neutron Activation Analysis for the Demonstration of Amphibolite Rock-Weathering Activity of a Yeast

    PubMed Central

    Rades-Rohkohl, E.; Hirsch, P.; Fränzle, O.

    1979-01-01

    Neutron activation analysis was employed in a survey of weathering abilities of rock surface microorganisms. A yeast isolated from an amphibolite of a megalithic grave was found actively to concentrate, in media and in or on cells, iron and other elements when grown in the presence of ground rock. This was demonstrated by comparing a spectrum of neutron-activated amphibolite powder (particle size, 50 to 100 μm) with the spectra of neutron-activated, lyophilized yeast cells which had grown with or without amphibolite powder added to different media. The most active yeast (IFAM 1171) did not only solubilize Fe from the rock powder, but significant amounts of Co, Eu, Yb, Ca, Ba, Sc, Lu, Cr, Th, and U were also mobilized. The latter two elements occurred as natural radioactive isotopes in this amphibolite. When the yeast cells were grown with neutron-activated amphibolite, the cells contained the same elements. Furthermore, the growth medium contained Fe, Co, and Eu which had been solubilized from the amphibolite. This indicates the presence, in this yeast strain, of active rockweathering abilities as well as of uptake mechanisms for solubilized rock components. PMID:16345472

  3. CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Takada, M; Nunomiya, T; Nakamura, T; Matsumoto, T; Masuda, A

    2016-09-01

    A thin silicon sensor has been developed for active neutron personal dosemeters for use by aircrews and first responders. This thin silicon sensor is not affected by the funneling effect, which causes detection of cosmic protons and over-response to cosmic neutrons. There are several advantages to the thin silicon sensor: a decrease in sensitivity to gamma rays, an improvement of the energy detection limit for neutrons down to 0.8 MeV and an increase in the sensitivity to fast neutrons. Neutron response functions were experimentally obtained using 2.5 and 5 MeV monoenergy neutron beams and a (252)Cf neutron source. Simulation results using the Monte Carlo N-Particle transport code agree quite well with the experimental ones when an energy deposition region shaped like a circular truncated cone is used in place of a cylindrical region.

  4. Active detection of shielded SNM with 60-keV neutrons

    SciTech Connect

    Hagmann, C; Dietrich, D; Hall, J; Kerr, P; Nakae, L; Newby, R; Rowland, M; Snyderman, N; Stoeffl, W

    2008-07-08

    Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimental results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.

  5. Measurements of the neutron activation cross sections for Bi and Co at 386 MeV.

    PubMed

    Yashima, H; Sekimoto, S; Ninomiya, K; Kasamatsu, Y; Shima, T; Takahashi, N; Shinohara, A; Matsumura, H; Satoh, D; Iwamoto, Y; Hagiwara, M; Nishiizumi, K; Caffee, M W; Shibata, S

    2014-10-01

    Neutron activation cross sections for Bi and Co at 386 MeV were measured by activation method. A quasi-monoenergetic neutron beam was produced using the (7)Li(p,n) reaction. The energy spectrum of these neutrons has a high-energy peak (386 MeV) and a low-energy tail. Two neutron beams, 0° and 25° from the proton beam axis, were used for sample irradiation, enabling a correction for the contribution of the low-energy neutrons. The neutron-induced activation cross sections were estimated by subtracting the reaction rates of irradiated samples for 25° irradiation from those of 0° irradiation. The measured cross sections were compared with the findings of other studies, evaluated in relation to nuclear data files and the calculated data by Particle and Heavy Ion Transport code System code.

  6. Fission measurements with PPAC detectors using a coincidence technique

    SciTech Connect

    Paradela, C.; Duran, I.; Tarrio, D.; Audouin, L.; Tassan-Got, L.; Stephan, C.

    2011-07-01

    A fission detection setup based on Parallel Plate Avalanche Counters (PPAC) has been constructed and used at the CERN n-TOF facility. The setup takes advantage of the coincidence detection of both fission fragments to discriminate the background reactions produced by high energy neutrons and it allows obtaining neutron-induced fission cross section up to 1 GeV. (authors)

  7. Development of a liquid scintillator neutron multiplicity counter (LSMC)

    NASA Astrophysics Data System (ADS)

    Frame, Katherine; Clay, Willam; Elmont, Tim; Esch, Ernst; Karpius, Peter; MacArthur, Duncan; McKigney, Edward; Santi, Peter; Smith, Morag; Thron, Jonathan; Williams, Richard

    2007-08-01

    A new neutron multiplicity counter is being developed that utilizes the fast response of liquid scintillator detectors. The ability to detect fast (vs. moderated) fission neutrons makes possible a coincidence gate of the order of tens of nanoseconds (vs. tens of microseconds). A neutron counter with such a narrow gate will be virtually insensitive to accidental coincidences, making it possible to measure items with a high single neutron background to greater accuracy in less time. This includes impure Pu items with high (α, n) rates as well as items of low-mass HEU where a strong active interrogation source is needed. Liquid scintillator detectors also allow for energy discrimination between interrogation source neutrons and fission neutrons, allowing for even greater assay sensitivity. Designing and building a liquid scintillator multiplicity counter (LSMC) requires a symbiotic effort of simulation and experiment to optimize performance and mitigate hardware costs in the final product. We present preliminary Monte-Carlo studies using the GEANT toolkit.

  8. Neutron activation analysis of stoney spherules from a marine sediment sample

    NASA Technical Reports Server (NTRS)

    Millar, H. T., Jr.; Englert, P.

    1984-01-01

    The identification of extraterrestrial material in samples collected at the surface of the Earth is discussed. Criteria were established for black magnetic spherules which involve the presence of: Fe, Ni, and Co in iron meteoritic ratios, wustite, and Fe-Ni metal while reliable criteria for stoney spherules are not well established. Neutron activation analysis was performed on eight stony spherules separated from the same marine sediment used by Millard and Finkelman. The 22 elements were determined by Compton suppression and triple coincidence gamma counting. It is found that Fe, Mg, Al, Ni, Cr, Co, Ir, and Sc are the best discriminators between chondritic and terrestrial compositions. Three of the spherules have compositions very close to chondrites and of these, two contain 0.5 and 0.25 ppm Ir. The other five spherules contain much less than chondritic concentrations of Ni but this element may be segregated and lost during ablation of the parent meteorite. One of these five low Ni spherules contains 2.9 ppm Ir while the other four contain less than 0.05 ppm Ir.

  9. Neutron activation analysis of biological materials by the monostandard method.

    PubMed

    Takeuchi, T; Shinogi, M

    1979-12-01

    Instrumental neutron activation analysis by the monostandard method has been applied to the analyses of biological NBS standard reference materials; 1571 Orchard Leaves and 1577 Bovine Liver. Aluminum foils containing 0.100% gold or 2.00% cobalt were used as the monostandards. The gamma-ray spectral data were recorded on punched paper tape and were analyzed by a computer assisted data processing. The following 25 elements were determined: Al, Ca, Cl Cu, Mg, Mn, V (by short period irradiation), As, Ba, Br, Co, Cr, Cs, Eu, Fe, Hg, K, La, Na, Rb, Sb, Sc, Se, Sm and Zn (by long period irradiation). The results were compared with the certified values by NBS and the reported values in literatures to prove the reliability and accuracy of the monostandard method.

  10. Clinical applications of in vivo neutron-activation analysis

    SciTech Connect

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress.

  11. In-vivo neutron activation analysis: principles and clinical applications

    SciTech Connect

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress. It seems likely that by the end of this century there will have been significant progress with this research tool, and exciting insights obtained into the nature and dynamics of human body composition.

  12. A compact in vivo neutron activation analysis system to quantify manganese in human hand bone

    NASA Astrophysics Data System (ADS)

    Liu, Yingzi

    As an urgent issue of correlating cumulative manganese (Mn) exposure to neurotoxicity, bone has emerged as an attractive biomarker for long-term Mn deposition and storage. A novel Deuterium-Deuterium (DD) neutron generator irradiation system has been simulated and constructed, incorporating moderator, reflector and shielding. This neutron activation analysis (NAA) irradiation assembly presents several desirable features, including high neutron flux, improved detection limit and acceptable neutron & photon dose, which would allow it be ready for clinical measurement. Key steps include simulation modeling and verifying, irradiation system design, detector characterization, and neutron flux and dose assessment. Activation foils were also analyzed to reveal the accurate neutron spectrum in the irradiation cave. The detection limit with this system is 0.428 ppm with 36 mSv equivalent hand dose and 52 microSv whole body effective dose.

  13. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  14. Neutron activation analysis detection limits using {sup 252}Cf sources

    SciTech Connect

    DiPrete, D.P.; Sigg, R.A.

    2000-07-01

    The Savannah River Technology Center (SRTC) developed a neutron activation analysis (NAA) facility several decades ago using low-flux {sup 252}Cf neutron sources. Through this time, the facility has addressed areas of applied interest in managing the Savannah River Site (SRS). Some applications are unique because of the site's operating history and its chemical-processing facilities. Because sensitivity needs for many applications are not severe, they can be accomplished using an {approximately}6-mg {sup 252}Cf NAA facility. The SRTC {sup 252}Cf facility continues to support applied research programs at SRTC as well as other SRS programs for environmental and waste management customers. Samples analyzed by NAA include organic compounds, metal alloys, sediments, site process solutions, and many other materials. Numerous radiochemical analyses also rely on the facility for production of short-lived tracers, yielding by activation of carriers and small-scale isotope production for separation methods testing. These applications are more fully reviewed in Ref. 1. Although the flux [{approximately}2 x 10{sup 7} n/cm{sup 2}{center_dot}s] is low relative to reactor facilities, more than 40 elements can be detected at low and sub-part-per-million levels. Detection limits provided by the facility are adequate for many analytical projects. Other multielement analysis methods, particularly inductively coupled plasma atomic emission and inductively coupled plasma mass spectrometry, can now provide sensitivities on dissolved samples that are often better than those available by NAA using low-flux isotopic sources. Because NAA allows analysis of bulk samples, (a) it is a more cost-effective choice when its sensitivity is adequate than methods that require digestion and (b) it eliminates uncertainties that can be introduced by digestion processes.

  15. Determination of hydrogen in niobium by cold neutron prompt gamma ray activation analysis and neutron incoherent scattering

    SciTech Connect

    R.L. Paul; H.H. Cheu-Maya; G.R. Myneni

    2002-11-01

    The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.

  16. Tables for simplifying calculations of activities produced by thermal neutrons

    USGS Publications Warehouse

    Senftle, F.E.; Champion, W.R.

    1954-01-01

    The method of calculation described is useful for the types of work of which examples are given. It is also useful in making rapid comparison of the activities that might be expected from several different elements. For instance, suppose it is desired to know which of the three elements, cobalt, nickel, or vanadium is, under similar conditions, activated to the greatest extent by thermal neutrons. If reference is made to a cross-section table only, the values may be misleading unless properly interpreted by a suitable comparison of half-lives and abundances. In this table all the variables have been combined and the desired information can be obtained directly from the values of A 3??, the activity produced per gram per second of irradiation, under the stated conditions. Hence, it is easily seen that, under similar circumstances of irradiation, vanadium is most easily activated even though the cross section of one of the cobalt isotopes is nearly five times that of vanadium and the cross section of one of the nickel isotopes is three times that of vanadium. ?? 1954 Societa?? Italiana di Fisica.

  17. LPA receptor activity is basal specific and coincident with early pregnancy and involution during mammary gland postnatal development

    PubMed Central

    Acosta, Deanna; Bagchi, Susmita; Broin, Pilib Ó; Hollern, Daniel; Racedo, Silvia E.; Morrow, Bernice; Sellers, Rani S.; Greally, John M.; Golden, Aaron; Andrechek, Eran; Wood, Teresa; Montagna, Cristina

    2016-01-01

    During pregnancy, luminal and basal epithelial cells of the adult mammary gland proliferate and differentiate resulting in remodeling of the adult gland. While pathways that control this process have been characterized in the gland as a whole, the contribution of specific cell subtypes, in particular the basal compartment, remains largely unknown. Basal cells provide structural and contractile support, however they also orchestrate the communication between the stroma and the luminal compartment at all developmental stages. Using RNA-seq, we show that basal cells are extraordinarily transcriptionally dynamic throughout pregnancy when compared to luminal cells. We identified gene expression changes that define specific basal functions acquired during development that led to the identification of novel markers. Enrichment analysis of gene sets from 24 mouse models for breast cancer pinpoint to a potential new function for insulin-like growth factor 1 (Igf1r) in the basal epithelium during lactogenesis. We establish that β-catenin signaling is activated in basal cells during early pregnancy, and demonstrate that this activity is mediated by lysophosphatidic acid receptor 3 (Lpar3). These findings identify novel pathways active during functional maturation of the adult mammary gland. PMID:27808166

  18. Relief learning requires a coincident activation of dopamine D1 and NMDA receptors within the nucleus accumbens.

    PubMed

    Bergado Acosta, Jorge R; Kahl, Evelyn; Kogias, Georgios; Uzuneser, Taygun C; Fendt, Markus

    2017-03-01

    Relief learning is the association of a stimulus with the offset of an aversive event. Later, the now conditioned relief stimulus induces appetitive-like behavioral changes. We previously demonstrated that the NMDA receptors within the nucleus accumbens (NAC) are involved in relief learning. The NAC is also important for reward learning and it has been shown that reward learning is mediated by an interaction of accumbal dopamine and NMDA glutamate receptors. Since conditioned relief has reward-like properties, we hypothesized that (a) acquisition of relief learning requires the activation of dopamine D1 receptors in the NAC, and (b) if D1 receptors are involved in this process as expected, a concurrent dopamine D1 and NMDA receptor activation may mediate this learning. The present study tested these hypotheses. Therefore, rats received intra-NAC injections of the dopamine D1 receptor antagonist SCH23390 and the NMDA antagonist AP5, either separately or together, at different time points of a relief conditioning procedure. First, we showed that SCH23390 dose-dependently blocked acquisition and the expression of conditioned relief. Next, we demonstrated that co-injections of SCH23390 and AP5 into the NAC, at doses that were ineffective when applied separately, blocked acquisition but not consolidation or expression of relief learning. Notably, neither of the injections affected the locomotor response of the animals to the aversive stimuli suggesting that their perception is not changed. This data indicates that a co-activation of dopamine D1 and NMDA receptors in the NAC is required for acquisition of relief learning.

  19. Real-Time Active Cosmic Neutron Background Reduction Methods

    SciTech Connect

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray-induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

  20. A fast neutron spectrum unfolding method using activation measurements and its application to restoration of a thermonuclear reactor blanket neutron spectrum

    NASA Astrophysics Data System (ADS)

    Novikov, V. M.; Shkurpelov, A. A.; Zagryadsky, V. A.; Chuvilin, D. Yu.; Shmonin, Yu. V.

    1982-12-01

    This article describes a fast neutron spectrum unfolding program. The program takes into account a priori information about the neutron spectrum, the experimental values of activation integrals errors and activation detector cross sections errors. The usefulness of the unfolding program was demonstrated by its application to the determination of neutron spectra from 1 to 14 MeV in the molten-salt blanket model of a thermonuclear reactor.

  1. Characterization of indoor cooking aerosol using neutron activation analysis

    SciTech Connect

    Wu, D.; Landsberger, S.; Larson, S. )

    1993-01-01

    Suspended particles in air are potentially harmful to human health, depending on their sizes and chemical composition. Residential indoor particles mainly come from (a) outdoor sources that are transported indoors, (b) indoor dust that is resuspended, and (c) indoor combustion sources, which include cigarette smoking, cooking, and heating. Jedrychowski stated that chronic phlegm in elderly women was strongly related to the cooking exposure. Kamens et al. indicated that cooking could generate small particles (<0.1 [mu]m), and cooking one meal could contribute [approximately]5 to 18% of total daytime particle volume exposure. Although cooking is a basic human activity, there are not many data available on the properties of particles generated by this activity. Some cooking methods, such as stir-frying and frying, which are the most favored for Chinese and other Far East people, generate a large quantity of aerosols. This research included the following efforts: 1. investigating particle number concentrations, distributions, and their variations with four different cooking methods and ventilation conditions; 2. measuring the chemical composition of cooking aerosol samples by instrumental neutron activation analysis.

  2. Active Neutron Interrogation of Non-Radiological Materials with NMIS

    SciTech Connect

    Walker, Mark E; Mihalczo, John T

    2012-02-01

    The Nuclear Materials Identification System (NMIS) at Oak Ridge National Laboratory (ORNL), although primarily designed for analyzing special nuclear material, is capable of identifying nonradiological materials with a wide range of measurement techniques. This report demonstrates four different measurement methods, complementary to fast-neutron imaging, which can be used for material identification: DT transmission, DT scattering, californium transmission, and active time-tagged gamma spectroscopy. Each of the four techniques was used to evaluate how these methods can be used to identify four materials: aluminum, polyethylene, graphite, and G-10 epoxy. While such measurements have been performed individually in the past, in this project, all four measurements were performed on the same set of materials. The results of these measurements agree well with predicted results. In particular, the results of the active gamma spectroscopy measurements demonstrate the technique's applicability in a future version of NMIS which will incorporate passive and active gamma-ray spectroscopy. This system, designated as a fieldable NMIS (FNMIS), is under development by the US Department of Energy Office of Nuclear Verification.

  3. Onset of Pup Locomotion Coincides with Loss of NR2C/D-Mediated Cortico-Striatal EPSCs and Dampening of Striatal Network Immature Activity

    PubMed Central

    Dehorter, Nathalie; Michel, François J.; Marissal, Thomas; Rotrou, Yann; Matrot, Boris; Lopez, Catherine; Humphries, Mark D.; Hammond, Constance

    2011-01-01

    Adult motor coordination requires strong coincident cortical excitatory input to hyperpolarized medium spiny neurons (MSNs), the dominant neuronal population of the striatum. However, cortical and subcortical neurons generate during development large ongoing patterns required for activity-dependent construction of networks. This raises the question of whether immature MSNs have adult features from early stages or whether they generate immature patterns that are timely silenced to enable locomotion. Using a wide range of techniques including dynamic two-photon imaging, whole cell or single-channel patch clamp recording in slices from Nkx2.1-GFP mice, we now report a silencing of MSNs that timely coincides with locomotion. At embryonic stage (as early as E16) and during early postnatal days, genetically identified MSNs have a depolarized resting membrane potential, a high input resistance and lack both inward rectifying (IKIR) and early slowly inactivating (ID) potassium currents. They generate intrinsic voltage-gated clustered calcium activity without synaptic components. From postnatal days 5–7, the striatal network transiently generates synapse-driven giant depolarizing potentials when activation of cortical inputs evokes long lasting EPSCs in MSNs. Both are mediated by NR2C/D-receptors. These immature features are abruptly replaced by adult ones before P10: MSNs express IKIR and ID and generate short lasting, time-locked cortico-striatal AMPA/NMDA EPSCs with no NR2C/D component. This shift parallels the onset of quadruped motion by the pup. Therefore, MSNs generate immature patterns that are timely shut off to enable the coordination of motor programs. PMID:22125512

  4. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    SciTech Connect

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  5. Search for reaction-in-flight neutrons using thulium activation at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Grim, Gary; Rundberg, Robert; Tonchev, Anton; Fowler, Malcolm; Wilhelmy, Jerry; Archuleta, Tom; Bionta, Richard; Boswell, Mitzi; Gostic, Julie; Griego, Jeff; Knittel, Kenn; Klein, Andi; Moody, Ken; Shaughnessy, Dawn; Wilde, Carl; Yeamans, Charles

    2013-10-01

    We report on measurements of reaction-in-flight (RIF) neutrons at the National Ignition Facility. RIF neutrons are produced in cryogenically layered implision by up-scattered deuterium, or tritium ions that undergo subsequent fusion reactions. The rate of RIF neutron production is proportional to the fuel areal density (| | R) and ion-stopping length in the dense fuel assembly. Thus, RIF neutrons provide information on charge particle stopping in a strongly coupled plasma, where perturbative modeling breaks down. To measure RIF neutrons, a set of thulium activation foils was placed 50 cm from layered cryogenic implosions at the NIF. The reaction 169Tm(n,3n)167Tm has a neutron kinetic energy threshold of 14.96 MeV. We will present results from initial experiments performed during the spring of 2013. Prepared by LANL under Contract DE-AC-52-06-NA25396, TSPA, LA-UR-13-22085.

  6. Measurements of activation induced by environmental neutrons using ultra low-level gamma-ray spectrometry.

    PubMed

    Martínez Canet, M J; Hult, M; Köhler, M; Johnston, P N

    2000-03-01

    The flux of environmental neutrons is being studied by activation of metal discs of selected elements. Near the earth's surface the total neutron flux is in the order of 10(-2) cm(-2)s(-1), which gives induced activities of a few mBq in the discs. Initial results from this technique, involving activation at ground level for several materials (W, Au, Ta, In, Re, Sm, Dy and Mn) and ultra low-level gamma-ray spectrometry in an underground laboratory located at 500 m.w.e., are presented. Diffusion of environmental neutrons in water is also measured by activation of gold at different depths.

  7. FY16 Status Report on NEAMS Neutronics Activities

    SciTech Connect

    Lee, C. H.; Shemon, E. R.; Smith, M. A.; Jung, Y. S.

    2016-09-30

    The goal of the NEAMS neutronics effort is to develop a neutronics toolkit for use on sodium-cooled fast reactors (SFRs) which can be extended to other reactor types. The neutronics toolkit includes the high-fidelity deterministic neutron transport code PROTEUS and many supporting tools such as a cross section generation code MC2-3, a cross section library generation code, alternative cross section generation tools, mesh generation and conversion utilities, and an automated regression test tool. The FY16 effort for NEAMS neutronics focused on supporting the release of the SHARP toolkit and existing and new users, continuing to develop PROTEUS functions necessary for performance improvement as well as the SHARP release, verifying PROTEUS against available existing benchmark problems, and developing new benchmark problems as needed. The FY16 research effort was focused on further updates of PROTEUS-SN and PROTEUS-MOCEX and cross section generation capabilities as needed.

  8. Triple Coincidence Radioxenon Detector

    SciTech Connect

    McIntyre, Justin I.; Aalseth, Craig E.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Morris, Scott J.; Reeder, Paul L.

    2004-09-22

    The Automated Radioxenon Sampler/Analyzer (ARSA) built by Pacific Northwest National Laboratory (PNNL) is on e of the world’s most sensitive systems for monitoring the four radioxenon isotopes 133Xe, 133mXE, 131mXe and 135Xe. However, due to size, weight and power specifications appropriate to meet treaty-monitoring requirements; the ARSA is unsuitable for rapid deployment using modest transportation means. To transition this technology to a portable unit can be easily and rapidly deployed can be achieved by significant reductions in size, weight and power consumption if concentration were not required. As part of an exploratory effort to reduce both the size of the air sample and the gas processing requirement PNNL has developed an experimental nuclear detector to test and qualify the use of triple coincidence signatures (beta, conversion electron, x-ray) from two of the radioxenon isotopes (135Xe and 133Xe) as well as the more traditional beta-gamma coincidence signatures used by the ARSA system. The additional coincidence requirement allows for reduced passive shielding, and makes it possible for unambiguous detection of 133Xe and 153Xe in the presence of high 222Rn backgrounds. This paper will discuss the experimental setup and the results obtained for a 133Xe sample with and without 222Rn as an interference signature.

  9. A laser-induced repetitive fast neutron source applied for gold activation analysis

    SciTech Connect

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-15

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 Multiplication-Sign 10{sup 5} n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He{sup 4} nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T{sup 3}.

  10. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...

  11. Feasibility of culvert IED detection using thermal neutron activation

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; McFee, John E.; Clifford, Edward T. H.; Andrews, Hugh Robert; Mosquera, Cristian; Roberts, William C.

    2012-06-01

    Bulk explosives hidden in culverts pose a serious threat to the Canadian and allied armies. Culverts provide an opportunity to conceal insurgent activity, avoid the need for detectable surface disturbances, and limit the applicability of conventional sub-surface sensing techniques. Further, in spite of the large masses of explosives that can be employed, the large sensor{target separation makes detection of the bulk explosive content challeng- ing. Defence R&D Canada { Sueld and Bubble Technology Industries have been developing thermal neutron activation (TNA) sensors for detection of buried bulk explosives for over 15 years. The next generation TNA sensor, known as TNA2, incorporates a number of improvements that allow for increased sensor-to-target dis- tances, making it potentially feasible to detect large improvised explosive devices (IEDs) in culverts using TNA. Experiments to determine the ability of TNA2 to detect improvised explosive devices in culverts are described, and the resulting signal levels observed for relevant quantities of explosives are presented. Observations conrm that bulk explosives detection using TNA against a culvert-IED is possible, with large charges posing a detection challenge at least as dicult as that of a deeply buried anti-tank landmine. Because of the prototype nature of the TNA sensor used, it is not yet possible to make denitive statements about the absolute sensitivity or detection time. Further investigation is warranted.

  12. Field test and evaluation of the IAEA coincidence collar for the measurement of unirradiated BWR fuel assemblies

    SciTech Connect

    Menlove, H.O.; Keddar, A.

    1982-12-01

    The neutron coincidence counter has been field tested and evaluated for the measurement of boiling-water-reactor (BWR) fuel assemblies at the ASEA-ATOM Fuel Fabrication Facility. The system measures the /sup 235/U content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The /sup 238/U content is measured in the passive mode without the AmLi neutron interrogatioin source. The field tests included both standard production movable fuel rods to investigate enrichment and absorber variations. Results gave a response standard deviation of 0.9% for the active case and 2.1% for the passive case in 1000-s measurement times. 10 figures, 2 tables.

  13. Phosphorus activation neutron dosimetry and its application to an 18-MV radiotherapy accelerator.

    PubMed

    Bading, J R; Zeitz, L; Laughlin, J S

    1982-01-01

    Neutron fluxes and dose rates in and near the 18-MV x-ray beam of a Therac-20 accelerator were determined with measured activities from the nuclear reactions 31P(n, rho)31Si (fast neutrons) and 31P(n, gamma)32P (thermal neutrons), published cross sections, and neutron energy spectra from Monte Carlo calculations. Measurements were made in the patient plane in air and at a 10-cm depth in a tissue-similar phantom, and in a plane containing the x-ray target. Orthophosphoric acid solution was identified as a suitable and convenient phosphorus dosimeter material. In the 31P activation method, fluxes and dose rates are determined as the product of measured saturation activity per 31P atom and a conversion factor, which depends on the shape of the assumed neutron spectrum. For fast neutrons, which deliver most of the dose, the accuracy error in the saturation activity determinations was shown to be approximately less than 25%. An inconsistency resulting from neglect of the accelerator's adjustable collimator in the Monte Carlo calculations was demonstrated between the measured saturation activities and the theoretical neutron spectra. The maximum neutron dose equivalent rate observed was 5.9 mSv/Gy of x-ray absorbed dose at the accelerator calibration point. Surface dose equivalent rates of the present study are less than those of fluxmeter and remmeter studies at sites outside Therac-20 treatment fields by as much as factors of 2.4 and 2.8, respectively. The phantom study showed that at 18 MV internally produced neutrons have a negligible effect on the neutron field within the patient.

  14. Manufacture and properties of erythromycin beads containing neutron-activated erbium-171

    SciTech Connect

    Parr, A.F.; Digenis, G.A.; Sandefer, E.P.; Ghebre-Sellassie, I.; Iyer, U.; Nesbitt, R.U.; Scheinthal, B.M. )

    1990-03-01

    To evaluate the effects of a neutron activation radiolabeling technique on an enteric-coated multiparticulate formulation of erythromycin, test quantities were produced under industrial pilot scale conditions. The pellets contained the stable isotope erbium oxide (Er-170), which was later converted by neutron activation into the short-lived gamma ray-emitting radionuclide, erbium-171. In vitro studies indicated that the dissolution profile, acid resistance, and enteric-coated surface of the pellets were minimally affected by the irradiation procedure. Antimicrobial potency was also unaffected, as determined by microbiological assay. Neutron activation thus appears to simplify the radiolabeling of complex pharmaceutical dosage forms for in vivo study by external gamma scintigraphy.

  15. Neutron intensity monitor with activation foil for p-Li neutron source for BNCT--Feasibility test of the concept.

    PubMed

    Murata, Isao; Otani, Yuki; Sato, Fuminobu

    2015-12-01

    Proton-lithium (p-Li) reaction is being examined worldwide as a candidate nuclear production reaction for accelerator based neutron source (ABNS) for BNCT. In this reaction, the emitted neutron energy is not so high, below 1 MeV, and especially in backward angles the energy is as low as about 100 keV. The intensity measurement was thus known to be difficult so far. In the present study, a simple method was investigated to monitor the absolute neutron intensity of the p-Li neutron source by employing the foil activation method based on isomer production reactions in order to cover around several hundreds keV. As a result of numerical examination, it was found that (107)Ag, (115)In and (189)Os would be feasible. Their features found out are summarized as follows: (107)Ag: The most convenient foil, since the half life is short. (115)In: The accuracy is the best at 0°, though it cannot be used for backward angles. And (189)Os: Suitable nuclide which can be used in backward angles, though the gamma-ray energy is a little too low. These would be used for p-Li source monitoring depending on measuring purposes in real BNCT scenes.

  16. In-situ soil composition and moisture measurement by surface neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Waring, C.; Smith, C.; Marks, A.

    2009-04-01

    Neutron activation analysis is widely known as a laboratory technique dependent upon a nuclear reactor to provide the neutron flux and capable of precise elemental analysis. Less well known in-situ geochemical analysis is possible with isotopic (252Cf & 241Am) or compact accelerator (D-T, D-D fusion reaction) neutron sources. Prompt gamma neutron activation analysis (PGNAA) geophysical borehole logging has been applied to mining issues for >15 years (CSIRO) using isotopic neutron sources and more recently to environmental and hydro-geological applications by ANSTO. Similarly, sophisticated geophysical borehole logging equipment based on inelastic neutron scattering (INS) has been applied in the oil and gas industry by large oilfield services companies to measure oil saturation indices (carbon/oxygen) using accelerator neutron sources. Recent advances in scintillation detector spectral performance has enabled improved precision and detection limits for elements likely to be present in soil profiles (H, Si, Al, Fe, Cl) and possible detection of many minor to trace elements if sufficiently abundant (Na, K, Mg, Ca, S, N, + ). To measure carbon an accelerator neutron source is required to provide fast neutrons above 4.8 MeV. CSIRO and ANSTO propose building a soil geochemical analysis system based on experience gained from building and applying PGNA borehole logging equipment. A soil geochemical analysis system could effectively map the 2D geochemical composition of the top 50cm of soil by dragging the 1D logging equipment across the ground surface. Substituting an isotopic neutron source for a D-T accelerator neutron source would enable the additional measurement of elemental carbon. Many potential ambiguities with other geophysical proxies for soil moisture may be resolved by direct geochemical measurement of H. Many other applications may be possible including time series in-situ measurements of soil moisture for differential drainage, hydrology, land surface

  17. Neutron energy spectra unfolding from foil activation detector measurements with MINUIT

    NASA Astrophysics Data System (ADS)

    Seghour, A.; Seghour, F. Z.

    2005-12-01

    A method for unfolding neutron energy spectra from foil activation measurements using the multiparameter function minimisation routine MINUIT of Cernlib has been developed. It is based on the expansion of the neutron energy distribution on a set of parameters that are fitted to minimise the square sum of differences between the measured and calculated activities under smoothness and shape constraints. A modified square sum of differences expression weighted by each activation detector response contribution over the whole neutron energy range is proposed and compared with the classical square sum formulation. The proposed unfolding procedure is first illustrated by a set of 15 detectors to simulate reaction rates calculated using a typical neutron reactor energy spectrum. The demonstration of the proposed method is next achieved using measured reaction rates of the Arkansas Nuclear One power plant (ANO) benchmark spectrum of the Neutron Metrology File (NMF-90). Results of the proposed method were compared with those obtained by STAYNL and MSANDB unfolding codes using the same input data and were found in good agreement with the measured activities. The developed procedure is found to have an interesting advantage in unfolding neutron energy distribution in cases of a lack of information on the a priori solution. This has been illustrated by unfolding the JOYO MK-II fast breeder reactor neutron spectrum, using a set of experimental activation rates without a guess solution.

