Science.gov

Sample records for active noise controller

  1. Active Noise Control for Dishwasher noise

    NASA Astrophysics Data System (ADS)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  2. Reduction of propeller noise by active noise control

    NASA Astrophysics Data System (ADS)

    Bschorr, O.; Kubanke, D.

    1992-04-01

    Active noise control, a method of cancelling noise by means of interference with a secondary anti-noise source, is now in full development. The first commercial application of this technique is in the case of active electronically controlled head sets. The next step will be the active noise cancellation in air ducts and in passenger cabins. The aim of this paper is to assess the possibilities of the anti-noise technique for reducing propeller noise. First, by a mathematical simulation the theoretical noise reduction on the ground was calculated and found to be promising for further investigations. In the case of the periodic engine and propeller noise, for example, with only a single anti-noise source, the noise foot prints of the lower propeller harmonics can be reduced by up to 10 dB. In laboratory tests the theoretical values will be confirmed experimentally. For cancellation of the periodic noise one can use synchronous anti-noise generators. Compared with the engine and propeller noise the reduction of jet noise by the anti-noise technique is much more difficult. Therefore a sensor and controlling unit are necessary because of the stochastic nature of jet noise. Since aircraft noise is a severe problem, all methods are to be considered.

  3. Active Noise Control of Radiated Noise from Jets Originating NASA

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  4. Developing active noise control systems for noise attenuation in ducts

    NASA Astrophysics Data System (ADS)

    Campos, Rosely V.; Ivo, Rodrigo C.; Medeiros, Eduardo B.

    2002-11-01

    The present work describes some of the research effort on Active Noise Control (ANC) being jointly developed by the Catholic University of Minas Gerais (PUC-MINAS) and the Federal University of Minas Gerais (UFMG). Considerations about the implementation of Digital Signal Processing for noise control in ducts has been presented. The objective is to establish a study on Active Noise Control in ducts combining geometry and acoustic parameters modification together with adaptive digital filtering implementation. Both algorithm and digital signal processing details are also discussed. The main results for a typical application where real attenuation has been obtained are presented and considered according to their use in developing real applications. The authors also believe that the present text should provide an interesting overview for both designers and students concerned about Active Noise Control in ducts. (To be presented in Portuguese.)

  5. Active noise control for infant incubators.

    PubMed

    Yu, Xun; Gujjula, Shruthi; Kuo, Sen M

    2009-01-01

    This paper presents an active noise control system for infant incubators. Experimental results show that global noise reduction can be achieved for infant incubator ANC systems. An audio-integration algorithm is presented to introduce a healthy audio (intrauterine) sound with the ANC system to mask the residual noise and soothe the infant. Carbon nanotube based transparent thin film speaker is also introduced in this paper as the actuator for the ANC system to generate the destructive secondary sound, which can significantly save the congested incubator space and without blocking the view of doctors and nurses.

  6. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  7. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  8. Recent advances in active control of aircraft cabin noise

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal; Fuller, Christopher

    2002-11-01

    Active noise control techniques can provide significant reductions in aircraft interior noise levels without the structural modifications or weight penalties usually associated with passive techniques, particularly for low frequency noise. Our main objective in this presentation is to give a review of active control methods and their applications to aircraft cabin noise reduction with an emphasis on recent advances and challenges facing the noise control engineer in the practical application of these techniques. The active noise control method using secondary acoustic sources, e.g., loudspeakers, as control sources for tonal noise reduction is first discussed with results from an active noise control flight test demonstration. An innovative approach of applying control forces directly to the fuselage structure using piezoelectric actuators, known as active structural acoustic control (ASAC), to control cabin noise is then presented. Experimental results from laboratory ASAC tests conducted on a full-scale fuselage and from flight tests on a helicopter will be discussed. Finally, a hybrid active/passive noise control approach for achieving significant broadband noise reduction will be discussed. Experimental results of control of broadband noise transmission through an aircraft structure will be presented.

  9. Psychoacoustic active noise control with ITU-R 468 noise weighting and its sound quality analysis.

    PubMed

    Bao, Hua; Panahi, Issa M S

    2010-01-01

    Non-uniform frequency response of human hearing system requires conventional active noise control (ANC) system to be modified. Psychoacoustic active noise control (PANC) system based on filtered-E least-mean-square (FELMS) structure aims to improve the noise attenuation performance in terms of hearing perception. ITU-R 468 noise weighting reflects human hearing response to random noise. In this paper we incorporate ITU-R 468 noise weighting into PANC system. Sound quality analysis is conducted for attenuated noise with a predictive pleasantness model which combines four psychoacoustic parameters (loudness, sharpness, roughness and tonality). Simulation on realistic MRI acoustic noise shows improvement of sound quality in the new system.

  10. Active Shielding and Control of Environmental Noise

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.

    2001-01-01

    In the framework of the research project supported by NASA under grant # NAG-1-01064, we have studied the mathematical aspects of the problem of active control of sound, i.e., time-harmonic acoustic disturbances. The foundations of the methodology are described in our paper [1]. Unlike. many other existing techniques, the approach of [1] provides for the exact volumetric cancellation of the unwanted noise on a given predetermined region airspace, while leaving unaltered those components of the total acoustic field that are deemed as friendly. The key finding of the work is that for eliminating the unwanted component of the acoustic field in a given area, one needs to know relatively little; in particular, neither the locations nor structure nor strength of the exterior noise sources need to be known. Likewise, there is no need to know the volumetric properties of the supporting medium across which the acoustic signals propagate, except, maybe, in a narrow area of space near the perimeter of the protected region. The controls are built based solely on the measurements performed on the perimeter of the domain to be shielded; moreover, the controls themselves (i.e., additional sources) are concentrated also only on or near this perimeter. Perhaps as important, the measured quantities can refer to the total acoustic field rather than to its unwanted component only, and the methodology can automatically distinguish between the two. In [1], we have constructed the general solution for controls. The apparatus used for deriving this general solution is closely connected to the concepts of generalized potentials and boundary projections of Calderon's type. For a given total wave field, the application of a Calderon's projection allows one to definitively tell between its incoming and outgoing components with respect to a particular domain of interest, which may have arbitrary shape. Then, the controls are designed so that they suppress the incoming component for the domain

  11. On-line Monitoring and Active Control for Transformer Noise

    NASA Astrophysics Data System (ADS)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  12. Active noise control: A tutorial for HVAC designers

    SciTech Connect

    Gelin, L.J.

    1997-08-01

    This article will identify the capabilities and limitations of ANC in its application to HVAC noise control. ANC can be used in ducted HVAC systems to cancel ductborne, low-frequency fan noise by injecting sound waves of equal amplitude and opposite phase into an air duct, as close as possible to the source of the unwanted noise. Destructive interference of the fan noise and injected noise results in sound cancellation. The noise problems that it solves are typically described as rumble, roar or throb, all of which are difficult to address using traditional noise control methods. This article will also contrast the use of active against passive noise control techniques. The main differences between the two noise control measures are acoustic performance, energy consumption, and design flexibility. The article will first present the fundamentals and basic physics of ANC. The application to real HVAC systems will follow.

  13. Mechanisms of active control for noise inside a vibrating cylinder

    NASA Technical Reports Server (NTRS)

    Lester, Harold C.; Fuller, Chris R.

    1987-01-01

    The active control of propeller-induced noise fields inside a flexible cylinder is studied with attention given to the noise reduction mechanisms inherent in the present coupled acoustic shell model. The active noise control model consists of an infinitely long aluminum cylinder with a radius of 0.4 m and a thickness of 0.001 m. Pressure maps are shown when the two external sources are driven in-phase at a frequency corresponding to Omega = 0.22.

  14. Achievements and tasks for active noise control

    NASA Astrophysics Data System (ADS)

    Tichy, Jiri

    This short survey attempted to highlight some achievements of the latest active control applications. Except for the active control of a one-dimensional sound field in ducts and active headphones, the applications for active control technology are still being developed. Although the principles of active control are simple, their applications still require substantial research and modeling of the sound fields to find optimal solutions. There is no doubt that active control of sound field triggered extensive research of the fundamental properties of the sound field which goes beyond the textbook simplifications. Also, new hardware, particularly actuators, are under development. As more realism is brought into assessment of applicability of active control, we will see in the future increasing confidence of industry to adopt this new technology.

  15. Active Control of Aerodynamic Noise Sources

    NASA Technical Reports Server (NTRS)

    Reynolds, Gregory A.

    2001-01-01

    Aerodynamic noise sources become important when propulsion noise is relatively low, as during aircraft landing. Under these conditions, aerodynamic noise from high-lift systems can be significant. The research program and accomplishments described here are directed toward reduction of this aerodynamic noise. Progress toward this objective include correction of flow quality in the Low Turbulence Water Channel flow facility, development of a test model and traversing mechanism, and improvement of the data acquisition and flow visualization capabilities in the Aero. & Fluid Dynamics Laboratory. These developments are described in this report.

  16. Active Noise Control Experiments using Sound Energy Flu

    NASA Astrophysics Data System (ADS)

    Krause, Uli

    2015-03-01

    This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.

  17. Active control of fan-generated plane wave noise

    NASA Astrophysics Data System (ADS)

    Gerhold, Carl H.; Nuckolls, William E.; Santamaria, Odillyn L.; Martinson, Scott D.

    1993-08-01

    Subsonic propulsion systems for future aircraft may incorporate ultra-high bypass ratio ducted fan engines whose dominant noise source is the fan with blade passage frequency less than 1000 Hz. This low frequency combines with the requirement of a short nacelle to diminish the effectiveness of passive duct liners. Active noise control is seen as a viable method to augment the conventional passive treatments. An experiment to control ducted fan noise using a time domain active adaptive system is reported. The control sound source consists of loudspeakers arrayed around the fan duct. The error sensor location is in the fan duct. The purpose of this experiment is to demonstrate that the in-duct error sensor reduces the mode spillover in the far field, thereby increasing the efficiency of the control system. In this first series of tests, the fan is configured so that predominantly zero order circumferential waves are generated. The control system is found to reduce the blade passage frequency tone significantly in the acoustic far field when the mode orders of the noise source and of the control source are the same. The noise reduction is not as great when the mode orders are not the same even though the noise source modes are evanescent, but the control system converges stably and global noise reduction is demonstrated in the far field. Further experimentation is planned in which the performance of the system will be evaluated when higher order radial and spinning modes are generated.

  18. Active control of fan-generated plane wave noise

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Nuckolls, William E.; Santamaria, Odillyn L.; Martinson, Scott D.

    1993-01-01

    Subsonic propulsion systems for future aircraft may incorporate ultra-high bypass ratio ducted fan engines whose dominant noise source is the fan with blade passage frequency less than 1000 Hz. This low frequency combines with the requirement of a short nacelle to diminish the effectiveness of passive duct liners. Active noise control is seen as a viable method to augment the conventional passive treatments. An experiment to control ducted fan noise using a time domain active adaptive system is reported. The control sound source consists of loudspeakers arrayed around the fan duct. The error sensor location is in the fan duct. The purpose of this experiment is to demonstrate that the in-duct error sensor reduces the mode spillover in the far field, thereby increasing the efficiency of the control system. In this first series of tests, the fan is configured so that predominantly zero order circumferential waves are generated. The control system is found to reduce the blade passage frequency tone significantly in the acoustic far field when the mode orders of the noise source and of the control source are the same. The noise reduction is not as great when the mode orders are not the same even though the noise source modes are evanescent, but the control system converges stably and global noise reduction is demonstrated in the far field. Further experimentation is planned in which the performance of the system will be evaluated when higher order radial and spinning modes are generated.

  19. Active noise control using noise source having adaptive resonant frequency tuning through stiffness variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element.

  20. Diagnostics and Active Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1998-01-01

    This project deals with developing advanced methods for investigating and controlling interior noise in aircraft. The work concentrates on developing and applying the techniques of Near Field Acoustic Holography (NAH) and Principal Component Analysis (PCA) to the aircraft interior noise dynamic problem. This involves investigating the current state of the art, developing new techniques and then applying them to the particular problem being studied. The knowledge gained under the first part of the project was then used to develop and apply new, advanced noise control techniques for reducing interior noise. A new fully active control approach based on the PCA was developed and implemented on a test cylinder. Finally an active-passive approach based on tunable vibration absorbers was to be developed and analytically applied to a range of test structures from simple plates to aircraft fuselages.

  1. Quelling Cabin Noise in Turboprop Aircraft via Active Control

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Laba, Keith E.; Padula, Sharon L.

    1997-01-01

    Cabin noise in turboprop aircraft causes passenger discomfort, airframe fatigue, and employee scheduling constraints due to OSHA standards for exposure to high levels of noise. The noise levels in the cabins of turboprop aircraft are typically 10 to 30 decibels louder than commercial jet noise levels. However. unlike jet noise the turboprop noise spectrum is dominated by a few low frequency tones. Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The goal is to determine the force inputs and locations for the piezoceramic actuators so that: (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. Computational experiments for data taken from a computer generated model and from a laboratory test article at NASA Langley Research Center are provided.

  2. Active noise control using noise source having adaptive resonant frequency tuning through stress variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.

  3. Active noise control using a distributed mode flat panel loudspeaker.

    PubMed

    Zhu, H; Rajamani, R; Dudney, J; Stelson, K A

    2003-07-01

    A flat panel distributed mode loudspeaker (DML) has many advantages over traditional cone speakers in terms of its weight, size, and durability. However, its frequency response is uneven and complex, thus bringing its suitability for active noise control (ANC) under question. This paper presents experimental results demonstrating the effective use of panel DML speakers in an ANC application. Both feedback and feedforward control techniques are considered. Effective feedback control with a flat panel speaker could open up a whole range of new noise control applications and has many advantages over feedforward control. The paper develops a new control algorithm to attenuate tonal noise of a known frequency by feedback control. However, due to the uneven response of the speakers, feedback control is found to be only moderately effective even for this narrow-band application. Feedforward control proves to be most capable for the flat panel speaker. Using feedforward control, the sound pressure level can be significantly reduced in close proximity to an error microphone. The paper demonstrates an interesting application of the flat panel in which the panel is placed in the path of sound and effectively used to block sound transmission using feedforward control. This is a new approach to active noise control enabled by the use of flat panels and can be used to prevent sound from entering into an enclosure in the first place rather than the traditional approach of attempting to cancel sound after it enters the enclosure.

  4. Applications of active adaptive noise control to jet engines

    NASA Technical Reports Server (NTRS)

    Shoureshi, Rahmat; Brackney, Larry

    1993-01-01

    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  5. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  6. An evaluation of active noise control in a cylindrical shell

    NASA Technical Reports Server (NTRS)

    Silcox, R. J.; Lester, H. C.; Abler, S. B.

    1989-01-01

    The physical mechanisms governing the use of active noise control in an extended volume of a cylindrical shell are discussed. Measured data was compared with computer results from a previously derived analytical model based on an infinite shell theory. For both the analytical model and experiment, the radiation of the external monopoles is coupled to the internal acoustic field through the radial displacement of the thin, elastic cylindrical shell. An active noise control system was implemented in the cylinder using a fixed array of discrete monopole sources, all of which lie in the plane of the exterior noise sources. Good agreement between measurement and prediction was obtained for both internal pressure response and overall noise reduction. Attenuations in the source plane greater than 15 dB were recorded along with a uniformly quieted noise environment over the entire length of the experimental model. Results indicate that for extended axial forcing distributions or very low shell damping, axial arrays of control sources may be required. Finally, the Nyquist criteria for the number of azimuthal control sources is shown to provide for effective control over the full cylinder cross section.

  7. An evaluation of active noise control in a cylindrical shell

    NASA Technical Reports Server (NTRS)

    Silcox, R. J.; Lester, H. C.; Abler, S. B.

    1987-01-01

    The physical mechanisms governing the use of active noise control in an extended volume of a cylindrical shell are discussed. Measured data was compared with computer results from a previously derived analytical model based on an infinite shell theory. For both the analytical model and experiment, the radiation of the external monopoles is coupled to the internal acoustic field through the radial displacement of the thin, elastic cylindrical shell. An active noise control system was implemented in the cylinder using a fixed array of discrete monopole sources, all of which lie in the plane of the exterior noise sources. Good agreement between measurement and prediction was obtained for both internal pressure response and overall noise reduction. Attenuations in the source plane greater than 15 dB were recorded along with a uniformly quieted noise environment over the entire length of the experimental model. Results indicate that for extended axial forcing distributions or very low shell damping, axial arrays of control sources may be required. Finally, the Nyquist criteria for the number of azimuthal control sources is shown to provide for effective control over the full cylinder cross section.

  8. Active aerodynamic control of wake-airfoil interaction noise - Experiment

    NASA Astrophysics Data System (ADS)

    Simonich, J. C.; Lavrich, P. L.; Sofrin, T. G.; Topol, D. A.

    A proof of concept experiment is conducted that shows the potential for active aerodynamic control of rotor wake/stator interaction noise in a simplified manner. A single airfoil model representing the stator was fitted with a moveable trailing edge flap controlled by a servo motor. The control system moves the motor driven flap in the correct angular displacement phase and rate to reduce the unsteady load on the airfoil during the wake interaction.

  9. Active Control of Fan-Generated Tone Noise

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1995-01-01

    This paper reports on an experiment to control the noise radiated from the inlet of a ducted fan using a time domain active adaptive system. The control ,sound source consists of loudspeakers arranged in a ring around the fan duct. The error sensor location is in the fan duct. The purpose of this experiment is to demonstrate that the in-duct error sensor reduces the mode spillover in the far field, thereby increasing the efficiency of the control system. The control system is found to reduce the blade passage frequency tone significantly in the acoustic far field when the mode orders of the noise source and of the control source are the same, when the dominant wave in the duct is a plane wave. The presence of higher order modes in the duct reduces the noise reduction efficiency, particularly near the mode cut-on where the standing wave component is strong, but the control system converges stably. The control system is stable and converges when the first circumferential mode is generated in the duct. The control system is found to reduce the fan noise in the far field on an arc around the fan inlet by as much as 20 dB with none of the sound amplification associated with mode spillover.

  10. Application of Feedforward Adaptive Active-Noise Control for Reducing Blade Passing Noise in Centrifugal Fans

    NASA Astrophysics Data System (ADS)

    WU, J.-D.; BAI, M. R.

    2001-02-01

    This paper describes two configurations of feedforward adaptive active-noise control (ANC) technique for reducing blade passing noise in centrifugal fans. In one configuration, the control speaker is installed at the cut-off region of the fan, while in the other configuration at the exit duct. The proposed ANC system is based on the filtered-x least-mean-squares (FXLMS) algorithm with multi-sine synthesized reference signal and frequency counting and is implemented by using a digital signal processor (DSP). Experiments are carried out to evaluate the proposed system for reducing the noise at the blade passing frequency (BPF) and its harmonics at various flow speeds. The results of the experiment indicated that the ANC technique is effective in reducing the blade passing noise for two configurations by using the feedforward adaptive control.

  11. Active Flow Effectors for Noise and Separation Control

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2011-01-01

    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.

  12. An active noise control algorithm for controlling multiple sinusoids.

    PubMed

    Lee, S M; Lee, H J; Yoo, C H; Youn, D H; Cha, I W

    1998-07-01

    The filtered-x LMS algorithm and its modified versions have been successfully applied in suppressing acoustic noise such as single and multiple tones and broadband random noise. This paper presents an adaptive algorithm based on the filtered-x LMS algorithm which may be applied in attenuating tonal acoustic noise. In the proposed method, the weights of the adaptive filter and estimation of the phase shift due to the acoustic path from a loudspeaker to a microphone are computed simultaneously for optimal control. The algorithm possesses advantages over other filtered-x LMS approaches in three aspects: (1) each frequency component is processed separately using an adaptive filter with two coefficients, (2) the convergence parameter for each sinusoid can be selected independently, and (3) the computational load can be reduced by eliminating the convolution process required to obtain the filtered reference signal. Simulation results for a single-input/single-output (SISO) environment demonstrate that the proposed method is robust to the changes of the acoustic path between the actuator and the microphone and outperforms the filtered-x LMS algorithm in simplicity and convergence speed.

  13. Active Control of Fan Noise by Vane Actuators

    NASA Technical Reports Server (NTRS)

    Curtis, Alan R. D.

    1999-01-01

    An active noise control system for ducted fan noise was built that uses actuators located in stator vanes. The actuators were piezoelectric benders manufactured using the THUNDER technology and were custom designed for the application. The active noise control system was installed in the NASA ANCF rig. Four actuator array with a total of 168 actuators in 28 stator vanes were used. Simultaneous reductions of acoustic power in both the inlet and exhaust duct were demonstrated for a fan disturbance that contained two radial mode orders in both inlet and exhaust. Total power levels in the target modes were reduced by up to 9 dB in the inlet and total tone levels by over 6 dB while exhaust power levels were reduced by up to 3 dB. Far field sound pressure level reductions of up to 17 dB were observed. A simpler control system, matched to the location of the disturbance with two radial actuator arrays, was demonstrated to control total acoustic power in four disturbance modes simultaneously in inlet and exhaust. The vane actuator met the requirements given for the ANCF, although in practice the performance of the system was limited by the constraints of the power amplifiers and the presence of control spillover. The vane actuators were robust. None of the 168 vane actuators failed during the tests.

  14. Active noise control using a steerable parametric array loudspeaker.

    PubMed

    Tanaka, Nobuo; Tanaka, Motoki

    2010-06-01

    Arguably active noise control enables the sound suppression at the designated control points, while the sound pressure except the targeted locations is likely to augment. The reason is clear; a control source normally radiates the sound omnidirectionally. To cope with this problem, this paper introduces a parametric array loudspeaker (PAL) which produces a spatially focused sound beam due to the attribute of ultrasound used for carrier waves, thereby allowing one to suppress the sound pressure at the designated point without causing spillover in the whole sound field. First the fundamental characteristics of PAL are overviewed. The scattered pressure in the near field contributed by source strength of PAL is then described, which is needed for the design of an active noise control system. Furthermore, the optimal control law for minimizing the sound pressure at control points is derived, the control effect being investigated analytically and experimentally. With a view to tracking a moving target point, a steerable PAL based upon a phased array scheme is presented, with the result that the generation of a moving zone of quiet becomes possible without mechanically rotating the PAL. An experiment is finally conducted, demonstrating the validity of the proposed method.

  15. On-line, adaptive state estimator for active noise control

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.