  18. An Analysis Technique for Active Neutron Multiplicity Measurements Based on First Principles

    SciTech Connect

    Evans, Louise G; Goddard, Braden; Charlton, William S; Peerani, Paolo

    2012-08-13

    Passive neutron multiplicity counting is commonly used to quantify the total mass of plutonium in a sample, without prior knowledge of the sample geometry. However, passive neutron counting is less applicable to uranium measurements due to the low spontaneous fission rates of uranium. Active neutron multiplicity measurements are therefore used to determine the {sup 235}U mass in a sample. Unfortunately, there are still additional challenges to overcome for uranium measurements, such as the coupling of the active source and the uranium sample. Techniques, such as the coupling method, have been developed to help reduce the dependence of calibration curves for active measurements on uranium samples; although, they still require similar geometry known standards. An advanced active neutron multiplicity measurement method is being developed by Texas A&M University, in collaboration with Los Alamos National Laboratory (LANL) in an attempt to overcome the calibration curve requirements. This method can be used to quantify the {sup 235}U mass in a sample containing uranium without using calibration curves. Furthermore, this method is based on existing detectors and nondestructive assay (NDA) systems, such as the LANL Epithermal Neutron Multiplicity Counter (ENMC). This method uses an inexpensive boron carbide liner to shield the uranium sample from thermal and epithermal neutrons while allowing fast neutrons to reach the sample. Due to the relatively low and constant fission and absorption energy dependent cross-sections at high neutron energies for uranium isotopes, fast neutrons can penetrate the sample without significant attenuation. Fast neutron interrogation therefore creates a homogeneous fission rate in the sample, allowing for first principle methods to be used to determine the {sup 235}U mass in the sample. This paper discusses the measurement method concept and development, including measurements and simulations performed to date, as well as the potential

  19. Neutron activation analysis: A primary method of measurement

    NASA Astrophysics Data System (ADS)

    Greenberg, Robert R.; Bode, Peter; De Nadai Fernandes, Elisabete A.

    2011-03-01

    Neutron activation analysis (NAA), based on the comparator method, has the potential to fulfill the requirements of a primary ratio method as defined in 1998 by the Comité Consultatif pour la Quantité de Matière — Métrologie en Chimie (CCQM, Consultative Committee on Amount of Substance — Metrology in Chemistry). This thesis is evidenced in this paper in three chapters by: demonstration that the method is fully physically and chemically understood; that a measurement equation can be written down in which the values of all parameters have dimensions in SI units and thus having the potential for metrological traceability to these units; that all contributions to uncertainty of measurement can be quantitatively evaluated, underpinning the metrological traceability; and that the performance of NAA in CCQM key-comparisons of trace elements in complex matrices between 2000 and 2007 is similar to the performance of Isotope Dilution Mass Spectrometry (IDMS), which had been formerly designated by the CCQM as a primary ratio method.

  20. A Neutron Activation Gamma Ray spectrometer for Planetary Surface Analysis

    NASA Technical Reports Server (NTRS)

    Bradley, J. G.; Schweitzer, J. S.; Truax, J. A.; Rice, A.; Tombrello, T. A.

    1994-01-01

    A pulsed DT neutron generator system, similar to that used in commercial well logging, offers the possibility of performing accurate elemental analyses to depths of tens of centimeters in a few seconds with the probe on the body's surface.

  1. Present and Future Activities on Neutron Imaging in Argentina

    NASA Astrophysics Data System (ADS)

    Tartaglione, Aureliano; Blostein, Jerónimo; Cantargi, Florencia; Marín, Julio; Baruj, Alberto; Meyer, Gabriel; Santisteban, Javier; Sánchez, Fernando

    We present here a short review of the main work which has been done in the latest years in neutron imaging in Argentina, and the future plans for the development of this technique in the country, mainly focused in the design of a new neutron imaging instrument to be installed in the future research reactor RA10. We present here the results of the implementation of the technique in samples belonging to the Argentinean cultural heritage and experiments related with hydrogen storage. At the same time, the Argentinean RA10 project for the design and construction of a 30 MW multipurpose research reactor is rapidly progressing. It started to be designed by the National Atomic Energy Commission (CNEA) and the technology company INVAP SE, both from Argentina, in June 2010. The construction will start in the beginning of 2015 in the Ezeiza Atomic Center, at 36 km from Buenos Aires City, and is expected to be finished by 2020. One of the main aims of the project is to offer to the Argentinean scientific and technology system new capabilities based on neutron techniques. We present here the conceptual design of a neutron imaging facility which will use one of the cold neutron beams, and will be installed in the reactor hall. Preliminary simulation results show that at the farthest detection position, at about 17 m from the cold source, a uniform neutron beam on a detection screen with an intensity of about 108 n/cm2/s is expected.

  2. Multielement analysis of human hair and kidney stones by instrumental neutron activation analysis with the k0-standardization method.

    PubMed

    Abugassa, I; Sarmani, S B; Samat, S B

    1999-06-01

    This paper focuses on the evaluation of the k0 method of instrumental neutron activation analysis in biological materials. The method has been applied in multielement analysis of human hair standard reference materials from IAEA, No. 085, No. 086 and from NIES (National Institute for Environmental Sciences) No. 5. Hair samples from people resident in different parts of Malaysia, in addition to a sample from Japan, were analyzed. In addition, human kidney stones from members of the Malaysian population have been analyzed for minor and trace elements. More than 25 elements have been determined. The samples were irradiated in the rotary rack (Lazy Susan) at the TRIGA Mark II reactor of the Malaysian Institute for Nuclear Technology and Research (MINT). The accuracy of the method was ascertained by analysis of other reference materials, including 1573 tomato leaves and 1572 citrus leaves. In this method the deviation of the 1/E1+ alpha epithermal neutron flux distribution from the 1/E law (P/T ratio) for true coincidence effects of the gamma-ray cascade and the HPGe detector efficiency were determined and corrected for.

  3. Salt bridges overlapping the gonadotropin-releasing hormone receptor agonist binding site reveal a coincidence detector for G protein-coupled receptor activation.

    PubMed

    Janovick, Jo Ann; Pogozheva, Irina D; Mosberg, Henry I; Conn, P Michael

    2011-08-01

    G protein-coupled receptors (GPCRs) play central roles in most physiological functions, and mutations in them cause heritable diseases. Whereas crystal structures provide details about the structure of GPCRs, there is little information that identifies structural features that permit receptors to pass the cellular quality control system or are involved in transition from the ground state to the ligand-activated state. The gonadotropin-releasing hormone receptor (GnRHR), because of its small size among GPCRs, is amenable to molecular biological approaches and to computer modeling. These techniques and interspecies comparisons are used to identify structural features that are important for both intracellular trafficking and GnRHR activation yet distinguish between these processes. Our model features two salt (Arg(38)-Asp(98) and Glu(90)-Lys(121)) and two disulfide (Cys(14)-Cys(200) and Cys(114)-Cys(196)) bridges, all of which are required for the human GnRHR to traffic to the plasma membrane. This study reveals that both constitutive and ligand-induced activation are associated with a "coincidence detector" that occurs when an agonist binds. The observed constitutive activation of receptors lacking Glu(90)-Lys(121), but not Arg(38)-Asp(98) ionic bridge, suggests that the role of the former connection is holding the receptor in the inactive conformation. Both the aromatic ring and hydroxyl group of Tyr(284) and the hydrogen bonding of Ser(217) are important for efficient receptor activation. Our modeling results, supported by the observed influence of Lys(191) from extracellular loop 2 (EL2) and a four-residue motif surrounding this loop on ligand binding and receptor activation, suggest that the positioning of EL2 within the seven-α-helical bundle regulates receptor stability, proper trafficking, and function.

  4. Neutron collar calibration and evaluation for assay of LWR fuel assemblies containing burnable neutron absorbers

    SciTech Connect

    Henriksen, P.W.; Menlove, H.O.; Stewart, J.E.; Qiao, S.Z.; Wenz, T.R. ); Verrecchia, G.P.D. . Safeguards Directorate)

    1990-11-01

    The neutron coincidence collar is used to verify the uranium content in light water reactor fuel assemblies. An AmLi neutron source actively interrogates the fuel assembly to measure the {sup 235}U content and the {sup 238}U content can be verified from a passive neutron coincidence measurement. This report gives the collar calibration data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies both with and without cadmium liners. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and various fuel assembly sizes. The data were collected using the Los Alamos BWR and PWR test assemblies as well as fuel assemblies from several fuel fabrication facilities. 11 refs., 15 figs., 14 tabs.

  5. Active mode calibration of the combined thermal epithermal neutron (CTEN) system

    SciTech Connect

    Veilleux, J. M.

    2001-01-01

    The Combined Thermal Epithermal Neutron (CTEN) system was developed by the Los Alamos National Laboratory to perform active and passive neutron interrogation of waste. The higher energy epithermal neutrons are able to penetrate further into the matrix and active material, thus reducing matrix attenuation and self-shielding effects compared to a thermal neutron pulse alone. The developmental unit was installed in 2001 at the Los Alamos Non-Destructive Assay (NDA) facility to characterize waste for the TRU Waste Characterization Project (TWCP). This paper summarizes the active mode certification results. National Institute of Standards and Technology (NIST) traceable standards were used to determine the system response as a function of mass. Finally, NIST-traceable verification standards were used to verify the calibration in the range 30 milligrams to 25 g of weapons grade plutonium although self-shielding limits the upper active interrogation to 10 g.

  6. Analysis of body calcium (regional changes in body calcium by in vivo neutron activation analysis)

    NASA Technical Reports Server (NTRS)

    Suki, W.; Johnson, P. C.; Leblanc, A.; Evans, H. J.

    1981-01-01

    The effect of space flight on urine and fecal calcium loss was documented during the three long-term Skylab flights. Neutron activation analysis was used to determine regional calcium loss. Various designs for regional analysis were investigated.

  7. Neutron activation analysis traces copper artifacts to geographical point of origin

    NASA Technical Reports Server (NTRS)

    Conway, M.; Fields, P.; Friedman, A.; Kastner, M.; Metta, D.; Milsted, J.; Olsen, E.

    1967-01-01

    Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact.

  8. Dynamic Albedo of Neutrons (DAN): Active Nuclear Experiment Onboard NASA Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Mitrofanov, I. G.; Litvak, M. L.; Kozyrev, A. S.; Mokrousov, M. I.; Sanin, A. B.; Tretyakov, V. I.

    2005-03-01

    In our presentation we describe instrument DAN based on neutron activation technique and selected for NASA/MSL mission. The main task of this experiment is local measuruments of water distribution in martian subsurface around MSL rover.

  9. Preliminary engineering assessment of the HCLL and HCPB Neutron Activation System

    SciTech Connect

    Calderoni, Pattrick; Leichtle, Dieter; Angelone, Maurizio; Klix, Axel

    2015-07-01

    The Neutron Activation System (NAS) is one of the four types of neutronics sensors considered for the testing of the HCLL and HCPB Test Blanket Module (TBM) in ITER. It measures the absolute neutron flux intensity with information on the neutron spectrum in selected positions of the TBM. The working principle of the NAS is as follows: the system moves small activation probes (capsules) into selected positions in the TBM (irradiation ends) by means of pneumatic transport with pressurized helium gas; the capsules are irradiated for a selected period, depending on their materials composition (several tens of seconds up to the full plasma pulse length); immediately after the irradiation they are extracted and transported to a gamma spectrometer by means of the same pneumatic transport system; the gamma spectrometer determines the induced gamma activity; the neutron flux and neutron fluence is calculated from the measured gamma activity and the known activation cross section of the materials in the activation probe; after the measurement the capsule is sent either to a disposal or storage (for later measurement). This paper summarizes the results of the feasibility assessment of the TBM NAS in the conceptual design phase, including design justification, identification of requirements based on the expected operating conditions in ITER and preliminary engineering assessment of the activation materials, irradiation ends integration in the modules design and the counting station. (authors)

  10. Determination of boron in materials by cold neutron prompt gamma-ray activation analysis.

    PubMed

    Paul, Rick L

    2005-01-01

    An instrument for cold neutron prompt gamma-ray activation analysis (PGAA), located at the NIST Center for Neutron Research (NCNR), has proven useful for the measurement of boron in a variety of materials. Neutrons, moderated by passage through liquid hydrogen at 20 K, pass through a (58)Ni coated guide to the PGAA station in the cold neutron guide hall of the NCNR. The thermal equivalent neutron fluence rate at the sample position is 9 x 10(8) cm(-2) s(-1). Prompt gamma rays are measured by a cadmium- and lead-shielded high-purity germanium detector. The instrument has been used to measure boron mass fractions in minerals, in NIST SRM 2175 (Refractory Alloy MP-35-N) for certification of boron, and most recently in semiconductor-grade silicon. The limit of detection for boron in many materials is <10 ng g(-1).

  11. Studies of neutron cross-sections important for spallation experiments using the activation method

    NASA Astrophysics Data System (ADS)

    Vrzalová, J.; Chudoba, P.; Krása, A.; Majerle, M.; Suchopár, M.; Svoboda, O.; Wagner, V.

    2014-09-01

    A series of experiments devoted to studies of neutron cross-sections by activation method was carried out. The cross-sections of various threshold reactions were studied by means of different quasi-monoenergetic neutron sources with energies from 14 MeV up to 100 MeV. Threshold reactions in various materials are among other used to measure fast neutron fields produced during accelerator driven system studies. For this reason our measurements of neutron cross-sections are crucial. At present, neither experimental nor evaluated data above 30 MeV are available for neutron threshold reactions in Au, I and In published in this proceedings. We studied materials in the form of thin foils and compared our data with the calculations preformed using the deterministic code TALYS 1.4.

  12. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  13. Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2008-10-01

    Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including >2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up.

  14. Determination of (n,γ) Cross Sections of 241Am by Cold Neutron Activation

    NASA Astrophysics Data System (ADS)

    Genreith, C.; Rossbach, M.; Révay, Zs.; Kudejova, P.

    2014-05-01

    Accurate cross section data of actinides are crucial for criticality calculations of GEN IV reactors and transmutation but also for analytical purposes such as nuclear waste characterization, decommissioning of nuclear installations and safeguard applications. Tabulated data are inconsistent and sometimes associated with large uncertainties. Neutron activation with external cold neutron beams from high flux reactors offers a chance for determination of accurate capture cross sections scalable to the whole 1/√{E}-region even for isotopes with low-lying resonances like 241Am. Preparation of 241Am samples for irradiation at the PGAA station of the FRM II in Garching has been optimized together with PTB in Braunschweig. Two samples were irradiated together with gold flux monitors to extract the thermal neutron capture cross section after appropriate corrections for attenuation of neutrons and photons in the sample. For one sample, the thermal ground state neutron capture cross section was measured as 663.0 ± 28.8 b. The thermal neutron capture cross section was calculated to 725.4 ± 34.4 b. For the other sample, a ground state neutron capture cross section of 649.9 ± 28.2 b was measured and a thermal neutron capture cross section of 711.1 ± 33.9 b was derived.

  15. Radiolabeling of intact dosage forms by neutron activation: effects on in vitro performance

    SciTech Connect

    Parr, A.; Jay, M.

    1987-12-01

    Compressed tablets containing various quantities of stable isotopes of Ba, Er, and Sm for use in neutron activation studies were evaluated for the effect of stable isotope incorporation on tablet hardness and disintegration times. At concentrations likely to be used in scintigraphic studies employing neutron activation as a radiolabeling method, no significant effect on in vitro parameters were observed. While the incorporation of stable isotopes influenced tablet hardness to a greater degree than disintegration time, irradiation of tablets in a neutron flux of 4.4 x 10(13) n/cm2 sec had a direct effect on tablet disintegration time. Thus, future neutron activation studies should focus on minimizing the amount of stable isotope to be incorporated with the formulation while using the shortest feasible irradiation time.

  16. SWAN - Detection of explosives by means of fast neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-10-01

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project "Accelerators & Detectors" (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  17. Digital coincidence counting - initial results

    NASA Astrophysics Data System (ADS)

    Butcher, K. S. A.; Watt, G. C.; Alexiev, D.; van der Gaast, H.; Davies, J.; Mo, Li; Wyllie, H. A.; Keightley, J. D.; Smith, D.; Woods, M. J.

    2000-08-01

    Digital Coincidence Counting (DCC) is a new technique in radiation metrology, based on the older method of analogue coincidence counting. It has been developed by the Australian Nuclear Science and Technology Organisation (ANSTO), in collaboration with the National Physical Laboratory (NPL) of the United Kingdom, as a faster more reliable means of determining the activity of ionising radiation samples. The technique employs a dual channel analogue-to-digital converter acquisition system for collecting pulse information from a 4π beta detector and an NaI(Tl) gamma detector. The digitised pulse information is stored on a high-speed hard disk and timing information for both channels is also stored. The data may subsequently be recalled and analysed using software-based algorithms. In this letter we describe some recent results obtained with the new acquistion hardware being tested at ANSTO. The system is fully operational and is now in routine use. Results for 60Co and 22Na radiation activity calibrations are presented, initial results with 153Sm are also briefly mentioned.

  18. Neutron-Activated Gamma-Emission: Technology Review

    DTIC Science & Technology

    2012-01-01

    in Be9 + α  C12 + n and Be9 + α  3He4 + n. Chadwick (5) made use of the naturally occurring α-emitter polonium - 210 , which decays to lead-206 with...a neutron source by mixing a radioisotope that emits alpha particles, such as radium or polonium , with a low atomic weight isotope, usually in the...initiators of early nuclear weapons used a polonium -beryllium layer separated by nickel and gold until a neutron pulse was desired. 3.1.3

  19. Benchmark test of neutron transport calculations: Indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing

    SciTech Connect

    Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko; Oka, Takamitsu

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.

  20. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen.

  1. Activation of the Carbon Concentrating Mechanism by CO2 Deprivation Coincides with Massive Transcriptional Restructuring in Chlamydomonas reinhardtii[W][OA

    PubMed Central

    Brueggeman, Andrew J.; Gangadharaiah, Dayananda S.; Cserhati, Matyas F.; Casero, David; Weeks, Donald P.; Ladunga, Istvan

    2012-01-01

    A CO2-concentrating mechanism (CCM) is essential for the growth of most eukaryotic algae under ambient (392 ppm) and very low (<100 ppm) CO2 concentrations. In this study, we used replicated deep mRNA sequencing and regulatory network reconstruction to capture a remarkable scope of changes in gene expression that occurs when Chlamydomonas reinhardtii cells are shifted from high to very low levels of CO2 (≤100 ppm). CCM induction 30 to 180 min post-CO2 deprivation coincides with statistically significant changes in the expression of an astonishing 38% (5884) of the 15,501 nonoverlapping C. reinhardtii genes. Of these genes, 1088 genes were induced and 3828 genes were downregulated by a log2 factor of 2. The latter indicate a global reduction in photosynthesis, protein synthesis, and energy-related biochemical pathways. The magnitude of transcriptional rearrangement and its major patterns are robust as analyzed by three different statistical methods. De novo DNA motif discovery revealed new putative binding sites for Myeloid oncogene family transcription factors potentially involved in activating low CO2–induced genes. The (CA)n repeat (9 ≤ n ≤ 25) is present in 29% of upregulated genes but almost absent from promoters of downregulated genes. These discoveries open many avenues for new research. PMID:22634764

  2. Sex-Dependent Alterations in Social Behaviour and Cortical Synaptic Activity Coincide at Different Ages in a Model of Alzheimer’s Disease

    PubMed Central

    Julien, Carl; Tremblay, Cyntia; Vandal, Milène; Msaid, Meriem; De Koninck, Yves; Calon, Frédéric

    2012-01-01

    Besides memory deficits, Alzheimer’s disease (AD) patients suffer from neuropsychiatric symptoms, including alterations in social interactions, which are subject of a growing number of investigations in transgenic models of AD. Yet the biological mechanisms underlying these behavioural alterations are poorly understood. Here, a social interaction paradigm was used to assess social dysfunction in the triple-transgenic mouse model of AD (3xTg-AD). We observed that transgenic mice displayed dimorphic behavioural abnormalities at different ages. Social disinhibition was observed in 18 months old 3xTg-AD males compared to age and sex-matched control mice. In 3xTg-AD females, social disinhibition was present at 12 months followed by reduced social interactions at 18 months. These dimorphic behavioural alterations were not associated with alterations in AD neuropathological markers such as Aβ or tau levels in the frontal cortex. However, patch-clamp recordings revealed that enhanced social interactions coincided temporally with an increase in both excitatory and inhibitory basal synaptic inputs to layer 2–3 pyramidal neurons in the prefrontal cortex. These findings uncover a novel pattern of occurrence of psychiatric-like symptoms between sexes in an AD model. Our results also reveal that functional alterations in synapse activity appear as a potentially significant substrate underlying behavioural correlates of AD. PMID:23029404

  3. Development of the prototype pneumatic transfer system for ITER neutron activation systema)

    NASA Astrophysics Data System (ADS)

    Cheon, M. S.; Seon, C. R.; Pak, S.; Lee, H. G.; Bertalot, L.

    2012-10-01

    The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.

  4. Energy and angular dependence of active-type personal dosemeter for high-energy neutron.

    PubMed

    Rito, Hirotaka; Yamauchi, Tomoya; Oda, Keiji

    2011-07-01

    In order to develop an active-type personal dosemeter having suitable sensitivity to high-energy neutrons, the characteristic response of silicon surface barrier detector has been investigated experimentally and theoretically. An agreement of the shape of pulse-height distribution, its change with radiator thickness and the relative sensitivity was confirmed between the calculated and experimental results for 14.8-MeV neutrons. The angular dependence was estimated for other neutron energies, and found that the angular dependence decreased with the incident energy. The reason was also discussed with regard to the radiator thickness relative to maximum range of recoil protons.

  5. Nondestructive assay of spent boiling-water-reactor fuel by active neutron interrogation

    SciTech Connect

    Blakeman, E.D.; Ricker, C.W.; Ragan, G.L.; Difilippo, F.C.; Slaughter, G.G.

    1981-01-01

    Spent boiling water reactor (BWR) fuel from Dresden I was assayed for total fissile mass, using the active neutron interrogation method. The nondestructive assay (NDA) system used has four Sb-Be sources for interrogation of the fuels; the induced fission neutrons from the fuel are counted by four lead-shielded methane-filled proportional counters biased above the energy of the source neutrons. Results agreed with results from the chemical analyses to within 2 to 3%. Similar agreement was obtained when two combinations of canned spent fuel were used as standards for the nondestructive assays.

  6. Comparison of Impurities in Charcoal Sorbents Found by Neutron Activation Analysis

    SciTech Connect

    Doll, Charles G.; Finn, Erin C.; Cantaloub, Michael G.; Greenwood, Lawrence R.; Kephart, Jeremy; Kephart, Rosara F.

    2013-01-01

    Abstract: Neutron activation of gas samples in a reactor often requires a medium to retain sufficient amounts of the gas for analysis. Charcoal is commonly used to adsorb gas and hold it for activation; however, the amount of activated sodium in the charcoal after irradiation swamps most signals of interest. Neutron activation analysis (NAA) was performed on several commonly available charcoal samples in an effort to determine the activation background. The results for several elements, including the dominant sodium element, are reported. It was found that ECN charcoal had the lowest elemental background, containing sodium at 2.65 ± 0.05 ppm, as well as trace levels of copper and tungsten.

  7. Medical applications of in vivo neutron inelastic scattering and neutron activation analysis: Technical similarities to detection of explosives and contraband

    NASA Astrophysics Data System (ADS)

    Kehayias, J. J.

    2001-07-01

    Nutritional status of patients can be evaluated by monitoring changes in elemental body composition. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used in vivo to assess elements characteristic of specific body compartments. There are similarities between the body composition techniques and the detection of hidden explosives and narcotics. All samples have to be examined in depth and the ratio of elements provides a "signature" of the chemical of interest. The N/H and C/O ratios measure protein and fat content in the body. Similarly, a high C/O ratio is characteristic of narcotics and a low C/O together with a strong presence of N is a signature of some explosives. The available time for medical applications is about 20 min—compared to a few seconds for the detection of explosives—but the permitted radiation exposure is limited. In vivo neutron analysis is used to measure H, O, C, N, P, Na, Cl, and Ca for the study of the mechanisms of lean tissue depletion with aging and wasting diseases, and to investigate methods of preserving function and quality of life in the elderly.

  8. Neutron activation analysis via nuclear decay kinetics using gamma-ray spectroscopy at SFU

    NASA Astrophysics Data System (ADS)

    Domingo, Thomas; Chester, Aaron; Starosta, Krzysztof; Williams, Jonathan

    2016-09-01

    Gamma-ray spectroscopy is a powerful tool used in a variety of fields including nuclear and analytical chemistry, environmental science, and health risk management. At SFU, the Germanium detector for Elemental Analysis and Radiation Studies (GEARS), a low-background shielded high-purity germanium gamma-ray detector, has been used recently in all of the above fields. The current project aims to expand upon the number of applications for which GEARS can be used while enhancing its current functionality. A recent addition to the SFU Nuclear Science laboratory is the Thermo Scientific P 385 neutron generator. This device provides a nominal yield of 3 ×108 neutrons/s providing the capacity for neutron activation analysis, opening a major avenue of research at SFU which was previously unavailable. The isotopes created via neutron activation have a wide range of half-lives. To measure and study isotopes with half-lives above a second, a new analogue data acquisition system has been installed on GEARS allowing accurate measurements of decay kinetics. This new functionality enables identification and quantification of the products of neutron activation. Results from the neutron activation analysis of pure metals will be presented.

  9. Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: a combined voltage- and calcium-imaging study

    PubMed Central

    Canepari, Marco; Djurisic, Maja; Zecevic, Dejan

    2007-01-01

    The non-linear and spatially inhomogeneous interactions of dendritic membrane potential signals that represent the first step in the induction of activity-dependent long-term synaptic plasticity are not fully understood, particularly in dendritic regions which are beyond the reach of electrode measurements. We combined voltage-sensitive-dye recordings and Ca2+ imaging of hippocampal CA1 pyramidal neurons to study large regions of the dendritic arbor, including branches of small diameter (distal apical and oblique dendrites). Dendritic membrane potential transients were monitored at high spatial resolution and correlated with supra-linear [Ca2+]i changes during one cycle of a repetitive patterned stimulation protocol that typically results in the induction of long-term potentiation (LTP). While the increase in the peak membrane depolarization during coincident pre- and post-synaptic activity was required for the induction of supra-linear [Ca2+]i signals shown to be necessary for LTP, the change in the baseline-to-peak amplitude of the backpropagating dendritic action potential (bAP) was not critical in this process. At different dendritic locations, the baseline-to-peak amplitude of the bAP could be either increased, decreased or unaltered at sites where EPSP–AP pairing evoked supra-linear summation of [Ca2+]i transients. We suggest that modulations in the bAP baseline-to-peak amplitude by local EPSPs act as a mechanism that brings the membrane potential into the optimal range for Ca2+ influx through NMDA receptors (0 to −15 mV); this may require either boosting or the reduction of the bAP, depending on the initial size of both signals. PMID:17272348

  10. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  11. Analysis of improved neutron activation technique using thick foils for application on medical LINAC environment

    NASA Astrophysics Data System (ADS)

    Vagena, E.; Stoulos, S.; Manolopoulou, M.

    2016-01-01

    An improved neutron activation technique is analyzed that can be used for the characterization of the neutron field in low neutron flux environments, such as medical Linacs. Due to the much lower neutron fluence rates, thick materials instead of thin have been used. The study is focused on the calculations of basic components of the neutron activation analysis that are required for accurate results, such as the efficiency of the gamma detector used for γ-spectrometry as well as crucial correction factors that are required when dealing with thick samples in different geometries and forms. A Monte Carlo detector model, implemented by Geant4 MC Code was adjusted in accordance to results from various measurements performed. Moreover, regarding to estimate the self-shielding correction factors a new approach using both Monte Carlo and analytical approach was presented. This improvement gives more accurate results, which are important for both activation and shielding studies that take place in many facilities. A quite good agreement between the neutron fluxes is achieved; according to the data obtained a mean value of (2.13±0.34)×105 ncm-2 s-1 is representative for the isocenter of the specific Linac that corresponds to fluence of (5.53±0.94)×106 ncm-2 Gy-1. Comparable fluencies reported in the literature for similar Linacs operating with photon beams at 15 MeV.

  12. Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.

    PubMed

    Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M

    2008-07-01

    In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method.

  13. Studies of Neutron and Proton Nuclear Activation in Low-Earth Orbit 2

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1983-01-01

    The study of neutron and proton nuclear activation in low-Earth orbit reported in NASA CR-162051 has been continued with increasing emphasis given to primary and secondary neutron activation. The previously reported activation due to protons has been modified to include: (1) flux attenuation caused by all inelastic reactions; (2) the modification of the proton flux distribution caused by sample covering material; and (3) the activation of the sample as a function of the distance into the sample from the surface of incidence. A method has been developed for including the effects on the activation of the finite width and length of the samples. The reactant product spectra produced by proton-induced reactions has been studied. Cross sections needed for neutron induced reactions leading to long-lived (half-life 1 day) radioisotopes have been identified and, in some cases, compiled.

  14. Implementation of an enhanced, permanently installed neutron activation diagnostic hardware for NIF

    NASA Astrophysics Data System (ADS)

    Jedlovec, Donald R.; Edwards, Ellen R.; Carrera, Jorge A.; Yeamans, Charles B.

    2015-08-01

    Neutron activation diagnostics are commonly employed as baseline neutron yield and relative spatial flux measurement instruments. Much insight into implosion performance has been gained by deployment of up to 19 identical activation diagnostic samples distributed around the target chamber at unique angular locations. Their relative simplicity and traceability provide neutron facilities with a diagnostic platform that is easy to implement and verify. However, the current National Ignition Facility (NIF) implementation relies on removable activation samples, creating a 1-2 week data turn-around time and considerable labor costs. The system described here utilizes a commercially-available lanthanum bromide (cerium-doped) scintillator with an integrated MCA emulator as the counting system and a machined zirconium-702 cap as the activation medium. The device is installed within the target bay and monitored remotely. Additionally, this system allows the placement of any activation medium tailored to the specific measurement needs. We discuss the design and function of a stand-alone and permanently installed neutron activation detector unit to measure the yield and average energy of a nominal 14 MeV neutron source with a pulse length less than one nanosecond.

  15. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  16. 14 MeV neutron activation analysis of geological and lunar samples

    SciTech Connect

    Laul, J.C.; Wogman, N.A.

    1981-04-01

    14 MeV neutron activation analysis (NAA) is ideal for accurately determining Oxygen and Silicon contents in geological and lunar materials. It is fast, nondestructive, economical, and can be used on a routine basis in a laboratory. Although 14 MeV NAA is particularly suited to light elements, its use has been extended to measure other elements as well such as Aluminum, Magnesium, Iron, Calcium, Titanium, Strontium, Nickel, Yttrium, Zirconium, Niobium and Cerium. Thus, the use of 14 MeV neutrons is of considerable importance in NAA. The disadvantages of the method are that interference reactions are common because of high neutron energy; the flux is nonuniform in longer irradiation due to depletion of the target in the neutron generator. Overall, 14 MeV NAA is ideal for short irradiations and when supplemented with thermal NAA provides the maximum elemental information in small aliquants of geological and lunar materials.

  17. 3D neutronic calculations: CAD-MCNP methodology applied to vessel activation in KOYO-F

    NASA Astrophysics Data System (ADS)

    Herreras, Y.; Lafuente, A.; Sordo, F.; Cabellos, O.; Perlado, J. M.

    2008-05-01

    This paper presents a methodology for 3D neutronic calculations suitable for complex and extensive geometries. The geometry of the system design is first fully modelled with a CAD program, and subsequently processed through a MCNP-CAD interface in order to generate an MCNP geometry file. Neutronic irradiation results are finally achieved running the MCNPX program, where the geometry input card used is directly the MCNP-CAD interface output. This methodology enables accurate neutronic calculations for complex geometries characterised by high detail levels. This procedure will be applied to the Fast Ignition Fusion Reactor KOYO-F to determine first neutron fluxes calculations along the blanket as well as the material activation in the reduced martensitic 9Cr-1Mo steel vessel.

  18. Neutron Activation Analysis of Soil Samples from Different Parts of Edirne in Turkey*

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Dogan, C.; Camtakan, Z.

    2016-05-01

    The concentrations of constituent elements were determined in soil samples collected from different parts of the Maritza Basin, Edirne, Turkey. Neutron activation analysis, an extremely accurate technique, and the comparator method (using a standard) were applied for the first time in this region. After preparing the soil samples for neutron activation analysis, they were activated with thermal neutrons in a nuclear reactor, TRIGA-MARK II, at Istanbul Technical University. The activated samples were analyzed using a high-efficiency high-purity germanium detector, and gamma spectrometry was employed to determine the elemental concentration in the samples. Eight elements (chromium, manganese, cobalt, zinc, arsenic, molybdenum, cadmium, and barium) were qualitatively and quantitatively identified in 36 samples. The concentrations of some elements in the soil samples were high compared with values reported in the literature.

  19. Development of Enhanced, Permanently-Installed, Neutron Activation Diagnostic Hardware for NIF

    NASA Astrophysics Data System (ADS)

    Edwards, E. R.; Jedlovec, D. R.; Carrera, J. A.; Yeamans, C. B.