    1994-01-01

    Dynamic characteristics of airframe structures are expected to vary as aircraft flight conditions change. Accurate knowledge of the changing dynamic characteristics is crucial to enhancing the performance of the active noise control system using feedback control. This research investigates the development of an adaptive, on-line state estimator using a neural network concept to conduct active noise control. In this research, an algorithm has been developed that can be used to estimate displacement and velocity responses at any locations on the structure from a limited number of acceleration measurements and input force information. The algorithm employs band-pass filters to extract from the measurement signal the frequency contents corresponding to a desired mode. The filtered signal is then used to train a neural network which consists of a linear neuron with three weights. The structure of the neural network is designed as simple as possible to increase the sampling frequency as much as possible. The weights obtained through neural network training are then used to construct the transfer function of a mode in z-domain and to identify modal properties of each mode. By using the identified transfer function and interpolating the mode shape obtained at sensor locations, the displacement and velocity responses are estimated with reasonable accuracy at any locations on the structure. The accuracy of the response estimates depends on the number of modes incorporated in the estimates and the number of sensors employed to conduct mode shape interpolation. Computer simulation demonstrates that the algorithm is capable of adapting to the varying dynamic characteristics of structural properties. Experimental implementation of the algorithm on a DSP (digital signal processing) board for a plate structure is underway. The algorithm is expected to reach the sampling frequency range of about 10 kHz to 20 kHz which needs to be maintained for a typical active noise control

  16. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1994-01-01

    A three-channel active control system is applied to an operational turbofan engine to reduce tonal noise produced by both the fan and the high-pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provide blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. To minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three-channel controller by up to 16 dB over a +/- 30-deg angle about the engine axis. A single-channel controller could produce reduction over a +/- 15-deg angle. The experimental results show the control to be robust. Outside of the areas contolled, the levels of the tone actually increased due to the generation of radial modes by the control sources. Simultaneous control of two tones is achieved with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high-pressure compressor fundamental tones.

  17. Active Control of Fan Noise: Feasibility Study. Volume 3; Active Fan Noise Cancellation in the NASA Lewis Active Noise Control Fan Facility

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G.; Hu, Ziqiang; Sutliff, Daniel L.

    1996-01-01

    This report describes the Active Noise Cancellation (ANC) System designed by General Electric and tested in the NASA Lewis Research Center's (LERC) 48 inch Active Noise Control Fan (ANCF). The goal of this study is to assess the feasibility of using wall mounted secondary acoustic sources and sensors within the duct of a high bypass turbofan aircraft engine for global active noise cancellation of fan tones. The GE ANC system is based on a modal control approach. A known acoustic mode propagating in the fan duct is canceled using an array of flush-mounted compact sound sources. The canceling modal signal is generated by a modal controller. Inputs to the controller are signals from a shaft encoder and from a microphone array which senses the residual acoustic mode in the duct. The key results are that the (6,0) was completely eliminated at the 920 Hz design frequency and substantially reduced elsewhere. The total tone power was reduced 6.8 dB (out of a possible 9.8 dB). Farfield reductions of 15 dB (SPL) were obtained. The (4,0) and (4,1) modes were reduced simultaneously yielding a 15 dB PWL decrease. The results indicate that global attenuation of PWL at the target frequency was obtained in the aft quadrant using an ANC actuator and sensor system totally contained within the duct. The quality of the results depended on precise mode generation. High spillover into spurious modes generated by the ANC actuator array caused less than optimum levels of PWL reduction. The variation in spillover is believed to be due to calibration procedure, but must be confirmed in subsequent tests.

  18. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1993-01-01

    A three channel active control system is applied to an operational turbofan engine in order to reduce tonal noise produced by both the fan and high pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provides blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. In order to minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three channel controller by up to 16 dB over a 60 deg angle about the engine axis. A single channel controller could produce reduction over a 30 deg angle. The experimental results show the control to be robust. Simultaneous control of two tones is done with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 dBA and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high pressure compressor fundamental tones.

  19. Active Control of Noise Using Actuator/Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Winder, Patrice; Kirby, George

    1996-01-01

    Current research in smart structures is directed toward the integration of many actuators and sensors into a material. In this paper we investigate the possibility of using this instrumentation for active noise control from a vibrating structures. Current technology for reducing radiated sound is limited by the instrumentation for the control system. These control systems employ relatively small numbers of sensors and actuators. Hence, these control systems must rely on a model of the structure to estimate and control the global vibrations that contribute to the far field pressure. For complex, realistic structures the development of such a model is a formidable task. The model is a limiting factor in the continuing development of structural acoustics. In this paper we propose to increase the number of actuators and sensors of a smart material to offset the complexity of the model used for control design. The sensor arrays will be used to directly sense the shape of the structure rather than using a model of the structures to indirectly sense the shape of the structure. The actuator array is used to apply distributed forces to the structure, rather than using the structure itself as a load path. A control system for the active cancellation of sound is derived from standard control system methodologies.

  20. Development and Demonstration of Active Noise Control Concepts

    NASA Technical Reports Server (NTRS)

    Kraft, R.; Hu, Z.; Sommerfeldt, S.; Walker, B.; Hersh, A.; Luo, H.; Spencer, M.; Hallman, D.; Mitchell, C.; Sutliff, D.

    2000-01-01

    This report details design methods for and feasibility of an Active Noise Control (ANC) system using flush-wall-mounted sensors and actuators to reduce turbofan engine rotor-stator interaction noise. ANC concepts capable of suppressing discrete-tone spinning modes containing several cut-on radial mode were identified, developed analytically, and evaluated. Separate ANC systems that suppressed at least three radial modes in a cylindrical inlet duct and three radial modes in an exhaust annulus were developed. These designs resulted in inlet duct and exhaust duct tests that were performed at NASA on the 4-ft ANC Fan in the NASA Glenn AAPL facility. Effective suppression of 2-BPF spinning mode m = 2 tone noise was achieved over a range of fan speeds 1800 to 2450 rpm, where up to 4 radials were present. In the inlet duct, up to 12 dB reduction was obtained for 3 radial modes, and up to 4 dB was obtained with 4 radial modes. In the exhaust duct, up to 15 dB PWL reduction was obtained with either two or three radial modes present. Thus, the ability to suppress multiple radial modes for tones in both the inlet and exhaust ducts has been successfully demonstrated. Implications of ANC system design requirements on installation and system integration issues for ANC systems capable of suppressing higher order radial mode content when applied to a 767 using twin CF6 engines were evaluated analytically. The analytical results indicated an ANC system must be part of an integrated design to be effective.

  1. Active Control of Fan Noise-Feasibility Study. Volume 1; Flyover System Noise Studies

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.; Janardan, B. A.; Kontos, G. C.; Gliebe, P. R.

    1994-01-01

    A study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct. Thus, without considering the engineering details of the ANC system design, tone levels are arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios from 1.3 to 1.75. The major conclusions that can be drawn are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC, and for a fan pressure ratio of 1.45, ANC appears to offer less effectiveness than passive treatment. Additionally, ANC appears to be more effective at sideline and cutback conditions than at approach. Overall EPNL suppressions due to tone removal range from about 1 to 3 dB at takeoff engine speeds and from 1 to 5 db at approach speeds. Studies of economic impact of the installation of an ANC system for the four engine cases indicate increases of DOC ranging from 1 to 2 percent, favoring the lower fan pressure ratio engines. Further study is needed to confirm the results by examining additional engine data, particularly at low fan pressure ratios, and studying the details of the current results to obtain a more complete understanding. Further studies should also include determining the effects of combining passive and active treatment.

  2. Active Noise and Vibration Control Literature Survey: Controller Technologies

    DTIC Science & Technology

    1999-11-01

    control exclusively, but mathematical languages ( Matlab [The MathWorks, 1999], Matrix [Integrated Systems Inc, 1999) and, more recently, languages using...more efficient design process" [The Math Works, 1999]. Matlab and Simulink are powerful tools for dynamic systems identification. So, it is possible...to quickly obtain a numerical model of the physical system with Matlab . Moreover, Simulink enables the user to easily and quickly transpose the

  3. Active control of propeller induced noise fields inside a flexible cylinder

    NASA Technical Reports Server (NTRS)

    Lester, H. C.; Fuller, C. R.

    1986-01-01

    An active noise control model has been evaluated for reducing aircraft interior noise. The structural noise transmission properties of an aircraft fuselage were modelled as a flexible cylinder excited by external acoustic dipoles simulating the noise produced by twin propellers. The amplitudes of an internal distribution of monopole control sources were determined such that the area-weighted mean square acoustic pressure was minimized in the propeller plane. The noise control model was evaluated at low frequencies corresponding to the blade passage frequency and first few harmonics of a typical turbo-prop aircraft. Interior noise reductions of 20 25 dB were achieved, over a substantial region of the cylindrical cross-section, with just a few monopole control sources. The most favorable interior noise reductions were achieved when the active noise control model was used in combination with propeller source phasing.

  4. Study of active noise control system for a commercial HVAC unit

    NASA Astrophysics Data System (ADS)

    Devineni, Naga

    Acoustic noise is a common problem in everyday life. If the appliances that are present in the work and living areas generate noise then it's a serious problem. One such appliance is the Heating, Ventilation and Air-conditioning system (HVAC) in which blower fan and compressor units are housed together. Operation of a HVAC system creates two kinds of noise. One is the noise due to the air flow and the other is the result of the compressor. Both of them exhibit different signal properties and need different strategies to control them. There has been previous efforts in designing noise control systems that can control noise from the HVAC system. These include passive methods which use sound absorption materials to attenuate noise and active methods which cancel noise by generating anti-noise. Passive methods are effective in limiting the high frequency noise, but are inefficient in controlling low frequency noise from the compressor. Compressor noise is one of the strong low frequency components that propagate through the walls, therefore there is need for deploying active signal processing methods that consider the signal properties into consideration to cancel the noise acoustically. The quasi periodic nature of the compressor noise is exploited in noise modeling which aids in implementing an adaptive linear prediction filter in estimating the anti noise [12]. In this thesis, a multi channel architecture has been studied for a specific HVAC system in order to improve noise cancellation by creating larger quiet zone. In addition to the multi-channel architecture, a real time narrow band Active Noise Control (ANC) was employed to cancel noise under practical conditions.

  5. Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology

    NASA Technical Reports Server (NTRS)

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean

    1997-01-01

    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.

  6. Active Control of Fan Noise: Feasibility Study. Volume 4; Flyover System Noise Studies

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Janardan, B. A.; Gliebe, P. R.; Kontos, G. C.

    1996-01-01

    An extension of a prior study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct, at least to the extent that they no longer protrude above the surrounding broadband noise levels. Thus, without considering the engineering details of the ANC system design, tone levels am arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios of 1.3, 1.45, 1.6, and 1.75. This report is an extension of an effort reported previously. The major conclusions drawn from the prior study, which was restricted to fan pressure ratios of 1.45 and 1.75, are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC. For a fan pressure ratio of 1.45, ANC appears to offer less effectiveness from passive treatment. In the present study, the other two fan pressure ratios are included in a more detailed examination of the benefits of the ANC suppression levels. The key results of this extended study are the following observations: (1) The maximum overall benefit obtained from suppression of BPF alone was 2.5 EPNdB at high fan speeds. The suppression benefit increases with increase in fan pressure ratio (FPR), (2) The maximum overall benefit obtained from suppression of the first three harmonics was 3 EPNdB at high speeds. Suppression benefit increases with increase in FPR, (3) At low FPR, only about 1.0 EPNdB maximum reduction was obtained. Suppression is primarily from reduction of BPF at high FPR values and from the combination of tones at low FPR, (4) The benefit from ANC is about the same as the benefit from passive treatment at fan pressure

  7. Active vibration and noise control of vibro-acoustic system by using PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  8. A Lightweight Loudspeaker for Aircraft Communications and Active Noise Control

    NASA Technical Reports Server (NTRS)

    Warnaka, Glenn E.; Kleinle, Mark; Tsangaris, Parry; Oslac, Michael J.; Moskow, Harry J.

    1992-01-01

    A series of new, lightweight loudspeakers for use on commercial aircraft has been developed. The loudspeakers use NdFeB magnets and aluminum alloy frames to reduce the weight. The NdFeB magnet is virtually encapsulated by steel in the new speaker designs. Active noise reduction using internal loudspeakers was demonstrated to be effective in 1983. A weight, space, and cost efficient method for creating the active sound attenuating fields is to use the existing cabin loudspeakers for both communication and sound attenuation. This will require some additional loudspeaker design considerations.

  9. Active impulsive noise control using maximum correntropy with adaptive kernel size

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zhao, Haiquan

    2017-03-01

    The active noise control (ANC) based on the principle of superposition is an attractive method to attenuate the noise signals. However, the impulsive noise in the ANC systems will degrade the performance of the controller. In this paper, a filtered-x recursive maximum correntropy (FxRMC) algorithm is proposed based on the maximum correntropy criterion (MCC) to reduce the effect of outliers. The proposed FxRMC algorithm does not requires any priori information of the noise characteristics and outperforms the filtered-x least mean square (FxLMS) algorithm for impulsive noise. Meanwhile, in order to adjust the kernel size of FxRMC algorithm online, a recursive approach is proposed through taking into account the past estimates of error signals over a sliding window. Simulation and experimental results in the context of active impulsive noise control demonstrate that the proposed algorithms achieve much better performance than the existing algorithms in various noise environments.

  10. Simulation Study on Active Noise Control for a 4 Tesla MRI Scanner

    PubMed Central

    Li, Mingfeng; Lim, Teik C.; Lee, Jing-Huei

    2008-01-01

    The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for MRI acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20 dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction. PMID:18060719

  11. Simulation study on active noise control for a 4-T MRI scanner.

    PubMed

    Li, Mingfeng; Lim, Teik C; Lee, Jing-Huei

    2008-04-01

    The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for magnetic resonance imaging (MRI) acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely, the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20-dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction.

  12. Active Control of Fan Noise in Ducts Using Magnetic Bearings

    DTIC Science & Technology

    2007-11-02

    of magnetic bearings. An axial flow fan creates tonal noise related to its rotational rate. Additional noise exists due to harmonics of this frequency...magnetic bearings. An axial flow fan creates tonal noise related to its rotational rate. Additional noise exists due to harmonics of this frequency as well...systems typically have fans that will move air from the heating or cooling system to any desired space. Fan noise is characterized first by tonal

  13. Approaches to Adaptive Active Acoustic Noise Control at a Point Using Feedforward Techniques.

    NASA Astrophysics Data System (ADS)

    Zulch, Peter A.

    Active acoustic noise control systems have been of interest since their birth in the 1930's. The principle is to superimpose on an unwanted noise wave shape its inverse with the intention of destructive interference. This work presents two approaches to this idea. The first approach uses a direct design method to develop a controller using an auto-regressive moving-average (ARMA) model that will be used to condition the primary noise to produce the required anti-noise for cancellation. The development of this approach has shown that the stability of the controller relies heavily on a non-minimum phase model of the secondary noise path. For this reason, a second approach, using a controller consisting of two parts was developed. The first part of the controller is designed to cancel broadband noise and the second part is an adaptive controller designed to cancel periodic noise. A simple technique for identifying the parameters of the broadband controller is developed. An ARMA model is used, and it is shown that its stability is improved by prefiltering the test signal with a minimum-phase inverse of the secondary noise channel. The periodic controller uses an estimate of the fundamental frequency to cancel the first few harmonics of periodic noise. A computationally efficient adaptive technique based on least squares is developed for updating the harmonic controller gains at each time step. Experimental results are included for the broadband controller, the harmonic controller, and the combination of the two algorithms. The advantages of using both techniques in conjunction are shown using test cases involving both broadband noise and periodic noise.

  14. Implementation of Active Noise Control in a Closed-Circuit Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Kuester, Matthew; White, Edward

    2010-11-01

    Closed return wind tunnels, such as the Klebanoff--Saric Wind Tunnel (KSWT) at Texas A&M University, can provide relatively low freestream turbulence levels but include noise sources that do not exist in flight. This background noise, such as fan and motor noise, can adversely affect boundary-layer transition experiments if the frequencies are in the range of unstable Tollmien-- Schlicting waves. Passive acoustic treatments eliminate most noise propagating downstream from the fan to test section in the KSWT, but measurements showed upstream-traveling tonal noise propagating from the fan into the test section. To eliminate this, an active noise control system utilizing an adaptive filter algorithm was implemented targeting frequencies in the TS band below the planar duct mode cut off. Multiple microphones are used to detect and cancel upstream traveling sound without affecting downstream traveling sound. Microphone measurements are used to document the noise reduction at multiple locations in the test section.

  15. Active noise and vibration control for vehicular applications

    SciTech Connect

    Lewis, P.S.; Ellis, S.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project investigated semi-active suspension systems based on real time nonlinear control of magneto-rheological (MR) shock absorbers. This effort was motivated by Laboratory interactions with the automobile industry and with the Defense Department. Background research and a literature search on semi-active suspensions was carried out. Numerical simulations of alternative nonlinear control algorithms were developed and adapted for use with an MR shock absorber. A benchtop demonstration system was designed, including control electronics and a mechanical demonstration fixture to hold the damper/spring assembly. A custom-made MR shock was specified and procured. Measurements were carried out at Los Alamos to characterize the performance of the device.

  16. Comparison of a new rapid convergent adaptive control algorithm to least mean square on an active noise control system

    NASA Astrophysics Data System (ADS)

    Koshigoe, Shozo; Gordon, Alan; Teagle, Allen; Tsay, Ching-Hsu

    1995-04-01

    In this paper, an efficient rapid convergent control algorithm will be developed and will be compared with other adaptive control algorithms using an experimental active noise control system. Other control algorithms are Widrow's finite impulse response adaptive control algorithm, and a modified Godard's algorithm. Comparisons of the random noise attenuation capability, transient and convergence performance, and computational requirements of each algorithm will be made as the order of the controller and relevant convergence parameters are varied. The system used for these experiments is a test bed of noise suppression technology for expendable launch vehicles. It consists of a flexible plate backed by a rigid cavity. Piezoelectric actuators are mounted on the plate and polyvinylidene fluoride is used both for microphones and pressure sensors within the cavity. The plate is bombarded with an amplified random noise signal, and the control system is used to suppress the noise inside the cavity generated by the outside sound source.

  17. Active noise control system incorporating psychoacoustic and spectrum-tuning features

    NASA Astrophysics Data System (ADS)

    Bao, Hua

    Acoustic noise problem is gaining more and more attention in modern society. Traditionally, passive noise control devices are used to block the undesired sound. However, they are inconvenient and costly in some situations. Instead, active noise control (ANC) technique can attenuate the noise in a more flexible and more effective way. ANC technique works on the principal of acoustic superposition with electrically controlled loudspeaker(s) sending out anti-noise signal to cancel out the undesired noise in a target zone. The core component of ANC system is the adaptive filter, which updates the filter coefficients to control the anti-noise sent out by loudspeaker(s). It should be noted that the ultimate goal of ANC is to minimize the annoyance brought by environmental noise to human being. Therefore human hearing characteristics are important factors to improve ANC performance in term of human perception. Psychoacoustics focuses on the study of human perception of sound by objective models. In this dissertation, psychoacoustic considerations are incorporated in ANC systems in two ways. Noise weightings are included in ANC system considering the non-uniform sensitivity of human hearing system. A new ANC architecture is proposed to give listeners flexibility to adjust the spectrum of residual noise considering individual discrepant preferences. In the first scheme, two typical noise weightings, A-weighting and ITU-R 468 noise weighting, are incorporated in the ANC system based on filtered-error least mean square (FELMS) structure. Instead of sound pressure level (SPL), psychoacoustic metrics are utilized to evaluate the noise attenuation performance. In the second approach, we propose a spectrum-tuning active noise control (STANC) structure which could tune the noise spectrum with a tuning filter. In the mean time, the change of tuning filter has no influence on system adaptation, which enssures the system stability and makes online tuning possible. Conventional ANC

  18. Toward Active Control of Noise from Hot Supersonic Jets

    DTIC Science & Technology

    2013-02-15

    analysis efforts. CFD solutions were completed and used to generate time-resolved flow data for further analysis to study relevant aeroacoustic...of the noise source continues and is guiding data analysis efforts. CFD solutions were completed and used to generate time-resolved flow data for...Characterization 5 2.2 Exploring Aeroacoustic Source Terms 8 2.2.1 Time-Resolved CFD Data Set for Aeroacoustic Source Analysis ... 9 2.2.2 Computation of

  19. Toward Active Control of Noise from Hot Supersonic Jets

    DTIC Science & Technology

    2014-04-21

    near-field. 15. SUBJECT TERMS Jet Noise Reduction, High Dynamic Range PIV , Computational Phased Array Beamforming, Aeroacoustics 16. SECURITY...Acoustics and MHz PIV in High-Temperature, Shock-Containing, Jets," in Proceedings of the Internoise 2012/ASME NCAD Meeting, ASME/NCAD-1270 [invited...HAYNES, R.H., BROCK, B.A. & THUROW, B.S. (2013) "Application of MHz Frame Rate, High Dy- namic Range PIV to a High-Temperature, Shock-Containing Jet

  20. Preliminary experiments on active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.; Burdisso, R. A.; Fuller, C. R.; O'Brien, W. F.

    1993-01-01

    In the preliminary experiments reported here, active acoustic sources positioned around the circumference of a turbofan engine were used to control the fan noise radiated forward through the inlet. The main objective was to demonstrate the potential of active techniques to alleviate the noise pollution that will be produced by the next generation of larger engines. A reduction of up to 19 dB in the radiation directivity was demonstrated in a zone that encompasses a 30-deg angle, near the error sensor, while spillover effects were observed toward the lateral direction. The simultaneous control of two tones was also demonstrated using two identical controllers in a parallel control configuration.

  1. Effects of secondary loudspeaker properties on broadband feedforward active duct noise control.

    PubMed

    Chan, Yum-Ji; Huang, Lixi; Lam, James

    2013-07-01

    Dependence of the performance of feedforward active duct noise control on secondary loudspeaker parameters is investigated. Noise reduction performance can be improved if the force factor of the secondary loudspeaker is higher. For example, broadband noise reduction improvement up to 1.6 dB is predicted by increasing the force factor by 50%. In addition, a secondary loudspeaker with a larger force factor was found to have quicker convergence in the adaptive algorithm in experiment. In simulations, noise reduction is improved in using an adaptive algorithm by using a secondary loudspeaker with a heavier moving mass. It is predicted that an extra broadband noise reduction of more than 7 dB can be gained using an adaptive filter if the force factor, moving mass and coil inductance of a commercially available loudspeaker are doubled. Methods to increase the force factor beyond those of commercially available loudspeakers are proposed.

  2. A Computational Study of BVI Noise Reduction Using Active Twist Control

    NASA Technical Reports Server (NTRS)

    Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.

    2010-01-01

    The results of a computational study examining the effects of active-twist control on blade-vortex interaction (BVI) noise using the Apache Active Twist Rotor are presented. The primary goal of this activity is to reduce BVI noise during a low-speed descent flight condition using active-twist control. Rotor aeroelastic behavior was modeled using the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics code and the rotor noise was predicted using the acoustics code PSU-WOPWOP. The accuracy of the analysis was validated through comparisons with experimental acoustic data for the first generation Active Twist Rotor at an advance ratio of mu=0.14. The application of active-twist to the main rotor blade system consisted of harmonic actuation frequencies ranging from 2P to 5P, control phase angles from 0' to 360 , and tip-twist amplitudes ranging from 0.5 to 4.0 . The acoustic analysis was conducted for a single low-speed flight condition of advance ratio =0.14 and shaft angle-of-attack, c^=+6 , with BVI noise levels predicted on a flat plane of observers located 1.1 rotor diameters beneath the rotor. The results indicated reductions of up to 11dB in BVI noise using 1.25 tip-twist amplitude with negligible effects on 4P vertical hub shear.

  3. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1994-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  4. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  5. Anticipated Effectiveness of Active Noise Control in Propeller Aircraft Interiors as Determined by Sound Quality Tests

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Sullivan, Brenda M.

    2004-01-01

    Two experiments were conducted, using sound quality engineering practices, to determine the subjective effectiveness of hypothetical active noise control systems in a range of propeller aircraft. The two tests differed by the type of judgments made by the subjects: pair comparisons in the first test and numerical category scaling in the second. Although the results of the two tests were in general agreement that the hypothetical active control measures improved the interior noise environments, the pair comparison method appears to be more sensitive to subtle changes in the characteristics of the sounds which are related to passenger preference.

  6. Head-mounted active noise control system with virtual sensing technique

    NASA Astrophysics Data System (ADS)

    Miyazaki, Nobuhiro; Kajikawa, Yoshinobu

    2015-03-01

    In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.

  7. School Noise and Its Control

    ERIC Educational Resources Information Center

    Ikenberrgy, Larry D.

    1974-01-01

    Sources of noises affecting schools and their hindrance of learning are presented. Noise levels for different activities are tabled and possible methods for controlling such noises are suggested. Internal to the school, shop and music levels are the most severe. More care in site selection and design considerations are recommended. (LS)

  8. Experiments on reduction of propeller induced interior noise by active control of cylinder vibration

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Jones, J. D.

    1987-01-01

    The feasibility of reducing interior noise caused by advanced turbo propellers by controlling the vibration of aircraft fuselages was investigated by performing experiments in an anechoic chamber with an aircraft model test rig and apparatus. It was found that active vibration control provides reasonable global attenuation of interior noise levels for the cases of resonant (at 576 Hz) and forced (at 708 Hz) system response. The controlling mechanism behind the effect is structural-acoustic coupling between the shell and the contained field, termed interface modal filtering.

  9. Toward Active Control of Noise from Hot Supersonic Jets

    DTIC Science & Technology

    2013-12-31

    control valves upstream of the nozzle through the use of a proportional-integral-derivative controller ( PID ) that allows to minimize the error by...adjusting the percentage of aperture of the tuning valve. The variability of the NPR over all the tests was found to be less "Jian 1%; Figure Ha shows the...36.7 : we first open the main valve to a value of 10%, and when ;he NPR gets high enough we open manually to 35% the tuning valve, and at t = 20s we

  10. Potential Subjective Effectiveness of Active Interior Noise Control in Propeller Airplanes

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Sullivan, Brenda M.

    2000-01-01

    Active noise control technology offers the potential for weight-efficient aircraft interior noise reduction, particularly for propeller aircraft. However, there is little information on how passengers respond to this type of interior noise control. This paper presents results of two experiments that use sound quality engineering practices to determine the subjective effectiveness of hypothetical active noise control (ANC) systems in a range of propeller aircraft. The two experiments differed by the type of judgments made by the subjects: pair comparisons based on preference in the first and numerical category scaling of noisiness in the second. Although the results of the two experiments were in general agreement that the hypothetical active control measures improved the interior noise environments, the pair comparison method appears to be more sensitive to subtle changes in the characteristics of the sounds which are related to passenger preference. The reductions in subjective response due to the ANC conditions were predicted with reasonable accuracy by reductions in measured loudness level. Inclusion of corrections for the sound quality characteristics of tonality and fluctuation strength in multiple regression models improved the prediction of the ANC effects.

  11. Active Control of a Moving Noise SOURCE—EFFECT of Off-Axis Source Position

    NASA Astrophysics Data System (ADS)

    GUO, J.; PAN, J.; HODGSON, M.

    2002-03-01

    An optimally arranged multiple-channel active-control system is known to be able to create a large quiet zone in free space for a stationary primary noise source. When the primary noise source moves, the active control of the noise becomes much more difficult, as the primary noise field changes with time in space. In this case, the controller of the control system must respond fast enough to compensate for the change; much research has been focused on this issue. In this paper, it is shown that a moving source also causes difficulties from an acoustical perspective. A moving source not only changes continuously the strengths and phases of the sound field in the space, but also changes the wavefront of the primary sound field continuously. It is known that the efficiency of active noise control is determined mainly by the wavefront matching between the primary and control fields. To keep the control system effective in the case of a moving source, the wavefront of the control field needs to change, in order to continuously match the primary-wavefront change. This paper shows that there are limitations to the control-wavefront change. An optimally pre-arranged, multiple-channel control system is not able to construct a matching wavefront when the primary source moves outside a certain range. In other words, the control system is still able to create a large quiet zone only when the primary source moves within a range around the central axis of the control system. Both the location and the size of the quiet zone change with the location of the primary source.

  12. High temperature sensor/microphone development for active noise control

    NASA Technical Reports Server (NTRS)

    Shrout, Thomas R.

    1993-01-01

    The industrial and scientific communities have shown genuine interest in electronic systems which can operate at high temperatures, among which are sensors to monitor noise, vibration, and acoustic emissions. Acoustic sensing can be accomplished by a wide variety of commercially available devices, including: simple piezoelectric sensors, accelerometers, strain gauges, proximity sensors, and fiber optics. Of the several sensing mechanisms investigated, piezoelectrics were found to be the most prevalent, because of their simplicity of design and application and, because of their high sensitivity over broad ranges of frequencies and temperature. Numerous piezoelectric materials are used in acoustic sensors today; but maximum use temperatures are imposed by their transition temperatures (T(sub c)) and by their resistivity. Lithium niobate, in single crystal form, has the highest operating temperature of any commercially available material, 650 C; but that is not high enough for future requirements. Only two piezoelectric materials show potential for use at 1000 C; AlN thin film reported to be piezoactive at 1150 C, and perovskite layer structure (PLS) materials, which possess among the highest T(sub c) (greater than 1500 C) reported for ferroelectrics. A ceramic PLS composition was chosen. The solid solution composition, 80% strontium niobate (SN) and 20% strontium tantalate (STa), with a T(sub c) approximately 1160 C, was hot forged, a process which concurrently sinters and renders the plate-like grains into a highly oriented configuration to enhance piezo properties. Poled samples of this composition showed coupling (k33) approximately 6 and piezoelectric strain constant (d33) approximately 3. Piezoactivity was seen at 1125 C, the highest temperature measurement reported for a ferroelectric ceramic. The high temperature piezoelectric responses of this, and similar PLS materials, opens the possibility of their use in electronic devices operating at temperatures up to

  13. Active Noise and Vibration Control Literature Survey: Sensors and Actuators

    DTIC Science & Technology

    1999-08-01

    duire leur detectabilite done leur vulnerabilite a l’attaque ennemie. Le present rapport contient une etude approfondie des technologies des capteurs ...concentree sur une vaste gamme de materiaux de capteur et d’actionneur, tels que les materiaux piezoelectriques et electrostrictifs, les materiaux...l’air. On a etudie les technologies des capteurs et des actionneurs convenant a la limitation active du bruit se propageant par ces trajets (ou des

  14. Methodology of selecting the reference source for an active noise control system in a car.

    PubMed

    Dąbrowski, Zbigniew; Stankiewicz, Bartosz

    2013-01-01

    At the end of the 20th century, a significant development in digital technologies of signal processing made it possible to apply active noise control methods in new domains. A proper selection of the reference signal source is a main problem in implementing such systems. This paper presents an estimation method based on an indicator of the coherent power level. It also presents a simple system of active noise control in a car, operating according to the proposed method of optimising the positioning of reference sources. This system makes it possible to considerably increase the comfort of work of drivers in various kinds of road transport without a great increase in cost. This is especially significant in the case of trucks and vans. Passive barriers are considerably more expensive in them, which results in a higher level of noise than in passenger cars.

  15. Two kinds of active impulsive noise control algorithms based on sigmoid transformation

    NASA Astrophysics Data System (ADS)

    Li, Pei; Bai, Xuefeng; Ma, Yongjian

    2017-01-01

    In this thesis, active noise control of symmetric α stable (SαS) distribution impulsive noise has been studied. Two kinds of algorithm based on Sigmoid transformation of error signal have been proposed. The convergence condition of algorithms also has been analyzed. It does not need the parameter selection and thresholds estimation. Computer simulations were carried out to validate algorithm. Simulation results have proven the effectiveness of the algorithm and achieved the expected control effect. Compared to the previous algorithm, the convergence speed is improved.

  16. Method and system to perform energy-extraction based active noise control

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul (Inventor); Joshi, Suresh M. (Inventor)

    2009-01-01

    A method to provide active noise control to reduce noise and vibration in reverberant acoustic enclosures such as aircraft, vehicles, appliances, instruments, industrial equipment and the like is presented. A continuous-time multi-input multi-output (MIMO) state space mathematical model of the plant is obtained via analytical modeling and system identification. Compensation is designed to render the mathematical model passive in the sense of mathematical system theory. The compensated system is checked to ensure robustness of the passive property of the plant. The check ensures that the passivity is preserved if the mathematical model parameters are perturbed from nominal values. A passivity-based controller is designed and verified using numerical simulations and then tested. The controller is designed so that the resulting closed-loop response shows the desired noise reduction.

  17. Active control of aircraft cabin noise and vibration using a physical model

    NASA Astrophysics Data System (ADS)

    Li, Desheng

    In this thesis, active noise and vibration control of aircraft cabins is investigated, in which aircraft cabins are modeled as a cylindrical shell with a floor partition. As the first step toward a successful control strategy, a structural acoustic coupling analysis of the investigated structure is carried out. A new method called "Radiation Efficiency Analysis of Structural Modes (REASM)", suitable for enclosures with irregular shapes, is proposed and applied in the current analysis. Then, the optimal design of control systems consisting of PZT actuators and PVDF error sensors is discussed. A novel design method for PVDF error sensors called "GA-based method" is introduced and shown to be very effective when complex structures are involved. Finally, an active control system is implemented on a scaled laboratory aircraft-cabin model. Both the simulation and experimental results show the great potential of using piezoelectric transducers in noise control and the significant performance improvement achieved through optimal design.

  18. Active Control of Inlet Noise on the JT15D Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Smith, Jerome P.; Hutcheson, Florence V.; Burdisso, Ricardo A.; Fuller, Chris R.

    1999-01-01

    This report presents the key results obtained by the Vibration and Acoustics Laboratories at Virginia Tech over the year from November 1997 to December 1998 on the Active Noise Control of Turbofan Engines research project funded by NASA Langley Research Center. The concept of implementing active noise control techniques with fuselage-mounted error sensors is investigated both analytically and experimentally. The analytical part of the project involves the continued development of an advanced modeling technique to provide prediction and design guidelines for application of active noise control techniques to large, realistic high bypass engines of the type on which active control methods are expected to be applied. Results from the advanced analytical model are presented that show the effectiveness of the control strategies, and the analytical results presented for fuselage error sensors show good agreement with the experimentally observed results and provide additional insight into the control phenomena. Additional analytical results are presented for active noise control used in conjunction with a wavenumber sensing technique. The experimental work is carried out on a running JT15D turbofan jet engine in a test stand at Virginia Tech. The control strategy used in these tests was the feedforward Filtered-X LMS algorithm. The control inputs were supplied by single and multiple circumferential arrays of acoustic sources equipped with neodymium iron cobalt magnets mounted upstream of the fan. The reference signal was obtained from an inlet mounted eddy current probe. The error signals were obtained from a number of pressure transducers flush-mounted in a simulated fuselage section mounted in the engine test cell. The active control methods are investigated when implemented with the control sources embedded within the acoustically absorptive material on a passively-lined inlet. The experimental results show that the combination of active control techniques with fuselage

  19. Robust active noise control in the loadmaster area of a military transport aircraft.

    PubMed

    Kochan, Kay; Sachau, Delf; Breitbach, Harald

    2011-05-01

    The active noise control (ANC) method is based on the superposition of a disturbance noise field with a second anti-noise field using loudspeakers and error microphones. This method can be used to reduce the noise level inside the cabin of a propeller aircraft. However, during the design process of the ANC system, extensive measurements of transfer functions are necessary to optimize the loudspeaker and microphone positions. Sometimes, the transducer positions have to be tailored according to the optimization results to achieve a sufficient noise reduction. The purpose of this paper is to introduce a controller design method for such narrow band ANC systems. The method can be seen as an extension of common transducer placement optimization procedures. In the presented method, individual weighting parameters for the loudspeakers and microphones are used. With this procedure, the tailoring of the transducer positions is replaced by adjustment of controller parameters. Moreover, the ANC system will be robust because of the fact that the uncertainties are considered during the optimization of the controller parameters. The paper describes the necessary theoretic background for the method and demonstrates the efficiency in an acoustical mock-up of a military transport aircraft.

  20. An optimal local active noise control method based on stochastic finite element models

    NASA Astrophysics Data System (ADS)

    Airaksinen, T.; Toivanen, J.

    2013-12-01

    A new method is presented to obtain a local active noise control that is optimal in stochastic environment. The method uses numerical acoustical modeling that is performed in the frequency domain by using a sequence of finite element discretizations of the Helmholtz equation. The stochasticity of domain geometry and primary noise source is considered. Reference signals from an array of microphones are mapped to secondary loudspeakers, by an off-line optimized linear mapping. The frequency dependent linear mapping is optimized to minimize the expected value of error in a quiet zone, which is approximated by the numerical model and can be interpreted as a stochastic virtual microphone. A least squares formulation leads to a quadratic optimization problem. The presented active noise control method gives robust and efficient noise attenuation, which is demonstrated by a numerical study in a passenger car cabin. The numerical results demonstrate that a significant, stable local noise attenuation of 20-32 dB can be obtained at lower frequencies (<500 Hz) by two microphones, and 8-36 dB attenuation at frequencies up to 1000 Hz, when 8 microphones are used.

  1. Community noise sources and noise control issues

    NASA Technical Reports Server (NTRS)

    Nihart, Gene L.

    1992-01-01

    The topics covered include the following: community noise sources and noise control issues; noise components for turbine bypass turbojet engine (TBE) turbojet; engine cycle selection and noise; nozzle development schedule; NACA nozzle design; NACA nozzle test results; nearly fully mixed (NFM) nozzle design; noise versus aspiration rate; peak noise test results; nozzle test in the Low Speed Aeroacoustic Facility (LSAF); and Schlieren pictures of NACA nozzle.

  2. Active Noise Control of Low Speed Fan Rotor-Stator Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Hu, Ziqiang; Pla, Frederic G.; Heidelberg, Laurence J.

    1996-01-01

    This report describes the Active Noise Cancellation System designed by General Electric and tested in the NASA Lewis Research Center's 48 inch Active Noise Control Fan. The goal of this study was to assess the feasibility of using wall mounted secondary acoustic sources and sensors within the duct of a high bypass turbofan aircraft engine for active noise cancellation of fan tones. The control system is based on a modal control approach. A known acoustic mode propagating in the fan duct is cancelled using an array of flush-mounted compact sound sources. Controller inputs are signals from a shaft encoder and a microphone array which senses the residual acoustic mode in the duct. The canceling modal signal is generated by a modal controller. The key results are that the (6,0) mode was completely eliminated at 920 Hz and substantially reduced elsewhere. The total tone power was reduced 9.4 dB. Farfield 2BPF SPL reductions of 13 dB were obtained. The (4,0) and (4,1) modes were reduced simultaneously yielding a 15 dB modal PWL decrease. Global attenuation of PWL was obtained using an actuator and sensor system totally contained within the duct.

  3. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  4. Re-active Passive (RAP) Devices for Control of Noise Transmission through a Panel

    NASA Technical Reports Server (NTRS)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Daniel L.

    2008-01-01

    Re-Active Passive (RAP) devices have been developed to control low frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The RAP device uses passive constrained layer damping to cover the relatively high frequency range (>200 Hz), reactive distributed vibration absorber) to cover the medium frequency range (75 to 250 Hz), and active control for controlling low frequencies (<200 Hz). The device was applied to control noise transmission through a panel mounted in a transmission loss test facility. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three RAP devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 grams to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  5. An Active Noise Control (ACN) system for a commercially available HVAC using feedback architecture

    NASA Astrophysics Data System (ADS)

    Kasbekar, Prashanth

    This thesis report discusses design of an Active Noise Control (ANC) system for a commercially available HVAC using Feedback architecture. Reducing noise in living environments is an important problem to create quieter residential and work places. The main contributions of this thesis include development of a real time, stable and fast single channel Feedback ANC prototype ANC using a FPGA to cancel the compressor noise. Based on observations from the real time implementation a multichannel Feedback ANC with novel delayless subband architecture has been developed to reduce computational complexity and to improve performance. This work represents an important step in developing an ANC system for the HVAC due to application of novel delayless subband multichannel Feedback ANC algorithm on real data collected from the HVAC system. It also discusses the practical issues involved in developing an ANC system prototype using a FPGA.

  6. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the

  7. In Situ Active Control of Noise in a 4-Tesla MRI Scanner

    PubMed Central

    Li, Mingfeng; Rudd, Brent; Lim, Teik C.; Lee, Jing-Huei

    2011-01-01

    Purpose To evaluate the effectiveness of the proposed active noise control (ANC) system for the reduction of the acoustic noise emission generated by a 4 T MRI scanner during operation and to assess the feasibility of developing an ANC device that can be deployed in situ. Materials and Methods Three typical scanning sequences, namely EPI (echo planar imaging), GEMS (gradient echo multi-slice) and MDEFT (Modified Driven Equilibrium Fourier Transform), were used for evaluating the performance of the ANC system, which was composed of a magnetic compatible headset and a multiple reference feedforward filtered-x least mean square controller. Results The greatest reduction, about 55 dB, was achieved at the harmonic at a frequency of 1.3 kHz in the GEMS case. Approximately 21 dB and 30 dBA overall reduction was achieved for GEMS noise across the entire audible frequency range. For the MDEFT sequence, the control system achieved 14 dB and 14 dBA overall reduction in the audible frequency range, while 13 dB and 14 dBA reduction was obtained for the EPI case. Conclusion The result is highly encouraging because it shows great potential for treating MRI noise with an ANC application during real time scanning. PMID:21751284

  8. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1993-01-01

    This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.

  9. On the stability of adaptation process in active noise control systems.

    PubMed

    Ardekani, Iman Tabatabaei; Abdulla, Waleed H

    2011-01-01

    The stability analysis of the adaptation process, performed by the filtered-x least mean square algorithm on weights of active noise controllers, has not been fully investigated. The main contribution of this paper is conducting a theoretical stability analysis for this process without utilizing commonly used simplifying assumptions regarding the secondary electro-acoustic channel. The core of this analysis is based on the root locus theory. The general rules for constructing the root locus plot of the adaptation process are derived by obtaining root locus parameters, including start points, end points, asymptote lines, and breakaway points. The conducted analysis leads to the derivation of a general upper-bound for the adaptation step-size beyond which the mean weight vector of the active noise controller becomes unstable. Also, this analysis yields the optimum step-size for which the adaptive active noise controller has its fastest dynamic performance. The proposed upper-bound and optimum values apply to general secondary electro-acoustic channels, unlike the commonly used ones which apply to only pure delay channels. The results are found to agree very well with those obtained from numerical analyses and computer simulation experiments.

  10. Performance of an Active Noise Control System for Fan Tones Using Vane Actuators

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Curtis, Alan R. D.; Heidelberg, Laurence J.; Remington, Paul J.

    2000-01-01

    An Active Noise Control (ANC) system for ducted fan noise was built that uses actuators located in stator vanes. The custom designed actuators A,ere piezoelectric benders manufactured using THUNDER technology. The ANC system was tested in the NASA Active Noise Control Fan rig. A total of 168 actuators in 28 stator vanes were used (six per vane). Simultaneous inlet and exhaust acoustic power level reductions were demonstrated for a fan modal structure that contained two radial modes in each direction. Total circumferential mode power levels were reduced by up to 9 dB in the inlet and 3 dB in the exhaust. The corresponding total 2BPF tone level reductions were by 6 dB in the inlet and 2 dB in the exhaust. Farfield sound pressure level reductions of up to 17 dB were achieved at the peak mode lobe angle. The performance of the system was limited by the constraints of the power amplifiers and the presence of control spillover. Simpler control/actuator systems using carefully selected subsets of the full system and random simulated failures of up to 7% of the actuators were investigated. (The actuators were robust and none failed during the test). Useful reductions still occurred under these conditions.

  11. Active Control of Vibrations and Noise of Double Wall Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Wang, C.-Y.; Vaicaitis, R.

    1998-10-01

    Active control of vibrations and noise transmissions of double wall composite cylindrical shells using pairs of spatially discrete piezoelectric actuators is investigated. The velocity feedback and sound pressure rate feedback control procedures are developed. The inner and outer shells which are separated by a soft core are modelled by Love's thin shell theory for laminate composite materials and the inputs are taken as stationary random pressures and/or random point forces. A galerkin-like procedure is used to obtain solutions of the governing structural-acoustic equations. Parametric studies are performed to demonstrate the effect of actuator placement, actuator size, control gains, spillover, structural and acoustic damping characteristics

  12. Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization

    NASA Technical Reports Server (NTRS)

    Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.

    2014-01-01

    This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.

  13. Active noise and vibration control; Proceedings of the 213th EUROMECH Colloquium, Marseille, France, Sept. 8-11, 1986

    NASA Astrophysics Data System (ADS)

    Recent advances in the active control of noise and vibration are examined in reviews and reports. Topics addressed include the aerodynamic potential of antisound, functional monotony and diagonal control in synchronous vibration absorption, active minimization of acoustic fields, and energy flow in active control systems. Consideration is given to antisound systems for short ducts, broadband-noise signal processing, active control of an acoustically driven combustion instability, adaptive attenuation of two-dimensional instability waves, and model reduction for the active control of vibrations in turbomachinery.

  14. Low Speed, 2-D Rotor/Stator Active Noise Control at the Source Demonstration

    NASA Technical Reports Server (NTRS)

    Simonich, John C.; Kousen, Ken A.; Zander, Anthony C.; Bak, Michael; Topol, David A.