    2016-05-01

    Neutron activation diagnostics are baseline neutron yield and flux measurement instruments at the National Ignition Facility. Up to 19 activation samples are distributed around the target chamber. Currently the samples must be removed to be counted, creating a 1-2 week data turn-around time and considerable labor costs. An improved system consisting of a commercially available LaBr3(Ce) scintillator and Power over Ethernet electronics is under development. A machined zirconium-702 cap over the detector is the activation medium to measure the 90Zr(n,2n)89Zr reaction. The detectors are located at the current neutron activation diagnostic sites and monitored remotely. Because they collect data in real time yield values are returned within a few hours after a NIF shot.

  20. Determination of aluminium, silicon and magnesium in geological matrices by delayed neutron activation analysis based on k0 instrumental neutron activation analysis.

    PubMed

    Baidoo, I K; Dampare, S B; Opata, N S; Nyarko, B J B; Akaho, E H K; Quagraine, R E

    2013-12-01

    In this work, concentrations of silicon, aluminium and magnesium in geological matrices were determined by Neutron Activation Analysis based on k0-IAEA software. The optimum activation and delay times were found to be 5 min and 15-20 min respectively for the determination of Si via (29)Si (n,p) (29)Al reaction. The adopted irradiation scheme did not work for the determination of magnesium. Each sample was irradiated under a thermal neutron flux density of 5.0 × 10(11) ncm(-2)s(-1). Cadmium covered activation indicated that a permanent epithermal irradiation site for research reactors would be very useful for routine determination of silicon in environmental samples.

  1. High Sensitive Neutron-Detection by Using a Self-Activation of Iodine-Containing Scintillators for the Photo-Neutron Monitoring around X-ray Radiotherapy Machines

    NASA Astrophysics Data System (ADS)

    Nohtomi, Akihiro; Wakabayashi, Genichiro; Kinoshita, Hiroyuki; Honda, Soichiro; Kurihara, Ryosuke; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Ohga, Saiji; Nakamura, Katsumasa

    A novel method for evaluating the neutron dose-equivalent as well as neutron fluence around high-energy X-ray radiotherapy machines has been proposed and examined by using the self-activation of a CsI scintillator. Several filtering conditions were used to extract energy information of the neutron field. The shapes of neutron energy spectra were assumed to be practically unchanged at each three energy regions (thermal, epi-thermal and fast regions) for different irradiations around an X-ray linac whose acceleration potential was fixed to be a certain value. In order to know the actual neutron energy spectrum, an unfolding process was carried out for saturated activities of 128I generated inside the CsI scintillator under different filtering conditions; the response function matrix for each filtering condition was calculated by a Monte Carlo simulation. As the result, neutron dose-equivalent was estimated to be 0.14 (mSv/Gy) at 30 cm from the isocenter of linac. It has been revealed that fast neutron component dominated the total dose-equivalent.

  2. Probing Planetary Bodies for Subsurface Volatiles: GEANT4 Models of Gamma Ray, Fast, Epithermal, and Thermal Neutron Response to Active Neutron Illumination

    NASA Astrophysics Data System (ADS)

    Chin, G.; Sagdeev, R.; Su, J. J.; Murray, J.

    2014-12-01

    Using an active source of neutrons as an in situ probe of a planetary body has proven to be a powerful tool to extract information about the presence, abundance, and location of subsurface volatiles without the need for drilling. The Dynamic Albedo of Neutrons (DAN) instrument on Curiosity is an example of such an instrument and is designed to detect the location and abundance of hydrogen within the top 50 cm of the Martian surface. DAN works by sending a pulse of neutrons towards the ground beneath the rover and detecting the reflected neutrons. The intensity and time of arrival of the reflection depends on the proportion of water, while the time the pulse takes to reach the detector is a function of the depth at which the water is located. Similar instruments can also be effective probes at the polar-regions of the Moon or on asteroids as a way of detecting sequestered volatiles. We present the results of GEANT4 particle simulation models of gamma ray, fast, epithermal, and thermal neutron responses to active neutron illumination. The results are parameterized by hydrogen abundance, stratification and depth of volatile layers, versus the distribution of neutron and gamma ray energy reflections. Models will be presented to approximate Martian, lunar, and asteroid environments and would be useful tools to assess utility for future NASA exploration missions to these types of planetary bodies.

  3. Initiation of Electron Transport Chain Activity in the Embryonic Heart Coincides with the Activation of Mitochondrial Complex 1 and the Formation of Supercomplexes

    PubMed Central

    Beutner, Gisela; Eliseev, Roman A.; Porter, George A.

    2014-01-01

    Mitochondria provide energy in form of ATP in eukaryotic cells. However, it is not known when, during embryonic cardiac development, mitochondria become able to fulfill this function. To assess this, we measured mitochondrial oxygen consumption and the activity of the complexes (Cx) 1 and 2 of the electron transport chain (ETC) and used immunoprecipitation to follow the generation of mitochondrial supercomplexes. We show that in the heart of mouse embryos at embryonic day (E) 9.5, mitochondrial ETC activity and oxidative phosphorylation (OXPHOS) are not coupled, even though the complexes are present. We show that Cx-1 of the ETC is able to accept electrons from the Krebs cycle, but enzyme assays that specifically measure electron flow to ubiquinone or Cx-3 show no activity at this early embryonic stage. At E11.5, mitochondria appear functionally more mature; ETC activity and OXPHOS are coupled and respond to ETC inhibitors. In addition, the assembly of highly efficient respiratory supercomplexes containing Cx-1, -3, and -4, ubiquinone, and cytochrome c begins at E11.5, the exact time when Cx-1 becomes functional activated. At E13.5, ETC activity and OXPHOS of embryonic heart mitochondria are indistinguishable from adult mitochondria. In summary, our data suggest that between E9.5 and E11.5 dramatic changes occur in the mitochondria of the embryonic heart, which result in an increase in OXPHOS due to the activation of complex 1 and the formation of supercomplexes. PMID:25427064

  4. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice

    PubMed Central

    Heneka, Michael T; Sastre, Magdalena; Dumitrescu-Ozimek, Lucia; Dewachter, Ilse; Walter, Jochen; Klockgether, Thomas; Van Leuven, Fred

    2005-01-01

    Background Inflammation is suspected to contribute to the progression and severity of neurodegeneration in Alzheimer's disease (AD). Transgenic mice overexpressing the london mutant of amyloid precursor protein, APP [V717I], robustly recapitulate the amyloid pathology of AD. Methods Early and late, temporal and spatial characteristics of inflammation were studied in APP [V717I] mice at 3 and 16 month of age. Glial activation and expression of inflammatory markers were determined by immunohistochemistry and RT-PCR. Amyloid deposition was assessed by immunohistochemistry, thioflavine S staining and western blot experiments. BACE1 activity was detected in brain lysates and in situ using the BACE1 activity kit from R&D Systems, Wiesbaden, Germany. Results Foci of activated micro- and astroglia were already detected at age 3 months, before any amyloid deposition. Inflammation parameters comprised increased mRNA levels coding for interleukin-1β, interleukin-6, major histocompatibility complex II and macrophage-colony-stimulating-factor-receptor. Foci of CD11b-positive microglia expressed these cytokines and were neighbored by activated astrocytes. Remarkably, β-secretase (BACE1) mRNA, neuronal BACE1 protein at sites of focal inflammation and total BACE1 enzyme activity were increased in 3 month old APP transgenic mice, relative to age-matched non-transgenic mice. In aged APP transgenic mice, the mRNA of all inflammatory markers analysed was increased, accompanied by astroglial iNOS expression and NO-dependent peroxynitrite release, and with glial activation near almost all diffuse and senile Aβ deposits. Conclusion The early and focal glial activation, in conjunction with upregulated BACE1 mRNA, protein and activity in the presence of its substrate APP, is proposed to represent the earliest sites of amyloid deposition, likely evolving into amyloid plaques. PMID:16212664

  5. Testing of regolith of celestial bolides with active neutron gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Vostrukhin, Andrey; Mitrofanov, Igor; Golovin, Dmitry; Litvak, Maxim; Sanin, Anton

    2015-04-01

    Current space instruments for studying planet's surface include gamma ray spectrometers that detect natural radioactive isotopes as well as gamma-rays induced in subsurface by galactic cosmic rays. When measuring from celestial body's surface, statistics and amount of detected elements can be dramatically increased with active methods, where soil exposed to artificial flux of particles. One good example is the Russian Dynamic Albedo of Neutron (DAN) instrument onboard Martian Science Laboratory mission (Curiosity rover) developed in 2005-2011. It is the first active neutron spectrometer flown to another planet as part of a landed mission to investigate subsurface water distribution and which has now successfully operated for more than two years on the Martian surface. Presentation describes a number of space instruments for different landers and rovers being developed in Russian Space Research Institute for studying Moon and Mars, as well as method of active neutron and gamma spectrometry overview.

  6. Device and software used to carry out Cyclic Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Castro-García, M. P.; Rey-Ronco, M. A.; Alonso-Sánchez, T.

    2014-11-01

    This paper discusses the device and software used to carry out Cyclic Neutron Activation Analysis (CNAA). The aim of this investigation is defining through this device the fluorite content present on different samples from fluorspar concentration plant through the DGNAA (Delayed Gamma Neutron Activation Analysis) method. This device is made of americium-beryllium neutron source, NaI (2"×2") and BGO (2"×2") gamma rays detectors, multichannel and an automatic mechanism which moves the samples from activation and reading position. This mechanism is controlled by a software which allows moving the samples precisely and in a safe way (~ms), which it is very useful when the radioactive isotopes have to be detected with a half time less than 8s.

  7. Analysis of Neutron Induced Gamma Activity in Lowbackground Ge - Spectroscopy Systems

    NASA Astrophysics Data System (ADS)

    Jovančević, Nikola; Krmar, Midrag

    Neutron interactions with materials of Ge-spectroscopy systems are one of the main sources of background radiation in low-level gamma spectroscopy measurements. Because of that detailed analysis of neutron induced gamma activity in low-background Ge-spectroscopy systems was done. Two HPGe detectors which were located in two different passive shields: one in pre-WW II made iron and the second in commercial low background lead were used in the experiment. Gamma lines emitted after neutron capture, as well as after inelastic scattering on the germanium crystal and shield materials (lead, iron, hydrogen, NaI) were detected and then analyzed. The thermal and fast neutron fluxes were calculated and their values were compared for the two different kinds of detector shield. The relative intensities of several gamma lines emitted after the inelastic scattering of neutrons (created by cosmic muons) in 56Fe were report. These relative intensities of detected gamma lines of 56Fe are compared with the results collected in the same iron shield by the use of the 252Cf neutrons.

  8. Investigation of the neutron activation of endohedral rare earth metallofullerenes

    SciTech Connect

    Shilin, V. A. Lebedev, V. T.; Kolesnik, S. G.; Kozlov, V. S.; Grushko, Yu. S.; Sedov, V. P.; Kukorenko, V. V.

    2011-12-15

    Endohedral lanthanide metallofullerenes and their water-soluble biocompatible derivatives have been synthesized. The effect that fast-neutron irradiation has on the stability and nuclear physical properties of endohedral metallofullerenes that are used as magnetocontrast materials ({sup 46}Sc, {sup 140}La, {sup 141}Nd, {sup 153}Sm, {sup 152}Eu, {sup 154}Eu, {sup 153}Sm, {sup 160}Tb, {sup 169}Yb, {sup 170}Tm (isomers I and III), and {sup 177}Lu) is studied. Our hypothesis, according to which carbon-shell relaxation is based on the fast nonradiative processes of an electron shake-off type, is confirmed.

  9. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Volmert, Ben; Pantelias, Manuel; Mutnuru, R. K.; Neukaeter, Erwin; Bitterli, Beat

    2016-02-01

    In this paper, an overview of the Swiss Nuclear Power Plant (NPP) activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG) in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  10. Large sample neutron activation analysis: a challenge in cultural heritage studies.

    PubMed

    Stamatelatos, Ion E; Tzika, Faidra

    2007-07-01

    Large sample neutron activation analysis compliments and significantly extends the analytical tools available for cultural heritage and authentication studies providing unique applications of non-destructive, multi-element analysis of materials that are too precious to damage for sampling purposes, representative sampling of heterogeneous materials or even analysis of whole objects. In this work, correction factors for neutron self-shielding, gamma-ray attenuation and volume distribution of the activity in large volume samples composed of iron and ceramic material were derived. Moreover, the effect of inhomogeneity on the accuracy of the technique was examined.

  11. 3D mapping of lithium in battery electrodes using neutron activation

    NASA Astrophysics Data System (ADS)

    He, Yuping; Downing, R. Gregory; Wang, Howard

    2015-08-01

    The neutron depth profiling technique based on the neutron activation reaction, 6Li (n, α) 3H, was applied with two dimensional (2D) pinhole aperture scans to spatially map lithium in 3D. The technique was used to study model LiFePO4 electrodes of rechargeable batteries for spatial heterogeneities of lithium in two cathode films that had undergone different electrochemical cycling histories. The method is useful for better understanding the functioning and failure of batteries using lithium as the active element.

  12. Determination of elements in National Bureau of Standards' geological Standard Reference Materials by neutron activation analysis

    SciTech Connect

    Graham, C.C.; Glascock, M.D.; Carni, J.J.; Vogt, J.R.; Spalding, T.G.

    1982-08-01

    Instrumental neutron activation analysis (INAA) and prompt gamma neutron activation analysis (PGNAA) have been used to determine elemental concentrations in two recently issued National Bureau of Standards (NBS) Standard Reference Materials (SRM's). The results obtained are in good agreement with the certified and information values reported by NBS for those elements in each material for which comparisons are available. Average concentrations of 35 elements in SRM 278 obsidian rock and 32 elements in SRM 688 basalt rock are reported for comparison with results that may be obtained by other laboratories.

  13. Use of Activation Technique and MCNP Calculations for Measurement of Fast Neutron Spatial Distribution at the MJ Plasma Focus Device.

    NASA Astrophysics Data System (ADS)

    Bienkowska, B.; Scholz, M.; Wincel, K.; Zaręba, B.

    2008-03-01

    In this paper Plasma-Focus (PF) neutron emission properties have been studied using Monte Carlo calculations for neutron and photon transport. A Thermal Neutron Scaling Factor as a function of angular position of silver activation detectors placed around MJ Plasma Focus (PF-1000) device has been calculated. Detector responses calculated for 2.5 MeV neutrons and neutrons produced by Am-Be calibration source have been obtained .The results have shown the detector response dependence on the kind of calibration neutron source and on local geometrical/structural characteristics of the PF-1000 devices. Thus the proper calibration procedure ought to be performed for correct measurement of neutron yield within Plasma-Focus devices.

  14. Measurements of activation cross-sections for the 96Ru(n,d*)95gTc reaction for neutrons with energies between 13.3 and 15.0MeV.

    PubMed

    Luo, Junhua; Tuo, Fei; Kong, Xiangzhong; Liu, Rong; Jiang, Li

    2008-12-01

    In this study, activation cross-sections were measured for the (9)(6)Ru(n,d*)(95g)Tc reaction at three different neutron energies from 13.5 to 14.8MeV. The fast neutrons were produced via the (3)H(d,n)(4)He reaction on a K-400 neutron generator. Induced gamma activities were measured by a high-resolution gamma-ray spectrometer with a high-purity germanium (HPGe) detector. Measurements were corrected for gamma-ray attenuations, random coincidence (pile-up), dead time and fluctuation of neutron flux. The data for (9)(6)Ru(n,d*)(95g)Tc reaction cross-sections are reported to be 196+/-18, 253+/-22 and 298+/-22mb at 13.5+/-0.2, 14.1+/-0.1 and 14.8+/-0.2MeV incident neutron energies, respectively. Results were compared with the previous works.

  15. Metabolic activity of sodium, measured by neutron activation, in the hands of patients suffering from bone diseases: concise communication

    SciTech Connect

    Spinks, T.J.; Bewley, D.K.; Paolillo, M.; Vlotides, J.; Joplin, G.F.; Ranicar, A.S.O.

    1980-01-01

    Turnover of sodium in the human hand was studied by neutron activation. Patients suffering from various metabolic abnormalities affecting the skeleton, who were undergoing routine neutron activation for the measurement of calcium, were investigated along with a group of healthy volunteers. Neutron activation labels the sodium atoms simultaneously and with equal probability regardless of the turnover time of individual body compartments. The loss of sodium can be described either by a sum of two exponentials or by a single power function. Distinctions between patients and normal subjects were not apparent from the exponential model but were brought out by the power function. The exponent of time in the latter is a measure of clearance rate. The mean values of this parameter in (a) a group of patients suffering from acromegaly; (b) a group including Paget's disease, osteoporosis, Cushing's disease, and hyperparathyroidism; and (c) a group of healthy subjects, were found to be significantly different from each other.

  16. Analysis of the neutron component at high altitude mountains using active and passive measurement devices

    NASA Astrophysics Data System (ADS)

    Hajek, M.; Berger, T.; Schöner, W.; Vana, N.

    2002-01-01

    The European Council directive 96/29/Euratom requires dosimetric precautions if the effective dose exceeds 1 mSv/a. On an average, this value is exceeded by aircrew members. Roughly half of the radiation exposure at flight altitudes is caused by cosmic ray-induced neutrons. Active ( 6LiI(Eu)-scintillator) and passive (TLDs) Bonner sphere spectrometers were used to determine the neutron energy spectra atop Mt. Sonnblick (3105 m) and Mt. Kitzsteinhorn (3029 m). Further measurements in a mixed radiation field at CERN as well as in a proton beam of 62 MeV at Paul Scherrer Institute, Switzerland, confirmed that not only neutrons but also charged particles contribute to the readings of active detectors, whereas TLD-600 and TLD-700 in pair allow the determination of the thermal neutron flux. Unfolding of the detector data obtained atop both mountains shows two relative maxima around 1 MeV and 85 MeV, which have to be considered for the assessment of the biologically relevant dose equivalent. By convoluting the spectra with appropriate conversion functions the neutron dose equivalent rate was determined to be 150±15 nSv/h. The total dose equivalent rate determined by the HTR-method was 210±15 nSv/h. The results are in good agreement with LET-spectrometer and Sievert counter measurements carried out simultaneously.

  17. Measuring neutron yield and ρR anisotropies with activation foils at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bleuel, D. L.; Bernstein, L. A.; Bionta, R. M.; Cooper, G. W.; Drury, O. B.; Hagmann, C. A.; Knittel, K. M.; Leeper, R. J.; Ruiz, C. L.; Schneider, D. H. G.; Yeamans, C. B.

    2013-11-01

    Neutron yields at the National Ignition Facility (NIF) are measured with a suite of diagnostics, including activation of ˜20-200 g samples of materials undergoing a variety of energy-dependent neutron reactions. Indium samples were mounted on the end of a Diagnostic Instrument Manipulator (DIM), 25-50 cm from the implosion, to measure 2.45 MeV D-D fusion neutron yield. The 336.2 keV gamma rays from the 4.5 hour isomer of 115mIn produced by (n,n') reactions are counted in high-purity germanium detectors. For capsules producing D-T fusion reactions, zirconium and copper are activated via (n,2n) reactions at various locations around the target chamber and bay, measuring the 14 MeV neutron yield to accuracies on order of 7%. By mounting zirconium samples on ports at nine locations around the NIF chamber, anisotropies in the primary neutron emission due to fuel areal density asymmetries can be measured to a relative precision of 3%.

  18. A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.

    2011-08-01

    We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter

  19. Distortion of the catalytic domain of tissue-type plasminogen activator by plasminogen activator inhibitor-1 coincides with the formation of stable serpin-proteinase complexes.

    PubMed

    Perron, Michel J; Blouse, Grant E; Shore, Joseph D

    2003-11-28

    Plasminogen activator inhibitor-1 (PAI-1) is a typical member of the serpin family that kinetically traps its target proteinase as a covalent complex by distortion of the proteinase domain. Incorporation of the fluorescently silent 4-fluorotryptophan analog into PAI-1 permitted us to observe changes in the intrinsic tryptophan fluorescence of two-chain tissue-type plasminogen activator (tPA) and the proteinase domain of tPA during the inhibition reaction. We demonstrated three distinct conformational changes of the proteinase that occur during complex formation and distortion. A conformational change occurred during the initial formation of the non-covalent Michaelis complex followed by a large conformational change associated with the distortion of the proteinase catalytic domain that occurs concurrently with the formation of stable proteinase-inhibitor complexes. Following distortion, a very slow structural change occurs that may be involved in the stabilization or regulation of the trapped complex. Furthermore, by comparing the inhibition rates of two-chain tPA and the proteinase domain of tPA by PAI-1, we demonstrate that the accessory domains of tPA play a prominent role in the initial formation of the non-covalent Michaelis complex.

  20. Breakthrough in precision (0.3 percent) of neutron activation analyses applied to provenience studies of obsidian

    SciTech Connect

    Asaro, Frank; Stross, Fred H.; Burger, Richard L.

    2002-10-01

    A gamma ray spectrometer at LBNL (the Luis W. Alvarez Iridium Coincidence Spectrometer), that was specifically designed for high sensitivity measurements of iridium abundances, has been significantly modified in order to provide precisions of measurement in neutron activation analysis of obsidian significantly better than previously obtained (about 1%). Repeated measurements on a single sample of obsidian from a deposit near Chivay, Arequipa, Peru, showed a precision (average coefficient of variation) of 0.19% for the 6 best-measured elements, the value anticipated from the known random errors of measurement. In measurement of samples made from 7 different obsidian nodules from two locations near Chivay, a group of 5 had a spread of 0.30% for the 6 elements measured with counting statistics of better than 0.3% (and 1.8% for the remaining 6 elements). The data suggest there are source inhomogeneity and/or sample preparation contamination errors totaling 0.24 {+-} .05% for the 6 best measured elements. A sixth obsidian sample could be distinguished from the main group because it differed by +0.8% for most elements, and the last sample could be easily distinguished because several elements differed by more than 1%. The precision of measurements now being developed may provide a significantly more precise determination of the provenience of obsidian artifacts than has been heretofore possible. Also the techniques of measurement developed for obsidian will provide even better precisions with pottery, as many elements are more abundant in pottery than in obsidian.

  1. Studies of neutron and proton nuclear activation in low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1982-01-01

    The expected induced radioactivity of experimental material in low Earth orbit was studied for characteristics of activating particles such as cosmic rays, high energy Earth albedo neutrons, trapped protons, and secondary protons and neutrons. The activation cross sections for the production of long lived radioisotopes and other existing nuclear data appropriate to the study of these reactions were compiled. Computer codes which are required to calculate the expected activation of orbited materials were developed. The decreased computer code used to predict the activation of trapped protons of materials placed in the expected orbits of LDEF and Spacelab II. Techniques for unfolding the fluxes of activating particles from the measured activation of orbited materials are examined.

  2. TFT-Based Active Pixel Sensors for Large Area Thermal Neutron Detection

    NASA Astrophysics Data System (ADS)

    Kunnen, George

    Due to diminishing availability of 3He, which is the critical component of neutron detecting proportional counters, large area flexible arrays are being considered as a potential replacement for neutron detection. A large area flexible array, utilizing semiconductors for both charged particle detection and pixel readout, ensures a large detection surface area in a light weight rugged form. Such a neutron detector could be suitable for deployment at ports of entry. The specific approach used in this research, uses a neutron converter layer which captures incident thermal neutrons, and then emits ionizing charged particles. These ionizing particles cause electron-hole pair generation within a single pixel's integrated sensing diode. The resulting charge is then amplified via a low-noise amplifier. This document begins by discussing the current state of the art in neutron detection and the associated challenges. Then, for the purpose of resolving some of these issues, recent design and modeling efforts towards developing an improved neutron detection system are described. Also presented is a low-noise active pixel sensor (APS) design capable of being implemented in low temperature indium gallium zinc oxide (InGaZnO) or amorphous silicon (a-Si:H) thin film transistor process compatible with plastic substrates. The low gain and limited scalability of this design are improved upon by implementing a new multi-stage self-resetting APS. For each APS design, successful radiation measurements are also presented using PiN diodes for charged particle detection. Next, detection array readout methodologies are modeled and analyzed, and use of a matched filter readout circuit is described as well. Finally, this document discusses detection diode integration with the designed TFT-based APSs.

  3. Exploration of Adiabatic Resonance Crossing Through Neutron Activator Design for Thermal and Epithermal Neutron Formation in (99)Mo Production and BNCT Applications.

    PubMed

    Khorshidi, Abdollah

    2015-10-01

    A feasibility study was performed to design thermal and epithermal neutron sources for radioisotope production and boron neutron capture therapy (BNCT) by moderating fast neutrons. The neutrons were emitted from the reaction between (9)Be, (181)Ta, and (184)W targets and 30 MeV protons accelerated by a small cyclotron at 300 μA. In this study, the adiabatic resonance crossing (ARC) method was investigated by means of (207)Pb and (208)Pb moderators, graphite reflector, and boron absorber around the moderator region. Thermal/epithermal flux, energy, and cross section of accumulated neutrons in the activator were examined through diverse thicknesses of the specified regions. Simulation results revealed that the (181)Ta target had the highest neutron yield, and also tungsten was found to have the highest values in both surface and volumetric flux ratio. Transmutation in the (98)Mo sample through radiative capture was investigated for the natural lead moderator. When the sample radial distance from the target was increased inside the graphite region, the production yield had the greatest value of activity. The potential of the ARC method is a replacement or complements the current reactor-based supply sources of BNCT purposes.

  4. Development of high efficiency neutron detectors

    SciTech Connect

    Pickrell, M.M.; Menlove, H.O.

    1993-08-01

    We have designed a novel neutron detector system using conventional {sup 3}He detector tubes and composites of polyethylene, and graphite. At this time the design consists entirely of MCNP simulations of different detector configurations and materials. These detectors are applicable to low-level passive and active neutron assay systems such as the passive add-a-source and the {sup 252}Cf shuffler. Monte Carlo simulations of these neutron detector designs achieved efficiencies of over 35% for assay chambers that can accommodate 55-gal. drums. Only slight increases in the number of detector tubes and helium pressure are required. The detectors also have reduced die-away times. Potential applications are coincident and multiplicity neutron counting for waste disposal and safeguards. We will present the general design philosophy, underlying physics, calculation mechanics, and results.

  5. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    SciTech Connect

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V.

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV

  6. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOEpatents

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  7. Neutron activation study of the composition of lunar surface material from the Sea of Fertility

    NASA Technical Reports Server (NTRS)

    Surkov, Y. A.; Kirnozov, F. F.; Ivanov, I. N.; Kilesov, G. M.; Ryvkin, B. N.; Shpanov, A. P.

    1974-01-01

    The elemental composition of samples of lunar regolith returned by Luna 16 from the Sea of Fertility was determined by a radio activation method using generator and reactor neutrons, and also by gamma spectrometry with scintillation and Ge(Li) detectors.

  8. Development of a new electronic personal neutron dosemeter using a CMOS active pixel sensor.

    PubMed

    Trocmé, M; Higueret, S; Husson, D; Nourreddine, A; Lê, T D

    2007-01-01

    A CMOS active pixel sensor, originally designed for the tracking of minimum ionising charged particles in high-energy physics, has been recently used for the detection of fast neutrons. Data were taken at the IRSN Cadarache facility with a (241)Am-Be ISO source and a polyethylene radiator. A high-intrinsic efficiency (1.2 x 10(-3)) has been obtained. It is in good agreement with both calculations and a MCNPX Monte Carlo simulation. This experiment paves the way for a fully electronic personal neutron dosemeter.

  9. A new automated sample transfer system for instrumental neutron activation analysis.

    PubMed

    Ismail, S S

    2010-01-01

    A fully automated and fast pneumatic transport system for short-time activation analysis was recently developed. It is suitable for small nuclear research reactors or laboratories that are using neutron generators and other neutron sources. It is equipped with a programmable logic controller, software package, and 12 devices to facilitate optimal analytical procedures. 550 ms were only necessary to transfer the irradiated capsule (diameter: 15 mm, length: 50 mm, weight: 4 gram) to the counting chamber at a distance of 20 meters using pressurized air (4 bars) as a transport gas.

  10. A New Automated Sample Transfer System for Instrumental Neutron Activation Analysis

    PubMed Central

    Ismail, S. S.

    2010-01-01

    A fully automated and fast pneumatic transport system for short-time activation analysis was recently developed. It is suitable for small nuclear research reactors or laboratories that are using neutron generators and other neutron sources. It is equipped with a programmable logic controller, software package, and 12 devices to facilitate optimal analytical procedures. 550 ms were only necessary to transfer the irradiated capsule (diameter: 15 mm, length: 50 mm, weight: 4 gram) to the counting chamber at a distance of 20 meters using pressurized air (4 bars) as a transport gas. PMID:20369063

  11. Radiochemical neutron activation analysis for certification of ion-implanted phosphorus in silicon.

    PubMed

    Paul, Rick L; Simons, David S; Guthrie, William F; Lu, John

    2003-08-15

    A radiochemical neutron activation analysis procedure has been developed, critically evaluated, and shown to have the necessary sensitivity, chemical specificity, matrix independence, and precision to certify phosphorus at ion implantation levels in silicon. 32P, produced by neutron capture of 31P, is chemically separated from the sample matrix and measured using a beta proportional counter. The method is used here to certify the amount of phosphorus in SRM 2133 (Phosphorus Implant in Silicon Depth Profile Standard) as (9.58 +/- 0.16) x 10(14) atoms x cm(-2). A detailed evaluation of uncertainties is given.

  12. Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.

    SciTech Connect

    Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

    2007-12-01

    An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

  13. Precise trace rare earth analysis by radiochemical neutron activation

    SciTech Connect

    Laul, J.C.; Lepel, E.A.; Weimer, W.C.; Wogman, N.A.

    1981-06-01

    A rare earth group separation scheme followed by normal Ge(Li), low energy photon detector (LEPD), and Ge(Li)-NaI(Tl) coincidence-noncoincidence spectrometry significantly enhances the detection sensitivity of individual rare earth elements (REE) at or below the ppB level. Based on the selected ..gamma..-ray energies, normal Ge(Li) counting is favored for /sup 140/La, /sup 170/Tb, and /sup 169/Yb; LEPD is favored for low ..gamma..-ray energies of /sup 147/Nd, /sup 153/Sm, /sup 166/Ho, and /sup 169/Yb; and noncoincidence counting is favored for /sup 141/Ce, /sup 143/Ce, /sup 142/Pr, /sup 153/Sm, /sup 171/Er, and /sup 175/Yb. The detection of radionuclides /sup 152m/Eu, /sup 159/Gd, and /sup 177/Lu is equally sensitive by normal Ge(Li) and noncoincidence counting; /sup 152/Eu is equally sensitive by LEPD and normal Ge(Li); and /sup 153/Gd and /sup 170/Tm is equally favored by all the counting modes. Overall, noncoincidence counting is favored for most of the REE. Precise measurements of the REE were made in geological and biological standards.

  14. Design studies related to an in vivo neutron activation analysis facility for measuring total body nitrogen.

    PubMed

    Stamatelatos, I E; Chettle, D R; Green, S; Scott, M C

    1992-08-01

    Design studies relating to an in vivo prompt capture neutron activation analysis facility measuring total body nitrogen are presented. The basis of the design is a beryllium-graphite neutron collimator and reflector configuration for (alpha, n) type radionuclide neutron sources (238PuBe or 241AmBe), so as to reflect leaking, or out-scattered, neutrons towards the subject. This improves the ratio of thermal neutron flux to dose and the spatial distribution of thermal flux achieved with these sources, whilst retaining their advantage of long half-lives as compared to 252Cf based systems. The common problem of high count-rate at the detector, and therefore high nitrogen region of interest background due to pile-up, is decreased by using a set of smaller (5.1 cm diameter x 10.2 cm long) NaI(Tl) detectors instead of large ones. The facility described presents a relative error of nitrogen measurement of 3.6% and a nitrogen to background ratio of 2.3 for 0.45 mSv skin dose (assuming ten 5.1 cm x 10.2 cm NaI(Tl) detectors).

  15. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    PubMed

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  16. Importance of neutron energy distribution in borehole activation analysis in relatively dry, low-porosity rocks

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.; Philbin, P.W.; Boynton, G.R.; Wager, R.E.

    1977-01-01

    To evaluate the importance of variations in the neutron energy distribution in borehole activation analysis, capture gamma-ray measurements were made in relatively dry, low-porosity gabbro of the Duluth Complex. Although sections of over a meter of solid rock were encountered in the borehole, there was significant fracturing with interstitial water leading to a substantial variation of water with depth in the borehole. The linear-correlation coefficients calculated for the peak intensities of several elements compared to the chemical core analyses were generally poor throughout the depth investigated. The data suggest and arguments are given which indicate that the variation of the thermal-to-intermediate-to-fast neutron flux density as a function of borehole depth is a serious source of error and is a major cause of the changes observed in the capture gamma-ray peak intensities. These variations in neutron energy may also cause a shift in the observed capture gamma-ray energy.