    1997-01-01

    Wake/blade-row interaction noise produced by the Annular Cascade Facility at Purdue University has been modeled using the LINFLO analysis. Actuator displacements needed for complete cancellation of the propagating acoustic response modes have been determined, along with the associated actuator power requirements. As an alternative, weighted least squares minimization of the total far-field sound power using individual actuators has also been examined. Attempts were made to translate the two-dimensional aerodynamic results into three-dimensional actuator requirements. The results lie near the limit of present actuator technology. In order to investigate the concept of noise control at the source for active rotor/stator noise control at the source, various techniques for embedding miniature actuators into vanes were examined. Numerous miniature speaker arrangements were tested and analyzed to determine their suitability as actuators for a demonstration test in the Annular Cascade Facility at Purdue. The best candidates demonstrated marginal performance. An alternative concept to using vane mounted speakers as control actuators was developed and tested. The concept uses compression drivers which are mounted externally to the stator vanes. Each compression driver is connected via a tube to an air cavity in the stator vane, from which the driver signal radiates into the working section of the experimental rig. The actual locations and dimensions of the actuators were used as input parameters for a LINFLO computational analysis of the actuator displacements required for complete cancellation of tones in the Purdue experimental rig. The actuators were designed and an arrangement determined which is compatible with the Purdue experimental rig and instrumentation. Experimental tests indicate that the actuators are capable of producing equivalent displacements greater than the requirements predicted by the LINFLO analysis. The acoustic output of the actuators was also found

  15. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    PubMed

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy.

  16. Numerical investigation of sound transmission through double wall cylinders with respect to active noise control

    NASA Technical Reports Server (NTRS)

    Coats, T. J.; Silcox, R. J.; Lester, H. C.

    1993-01-01

    Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.

  17. Numerical investigation of sound transmission through double wall cylinders with respect to active noise control

    NASA Astrophysics Data System (ADS)

    Coats, T. J.; Silcox, R. J.; Lester, H. C.

    Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.

  18. Active Structural Acoustic Control of Interior Noise on a Raytheon 1900D

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Cabell, Ran; Sullivan, Brenda; Cline, John

    2000-01-01

    An active structural acoustic control system has been demonstrated on a Raytheon Aircraft Company 1900D turboprop airliner. Both single frequency and multi-frequency control of the blade passage frequency and its harmonics was accomplished. The control algorithm was a variant of the popular filtered-x LMS implemented in the principal component domain. The control system consisted of 21 inertial actuators and 32 microphones. The actuators were mounted to the aircraft's ring frames. The microphones were distributed uniformly throughout the interior at head height, both seated and standing. Actuator locations were selected using a combinatorial search optimization algorithm. The control system achieved a 14 dB noise reduction of the blade passage frequency during single frequency tests. Multi-frequency control of the first 1st, 2nd and 3rd harmonics resulted in 10.2 dB, 3.3 dB and 1.6 dB noise reductions respectively. These results fall short of the predictions which were produced by the optimization algorithm (13.5 dB, 8.6 dB and 6.3 dB). The optimization was based on actuator transfer functions taken on the ground and it is postulated that cabin pressurization at flight altitude was a factor in this discrepancy.

  19. Performance of Optimized Actuator and Sensor Arrays in an Active Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, D. L.; Padula, S. L.; Lyle, K. H.; Cline, J. H.; Cabell, R. H.

    1996-01-01

    Experiments have been conducted in NASA Langley's Acoustics and Dynamics Laboratory to determine the effectiveness of optimized actuator/sensor architectures and controller algorithms for active control of harmonic interior noise. Tests were conducted in a large scale fuselage model - a composite cylinder which simulates a commuter class aircraft fuselage with three sections of trim panel and a floor. Using an optimization technique based on the component transfer functions, combinations of 4 out of 8 piezoceramic actuators and 8 out of 462 microphone locations were evaluated against predicted performance. A combinatorial optimization technique called tabu search was employed to select the optimum transducer arrays. Three test frequencies represent the cases of a strong acoustic and strong structural response, a weak acoustic and strong structural response and a strong acoustic and weak structural response. Noise reduction was obtained using a Time Averaged/Gradient Descent (TAGD) controller. Results indicate that the optimization technique successfully predicted best and worst case performance. An enhancement of the TAGD control algorithm was also evaluated. The principal components of the actuator/sensor transfer functions were used in the PC-TAGD controller. The principal components are shown to be independent of each other while providing control as effective as the standard TAGD.

  20. Actuator Feasibility Study for Active Control of Ducted Axial Fan Noise

    NASA Technical Reports Server (NTRS)

    Simonich, John C.

    1994-01-01

    A feasibility study was performed to investigate actuator technology which is relevant for a particular application of active noise control for gas turbine stator vanes. This study investigated many different classes of actuators and ranked them on the order of applicability. The most difficult requirements the actuators had to meet were high frequency response, large amplitude deflections, and a thin profile. Based on this assessment, piezoelectric type actuators were selected as the most appropriate actuator class. Specifically, Rainbows (a new class of high performance piezoelectric actuators), and unimorphs (a ceramic/metal composite) appeared best suited to the requirements. A benchtop experimental study was conducted. The performance of a variety of different actuators was examined, including high polymer films, flextensional actuators, miniature speakers, unimorphs, and Rainbows. The displacement/frequency response and phase characteristics of the actuators were measured. Physical limitations of actuator operation were also examined. This report includes the first known, high displacement, dynamic data obtained for Rainbow actuators. A new "hard" ceramic Rainbow actuator which does not appear to be limited in operation by self heating as "soft" ceramic Rainbows was designed, constructed and tested. The study concludes that a suitable actuator for active noise control in gas turbine engines can be achieved with state of the art materials and processing.

  1. Active vibration control on a quarter-car for cancellation of road noise disturbance

    NASA Astrophysics Data System (ADS)

    Belgacem, Walid; Berry, Alain; Masson, Patrice

    2012-07-01

    In this paper, a methodology is presented for the cancellation of road noise, from the analysis of vibration transmission paths for an automotive suspension to the design of an active control system using inertial actuators on a suspension to reduce the vibrations transmitted to the chassis. First, experiments were conducted on a Chevrolet Epica LS automobile on a concrete test track to measure accelerations induced on the suspension by the road. These measurements were combined with experimental Frequency Response Functions (FRFs) measured on a quarter-car test bench to reconstruct an equivalent three dimensional force applied on the wheel hub. Second, FRFs measured on the test bench between the three-dimensional driving force and forces at each suspension/chassis linkage were used to characterize the different transmission paths of vibration energy to the chassis. Third, an experimental model of the suspension was constructed to simulate the configuration of the active control system, using the primary (disturbance) FRFs and secondary (control) FRFs also measured on the test bench. This model was used to optimize the configuration of the control actuators and to evaluate the required forces. Finally, a prototype of an active suspension was implemented and measurements were performed in order to assess the performance of the control approach. A 4.6 dB attenuation on transmitted forces was obtained in the 50-250 Hz range.

  2. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    NASA Astrophysics Data System (ADS)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  3. Chain reconfiguration in active noise

    NASA Astrophysics Data System (ADS)

    Samanta, Nairhita; Chakrabarti, Rajarshi

    2016-05-01

    In a typical single molecule experiment, the dynamics of an unfolded protein is studied by determining the reconfiguration time using long-range Förster resonance energy transfer, where the reconfiguration time is the characteristic decay time of the position correlation between two residues of the protein. In this paper we theoretically calculate the reconfiguration time for a single flexible polymer in the presence of active noise. The study suggests that though the mean square displacement grows faster, the chain reconfiguration is always slower in the presence of long-lived active noise with exponential temporal correlation. Similar behavior is observed for a worm-like semi-flexible chain and a Zimm chain. However it is primarily the characteristic correlation time of the active noise and not the strength that controls the increase in the reconfiguration time. In brief, such active noise makes the polymer move faster but the correlation loss between the monomers becomes slow.

  4. Noise Control through Education.

    ERIC Educational Resources Information Center

    Pennino, Martha

    1979-01-01

    Discussed are the public education and information programs on noise pollution control currently in operation within the Metropolitan Washington, D.C. area that have been either developed or implemented under the auspices of the Metropolitan Washington Council of Governments. (BT)

  5. Noise control mechanisms of inside aircraft

    NASA Astrophysics Data System (ADS)

    Zverev, A. Ya.

    2016-07-01

    World trends in the development of methods and approaches to noise reduction in aircraft cabins are reviewed. The paper discusses the mechanisms of passive and active noise and vibration control, application of "smart" and innovative materials, new approaches to creating all fuselage-design elements, and other promising directions of noise control inside aircraft.

  6. Active control of interior noise in a large scale cylinder using piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Lester, H. C.; Silcox, R. J.

    1992-01-01

    The noise reduction effectiveness of two types of control force actuator models has been analytically investigated: (1) a point actuator, and (2) an in-plane, piezoelectric actuator. The actuators were attached to the wall of a simply supported, elastic cylinder closed with rigid end caps. Control inputs to the actuators were determined such that the integrated square of the pressure over the interior of the vibrating cylinder was a minimum. Significant interior noise reductions were achieved for all actuator configurations, but especially for the structurally dominated response. Noise reduction of 9 dB to 26 dB were achieved using point force actuators, as well as localized and extended piezoelectric actuators. Control spillover was found to limit overall performance for all cases. However, the use of extended piezoelectric actuators was effective in reducing control spillover, without increasing the number of control degrees of freedom.

  7. Active control of interior noise in a large scale cylinder using piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Lester, H. C.; Silcox, R. J.

    1991-05-01

    The noise reduction effectiveness of two types of control force actuator models has been analytically investigated: (1) a point actuator, and (2) an in-plane, piezoelectric actuator. The actuators were attached to the wall of a simply supported, elastic cylinder closed with rigid end caps. Control inputs to the actuators were determined such that the integrated square of the pressure over the interior of the vibrating cylinder was a minimum. Significant interior noise reductions were achieved for all actuator configurations, but especially for the structurally dominated response. Noise reduction of 9 dB to 26 dB were achieved using point force actuators, as well as localized and extended piezoelectric actuators. Control spillover was found to limit overall performance for all cases. However, the use of extended piezoelectric actuators was effective in reducing control spillover, without increasing the number of control degrees of freedom.

  8. Active control of interior noise in a large scale cylinder using piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Lester, H. C.; Silcox, R. J.

    1992-07-01

    The noise reduction effectiveness of two types of control force actuator models has been analytically investigated: (1) a point actuator, and (2) an in-plane, piezoelectric actuator. The actuators were attached to the wall of a simply supported, elastic cylinder closed with rigid end caps. Control inputs to the actuators were determined such that the integrated square of the pressure over the interior of the vibrating cylinder was a minimum. Significant interior noise reductions were achieved for all actuator configurations, but especially for the structurally dominated response. Noise reduction of 9 dB to 26 dB were achieved using point force actuators, as well as localized and extended piezoelectric actuators. Control spillover was found to limit overall performance for all cases. However, the use of extended piezoelectric actuators was effective in reducing control spillover, without increasing the number of control degrees of freedom.

  9. Active control of interior noise in a large scale cylinder using piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Lester, H. C.; Silcox, R. J.

    1991-01-01

    The noise reduction effectiveness of two types of control force actuator models has been analytically investigated: (1) a point actuator, and (2) an in-plane, piezoelectric actuator. The actuators were attached to the wall of a simply supported, elastic cylinder closed with rigid end caps. Control inputs to the actuators were determined such that the integrated square of the pressure over the interior of the vibrating cylinder was a minimum. Significant interior noise reductions were achieved for all actuator configurations, but especially for the structurally dominated response. Noise reduction of 9 dB to 26 dB were achieved using point force actuators, as well as localized and extended piezoelectric actuators. Control spillover was found to limit overall performance for all cases. However, the use of extended piezoelectric actuators was effective in reducing control spillover, without increasing the number of control degrees of freedom.

  10. Controlling kilometre-scale interferometric detectors for gravitational wave astronomy: Active phase noise cancellation using EOMs

    NASA Astrophysics Data System (ADS)

    Arnaud, N.; Balembois, L.; Bizouard, M. A.; Brisson, V.; Casanueva, J.; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Loriette, V.; Maksimovic, I.; Robinet, F.

    2017-02-01

    The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry-Perot cavities on the arms and ​the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.

  11. Control of Environmental Noise

    ERIC Educational Resources Information Center

    Jensen, Paul

    1973-01-01

    Discusses the physical properties, sources, physiological effects, and legislation pertaining to noise, especially noise characteristics in the community. Indicates that noise reduction steps can be taken more intelligently after determination of the true noise sources and paths. (CC)

  12. Hybrid Active-Passive Systems for Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, Chris R.

    1999-01-01

    Previous work has demonstrated the large potential for hybrid active-passive systems for attenuating interior noise in aircraft fuselages. The main advantage of an active-passive system is, by utilizing the natural dynamics of the actuator system, the control actuator power and weight is markedly reduced and stability/robustness is enhanced. Three different active-passive approaches were studied in the past year. The first technique utilizes multiple tunable vibration absorbers (ATVA) for reducing narrow band sound radiated from panels and transmitted through fuselage structures. The focus is on reducing interior noise due to propeller or turbo fan harmonic excitation. Two types of tunable vibration absorbers were investigated; a solid state system based upon a piezoelectric mechanical exciter and an electromechanical system based upon a Motran shaker. Both of these systems utilize a mass-spring dynamic effect to maximize tile output force near resonance of the shaker system and so can also be used as vibration absorbers. The dynamic properties of the absorbers (i.e. resonance frequency) were modified using a feedback signal from an accelerometer mounted on the active mass, passed through a compensator and fed into the drive component of the shaker system (piezoelectric element or voice coil respectively). The feedback loop consisted of a two coefficient FIR filter, implemented on a DSP, where the input is acceleration of tile ATVA mass and the output is a force acting in parallel with the stiffness of the absorber. By separating the feedback signal into real and imaginary components, the effective natural frequency and damping of the ATVA can be altered independently. This approach gave control of the resonance frequencies while also allowing the simultaneous removal of damping from the ATVA, thus increasing the ease of controllability and effectiveness. In order to obtain a "tuned" vibration absorber the chosen resonant frequency was set to the excitation

  13. Active noise control - Piezoceramic actuators in fluid/structure interaction models

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Fang, W.; Smith, R. C.

    1991-01-01

    A model for a 2-D acoustic cavity with a flexible boundary (a beam) controlled via piezoceramic patches producing bending moments in the beam is considered. The associated control problem for this fluid/structure interaction system to reduce the acoustic pressure in the cavity involves unbounded control inputs. Approximation methods in the context of an LQR state space formulation are discussed, and numerical results are presented to demonstrate the effectiveness of this approach in computing feedback controls for noise reduction.

  14. Active Control of Multi-Tonal Noise with Reference Generator Based on On-Line Frequency Estimation

    NASA Astrophysics Data System (ADS)

    KIM, S.; PARK, Y.

    1999-10-01

    In this paper, a novel active noise control (ANC) structure with a frequency estimator is proposed for systems with multi-tonal noise. The conventional feedforward ANC algorithms need a measured reference signal to calculate the gradient of the squared error and filter coefficients. For ANC systems applied to aircraft or passenger ships, which reference signals are usually measured are so far from seats where engines from the main part of controllers is placed that the scheme might be difficult to implement or very costly. Feedback ANC algorithms which do not require a measure of reference signals, use error signals alone to update the filter and are usually sensitive to measurement noise and unexpected transient noise such as a sneeze, clapping of hands and so on.The proposed algorithm, which estimates frequencies of the multi-tonal noise in real time using adaptive notch filter (ANF), improves convergence rate, threshold SNR and computational efficiency compared with the conventional ones. The reference signal needed for the feedforward control is not measured directly, but is generated with the estimated frequencies. It has a strong similarity to the conventional IMC-based feedback control because the reference is generated from the error signal in both cases. The proposed ANC algorithm is compared with the conventional IMC-based feedback control algorithm.Cascade ANF, which has a low computational burden, is used to implement the ANC system in real time. Experiments for verifying efficacy of the proposed algorithm are carried out in the laboratory.

  15. Experimental investigation of different active noise control concepts applied to a passenger car equipped with an active windshield

    NASA Astrophysics Data System (ADS)

    Misol, M.; Algermissen, S.; Monner, H. P.

    2012-05-01

    The main purpose of this work is the implementation and experimental investigation of different active structural acoustic control (ASAC) concepts for the reduction of interior noise in an automobile passenger compartment. For the control experiments, a medium-class test car was used, which had been equipped with an active windshield. The active windshield consists of the serial-production laminated glass pane augmented with piezoceramic patch-transducers applied to the blackened rim of the windshield. A multi-reference test provided measurement data for the identification of a local discrete-time state-space model (SSM). The subsequent acquisition of frequency response functions (FRF) by way of using the same actuators but measuring on a much finer grid provided the database for the formulation of a least-squares problem to derive a global system model. Based on the local and global discrete-time SSMs, different controllers were designed and experimentally realized. The comparison of the vibration levels in open- and closed-loop showed a global reduction of 5-7 dB in the acoustically relevant frequency band containing the second and third structural resonance of the windshield system. The occurrence of complex operational deflection shapes (ODS) was identified as the main limitation concerning the disturbance rejection of the active system. The acoustic performance of the ASAC system is reflected in a reduction up to 15 dB in sound pressure level (SPL).

  16. Baseline acoustic levels of the NASA Active Noise Control Fan rig

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Heidelberg, Laurence J.; Elliott, David M.; Nallasamy, M.

    1996-01-01

    Extensive measurements of the spinning acoustic mode structure in the NASA 48 inch Active Noise Control Fan (ANCF) test rig have been taken. A continuously rotating microphone rake system with a least-squares data reduction technique was employed to measure these modes in the inlet and exhaust. Farfield directivity patterns in an anechoic environment were also measured at matched corrected rotor speeds. Several vane counts and spacings were tested over a range of rotor speeds. The Eversman finite element radiation code was run with the measured in-duct modes as input and the computed farfield results were compared to the experimentally measured directivity pattern. The experimental data show that inlet spinning mode measurements can be made very accurately. Exhaust mode measurements may have wake interference, but the least-squares reduction does a good job of rejecting the non-acoustic pressure. The Eversman radiation code accurately extrapolates the farfield levels and directivity pattern when all in-duct modes are included.

  17. Optimal virtual sensing for active noise control in a rigid-walled acoustic duct

    NASA Astrophysics Data System (ADS)

    Petersen, Dick; Zander, Anthony C.; Cazzolato, Ben S.; Hansen, Colin H.

    2005-11-01

    The performance of local active noise control systems is generally limited by the small sizes of the zones of quiet created at the error sensors. This is often exacerbated by the fact that the error sensors cannot always be located close to an observer's ears. Virtual sensing is a method that can move the zone of quiet away from the physical location of the transducers to a desired location, such as an observer's ear. In this article, analytical expressions are derived for optimal virtual sensing in a rigid-walled acoustic duct with arbitrary termination conditions. The expressions are derived for tonal excitations, and are obtained by employing a traveling wave model of a rigid-walled acoustic duct. It is shown that the optimal solution for the virtual sensing microphone weights is independent of the source location and microphone locations. It is also shown that, theoretically, it is possible to obtain infinite reductions at the virtual location. The analytical expressions are compared with forward difference prediction techniques. The results demonstrate that the maximum attenuation, that theoretically can be obtained at the virtual location using forward difference prediction techniques, is expected to decrease for higher excitation frequencies and larger virtual distances.

  18. Thermal Noise Reduction of Mechanical Oscillators by Actively Controlled External Dissipative Forces

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan; Medich, David; Czajkowsky, Daniel M.; Sheng, Sitong; Yuan, Jian-Yang; Shao, Zhifeng

    1999-01-01

    We show that the thermal fluctuations of very soft mechanical oscillators, such as the cantilever in an atomic force microscope (AFM), can be reduced without changing the stiffness of the spring or having to lower the environment temperature. We derive a theoretical relationship between the thermal fluctuations of an oscillator and an actively external-dissipative force. This relationship is verified by experiments with an AFM cantilever where the external active force is coupled through a magnetic field. With simple instrumentation, we have reduced the thermal noise amplitude of the cantilever by a factor of 3.4, achieving an apparent temperature of 25 K with the environment at 295K. This active noise reduction approach can significantly improve the accuracy of static position or static force measurements in a number of practical applications.

  19. Handbook for industrial noise control

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The basic principles of sound, measuring techniques, and instrumentation associated with general purpose noise control are discussed. Means for identifying and characterizing a noise problem so that subsequent work may provide the most efficient and cost effective solution are outlined. A methodology for choosing appropriate noise control materials and the proper implementation of control procedures is detailed. The most significant NASA sponsored contributions to the state of the art development of optimum noise control technologies are described including cases in which aeroacoustics and related research have shed some light on ways of reducing noise generation at its source.

  20. Active control of wake/blade-row interaction noise through the use of blade surface actuators

    NASA Technical Reports Server (NTRS)

    Kousen, Kenneth A.; Verdon, Joseph M.

    1993-01-01

    A combined analytical/computational approach for controlling of the noise generated by wake/blade-row interaction through the use of anti-sound actuators on the blade surfaces is described. A representative two-dimensional section of a fan stage, composed of an upstream fan rotor and a downstream fan exit guide vane (FEGV), is examined. An existing model for the wakes generated by the rotor is analyzed to provide realistic magnitudes for the vortical excitations imposed at the inlet to the FEGV. The acoustic response of the FEGV is determined at multiples of the blade passing frequency (BPF) by using the linearized unsteady flow analysis, LINFLO. Acoustic field contours are presented at each multiple of BPF illustrating the generated acoustic response disturbances. Anti-sound is then provided by placing oscillating control surfaces, whose lengths and locations are specified arbitrarily, on the blades. An analysis is then conducted to determine the complex amplitudes required for the control surface motions to best reduce the noise. It is demonstrated that if the number of acoustic response modes to be controlled is equal to the number of available independent control surfaces, complete noise cancellation can be achieved. A weighted least squares minimization procedure for the control equations is given for cases in which the number of acoustic modes exceeds the number of available control surfaces. The effectiveness of the control is measured by the magnitude of a propagating acoustic response vector, which is related to the circumferentially averaged sound pressure level (SPL), and is minimized by a standard least-squares minimization procedure.

  1. Poultry Plant Noise Control

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A demonstration conducted last winter at the Tip Top Poultry Plant intended to show poultry plant managers from all over the U.S. potential solutions to the problem of plant noise. Plastic covers used over sound absorbing materials need to meet cleanability requirements, high- pressure water cleaning and other harsh maintenance procedures peculiar to the poultry processing industry. For the demonstration, Fiber Flex, Inc. manufactured and donated 750 noise panels; Owens-Corning Fiberglas Corporation donated the fiberglas cores; and the cover material was purchased from Howe and Bainbridge. The Engineering Experiment Station (EES) conducted before and after noise surveys and is evaluating the effect of noise reduction on turnover and productivity in the demonstration plant. EES plans to conduct a noise abatement workshop and update a handbook to help poultry processors with noise problems. EES study and demonstration may be applicable to other food processing plants where similar sanitary constraints exist.

  2. Hybrid Active-Passive Systems for Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, Chris R.; Palumbo, Dan (Technical Monitor)

    2002-01-01

    It was proposed to continue with development and application in the two active-passive areas of Active Tuned Vibration Absorbers (ATVA) and smart foam applied to the reduction of interior noise in aircraft. In general the work was focused on making both techniques more efficient, practical and robust thus increasing their application potential. The work was also concerned with demonstrating the potential of these two technologies under realistic implementations as well as understanding the fundamental physics of the systems. The proposed work consisted of a three-year program and was tightly coordinated with related work being carried out in the Structural Acoustics Branch at NASA LaRC. The work was supervised and coordinated through all phases by Prof Chris Fuller of Va Tech.

  3. JPL noise control program

    NASA Technical Reports Server (NTRS)

    Klascius, A. F.

    1975-01-01

    Exposures of personnel to noise pollution at the Jet Propulsion Laboratories, Pasadena, California, were investigated. As a result of the study several protective measures were taken: (1) employees exposed to noise hazards were required to wear ear-protection devices, (2) mufflers and air diversion devices were installed around the wind tunnels; and (3) all personnel that are required to wear ear protection are given annual audimeter tests.

  4. Active Control of Fan Noise-Feasibility Study. Volume 2: Canceling Noise Source-Design of an Acoustic Plate Radiator Using Piezoceramic Actuators

    NASA Technical Reports Server (NTRS)

    Pla, F. G.; Rajiyah, H.

    1995-01-01

    The feasibility of using acoustic plate radiators powered by piezoceramic thin sheets as canceling sources for active control of aircraft engine fan noise is demonstrated. Analytical and numerical models of actuated beams and plates are developed and validated. An optimization study is performed to identify the optimum combination of design parameters that maximizes the plate volume velocity for a given resonance frequency. Fifteen plates with various plate and actuator sizes, thicknesses, and bonding layers were fabricated and tested using results from the optimization study. A maximum equivalent piston displacement of 0.39 mm was achieved with the optimized plate samples tested with only one actuator powered, corresponding to a plate deflection at the center of over 1 millimeter. This is very close to the deflection required for a full size engine application and represents a 160-fold improvement over previous work. Experimental results further show that performance is limited by the critical stress of the piezoceramic actuator and bonding layer rather than by the maximum moment available from the actuator. Design enhancements are described in detail that will lead to a flight-worthy acoustic plate radiator by minimizing actuator tensile stresses and reducing nonlinear effects. Finally, several adaptive tuning methods designed to increase the bandwidth of acoustic plate radiators are analyzed including passive, active, and semi-active approaches. The back chamber pressurization and volume variation methods are investigated experimentally and shown to be simple and effective ways to obtain substantial control over the resonance frequency of a plate radiator. This study shows that piezoceramic-based plate radiators can be a viable acoustic source for active control of aircraft engine fan noise.

  5. Development and experimental verification of a robust active noise control system for a diesel engine in submarines

    NASA Astrophysics Data System (ADS)

    Sachau, D.; Jukkert, S.; Hövelmann, N.

    2016-08-01

    This paper presents the development and experimental validation of an ANC (active noise control)-system designed for a particular application in the exhaust line of a submarine. Thereby, tonal components of the exhaust noise in the frequency band from 75 Hz to 120 Hz are reduced by more than 30 dB. The ANC-system is based on the feedforward leaky FxLMS-algorithm. The observability of the sound pressure in standing wave field is ensured by using two error microphones. The noninvasive online plant identification method is used to increase the robustness of the controller. Online plant identification is extended by a time-varying convergence gain to improve the performance in the presence of slight error in the frequency of the reference signal.

  6. Neural Control Adaptation to Motor Noise Manipulation

    PubMed Central

    Hasson, Christopher J.; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  7. Adaptive Volterra filter with continuous lp-norm using a logarithmic cost for nonlinear active noise control

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zhao, Haiquan

    2016-03-01

    The filtered-x least mean lp-norm (FxLMP) algorithm is proven to be useful for nonlinear active noise control (NANC) systems. However, its performance deteriorates when the impulsive noises are presented in NANC systems. To surmount this shortcoming, a new nonlinear adaptive algorithm based on Volterra expansion model (VFxlogLMP) is developed in this paper, which is derived by minimizing the lp-norm of logarithmic cost. It is found that the FxLMP and VFxlogLMP require to select an appropriate value of p according to the prior information on noise characteristics, which prohibit their practical applications. Based on VFxlogLMP algorithm, we proposed a continuous lp-norm algorithm with logarithmic cost (VFxlogCLMP), which does not need the parameter selection and thresholds estimation. Benefiting from the various error norms for 1≤p≤2, it remains the robustness of VFxlogLMP. Moreover, the convergence behavior of VFxlogCLMP for moving average secondary paths and stochastic input signals is performed. Compared to the existing algorithms, two versions of the proposed algorithms have much better convergence and stability in impulsive noise environments.

  8. Active Control of Low-Speed Fan Tonal Noise Using Actuators Mounted in Stator Vanes: Part III Results

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Remington, Paul J.; Walker, Bruce E.

    2003-01-01

    A test program to demonstrate simplification of Active Noise Control (ANC) systems relative to standard techniques was performed on the NASA Glenn Active Noise Control Fan from May through September 2001. The target mode was the m = 2 circumferential mode generated by the rotor-stator interaction at 2BPF. Seven radials (combined inlet and exhaust) were present at this condition. Several different error-sensing strategies were implemented. Integration of the error-sensors with passive treatment was investigated. These were: (i) an in-duct linear axial array, (ii) an induct steering array, (iii) a pylon-mounted array, and (iv) a near-field boom array. The effect of incorporating passive treatment was investigated as well as reducing the actuator count. These simplified systems were compared to a fully ANC specified system. Modal data acquired using the Rotating Rake are presented for a range of corrected fan rpm. Simplified control has been demonstrated to be possible but requires a well-known and dominant mode signature. The documented results here in are part III of a three-part series of reports with the same base title. Part I and II document the control system and error-sensing design and implementation.

  9. A local active noise control system based on a virtual-microphone technique for railway sleeping vehicle applications

    NASA Astrophysics Data System (ADS)

    Diaz, J.; Egaña, J. M.; Viñolas, J.

    2006-11-01

    Low-frequency broadband noise generated on a railway vehicle by the wheel-rail interaction could be a big annoyance for passengers in sleeping cars. Low-frequency acoustic radiation is extremely difficult to attenuate by using passive devices. In this article, an active noise control (ANC) technique has been proposed for this purpose. A three-dimensional cabin was built in the laboratory to carry out the experiments. The proposed scheme is based on a Filtered-X Least Mean Square (FXLMS) control algorithm, particularised for a virtual-microphone technique. Control algorithms were designed with the Matlab-Simulink tool, and the Real Time Windows Target toolbox of Matlab was used to run in real time the ANC system. Referring to the results, different simulations and experimental performances were analysed to enlarge the silence zone around the passenger's ear zone and along the bed headboard. Attenuations of up to 20 and 15 dB(A) (re:20 μPa) were achieved at the passenger's ear in simulations and in experimental results, respectively.

  10. Adaptive control of radiated noise from a cylindrical shell using active fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Goddu, Gregory; McDowell, Donald; Bingham, Brian S.

    2000-06-01

    This paper describes the application of Active Fiber Composite (AFC) actuators, a hybrid piezoelectric device, to the reduction of acoustic radiation from a cylindrical shell by active control methods. AFCs were developed to provide a mechanically robust method for large-area, orthotropic actuation and sensing in active structures. The actuation layer is formed by small diameter piezoelectric fibers that are unidirectionally aligned and imbedded in a resin matrix system. By the nature of its structure, an AFC actuator allows use of the primary piezoelectric effect in the plane of the composite. A cylindrical shell testbed is used for this experiment due to the predominance of this structure, and the resulting general interest, within the field of underwater acoustics. To control acoustic radiation from the cylindrical shell, the AFC actuators, placed at optimal locations determined using numerical models, are used to generate a strain field that counteracts the strain associated with acoustically efficient shell motions. Using an end-mounted accelerometer as the error measurement, an adaptive LMS algorithm is used to minimize the error signal in real-time. Experimental are supplied to validate both the device and the methodology in a complex, real-world environment.

  11. Noise Reduction Through Circulation Control

    NASA Technical Reports Server (NTRS)

    Munro, Scott E.; Ahuja, K. K.; Englar, Robert J.

    2005-01-01

    Circulation control technology uses tangential blowing around a rounded trailing edge or a leading edge to change the force and moment characteristics of an aerodynamic body. This technology has been applied to circular cylinders, wings, helicopter rotors, and even to automobiles for improved aerodynamic performance. Only limited research has been conducted on the acoustic of this technology. Since wing flaps contribute to the environmental noise of an aircraft, an alternate blown high lift system without complex mechanical flaps could prove beneficial in reducing the noise of an approaching aircraft. Thus, in this study, a direct comparison of the acoustic characteristics of high lift systems employing a circulation control wing configuration and a conventional wing flapped configuration has been made. These results indicate that acoustically, a circulation control wing high lift system could be considerably more acceptable than a wing with conventional mechanical flaps.

  12. Reduction of turbulent boundary layer induced interior noise through active impedance control.

    PubMed

    Remington, Paul J; Curtis, Alan R D; Coleman, Ronald B; Knight, J Scott

    2008-03-01

    The use of a single actuator tuned to an optimum impedance to control the sound power radiated from a turbulent boundary layer (TBL) excited aircraft panel into the aircraft interior is examined. An approach to calculating the optimum impedance is defined and the limitations on the reduction in radiated power by a single actuator tuned to that impedance are examined. It is shown that there are too many degrees of freedom in the TBL and in the radiation modes of the panel to allow a single actuator to control the radiated power. However, if the panel modes are lightly damped and well separated in frequency, significant reductions are possible. The implementation of a controller that presents a desired impedance to a structure is demonstrated in a laboratory experiment, in which the structure is a mass. The performance of such a controller on an aircraft panel is shown to be effective, if the actuator impedance is similar to but not the same as the desired impedance, provided the panel resonances are well separated in frequency and lightly damped.

  13. An Autonomous Sensor System Architecture for Active Flow and Noise Control Feedback

    NASA Technical Reports Server (NTRS)

    Humphreys, William M, Jr.; Culliton, William G.

    2008-01-01

    Multi-channel sensor fusion represents a powerful technique to simply and efficiently extract information from complex phenomena. While the technique has traditionally been used for military target tracking and situational awareness, a study has been successfully completed that demonstrates that sensor fusion can be applied equally well to aerodynamic applications. A prototype autonomous hardware processor was successfully designed and used to detect in real-time the two-dimensional flow reattachment location generated by a simple separated-flow wind tunnel model. The success of this demonstration illustrates the feasibility of using autonomous sensor processing architectures to enhance flow control feedback signal generation.

  14. Noise Control in Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.

    2009-01-01

    Acoustic limits in habitable space enclosures are required to ensure crew safety, comfort, and habitability. Noise control is implemented to ensure compliance with the acoustic requirements. The purpose of this paper is to describe problems with establishing acoustic requirements and noise control efforts, and present examples of noise control treatments and design applications used in the Space Shuttle Orbiter. Included is the need to implement the design discipline of acoustics early in the design process, and noise control throughout a program to ensure that limits are met. The use of dedicated personnel to provide expertise and oversight of acoustic requirements and noise control implementation has shown to be of value in the Space Shuttle Orbiter program. It is concluded that to achieve acceptable and safe noise levels in the crew habitable space, early resolution of acoustic requirements and implementation of effective noise control efforts are needed. Management support of established acoustic requirements and noise control efforts is essential.

  15. Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli

    PubMed Central

    Arbel-Goren, Rinat; Tal, Asaf; Parasar, Bibudha; Dym, Alvah; Costantino, Nina; Muñoz-García, Javier; Court, Donald L.; Stavans, Joel

    2016-01-01

    Post-transcriptional regulatory processes may change transcript levels and affect cell-to-cell variability or noise. We study small-RNA downregulation to elucidate its effects on noise in the iron homeostasis network of Escherichia coli. In this network, the small-RNA RyhB undergoes stoichiometric degradation with the transcripts of target genes in response to iron stress. Using single-molecule fluorescence in situ hybridization, we measured transcript numbers of the RyhB-regulated genes sodB and fumA in individual cells as a function of iron deprivation. We observed a monotonic increase of noise with iron stress but no evidence of theoretically predicted, enhanced stoichiometric fluctuations in transcript numbers, nor of bistable behavior in transcript distributions. Direct detection of RyhB in individual cells shows that its noise is much smaller than that of these two targets, when RyhB production is significant. A generalized two-state model of bursty transcription that neglects RyhB fluctuations describes quantitatively the dependence of noise and transcript distributions on iron deprivation, enabling extraction of in vivo RyhB-mediated transcript degradation rates. The transcripts’ threshold-linear behavior indicates that the effective in vivo interaction strength between RyhB and its two target transcripts is comparable. Strikingly, the bacterial cell response exhibits Fur-dependent, switch-like activation instead of a graded response to iron deprivation. PMID:27085802

  16. Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli.

    PubMed

    Arbel-Goren, Rinat; Tal, Asaf; Parasar, Bibudha; Dym, Alvah; Costantino, Nina; Muñoz-García, Javier; Court, Donald L; Stavans, Joel

    2016-08-19

    Post-transcriptional regulatory processes may change transcript levels and affect cell-to-cell variability or noise. We study small-RNA downregulation to elucidate its effects on noise in the iron homeostasis network of Escherichia coli In this network, the small-RNA RyhB undergoes stoichiometric degradation with the transcripts of target genes in response to iron stress. Using single-molecule fluorescence in situ hybridization, we measured transcript numbers of the RyhB-regulated genes sodB and fumA in individual cells as a function of iron deprivation. We observed a monotonic increase of noise with iron stress but no evidence of theoretically predicted, enhanced stoichiometric fluctuations in transcript numbers, nor of bistable behavior in transcript distributions. Direct detection of RyhB in individual cells shows that its noise is much smaller than that of these two targets, when RyhB production is significant. A generalized two-state model of bursty transcription that neglects RyhB fluctuations describes quantitatively the dependence of noise and transcript distributions on iron deprivation, enabling extraction of in vivo RyhB-mediated transcript degradation rates. The transcripts' threshold-linear behavior indicates that the effective in vivo interaction strength between RyhB and its two target transcripts is comparable. Strikingly, the bacterial cell response exhibits Fur-dependent, switch-like activation instead of a graded response to iron deprivation.

  17. Noise control using a plate radiator and an acoustic resonator

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor)

    1996-01-01

    An active noise control subassembly for reducing noise caused by a source (such as an aircraft engine) independent of the subassembly. A noise radiating panel is bendably vibratable to generate a panel noise canceling at least a portion of the source noise. A piezoceramic actuator plate is connected to the panel. A front plate is spaced apart from the panel and the first plate, is positioned generally between the source noise and the panel, and has a sound exit port. A first pair of spaced-apart side walls each generally abut the panel and the front plate so as to generally enclose a front cavity to define a resonator.

  18. Genetic noise control via protein oligomerization

    SciTech Connect

    Ghim, C; Almaas, E

    2008-06-12

    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamical role of protein-protein associations. We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast protein binding-unbinding kinetics, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its intrinsic switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of phenotypically important toggle switches, and nested positive feedback loops in

  19. General Aviation Interior Noise. Part 3; Noise Control Measure Evaluation

    NASA Technical Reports Server (NTRS)

    Unruh, James F.; Till, Paul D.; Palumbo, Daniel L. (Technical Monitor)

    2002-01-01

    The work reported herein is an extension to the work accomplished under NASA Grant NAG1-2091 on the development of noise/source/path identification techniques for single engine propeller driven General Aviation aircraft. The previous work developed a Conditioned Response Analysis (CRA) technique to identify potential noise sources that contributed to the dominating tonal responses within the aircraft cabin. The objective of the present effort was to improve and verify the findings of the CRA and develop and demonstrate noise control measures for single engine propeller driven General Aviation aircraft.

  20. Universal control induced by noise

    NASA Astrophysics Data System (ADS)

    Arenz, Christian; Burgarth, Daniel; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya

    2016-06-01

    On the basis of the quantum Zeno effect, it has been recently shown [D. K. Burgarth et al., Nat. Commun. 5, 5173 (2014), 10.1038/ncomms6173] that a strong-amplitude-damping process applied locally on a part of a quantum system can have a beneficial effect on the dynamics of the remaining part of the system. Quantum operations that cannot be implemented without the dissipation become achievable by the action of the strong dissipative process. Here we generalize this idea by identifying decoherence-free subspaces (DFSs) as the subspaces in which the dynamics becomes more complex. Applying methods from quantum control theory, we characterize the set of reachable operations within the DFSs. We provide three examples that become fully controllable within the DFSs while the control over the original Hilbert space in the absence of dissipation is trivial. In particular, we show that the (classical) Ising Hamiltonian is turned into a Heisenberg Hamiltonian by strong collective decoherence, which provides universal quantum computation within the DFSs. Moreover, we perform numerical gate optimization to study how the process fidelity scales with the noise strength. As a by-product, a subsystem fidelity that can be applied in other optimization problems for open quantum systems is developed.

  1. Fan and pump noise control

    NASA Technical Reports Server (NTRS)

    Misoda, J.; Magliozzi, B.

    1973-01-01

    The development is described of improved, low noise level fan and pump concepts for the space shuttle. In addition, a set of noise design criteria for small fans and pumps was derived. The concepts and criteria were created by obtaining Apollo hardware test data to correlate and modify existing noise estimating procedures. A set of space shuttle selection criteria was used to determine preliminary fan and pump concepts. These concepts were tested and modified to obtain noise sources and characteristics which yield the design criteria and quiet, efficient space shuttle fan and pump concepts.

  2. A study of methods to predict and measure the transmission of sound through the walls of light aircraft. Numerical method for analyzing the optimal performance of active noise controllers. Thesis

    NASA Technical Reports Server (NTRS)

    Mollo, Christopher G.; Bernhard, Robert J.

    1987-01-01

    An optimal active noise controller is formulated and analyzed for three different active noise control problems. The first problem formulated is the active control of enclosed or partially enclosed harmonic sound fields where the noise source strengths and enclosure boundary description are known. The enclosure boundary is described by either pressure, velocity, or impedance boundary conditions. The second problem formulated is the active control of the free field power radiated from a distributed noise source with a known time harmonic surface velocity. The third problem formulated is the active control of enclosed or partially enclosed harmonic sound field where the noise source strengths of enclosure boundary description may not be known. All three formulations are derived using an indirect boundary element technique. Formulation and verification of an indirect boundary element method is presented. The active noise controller formulations for enclosures are capable of analyzing systems with generalized enclosure shapes, point noise sources, and/or locally reacting impedance boundary conditions. For each formulation, representative results of optimal active noise controller case studies are presented, and some general conclusions are drawn.

  3. Control of neural chaos by synaptic noise.

    PubMed

    Cortes, J M; Torres, J J; Marro, J

    2007-02-01

    We study neural automata - or neurobiologically inspired cellular automata - which exhibits chaotic itinerancy among the different stored patterns or memories. This is a consequence of activity-dependent synaptic fluctuations, which continuously destabilize the attractor and induce irregular hopping to other possible attractors. The nature of these irregularities depends on the dynamic details, namely, on the intensity of the synaptic noise and the number of sites of the network, which are synchronously updated at each time step. Varying these factors, different regimes occur, ranging from regular to chaotic dynamics. As a result, and in absence of external agents, the chaotic behavior may turn regular after tuning the noise intensity. It is argued that a similar mechanism might be on the basis of self-controlling chaos in natural systems.

  4. Noise suppression by quantum control before and after the noise

    NASA Astrophysics Data System (ADS)

    Wakamura, Hiroaki; Kawakubo, Ryûitirô; Koike, Tatsuhiko

    2017-02-01

    We discuss the possibility of protecting the state of a quantum system that goes through noise by measurements and operations before and after the noise process. The aim is to seek the optimal protocol that makes the input and output states as close as possible and to clarify the role of the measurements therein. We consider two cases: one can perform quantum measurements and operations (i) only after the noise process and (ii) both before and after. We prove in a two-dimensional Hilbert space that, in case (i), the noise suppression is essentially impossible for all types of noise and, in case (ii), the optimal protocol for the depolarizing noise is either the "do nothing" protocol or the "discriminate and reprepare" protocol. These protocols are not "truly quantum" and can be considered as classical. They involve no measurement or only use the measurement outcomes. These results describe the fundamental limitations in quantum mechanics from the viewpoint of control theory. Finally, we conjecture that a statement similar to case (ii) holds for higher-dimensional Hilbert spaces and present some numerical evidence.

  5. Noise screen for attitude control system

    NASA Technical Reports Server (NTRS)

    Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Hong, David P. (Inventor); Hirschberg, Philip C. (Inventor)

    2002-01-01

    An attitude control system comprising a controller and a noise screen device coupled to the controller. The controller is adapted to control an attitude of a vehicle carrying an actuator system that is adapted to pulse in metered bursts in order to generate a control torque to control the attitude of the vehicle in response to a control pulse. The noise screen device is adapted to generate a noise screen signal in response to the control pulse that is generated when an input attitude error signal exceeds a predetermined deadband attitude level. The noise screen signal comprises a decaying offset signal that when combined with the attitude error input signal results in a net attitude error input signal away from the predetermined deadband level to reduce further control pulse generation.

  6. Active Control of Fan Noise: Feasibility Study. Volume 5; Numerical Computation of Acoustic Mode Reflection Coefficients for an Unflanged Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.

  7. Helicopter internal noise control: Three case histories

    NASA Technical Reports Server (NTRS)

    Edwards, B. D.; Cox, C. R.

    1978-01-01

    Case histories are described in which measurable improvements in the cabin noise environments of the Bell 214B, 206B, and 222 were realized. These case histories trace the noise control efforts followed in each vehicle. Among the design approaches considered, the addition of a fluid pulsation damper in a hydraulic system and the installation of elastomeric engine mounts are highlighted. It is concluded that substantial weight savings result when the major interior noise sources are controlled by design, both in altering the noise producing mechanism and interrupting the sound transmission paths.

  8. Noise exposure from leisure activities: a review.

    PubMed

    Clark, W W

    1991-07-01

    Over the past two decades there has been increasing concern about the role of nonoccupational, or leisure noise on hearing. This paper reviews published studies that detail the noise levels and potential effects of some noisy leisure activities. Considered are the most common sources of leisure noise: exposure to live or amplified rock, classical, or jazz music; exposures from personal listening devices ("walkman" type); noise around the home, and hunting and target shooting. Although all activities listed above have the potential for dangerous levels of noise exposure, the most serious threat to hearing comes from recreational hunting or target shooting.