  17. Apparatus for the measurement of total body nitrogen using prompt neutron activation analysis with californium-252.

    PubMed

    Mackie, A; Hannan, W J; Smith, M A; Tothill, P

    1988-01-01

    Details of clinical apparatus designed for the measurement of total body nitrogen (as an indicator of body protein), suitable for the critically ill, intensive-care patient are presented. Californium-252 radio-isotopic neutron sources are used, enabling a nitrogen measurement by prompt neutron activation analysis to be made in 40 min with a precision of +/- 3.2% for a whole body dose equivalent of 0.145 mSv. The advantages of Californium-252 over alternative neutron sources are discussed. A comparison between two irradiation/detection geometries is made, leading to an explanation of the geometry adopted for the apparatus. The choice of construction and shielding materials to reduce the count rate at the detectors and consequently to reduce the pile-up contribution to the nitrogen background is discussed. Salient features of the gamma ray spectroscopy system to reduce spectral distortion from pulse pile-up are presented.

  18. Studies in Moessbauer spectroscopy, neutron activation analysis, x-ray fluorescence

    SciTech Connect

    Nomai, M.

    1985-01-01

    The Moessbauer Effects was employed to study cyclopentadienyliron arene compounds. The isomer shift, delta, in these compounds ranges from 0.206 to 0.257 mm/s relative to /sup 5//sub 7/Co/Cu source and ..delta..E/sub Q/ values are from 1.632 to 1.918 mm/s at liquid nitrogen temperature. Room temperature spectra showed low absorption due to small recoil-free fractions the deltas and ..delta..E/sub Q/s can be correlated with the electron withdrawing effects of the alkyl groups bonded to benzene. In polynuclear aromatic system extending over two benzene rings, electron charge density is difficult to explain. Isomer shifts of PF/sub 6//sup -/ and Fe(NCS)/sub 6//sup 3 -/ are more or less independent of the counteranion, while ..delta..E/sub Q/ is slightly influenced by it. (Fe(arene)Cp)/sub 3//sup +/FE(NCS)/sub 6//sup 3 -/ compounds show only two peaks, with parameters almost identical to the PF/sub 6//sup -/ compounds. An isomer shift peak due to Fe(NCS)/sub 6//sup 3 -/, Fe d/sup 5/ state, is not observed and it is believed to coincide with the second right hand peak of the cation. Experimental procedures and results of hydrogen determination in samples of coal and other comparative samples, e.g., NA/sub 2/EDTA.2H/sub 2/O, in a paraffin moderated thermal neutron flux from 1 ..mu..Ci of /sup 252/Cf source are described. Simple instrumentation is used. Accuracy of about 10% or better is possible with stronger neutron source. Other moderators that were tried, but were unsuccessful, were water and graphite. Factors that can affect the neutron flux and prompt ..gamma..-ray distribution in the samples are H, O, and C concentrations. Results of the determination of uranium and other elements in sandstone uranium samples from Zambia are presented.

  19. Recent upgrade of the in vivo neutron activation facility at Brookhaven National Laboratory

    SciTech Connect

    Ma, R.; Dilmanian, F.A..; Rarback, H.; Meron, M.; Kamen, Y.; Yasumura, S.; Weber, D.A.; Stamatelatos, I.E.; Lidofsky, L.J.; Pierson, R.N. Jr.

    1993-10-01

    The in vivo neutron activation facility at Brookhaven National Laboratory consists of a delayed- and a prompt-gamma neutron activation (DGNA and PGNA) system and an inelastic neutron scattering (INS) system. The total body contents of several basic elements, including potassium, calcium, chlorine, sodium, and phosphorus are measured at the DGNA system; total body carbon is measured at the INS system; and the nitrogen-tohydrogen ratio is measured at the PGNA system. Based on the elemental composition, body compartments, such as total body fat and total body protein can be computed with additional independently measured parameters, such as total body water, body size, and body weight. Information on elemental and compartmental body composition obtained through neutron activation analysis is useful, if not essential, for research on growth, malnutrition, aging diseases, such as osteoporosis and acquired immunodeficiency syndrome in which the progression of the illness is closely related to changes in major body compartments, such as bone, adipose tissue, and muscle. The DGNA system has been modified and upgraded several times since it was first built. Recently, all three systems underwent major upgrades. This upgrading and some preliminary studies carried out with the modified facilities are reported here.

  20. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC

    PubMed Central

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-01-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661

  1. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.

    PubMed

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-11-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received.

  2. Utilization of /sup 252/Cf-/sup 235/U fueled subcritical multiplier for neutron activation analysis

    SciTech Connect

    Wogman, N.A.; Lepel, E.A.

    1983-10-05

    Neutron activation analysis is normally performed at thermal fluxes of 10/sup 13/ n/cm/sup 2//s irradiating samples of a few milligrams. When a ten thousand-fold larger sample is available, neutron activation can be performed at proportionately lower fluxes. Thus, a 10 g sample irradiated at 10/sup 9/ n/cm/sup 2//s contains as much activity as a 1 mg sample irradiated at 10/sup 13/ n/cm/sup 2//s. This paper describes the utilization of a subcritical multiplier operating at about 10/sup 9/ n/cm/sup 2//s for the activation of a broad range of sample types and elemental concentrations.

  3. Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a

  4. High-fidelity MCNP modeling of a D-T neutron generator for active interrogation of special nuclear material

    NASA Astrophysics Data System (ADS)

    Katalenich, Jeff; Flaska, Marek; Pozzi, Sara A.; Hartman, Michael R.

    2011-10-01

    Fast and robust methods for interrogation of special nuclear material (SNM) are of interest to many agencies and institutions in the United States. It is well known that passive interrogation methods are typically sufficient for plutonium identification because of a relatively high neutron production rate from 240Pu [1]. On the other hand, identification of shielded uranium requires active methods using neutron or photon sources [2]. Deuterium-deuterium (2.45 MeV) and deuterium-tritium (14.1 MeV) neutron-generator sources have been previously tested and proven to be relatively reliable instruments for active interrogation of nuclear materials [3,4]. In addition, the newest generators of this type are small enough for applications requiring portable interrogation systems. Active interrogation techniques using high-energy neutrons are being investigated as a method to detect hidden SNM in shielded containers [4,5]. Due to the thickness of some containers, penetrating radiation such as high-energy neutrons can provide a potential means of probing shielded SNM. In an effort to develop the capability to assess the signal seen from various forms of shielded nuclear materials, the University of Michigan Neutron Science Laboratory's D-T neutron generator and its shielding were accurately modeled in MCNP. The generator, while operating at nominal power, produces approximately 1×10 10 neutrons/s, a source intensity which requires a large amount of shielding to minimize the dose rates around the generator. For this reason, the existing shielding completely encompasses the generator and does not include beam ports. Therefore, several MCNP simulations were performed to estimate the yield of uncollided 14.1-MeV neutrons from the generator for active interrogation experiments. Beam port diameters of 5, 10, 15, 20, and 25 cm were modeled to assess the resulting neutron fluxes. The neutron flux outside the beam ports was estimated to be approximately 2×10 4 n/cm 2 s.

  5. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons.

  6. Evaluation of Hylife-II and Sombrero using 175- and 566- group neutron transport and activation cross sections

    SciTech Connect

    Cullen, D; Latkowski, J; Sanz, J

    1999-06-18

    Recent modifications to the TART Monte Carlo neutron and photon transport code enable calculation of 566-group neutron spectra. This expanded group structure represents a significant improvement over the 50- and 175-group structures that have been previously available. To support use of this new capability, neutron activation cross section libraries have been created in the 175- and 566-group structures starting from the FENDL/A-2.0 pointwise data. Neutron spectra have been calculated for the first walls of the HYLIFE-II and SOMBRERO inertial fusion energy power plant designs and have been used in subsequent neutron activation calculations. The results obtained using the two different group structures are compared to each other as well as to those obtained using a 175-group version of the EAF3.1 activation cross section library.

  7. Gamma exposure rates due to neutron activation of soil: site of Hood detonation, Operation Plumbbob

    SciTech Connect

    Auxier, J.A.; Ohnesorge, W.F.

    1980-06-01

    This paper is the result of some recent discussions of exposure rates within the first few hours of the Hood detonation of the Plumbbob series due to neutron activation of soil. We estimated the exposure rates from 1/2 to 3 h after the detonation from ground zero to 1000 yards from ground zero. The area was assumed to be uncontaminated by fallout. Soil samples from the area of the Nevada Test Site at which the Hood device was detonated were sent to ORNL by Dr. John Malik of Los Alamos and by Mr. Gordon Jacks of the Nevada Test Site. These samples were irradiated at the DOSAR facility and the resulting activity analyzed. Calculations of exposure rates were then made based on the analyzed activity and the measured thermal neutron fluences at DOSAR and at the Hood Site.

  8. Improved lithium iodide neutron scintillator with Eu2+ activation: The elimination of Suzuki-Phase precipitates

    DOE PAGES

    Boatner, Lynn A.; Comer, Eleanor P.; Wright, Gomez W.; ...

    2017-02-21

    Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalent Eumore » dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above ~0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu2+ at concentrations up to and in excess of 3 wt.%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. Furthermore, the resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.« less

  9. Measurement of Neutrons in Different Pb/U Setups Irradiated by Relativistic Protons and Deuterons by means of Activation Samples

    NASA Astrophysics Data System (ADS)

    Wagner, V.; Svoboda, O.; Vrzalová, J.; Suchopár, M.; Geier, B.; Kugler, A.; Honusek, M.; the Collaboration Energy; Radioactive Waste, Transmutation of

    2012-05-01

    The collaboration Energy and Transmutation of Radioactive Waste uses different setups consisting of lead, uranium and graphite irradiated by relativistic protons and deuterons to study transmutation of radioactive materials by produced neutrons. Our group measured spatial distribution of neutrons by means of activation samples during the assembly irradiation by the JINR Nuclotron beams. We also present results of simulations using MCNPX code and their comparison with obtained experimental data. We use Au, Al, Bi, In and Ta foils as activation detectors, but unfortunately almost no experimental cross-section data for observed threshold (n,xn) reactions are available for higher neutron energies. Therefore we carried out series experiments devoted to determination of neutron cross-sections of various threshold reactions using different quasi-monoenergetic neutron sources.

  10. Neutron measurements

    SciTech Connect

    McCall, R.C.

    1981-01-01

    Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)

  11. A multi-layered active target for the study of neutron-unbound nuclides at NSCL

    NASA Astrophysics Data System (ADS)

    Freeman, Jessica; Gueye, Paul; Redpath, Thomas; MoNA Collaboration

    2017-01-01

    The characteristics of neutron-unbound nuclides were investigated using a multi-layered Si/Be active target designed for use with the MoNA/LISA setup at the National Superconducting Cyclotron (NSCL). The setup consists of the MoNA/LISA arrays (for neutron detection) and a superconducting sweeper magnet (for charged separation) to identify products following the decay of neutron unbound states. The segmented target consisted of three 700 mg/cm2 beryllium targets and four 0.14 mm thick 62x62 mm2 silicon detectors. As a commissioning experiment for the target the decay of two-neutron unbound 26O populated in a one-proton removal reaction from a radioactive 27F beam was performed. The 27F secondary radioactive beam from the NSCL's Coupled Cyclotron Facility was produced from the fragmentation of a 140 MeV/u 48Ca beam incident on a thick beryllium target and then cleanly selected by the A1900 fragment separator. The energy loss and position spectra of the incoming beam and reaction products were used to calibrate the Silicon detectors to within 1.5% in both energy and position. A dedicated Geant4 model of the target was developed to simulate the energy loss within the target. A description of the experimental setup, simulation work, and energy and position calibration will be presented. DoE/NNSA - DE-NA0000979.

  12. Consequences of Relativistic Neutron Outflow beyond the Accretion Disks of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Ekejiuba, I. E.; Okeke, P. N.

    1993-05-01

    Three channels of relativistic electron injection in the jets of extragalactic radio sources (EGRSs) are discussed. With the assumption that an active galactic nucleus (AGN) is powered by a spinning supermassive black hole of mass ~ 10(8) M_⊙ which sits at the center of the nucleus and ingests matter and energy through an accretion disk, a model for extracting relativistic neutrons from the AGN is forged. In this model, the inelastic proton--proton and proton--photon interactions within the accretion disk, of relativistic protons with background thermal protons and photons, respectively, produce copious amounts of relativistic neutrons. These neutrons travel ballistically for ~ 10(3gamma_n ) seconds and escape from the disk before they decay. The secondary particles produced from the neutron decays then interact with the ambient magnetic field and/or other particles to produce the radio emissions observed in the jets of EGRSs. IEE acknowledges the support of the World Bank and the Federal University of Technology, Yola, Nigeria as well as the hospitality of Georgia State University.

  13. Radiolabelling of parenteral O/W emulsions by means of neutron activation.

    PubMed

    Buszello, K; Schnier, C; Müller, B W

    1999-05-01

    Parenteral O/W emulsions containing lanthanide fatty acid derivatives were prepared. With regard to enhancing the incorporation efficiency of the neutron activatable excipients, the addition of the non-ionic co-emulsifier Solutol HS 15 proved to be most suitable. Comparing the different chain lengths of the fatty acids, the long chain fatty acid derivative lanthanide(tri)stearate seemed to be superior in strengthening the interfacial layer. After neutron activation, the physical and chemical stability of the irradiated formulations was evaluated. The chemical stability, indicated by the concentration of lyso phosphatidylcholine as the degradation product of the main emulsifier, was shown to be dependent on the irradiation time. By applying a neutron flux of 2.1 x 10(13) neutrons/cm2 per s, the maximum should not rise above 60 s. The physical stability indicated by the particle size distribution was affected by the presence of the non-ionic co-emulsifier. Concerning the amount of radiation necessary for in vivo biodistribution studies the maximum load of Samarium fatty acid derivatives did not yield sufficient radioactivity levels. However, Europium derivatives could be shown to be suitable for in vivo studies.

  14. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.

    PubMed

    Aslam; Waker, A J

    2011-02-01

    The accelerator-based in vivo neutron activation facility at McMaster University has been used successfully for the measurement of several minor and trace elements in human hand bones due to their importance to health. Most of these in vivo measurements have been conducted at a proton beam energy (E(p)) of 2.00 MeV to optimise the activation of the selected element of interest with an effective dose of the same order as that received in chest X rays. However, measurement of other elements at the same facility requires beam energies other than 2.00 MeV. The range of energy of neutrons produced at these proton beam energies comes under the region where tissue-equivalent proportional counters (TEPCs) are known to experience difficulty in assessing the quality factor and dose equivalent. In this study, the response of TEPCs was investigated to determine the quality factor of neutron fields generated via the (7)Li(p, n)(7)Be reaction as a function of E(p) in the range 1.884-2.56 MeV at the position of hand irradiation in the facility. An interesting trend has been observed in the quality factor based on ICRP 60, Q(ICRP60), such that the maximum value was observed at E(p)=1.884 MeV (E(n)=33±16 keV) and then continued to decline with increasing E(p) until achieving a minimum value at E(p)=2.0 MeV despite a continuous increase in the mean neutron energy with E(p). This observation is contrary to what has been observed with direct fast neutrons where the quality factor was found to increase continuously with an increase in E(p) (i.e. increasing E(n)). The series of measurements conducted with thermal and fast neutron fields demonstrate that the (14)N(n, p)(14)C produced 580 keV protons in the detector play an important role in the response of the counter under 2.0 MeV proton energy (E(n) ≤ 250 keV). In contrast to the lower response of TEPCs to low-energy neutrons, the quality factor is overestimated in the range 1-2 depending on beam energy <2.0 MeV. This study provides

  15. Measurements of 60Co in spoons activated by neutrons during the JCO criticality accident at Tokai-mura in 1999.

    PubMed

    Gasparro, J; Hult, M; Komura, K; Arnold, D; Holmes, L; Johnston, P N; Laubenstein, M; Neumaier, S; Reyss, J-L; Schillebeeckx, P; Tagziria, H; Van Britsom, G; Vasselli, R

    2004-01-01

    Neutron activated items from the vicinity of the place where the JCO criticality accident occurred have been used to determine the fluence of neutrons around the facility and in nearby residential areas. By using underground laboratories for measuring the activation products, it is possible to extend the study to also cover radionuclides with very low activities from long-lived radionuclides. The present study describes gamma-ray spectrometry measurements undertaken in a range of underground laboratories for the purpose of measuring (60)Co more than 2 years after the criticality event. The measurements show that neutron fluence determined from (60)Co activity is in agreement with previous measurements using the short-lived radionuclides (51)Cr and (59)Fe. Limits on contamination of the samples with (60)Co are evaluated and shown to not greatly affect the utility of neutron fluence determinations using (60)Co activation.

  16. A neutron activation analysis procedure for the determination of uranium, thorium and potassium in geologic samples

    USGS Publications Warehouse

    Aruscavage, P. J.; Millard, H.T.

    1972-01-01

    A neutron activation analysis procedure was developed for the determination of uranium, thorium and potassium in basic and ultrabasic rocks. The three elements are determined in the same 0.5-g sample following a 30-min irradiation in a thermal neutron flux of 2??1012 n??cm-2??sec-1. Following radiochemical separation, the nuclides239U (T=23.5 m),233Th (T=22.2 m) and42K (T=12.36 h) are measured by ??-counting. A computer program is used to resolve the decay curves which are complex owing to contamination and the growth of daughter activities. The method was used to determine uranium, throium and potassium in the U. S. Geological Survey standard rocks DTS-1, PCC-1 and BCR-1. For 0.5-g samples the limits of detection for uranium, throium and potassium are 0.7, 1.0 and 10 ppb, respectively. ?? 1972 Akade??miai Kiado??.

  17. Neutron Activation Diagnostics in Deuterium Gas-Puff Experiments on the 3 MA GIT-12 Z-Pinch

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.

    2016-10-01

    The experiments with a deuterium z-pinch on the GIT-12 generator at IHCE in Tomsk were performed in the frame of the Czech-Russian agreement. A set of neutron diagnostics included scintillation time-of-flight detectors, bubble detectors, and several kinds of threshold nuclear activation detectors in the order to obtain information about the yield, anisotropy, and spectrum of the neutrons produced by a deuterium gas-puff. The average neutron yield in these experiments was of the order of 1012 neutrons per a single shot. The energy spectrum of the produced neutrons was evaluated using neutron time-of-flight detectors and a set of neutron activation detectors. Because the deuterons in the pinch achieve multi-MeV energies, non-DD neutrons are produced by nuclear reactions of deuterons with a stainless steel vacuum chamber and aluminum components of diagnostics inside the chamber. An estimated number of the non-DD was of the order of 1011. GACR (Grant No. 16-07036S), CME (Grant Nos. LD14089, LG13029, and LH13283), MESRF (Grant No. RFMEFI59114X0001), IAEA (Grant No. RC17088), CTU (Grant No. SGS 16/223/OHK3/3T/13).

  18. Second Research Coordination Meeting on Reference Database for Neutron Activation Analysis -- Summary Report

    SciTech Connect

    Firestone, Richard B.; Kellett, Mark A.

    2008-03-19

    The second meeting of the Co-ordinated Research Project on"Reference Database for Neutron Activation Analysis" was held at the IAEA, Vienna from 7-9 May, 2007. A summary of the presentations made by participants is given, along with reports on specifically assigned tasks and subsequent discussions. In order to meet the overall objectives of this CRP, the outputs have been reiterated and new task assignments made.

  19. Epithermal Neutron Activation Analysis of Some Geological Samples of Different Origin

    SciTech Connect

    Duliu, O. G.; Cristache, C. I.; Oaie, G.; Ricman, C.; Culicov, O. A.; Frontasyeva, M. V.

    2010-01-21

    Instrumental Epithermal Neutron Activation Analysis was used to investigate the distribution of six major elements and 34 trace elements in a set of eight igneous and metamorphic rocks collected from Carpathian and Macin Mountainsas well as unconsolidated sediments collected from anoxic zone of the Black Sea. All experimental data were interpreted within the Upper Continental Core and Mid Ocean Ridge Basalt model system that allowed getting more information concerning samples origin as well as the environmental peculiarities.

  20. Neutron activation analysis for reference determination of the implantation dose of cobalt ions

    SciTech Connect

    Garten, R.P.H.; Bubert, H.; Palmetshofer, L.

    1992-05-15

    The authors prepared depth profilling reference materials by cobalt ion implantation at an ion energy of 300 keV into n-type silicon. The implanted Co dose was then determined by instrumental neutron activation analysis (INAA) giving an analytical dynamic range of almost 5 decades and uncertainty of 1.5%. This form of analysis allows sources of error (beam spreading, misalignment) to be corrected. 70 refs., 3 tabs.

  1. HPGe well-type detectors for neutron activation measurements on the Frascati Tokamak Upgrade tokamak

    SciTech Connect

    Bertalot, L.; Damiani, M.; Esposito, B.; Lagamba, L.; Podda, S.; Batistoni, P.; De Felice, P.; Biagini, R.

    1997-01-01

    We describe an improvement of the neutron activation system in operation on the Frascati Tokamak Upgrade (FTU) tokamak for the measurement of the total neutron yield. A HPGe well-type detector (200 cm{sup 3} active volume) is used to detect the photoemission from neutron activated samples ({sup 115m}In336.2 keV {gamma} rays from DD neutrons on indium for FTU). Due to their high geometrical efficiency, HPGe well-type detectors are particularly suited to the FTU low-level activity measurements. A particular effort has been devoted to the calibration of the measuring system. In particular, a multi-{gamma} calibration source (59{endash}1332 keV energy range) with a density of 7.31 g/cm{sup 3} consisting of a stack of indium foils has been prepared. This assures that the shape and volume of the calibration source are the same as those of the samples used in the actual measurements. The full-energy-peak efficiency at the {sup 115m}In336.2 keV line is 0.197 with an overall uncertainty of 2{percent} (1{sigma}). For a better characterization of the detector response as a function of the sample density, a further calibration source with the same geometry has been prepared in a gel aqueous solution (density {approximately}1 g/cm{sup 3}). The calibration curves for the well-type detector at the two different density values are compared. {copyright} {ital 1997 American Institute of Physics.}

  2. Determination of Np-237 by radiochemical neutron activation analysis combined with extraction chromatography.

    PubMed

    Kalmykov, St N; Aliev, R A; Sapozhnikov, D Yu; Sapozhnikov, Yu A; Afinogenov, A M

    2004-01-01

    A procedure for determination of 237Np, 238Pu, 239,240Pu and 241Pu in environmental samples is described. Neptunium-237 is determined using radiochemical neutron activation analysis with pre- and post-irradiation chemistry based on solvent extraction and extraction chromatography. 238Pu, 239,240Pu is determined using alpha spectrometry and 241Pu by liquid scintillation spectrometry. The vertical profiles of 237Np, 238Pu, 239,240Pu in bottom sediments from the Black Sea are presented.

  3. Determination of Cd and Cr in an ABS candidate reference material by instrumental neutron activation analysis.

    PubMed

    Park, Kwangwon; Kang, Namgoo; Cho, Kyunghaeng; Lee, Jounghae

    2008-12-01

    In order to practically better cope with technical barriers to trade (TBT) of a great number of resin goods, our research presents first-ever results for the determination of Cd and Cr in acrylonitrile butadiene styrene (ABS) candidate reference material using instrumental neutron activation analysis (INAA) recently recognized as a candidate primary ratio method with a particular attention to the estimation of involved measurement uncertainties.

  4. Investigation of the atmospheric particulates deposited on leaves using instrumental neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Cercasov, V.

    A method for the separation of surface contamination on plant leaves by plastic film stripping was applied. The particulate matter embedded in the film was analysed by neutron activation. The investigation was directed especially towards the determination of the trace element content of the suitable plastic matrices and of the influence of solvents. The practicability of this method is demonstrated by analysing films stripped from plant leaves with different degrees of pollution.

  5. Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt

    NASA Astrophysics Data System (ADS)

    Badawy, Wael M.; Ali, Khaled; El-Samman, Hussein M.; Frontasyeva, Marina V.; Gundorina, Svetlana F.; Duliu, Octavian G.

    2015-07-01

    Instrumental neutron activation analysis was used to study geochemical peculiarities of the Siwa Oasis in the Western Egyptian Desert. A total of 34 elements were determined in soil and sediment samples (Na, Mg, Al, Cl, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Zr, Sb, I, Cs, Ba, La, Ce, Nd, Eu, Tb, Dy, Tm, Yb, Hf, Ta, Th, and U). For data interpretation Cluster analysis was applied. Comparison with the available literature data was carried out.

  6. Salvinia auriculata: aquatic bioindicator studied by instrumental neutron activation analysis (INAA).

    PubMed

    Soares, Daniel Crístian Ferreira; de Oliveira, Ester Figueiredo; Silva, Grácia Divina de Fátima; Duarte, Lucienir Pains; Pott, Vali Joana; Vieira Filho, Sidney Augusto

    2008-05-01

    Through instrumental neutron activation analysis (INAA) the elemental chemical composition of Salvinia auriculata and Ouro Preto city public water was determined. Elements Ce, Th, Cr, Hf, Sb, Sc, Rb, Fe, Zn, Co, Au, La and Br were quantified. High chromium concentration was determined in this plant. But, chromium was determined only in low concentrations in the water. The results indicate the great capacity of this plant to absorb and accumulate inorganic elements.

  7. A comparative neutron activation analysis study of common generic manipulated and reference medicines commercialized in Brazil.

    PubMed

    Leal, A S; Menezes, M A B C; Rodrigues, R R; Andonie, O; Vermaercke, P; Sneyers, L

    2008-10-01

    In this work, a comparative study of neutron activation analysis (NAA) was performed by the nuclear institutes: CDTN/CNEN-Brazil, CCHEN-Chile and the SCK.CEN-Belgium aiming to investigate some generic, manipulated and reference medicines largely commercialized in Brazil. Some impurities such as: As, Ba, Br, Ce, Co, Cr, Eu, Fe, Hf, Sb, Sc, Sm, Ti and Zn were found, and the heterogeneity of the samples pointed out the lack of an efficient public system of quality control.

  8. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  9. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

  10. Analysis of solid-rocket effluents for aluminum, silicon, and other trace elements by neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Furr, A. K.

    1974-01-01

    The sensitivity and reliability of neutron activation analysis in detecting trace elements in solid rocket effluents are discussed. Special attention was given to Al and Si contaminants. The construction and performance of a thermal column irradiation unit was reported.

  11. Study of proton and neutron activation of metal samples in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1984-01-01

    Progress in the following activities has been made: the analysis of the gamma ray spectra taken from samples flown in Spacelab 2; the search for and review of neutron and proton activation cross sections needed to analyze the results of the Long Duration Exposure Facility (LDEF) activation measurements; the consideration given to data analysis of the LDEF and Spacelab 2 samples; the plan to measure relevant cross sections with nuclear accelerator measurements; and the preparation of an extended gamma ray calibration sources continues through planning and direct measurement of gamma ray efficiency for a Ge(Li) as a function of position along the surface of the detector housing.

  12. FY15 Status Report on NEAMS Neutronics Activities

    SciTech Connect

    Lee, C. H.; Shemon, E. R.; Smith, M. A.; Connaway, H. M.; Aliberti, G.

    2015-09-30

    This report summarizes the current status of NEAMS activities in FY2015. The tasks this year are (1) to improve solution methods for steady-state and transient conditions, (2) to develop features and user friendliness to increase the usability and applicability of the code, (3) to improve and verify the multigroup cross section generation scheme, (4) to perform verification and validation tests of the code using SFRs and thermal reactor cores, and (5) to support early users of PROTEUS and update the user manuals.

  13. Boron-10 ABUNCL Active Testing

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-07-09

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from testing of the active mode of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) at Los Alamos National Laboratory using sources and fuel pins.

  14. Neutron activation determination of iridium, gold, platinum, and silver in geologic samples

    USGS Publications Warehouse

    Millard, H.T.

    1987-01-01

    Low-level methods for the determination of iridium and other noble metals have become increasingly important in recent years due to interest in locating abundance anomalies associated with the Cretaceous and Tertiary (K-T) boundary. Typical iridium anomalies are in the range of 1 to 100 ??g/kg (ppb). Thus methods with detection limits near 0.1 ??g/kg should be adequate to detect K-T boundary anomalies. Radiochemical neutron activation analysis methods continue to be required although instrumental neutron activation analysis techniques employing elaborate gamma-counters are under development. In the procedure developed in this study samples irradiated in the epithermal neutron facility of the U. S. Geological Survey TRIGA Reactor (Denver, Colorado) are treated with a mini-fire assay technique. The iridium, gold, and silver are collected in a 1-gram metallic lead button. Primary contaminants at this stage are arsenic and antimony. These can be removed by heating the button with a mixture of sodium perioxide and sodium hydroxide. The resulting 0.2-gram lead bead is counted in a Compton suppression spectrometer. Carrier yields are determined by reirradiation of the lead beads. This procedure has been applied to the U.S.G.S. Standard Rock PCC-1 and samples from K-T boundary sites in the Western Interior of North America. ?? 1987 Akade??miai Kiado??.

  15. Estimation of the Performance of Multiple Active Neutron Interrogation Signatures for Detecting Shielded HEU

    SciTech Connect

    David L. Chichester; Scott J. Thompson; Scott M. Watson; James T. Johnson; Edward H. Seabury

    2012-10-01

    A comprehensive modeling study has been carried out to evaluate the utility of multiple active neutron interrogation signatures for detecting shielded highly enriched uranium (HEU). The modeling effort focused on varying HEU masses from 1 kg to 20 kg; varying types of shields including wood, steel, cement, polyethylene, and borated polyethylene; varying depths of the HEU in the shields, and varying engineered shields immediately surrounding the HEU including steel, tungsten, and cadmium. Neutron and gamma-ray signatures were the focus of the study and false negative detection probabilities versus measurement time were used as a performance metric. To facilitate comparisons among different approaches an automated method was developed to generate receiver operating characteristic (ROC) curves for different sets of model variables for multiple background count rate conditions. This paper summarizes results or the analysis, including laboratory benchmark comparisons between simulations and experiments. The important impact engineered shields can play towards degrading detectability and methods for mitigating this will be discussed.

  16. The feasibility of well-logging measurements of arsenic levels using neutron-activation analysis

    USGS Publications Warehouse

    Oden, C.P.; Schweitzer, J.S.; McDowell, G.M.

    2006-01-01

    Arsenic is an extremely toxic metal, which poses a significant problem in many mining environments. Arsenic contamination is also a major problem in ground and surface waters. A feasibility study was conducted to determine if neutron-activation analysis is a practical method of measuring in situ arsenic levels. The response of hypothetical well-logging tools to arsenic was simulated using a readily available Monte Carlo simulation code (MCNP). Simulations were made for probes with both hyperpure germanium (HPGe) and bismuth germanate (BGO) detectors using accelerator and isotopic neutron sources. Both sources produce similar results; however, the BGO detector is much more susceptible to spectral interference than the HPGe detector. Spectral interference from copper can preclude low-level arsenic measurements when using the BGO detector. Results show that a borehole probe could be built that would measure arsenic concentrations of 100 ppm by weight to an uncertainty of 50 ppm in about 15 min. ?? 2006 Elsevier Ltd. All rights reserved.

  17. Development of high-activity {sup 252}Cf sources for neutron brachytherapy

    SciTech Connect

    Martin, R.C.; Laxson, R.R.; Miller, J.H.; Wierzbicki, J.G.; Rivard, M.J.; Marsh, D.L.

    1996-10-01

    The Gershenson Radiation Oncology Center of Wayne State University (WSU), Detroit, Michigan, is using {sup 252}Cf medical sources for neutron brachytherapy. These sources are based on a 20-year-old design containing {le} 30 {micro}g {sup 252}Cf in the form of a cermet wire of Cf{sub 2}O{sub 3} in a palladium matrix. The Radiochemical Engineering Development Center (REDC) of Oak Ridge National Laboratory has been asked to develop tiny high-activity {sup 252}Cf neutron sources for use with remote afterloading equipment to reduce treatment times and dose to clinical personnel and to expedite treatment of brain and other tumors. To date, the REDC has demonstrated that {sup 252}Cf loadings can be greatly increased in cermet wires much smaller than before. Equipment designed for hot cell fabrication of these wires is being tested. A parallel program is under way to relicense the existing source design for fabrication at the REDC.

  18. Unfolding neutron energy spectra from foil activation detector measurements with the Gold algorithm

    NASA Astrophysics Data System (ADS)

    Seghour, A.; Seghour, F. Z.