  9. Noise levels from a model turbofan engine with simulated noise control measures applied

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Woodward, Richard P.

    1993-01-01

    A study of estimated full-scale noise levels based on measured levels from the Advanced Ducted Propeller (ADP) sub-scale model is presented. Testing of this model was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. Effective Perceived Noise Level (EPNL) estimates for the baseline configuration are documented, and also used as the control case in a study of the potential benefits of two categories of noise control. The effect of active noise control is evaluated by artificially removing various rotor-stator interaction tones. Passive noise control is simulated by applying a notch filter to the wind tunnel data. Cases with both techniques are included to evaluate hybrid active-passive noise control. The results for EPNL values are approximate because the original source data was limited in bandwidth and in sideline angular coverage. The main emphasis is on comparisons between the baseline and configurations with simulated noise control measures.

  10. A method to predict circulation control noise

    NASA Astrophysics Data System (ADS)

    Reger, Robert W.

    Underwater vehicles suffer from reduced maneuverability with conventional lifting append-\\ ages due to the low velocity of operation. Circulation control offers a method to increase maneuverability independent of vehicle speed. However, with circulation control comes additional noise sources, which are not well understood. To better understand these noise sources, a modal-based prediction method is developed, potentially offering a quantitative connection between flow structures and far-field noise. This method involves estimation of the velocity field, surface pressure field, and far-field noise, using only non-time-resolved velocity fields and time-resolved probe measurements. Proper orthogonal decomposition, linear stochastic estimation and Kalman smoothing are employed to estimate time-resolved velocity fields. Poisson's equation is used to calculate time-resolved pressure fields from velocity. Curle's analogy is then used to propagate the surface pressure forces to the far field. This method is developed on a direct numerical simulation of a two-dimensional cylinder at a low Reynolds number (150). Since each of the fields to be estimated are also known from the simulation, a means of obtaining the error from using the methodology is provided. The velocity estimation and the simulated velocity match well when the simulated additive measurement noise is low. The pressure field suffers due to a small domain size; however, the surface pressures estimates fare much better. The far-field estimation contains similar frequency content with reduced magnitudes, attributed to the exclusion of the viscous forces in Curle's analogy. In the absence of added noise, the estimation procedure performs quite nicely for this model problem. The method is tested experimentally on a 650,000 chord-Reynolds-number flow over a 2-D, 20% thick, elliptic circulation control airfoil. Slot jet momentum coefficients of 0 and 0.10 are investigated. Particle image velocimetry, unsteady

  11. A before-after control-impact assessment to understand the potential impacts of highway construction noise and activity on an endangered songbird.

    PubMed

    Long, Ashley M; Colón, Melanie R; Bosman, Jessica L; Robinson, Dianne H; Pruett, Hannah L; McFarland, Tiffany M; Mathewson, Heather A; Szewczak, Joseph M; Newnam, J Cal; Morrison, Michael L

    2017-01-01

    Anthropogenic noise associated with highway construction and operation can have individual- and population-level consequences for wildlife (e.g., reduced densities, decreased reproductive success, behavioral changes). We used a before-after control-impact study design to examine the potential impacts of highway construction and traffic noise on endangered golden-cheeked warblers (Setophaga chrysoparia; hereafter warbler) in urban Texas. We mapped and monitored warbler territories before (2009-2011), during (2012-2013), and after (2014) highway construction at three study sites: a treatment site exposed to highway construction and traffic noise, a control site exposed only to traffic noise, and a second control site exposed to neither highway construction or traffic noise. We measured noise levels at varying distances from the highway at sites exposed to construction and traffic noise. We examined how highway construction and traffic noise influenced warbler territory density, territory placement, productivity, and song characteristics. In addition, we conducted a playback experiment within study sites to evaluate acute behavioral responses to highway construction noises. Noise decreased with increasing distance from the highways. However, noise did not differ between the construction and traffic noise sites or across time. Warbler territory density increased over time at all study sites, and we found no differences in warbler territory placement, productivity, behavior, or song characteristics that we can attribute to highway construction or traffic noise. As such, we found no evidence to suggest that highway construction or traffic noise had a negative effect on warblers during our study. Because human population growth will require recurring improvements to transportation infrastructure, understanding wildlife responses to anthropogenic noise associated with the construction and operation of roads is essential for effective management and recovery of prioritized

  12. Aircraft and airport noise control prospective outlook

    SciTech Connect

    Shapiro, N.

    1982-01-01

    In a perspective look at aircraft and airport noise control over the past ten years or more - or more is added here because the Federal Aviation Regulation Part 36 of 1969 is a more significant milestone for the air transportation system than is the Noise Control Act of 1972 - we see an appreciable reduction in the noise emitted by newly designed and newly produced airplanes, particularly those powered by the new high bypass engines, but only, at best, a moderate alleviation of airport noise. The change in airport noise exposure was the consequence of the introduction of some new, quieter airplanes into the airlines fleets and some operational modifications or restrictions at the airports.

  13. Noise enhanced activity in a complex network

    NASA Astrophysics Data System (ADS)

    Choudhary, Anshul; Kohar, Vivek; Sinha, Sudeshna

    2014-09-01

    We consider the influence of local noise on a generalized network of populations having positive and negative feedbacks. The population dynamics at the nodes is nonlinear, typically chaotic, and allows cessation of activity if the population falls below a threshold value. We investigate the global stability of this large interactive system, as indicated by the average number of nodal populations that manage to remain active. Our central result is that the probability of obtaining active nodes in this network is significantly enhanced under fluctuations. Further, we find a sharp transition in the number of active nodes as noise strength is varied, along with clearly evident scaling behaviour near the critical noise strength. Lastly, we also observe noise induced temporal coherence in the active sub-network, namely, there is an enhancement in synchrony among the nodes at an intermediate noise strength.

  14. Effects of aircraft noise on human activities

    NASA Technical Reports Server (NTRS)

    Arnoult, M. D.; Gilfillan, L. G.

    1983-01-01

    The effects of aircrft noise on human activities was investigated by developing a battery of tasks (1) representative of a range of human activities and (2) sensitive to the disruptive effects of noise. The noise used were recordings of jet aircraft and helicopter sounds at three lvels of loudness--60, 70, and 80 dB(A). Experiment 1 investigated 12 different cognitive tasks, along with two intelligibility tasks included to validate that the noises were being effective. Interference with intelligibility was essentially the same as found in the research literature, but only inconsistent effects were found on either accuracy or latency of performance on the cognitive tasks. When the tasks were grouped into four categories (Intelligibility, Matching, Verbal, and Arithmetic), reliable differences in rated annoyingness of the noises were related to the task category and to the type of noise (jet or helicopter).

  15. Noise-Enhanced Human Balance Control

    NASA Astrophysics Data System (ADS)

    Priplata, Attila; Niemi, James; Salen, Martin; Harry, Jason; Lipsitz, Lewis A.; Collins, J. J.

    2002-11-01

    Noise can enhance the detection and transmission of weak signals in certain nonlinear systems, via a mechanism known as stochastic resonance. Here we show that input noise can be used to improve motor control in humans. Specifically, we show that the postural sway of both young and elderly individuals during quiet standing can be significantly reduced by applying subsensory mechanical noise to the feet. We further demonstrate with input noise a trend towards the reduction of postural sway in elderly subjects to the level of young subjects. These results suggest that noise-based devices, such as randomly vibrating shoe inserts, may enable people to overcome functional difficulties due to age-related sensory loss.

  16. Noise and Controllability: Suppression of Controllability in Large Quantum Systems

    SciTech Connect

    Khasin, M.; Kosloff, R.

    2011-03-25

    A closed quantum system is defined as completely controllable if an arbitrary unitary transformation can be executed using the available controls. In practice, control fields are a source of unavoidable noise. Can one design control fields such that the effect of noise is negligible on the timescale of the transformation? Complete controllability in practice requires that the effect of noise can be suppressed for an arbitrary transformation. The present study considers a paradigm of control, where the Lie-algebraic structure of the control Hamiltonian is fixed, while the size of the system increases, determined by the dimension of the Hilbert space representation of the algebra. We show that for large quantum systems, generic noise in the controls dominates for a typical class of target transformation; i.e., complete controllability is destroyed by the noise.

  17. Electromagnetic films as lightweight actuators for active noise reduction

    NASA Astrophysics Data System (ADS)

    Sachau, Delf; Kletschkowski, Thomas

    2006-03-01

    The increasing industrialization and markets across the globe do result in noise pollution that affects humans. In order to reduce the sound pressure level (SPL) of disturbing noise active noise control (also known as noise cancellation, active noise reduction (ANR) or anti-noise) is a good option. Herewith unwanted noise from a primary sound source can be reduced significantly by anti-noise generated from a secondary source: At present commercial active noise reduction systems are using moving-coil loudspeakers as actuators. These actuators need a quite large built-in volume and they are not lightweight. Therefore the industrial application of ANR in vehicles is limited. To reduce these difficulties the use of flat loudspeakers made of electromagnetic films seems to be a promising approach. It is a precondition for the use of such new technologies within an ANR- system to have a basic understanding of the dynamic systems behaviour and the sound transmission behaviour of such a lightweight active component: This paper describes the investigation of a flat panel speaker which is based on electrostatic loudspeaker technology. First of all the passive transmission properties have been measured in a test bed. The passive acoustic insulation has been analyzed and weak spots in the frequency response were discovered. Afterwards the flat panel speaker has been used as actuator in an ANR-System to support insulation at those frequencies. An adaptive filter (FxLMS) was adjusted to the panel and the reduction capabilities of a single-output system have been determined.

  18. Numerical investigation of tandem-cylinder aerodynamic noise and its control with application to airframe noise

    NASA Astrophysics Data System (ADS)

    Eltaweel, Ahmed

    Prediction and reduction of airframe noise are critically important to the development of quieter civil transport aircraft. The key to noise reduction is a full understanding of the underlying noise source mechanisms. In this study, tandem cylinders in cross-flow as an idealization of a complex aircraft landing gear configuration are considered to investigate the noise generation and its reduction by flow control using single dielectric barrier discharge plasma actuators. The flow over tandem cylinders at ReD = 22, 000 with and without plasma actuation is computed using large-eddy simulation. The plasma effect is modeled as a body force obtained from a semi-empirical model. The flow statistics and surface pressure frequency spectra show excellent agreement with previous experimental measurements. For acoustic calculations, a boundary-element method is implemented to solve the convected Lighthill equation. The solution method is validated in a number of benchmark problems including flows over a cylinder, a rod-airfoil configuration, and a sphere. With validated flow field and acoustic solver, acoustic analysis is performed for the tandem-cylinder configuration to extend the experimental results and understand the mechanisms of noise generation and its control. Without flow control, the acoustic field is dominated by the interaction between the downstream cylinder and the upstream wake. Through suppression of vortex shedding from the upstream cylinder, the interaction noise is reduced drastically by the plasma flow control, and the vortex-shedding noise from the downstream cylinder becomes equally important. At a free-stream Mach number of 0.2, the peak sound pressure level is reduced by approximately 16 dB. This suggests the viability of plasma actuation for active control of airframe noise. The numerical investigation is extended to the noise from a realistic landing gear experimental model. Coarse-mesh computations are performed, and preliminary results are

  19. Structureborne noise control in advanced turboprop aircraft

    NASA Astrophysics Data System (ADS)

    Loeffler, Irvin J.

    1987-01-01

    Structureborne noise is discussed as a contributor to propeller aircraft interior noise levels that are nonresponsive to the application of a generous amount of cabin sidewall acoustic treatment. High structureborne noise levels may jeopardize passenger acceptance of the fuel-efficient high-speed propeller transport aircraft designed for cruise at Mach 0.65 to 0.85. These single-rotation tractor and counter-rotation tractor and pusher propulsion systems will consume 15 to 30 percent less fuel than advanced turbofan systems. Structureborne noise detection methodologies and the importance of development of a structureborne noise sensor are discussed. A structureborne noise generation mechanism is described in which the periodic components or propeller swirl produce periodic torques and forces on downstream wings and airfoils that are propagated to the cabin interior as noise. Three concepts for controlling structureborne noise are presented: (1) a stator row swirl remover, (2) selection of a proper combination of blade numbers in the rotor/stator system of a single-rotation propeller, and the rotor/rotor system of a counter-rotation propeller, and (3) a tuned mechanical absorber.

  20. Effect of noise on higher nervous activity

    NASA Astrophysics Data System (ADS)

    Saito, K.

    1988-12-01

    The effects of continuous, regular and irregular intermittent white noises consisting of three kinds of unpleasant noises (frying pan noise (FN), synthesizer noise (SN) and white noise (WN)), pure tones of 125, 250, 500, 1k, 2k, 4k and 8k Hz, and band-limited noises with the same center frequencies as pure tones were estimated by using electroencephalograms (EEG) and auditory evoked potential (AEP), to make clear the relationship between the unpleasantness of noise and brain activity. The results obtained were as follows. Alpha-wave appearance rate differed in continuous, regular and irregular intermittent white noise exposures. Psychologically unpleasant noises, estimated by the method of paired comparisons and a rating scale, brought about changes in brain waves that corresponded to the degree of unpleasantness. Changes in the number and the total power of the peak frequency in brain waves of the subjects exposed to pure tones showed a tendency to be similar to the equal loudness contour. Changes in the AEP components of N 1 and P 2 latencies and P 2 amplitude due to both pure tones and band noises with the same center frequency as each pure tone showed the same pattern, with the shortest latency and amplitude between the frequencies of 1 kHz and 2 kHz. The changes in AEP were also similar to the equal loudness contour.

  1. Noise control of radiological monitoring equipment

    SciTech Connect

    Rubick, R.D.; Stevens, W.W.; Burke, L.L.

    1998-12-31

    Although vacuum pumps on continuous air monitors (CAMs) do not produce noise levels above regulatory limits, engineering controls were used to establish a safer work environment. Operations performed in areas where CAMs are located are highly specialized and require precision work when handling nuclear materials, heavy metals, and inert gases. Traditional methods for controlling noise such as enclosing or isolating the source and the use of personal protection equipment were evaluated. An innovative solution was found by retrofitting CAMs with air powered multistage ejectors pumps. By allowing the air to expand in several chambers to create a vacuum, one can eliminate the noise hazard altogether. In facilities with adequate pressurized air, use of these improved ejector pumps may be a cost-effective replacement for noisy vacuum pumps. A workplace designed or engineered with noise levels as low as possible or as close to background adds to increased concentration, attention to detail, and increased production.

  2. Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.

    1986-01-01

    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.

  3. Evaluation of the SCR controller noise problem

    SciTech Connect

    Bassett, R R; Barnaby, B E

    1981-12-01

    Several types of solid state controllers are available for application to electric vehicles. The silicon controlled rectifier (SCR) type provides a current waveform of fixed pulse height and variable ratio on to off time. The controller provides step-free operation through a four-speed manual transmission. However, because the current is chopped, the circuits produce loud hums of varying frequency, which in some mounting situations may be amplified. This noise disappoints those who expect an electric vehicle to boast relatively silent operation. To evaluate the problem, components of a test bed, consisting of a battery bank, dc motor, SCR controller, charger, and appropriate cabling, were fitted with accelerometers, and the noises were evaluated for amplitude and spectral characteristics. Transient currents and voltages were also measured and analyzed to identify the source of the noise and the frequencies involved.

  4. 49 CFR 227.113 - Noise operational controls.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Noise operational controls. 227.113 Section 227... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Occupational Noise Exposure for Railroad Operating Employees. § 227.113 Noise operational controls. (a) Railroads may use noise operational...

  5. 49 CFR 227.113 - Noise operational controls.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Noise operational controls. 227.113 Section 227... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Occupational Noise Exposure for Railroad Operating Employees. § 227.113 Noise operational controls. (a) Railroads may use noise operational...

  6. 49 CFR 227.113 - Noise operational controls.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Noise operational controls. 227.113 Section 227... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Occupational Noise Exposure for Railroad Operating Employees. § 227.113 Noise operational controls. (a) Railroads may use noise operational...

  7. 49 CFR 227.113 - Noise operational controls.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Noise operational controls. 227.113 Section 227... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Occupational Noise Exposure for Railroad Operating Employees. § 227.113 Noise operational controls. (a) Railroads may use noise operational...

  8. 49 CFR 227.113 - Noise operational controls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Noise operational controls. 227.113 Section 227... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Occupational Noise Exposure for Railroad Operating Employees. § 227.113 Noise operational controls. (a) Railroads may use noise operational...

  9. Sound, Noise, and Vibration Control.

    ERIC Educational Resources Information Center

    Yerges, Lyle F.

    This working guide on the principles and techniques of controlling acoustical environment is discussed in the light of human, environmental and building needs. The nature of sound and its variables are defined. The acoustical environment and its many materials, spaces and functional requirements are described, with specific methods for planning,…

  10. The Traffic Noise Index: A Method of Controlling Noise Nuisance.

    ERIC Educational Resources Information Center

    Langdon, F. J.; Scholes, W. E.

    This building research survey is an analysis of the social nuisance caused by urban motor ways and their noise. The Traffic Noise Index is used to indicate traffic noises and their effects on architectural designs and planning, while suggesting the need for more and better window insulation and acoustical barriers. Overall concern is for--(1)…

  11. On spatial spillover in feedforward and feedback noise control

    NASA Astrophysics Data System (ADS)

    Xie, Antai; Bernstein, Dennis

    2017-03-01

    Active feedback noise control for rejecting broadband disturbances must contend with the Bode integral constraint, which implies that suppression over some frequency range gives rise to amplification over another range at the performance microphone. This is called spectral spillover. The present paper deals with spatial spillover, which refers to the amplification of noise at locations where no microphone is located. A spatial spillover function is defined, which is valid for both feedforward and feedback control with scalar and vector control inputs. This function is numerically analyzed and measured experimentally. Obstructions are introduced in the acoustic space to investigate their effect on spatial spillover.

  12. Noise control considerations for patient rooms

    NASA Astrophysics Data System (ADS)

    Davenny, Benjamin

    2005-09-01

    The patient room envelope is a path between outside noise sources and the patient receiver. Within the patient room there are several sources including televisions, clinical monitor alarms, medical pumps, etc. Noise control in patient rooms relies on a combination of the sound transmission loss of the patient room envelope and the level of background sound at the patient's head. Guidelines published by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), American Institute of Architects (AIA), and the U.S. Department of Defense for background noise and sound transmission loss in patient rooms will be discussed. Appropriate levels, spectra, and temporal characteristics of background sound at the patient head location may be helpful in raising the threshold of annoying sounds. Various means of personal hearing protection for patients will be discussed. Sound-pressure levels in patient rooms reported in previous literature will also be discussed.

  13. Noise Pollution Control System in the Hospital Environment

    NASA Astrophysics Data System (ADS)

    Figueroa Gallo, LM; Olivera, JM

    2016-04-01

    Problems related to environmental noise are not a new subject, but they became a major issue to solve because of the increasing, in complexity and intensity, of human activities due technological advances. Numerous international studies had dealt with the exposure of critical patients to noisy environment such as the Neonatal Intensive Care Units; their results show that there are difficulties in the organization in the developing brain, it can damage the delicate auditory structures and can cause biorhythm disorders, specially in preterm infants. The objective of this paper is to present the development and implementation of a control system that includes technical-management-training aspects to regulate the levels of specific noise sources in the neonatal hospitalization environment. For this purpose, there were applied different tools like: observations, surveys, procedures, an electronic control device and a training program for a Neonatal Service Unit. As a result, all noise sources were identified -some of them are eliminable-; all the service stable staff categories participated voluntarily; environmental noise measurements yielded values between 62.5 and 64.6 dBA and maximum were between 86.1 and 89.7 dBA; it was designed and installed a noise control device and the staff is being trained in noise reduction best practices.

  14. Air Traffic Control Decision Support Tools for Noise Mitigation

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard

    2001-01-01

    NASA has initiated a new five year program this year, the Quiet Aircraft Technology (QAT) Program, a program which will investigate airframe and engine system noise reduction. QAT will also address community noise impact. As part of this community noise impact component, NASA will investigate air traffic management (ATM) challenges in reducing noise. In particular, controller advisory automation aids will be developed to aid the air traffic controller in addressing noise concerns as he/she manages traffic in busy terminal areas. NASA has developed controller automation tools to address capacity concerns and the QAT strategy for ATM Low Noise Operations is to build upon this tool set to create added advisories for noise mitigation. The tools developed for capacity will be briefly reviewed, followed by the QAT plans to address ATM noise concerns. A major NASA goal in global civil aviation is to triple the aviation system throughput in all-weather conditions while maintaining safety. A centerpiece of this activity is the Center/TRACON Automation System (CTAS), an evolving suite of air traffic controller decision support tools (DSTs) to enhance capacity of arrivals and departures in both the enroute center and the TRACON. Two of these DSTs, the Traffic Management Advisor (TMA) and the passive Final approach Spacing Tool (pFAST), are in daily use at the Fort Worth Center and the Dallas/Fort Worth (DFW) TRACON, respectively, where capacity gains of 5-13% have been reported in recent NASA evaluations. Under the Federal Aviation Administration's (FAA) Free Flight Phase One Program, TMA and pFAST are each being implemented at six to eight additional sites. In addition, other DSTs are being developed by NASA under the umbrella of CTAS. This means that new software will be built upon CTAS, and the paradigm of real-time simulation evaluation followed by field site development and evaluation will be the pathway for the new tools. Additional information is included in the

  15. Active control of probability amplitudes in a mesoscale system via feedback-induced suppression of dissipation and noise

    NASA Astrophysics Data System (ADS)

    Gupta, Chaitanya; Peña Perez, Aldo; Fischer, Sean R.; Weinreich, Stephen B.; Murmann, Boris; Howe, Roger T.

    2016-12-01

    We demonstrate that a three-terminal potentiostat circuit reduces the coupling between an electronic excitation transfer (EET) system and its environment, by applying a low-noise voltage to its electrical terminals. Inter-state interference is preserved in the EET system by attenuating the dissipation in the quantum system arising from coupling to the surrounding thermodynamic bath. A classical equivalent circuit is introduced to model the environment-coupled excitation transfer for a simplified, two-state system. This model provides a qualitative insight into how the electronic feedback affects the transition probabilities and selectively reduces dissipative coupling for one of the participant energy levels EET system. Furthermore, we show that the negative feedback also constrains r.m.s. fluctuations of the energy of environmental vibrational states, resulting in persistent spectral coherence between the decoupled state and vibronic levels of the complementary state. The decoupled vibronic channel therefore can serve as a probe for characterizing the vibronic structure of the complementary channel of the EET system.

  16. Acceptance and control of aircraft interior noise and vibration

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.; Leatherwood, J. D.

    1980-01-01

    Ride quality criteria for noise, vibration, and their combination in the helicopter cabin environment are discussed. Results are presented of laboratory and field studies of passenger responses to interior noise and vibration during the performance of a listening task and during reverie, as well as to the interaction of noise with multi-frequency and multi-axis vibration. A study of means for reducing helicopter interior noise based on analytical, experimental and flight studies of the near-field noise source characteristics of the aircraft, the transmission of noise through aircraft structures and the attenuation of noise by various noise control treatments is then presented which has resulted in a reduction of 3 dB in helicopter cabin noise. Finally, a model under development to evaluate passenger acceptance of a helicopter noise and vibration environment is indicated which incorporates the observed noise and vibration effects on comfort and is expected to provide insights for more effective noise and vibration control.

  17. Structural Acoustic Prediction and Interior Noise Control Technology

    NASA Technical Reports Server (NTRS)

    Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)

    2001-01-01

    This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.

  18. A community survey of helicopter noise annoyance conducted under controlled noise exposure conditions

    NASA Technical Reports Server (NTRS)

    Fields, J. M.; Powell, C. A.

    1985-01-01

    Reactions to low numbers of helicopter noise events (less than 50 per day) were studied in a community setting. Community residents were repeatedly interviewed about daily noise annoyance reactions on days when helicopter noise exposures were, without the residents' knowledge, controlled. The effects of maximum noise level and number of noise events on helicopter noise annoyance are consistent with the principles contained in LEQ-based noise indices. The effect of the duration of noise events is also consistent with LEQ-based indices. After removing the effect of differences in noise levels (LEQ) there is not an important difference between reactions to impulsive and nonimpulsive types of helicopters. EPNL, where corrected for number of overflights, and LEQ are approximately equally successful in representing the characteristics of noise which are related to human response. The new type of design provided estimates of the parameters in a noise reaction model which would not obtained with a similar degree of precision from conventional study designs.

  19. Modeling of a fluid-loaded smart shell structure for active noise and vibration control using a coupled finite element-boundary element approach

    NASA Astrophysics Data System (ADS)

    Ringwelski, S.; Gabbert, U.

    2010-10-01

    A recently developed approach for the simulation and design of a fluid-loaded lightweight structure with surface-mounted piezoelectric actuators and sensors capable of actively reducing the sound radiation and the vibration is presented. The objective of this paper is to describe the theoretical background of the approach in which the FEM is applied to model the actively controlled shell structure. The FEM is also employed to model finite fluid domains around the shell structure as well as fluid domains that are partially or totally bounded by the structure. Boundary elements are used to characterize the unbounded acoustic pressure fields. The approach presented is based on the coupling of piezoelectric and acoustic finite elements with boundary elements. A coupled finite element-boundary element model is derived by introducing coupling conditions at the fluid-fluid and fluid-structure interfaces. Because of the possibility of using piezoelectric patches as actuators and sensors, feedback control algorithms can be implemented directly into the multi-coupled structural-acoustic approach to provide a closed-loop model for the design of active noise and vibration control. In order to demonstrate the applicability of the approach developed, a number of test simulations are carried out and the results are compared with experimental data. As a test case, a box-shaped shell structure with surface-mounted piezoelectric actuators and four sensors and an open rearward end is considered. A comparison between the measured values and those predicted by the coupled finite element-boundary element model shows a good agreement.

  20. The Advanced Noise Control Fan Baseline Measurements

    NASA Technical Reports Server (NTRS)

    McAllister, Joseph; Loew, Raymond A.; Lauer, Joel T.; Stuliff, Daniel L.

    2009-01-01

    The NASA Glenn Research Center s (NASA Glenn) Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. As part of a complete upgrade, current baseline and acoustic measurements were documented. Extensive in-duct, farfield acoustic, and flow field measurements are reported. This is a follow-on paper to documenting the operating description of the ANCF.

  1. Noise transmission properties and control strategies for composite structures

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Beyer, Todd B.; Lester, Harold C.

    1991-01-01

    A study of several component technologies required to apply active control techniques to reduce interior noise in composite aircraft structures is described. The mechanisms of noise transmission in an all composite, large-scale, fuselage model are studied in an experimental program and found similar to mechanisms found in conventional aircraft construction. Two primary conditions of structural acoustic response are found to account for the dominant interior acoustic response. A preliminary study of active noise control in cylinders used piezoceramic actuators as force inputs for a simple aluminum fuselage model. These actuators provided effective control for the same two conditions of noise transmission found in the composite fuselage structure. The use of piezoceramic actuators to apply force inputs overcomes the weight and structural requirements of conventional shaker actuators. Finally, in order to accurately simulate these types of actuators in a cylindrical shell, two analytical models are investigated that apply either in-plane forces or bending moments along the boundaries of a finite patch. It is shown that the bending model may not be as effective as the force model for exciting the low order azimuthal modes that typically dominate the structural acoustic response in these systems. This result will affect the arrangement and distribution of actuators required for effective active control systems.

  2. Noise control in the transportation corridor.

    PubMed

    Manning, C J; Harris, G J

    2003-01-01

    This paper considers the opportunities for noise control within the route corridor required for construction of road, rail and other guided transport schemes. It deals with control of noise generation at source, and in the transmission path close to the point of generation. In this way it is possible to control the amount of acoustic power generated, and to absorb part of the radiated power at points of reflection. Purely reflective wayside barriers do little to absorb acoustic energy, merely reflecting it in a different direction. Whilst this has selfish benefits to the receptor in the shadow zone of the barrier, it makes things worse for others on the reflective side of the geometry. The paper therefore considers the options available to the engineer in the design of rolling and sliding interfaces and the use of acoustically absorptive finishes on all surfaces close to the point of noise generation. This includes the running surface itself, structural components, retaining walls, over and under passes, and the inner surfaces of track and wayside barriers.

  3. A noise immunity controlled quantum teleportation protocol

    NASA Astrophysics Data System (ADS)

    Li, Dong-fen; Wang, Rui-jin; Zhang, Feng-li; Baagyere, Edward; Qin, Zhen; Xiong, Hu; Zhan, Huayi

    2016-11-01

    With the advent of the Internet and information and communication technology, quantum teleportation has become an important field in information security and its application areas. This is because quantum teleportation has the ability to attain a timely secret information delivery and offers unconditional security. And as such, the field of quantum teleportation has become a hot research topic in recent years. However, noise has serious effect on the safety of quantum teleportation within the aspects of information fidelity, channel capacity and information transfer. Therefore, the main purpose of this paper is to address these problems of quantum teleportation. Firstly, in order to resist collective noise, we construct a decoherence-free subspace under different noise scenarios to establish a two-dimensional fidelity quantum teleportation models. And also create quantum teleportation of multiple degree of freedom, and these models ensure the accuracy and availability of the exchange of information and in multiple degree of freedom. Secondly, for easy preparation, measurement and implementation, we use super dense coding features to build an entangled quantum secret exchange channel. To improve the channel utilization and capacity, an efficient super dense coding method based on ultra-entanglement exchange is used. Thirdly, continuous variables of the controlled quantum key distribution were designed for quantum teleportation; in addition, we perform Bell-basis measurement under the collective noise and also prepare the storage technology of quantum states to achieve one-bit key by three-photon encoding to improve its security and efficiency. We use these two methods because they conceal information, resist a third party attack and can detect eavesdropping. Our proposed methods, according to the security analysis, are able to solve the problems associated with the quantum teleportation under various noise environments.

  4. Controlling of stochastic resonance and noise enhanced stability induced by harmonic noises in a bistable system

    NASA Astrophysics Data System (ADS)

    Wang, Chao-Jie; Long, Fei; Zhang, Pei; Nie, Lin-Ru

    2017-04-01

    Stochastic resonance (SR) and noise enhanced stability (NES) in a bistable system driven by an additive harmonic noise and a multiplicative harmonic noise is investigated. Through numerical simulation, we obtained the power spectrum by the Fourier transformation on time series. The results indicate that (i) for certain values of the parameters of additive harmonic noise Γ, Ω and the noise intensity D, the SR phenomenon occurs. It means we can control the SR phenomenon by modulating the parameters of harmonic noise; (ii) the NES phenomenon occurs at certain values of the parameters of multiplicative harmonic noise Γ, Ω and the multiplicative noise intensity Q. Most important, the NES phenomenon can also be controlled by modulating the parameters of harmonic noise.

  5. Advanced Noise Control Fan Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F., Jr.

    2009-01-01

    The Advanced Noise Control Fan at the NASA Glenn Research Center is used to experimentally analyze fan generated acoustics. In order to determine how a proposed noise reduction concept affects fan performance, flow measurements can be used to compute mass flow. Since tedious flow mapping is required to obtain an accurate mass flow, an equation was developed to correlate the mass flow to inlet lip wall static pressure measurements. Once this correlation is obtained, the mass flow for future configurations can be obtained from the nonintrusive wall static pressures. Once the mass flow is known, the thrust and fan performance can be evaluated. This correlation enables fan acoustics and performance to be obtained simultaneously without disturbing the flow.

  6. Wave field synthesis, adaptive wave field synthesis and ambisonics using decentralized transformed control: Potential applications to sound field reproduction and active noise control

    NASA Astrophysics Data System (ADS)

    Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw

    2005-09-01

    Sound field reproduction finds applications in listening to prerecorded music or in synthesizing virtual acoustics. The objective is to recreate a sound field in a listening environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. Classical WFS, therefore, does not perform well in a real reproduction space such as room. Previous work has suggested that it is physically possible to reproduce a progressive wave field in-room situation using active control approaches. In this paper, a formulation of adaptive wave field synthesis (AWFS) introduces practical possibilities for an adaptive sound field reproduction combining WFS and active control (with WFS departure penalization) with a limited number of error sensors. AWFS includes WFS and closed-loop ``Ambisonics'' as limiting cases. This leads to the modification of the multichannel filtered-reference least-mean-square (FXLMS) and the filtered-error LMS (FELMS) adaptive algorithms for AWFS. Decentralization of AWFS for sound field reproduction is introduced on the basis of sources' and sensors' radiation modes. Such decoupling may lead to decentralized control of source strength distributions and may reduce computational burden of the FXLMS and the FELMS algorithms used for AWFS. [Work funded by NSERC, NATEQ, Université de Sherbrooke and VRQ.] Ultrasound/Bioresponse to

  7. Tortuous path control valves for vibration and noise control

    SciTech Connect

    Miller, H.L.

    1996-09-01

    Control valves are needed in many offshore applications involving fluid pressure drop levels that result in excessive system noise and vibration. These situations occur in liquid and gas flow applications. The root cause of the destructive forces that result in noise and vibration is excessive fluid velocities and the kinetic energy associated with these velocities during the pressure letdown. These high uncontrolled velocities can also cause significant erosion of internal parts that would result in a measurable degradation of the valve performance. The use of a multi-path, multi-staged trim design results in fluid velocities that will eliminate the noise and vibration associated with the pressure letdown. Valves of this type are used in chokes, pipeline vents, flow to flare, compressor recycle, pump minimum flow, level control, pressure letdown, fire water control, and bypass flow to mention a few.

  8. Evaluation of piezoceramic actuators for control of aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Lefebvre, Sylvie; Metcalf, Vern L.; Beyer, Todd B.; Fuller, Chris R.

    1992-01-01

    Results of an experiment to evaluate piezoceramic actuators as the control actuator for active control of interior noise in a large-scale fuselage model are presented. Control was demonstrated for tonal excitation using a time domain least mean squares algorithm. A maximum of four actuator channels and six error signals were used. The actuators were employed for control of noise at frequencies where interior cavity modes were the dominant response and for driven acoustic responses where a structure resonance was dominant. Global reductions of 9 to 12 dB were obtained for the cases examined. The most effective configuration of skin-mounted actuators was found to be a pure in-plane forcing function as opposed to a bending excitation. The frame-mounted actuators were found to be equally effective as the skin-mounted actuators. However, both configurations resulted in local regions of unacceptably high vibration response in the structure.

  9. An Active Noise Control Stethoscope

    DTIC Science & Technology

    1993-08-24

    Laboratories delayed this final report beyond the 8-15-93 deadline. A large vehicle was driven in order to transport scientific equipment for making ...testing procedure with Al Williams, the director of Memphis Wings. Figure lb depicts two of the pi- lots, Bob Randall and Phil Scruggs, helping make room...Figures 2a and 2b depicts Jim Hendrix and Matt Miley making sure everything is working. Figures. 3a and 3b depict Bob Randall gettiug on board and running

  10. Active attenuation of propeller blade passage noise

    NASA Technical Reports Server (NTRS)

    Zalas, J. M.; Tichy, J.

    1984-01-01

    Acoustic measurements are presented to show that active cancellation can be used to achieve significant reduction of blade passage noise in a turboprop cabin. Simultaneous suppression of all blade passage frequencies was attained. The spatial volume over which cancellation occurred, however, is limited. Acoustic intensity maps are presented to show that the acoustic input to the fuselage was sufficiently non-localized so as to require more judicious selection of cancellation speaker location.

  11. Low noise spacecraft attitude control systems

    NASA Technical Reports Server (NTRS)

    Gondhalekar, Vijay; Downer, James R.; Eisenhaure, David B.; Hockney, Richard L.; Johnson, Bruce G.

    1991-01-01

    The authors describe two ongoing research efforts directed at developing advanced spacecraft momentum control flywheels. The first effort is directed at developing low-noise momentum wheels through the use of magnetic bearings. The second effort is directed at demonstrating critical subcomponents of an integrated power and attitude control system (IPACS) that stores energy as kinetic energy in mechanical rotors with the accompanying angular momentum available for attitude control of the spacecraft. The authors describe a ground experiment that was designed to demonstrate an energy storage capability of 1 kWh at a 40 Wh/kg energy density and a 1 kW electrical generation capacity at 85 percent round-trip efficiency and that will allow single-degree-of-freedom gimballing to quantify experimentally the bearing power requirements for processing the flywheel.

  12. Noise control in aeroacoustics; Proceedings of the 1993 National Conference on Noise Control Engineering, NOISE-CON 93, Williamsburg, VA, May 2-5, 1993

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H. (Editor)

    1993-01-01

    In the conference over 100 papers were presented in eight sessions: (1) Emission: Noise Sources; (2) Physical Phenomena; (3) Noise ControlElements; (4) Vibration and Shock: Generation, Transmission, Isolation, and Reduction; (5) Immission: Physical Aspects of Environmental Noise; (6) Immission: Effects of Noise; (7) Analysis; and (8) Requirements. In addition, the distinguished lecture series included presentations on the High Speed Civil Transport and on research from the United Kingdom on aircraft noise effects.

  13. Noise Control On Ships - Enabling Technologies

    DTIC Science & Technology

    2011-05-01

    Noise Induced Hearing Loss ( NIHL ) is described in this paper. Details are provided on existing and improved acoustic modeling tools that can be...warfighter performance. INTRODUCTION Navy personnel work and live in noise levels that put them at risk for Noise Induced Hearing Loss ( NIHL ) and...Navy‟s risk for NIHL /tinnitus and improve the noise environment on naval vessels. Hearing loss/tinnitus (ringing in the ears) poses a particular

  14. Noise Control in Propeller-Driven Aircraft

    NASA Technical Reports Server (NTRS)

    Rennison, D. C.; Wilby, J. F.

    1983-01-01

    Analytical model predicts noise levels inside propeller-driven aircraft during cruise at mach 0.8. Double wall sidewalls minimize interior noise and weight. Model applied to three aircraft with fuselages of different size (wide-body, narrow-body, and small-diameter) to determine noise reductions required to achieve A-weighted sound level not to exceed 80 dB.

  15. Engineering to Control Noise, Loading, and Optimal Operating Points

    SciTech Connect

    Mitchell R. Swartz

    2000-11-12

    Successful engineering of low-energy nuclear systems requires control of noise, loading, and optimum operating point (OOP) manifolds. The latter result from the biphasic system response of low-energy nuclear reaction (LENR)/cold fusion systems, and their ash production rate, to input electrical power. Knowledge of the optimal operating point manifold can improve the reproducibility and efficacy of these systems in several ways. Improved control of noise, loading, and peak production rates is available through the study, and use, of OOP manifolds. Engineering of systems toward the OOP-manifold drive-point peak may, with inclusion of geometric factors, permit more accurate uniform determinations of the calibrated activity of these materials/systems.

  16. MD-80 aft cabin noise control: A case history

    NASA Technical Reports Server (NTRS)

    Lang, M. A.; Lorch, D. R.; May, D. N.; Simpson, M. A.

    1992-01-01

    The interior noise technology program to improve the noise environment in the aft cabin of the MD-80 twin jet aircraft is discussed. Two potential noise control treatments were identified: vibration absorber devices for the airframe and for the engine. A series of ground and flight tests using in-service aircraft was then conducted. These tests showed that the vibration absorbers for the airframe and engine decreased aircraft noise significantly.

  17. MD-80 aft cabin noise control: A case history

    NASA Astrophysics Data System (ADS)

    Lang, M. A.; Lorch, D. R.; May, D. N.; Simpson, M. A.

    1992-07-01

    The interior noise technology program to improve the noise environment in the aft cabin of the MD-80 twin jet aircraft is discussed. Two potential noise control treatments were identified: vibration absorber devices for the airframe and for the engine. A series of ground and flight tests using in-service aircraft was then conducted. These tests showed that the vibration absorbers for the airframe and engine decreased aircraft noise significantly.

  18. Noise in gene expression: origins, consequences, and control.

    PubMed

    Raser, Jonathan M; O'Shea, Erin K

    2005-09-23

    Genetically identical cells and organisms exhibit remarkable diversity even when they have identical histories of environmental exposure. Noise, or variation, in the process of gene expression may contribute to this phenotypic variability. Recent studies suggest that this noise has multiple sources, including the stochastic or inherently random nature of the biochemical reactions of gene expression. In this review, we summarize noise terminology and comment on recent investigations into the sources, consequences, and control of noise in gene expression.

  19. Study on Noise Prediction Model and Control Schemes for Substation

    PubMed Central

    Gao, Yang; Liu, Songtao

    2014-01-01

    With the government's emphasis on environmental issues of power transmission and transformation project, noise pollution has become a prominent problem now. The noise from the working transformer, reactor, and other electrical equipment in the substation will bring negative effect to the ambient environment. This paper focuses on using acoustic software for the simulation and calculation method to control substation noise. According to the characteristics of the substation noise and the techniques of noise reduction, a substation's acoustic field model was established with the SoundPLAN software to predict the scope of substation noise. On this basis, 4 reasonable noise control schemes were advanced to provide some helpful references for noise control during the new substation's design and construction process. And the feasibility and application effect of these control schemes can be verified by using the method of simulation modeling. The simulation results show that the substation always has the problem of excessive noise at boundary under the conventional measures. The excess noise can be efficiently reduced by taking the corresponding noise reduction methods. PMID:24672356

  20. Control of Jet Noise Through Mixing Enhancement

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark; Brown, Cliff

    2003-01-01

    The idea of using mixing enhancement to reduce jet noise is not new. Lobed mixers have been around since shortly after jet noise became a problem. However, these designs were often a post-design fix that rarely was worth its weight and thrust loss from a system perspective. Recent advances in CFD and some inspired concepts involving chevrons have shown how mixing enhancement can be successfully employed in noise reduction by subtle manipulation of the nozzle geometry. At NASA Glenn Research Center, this recent success has provided an opportunity to explore our paradigms of jet noise understanding, prediction, and reduction. Recent advances in turbulence measurement technology for hot jets have also greatly aided our ability to explore the cause and effect relationships of nozzle geometry, plume turbulence, and acoustic far field. By studying the flow and sound fields of jets with various degrees of mixing enhancement and subsequent noise manipulation, we are able to explore our intuition regarding how jets make noise, test our prediction codes, and pursue advanced noise reduction concepts. The paper will cover some of the existing paradigms of jet noise as they relate to mixing enhancement for jet noise reduction, and present experimental and analytical observations that support these paradigms.

  1. Flow and Noise Control: Review and Assessment of Future Directions

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Choudhari, Meelan M.; Joslin, Ronald D.

    2002-01-01

    Technologies for developing radically new aerovehicles that would combine quantum leaps in cost, safety, and performance benefits with environmental friendliness have appeared on the horizon. This report provides both an assessment of the current state-of-the-art in flow and noise control and a vision for the potential gains to be made, in terms of performance benefit for civil and military aircraft and a unique potential for noise reduction, via future advances in flow and noise technologies. This report outlines specific areas of research that will enable the breakthroughs necessary to bring this vision to reality. Recent developments in many topics within flow and noise control are reviewed. The flow control overview provides succinct summaries of various approaches for drag reduction and improved maneuvering. Both exterior and interior noise problems are examined, including dominant noise sources, physics of noise generation and propagation, and both established and proposed concepts for noise reduction. Synergy between flow and noise control is a focus and, more broadly, the need to pursue research in a more concurrent approach involving multiple disciplines. Also discussed are emerging technologies such as nanotechnology that may have a significant impact on the progress of flow and noise control.

  2. Noise: how can the nuisance be controlled?

    PubMed

    Ollerhead, J B

    1973-09-01

    Aircraft noise is a major nuisance in residential communities around airports. If the air transport industries are to meet the ever increasing demand for air travel, determined efforts are required now to reduce the burden of noise upon these communities. Significant engine noise reductions have already been achieved in the latest generation of wide-bodied aircraft, and further reductions are being forecast by the engine manufacturers. Regardless of whether there are justifiable grounds for this optimism there are alternative steps to be taken. But the problem is basically an economic rather than a technological one - how much does noise reduction cost and how much can we afford to pay? The various costs of aircraft noise, both monetary and social, are discussed in relation to its effects upon people. Although an economic analysis of the problem is feasible, it is doubtful whether our understanding of the relationships between physical noise levels and human reaction is yet adequate for such purposes. Planning methods for estimating the extent of community noise nuisance are presented, and it is shown that consideration should be given to outlying regions exposed to relatively little aircraft noise.

  3. Hybrid Active/Passive Jet Engine Noise Suppression System

    NASA Technical Reports Server (NTRS)

    Parente, C. A.; Arcas, N.; Walker, B. E.; Hersh, A. S.; Rice, E. J.

    1999-01-01

    A novel adaptive segmented liner concept has been developed that employs active control elements to modify the in-duct sound field to enhance the tone-suppressing performance of passive liner elements. This could potentially allow engine designs that inherently produce more tone noise but less broadband noise, or could allow passive liner designs to more optimally address high frequency broadband noise. A proof-of-concept validation program was undertaken, consisting of the development of an adaptive segmented liner that would maximize attenuation of two radial modes in a circular or annular duct. The liner consisted of a leading active segment with dual annuli of axially spaced active Helmholtz resonators, followed by an optimized passive liner and then an array of sensing microphones. Three successively complex versions of the adaptive liner were constructed and their performances tested relative to the performance of optimized uniform passive and segmented passive liners. The salient results of the tests were: The adaptive segmented liner performed well in a high flow speed model fan inlet environment, was successfully scaled to a high sound frequency and successfully attenuated three radial modes using sensor and active resonator arrays that were designed for a two mode, lower frequency environment.