    2001-01-01

    In this work, the Gold algorithm is applied to the unfolding of neutron reactor energy spectra from reaction rates data of multiple foil activation detectors. Such a method, which forms the basis of a developed unfolding computer program called SAYD, has the advantage of not requiring a priori knowledge on the spectrum in the unfolding process. The program SAYD is first illustrated by synthesized reaction rates data calculated using a semi-empirical formulation of a typical intermediate and fast neutron reactor spectrum. The demonstration of the unfolding program SAYD is next achieved using measured reaction rates of the Arkansas Nuclear One power plant (ANO) benchmark spectrum by comparing results of SAYD program with those obtained by STAYNL and MSANDB unfolding codes.

  19. Nutrient elements of commercial tea from Nigeria by an instrumental neutron activation analysis technique.

    PubMed

    Jona, S A; Williams, I S

    2000-08-30

    A prototype miniature neutron source reactor (MNSR) with a thermal neutron flux of 3.0 x 10(11) n cm(-2) s(-1) has been used to determine the concentrations of some nutrient elements leading to short-lived activation products in commercial tea leaf samples from Nigeria. A total of eight elements Al, Ca, Cl, Cu, K, Mg, Mn and Na, that can be routinely used for quality control purposes, were analyzed in this study. Two biological reference materials, tomato leaves (NIST-1573) and citrus leaves (NIST-1572) were used as the standard and quality control materials, respectively. The analytical results show that the average concentrations of Al, Ca, Cl, Cu, K, Mg, Mn and Na in Nigerian tea are slightly higher when compared with a Chinese herbal tea analyzed in this study. The concentration ratios of K/Ca were found to be high in all the samples analyzed suggesting cultivation in potash-rich soils.

  20. Activation cross sections for reactions induced by 14 MeV neutrons on natural tantalum

    SciTech Connect

    Luo Junhua; Tuo Fei; Kong Xiangzhong

    2009-05-15

    Cross sections for (n,2n), (n,p), (n,n{sup '}{alpha}), (n,t), (n,d{sup '}), and (n,{alpha}) reactions have been measured on tantalum isotopes at the neutron energies of 13.5 to 14.7 MeV using the activation technique. Data are reported for the following reactions: {sup 181}Ta(n,2n){sup 180}Ta{sup g}, {sup 181}Ta(n,p){sup 181}Hf, {sup 181}Ta(n,n{sup '}{alpha}){sup 177}Lu{sup m}, {sup 181}Ta(n,t){sup 179}Hf{sup m2}, {sup 181}Ta(n,d{sup '}){sup 180}Hf{sup m}, and {sup 181}Ta(n,{alpha}){sup 178}Lu{sup m}. The neutron fluences were determined using the monitor reaction {sup 27}Al(n,{alpha}){sup 24}Na. Results were discussed and compared with the previous works.

  1. The feasibility of well-logging measurements of arsenic levels using neutron-activation analysis.

    PubMed

    Oden, C P; Schweitzer, J S; McDowell, G M

    2006-09-01

    Arsenic is an extremely toxic metal, which poses a significant problem in many mining environments. Arsenic contamination is also a major problem in ground and surface waters. A feasibility study was conducted to determine if neutron-activation analysis is a practical method of measuring in situ arsenic levels. The response of hypothetical well-logging tools to arsenic was simulated using a readily available Monte Carlo simulation code (MCNP). Simulations were made for probes with both hyperpure germanium (HPGe) and bismuth germanate (BGO) detectors using accelerator and isotopic neutron sources. Both sources produce similar results; however, the BGO detector is much more susceptible to spectral interference than the HPGe detector. Spectral interference from copper can preclude low-level arsenic measurements when using the BGO detector. Results show that a borehole probe could be built that would measure arsenic concentrations of 100 ppm by weight to an uncertainty of 50 ppm in about 15 min.

  2. Tracing footprints of environmental events in tree ring chemistry using neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sahin, Dagistan

    The aim of this study is to identify environmental effects on tree-ring chemistry. It is known that industrial pollution, volcanic eruptions, dust storms, acid rain and similar events can cause substantial changes in soil chemistry. Establishing whether a particular group of trees is sensitive to these changes in soil environment and registers them in the elemental chemistry of contemporary growth rings is the over-riding goal of any Dendrochemistry research. In this study, elemental concentrations were measured in tree-ring samples of absolutely dated eleven modern forest trees, grown in the Mediterranean region, Turkey, collected and dated by the Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology laboratory at Cornell University. Correlations between measured elemental concentrations in the tree-ring samples were analyzed using statistical tests to answer two questions. Does the current concentration of a particular element depend on any other element within the tree? And, are there any elements showing correlated abnormal concentration changes across the majority of the trees? Based on the detailed analysis results, the low mobility of sodium and bromine, positive correlations between calcium, zinc and manganese, positive correlations between trace elements lanthanum, samarium, antimony, and gold within tree-rings were recognized. Moreover, zinc, lanthanum, samarium and bromine showed strong, positive correlations among the trees and were identified as possible environmental signature elements. New Dendrochemistry information found in this study would be also useful in explaining tree physiology and elemental chemistry in Pinus nigra species grown in Turkey. Elemental concentrations in tree-ring samples were measured using Neutron Activation Analysis (NAA) at the Pennsylvania State University Radiation Science and Engineering Center (RSEC). Through this study, advanced methodologies for methodological, computational and

  3. A new active method for the measurement of slow-neutron fluence in modern radiotherapy treatment rooms

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Iglesias, A.; Sánchez Doblado, F.

    2010-02-01

    This work focuses on neutron monitoring at clinical linac facilities during high-energy modality radiotherapy treatments. Active in-room measurement of neutron fluence is a complex problem due to the pulsed nature of the fluence and the presence of high photon background, and only passive methods have been considered reliable until now. In this paper we present a new active method to perform real-time measurement of neutron production around a medical linac. The device readout is being investigated as an estimate of patient neutron dose exposure on each radiotherapy session. The new instrument was developed based on neutron interaction effects in microelectronic memory devices, in particular using neutron-sensitive SRAM devices. This paper is devoted to the description of the instrument and measurement techniques, presenting the results obtained together with their comparison and discussion. Measurements were performed in several standard clinical linac facilities, showing high reliability, being insensitive to the photon fluence and EM pulse present inside the radiotherapy room, and having detector readout statistical relative uncertainties of about 2% on measurement of neutron fluence produced by 1000 monitor units irradiation runs.

  4. Neutron collar calibration for assay of LWR (light-water reactor) fuel assemblies

    SciTech Connect

    Menlove, H.O.; Pieper, J.E.

    1987-03-01

    The neutron-coincidence collar is used for the verification of the uranium content in light-water reactor fuel assemblies. An AmLi neutron source is used to give an active interrogation of the fuel assembly to measure the /sup 235/U content, and the /sup 238/U content is verified from a passive neutron-coincidence measurement. This report gives the collar calibration data of pressurized-water reactor and boiling-water reactor fuel assemblies. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and different fuel assembly sizes. The data were collected at Exxon Nuclear, Franco-Belge de Fabrication de Combustibles, ASEA-Atom, and other nuclear fuel fabrication facilities.

  5. New approach to calculate the true-coincidence effect of HpGe detector

    SciTech Connect

    Alnour, I. A. E-mail: ibrahim.elnour@yahoo.com; Wagiran, H.; Ibrahim, N.; Hamzah, S.; Elias, M. S.; Siong, W. B.

    2016-01-22

    The corrections for true-coincidence effects in HpGe detector are important, especially at low source-to-detector distances. This work established an approach to calculate the true-coincidence effects experimentally for HpGe detectors of type Canberra GC3018 and Ortec GEM25-76-XLB-C, which are in operation at neutron activation analysis lab in Malaysian Nuclear Agency (NM). The correction for true-coincidence effects was performed close to detector at distances 2 and 5 cm using {sup 57}Co, {sup 60}Co, {sup 133}Ba and {sup 137}Cs as standard point sources. The correction factors were ranged between 0.93-1.10 at 2 cm and 0.97-1.00 at 5 cm for Canberra HpGe detector; whereas for Ortec HpGe detector ranged between 0.92-1.13 and 0.95-100 at 2 and 5 cm respectively. The change in efficiency calibration curve of the detector at 2 and 5 cm after correction was found to be less than 1%. Moreover, the polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points.

  6. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    SciTech Connect

    Thatcher, T; Madsen, S; Sudowe, R; Meigooni, A Soleimani

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  7. An investigation of the neutron flux in bone-fluorine phantoms comparing accelerator based in vivo neutron activation analysis and FLUKA simulation data

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Matysiak, W.; Bhatia, C.; Prestwich, W. V.

    2015-01-01

    We have tested the Monte Carlo code FLUKA for its ability to assist in the development of a better system for the in vivo measurement of fluorine. We used it to create a neutron flux map of the inside of the in vivo neutron activation analysis irradiation cavity at the McMaster Accelerator Laboratory. The cavity is used in a system that has been developed for assessment of fluorine levels in the human hand. This study was undertaken to (i) assess the FLUKA code, (ii) find the optimal hand position inside the cavity and assess the effects on precision of a hand being in a non-optimal position and (iii) to determine the best location for our γ-ray detection system within the accelerator beam hall. Simulation estimates were performed using FLUKA. Experimental measurements of the neutron flux were performed using Mn wires. The activation of the wires was measured inside (1) an empty bottle, (2) a bottle containing water, (3) a bottle covered with cadmium and (4) a dry powder-based fluorine phantom. FLUKA was used to simulate the irradiation cavity, and used to estimate the neutron flux in different positions both inside, and external to, the cavity. The experimental results were found to be consistent with the Monte Carlo simulated neutron flux. Both experiment and simulation showed that there is an optimal position in the cavity, but that the effect on the thermal flux of a hand being in a non-optimal position is less than 20%, which will result in a less than 10% effect on the measurement precision. FLUKA appears to be a code that can be useful for modeling of this type of experimental system.

  8. Feasibility study of prompt gamma neutron activation for NDT measurement of moisture in stone and brick

    SciTech Connect

    Livingston, R. A.; Al-Sheikhly, M.; Grissom, C.; Aloiz, E.; Paul, R.

    2014-02-18

    The conservation of stone and brick architecture or sculpture often involves damage caused by moisture. The feasibility of a NDT method based on prompt gamma neutron activation (PGNA) for measuring the element hydrogen as an indication of water is being evaluated. This includes systematic characterization of the lithology and physical properties of seven building stones and one brick type used in the buildings of the Smithsonian Institution in Washington, D.C. To determine the required dynamic range of the NDT method, moisture-related properties were measured by standard methods. Cold neutron PGNA was also used to determine chemically bound water (CBW) content. The CBW does not damage porous masonry, but creates an H background that defines the minimum level of detection of damaging moisture. The CBW was on the order of 0.5% for all the stones. This rules out the measurement of hygric processes in all of the stones and hydric processed for the stones with fine scale pore-size distributions The upper bound of moisture content, set by porosity through water immersion, was on the order of 5%. The dynamic range is about 10–20. The H count rates were roughly 1–3 cps. Taking into account differences in neutron energies and fluxes and sample volume between cold PGNA and a portable PGNA instrument, it appears that it is feasible to apply PGNA in the field.

  9. Determination of Long-Lived Neutron Activation Products in Reactor Shielding Concrete Samples

    SciTech Connect

    Zagar, Tomaz; Ravnik, Matjaz

    2002-10-15

    The results of activation studies of TRIGA research reactor concrete shielding are given. Samples made of ordinary and barytes concrete were irradiated in the reactor to simulate neutron activation in the shielding concrete. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides were measured in the samples with a high-purity germanium detector. The most active long-lived radioactive nuclides in the ordinary concrete samples were found to be {sup 60}Co and {sup 152}Eu. In the barytes concrete samples, the most active long-lived radioactive nuclides were {sup 60}Co, {sup 133}Ba, and {sup 152}Eu. Activation in the concrete was also calculated using the ORIGEN2 code and compared to experimental results. Simple radioactive nuclide generation and depletion calculation using one-group cross-section libraries provided together with the ORIGEN2 code did not give conservative results. Significant discrepancies were observed for some nuclides. For accurate long-lived radioactive nuclide generation in reactor shielding, material-specific cross-section libraries should be generated and verified by measurement.

  10. The Prompt Gamma Neutron Activation Analysis Facility at ICN-Pitesti

    SciTech Connect

    Barbos, D.; Paunoiu, C.; Mladin, M.; Cosma, C.

    2008-08-14

    PGNAA is a very widely applicable technique for determining the presence and amount of many elements simultaneously in samples ranging in size from micrograms to many grams. PGNAA is characterized by its capability for nondestructive multi-elemental analysis and its ability to analyse elements that cannot be determined by INAA. By means of this PGNAA method we are able to increase the performance of INAA method. A facility has been developed at Institute for Nuclear Research-Pitesti so that the unique features of prompt gamma-ray neutron activation analysis can be used to measure trace and major elements in samples. The facility is linked at the radial neutron beam tube at ACPR-TRIGA reactor. During the PGNAA-facility is in use the ACPR reactor will be operated in steady-state mode at 250 KW maximum power. The facility consists of a radial beam-port, external sample position with shielding, and induced prompt gamma-ray counting system.Thermal neutron flux with energy lower than cadmium cut-off at the sample position was measured using thin gold foil is: {phi}{sub scd} = 1.10{sup 6} n/cm{sup 2}/s with a cadmium ratio of:80.The gamma-ray detection system consist of an HpGe detector of 16% efficiency (detector model GC1518) with 1.85 keV resolution capability. The HpGe is mounted with its axis at 90 deg. with respect to the incident neutron beam at distance about 200mm from the sample position. To establish the performance capabilities of the facility, irradiation of pure element or sample compound standards were performed to identify the gama-ray energies from each element and their count rates.

  11. Nondestructive assay of spent boiling water reactor fuel by active neutron interrogation

    SciTech Connect

    Blakeman, E.D.; Ricker, C.W.; Ragan, G.L.; Difilippo, F.C.; Slaughter, G.G.

    1981-01-01

    Spent boiling water reactor (BWR) fuel from Dresden I was assayed for total fissile mass, using the active neutron interrogation method. The nondestructive assay (NDA) system used has four Sb-Be sources for interrogation of the fuels; the induced fission neutrons from the fuel are counted by four lead-shielded methane-filled proportional counters biased above the energy of the source neutrons. Spent fuel rods containing 9 kg of heavy metal were chopped into 5-cm segments and loaded into three 1-liter cans. The three cans were assayed in seven combinations of one, two, or three cans, enabling an evaluation of the precision and accuracy of the NDA system for different amounts of fissile material. The fissile mass in each combination was determined by comparing the induced-fission-neutron counts with the counts obtained from a known standard comprising chopped segments of unirradiated Dresden fuel. These masses were compared to the masses determined by chemical analyses of the spent fuel. The results from the nondestructive assays agreed with results from the chemical analyses to within 2 to 3%. Similar agreement was obtained when two combinations of canned spent fuel were used as standards for the nondesctuctive assays. The assay of BWR spent fuel served as a test of the NDA system which was developed at the Oak Ridge National Laboratory for the assay of spent liquid metal fast breeder reactor (LMFBR) fuel subassemblies at the heat-end of a reprocessing plant. Results of previous experiments and calculations reported earlier using simulated LMFBR fuel subassemblies indicated that the NDA system can measure the fissile masses of spent fuel subassemblies to within an accuracy of 3%. Results of the assays of spent BWR fuel reported herein support this conclusion.

  12. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.

    1995-01-03

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.

  13. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, Jerald D.; Aryaeinejad, Rahmat; Greenwood, Reginald C.

    1995-01-01

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.

  14. Soft coincidence in late acceleration

    SciTech Connect

    Campo, Sergio del; Herrera, Ramon; Pavon, Diego

    2005-06-15

    We study the coincidence problem of late cosmic acceleration by assuming that the present ratio between dark matter and dark energy is a slowly varying function of the scale factor. As the dark energy component we consider two different candidates, first a quintessence scalar field, and then a tachyon field. In either case analytical solutions for the scale factor, the field, and the potential are derived. Both models show a good fit to the recent magnitude-redshift supernovae data. However, the likelihood contours disfavor the tachyon field model as it seems to prefer a excessively high value for the matter component.

  15. Au Foil Activation Measurement and Simulation of the Concrete Neutron Shielding Ability for the Proposed New SANRAD Facility

    NASA Astrophysics Data System (ADS)

    Radebe, M. J.; Korochinsky, S.; Strydom, W. J.; De Beer, F. C.

    The purpose of this study was to measure the effective neutron shielding characteristics of the new shielding material designed and manufactured to be used for the construction of the new SANRAD facility at Necsa, South Africa, through Au foil activation as well as MCNP simulations. The shielding capability of the high density shielding material was investigated in the worst case region (the neutron beam axis) of the experimental chamber for two operational modes. The everyday operational mode includes the 15 cm thick poly crystalline Bismuth filter at room temperature (assumed) to filter gamma-rays and some neutron spectrum energies. The second mode, dynamic imaging, will be conducted without the Bi-filter. The objective was achieved through a foil activation measurement at the current SANRAD facility and MCNP calculations. Several Au foilswere imbedded at different thicknesses(two at each position) of shielding material up to 80 cm thick to track the attenuation of the neutron beam over distance within the shielding material. The neutron flux and subsequently the associated dose rates were calculated from the activation levels of the Au foils. The concrete shielding material was found to provide adequate shielding for all energies of neutrons emerging from beam port no-2 of the SAFARI-1 research reactorwithin a thickness of 40 cm of concrete.

  16. Neutron chopper development at LANSCE

    SciTech Connect

    Nutter, M.; Lewis, L.; Tepper, S.; Silver, R.N.; Heffner, R.H.

    1985-01-01

    Progress is reported on neutron chopper systems for the Los Alamos Neutron Scattering Center pulsed spallation neutron source. This includes the development of 600+ Hz active magnetic bearing neutron chopper and a high speed control system designed to operate with the Proton Storage Ring to phase the chopper to the neutron source. 5 refs., 3 figs.

  17. L'analyse par activation de neutrons de réacteur

    NASA Astrophysics Data System (ADS)

    Meyer, G.

    2003-02-01

    Quand les neutrons traversent la matière, certains sont transmis sans interaction, les autres interagissent avec le milieu traversé par diffusion et par absorption. Ce phénomène d'absorption est utilisé pour se protéger des neutrons, mais aussi pour les détecter; il peut également être utilisé pour identifier les noyaux “absorbants" et ainsi analyser le milieu traversé. En effet par différentes réactions nucléaires (n,γ), (n,p), (n,α), (n,fission), on obtient des noyaux résiduels qui sont souvent radioactifs; on dit que l'échantillon est “activé". Si l'on connaît le rendement d'activation et donc le pourcentage de noyaux ainsi “transmutés", les mesures de radioactivité induite vont permettre de déterminer la composition de l'échantillon irradié. Cette méthode dite d'analyse par activation neutronique est pratiquée depuis la découverte du neutron. Elle a permis grâce à sa sélectivité et à sa sensibilité d'avoir accès au domaine des traces et des ultra-traces dans des champs d'application très divers comme la métallurgie, l'archéologie, la biologie, la géochimie etc...

  18. Development of the activation analysis calculational methodology for the Spallation Neutron Source (SNS)

    SciTech Connect

    Odano, N.; Johnson, J.O.; Charton, L.A.; Barnes, J.M.

    1998-03-01

    For the design of the proposed Spallation Neutron Source (SNS), activation analyses are required to determine the radioactive waste streams, on-line material processing requirements remote handling/maintenance requirements, potential site contamination and background radiation levels. For the conceptual design of the SNS, the activation analyses were carried out using the high-energy transport code HETC96 coupled with MCNP to generate the required nuclide production rates for the ORIHET95 isotope generation code. ORIHET95 utilizes a matrix-exponential method to study the buildup and decay of activities for any system for which the nuclide production rates are known. In this paper, details of the developed methodology adopted for the activation analyses in the conceptual design of the SNS are presented along with some typical results of the analyses.

  19. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    SciTech Connect

    Munive, Marco; Revilla, Angel; Solis, Jose L.

    2007-10-26

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO{sub 3} was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl{sub 2}Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm.

  20. Simultaneous determination of tantalum and hafnium in silicates by neutron activation analysis

    USGS Publications Warehouse

    Greenland, L.P.

    1968-01-01

    A neutron activation procedure suitable for the routine determination of tantalum and hafnium in silicates is described. The irradiated sample is fused with sodium peroxide and leached, and the insoluble hydroxides are dissolved in dilute hydrofluoric acid-hydrochloric acid. After LaF3 and AgCl scavenges, tantalum and hafnium are separated by anion exchange. Tantalum is obtained radiochemically pure; 233Pa and 95Zr contaminants in the hafnium fraction are resolved by ??-ray spectrometry. The chemical yield of the procedure is detemined after counting by re-irradiation. Values for the 8 U.S. Geological Survey standard rocks are reported. ?? 1968.

  1. Determination of carrier yields for neutron activation analysis using energy dispersive X-ray spectrometry

    USGS Publications Warehouse

    Johnson, R.G.; Wandless, G.A.

    1984-01-01

    A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.

  2. Evaluation of homogeneity of a certified reference material by instrumental neutron activation analysis

    SciTech Connect

    Kratochvil, B.; Duke, M.J.M.; Ng, D.

    1986-01-01

    The homogeneity of the marine reference material TORT-1, a spray-dried and acetone-extracted hepatopancreatic material from the lobster, was tested for 26 elements by instrumental neutron activation analysis (INAA). Through a one-way analysis of variance based on six analyses on each of six bottles of TORT-1, it was concluded that the between-bottle heterogeneity is no greater than the within-bottle heterogeneity. The analytical results for those elements for which values were provided by NRC agree with the NRC values within 95% confidence limits. 8 references, 6 tables.

  3. An automated microcomputer-controlled system for neutron activation and gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Edward, J. B.; Beeley, P. A.; Bennett, L. G. I.; Anderson, A.; Burbidge, G. A.

    1990-12-01

    An automated instrumental neutron activation analysis (INAA) system has been constructed at the SLOWPOKE-2 reactor at the Royal Military College of Canada (RMC). Its pneumatic transfer system is controlled by an Apple IIe computer, linked in turn to an MS-DOS-compatible microcomputer which controls data acquisition. Custom software has been created for these computers and for off-line spectral analysis using programs that incorporate either peak boundary or Gaussian peak fitting methods of analysis. This system provides the gamut of INAA techniques for the analyst. The design and performance of the hardware and software are discussed.

  4. Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis

    PubMed

    Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar

    2000-12-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.

  5. Selenium contents in tobacco and main stream cigarette smoke determined using neutron activation analysis

    SciTech Connect

    Sorak-Pokrajac, M.; Dermelj, M.; Slejkovec, Z.

    1994-01-01

    In the domain of the essential trace elements, the role of selenium is extremely important. As one of the volatile elements it can be partly absorbed through the pulmonary system during smoking and transported to different organs of the body. Thus a knowledge of its concentration levels in various sorts of tobacco and in the smoke of commercial cigarettes, as well as in the same type of cigarettes from plants treated with selenium, is of interest for various research fields. The purpose of this contribution is to present reliable quantitative data on selenium contents in tobacco, soil, and main stream cigarette smoke, obtained by destructive neutron activation analysis.

  6. Simultaneous determination of silica and alumina in bulk bauxite samples by fast neutron activation

    SciTech Connect

    Borsaru, M.; Eisler, P.L.

    1981-10-01

    A prototype of a bulk bauxite analyzer based on fast neutron activation analysis has been developed for simultaneously determining the chemical concentrations of alumina and silica in both dried and undried bulk bauxite samples (about 3.5 kg). The determination of alumina is based on measuring the count rate in the 0.844 MeV ..gamma..-ray peak emitted by /sup 27/Mg formed in the activation of aluminum. The determination of silica is based on measuring the count rate in the 1.78 MeV ..gamma..-ray peak emitted by /sup 28/Al formed in the activation of silicon. The interference from alumina in the determination of silica was eliminated by measuring an additional parameter, the thermal neutrons underneath the bulk sample. The technique enables up to 10 analyses per hour with an accuracy (1 sigma) of 0.28% silica and 0.9% alumina. The samples analyzed contained 48 to 62% alumina and 2 to 11% silica. The tests indicated that the accuracy of analysis was similar for samples which had been oven-dried (0 to 5% free moisture) and samples which were taken from the benefication plant with free moisture varying in a narrow range (10 to 14% free moisture). The results also indicated that crushing and grinding of samples did not significantly improve the accuracy.

  7. The 12B counter: an active dosemeter for high-energy neutrons.

    PubMed

    Leuschner, A

    2005-01-01

    High-energy accelerators can produce strong time-structured radiation fields. Such dose shots are generated at linear machines with low duty cycles as well as at circular machines when complete fills are instantaneously lost. The main dose component behind thick shielding is due to high-energy neutrons occurring at that time structure. Dosemeters based on Geiger-Mueller tubes or proportional counters fail here completely. The 12B counter, a novel dosemeter made of a plastic scintillator using carbon activation for event-like exposure, has been introduced. High-energy neutrons activate the carbon nuclei by three inelastic reactions. The decay patterns with half-lives between 20 ms and 20 min can be exploited depending on the time structure of the radiation field. The response of the 12B counter was measured along with some other dosemeters, both active and passive, in the radiation field behind the lateral concrete shielding of a 7.5 GeV proton transfer line.

  8. Neutron Emission Characteristics of Two Mixed-Oxide Fuels: Simulations and Initial Experiments

    SciTech Connect

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. Flaska; J. T. Johnson; E. H. Seabury; E. M. Gantz

    2009-07-01

    Simulations and experiments have been carried out to investigate the neutron emission characteristics of two mixed-oxide (MOX) fuels at Idaho National Laboratory (INL). These activities are part of a project studying advanced instrumentation techniques in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and it's Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. This analysis used the MCNP-PoliMi Monte Carlo simulation tool to determine the relative strength and energy spectra of the different neutron source terms within these fuels, and then used this data to simulate the detection and measurement of these emissions using an array of liquid scintillator neutron spectrometers. These calculations accounted for neutrons generated from the spontaneous fission of the actinides in the MOX fuel as well as neutrons created via (alpha,n) reactions with oxygen in the MOX fuel. The analysis was carried out to allow for characterization of both neutron energy as well as neutron coincidences between multiple detectors. Coincidences between prompt gamma rays and neutrons were also analyzed. Experiments were performed at INL with the same materials used in the simulations to benchmark and begin validation tests of the simulations. Data was collected in these experiments using an array of four liquid scintillators and a high-speed waveform digitizer. Advanced digital pulse-shape discrimination algorithms were developed and used to collect this data. Results of the simulation and modeling studies are presented together with preliminary results from the experimental campaign.

  9. Antcin B and its ester derivative from Antrodia camphorata induce apoptosis in hepatocellular carcinoma cells involves enhancing oxidative stress coincident with activation of intrinsic and extrinsic apoptotic pathway.

    PubMed

    Hsieh, Yun-Chih; Rao, Yerra Koteswara; Whang-Peng, Jacqueline; Huang, Chi-Ying F; Shyue, Song-Kun; Hsu, Shih-Lan; Tzeng, Yew-Min

    2011-10-26

    The triterpenoids methylantcinate B (MAB) and antcin B (AB), isolated from the medicinal mushroom Antrodia camphorata , have been identified as strong cytotoxic agents against various type of cancer cells; however, the mechanisms of MAB- and AB-induced cytotoxicity have not been adequately explored. This study investigated the roles of caspase cascades, reactive oxygen species (ROS), DNA damage, mitochondrial disruption, and Bax and Bcl-2 proteins in MAB- and AB-induced apoptosis of hepatocellular carcinoma (HCC) HepG2 cells. Here, we showed that MAB and AB induced apoptosis in HepG2 cells, as characterized by increased DNA fragmentation, cleavage of PARP, sub-G1 population, chromatin condensation, loss of mitochondrial membrane potential, and release of cytochrome c. Increasing the levels of caspase-2, -3, -8, and -9 activities was involved in MAB- and AB-induced apoptosis, and they could be attenuated by inhibitors of specific caspases, indicating that MAB and AB triggered the caspase-dependent apoptotic pathway. Additionally, the enhanced apoptotic effect correlates with high expression of Fas, Fas ligand, as well as Bax and decreased protein levels of Bcl-(XL) and Bcl-2, suggesting that both the extrinsic and intrinsic apoptosis pathways were involved in the apoptotic processes. Incubation of HepG2 cells with antioxidant enzymes superoxide dismutase and catalase and antioxidants N-acetylcysteine and ascorbic acid attenuated the ROS generation and apoptosis induced by MAB and AB, which indicate that ROS plays a pivotal role in cell death. NADPH oxidase activation was observed in MAB- and AB-stimulated HepG2 cells; however, inhibition of such activation by diphenylamine significantly blocked MAB- and AB-induced ROS production and increased cell viability. Taken together, our results provide the first evidence that triterpenoids MAB and AB induced a NADPH oxidase-provoked oxidative stress and extrinsic and intrinsic apoptosis as a critical mechanism of cause cell

  10. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    NASA Astrophysics Data System (ADS)

    Tan, V. H.; Son, P. N.

    2016-06-01

    The thermal neutron radiative capture cross section for 186W(n, γ)187W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of Rcd = 420 and peak energy En = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197Au(n, γ)198Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations.

  11. Applicability of self-activation of an NaI scintillator for measurement of photo-neutrons around a high-energy X-ray radiotherapy machine.

    PubMed

    Wakabayashi, Genichiro; Nohtomi, Akihiro; Yahiro, Eriko; Fujibuchi, Toshioh; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Nakamura, Katsumasa; Hosono, Makoto; Itoh, Tetsuo

    2015-01-01

    The applicability of the activation of an NaI scintillator for neutron monitoring at a clinical linac was investigated experimentally. Thermal neutron fluence rates are derived by measurement of the I-128 activity generated in an NaI scintillator irradiated by neutrons; β-rays from I-128 are detected efficiently by the NaI scintillator. In order to verify the validity of this method for neutron measurement, we irradiated an NaI scintillator at a research reactor, and the neutron fluence rate was estimated. The method was then applied to neutron measurement at a 10-MV linac (Varian Clinac 21EX), and the neutron fluence rate was estimated at the isocenter and at 30 cm from the isocenter. When the scintillator was irradiated directly by high-energy X-rays, the production of I-126 was observed due to photo-nuclear reactions, in addition to the generation of I-128 and Na-24. From the results obtained by these measurements, it was found that the neutron measurement by activation of an NaI scintillator has a great advantage in estimates of a low neutron fluence rate by use of a quick measurement following a short-time irradiation. Also, the future application of this method to quasi real-time monitoring of neutrons during patient treatments at a radiotherapy facility is discussed, as well as the method of evaluation of the neutron dose.

  12. Prompt gamma activation analysis (PGAA) and short-lived neutron activation analysis (NAA) applied to the characterization of legacy materials

    SciTech Connect

    Firestone, Richard B; English, G.A.; Firestone, R.B.; Perry, D.L.; Reijonen, J.P.; Leung, Ka-Ngo; Garabedian, G.F.; Molnar, G.L.; Revay, Zs.

    2008-02-13

    Without quality historical records that provide the composition of legacy materials, the elemental and/or chemical characterization of such materials requires a manual analytical strategy that may expose the analyst to unknown toxicological hazards. In addition, much of the existing legacy inventory also incorporates radioactivity, and, although radiological composition may be determined by various nuclear-analytical methods, most importantly, gamma-spectroscopy, current methods of chemical characterization still require direct sample manipulation, thereby presenting special problems with broad implications for both the analyst and the environment. Alternately, prompt gamma activation analysis (PGAA) provides a'single-shot' in-situ, non-destructive method that provides a complete assay of all major entrained elemental constituents.1-3. Additionally, neutron activation analysis (NAA) using short-lived activation products complements PGAA and is especially useful when NAA activation surpasses the PGAA in elemental sensitivity.

  13. In vivo neutron activation analysis: body composition studies in health and disease

    SciTech Connect

    Ellis, K.J.; Cohn, S.H.

    1984-01-01

    In vivo analysis of body elements by neutron activation is an important tool in medical research. It has provided a direct quantitative measure of body composition of human beings in vivo. Basic physiological differences related to age, sex, race, and body size have been assessed by this noninvasive technique. The diagnosis and management of patients with various metabolic disorders and diseases has also been demonstrated. Two major facilities at Brookhaven are being utilized exclusively for in vivo neutron activation analysis (IVNAA) of calcium, phosphorus, sodium, chlorine, nitrogen, hydrogen, and potassium. These elements serve as the basis for a four compartment model of body composition: protein, water, mineral ash, and fat. Variations in these compartments are demonstrated in clinical research programs investigating obesity, anorexia, cancer, renal failure, osteoporosis, and normal aging. IVNAA continues to provide a unique approach to the evaluation of clinical diagnosis, efficacy of therapeutic regimens, and monitoring of the aging process. Classical balance studies usually require the patient to be admitted to a hospital for extended periods of confinement. IVNAA, however, allows for clinical management of the patient on an out-patient basis, an important aspect for treatment of chronic diseases. 25 references, 3 figures, 5 tables.

  14. Study on Determination of Antimony in Environmental Samples by Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Martins, Tassiane Cristina Gomes; Saiki, Mitiko; Zahn, Guilherme Soares

    2011-08-01

    There is an increasing interest in the determination of antimony in environmental samples since this element is cumulative and potentially toxic at very low concentrations. Moreover, the quantification of antimony presents difficulties due to its low concentrations in the samples and to the interference problem in the analyses. In this study, neutron activation analysis procedure was established in order to obtain reliable results for Sb determination in environmental samples. For this study ten reference materials were analyzed. Aliquots of these materials and synthetic standard of Sb were irradiated at the IEA- R1 nuclear reactor under a thermal neutron flux of about 5×1012 n cm-2 s-1 for 8 or 16 hours. The induced gamma activities of 122Sb and 124Sb were measured using a hyperpure Ge detector. Antimony concentrations were calculated by comparative method and the uncertainties of the results were estimated using statistical counting errors of the sample and standard. Relative errors calculated demonstrated that the accuracy of the results depends on the Sb radioisotope measured and the decay time for counting.

  15. Neutron activation analysis of nuclides from stellar and man-induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Oliver, L. L.

    Neutron activation and gamma counting were used to determine the relative abundances of six stable tellurium isotopes in the acid-etched residues of the Allende meteorite. The results were correlated with the isotopic compositions of xenon and the elemental abundances of helium and neon in similarly prepared residues. Nucleosynthesis appears to be the only viable explanation or the anomalous isotopic and elemental compositions observed in these residues. Results suggest that the solar system condensed from an isotopically and chemically zoned nebula that was produced by the explosion of a supernova, concentric with the present Sun. A combination of neutron activation and mass spectrometry was used to determine the concentrations of fissiogenic iodine 129 and stable iodine 127 in rain, milk and the thyroids of man, cow and deer from Missouri. Rain and deer thyroids show the highest average values of the iodine 129/iodine 127 ratio. Milk and the thyroids of cattle and humans show successively lower values of the iodine 129/iodine 127 ratio due to dietary additives of mineral iodine and to biological averaging.

  16. Ultra Sensitive Neutron Activation Measurements of {sup 232}Th in Copper

    SciTech Connect

    Clemenza, M.; Previtali, E.; Borio di Tigliole, A.; Salvini, A.

    2011-04-27

    Copper, thanks to its low content in radioactive contaminations, is a material widely used for shielding, holders and other objects close to the sensitive parts of the detectors in many experiments in rare event physics. This implies that tools able to reach sensitivity of the order of <10{sup -12} gram of contaminants per gram of copper are of crucial importance. A methodology based in Neutron Activation Analysis (NAA) has been developed to obtain an extremely high sensitivity in the analysis of {sup 232}Th in copper samples. A detection limit of 5x10{sup -13} g {sup 232}Th/g Cu has been achieved through the irradiation of 200 g of copper sample which subsequently was radio-chemically concentrated using nitric acid and then actinide resin from Eichrom Inc. Several elutions were performed with various inorganic acids to concentrate the {sup 232}Th activation product ({sup 233}Pa) from the copper matrix and to also eliminate the radioactive background induced by the neutron bombardment to reach higher sensitivity.

  17. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  18. Neutron-activation analysis of several US Geological Survey and National Bureau of Standards reference materials

    SciTech Connect

    Daly, A.T.

    1981-01-01

    In this work, several US Geological Survey (U.S.G.S.) and National Bureau of Standards (N.B.S.) reference samples have been analyzed in an effort to improve the quality of elemental concentration data available on these materials, so they can be used in a program of verification of factor analysis source resolution procedures. The analyses of these samples were performed by instrumental neutron activation analysis (INAA). The samples analyzed were: U.S.G.S. Green River Shale, N.B.S. 45b Homogeneous River Sediment, U.S.G.S. Analyzed Peridotite N.B.S. 1579 Powdered Lead-based Paint, U.S.G.S. Hawaian Basalt U.S.G.S. Marine Mud, U.S.G.S. Analyzed Cody Shale U.S.G.S. Glass Mountain Rhyolite, N.B.S. Argillaceous Limestone No. 1, and a sample of Spex ultrapure graphite. Neutron activation analysis was employed because of the high sensitivity that can be attained in determining elemental concentrations. Although INAA is a relatively simple method and the reproducibility of the data is good, the method shows some inaccuracies. The basic theory and technique are reviewed in an attempt to show where problems can arise and how they can be dealt with.

  19. Using CHIMERA detector at LNS for gamma-particle coincidences

    NASA Astrophysics Data System (ADS)

    Cardella, G.; Acosta, L.; Auditore, L.; Chatterjiee, M. B.; Castoldi, A.; De Filippo, E.; Dell'Aquila, D.; De Luca, S.; Gnoffo, B.; Guazzoni, C.; Francalanza, L.; Lanzalone, G.; Lombardo, I.; Martorana, N.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.

    2016-05-01

    We have recently evaluated the quality of γ-ray angular distributions that can be extracted in particle-gamma coincidence measurements using the CHIMERA detector at LNS. γ-rays have been detected using the CsI(Tl) detectors of the spherical part of the CHIMERA array. Very clean γ-rays angular distributions were extracted in reactions induced by different stable beams impinging on 12C thin targets. The results evidenced an effect of projectile spin flip on the γ-rays angular distributions. γ-particle coincidence measurements were also performed in reactions induced by neutron rich exotic beams produced through in-flight fragmentation at LNS. In recent experiments also the Farcos array was used to improve energy and angular resolution measurements of the detected charged particles. Results obtained with both stable and radioactive beams are reported.

  20. Elemental characterization of Hazm El-Jalamid phosphorite by instrumental neutron activation analysis.

    PubMed

    El-Taher, A; Khater, Ashraf E M

    2016-08-01

    Instrumental neutron activation analyses (INAA) have been used to achieve accurate knowledge about the elemental analysis of phosphate ore deposits collected from Hazm El-Jalamid Northeast of Saudi Arabia. The samples were prepared for irradiation by thermal neutrons using a thermal neutron flux of 7×10(12)ncm(-2)s(-1) at ACT Lab Canada. The concentrations of 19 elements were determined. These included 12 major, minor and trace elements (Au, As, Ba, Br, Cr, Mo, Sb, Sc, Sr, Th, U and Zn) and 7 rare earth elements (REEs) (La, Ce, Nd, Sm, Eu, Yb and Lu). Major elements (Si, Al, Fe, Ca, Mg, Na, K, Cr, Ti, Mn, P, Sr and Ba) were determined using an inductively coupled plasma-mass spectrometer (ICP-MS). The comparison of the concentration of U and the REEs in the Hazm El-Jalamid phosphate samples with those of the Umm Wu'al phosphate from Saudi Arabia and El-Sibayia and El Hamrawein phosphate from Egypt shows that the contents of U and REEs are clearly higher in the Umm Wu'al, El-Sibayia and El Hamrawein phosphates than in the Hazm El-Jalamid phosphate samples. The results of major, trace elements, uranium and rare earth elements (REE) from El Jalamid phosphate have been compared with the global values of these elements. The concentrations for most of the elements studied are lower than the concentrations reported in the literature. The acquired data will serve as a reference for the follow-up studies to assess the agronomic effectiveness of the Hazm El-Jalamid phosphate rocks.

  1. Application of Triple Coincidence for the Detection of Small Amounts of Special Nuclear Materials

    SciTech Connect

    DIOSZEGI, I.; Salwen, C.; and Forman, L.

    2011-06-12

    We constructed a device that measures two {gamma}-rays and one neutron from spontaneous fission and any resulting multiplication chains. It extends the associated particle technique based upon correlated counting of the multiplicity of gamma-rays and neutrons released in spontaneous- or neutron-induced fission. There are two advantages in incorporating a third detector in the design over the standard two-detector version. First, we found that random uncorrelated events dominate the background of coincident counting with a gamma-ray- and neutron-detector. These might be suppressed by requiring an additional coincidence. Second, the time history of gamma-ray emission between the two gamma-ray detectors is related to multiplication in the target media. Multiplication in highly enriched uranium is much greater than in depleted uranium.

  2. MICROSCOPIC DETERMINATION OF BONE PHOSPHORUS BY QUANTITATIVE AUTORADIOGRAPHY OF NEUTRON-ACTIVATED SECTIONS

    PubMed Central

    Vincent, Jacques; Haumont, Stanislas; Roels, Joseph

    1965-01-01

    Longitudinal sections of human cortical bone were submitted to thermal neutrons. γ-ray spectra were recorded repeatedly during 15 days following irradiation. They showed that Na24 is predominant as early as 3 hours after activation and that all the γ-emitters have decayed on the 15th day. When the γ-rays have disappeared, β-rays are still produced by the sections. It was proved by the absorption curve in aluminium that all these β-rays are issued from the P32 induced in the sections by activation of P31. Therefore autoradiograms registered 15 days after activation reveal the distribution of P32 in the sections. γ-ray spectra and β-ray absorption curves of neutron activated sections of ivory demonstrated a mineral composition similar to that of bone. Autoradiograms of ivory sections activated for various times were used to establish the relation between the optical density of the autoradiograms and the radioactivity in P32. When the bone autoradiograms are compared with the ivory standards of known radioactivity, the optical densities of single osteons (Haversian systems), can be related to their phosphorus contents. Autoradiograms and microradiograms of the same sections were examined side by side. The least calcified osteons, that contain 80 per cent of the calcium of the fully calcified osteons, also contain about 80 per cent of the phosphorus of the fully mineralized osteons. It is concluded that the Ca:P ratio remains constant while mineralization of bone tissue is being completed. PMID:14286295

  3. Thermally activated post-glitch response of the neutron star inner crust and core. I. Theory

    SciTech Connect

    Link, Bennett

    2014-07-10

    Pinning of superfluid vortices is predicted to prevail throughout much of a neutron star. Based on the idea of Alpar et al., I develop a description of the coupling between the solid and liquid components of a neutron star through thermally activated vortex slippage, and calculate the response to a spin glitch. The treatment begins with a derivation of the vortex velocity from the vorticity equations of motion. The activation energy for vortex slippage is obtained from a detailed study of the mechanics and energetics of vortex motion. I show that the 'linear creep' regime introduced by Alpar et al. and invoked in fits to post-glitch response is not realized for physically reasonable parameters, a conclusion that strongly constrains the physics of a post-glitch response through thermal activation. Moreover, a regime of 'superweak pinning', crucial to the theory of Alpar et al. and its extensions, is probably precluded by thermal fluctuations. The theory given here has a robust conclusion that can be tested by observations: for a glitch in the spin rate of magnitude Δν, pinning introduces a delay in the post-glitch response time. The delay time is t{sub d} = 7(t{sub sd}/10{sup 4} yr)((Δν/ν)/10{sup –6}) d, where t{sub sd} is the spin-down age; t{sub d} is typically weeks for the Vela pulsar and months in older pulsars, and is independent of the details of vortex pinning. Post-glitch response through thermal activation cannot occur more quickly than this timescale. Quicker components of post-glitch response, as have been observed in some pulsars, notably, the Vela pulsar, cannot be due to thermally activated vortex motion but must represent a different process, such as drag on vortices in regions where there is no pinning. I also derive the mutual friction force for a pinned superfluid at finite temperature for use in other studies of neutron star hydrodynamics.

  4. Evaluation of neutron flux parameters in irradiation sites of research reactor using the Westcott-formalism for the k0 neutron activation analysis method

    NASA Astrophysics Data System (ADS)

    Kasban, H.; Hamid, Ashraf

    2015-12-01

    Instrumental Neutron Activation Analysis using k0 (k0-INAA) method has been used to determine a number of elements in sediment samples collected from El-Manzala Lake in Egypt. k0-INAA according to Westcott's formalism has been implemented using the complete irradiation kit of the fast pneumatic rabbit and some selected manually loaded irradiation sites for short and long irradiation at Egypt Second Research Reactor (ETRR-2). Zr-Au and Co sets as neutron flux monitors are used to determine the neutron flux parameters (f and α) in each irradiation sites. Two reference materials IAEA Soil-7 samples have been inserted and implemented for data validation and an internal monostandard multi monitor used (k0 based IM-NAA). It was given a good agreement between the experimental analyzed values and that obtained of the certified values. The major and trace elements in the sediment samples have been evaluated with the use of Co as an internal and Au as an external monostandard comparators. The concentrations of the elements (Cr, Mn and Zn) in the sediment samples of the present work are discussed regarding to those obtained from other sites.

  5. Ion Uptake Determination of Dendrochronologically-Dated Trees Using Neutron Activation Analysis

    SciTech Connect

    Kenan Unlu; P.I. Kuniholm; D.K.H. Schwarz; N.O. Cetiner; J.J. Chiment

    2009-03-30

    Uptake of metal ions by plan roots is a function of the type and concentration of metal in the soil, the nutrient biochemistry of the plant, and the immediate environment of the root. Uptake of gold (Au) is known to be sensitive to soil pH for many species. Soil acidification due to acid precipitation following volcanic eruptions can dramatically increase Au uptake by trees. Identification of high Au content in tree rings in dendrochronologically-dated, overlapping sequences of trees allows the identification of temporally-conscribed, volcanically-influenced periods of environmental change. Ion uptake, specifically determination of trace amounts of gold, was performed for dendrochronologically-dated tree samples utilizing Neutron Activation Analysis (NAA) technique. The concentration of gold was correlated with known enviironmental changes, e.g. volcanic activities, during historic periods.

  6. Implementation of gamma-ray instrumentation for solid solar system bodies using neutron activation method

    NASA Astrophysics Data System (ADS)

    Litvak, M. L.; Golovin, D. V.; Jun, I.; Kozyrev, A. S.; Mitrofanov, I. G.; Sanin, A. B.; Shvetsov, V. N.; Timoshenko, G. N.; Zontikov, A.

    2016-06-01

    In this paper we present the results of ground tests performed with a flight model and with industry prototypes of passive and active gamma ray spectrometers with the objective of understanding their capability to distinguish the elemental composition of planetary bodies in the solar system. The gamma instrumentation, which was developed for future space missions was used in the measurements at a special ground test facility where a simulant of planetary material was fabricated with a martian-like composition. In this study, a special attention was paid to the gamma lines from activation reaction products generated by a pulsed neutron generator. The instrumentation was able to detect and identify gamma lines attributed to O, Na, Mg, Al, Si, K, Ca and Fe.

  7. Studies on selenoproteins in bovine kidneys by gel chromatography and neutron activation

    SciTech Connect

    Chatt, A.; Jayawickreme, C.K.

    1986-01-01

    Selenium at low concentrations has been claimed to be an element which is essential for life and growth. In recent years, selenium attracted increasing interest from researchers around the world because of its possible biological functions in preventing cancer, enhancing the immune system, slowing the aging process, and stimulating sexual activity. In living matter, selenium is mainly incorporated with macromolecules. Much of the metabolic behavior, biological effects, and involvement in homeostatic mechanism of this element may very well depend on the presence of the particular type of selenoproteins in the system. Neutron activation analysis (NAA) in conjunction with several bioanalytical techniques can be used to characterize metalloproteins in general. In a recent study, the distribution of trace elements in subcellular fractions of bovine kidney has been reported. The present work deals with the application of NAA together with other techniques to the isolation and characterization of selenoproteins in bovine kidneys with particular emphasis on the NAA method developed.

  8. Studies on separation and purification of fission (99)Mo from neutron activated uranium aluminum alloy.

    PubMed

    Rao, Ankita; Kumar Sharma, Abhishek; Kumar, Pradeep; Charyulu, M M; Tomar, B S; Ramakumar, K L

    2014-07-01

    A new method has been developed for separation and purification of fission (99)Mo from neutron activated uranium-aluminum alloy. Alkali dissolution of the irradiated target (100mg) results in aluminum along with (99)Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of (99)Mo was carried out using anion exchange method. The radiochemical yield of fission (99)Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards.

  9. Study of essential elements in cattle tissues from a tropical country using instrumental neutron activation analysis.

    PubMed

    Avelar, Artur Canella; Menezes, Maria Angela de B C; Veado, Julio Cesar C

    2002-09-01

    There has been increasing interest in the elemental composition of animal tissues to support health and nutritional studies. Determining the elemental concentration in cattle tissues is especially important because these materials are used for multipurpose objectives such as the assessment of animal health, the quality of human foods consumed, and as a potential environmental biomonitor. Chromium, copper, sodium, potassium, iron, and zinc levels were determined in bovine tissues--kidney, liver and muscle--from cattle bred and raised in a potentially metal contaminated region because of mineral activities. The Brazilian data were obtained using k0-instrumental neutron activation analysis, performed at the Nuclear Development Technology Centre/Nuclear Energy National Commission (CDTN/CNEN) in Minas Gerais State. The values of international organizations and the Brazilian analytical data are compatible. This study indicates that the nuclear technique is an efficient tool to determine elemental concentration in animal biological samples.

  10. Characterization of HPGe gamma spectrometric detectors systems for Instrumental Neutron Activation Analysis (INAA) at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Sierra, O.; Parrado, G.; Cañón, Y.; Porras, A.; Alonso, D.; Herrera, D. C.; Peña, M.; Orozco, J.

    2016-07-01

    This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in sample density between samples and standards.

  11. Artifacts in digital coincidence timing

    SciTech Connect

    Moses, W. W.; Peng, Q.

    2014-10-16

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into a time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.

  12. Artifacts in Digital Coincidence Timing

    PubMed Central

    Moses, W. W.; Peng, Q.

    2014-01-01

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into a time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator. All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e., the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the “optimal” method. The purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization. PMID:25321885

  13. Multiverse understanding of cosmological coincidences

    SciTech Connect

    Bousso, Raphael; Hall, Lawrence J.; Nomura, Yasunori

    2009-09-15

    There is a deep cosmological mystery: although dependent on very different underlying physics, the time scales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant, the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.

  14. The activation of a specific DNA binding protein by neutron irradiation

    SciTech Connect

    Teale, B.; Singh, S.; Cohen, D.

    1995-08-30

    The purpose of this investigation was to determine whether the quality of ionizing radiation is critical for activation of a radiation-specific DNA binding protein. We have previously shown that after exposing Epstein Barr virus-transformed lymphoblastoid cells to ionizing radiation, a specific DNA binding factor appears in the nucleus apparently as a result of translocation from the cytoplasm. This protein binds to a number of different genomic sequences and a consensus motif has been identified. Because the protein was not activated by UV light, it was of interest whether high linear energy transfer (LET) radiation was capable of activation. We describe here the activation of a specific DNA binding protein by high LET neutron radiation. The protein binds a region adjacent to and overlapping with the distal repeat within a 179 base-pair fragment of the well-characterized Simian Virus (SV40) bidirectional promoter/enhancer element. The appearance of the DNA binding activity was dose dependent and reached a maximum level by 90 min postirradiation. A reduction in DNA binding activity was evident at later times after irradiation. The specific nature of this response and the rapidity of activation may indicate a pivotal role for this protein in repair or in some other aspect of the cellular response to radiation damage. 22 refs., 4 figs.

  15. Radiochemical neutron activation analysis of Fe, Co, Zn, Sb and Se in biomedical and environmental samples.

    PubMed

    Garg, A N; Weginwar, R G; Chutke, N L

    1993-11-01

    A radiochemical neutron activation method has been developed for the simultaneous determination of Fe, Co, Zn, Sb and Se levels in cancerous breast tissue, milk samples and fugitive cement dust particulates. Various Standard Reference Materials from NIST, USA (Bovine Liver 1577a, Milk Powder 1549, Coal Fly Ash 1633a and Urban Particulate Matter 1648), IAEA Vienna (Animal Muscle H-4, Milk powder A-11 and Soil-5) and NIES Japan (Pond Sediment) were also analysed for quality control. Samples together with standards were irradiated at a thermal neutron fluence of 10(13) ncm-2s-1 for 2 weeks. After dissolution/fusion together with carriers, the Fe was first separated by extracting with diethyl ether followed by extraction with cupferron in chloroform. From the aqueous phase Co and Zn were extracted using alpha-nitroso-beta-naphthol in chloroform and 2-thenoyltrifluoroacetone in isobutylmethyl ketone, respectively. From another aliquot, Se was first complexed with o-phenylenediamine and extracted in benzene. Later Sb was extracted using KI and 4-(2-pyridylazo)-resorcinol (PAR) in benzene. The method yields reasonably accurate data for monitoring of trace elements in biomedical and environmental specimens.

  16. Characterization of airborne particulates in Bangkok urban area by neutron activation analysis.

    PubMed

    Nouchpramool, S; Sumitra, T; Leenanuphunt, V

    1999-01-01

    Samples of airborne particulates were collected in a residential area and in an area near a busy highway in Bangkok during the period from January 1997 to May 1998. A stacked filter system was used for the former site and a Partisol 2000 was used for the latter site. Both 2.5 microns and 10-micron particulates were collected every week. The total suspended particulate matters were also collected at the latter site. The samples were analyzed by neutron activation analysis utilizing neutron flux from a 2-MW TRIGA MARK III research reactor. The elements most frequently detected in the airborne particulates were Al, As, Br, Ca, Ce, Cl, Co, Cr, Cs, Fe, I, K, La, Mg, Mn, Na, Rb, Sb, Sc, Sm, Th, Ti, V, and Zn. The enrichment factor and factor analysis were used to investigate trends, sources, and origin of the atmospheric aerosols. Anthropogenic elements in road dust, construction dust, motor vehicles emission, and other combustion components were identified. A comparative study of data between both sites was performed and it was found that the mass concentration in the area close to the highway was about three times higher than in the residential area.

  17. Gravel-pack field examples of a new pulsed-neutron-activation logging technique

    SciTech Connect

    Caroll, J.F.; Smith, B.C. )

    1991-12-01

    Gravel packs traditionally have been evaluated with gamma/gamma density and neutron logging tools. These logging tools, particularly the density tools, do an acceptable job in most logging environments but have some limitations that affect their measurement resolution in attempts to define gravel-pack quality. The presence of high-density completion fluids significantly reduces the dynamic range of the conventional measurements. Low-contrast logging resolution is also encountered with the new matched-density gravel-pack systems that use matrix materials with densities near those of the completion fluids. This paper presents an alternative measurement of gravel-pack quality that is unaffected by the type of completion fluid present. The authors also present six field examples that demonstrate this new technique. Each example presents a different logging condition, e.g., heavy borehole fluid in a conventional gravel pack, gravel pack with sintered bauxite, two completions with Isopac gravel of different screen sizes, and multiple gravel-pack logs recorded before and after wireline repair work. Several of these examples show that neutron activation can be a useful method of gravel-pack analysis in some logging environments.

  18. Flow measurement by pulsed-neutron activation techniques at the PKL facility at Erlangen (Germany). [PWR

    SciTech Connect

    Kehler, P.

    1982-03-01

    Flow velocities in the downcomer at the PKL facility (in Erlangen, Germany) were measured by the Pulsed-Neutron Activation (PNA) techniques. This was the first time that a fully automated PNA system, incorporating a dedicated computer for on-line data reduction, was used for flow measurements. A prototype of a portable, pulsed, high-output neutron source, developed by the Sandia National Laboratories for the US Nuclear Regulatory Commission, was also successfully demonstrated during this test. The PNA system was the primary flow-measuring device used at the PKL, covering the whole range of velocities of interest. In this test series, the PKL simulated small-break accidents similar to the one that occurred at TMI. The flow velocities in the downcomer were, therefore, very low, ranging between 0.03 and 0.35 m/sec. Two additional flow-measuring methods were used over a smaller range of velocities. Wherever comparison was possible, the PNA-derived velocity values agreed well with the measurements performed by the two more conventional methods.

  19. In vivo monitoring of toxic metals: assessment of neutron activation and x-ray fluorescence techniques

    SciTech Connect

    Ellis, K.J.

    1986-01-01

    To date, cadmium, lead, aluminum, and mercury have been measured in vivo in humans. The possibilities of monitoring other toxic metals have also been demonstrated, but no human studies have been performed. Neutron activation analysis appears to be most suitable for Cd and Al measurements, while x-ray fluorescence is ideally suited for measurement of lead in superficial bone. Filtered neutron beams and polarized x-ray sources are being developed which will improve in vivo detection limits. Even so, several of the current facilities are already suitable for use in epidemiological studies of selected populations with suspected long-term low-level ''environmental'' exposures. Evaluation and diagnosis of patients presenting with general clinical symptoms attributable to possible toxic metal exposure may be assisted by in vivo examination. Continued in vivo monitoring of industrial workers, especially follow-up measurements, will provide the first direct assessment of changes in body burden and a direct measure of the biological life-times of these metals in humans. 50 refs., 4 figs., 2 tabs.

  20. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  1. Organic metal neutron detector

    DOEpatents

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  2. Comparison of IUPAC k0 Values and Neutron Cross Sections to Determine a Self-consistent Set of Data for Neutron Activation Analysis

    SciTech Connect

    Firestone, Richard B; Revay, Zsolt

    2009-12-01

    Independent databases of nuclear constants for Neutron Activation Analysis (NAA) have been independently maintained by the physics and chemistry communities for many year. They contain thermal neturon cross sections s0, standardization values k0, and transition probabilities Pg. Chemistry databases tend to rely upon direct measurements of the nuclear constants k0 and Pg which are often published in chemistry journals while the physics databases typically include evaluated s0 and Pg data from a variety of experiments published mainly in physics journals. The IAEA/LBNL Evaluated Gamma-ray Activation File (EGAF) also contains prompt and delayed g-ray cross sections sg from Prompt Gamma-ray Activation Analysis (PGAA) measurements that can also be used to determine k0 and s0 values. As a result several independent databases of fundamental constants for NAA have evolved containing slightly different and sometimes discrepant results. An IAEA CRP for a Reference Database for Neutron Activation Analysis was established to compare these databases and investigate the possibilitiy of producing a self-consistent set of s0, k0, sg, and Pg values for NAA and other applications. Preliminary results of this IAEA CRP comparison are given in this paper.

  3. Active Well Counting Using New PSD Plastic Detectors

    SciTech Connect

    Hausladen, Paul; Newby, Jason; McElroy, Robert Dennis

    2015-11-01

    This report presents results and analysis from a series of proof-of-concept measurements to assess the suitability of segmented detectors constructed from Eljen EJ-299-34 PSD-plastic scintillator with pulse-shape discrimination capability for the purposes of quantifying uranium via active neutron coincidence counting. Present quantification of bulk uranium materials for international safeguards and domestic materials control and accounting relies on active neutron coincidence counting systems, such as the Active Well Coincidence Counter (AWCC) and the Uranium Neutron Coincidence Collar (UNCL), that use moderated He-3 proportional counters along with necessarily low-intensity 241Am(Li) neutron sources. Scintillation-based fast-neutron detectors are a potentially superior technology to the existing AWCC and UNCL designs due to their spectroscopic capability and their inherently short neutron coincidence times that largely eliminate random coincidences and enable interrogation by stronger sources. One of the past impediments to the investigation and adoption of scintillation counters for the purpose of quantifying bulk uranium was the commercial availability of scintillators having the necessary neutron-gamma pulse-shape discrimination properties only as flammable liquids. Recently, Eljen EJ-299-34 PSD-plastic scintillator became commercially available. The present work is the first assessment of an array of PSD-plastic detectors for the purposes of quantifying bulk uranium. The detector panel used in the present work was originally built as the focal plane for a fast-neutron imager, but it was repurposed for the present investigation by construction of a stand to support the inner well of an AWCC immediately in front of the detector panel. The detector panel and data acquisition of this system are particularly well suited for performing active-well fast-neutron counting of LEU and HEU samples because the active detector volume is solid, the 241Am(Li) interrogating

  4. Activation of soil and chemical reagents exposed to the neutrons released by the JCO criticality accident in Tokai-mura.

    PubMed

    Murata, Y; Muroyama, T; Kawabata, Y; Yamamoto, M; Komura, K

    2001-09-01

    Specific activities (Bq/g-element) of residual neutron-induced radionuclides by the JCO criticality accident were measured for soil, concrete block and chemical reagent samples collected in the JCO campus. Induced radionuclides such as 24Na, 46Sc, 54Mn, 59Fe, 60Co, 65Zn, 82Br, 122Sb, 134Cs and 140La were detected in the samples, depending on the ground distance from the accident point and the sampling date. Apparent thermal, epi-thermal and fast neutron fluences, which reached the sample at each point, were roughly estimated from the specific activities and cross sections of the target nuclides taken from a literature. The present data are believed to be important as validation data for a three-dimensional neutron transport model calculation.

  5. A setup for active neutron analysis of the fissile material content in fuel assemblies of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Bushuev, A. V.; Kozhin, A. F.; Aleeva, T. B.; Zubarev, V. N.; Petrova, E. V.; Smirnov, V. E.

    2016-12-01

    An active neutron method for measuring the residual mass of 235U in spent fuel assemblies (FAs) of the IRT MEPhI research reactor is presented. The special measuring stand design and uniform irradiation of the fuel with neutrons along the entire length of the active part of the FA provide high accuracy of determination of the residual 235U content. AmLi neutron sources yield a higher effect/background ratio than other types of sources and do not induce the fission of 238U. The proposed method of transfer of the isotope source in accordance with a given algorithm may be used in experiments where the studied object needs to be irradiated with a uniform fluence.

  6. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    SciTech Connect

    Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; DeMuth, James; Reyes, Susana; Fratoni, Massimiliano

    2016-04-09

    Here we report that an attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys in the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as lead, tin, and strontium, perform well with those that have high neutron multiplication such as lead and bismuth. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). Some of the activation results for alloys with tin, zinc, and gallium were in the higher

  7. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    DOE PAGES

    Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; ...

    2016-04-09

    Here we report that an attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys inmore » the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as lead, tin, and strontium, perform well with those that have high neutron multiplication such as lead and bismuth. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). Some of the activation results for alloys with tin, zinc, and gallium were in

  8. Artifacts in digital coincidence timing

    DOE PAGES

    Moses, W. W.; Peng, Q.

    2014-10-16

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into amore » time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.« less

  9. MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model

    SciTech Connect

    Abhold, M.E.; Baker, M.C.

    1999-07-25

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo N-Particle code (MCNP) was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP - Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program (TAP) predict neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of MOX fresh fuel made using the Underwater Coincidence Counter (UWCC) as well as measurements of HEU reactor fuel using the active neutron Research Reactor Fuel Counter (RRFC) are compared with calculations. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions.

  10. Instrumental neutron activation analysis data for cloud-water particulate samples, Mount Bamboo, Taiwan

    USGS Publications Warehouse

    Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.

    2013-01-01

    Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.

  11. Neutron activation analysis of major, minor, and trace elements in marine sediments

    SciTech Connect

    Stone, S.F.; Zeisler, R.; Koster, B.J.

    1988-01-01

    Neutron activation analysis (NAA) techniques are well established in the multielement assay of geological materials. Similarly, applications of NAA to the analysis of marine sediments have been described. The different emphasis on elemental composition in studying and monitoring the health of the environment, however, presents a new challenge to the analyst. To investigate as many elements as possible, previous multielement procedures need to be reevaluated and modified. In this work, the authors have utilized the NAA steps of a recently developed sequential analysis procedure that obtained concentrations for 45 biological and pollutant elements in marine bivalves. This procedure, with modification, was applied to samples of marine sediments collected for the National Oceanic and Atmospheric Administration (NOAA) National Status and Trends (NS T) specimen banking program.

  12. Chemical characterization of gas- and oil-bearing shales by instrumental neutron activation analysis

    USGS Publications Warehouse

    Frost, J.K.; Koszykowski, R.F.; Klemm, R.C.

    1982-01-01

    The concentration of As, Ba, Ca, Co, Cr, Cs, Dy, Eu, Fe, Ga, Hf, K, La, Lu, Mn, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, Yb, and Zn were determined by instrumental neutron activation analysis in block shale samples of the New Albany Group (Devonian-Mississippian) in the in the Illinois Basin. Uranium content of the samples was as high as 75 ppm and interfered in the determination of samarium, molybdenum, barium and cerium. In the determination of selenium a correction was made for interference from tantalum. U, As, Co, Mo, Ni and Sb as well as Cu, V and pyritic sulphur which were determined by other methods, were found to correlate positively with the organic carbon content of the samples. ?? 1982 Akade??miai Kiado??.

  13. Analysis of low levels of rare earths by radiochemical neutron activation analysis

    USGS Publications Warehouse

    Wandless, G.A.; Morgan, J.W.

    1985-01-01

    A procedure for the radiochemical neutron-activation analysis for the rare earth elements (REE) involves the separation of the REE as a group by rapid ion-exchange methods and determination of yields by reactivation or by energy dispersive X-ray fluorescence (EDXRF) spectrometry. The U. S. Geological Survey (USGS) standard rocks, BCR-1 and AGV-1, were analyzed to determine the precision and accuracy of the method. We found that the precision was ??5-10% on the basis of replicate analysis and that, in general the accuracy was within ??5% of accepted values for most REE. Data for USGS standard rocks BIR-1 (Icelandic basalt) and DNC-1 (North Carolina diabase) are also presented. ?? 1985 Akade??miai Kiado??.

  14. Redundancy in neutron activation analysis: A valuable tool in assuring analytical quality

    SciTech Connect

    Greenberg, R.R.

    1996-12-31

    Neutron activation analysis (NAA) has become widely used and is extremely valuable for the certification of standard reference materials (SRMs) at the National Institute of Standards and Technology (NIST). This is due to a number of reasons. First, NAA has essentially no significant sources of error in common with the other analytical techniques used at NIST to measure inorganic concentrations. This is important because most certified elemental concentrations are derived from the data determined by two (and occasionally more) independent analytical techniques. Two or more techniques are used for SRM certification because, although each technique has previously been evaluated and shown to be accurate, unexpected problems can arise, especially when analyzing new matrices. Another reason for the use of NAA for SRM certification is the potential of this technique for accuracy. The SRM measurements with estimated accuracies of 1 to 2% (at essentially 95% confidence intervals) are routinely made at NIST using NAA.

  15. Neutron activation analysis on the surface of the Moon and other terrestrial planets

    NASA Astrophysics Data System (ADS)

    Golovin, Dmitry; Litvak, Maxim; Kozyrev, S. Alexander; Tretiyakov, Vladislav; Sanin, Anton; Vostrukhin, Andrey; Mitrofanov, Igor; Malakhov, Alexey

    Determine of elements composition of the planet subsurface in situ is important scientific task for understanding of origin and formation processes of terrestrial planets, moons and asteroids. Also this study will be very perspective in terms of utilization of mineral resources for future lunar base. Creation of such outpost will open doors for robotic and human exploration in the distant parts of Solar System. ADRON instrument onboard landing platforms Russian near-pole lunar missions (Glob and Resource) will be first example of using Neutron Activation method in space. It will measure nuclear composition of the lunar regolith in the landing sites up to 1 m depth. This instrument is able to use for different planets and conditions. For Venus surface, taking into account short lifetime of spacecraft one or two hours of operation will be enough to perform such measurements. Another good opportunity is using similar instrument on Lunar or Martian rovers for searching of important minerals.

  16. Hair-zinc levels determination in Algerian psoriatics using Instrumental Neutron Activation Analysis (INAA).

    PubMed

    Mansouri, A; Hamidatou Alghem, L; Beladel, B; Mokhtari, O E K; Bendaas, A; Benamar, M E A

    2013-02-01

    Psoriasis is a multifactorial skin disease with an unknown etiology. Zinc has a positive impact on psoriasis. The aim of this study is to determine hair-zinc concentration in Algerian psoriatics. 58 psoriatics and 31 normal controls of both genders were selected. Hair zinc levels were determined using Instrumental Neutron Activation Analysis technique (INAA). Student's t-test and One-Way ANOVA were applied. The average zinc concentration for controls and patients were 152 ± 53 μg/g and 167 ± 52 μg/g respectively. They are not significantly different (p>0.05). Zn concentration for males and females controls and patients were 171±27 μg/g, 151±37 μg/g and 145 ± 59 μg/g, 178 ± 58 μg/g respectively. However, for females we have observed a significant difference (p<0.05).

  17. Hybrid combination of multi-layer perceptron and neutron activation analysis in cement prediction

    NASA Astrophysics Data System (ADS)

    Eftekhari-Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.

    2017-02-01

    Determination of concentration of major elements such as Ca, Si, Al, and Fe in cement is very important for quality control during its production, correct classification according to the existing standards, and thus for appropriate use in the construction industry. For this purpose, neutron activation analysis is very suitable. In this preliminary theoretical work, the irradiation and consecutive measurement of the percentage of the constituent elements in different cement samples were done using MCNPX with γ-ray spectra as the output. Specific peaks of Ca, Si, Al, and Fe obtained from these spectra were used as input for artificial neural network (18 of them for training and 8 for testing) resulting in the determination of each element in the given sample. The mean absolute errors of the results are less than 0.4%, which is very promising for the future experimental work where the uncertainties are usually one order higher.

  18. Elemental characterization of the Avogadro silicon crystal WASO 04 by neutron activation analysis

    NASA Astrophysics Data System (ADS)

    D'Agostino, G.; Bergamaschi, L.; Giordani, L.; Mana, G.; Massa, E.; Oddone, M.

    2012-12-01

    Impurity measurements of the 28Si crystal used for the determination of the Avogadro constant are essential to prevent biased results or underestimated uncertainties. A review of the existing data confirmed the high purity of silicon with respect to a large number of elements. In order to obtain direct evidence of purity, we developed a relative analytical method based on neutron activation. As a preliminary test, this method was applied to a sample of the Avogadro natural silicon crystal WASO 04. The investigation concerned 29 elements. The mass fraction of Au was quantified to be (1.03 ± 0.18) × 10-12. For the remaining 28 elements, the mass fractions were below the detection limits, which ranged between 1 × 10-12 and 1 × 10-5.

  19. Investigation of therapeutic potentials of some selected medicinal plants using neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Abubakar, Sani; Usman, Ahmed Rufa'i.; Isa, Nasiru Fage; Khandaker, Mayeen Uddin; Abubakar, Nuraddeen

    2015-04-01

    Series of attempts were made to investigate concentrations of trace elements and their therapeutic properties in various medicinal plants. In this study, samples of some commonly used plants were collected from Bauchi State, Nigeria. They includes leaves of azadirachta indica (neem), Moringa Oleifera (moringa), jatropha curcas (purgin Nut), guiera senegalensis (custard apple) and anogeissus leiocarpus (African birch). These samples were analyzed for their trace elements contents with both short and long irradiation protocols of Instrumental Neutron Activation Analysis (INAA) at Nigerian Research Reactor-1 (NIRR-1) of Ahmadu Bello University, Zaria, Nigeria. The level of trace elements found varies from one sample to another, with some reported at hundreds of mg/Kg dry weight. The results have been compared with the available literature data. The presence of these trace elements indicates promising potentials of these plants for relief of certain ailments.

  20. Investigation of therapeutic potentials of some selected medicinal plants using neutron activation analysis

    SciTech Connect

    Abubakar, Sani; Isa, Nasiru Fage; Usman, Ahmed Rufa’i; Khandaker, Mayeen Uddin; Abubakar, Nuraddeen

    2015-04-24

    Series of attempts were made to investigate concentrations of trace elements and their therapeutic properties in various medicinal plants. In this study, samples of some commonly used plants were collected from Bauchi State, Nigeria. They includes leaves of azadirachta indica (neem), Moringa Oleifera (moringa), jatropha curcas (purgin Nut), guiera senegalensis (custard apple) and anogeissus leiocarpus (African birch). These samples were analyzed for their trace elements contents with both short and long irradiation protocols of Instrumental Neutron Activation Analysis (INAA) at Nigerian Research Reactor-1 (NIRR-1) of Ahmadu Bello University, Zaria, Nigeria. The level of trace elements found varies from one sample to another, with some reported at hundreds of mg/Kg dry weight. The results have been compared with the available literature data. The presence of these trace elements indicates promising potentials of these plants for relief of certain ailments.

  1. Neutron Activation Analysis of the Rare Earth Elements (REE) - With Emphasis on Geological Materials

    NASA Astrophysics Data System (ADS)

    Stosch, Heinz-Günter

    2016-08-01

    Neutron activation analysis (NAA) has been the analytical method of choice for rare earth element (REE) analysis from the early 1960s through the 1980s. At that time, irradiation facilitieswere widely available and fairly easily accessible. The development of high-resolution gamma-ray detectors in the mid-1960s eliminated, formany applications, the need for chemical separation of the REE from the matrix material, making NAA a reliable and effective analytical tool. While not as precise as isotopedilution mass spectrometry, NAA was competitive by being sensitive for the analysis of about half of the rare earths (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu). The development of inductively coupled plasma mass spectrometry since the 1980s, together with decommissioning of research reactors and the lack of installation of new ones in Europe and North America has led to the rapid decline of NAA.

  2. Instrumental neutron activation analysis of brain aluminum in Alzheimer disease and aging.

    PubMed

    Markesbery, W R; Ehmann, W D; Hossain, T I; Alauddin, M; Goodin, D T

    1981-12-01

    Instrumental neutron activation analysis procedures were used to determine the aluminum content of various brain regions in histologically verified Alzheimer disease (AD) and in controls. The grand mean aluminum level for 74 AD specimens was 0.372 +/- 0.058 microgram/gm and for 137 adult controls, 0.467 +/- 0.033 microgram/gm, both on a wet weight basis. No difference was found at the bulk sample level between AD and adult controls, corrected for age and sex, or when frontal, temporal, and hippocampal specimens were compared. Control specimens (infancy to 85 years) showed an increase in brain aluminum concentration with age. Comparison of freeze-dried to wet weight ratios of AD and controls revealed a small increase in water content in AD brains.

  3. Neutron activation analysis of thermal power plant ash and surrounding area soils.

    PubMed

    Al-Masri, M S; Haddad, Kh; Alsomel, N; Sarhil, A

    2015-08-01

    Elemental concentrations of As, Cd, Co, Cr, Fe, Hg, Mo, Ni, Se, and Zn have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas using instrumental neutron activation analysis. The results showed that all elements were more concentrated in fly ash than in the fly ash; there was a clear increasing trend of the elemental concentrations in the fly ash along the flue gas pathway. The annual emission of elements was estimated. Elemental concentrations were higher inside the campus area than in surrounding areas, and the lowest values were found in natural-gas-fired power plant. In addition, the levels have decreased as the distance from power plant campus increases. However, the levels in the surrounding villages were within the Syrian standard for agriculture soil.

  4. Microwave acid digestion and preconcentration neutron activation analysis of biological and diet samples for iodine.

    PubMed

    Rao, R R; Chatt, A

    1991-07-01

    A simple preconcentration neutron activation analysis (PNAA) method has been developed for the determination of low levels of iodine in biological and nutritional materials. The method involves dissolution of the samples by microwave digestion in the presence of acids in closed Teflon bombs and preconcentration of total iodine, after reduction to iodide with hydrazine sulfate, by coprecipitation with bismuth sulfide. The effects of different factors such as acidity, time for complete precipitation, and concentrations of bismuth, sulfide, and diverse ions on the quantitative recovery of iodide have been studied. The absolute detection limit of the PNAA method is 5 ng of iodine. Precision of measurement, expressed in terms of relative standard deviation, is about 5% at 100 ppb and 10% at 20 ppb levels of iodine. The PNAA method has been applied to several biological reference materials and total diet samples.

  5. Small-angle neutron and X-ray scattering reveal conformational changes in rhodopsin activation

    NASA Astrophysics Data System (ADS)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Perera, Suchitrhanga M. C. D.; Chawla, Udeep; Struts, Andrey V.; Graziono, Vito; Pingali, Sai Venkatesh; Heller, William T.; Qian, Shuo; Brown, Michael F.; Chu, Xiang-Qiang

    2015-03-01

    Understanding G-protein-coupled receptor (GPCR) activation plays a crucial role in the development of novel improved molecular drugs. During photo-activation, the retinal chromophore of the visual GPCR rhodopsin isomerizes from 11-cis to all-trans conformation, yielding an equilibrium between inactive Meta-I and active Meta-II states. The principal goals of this work are to address whether the activation of rhodopsin leads to a single state or a conformational ensemble, and how protein organizational structure changes with detergent environment in solution. We use both small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) techniques to answer the above questions. For the first time we observe the change in protein conformational ensemble upon photo-activation by SANS with contrast variation, which enables the separate study of the protein structure within the detergent assembly. In addition, SAXS study of protein structure within detergent assembly suggests that the detergent molecules form a belt of monolayer (micelle) around protein with different geometrical shapes to keep the protein in folded state.

  6. Mechanical property changes of low activation ferritic/martensitic steels after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Kohno, Y.; Kohyama, A.; Hirose, T.; Hamilton, M. L.; Narui, M.

    Mechanical property changes of Fe- XCr-2W-0.2V,Ta ( X: 2.25-12) low activation ferritic/martensitic steels including Japanese Low Activation Ferritic/martensitic (JLF) steels and F82H after neutron irradiation were investigated with emphasis on Charpy impact property, tensile property and irradiation creep properties. Dose dependence of ductile-to-brittle transition temperature (DBTT) in JLF-1 (9Cr steel) irradiated at 646-700 K increased with irradiation up to 20 dpa and then decreased with further irradiation showing highest DBTT of 260 K at 20 dpa. F82H showed similar dose dependence in DBTT to JLF-1 with higher transition temperature than that of JLF-1 at the same displacement damage. Yield strength in JLF steels and F82H showed similar dose dependence to that of DBTT. Yield strength increased with irradiation up to 15-20 dpa and then decreased to saturate above about 40 dpa. Irradiation hardening in 7-9%Cr steels (JLF-1, JLF-3, F82H) were observed to be smaller than those in steels with 2.25%Cr (JLF-4) or 12%Cr (JLF-5). Dependences of creep strain on applied hoop stress and neutron fluence were measured to be 1.5 and 1, respectively. Temperature dependence of creep coefficient showed a maximum at about 700 K which was caused by irradiation induced void formation or irradiation enhanced creep deformation. Creep coefficient of F82H was larger than those of JLF steels above 750 K. This was considered to be caused by the differences in N and Ta concentration between F82H and JLF steels.

  7. New class of neutron detectors

    SciTech Connect

    Czirr, J.B.

    1997-09-01

    An optimized neutron scattering instrument design must include all significant components, including the detector. For example, useful beam intensity is limited by detector dead time; detector pixel size determines the optimum beam diameter, sample size, and sample to detector distance; and detector efficiency vs. wavelength determines the available energy range. As an example of the next generation of detectors that could affect overall instrumentation design, we will describe a new scintillator material that is potentially superior to currently available scintillators. We have grown and tested several small, single crystal scintillators based upon the general class of cerium-activated lithium lanthanide borates. The outstanding characteristic of these materials is the high scintillation efficiency-as much as five times that of Li-glass scintillators. This increase in light output permits the practical use of the exothermic B (n, alpha) reaction for low energy neutron detection. This reaction provides a four-fold increase in capture cross section relative to the Li (n, alpha) reaction, and the intriguing possibility of demanding a charged-particle/gamma ray coincidence to reduce background detection rates. These new materials will be useful in the thermal and epithermal energy ran at reactors and pulsed neutron sources.

  8. Neutrons in the low-background Ge-detector vicinity estimated from different activation reactions.

    PubMed

    Jovančević, N; Krmar, M

    2011-03-01

    Neutrons produced by cosmic-ray muons in a detector shield and other surrounding materials can be captured or scattered by different nuclei in subsequent reactions. The gamma photons emitted after nuclear capture or scattering from produced Ge isotopes are used to estimate the neutron flux. If a bulk sample measured in some low background gamma spectroscopy system contains hydrogen, a high energy photon (of energy 2223keV) emitted in the process of deuterium production can be used to estimate the flux of thermal neutrons. Results obtained from the interaction of neutrons with H as well as with some Ge isotopes are computed and compared in this paper. The passive lead shield in a detector system is a source of a significant fraction of the gamma radiation induced by capture and inelastic scattering of neutrons. We also used gamma lines emitted by several Pb isotopes to estimate the neutron flux near a detector.

  9. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    PubMed

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5).

  10. Studies on osteoporosis. V. Comparison of methods of evaluation of osteoporosis and study of chromosome changes induced by neutron activation

    SciTech Connect

    Robin, J.C.; Sirianni, S.R.; Pragay, D.A.; Ambrus, J.L.

    1981-01-01

    In vivo activation analysis was compared with ashing and atomic absorption spectrophotometry for the determination of total skeletal calcium content in mice. The results were close to identical. The possible mutagenic-carcinogenic effect of repeated exposure to whole body neutron irradiation was studied by chromosome analysis. Under the conditions of these experiments, no significant chromosome changes were seen.

  11. Neutron activation analysis and numerical taxonomy of thin orange ceramics from the manufacturing site of Rio Carnero, Puebla, Mexico

    SciTech Connect

    Rattray, E. . Inst. de Investigaciones Antropologicas); Harbottle, G. )

    1991-04-01

    Examples of different types of Thin Orange ceramics found at the recently-discovered manufacturing sites in the state of Puebla have been analyzed by neutron activation. A full multivariate numerical analysis indicates that this material is chemically identical with the well-known Thin Orange of Teotihuacan.'' 33 refs., 2 figs., 2 tabs.

  12. Determination of the origin of the medieval glass bracelets discovered in Dubna, Moscow region, Russia using the neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Dmitrieva, S. O.; Frontasyeva, M. V.; Dmitriev, A. A.; Dmitriev, A. Yu.

    2017-01-01

    The work is dedicated to the determination of the origin of archaeological finds from medieval glass using the method of neutron activation analysis (NAA). Among such objects we can discover not only things produced in ancient Russian glassmaking workshops but also imported from Byzantium. The authors substantiate the ancient Russian origin of the medieval glass bracelets of pre-Mongol period, found on the ancient Dubna settlement. The conclusions are based on data about the glass chemical composition obtained as a result of NAA of 10 fragments of bracelets at the IBR-2 reactor (Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research).

  13. [A new correction method for radionuclide formation in neutron activation analysis using a reactor power meter coupled with a microcomputer].

    PubMed

    Hirai, S; Yoshino, Y; Suzuki, S; Horiuchi, N

    1982-05-01

    Neutron flux and irradiation time should be accurately known in neutron activation analysis using very short lived nuclides in which conventional monitoring methods i.e., a comparator method, flux monitor method and so on cannot be used satisfactorily. Especially, fluctuation of neutron flux has not been corrected. We noted a change of reactor power at a pneumatic operation, and found out a new correction method for its correction in activation analysis. In our small nuclear reactor, TRIGA-II, the reactor power increased rapidly a few % when a pneumatic-operated capsule arrived at a core of the reactor, and decreased when the capsule left from the core. If the duration between these two changes of the reactor power is equal to the irradiation time, and that the reactor power is proportional to the neutron flux, we can regard an activity formation as a time integration of the reactor power. Then, the correction system was made of a reactor power meter, a V-F converter (voltage to frequency converter), a clock time, a counter, a microcomputer, electric circuits and so on. The signal of the reactor power during the irradiation was counted through the V-F converter, and was accumulated in a memory of the microcomputer. The neutron fluence was calculated in this microcomputer. This method was examined by means of activation of copper and selenium standard samples by 9-11 sec irradiations. The observed activity involved +/- 10% error. However, the error in the corrected activity was decreased to a few % using this correction method. As a result, we found that this method can be used to obtain accurate value for radionuclide formation.

  14. Boron-10 ABUNCL Prototype Models And Initial Active Testing

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-04-23

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNPX model simulations and initial testing of the active mode variation of the Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Initial experimental testing of the as-delivered passive ABUNCL was previously reported.

  15. A benchmarked MCNP model of the in vivo detection of gadolinium by prompt gamma neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Gräfe, J. L.; McNeill, F. E.; Byun, S. H.; Chettle, D. R.; Noseworthy, M. D.

    2010-08-01

    Gadolinium (Gd)-based contrast agents are a valuable diagnostic aid for magnetic resonance imaging (MRI). The amount of free Gd deposited in tissues following contrast enhanced MRI is of toxicological concern. The McMaster University in vivo prompt gamma neutron activation analysis facility has been adapted for the detection of Gd in the kidney, liver, and the leg muscle. A simple model of the HPGe detector used for detection of the prompt γ-rays following Gd neutron capture has been created using Monte Carlo simulation. A separate simulation describing the neutron collimation and shielding apparatus has been modified to determine the neutron capture rate in the Gd phantoms. The MCNP simulation results have been confirmed by experimental measurement. The deviations between MCNP and the experiment were between 1% and 18%, with an average deviation of 3.8 ± 6.7%. The validated MCNP model is to be used to improve the Gd in vivo measurement sensitivity by determining the best neutron moderator/reflector arrangement.

  16. Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample

    SciTech Connect

    Dahing, Lahasen Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie

    2014-09-03

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm{sup 3} and 15×15×15 cm{sup 3} were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.

  17. Prompt gamma neutron activation analysis of 10B and Gd in biological samples at the MEPhI reactor.

    PubMed

    Khokhlov, V F; Zaitsev, K N; Beliayev, V N; Kulakov, V N; Lipengolts, A A; Portnov, A A

    2009-07-01

    The purpose of the work was to build a prompt gamma neutron activation analysis (PGNAA) facility at the MEPhI reactor for analyzing the content of various elements for NCT. The facility was implemented on a monochromatic neutron beam. Methods of quantitative (10)B and Gd measurement have been developed for pharmacokinetic studies. The facility is capable of measuring 1 microg of (10)B and 10 microg of Gd in biological samples with an error less than 10%. The detection limit of the facility is 0.3 microg of (10)B and 2 microg of Gd. Neutron flux attenuation within biological tissue samples was estimated and a new system for determining the elemental concentration was suggested.

  18. Ensemble Activation of G-Protein -Coupled Receptors Revealed by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Qiang; Perera, Suchithranga; Shrestha, Utsab; Chawla, Udeep; Struts, Andrey; Qian, Shuo; Brown, Michael

    2014-03-01

    Rhodopsin is a G-protein -coupled receptor (GPCR) involved in visual light perception and occurs naturally in a membrane lipid environment. Rhodopsin photoactivation yields cis-trans isomerization of retinal giving equilibrium between inactive Meta-I and active Meta-II states. Does photoactivation lead to a single Meta-II conformation, or do substates exist as described by an ensemble-activation mechanism (EAM)? We use small-angle neutron scattering (SANS) to investigate conformational changes in rhodopsin-detergent and rhodopsin-lipid complexes upon photoactivation. Meta-I state is stabilized in CHAPS-solubilized rhodopsin, while Meta-II is trapped in DDM-solubilized rhodopsin. SANS data are acquired from 80% D2O solutions and at contrast-matching points for both DDM and CHAPS samples. Our experiments demonstrate that for detergent-solubilized rhodopsin, SANS with contrast variation can detect structural differences between the rhodopsin dark-state, Meta-I, Meta-II, and ligand-free opsin states. Dark-state rhodopsin has more conformational flexibility in DDM micelles compared to CHAPS, which is consistent with an ensemble of activated Meta-II states. Furthermore, time-resolved SANS enables study of the time-dependent structural transitions between Meta-I and Meta-II, which is crucial to understanding the ensemble-based activation.

  19. New 1-k PROM for the coincidence-counter electronics package

    SciTech Connect

    Swansen, J.E.

    1982-02-01

    A new programmable read-only memory (PROM) for the Los Alamos-designed neutron coincidence electronics package is described. The new 1-k PROM allows remote control of the electronics by a computer or a remote terminal through an RS-232 serial data port. No modifications of the existing unit are required.

  20. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    SciTech Connect

    Avery, S; Christodouleas, J; Delaney, K; Diffenderfer, E; Brown, K

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBs to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.

  1. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    SciTech Connect

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  2. Neutron-induced 63Ni activity and microscopic observation of copper samples exposed to the Hiroshima atomic bomb

    NASA Astrophysics Data System (ADS)

    Shizuma, Kiyoshi; Endo, Satoru; Shinozaki, Kenji; Fukushima, Hiroshi

    2013-05-01

    Fast neutron activation data for 63Ni in copper samples exposed to the Hiroshima atomic bomb are important in evaluating neutron doses to the survivors. Up to until now, accelerator mass spectrometry and liquid scintillation counting methods have been applied in 63Ni measurements and data were accumulated within 1500 m from the hypocenter. The slope of the activation curve versus distance shows reasonable agreement with the calculation result, however, data near the hypocenter are scarce. In the present work, two copper samples obtained from the Atomic bomb dome (155 m from the hypocenter) and the Bank of Japan building (392 m) were utilized in 63Ni beta-ray measurement with a Si surface barrier detector. Additionally, microscopic observation of the metal surfaces was performed for the first time. Only upper limit of 63Ni production was obtained for copper sample of the Atomic bomb dome. The result of the 63Ni measurement for Bank of Japan building show reasonable agreement with the AMS measurement and to fast neutron activation calculations based on the Dosimetry System 2002 (DS02) neutrons.

  3. Neutron activation of holmium poly(L-lactic acid) microspheres for hepatic arterial radio-embolization: a validation study.

    PubMed

    Vente, M A D; Nijsen, J F W; de Roos, R; van Steenbergen, M J; Kaaijk, C N J; Koster-Ammerlaan, M J J; de Leege, P F A; Hennink, W E; van Het Schip, A D; Krijger, G C

    2009-08-01

    Poly(L-lactic acid) microspheres loaded with holmium-166 acetylacetonate (166Ho-PLLA-MS) are a novel microdevice for intra-arterial radio-embolization in patients with unresectable liver malignancies. The neutron activation in a nuclear reactor, in particular the gamma heating, damages the 166Ho-PLLA-MS. The degree of damage is dependent on the irradiation characteristics and irradiation time in a particular reactor facility. The aim of this study was to standardize and objectively validate the activation procedure in a particular reactor. The methods included light- and scanning electron microscopy (SEM), particle size analysis, differential scanning calorimetry, viscometry, thermal neutron flux measurements and energy deposition calculations. Seven hours-neutron irradiation results in sufficient specific activity of the 166Ho-PLLA-MS while structural integrity is preserved. Neutron flux measurements and energy deposition calculations are required in the screening of other nuclear reactors. For the evaluation of microsphere quality, light microscopy, SEM and particle size analysis are appropriate techniques.

  4. Neutron Lifetime Measurements

    NASA Astrophysics Data System (ADS)

    Nico, J. S.

    2006-11-01

    Precision measurements of neutron beta decay address basic questions in nuclear and particle physics, astrophysics, and cosmology. As the simplest semileptonic decay system, the free neutron plays an important role in understanding the physics of the weak interaction, and improving the precision of the neutron lifetime is fundamental to testing the validity of the theory. The neutron lifetime also directly affects the relative abundance of primordial helium in big bang nucleosynthesis. There are two distinct strategies for measuring the lifetime. Experiments using cold neutrons measure the absolute specific activity of a beam of neutrons by counting decay protons; experiments using confined, ultracold neutrons determine the lifetime by counting neutrons that remain after some elapsed time. The status of the recent lifetime measurements using both of these techniques is discussed.

  5. Neutron Lifetime Measurements

    SciTech Connect

    Nico, J. S.

    2006-11-17

    Precision measurements of neutron beta decay address basic questions in nuclear and particle physics, astrophysics, and cosmology. As the simplest semileptonic decay system, the free neutron plays an important role in understanding the physics of the weak interaction, and improving the precision of the neutron lifetime is fundamental to testing the validity of the theory. The neutron lifetime also directly affects the relative abundance of primordial helium in big bang nucleosynthesis. There are two distinct strategies for measuring the lifetime. Experiments using cold neutrons measure the absolute specific activity of a beam of neutrons by counting decay protons; experiments using confined, ultracold neutrons determine the lifetime by counting neutrons that remain after some elapsed time. The status of the recent lifetime measurements using both of these techniques is discussed.

  6. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  7. Health physics aspects of neutron activated components in a linear accelerator.

    PubMed

    Guo, Shuntong; Ziemer, Paul L

    2004-05-01

    The purpose of this study was to investigate the residual radioactivity in the therapy accessories of a medical x ray linear accelerator. The residual radioactivity mainly originated from nuclear activation reactions by neutrons, which are present as a contamination radiation in the x-ray beam. The radiation used in this study was the 25 MV x-ray beam produced by a CGR Saturne III linear accelerator. The five treatment aids include four wedges of various angles and one cerrobend block. The decrease in dose rates with time was followed for 60 min for each of the five treatment aids immediately after 999 monitor units of irradiation. The integral doses from the surface of each of four activated therapy accessories following three different radiation doses were measured by using thermoluminescent dosimeters (CaF2). In the TLD measurement, polyethylene filters were used to differentiate beta or beta particles from the mixed decay radiation. A high-purity germanium detection system was utilized to collect and to analyze the gamma spectra from the activated therapy accessories. The residual radioisotopes found in the 15 degree wedge and 30 degree wedge included V, Cr, Cr, Mn, Fe, Co, and Ni. In the 45 degree and 60 degree wedges, the radionuclides identified were Co, Ni, Cu, and W. The principal nuclides identified in the irradiated cerrobend block were In, Sn, Cd, Pb. The corresponding nuclear reactions from which the residual radionuclides produced were confirmed by consulting the current literature.

  8. Health Physics Aspects of Neutron Activated Components in a Linear Accelerator.

    PubMed

    Guo, Shuntong; Ziemer, Paul L

    2004-05-01

    The purpose of this study was to investigate the residual radioactivity in the therapy accessories of a medical x ray linear accelerator. The residual radioactivity mainly originated from nuclear activation reactions by neutrons, which are present as a contamination radiation in the x-ray beam. The radiation used in this study was the 25 MV x-ray beam produced by a CGR Saturne III linear accelerator. The five treatment aids include four wedges of various angles and one cerrobend block. The decrease in dose rates with time was followed for 60 min for each of the five treatment aids immediately after 999 monitor units of irradiation. The integral doses from the surface of each of four activated therapy accessories following three different radiation doses were measured by using thermoluminescent dosimeters (CaF2). In the TLD measurement, polyethylene filters were used to differentiate β or β particles from the mixed decay radiation. A high-purity germanium detection system was utilized to collect and to analyze the γ spectra from the activated therapy accessories. The residual radioisotopes found in the 15° wedge and 30° wedge included V, Cr, Cr, Mn, Fe, Co, and Ni. In the 45° and 60° wedges, the radionuclides identified were Co, Ni, Cu, and W. The principal nuclides identified in the irradiated cerrobend block were In, Sn, Cd, Pb. The corresponding nuclear reactions from which the residual radionuclides produced were confirmed by consulting the current literature.

  9. Internal exposure to neutron-activated (56)Mn dioxide powder in Wistar rats: part 1: dosimetry.

    PubMed

    Stepanenko, Valeriy; Rakhypbekov, Tolebay; Otani, Keiko; Endo, Satoru; Satoh, Kenichi; Kawano, Noriyuki; Shichijo, Kazuko; Nakashima, Masahiro; Takatsuji, Toshihiro; Sakaguchi, Aya; Kato, Hiroaki; Onda, Yuichi; Fujimoto, Nariaki; Toyoda, Shin; Sato, Hitoshi; Dyussupov, Altay; Chaizhunusova, Nailya; Sayakenov, Nurlan; Uzbekov, Darkhan; Saimova, Aisulu; Shabdarbaeva, Dariya; Skakov, Mazhin; Vurim, Alexandr; Gnyrya, Vyacheslav; Azimkhanov, Almas; Kolbayenkov, Alexander; Zhumadilov, Kasym; Kairikhanova, Yankar; Kaprin, Andrey; Galkin, Vsevolod; Ivanov, Sergey; Kolyzhenkov, Timofey; Petukhov, Aleksey; Yaskova, Elena; Belukha, Irina; Khailov, Artem; Skvortsov, Valeriy; Ivannikov, Alexander; Akhmedova, Umukusum; Bogacheva, Viktoria; Hoshi, Masaharu

    2017-03-01

    There were two sources of ionizing irradiation after the atomic bombings of Hiroshima and Nagasaki: (1) initial gamma-neutron irradiation at the moment of detonation and (2) residual radioactivity. Residual radioactivity consisted of two components: radioactive fallout containing fission products, including radioactive fissile materials from nuclear device, and neutron-activated radioisotopes from materials on the ground. The dosimetry systems DS86 and DS02 were mainly devoted to the assessment of initial radiation exposure to neutrons and gamma rays, while only brief considerations were given for the estimation of doses caused by residual radiation exposure. Currently, estimation of internal exposure of atomic bomb survivors due to dispersed radioactivity and neutron-activated radioisotopes from materials on the ground is a matter of some interest, in Japan. The main neutron-activated radionuclides in soil dust were (24)Na, (28)Al, (31)Si, (32)P, (38)Cl, (42)K, (45)Ca, (46)Sc, (56)Mn, (59)Fe, (60)Co, and (134)Cs. The radionuclide (56)Mn (T 1/2 = 2.58 h) is known as one of the dominant beta- and gamma emitters during the first few hours after neutron irradiation of soil and other materials on ground, dispersed in the form of dust after a nuclear explosion in the atmosphere. To investigate the peculiarities of biological effects of internal exposure to (56)Mn in comparison with external gamma irradiation, a dedicated experiment with Wistar rats exposed to neutron-activated (56)Mn dioxide powder was performed recently by Shichijo and coworkers. The dosimetry required for this experiment is described here. Assessment of internal radiation doses was performed on the basis of measured (56)Mn activity in the organs and tissues of the rats and of absorbed fractions of internal exposure to photons and electrons calculated with the MCNP-4C Monte Carlo using a mathematical rat phantom. The first results of this international multicenter study show that the internal

  10. Measurement of reaction-in-flight neutrons using thulium activation at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Grim, G. P.; Rundberg, R.; Fowler, M. M.; Hayes, A. C.; Jungman, G.; Boswell, M.; Klein, A.; Wilhelmy, J.; Tonchev, A.; Yeamans, C. B.

    2014-09-01

    We report on the first observation of tertiary reaction-in-flight (RIF) neutrons produced in compressed deuterium and tritium filled capsules using the National Ignition Facility at Lawrence Livermore National Laboratory, Livermore, CA. RIF neutrons are produced by third-order, out of equilibrium ("in-flight") fusion reactions, initiated by primary fusion products. The rate of RIF reactions is dependent upon the range of the elastically scattered fuel ions and therefore a diagnostic of Coulomb physics within the plasma. At plasma temperatures of ˜5 keV, the presence of neutrons with kinetic energies greater than 15 MeV is a unique signature for RIF neutron production. The reaction 169Tm(n,3n)167Tm has a threshold of 15.0 MeV, and a unique decay scheme making it a suitable diagnostic for observing RIF neutrons. RIF neutron production is quantified by the ratio of 167Tm/168Tm observed in a 169Tm foil, where the reaction 169Tm(n,2n)168Tm samples the primary neutron fluence. Averaged over 4 implosions1-4 at the NIF, the 167Tm/168Tm ratio is measured to be 1.5 +/- 0.3 x 10-5, leading to an average ratio of RIF to primary neutron ratio of 1.0 +/- 0.2 x 10-4. These ratios are consistent with the predictions for charged particle stopping in a quantum degenerate plasma.

  11. Instrumental activation analysis of coal and fly ash with thermal and epithermal neutrons and short-lived nuclides

    USGS Publications Warehouse

    Steinnes, E.; Rowe, J.J.

    1976-01-01

    Instrumental neutron activation analysis is applied to the determination of about 25 elements in coals and fly ash by means of nuclides with half-lives of less than 48 h ; thermal and epithermal irradiations are used. The results indicate that epithermal activation is preferable for twelve of the elements (Ga, As, Br, Sr, In, Cs, Ba, La, Sm, Ho, W and U). Data for SRM 1632 (coal) and SRM 1633 (fly ash) compare favorably with the results obtained by other investigators. ?? 1976.

  12. Neutron Production Measurements Relevant to Shielding forSpace-Related Activities

    SciTech Connect

    Heilbronn, Lawrence; Iwata, Yoshiyuki; Murakami, Takeshi; Iwase,Hiroshi; Nakamura, Takashi; Sato, Hisaki; Ronningen, Reginald

    2002-04-09

    Neutron production cross sections have been measured from290 MeV/nucleon C and 600 MeV/nucleon Ne interacting in a slab ofsimulated Martian regolith/polyethylene composite, and from 400MeV/nucleon Ne interacting in a section of wall materials from theInternational Space Station. Neutron spectra were measured at 7 anglesbetween 5 degrees and 80 degrees, and for neutron energies 5 MeV andgreater. Spectra at forward angles are dominated by the breakup of theprojectile, whereas spectra at back angles show the typical exponentialfalloff with energy that is indicative of decay from the overlap regionand the target remnant. The measured total neutron production crosssections indicate that the regolith/polyethylene composite may be a moreeffective shielding material than the ISS wall materials, in terms of thenumber of neutrons produced.

  13. From Mere Coincidences to Meaningful Discoveries

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2007-01-01

    People's reactions to coincidences are often cited as an illustration of the irrationality of human reasoning about chance. We argue that coincidences may be better understood in terms of rational statistical inference, based on their functional role in processes of causal discovery and theory revision. We present a formal definition of…

  14. Development of a transportable neutron activation analysis system to quantify manganese in bone in vivo: feasibility and methodology

    PubMed Central

    Liu, Yingzi; Koltick, David; Byrne, Patrick; Wang, Haoyu; Zheng, Wei; Nie, Linda H

    2014-01-01

    This study was conducted to investigate the methodology and feasibility of developing a transportable neutron activation analysis (NAA) system to quantify manganese (Mn) in bone using a portable deuterium–deuterium (DD) neutron generator as the neutron source. Since a DD neutron generator was not available in our laboratory, a deuterium–tritium (DT) neutron generator was used to obtain experimental data and validate the results from Monte Carlo (MC) simulations. After validation, MC simulations using a DD generator as the neutron source were then conducted. Different types of moderators and reflectors were simulated, and the optimal thicknesses for the moderator and reflector were determined. To estimate the detection limit (DL) of the system, and to observe the interference of the magnesium (Mg) γ line at 844 keV to the Mn γ line at 847 keV, three hand phantoms with Mn concentrations of 30 parts per million (ppm), 150 ppm, and 500 ppm were made and irradiated by the DT generator system. The Mn signals in these phantoms were then measured using a 50% high-efficiency high-purity germanium (HPGe) detector. The DL was calculated to be about 4.4 ppm for the chosen irradiation, decay, and measurement time. This was calculated to be equivalent to a DL of about 3.3 ppm for the DD generator system. To achieve this DL with one 50% high-efficiency HPGe detector, the dose to the hand was simulated to be about 37 mSv, with the total body equivalent dose being about 23μSv. In conclusion, it is feasible to develop a transportable NAA system to quantify Mn in bone in vivo with an acceptable radiation exposure to the subject. PMID:24165395

  15. Development of a transportable neutron activation analysis system to quantify manganese in bone in vivo: feasibility and methodology.

    PubMed

    Liu, Yingzi; Koltick, David; Byrne, Patrick; Wang, Haoyu; Zheng, Wei; Nie, Linda H

    2013-12-01

    This study was conducted to investigate the methodology and feasibility of developing a transportable neutron activation analysis (NAA) system to quantify manganese (Mn) in bone using a portable deuterium-deuterium (DD) neutron generator as the neutron source. Since a DD neutron generator was not available in our laboratory, a deuterium-tritium (DT) neutron generator was used to obtain experimental data and validate the results from Monte Carlo (MC) simulations. After validation, MC simulations using a DD generator as the neutron source were then conducted. Different types of moderators and reflectors were simulated, and the optimal thicknesses for the moderator and reflector were determined. To estimate the detection limit (DL) of the system, and to observe the interference of the magnesium (Mg) γ line at 844 keV to the Mn γ line at 847 keV, three hand phantoms with Mn concentrations of 30 parts per million (ppm), 150 ppm, and 500 ppm were made and irradiated by the DT generator system. The Mn signals in these phantoms were then measured using a 50% high-efficiency high-purity germanium (HPGe) detector. The DL was calculated to be about 4.4 ppm for the chosen irradiation, decay, and measurement time. This was calculated to be equivalent to a DL of about 3.3 ppm for the DD generator system. To achieve this DL with one 50% high-efficiency HPGe detector, the dose to the hand was simulated to be about 37 mSv, with the total body equivalent dose being about 23µSv. In conclusion, it is feasible to develop a transportable NAA system to quantify Mn in bone in vivo with an acceptable radiation exposure to the subject.

  16. Simultaneous determination of 76As, 122Sb and 153Sm in Chinese medicinal herbs by epithermal neutron activation analysis.

    PubMed

    Chen, Chien-Yi

    2009-01-01

    Optimal conditions for the simultaneous determination of As, Sb and Sm in Chinese medicinal herbs using epithermal neutron activation analysis were investigated. The minimum detectable concentrations of 76As, 122Sb and 153Sm in lichen and medicinal herbs depended on the weight of the irradiated sample, and irradiation and decay durations. Optimal conditions were obtained by wrapping the irradiated target with 3.2 mm borated polyethylene neutron filters, which were adopted to screen the original reactor fission neutrons and to reduce the background activities of 38Cl, 24Na and 42K. Twelve medicinal herbs, commonly consumed by Taiwanese children as a diuretic treatment, were analysed since trace elements, such as As and Sb, in these herbs may be toxic when consumed in sufficiently large quantities over a long period. Various amounts of medicinal herbs, standardised powder, lichen and tomato leaves were weighed, packed into polyethylene bags, irradiated and counted under different conditions. The results indicated that about 350 mg of lichen irradiated for 24 h and counted for 20 min following a 30-60 h decay period was optimal for irradiation in a 10(11)n/cm s epithermal neutron flux. The implications of the content of the studied elements in Chinese medicinal herbs are discussed.

  17. Sensitivity to coincidences and paranormal belief.

    PubMed

    Hadlaczky, Gergö; Westerlund, Joakim

    2011-12-01

    Often it is difficult to find a natural explanation as to why a surprising coincidence occurs. In attempting to find one, people may be inclined to accept paranormal explanations. The objective of this study was to investigate whether people with a lower threshold for being surprised by coincidences have a greater propensity to become believers compared to those with a higher threshold. Participants were exposed to artificial coincidences, which were formally defined as less or more probable, and were asked to provide remarkability ratings. Paranormal belief was measured by the Australian Sheep-Goat Scale. An analysis of the remarkability ratings revealed a significant interaction effect between Sheep-Goat score and type of coincidence, suggesting that people with lower thresholds of surprise, when experiencing coincidences, harbor higher paranormal belief than those with a higher threshold. The theoretical aspects of these findings were discussed.

  18. Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Bu, Zimei; Farago, Bela; Callaway, David

    2012-02-01

    NHERF1 is a multi-domain scaffolding protein that assembles the signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by a membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 angstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length scales and on sub-microsecond time scales upon forming a complex with ezrin. We show that a much simplified coarse-grained model is sufficient to describe inter-domain motion of a multi-domain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. The results demonstrate that propagation of allosteric signals to distal sites involves the activation of long-range coupled domain motions on submicrosecond time scales, and that these coupled motions can be distinguished and characterized by NSE.

  19. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    PubMed

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages.

  20. Simultaneous neutron-activation determination of selenium and mercury in biological samples by volatilization.

    PubMed

    Byrne, A R; Kosta, L

    1974-10-01

    A method is described for the determination of selenium together with mercury in biological samples by neutron-activation analysis based on quantitative volatilization of both elements. The technique originally developed for mercury, based on pyrolysis with filtration of undesirable impurities and selective trapping from the gas phase, is now extended to selenium. The radionuclides (197)Hg and (75)Se, from one sample, are trapped separately and counted in a well-type NaI(Tl) detector and gamma-spectrometer for maximum sensitivity. The method has been tested by comparative analyses and analyses of standard biological materials, and gives good results. It is simple and is especially effective in studies of the interaction of mercury and selenium in biological systems; a positive correlation for these elements was found for human tissues. On décrit une méthode pour le dosage du sélénium conjointement au mercure dans les échantillons biologiques par analyse par activation de neutrons basée sur la volatilisation quantitative des deux éléments. La techniqu initialement développée pour le mercure, basée sur la pyrolyse avec filtration des impuretés indésirables et captage sélectif de la phase gazeuse, est maintenant étendue au sélénium. Les radionuclides (197)Hg et (75)Se, d'un échantillon, sont captés séparément dans un détecteur NaI(Tl) du type puits et un spectromètre gamma pour la sensibilité maximale. La méthode a été essayée par des analyses comparatives et des analyses de produits biologiques étalons, et donne de bons résultats. Elle est simple et particulièrement efficace dans les études de l'interaction du mercure et du sélénium dans des systèmes biologiques; on a trouvé une corrélation positive pour ces éléments pour des tissus humains.

  1. 2010 American Conference on Neutron Scattering (ACNS 2010)

    SciTech Connect

    Billinge, Simon

    2011-06-17

    The ACNS provides a focal point for the national neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as “would-be” neutron users. The American Conference on Neutron Scattering thus serves a dual role as a national user meeting and a scientific meeting. As a venue for scientific exchange, the ACNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. As a “super-user” meeting, the ACNS fulfills the main objectives of users' meetings previously held periodically at individual national neutron facilities, with the advantage of a larger and more diverse audience. To this end, each of the major national neutron facilities (NIST, LANSCE, HFIR and SNS) have an opportunity to exchange information and update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities. For many of the national facilities, this super-user meeting should obviate the need for separate user meetings that tax the time, energy and budgets of facility staff and the users alike, at least in years when the ACNS is held. We rely upon strong participation from the national facilities. The NSSA intends that the American Conference on Neutron Scattering (ACNS) will occur approximately every two years, but not in years that coincide with the International or European Conferences on Neutron Scattering. The ACNS is to be held in association with one of the national neutron centers in a rotating sequence, with the host facility providing local organization

  2. Data processing of the active neutron experiment DAN for a Martian regolith investigation

    NASA Astrophysics Data System (ADS)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Lisov, D. I.; Starr, R.; Boynton, W.; Behar, A.; DeFlores, L.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Jun, I.; Kozyrev, A. S.; Kuzmin, R. O.; Malakhov, A.; Milliken, R.; Mischna, M.; Moersch, J.; Mokrousov, M. I.; Nikiforov, S.; Shvetsov, V. N.; Tate, C.; Tret'yakov, V. I.; Vostrukhin, A.

    2015-07-01

    Searching for water in the soil of Gale Crater is one of the primary tasks for the NASA Mars Science Laboratory rover named Curiosity. The primary task of the Dynamic Albedo of Neutrons (DAN) experiment on board the rover is to investigate and qualitatively characterize the presence of water along the rover's traverse across Gale Crater. The water depth distribution may be found from measurements of neutrons generated by the Pulsing Neutron Generator (PNG) included in the DAN instrument, scattered by the regolith and returned back to the detectors. This paper provides a description of the data processing of such measurements and data products of DAN investigation.

  3. Redesign of the GATE PET coincidence sorter

    NASA Astrophysics Data System (ADS)

    Strydhorst, Jared; Buvat, Irène

    2016-09-01

    The GATE software platform, based on the Geant4 toolkit for simulating particle interactions with matter, enables simulation of, among other medical imaging and treatment systems, positron emission tomography. However, at least one publication (Moraes et al 2015 Phys. Med. 31 43-8) has reported discrepancies between the expected results and those obtained using GATE simulations, specifically with respect to the coincidence sorter which processes single events detected by the scanner to find coincidence pairs. In particular, the current software appears to overestimate the number of ‘true’ coincidence pairs when in multi-window mode, while the delayed coincidence window, used to estimate the randoms present in the prompt coincidence window, underestimates the randoms. Both effects are particularly evident at high count rates. We have investigated this discrepancy and reproduced the reported problems. We have also rewritten the relevant portion of the GATE code to correct the issue. In this note we describe the modifications to the coincidence sorter and repeat the simulations which previously showed unexpected results. Some discrepancies remain in the estimation of the randoms with the single-window mode which are a consequence of the algorithm itself. In multi-window mode however, the simulation agrees exactly with the expected results. The modifications to the coincidence sorter code will be incorporated into the next release of GATE (> version 7.2).

  4. Progress in obtaining an absolute calibration of a total deuterium-tritium neutron yield diagnostic based on copper activation.

    PubMed

    Ruiz, C L; Chandler, G A; Cooper, G W; Fehl, D L; Hahn, K D; Leeper, R J; McWatters, B R; Nelson, A J; Smelser, R M; Snow, C S; Torres, J A

    2012-10-01

    The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the (63)Cu(n,2n)(62)Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)(4)He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced (62)Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.

  5. Coincidence lattices in the hyperbolic plane.

    PubMed

    Rodríguez-Andrade, M A; Aragón-González, G; Aragón, J L; Gómez-Rodríguez, A

    2011-01-01

    The problem of coincidences of lattices in the space R(p,q), with p + q = 2, is analyzed using Clifford algebra. We show that, as in R(n), any coincidence isometry can be decomposed as a product of at most two reflections by vectors of the lattice. Bases and coincidence indices are constructed explicitly for several interesting lattices. Our procedure is metric-independent and, in particular, the hyperbolic plane is obtained when p = q = 1. Additionally, we provide a proof of the Cartan-Dieudonné theorem for R(p,q), with p + q = 2, that includes an algorithm to decompose an orthogonal transformation into a product of reflections.

  6. Detection of Neutrons with Scintillation Counters

    DOE R&D Accomplishments Database

    Hofstadter, R.

    1948-11-01

    Detection of slow neutrons by: detection of single gamma rays following capture by cadmium or mercury; detection of more than one gamma ray by observing coincidences after capture; detection of heavy charged particles after capture in lithium or baron nuclei; possible use of anthracene for counting fast neutrons investigated briefly.

  7. Quality assurance program for the determination of selenium in foods and diets by instrumental neutron activation

    SciTech Connect

    Zhang, W.H.; Chatt, A.

    1996-12-31

    The biological essentially of selenium for animals was first evidenced in 1957. However, it was not until 1973 that an enzyme called glutathione peroxidase was proven to be a selenoenzyme. At present, selenium is known to be a normal component of several enzymes, proteins, and some aminoacryl transfer nucleic acids. A few selenium compounds have been reported to possess anticarcinogenic properties. There is an increasing interest in understanding the role of selenium in human nutrition and metabolism. Analytical methods are being developed in several laboratories for the determination of total and species-specific selenium in whole blood, serum, urine, soft and hard tissues, food, water, proteins, etc. We have developed several instrumental neutron activation analysis (INAA) methods using the, Dalhousie University SLOWPOKE-2 reactor facility for the determination of parts-per-billion levels of selenium. These methods include cyclic INAA (CINAA) and pseudocyclic INAA (PCINAA) using both conventional and anticoincidence gamma-ray spectrometry. Considering the immense health significance, it is imperative that the selenium levels in foods and diets be measured under an extensive quality assurance program for routine monitoring purposes.

  8. Effects of neutron irradiation on microstructural evolution in candidate low activation ferritic steels

    NASA Astrophysics Data System (ADS)

    Kohno, Yutaka; Kohyama, Akira; Yoshino, Masahiko; Asakura, Kentaro

    1994-09-01

    Fe-(2.25-12)Cr-2W-V, Ta low activation ferritic steels (JLF series steels) were developed in the fusion materials development program of Japanese universities. Microstructural observations, including precipitation response, were performed after neutron irradiation in the FFTF/MOTA. The preirradiation microstructure was stable after irradiation at low temperature (< 683 K). Recovery of martensitic lath structure and coarsening of precipitates took place above 733 K. Precipitates observed after irradiation were the same as those in unirradiated materials in 7-9Cr steels, and no irradiation induced phase was identified. The irradiation induced shift in DBTT in the 9Cr-2W steel proved to be very small which is a reflection of stable precipitation response in these steels. A high density of fine α' precipitates was observed in the 12Cr steel which might be responsible for the large irradiation hardening found in the 12Cr steel. Void formation was observed in 7-9Cr steels irradiated at 683 K, but the amount of void swelling was very small.

  9. Event based neutron activation spectroscopy and analysis algorithm using MLE and metaheuristics

    NASA Astrophysics Data System (ADS)

    Wallace, Barton

    2014-03-01

    Techniques used in neutron activation analysis are often dependent on the experimental setup. In the context of developing a portable and high efficiency detection array, good energy resolution and half-life discrimination are difficult to obtain with traditional methods [1] given the logistic and financial constraints. An approach different from that of spectrum addition and standard spectroscopy analysis [2] was needed. The use of multiple detectors prompts the need for a flexible storage of acquisition data to enable sophisticated post processing of information. Analogously to what is done in heavy ion physics, gamma detection counts are stored as two-dimensional events. This enables post-selection of energies and time frames without the need to modify the experimental setup. This method of storage also permits the use of more complex analysis tools. Given the nature of the problem at hand, a light and efficient analysis code had to be devised. A thorough understanding of the physical and statistical processes [3] involved was used to create a statistical model. Maximum likelihood estimation was combined with metaheuristics to produce a sophisticated curve-fitting algorithm. Simulated and experimental data were fed into the analysis code prompting positive results in terms of half-life discrimination, peak identification and noise reduction. The code was also adapted to other fields of research such as heavy ion identification of the quasi-target (QT) and quasi-particle (QP). The approach used seems to be able to translate well into other fields of research.

  10. Activation Cross-Sections for 14.2 MeV Neutrons on Molybdenum

    NASA Astrophysics Data System (ADS)

    Srinivasa Rao, C. V.; Lakshmana Das, N.; Thirumala Rao, B. V.; Rama Rao, J.

    1981-12-01

    Using the activation method, the cross-section for the following reactions on molybdenum were measured employing the mixed powder technique and Ge(Li) gamma-ray spectroscopy: 94Mo(n, 2n)93mMo, 3.5 ± 0.5 mbarn; 92Mo(n, 2n)91mMo, 19 ± 3 mbarn; 92Mo(n, 2n)91m+gMo, 226 ± 11 mbarn; 100Mo(n, p)100m2Nb, 9 ± 1 mbarn; 98Mo(n, p)98Nb, 10 ± 1 mbarn; 97Mo(n, p)97mNb, 5 ± 1 mbarn; 96Mo(n, p)96Nb, 12 ± 2 mbarn; 92Mo(n, α)89mZr, 2.1 ± 0.5 mbarn; and 92Mo(n, α)89m+gZr 24 ± 6 mbarn; the neutron energy was 14.2 ± 0.2 MeV. The experimental cross-sections were compared with the predictions of evaporation model and of different versions of pre-equilibrium model. The master equation approach appears to give satisfactory results.

  11. Evaluation of radiochemical neutron activation analysis methods for determination of arsenic in biological materials.

    PubMed

    Paul, Rick L

    2011-01-01

    Radiochemical neutron activation analysis (RNAA) with retention on hydrated manganese dioxide (HMD) has played a key role in the certification of As in biological materials at NIST. Although this method provides very high and reproducible yields and detection limits at low microgram/kilogram levels, counting geometry uncertainties may arise from unequal distribution of As in the HMD, and arsenic detection limits may not be optimal due to significant retention of other elements. An alternate RNAA procedure with separation of arsenic by solvent extraction has been investigated. After digestion of samples in nitric and perchloric acids, As(III) is extracted from 2 M sulfuric acid solution into a solution of zinc diethyldithiocarbamate in chloroform. Counting of (76)As allows quantitation of arsenic. Addition of an (77)As tracer solution prior to dissolution allows correction for chemical yield and counting geometries, further improving reproducibility. The HMD and solvent extraction procedures for arsenic were compared through analysis of SRMs 1577c (bovine liver), 1547 (peach leaves), and 1575a (pine needles). Both methods gave As results in agreement with certified values with comparable reproducibility. However, the solvent extraction method yields a factor of 3 improvement in detection limits and is less time-consuming than the HMD method. The new method shows great promise for use in As certification in reference materials.

  12. Epithermal neutron activation analysis of Cr(VI)-reducer basalt-inhabiting bacteria.

    PubMed

    Tsibakhashvili, Nelly Yasonovna; Frontasyeva, Marina Vladimirovna; Kirkesali, Elena Ivanovna; Aksenova, Nadezhda Gennadievna; Kalabegishvili, Tamaz Levanovich; Murusidze, Ivana Georgievich; Mosulishvili, Ligury Mikhailovich; Holman, Hoi-Ying N

    2006-09-15

    Epithermal neutron activation analysis (ENAA) has been applied to study elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance, demonstrating that the bacteria differ in their rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(V) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 microg/g of dry weight) indicate bacterial adaptation to the environmental conditions typical of the basalts. The concentrations of at least 12-19 different elements were determined in each type of bacteria simultaneously starting with the major to ultratrace elements. The range of concentrations spans over 8 orders of magnitude.

  13. Breast Milk Concentration of Rubidium in Lactating Mothers by Instrumental Neutron Activation Analysis Method

    PubMed Central

    Khatami, Seyedeh-Fatemeh; Parvaresh, Pouya; Parvaresh, Parviz; Madani Kouchak, Sara Sadat; Khorsandi, Jamshid

    2014-01-01

    Objective: Relatively little is known about the trace elements content of human milk from different countries. This has not been fully investigated especially among Iranian women. This study aimed to assess the concentration of Rubidium (Rb) as a poisonous trace element in transitional breast milk of lactating mothers living in Mashhad. Methods: Forty nursing mothers in early lactation 3 days to 15 days postpartum, free from any medical disorder and/or medication were randomly selected. We have applied Instrumental Neutron Activation Analysis (INAA) to assess the long-lived isotope trace element Rb in transitional milk of these economically moderate 18–39 year old Iranian women. Findings: The average concentration level of Rb was 32.176 ppm dry weight (min 8.660, max 107.210 ppm). No significant correlation was observed between Rb concentration and maternal weight and age (P=0.06, P=0.05 respectively) and newborns’ weight, age and sex (P=0.07, P=0.2, P=0.2 respectively). Conclusion: Although the Rubidium concentration found in this study is among the highest reported in the literature, it could not be compared to other studies because of differences in analytical performance, state of lactation, and unavailable reference ranges, so this finding needs further investigations. PMID:26019773

  14. Studies of generalized elemental imbalances in neurological disease patients using INAA (instrumental neutron activation analysis)

    SciTech Connect

    Ehmann, W.D.; Vance, D.E.; Khare, S.S.; Kasarskis, E.J.; Markesbery, W.R.

    1988-01-01

    Evidence has been presented in the literature to implicate trace elements in the etiology of several age-related neurological diseases. Most of these studies are based on brain analyses. Using instrumental neutron activation analysis (INAA), we have observed trace element imbalances in brains of patients with Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Picks's disease. The most prevalent elemental imbalances found in the brain were for bromine, mercury, and the alkali metals. In this study the authors report INAA studies of trace elements in nonneural tissues from Alzheimer's disease and ALS patients. Samples from household relatives were collected for use as controls wherever possible. Hair samples were washed according to the International Atomic Energy Agency recommended procedure. Fingernail samples were scraped with a quartz knife prior to washing by the same procedure. For ALS patients, blood samples were also collected. These data indicate that elemental imbalances in Alzheimer's disease and ALS are not restricted to the brain. Many elements perturbed in the brain are also altered in the several nonneural tissues examined to date. The imbalances in different tissues, however, are not always in the same direction. The changes observed may represent causes, effects, or simply epiphenomena. Longitudinal studies of nonneural tissues and blood, as well as tissue microprobe analyses at the cellular and subcellular level, will be required in order to better assess the role of trace elements in the etiology of these diseases.

  15. Determination of laser-evaporated uranium dioxide by neutron activation analysis

    SciTech Connect

    Allred, R.

    1987-05-01

    Safety analyses of nuclear reactors require information about the loss of fuel which may occur at high temperatures. In this study, the surface of a uranium dioxide target was heated rapidly by a laser. The uranium surface was vaporized into a vacuum. The uranium bearing species condensed on a graphite disk placed in the pathway of the expanding uranium vapor. Scanning electron microscopy and X-ray analysis showed very little droplet ejection directly from the laser target surface. Neutron activation analysis was used to measure the amount of uranium deposited. The surface temperature was measured by a fast-response automatic optical pyrometer. The maximum surface temperature ranged from 2400 to 3700/sup 0/K. The Hertz-Langmuir formula, in conjunction with the measured surface temperature transient, was used to calculate the theoretical amount of uranium deposited. There was good agreement between theory and experiment above the melting point of 3120/sup 0/K. Below the melting point much more uranium was collected than was expected theoretically. This was attributed to oxidation of the surface. 29 refs., 16 figs., 7 tabs.

  16. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    SciTech Connect

    Greenberg, R.R.

    1988-01-01

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the {sup 75}Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations.

  17. Lung clearance of neutron-activated Mount St. Helens volcanic ash in the rat.

    PubMed

    Wehner, A P; Wilerson, C L; Stevens, D L

    1984-10-01

    To determine pulmonary deposition and clearance of inhaled volcanic ash, rats received a single 60-min, nose-only exposure to neutron-activated ash. Over a period of 128 days after exposure, the rats were sacrificed in groups of five animals. Lungs were analyzed for the radionuclide tracers 46Sc, 59Fe, and 60Co by gamma-ray spectrometry. The alveolar ash burdens, determined by the radionuclides 46Sc and 59Fe, are in good agreement for the majority of samples analyzed, indicating ash particulate levels in the lungs, rather than leached radionuclides. The ash deposition estimates based on 60Co were appreciably lower for the lungs, indicating that 60Co leached from the ash. Approximately 110 micrograms ash, or 6% of the inhaled ash, was initially retained in the deep lung. The biological half-time of the alveolar ash burden was 39 days. After 90 days, the mean lung burden had decreased to about 20% of its initial value; 128 days after exposure, about 10% remained.

  18. Lund clearance of neutron-activated Mount St. Helens volanic ash in the rat

    SciTech Connect

    Wehner, A.P.; Wilerson, C.L.; Stevens, D.L.

    1984-10-01

    To determine pulmonary deposition and clearance of inhaled volcanic ash, rats received a single 60-min, nose-only exposure to neutron-activated ash. Over a period of 128 days after exposure, the rats were sacrificed in groups of five animals. Lungs were analyzed for the radionuclide tracers /sup 46/Sc, /sup 59/Fe, and /sup 60/Co by ..gamma..-ray spectrometry. The alveolar ash burdens, detemined by the radionuclides /sup 46/Sc and /sup 59/Fe, are in good agreement for the majority of samples analyzed, indicating ash particulate levels in the lungs, rather than leached radionuclides. The ash deposition estimates based on /sup 60/Co were appreciably lower for the lungs, indicating that /sup 60/Co leached from the ash. Approximately 110 ..mu..g ash, or 6% of the inhaled ash, was initially retained in the deep lung. The biological half-time of the alveolar ash burden was 39 days. After 90 days, the mean lung burden had decreased to about 20% of its initial value; 128 days after exposure, about 10% remained.

  19. Using rare earth element tracers and neutron activation analysis to study rill erosion process.

    PubMed

    Li, Mian; Li, Zhan-bin; Ding, Weng-feng; Liu, Pu-ling; Yao, Wen-yi

    2006-03-01

    Spatially averaged soil erosion data provide little information on the process of rill erosion. The dynamically varied data on the temporal and spatial distributions in the rill erosion process are needed to better understand the erosion process and reveal its innate characteristics. The objectives of this study were to examine the feasibility and effectiveness of rare earth element (REE) tracers and the neutron activation analysis (NAA) method on the study of the rill erosion process and to reveal quantitatively the relationships and characteristics of temporal and spatial distributions of sediment yield in rill erosion. Four REEs were used to study the changeable process of rill erosion at 4 slope positions. Four water inflow rates were applied to a 0.3 x 5 m soil bed at 3 slopes of 10.5%, 15.8% and 21.2% in scouring experiments. All of the runoff was collected in the experiment. Each sample was air-dried and well mixed. Then 20 g of each sample was sieved through 100-mesh and about a 50 mg sample was weighed for analysis of the four elemental compositions by NAA. Results indicate that the REE tracers and NAA method can be used to not only quantitatively determine soil erosion amounts on different slope segments, but also to reveal the changeable process of rill erosion amount. All of the relative errors of the experimental results were less than 25%, which is considered satisfactory on the study of rill erosion process.

  20. Neutron Activation Analysis of Single Grains Recovered by the Hayabusa Spacecraft

    NASA Technical Reports Server (NTRS)

    Ebihara, M.; Sekimoto, S.; Hamajima, Y.; Yamamoto, M.; Kumagai, K.; Oura, Y.; Shirai, N.; Ireland. T. R.; Kitajima, F.; Nagao, K.; Nakamura, T.; Naraoka, H.; Noguchi, T.; Okazaki, R.; Tsuchiyama, A.; Uesugi, M.; Yurimoto, H.; Zolensky, M. E.; Abe, M.; Fujimura, A.; Mukai, T.; Yada, T.

    2011-01-01

    The Hayabusa spacecraft was launched on May 9, 2003 and reached an asteroid Itokawa (25143 Itokawa) in September 2005. After accomplishing several scientific observations, the spacecraft tried to collect the surface material of Itokawa by touching down to the asteroid in November. The spacecraft was then navigated for the earth. In encountering several difficulties, Hayabusa finally returned to the earth on June 12, 2010 and the entry capsule was successfully recovered. Initially, a g-scale of solid material was aimed to be captured into the entry capsule. Although the sample collection was not perfectly performed, it was hoped that some extraterrestrial material was stored into the capsule. After careful and extensive examination, more than 1500 particles were recognized visibly by microscopes, most of which were eventually judged to be extraterrestrial, highly probably originated from Itokawa [1]. Several years before the launching of the Hayabusa spacecraft, the initial analysis team was officially formed under the selection panel at ISAS. As a member of this team, we have been preparing for the initial inspection of the returned material from many scientific viewpoints [2]. Once the recovered material had been confirmed to be much less than 1 g, a scheme for the initial analysis was updated accordingly [3]. In this study, we aim to analyze tiny single grains by instrumental neutron activation analysis (INAA). As the initial analysis is to be started in mid-January, 2011, some progress for the initial analysis using INAA is described here. Analytical procedure