  4. Fan Noise Control Using Herschel-quincke Resonators

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo A.; Ng, Wing F.; Provenza, Andrew (Technical Monitor)

    2003-01-01

    The research effort proposed for this NASA NRA is mainly experimental. In addition, Virginia Tech is working in partnership with Goodrich Aerospace, Aerostructures Group for the analytical development needed to support the experimental endeavor, i.e. model development, design, and system studies. In this project, Herschel-Quincke (HQ)liner technology experiments will be performed at the NASA Glenn Active Noise Control Fan (ANCF) facility. A schematic of both inlet and aft HQ-liner systems installed in the ANCF rig as well as a picture of the Glenn facility is shown. The main goal is to simultaneously test in both the inlet and bypass duct sections. The by-pass duct will have HQ-systems in both the inner and outer duct walls. The main advantages of performing tests at the ANCF facility are that the effect of the inlet HQ-system on the by-pass HQ-system and vice versa, can be accurately determined from the in-duct modal data. Another significant advantage is that it offers the opportunity to assess (on a common basis) the proposed noise reduction concept on the ANCF rig which in the past has been used for assessing other active and passive noise reduction strategies.

  5. Brownian Ratchets: Transport Controlled by Thermal Noise

    NASA Astrophysics Data System (ADS)

    Kula, J.; Czernik, T.; Łuczka, J.

    1998-02-01

    We analyze directed transport of overdamped Brownian particles in a 1D spatially periodic potential that are subjected to both zero-mean thermal equilibrium Nyquist noise and zero-mean exponentially correlated dichotomous fluctuations. We show that particles can reverse the direction of average motion upon a variation of noise parameters if two fundamental symmetries, namely, the reflection symmetry of the spatial periodic structure, and the statistical symmetry of dichotomous fluctuations, are broken. There is a critical thermal noise intensity Dc, or equivalently a critical temperature Tc, at which the mean velocity of particles is zero. Below Tc and above Tc particles move in opposite directions. At fixed temperature, there is a region of noise parameters in which particles of different linear size are transported in opposite directions.

  6. Noise pollution resources compendium

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  7. UHB demonstrator interior noise control flight tests and analysis

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Druez, P. M.; Kimbrough, A. J.; Brock, M. P.; Burge, P. L.; Mathur, G. P.; Cannon, M. R.; Tran, B. N.

    1989-01-01

    The measurement and analysis of MD-UHB (McDonnell Douglas Ultra High Bypass) Demonstrator noise and vibration flight test data are described as they relate to passenger cabin noise. The analyses were done to investigate the interior noise characteristics of advanced turboprop aircraft with aft-mounted engines, and to study the effectiveness of selected noise control treatments in reducing passenger cabin noise. The UHB Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB engine. For these tests, the UHB engine was a General Electric Unducted Fan, with either 8x8 or 10x8 counter-rotating propeller configurations. Interior noise level characteristics were studied for several altitudes and speeds, with emphasis on high altitude (35,000 ft), high speed (0.75 Mach) cruise conditions. The effectiveness of several noise control treatments was evaluated based on cabin noise measurements. The important airborne and structureborne transmission paths were identified for both tonal and broadband sources using the results of a sound intensity survey, exterior and interior noise and vibration data, and partial coherence analysis techniques. Estimates of the turbulent boundary layer pressure wavenumber-frequency spectrum were made, based on measured fuselage noise levels.

  8. Hybrid Feedforward-Feedback Noise Control Using Virtual Sensors

    NASA Technical Reports Server (NTRS)

    Bean, Jacob; Fuller, Chris; Schiller, Noah

    2016-01-01

    Several approaches to active noise control using virtual sensors are evaluated for eventual use in an active headrest. Specifically, adaptive feedforward, feedback, and hybrid control structures are compared. Each controller incorporates the traditional filtered-x least mean squares algorithm. The feedback controller is arranged in an internal model configuration to draw comparisons with standard feedforward control theory results. Simulation and experimental results are presented that illustrate each controllers ability to minimize the pressure at both physical and virtual microphone locations. The remote microphone technique is used to obtain pressure estimates at the virtual locations. It is shown that a hybrid controller offers performance benefits over the traditional feedforward and feedback controllers. Stability issues associated with feedback and hybrid controllers are also addressed. Experimental results show that 15-20 dB reduction in broadband disturbances can be achieved by minimizing the measured pressure, whereas 10-15 dB reduction is obtained when minimizing the estimated pressure at a virtual location.

  9. Impedance control reduces instability that arises from motor noise.

    PubMed

    Selen, Luc P J; Franklin, David W; Wolpert, Daniel M

    2009-10-07

    There is ample evidence that humans are able to control the endpoint impedance of their arms in response to active destabilizing force fields. However, such fields are uncommon in daily life. Here, we examine whether the CNS selectively controls the endpoint impedance of the arm in the absence of active force fields but in the presence of instability arising from task geometry and signal-dependent noise (SDN) in the neuromuscular system. Subjects were required to generate forces, in two orthogonal directions, onto four differently curved rigid objects simulated by a robotic manipulandum. The endpoint stiffness of the limb was estimated for each object curvature. With increasing curvature, the endpoint stiffness increased mainly parallel to the object surface and to a lesser extent in the orthogonal direction. Therefore, the orientation of the stiffness ellipses did not orient to the direction of instability. Simulations showed that the observed stiffness geometries and their pattern of change with instability are the result of a tradeoff between maximizing the mechanical stability and minimizing the destabilizing effects of SDN. Therefore, it would have been suboptimal to align the stiffness ellipse in the direction of instability. The time course of the changes in stiffness geometry suggests that modulation takes place both within and across trials. Our results show that an increase in stiffness relative to the increase in noise can be sufficient to reduce kinematic variability, thereby allowing stiffness control to improve stability in natural tasks.

  10. Industrial noise control: Some case histories, volume 1

    NASA Technical Reports Server (NTRS)

    Hart, F. D.; Neal, C. L.; Smetana, F. O.

    1974-01-01

    A collection of solutions to industrial noise problems is presented. Each problem is described in simple terms, with noise measurements where available, and the solution is given, often with explanatory figures. Where the solution rationale is not obvious, an explanatory paragraph is usually appended. As a preface to these solutions, a short exposition is provided of some of the guiding concepts used by noise control engineers in devising their solutions.

  11. A compact inflow control device for simulating flight fan noise

    NASA Technical Reports Server (NTRS)

    Homyak, L.; Mcardle, J. G.; Heidelberg, L. J.

    1983-01-01

    Inflow control device (ICD's) of various shapes and sizes have been used to simulate inflight fan tone noise during ground static tests. A small, simple inexpensive ICD design was optimized from previous design and fabrication techniques. This compact two-fan-diameter ICD exhibits satisfactory acoustic performance characteristics without causing noise attenuation or redirection. In addition, it generates no important new noise sources. Design and construction details of the compact ICD are discussed and acoustic performance test results are presented.

  12. Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 2: Noise Control

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H. (Editor)

    1991-01-01

    Flight vehicles and the underlying concepts of noise generation, noise propagation, noise prediction, and noise control are studied. This volume includes those chapters that relate to flight vehicle noise control and operations: human response to aircraft noise; atmospheric propagation; theoretical models for duct acoustic propagation and radiation; design and performance of duct acoustic treatment; jet noise suppression; interior noise; flyover noise measurement and prediction; and quiet aircraft design and operational characteristics.

  13. Noise control in aeroacoustics; Proceedings of the 1993 National Conference on Noise Control Engineering, NOISE-CON 93, Williamsburg, VA, May 2-5, 1993

    NASA Astrophysics Data System (ADS)

    Hubbard, Harvey H.

    In the conference over 100 papers were presented in eight sessions: (1) Emission: Noise Sources; (2) Physical Phenomena; (3) Noise ControlElements; (4) Vibration and Shock: Generation, Transmission, Isolation, and Reduction; (5) Immission: Physical Aspects of Environmental Noise; (6) Immission: Effects of Noise; (7) Analysis; and (8) Requirements. In addition, the distinguished lecture series included presentations on the High Speed Civil Transport and on research from the United Kingdom on aircraft noise effects. For individual titles, see A95-90089 through A95-90141.

  14. Newly-Developed Adaptive Noise Absorption Control Technology for High Speed Fan Noise Reduction

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Koh, Masaharu; Ozaki, Shunichi; Yokochi, Makoto; Sato, Takuo

    The paper describes about a newly-developed adaptive noise absorption control (AAC) technology I for fan noise reduction and about proof test results of the technology. The AAC technology adaptively controls the reactance part of acoustic impedance of duct liners with mobile reflective plates and large acoustic chambers, absorbs fan tones and broadband noise together, and achieves larger overall fan noise reduction over a wide fan speed range. For actual proof of the technology, adaptive duct liner I was made on trial basis and was examined. The test result clarifies that the duct liner I could reduce fan noise larger than O.A. SPL 10dB (A) at max fan speed of 6000rpm, including reduction of low frequency noise and fundamental BPF tone and harmonics of 18dB at maximum. In response to fan speed change, the reflective plate movement control could achieve the large peak frequency shift and peak level increase in the acoustic absorption spectra, and could reduce fan noise larger than O.A. SPL 9dB (A) over the fan speed range from 1000 to 6000rpm.

  15. Flow and Noise Control: Toward a Closer Linkage

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Choudhari, Meelan M.; Joslin, Ronald D.

    2002-01-01

    Motivated by growing demands for aircraft noise reduction and for revolutionary new aerovehicle concepts, the late twentieth century witnessed the beginning of a shift from single-discipline research, toward an increased emphasis on harnessing the potential of flow and noise control as implemented in a more fully integrated, multidisciplinary framework. At the same time, technologies for developing radically new aerovehicles, which promise quantum leap benefits in cost, safety and performance benefits with environmental friendliness, have appeared on the horizon. Transitioning new technologies to commercial applications will also require coupling further advances in traditional areas of aeronautics with intelligent exploitation of nontraditional and interdisciplinary technologies. Physics-based modeling and simulation are crucial enabling capabilities for synergistic linkage of flow and noise control. In these very fundamental ways, flow and noise control are being driven to be more closely linked during the early design phases of a vehicle concept for optimal and mutual noise and performance benefits.

  16. Cabin Noise Control for Twin Engine General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1982-01-01

    An analytical model based on modal analysis was developed to predict the noise transmission into a twin-engine light aircraft. The model was applied to optimize the interior noise to an A-weighted level of 85 dBA. To achieve the required noise attenuation, add-on treatments in the form of honeycomb panels, damping tapes, acoustic blankets, septum barriers and limp trim panels were added to the existing structure. The added weight of the noise control treatment is about 1.1 percent of the total gross take-off weight of the aircraft.

  17. Noise control for rapid transit cars on elevated structures

    NASA Astrophysics Data System (ADS)

    Hanson, C. E.

    1983-03-01

    Noise control treatments for the propulsion motor noise of rapid transit cars on concrete elevated structures and the noise reduction from barrier walls were investigated by using acoustical scale models and supplemented by field measurements of noise from trains operated by the Port Authority Transportation Corporation (PATCO) in New Jersey. The results show that vehicle skirts and undercar sound absorption can provide substantial cost-effective reductions in propulsion noise at the wayside of transit systems with concrete elevated guideways. The acoustical scale model noise reductions applied to PATCO vehicles on concrete elevated structures show reductions in the A-weighted noise levels of 5 dB for undercar sound absorption, 5 dB for vehicle skirts, and 10 dB for combined undercar absorption and vehicle skirts. Acoustical scale model results for sound barrier walls lined with absorptive treatment showed reductions from 7 dB to 12 dB of noise from vehicles in the far track, depending on the height of the wall, and reductions from 12 dB to 20 dB of noise from vehicles on the near track. Transit vehicles at high speeds where propulsion system noise dominates are 7 dB(A) noisier at 50 ft on concrete elevated structures than on at-grade on tie and ballast. Of this amount, 3 dB is due to loss of ground effect, and 4 dB is due to the absence of undercar absorption provided by ballast.

  18. AIR DISTRIBUTION NOISE CONTROL IN CRITICAL AUDITORIUMS.

    ERIC Educational Resources Information Center

    HOOVER, R.M.

    THE ACHIEVEMENT OF EXTREMELY LOW AIR-CONDITIONING NOISE LEVELS REQUIRED FOR MODERN AUDITORIUMS ARE THE RESULT OF CAREFUL PLANNING AND THOROUGH DETAILING. PROBLEMS FACED AND TECHNIQUES USED IN ARRIVING AT LEVELS AS LOW AS NC-15 FOR A SINGLE SYSTEM SERVING A HALL ARE DESCRIBED. SIX CASE HISTORIES ARE EXAMINED AND THE FOLLOWING OBSERVATIONS ARE…

  19. Noise control at washery plants and installations

    SciTech Connect

    Fore, J.; Santamaria, J.

    1980-01-01

    In the last few years a series of acoustic investigations has been conducted at washery plants and installations. Experiments have shown that the noise level in a number of work areas significantly exceeds 90 dB and reaches 100 dB and over in work areas, for example on such equipment as screens. Prolonged work under high noise conditions may result in the appearance of occupational deafness in the operating personnel; the noise practically prevents any communication, simultaneously increasing the hazard and degrading the quality of the work. Conclusions from the studies were: (1) The classifiers and all drops and chutes are a source of severe noise at washeries. (2) Obvious acoustic insulation materials are rubber or plastics, used in place of metal elements or as a coating for them. (3) Solving the problem of selection of these materials depends on consideration of various factors: the characteristics of the products being processed, the heights and angles of drops, the type of classifier, the accuracy of separation and the output of the screening surfaces. (4) The acoustic adsorption characteristics of large buildings not divided by walls, such as modern washeries, are so high that there is no necessity for any acoustic modification of these buildings.

  20. Optimization of Resilient Wheels for Rolling Noise Control

    NASA Astrophysics Data System (ADS)

    BOUVET, PASCAL; VINCENT, NICOLAS; COBLENTZ, ARNAUD; DEMILLY, FRANÇOIS

    2000-03-01

    Resilient wheels are currently used on light rail systems such as tramways to prevent squealing noise and to reduce impact noise. On the other hand, they are rarely found on main lines (passenger rolling stock and freight rolling stock). Although manufacturers often claim that resilient wheels are favourable for rolling noise control, no extensive theoretical investigation confirming this statement has been published to date. In this paper, it is shown how resilient wheels can be effectively optimised in order to reduce rolling noise emission, compared to a conventional monobloc wheel. A preliminary analysis of the physical phenomena accounting for rolling noise generation emphasizes the key design parameters affecting both wheel and radiation. These parameters are the radial dynamic stiffness and damping loss factor of the rubber layer. The tread mass is also relevant. The influence of these design parameters is then qualified by a parametric study performed with the TWINS software. An optimum radial dynamic stiffness of the resilient layer is found which depends on operating conditions. Reductions in overall rolling noise up to 3 dB(A) are calculated for the configurations investigated. However, poor selection of the design parameters can lead to a noise increase compared to a standard monobloc wheel. It is also shown that a proper design for rolling noise control will not affect wheel efficiency with regard to squeal noise.

  1. Structure-borne noise control for propeller aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1987-01-01

    A laboratory test apparatus was developed which would allow the study and development of propeller wake/vortex-induced structure-borne interior noise control measures. Various methods of wing structural modification, including blocking masses, surface damping treatments, and tuned mechanical absorbers, were evaluated relative to reduced interior noise levels. Inboard wing fuel was found to act as an effective blocking mass. Wing panel add-on damping treatment in the form of a single, constrained layer was not an effective control measure, except in the area of the propeller wake. However, highly damped, tuned mechanical absorbers were found to be the most efficient structure-borne noise (SBN) control measure.

  2. INVITED PAPER: Application of an active device for helicopter noise reduction in JAXA

    NASA Astrophysics Data System (ADS)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada

    2010-02-01

    Important issues in noise problems for current helicopters are described. An active tab (AT) was developed as a new active device for noise/vibration reduction under research cooperation between Japan Aerospace Exploration Agency (JAXA) and Kawada Industries, Inc. The wind tunnel test was conducted in order to investigate the effectiveness of the AT on the aeroacoustic characteristics of a helicopter. From the wind tunnel test, the capability of reducing blade vortex interaction (BVI) noise by an AT was verified. A new control law using instantaneous pressure change on a blade during BVI phenomena was introduced and applied to the wind tunnel testing. This new control law shows reasonable controllability for helicopter noise reduction. Furthermore, in order to analyze noise characteristics, the advanced computational fluid dynamics (CFD) code named JAXA_ov3d was developed in JAXA and extended to include CFD-CSD (computational structure dynamics) coupling by using the beam theory for blade deformation.

  3. Noise control zone for a periodic ducted Helmholtz resonator system.

    PubMed

    Cai, Chenzhi; Mak, Cheuk Ming

    2016-12-01

    This paper presents a theoretical study of the dispersion characteristics of sound wave propagation in a periodic ducted Helmholtz resonator (HR) system. The predicted result fits well with a numerical simulation using a finite element method. This study indicates that for the same system, no matter how many HRs are connected or what the periodic distance is, the area under average transmission loss T L¯ curves is always the same. The broader the noise attenuation band, the lower the peak attenuation amplitude. A noise control zone compromising the attenuation bandwidth or peak amplitude is proposed for noise control optimization.

  4. Effect of individual blade control on noise radiation

    NASA Technical Reports Server (NTRS)

    Swanson, S. M.; Jacklin, Stephen A.; Niesl, G.; Blaas, Achim; Kube, R.

    1995-01-01

    In a joint research program of NASA Ames Research Center, ZF Luftfahrttechnik, the German Aerospace Research Establishment (DLR), and EUROCOPTER Deutschland, a wind tunnel test was performed to evaluate the effects of Individual Blade Control (IBC) on rotor noise. This test was conducted in the 40x80 ft wind tunnel at NASA Ames Research Center, utilizing a full scale MBB-BO 105 four-bladed rotor system. Three microphones were installed for determination of the radiated noise, two of them on a moveable traverse below the advancing blade side and one in a fixed location below the retreating side. Acoustic results are presented for flight conditions with Blade-Vortex-Interaction (BVI) noise radiation. High noise level reductions were measured for single harmonic control inputs. In addition to the single harmonic inputs, multi-harmonic inputs were evaluated by superimposing 2/rev to 6/rev harmonics. For the first time the efficiency of sharp wavelets (60 deg and 90 deg width) on acoustic noise were measured. In order to achieve an adequate wavelet shape at the blade tip, corrections were made to account for the blade torsional behavior. In parallel with the acoustic measurements, vibratory loads were measured during the BVI flight condition to correlate the effects of IBC on noise and vibrations. It is shown how noise levels and vibrations are affected by specific IBC control inputs. In addition, correlations are made between noise levels and acoustic time histories with IBC phase and amplitude variations. For one IBC input mode with high noise reducing efficiency, a sweep of the moveable microphone traverse below the advancing side shows the effect on BVI noise directivity.

  5. A Guidance Document on Airport Noise Control.

    DTIC Science & Technology

    1980-08-01

    so on. This method can also be applied to numbers of sensitive sites ( schools , churches, hospitals, and nursing homes, for example) or to acres of...original runway, 8L, was used as the primary departure runway for heavy 4-engine narrow body aircraft, such as the Boeing 707, schools in the Kalihi...13,000 school children were exposed to noise levels of 85 PNdB and above for total periods up to one hour per school day. Now, with 8R as the primary

  6. Using VAPEPS for noise control on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Badilla, Gloria; Bergen, Thomas; Scharton, Terry

    1991-01-01

    Noise environmental control is an important design consideration for Space Station Freedom (SSF), both for crew safety and productivity. Acoustic noise requirements are established to eliminate fatigue and potential hearing loss by crew members from long-term exposure and to facilitate speech communication. VAPEPS (VibroAcoustic Payload Environment Prediction System) is currently being applied to SSF for prediction of the on-orbit noise and vibration environments induced in the 50 to 10,000 Hz frequency range. Various sources such as fans, pumps, centrifuges, exercise equipment, and other mechanical devices are used in the analysis. The predictions will be used in design tradeoff studies and to provide confidence that requirements will be met. Preliminary predictions show that the required levels will be exceeded unless substantial noise control measures are incorporated in the SSF design. Predicted levels for an SSF design without acoustic control treatments exceed requirements by 25 dB in some one-third octave frequency bands.

  7. William W. Lang's contributions to the development of the International Institute of Noise Control Engineering

    NASA Astrophysics Data System (ADS)

    Kihlman, Tor

    2005-09-01

    Bill Lang has been a member of the Board of I-INCE since its first meeting in 1975 in Sendai, Japan. From 1988 to 1999 he served as the President, and to this day remains a very active member of the Board. The INTER-NOISE congress series has been the core activity of I-INCE, and in every case Bill has contributed very actively to secure an excellent congress. He has also taken a number of initiatives both to improve the organization itself and to develop new activities, especially the Technical Study Groups that have prepared consensus reports on important issues such as noise barrier effectiveness and industrial noise hearing conservation policy. At present, he is very active in attempting to develop a global noise control policy.

  8. Cylindrical Panel Interior Noise Control Using a Pair of Piezoelectric Actuator and Sensor

    NASA Astrophysics Data System (ADS)

    LIN, O. R.; LIU, Z.-X.; WANG, Z.-L.

    2001-09-01

    Active control of acoustic pressure in a cylindrical cavity with a flexible cylindrical panel using a pair of piezoelectric actuator and sensor, which is one part of the cylindrical panel, is simulated. Model expansion method is used in the establishment of the state equation of the system. The active vibration control of the cylindrical panel and the interior noise reduction are performed by applying the linear quadratic Gaussian (LQG) control theory to the structural acoustic coupled system. Two cases of different external forces acting on the cylindrical panel are illustrated. The results demonstrate that such a control system can efficiently reduce the structural-borne noise.

  9. Inter-noise 89 - Engineering for environmental noise control; Proceedings of the International Conference on Noise Control Engineering, Newport Beach, CA, Dec. 4-6, 1989. Vols. 1 & 2

    NASA Astrophysics Data System (ADS)

    Maling, George C., Jr.

    Recent advances in noise analysis and control theory and technology are discussed in reviews and reports. Topics addressed include noise generation; sound-wave propagation; noise control by external treatments; vibration and shock generation, transmission, isolation, and reduction; multiple sources and paths of environmental noise; noise perception and the physiological and psychological effects of noise; instrumentation, signal processing, and analysis techniques; and noise standards and legal aspects. Diagrams, drawings, graphs, photographs, and tables of numerical data are provided.

  10. Broadband Noise Control Using Predictive Techniques

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Juang, Jer-Nan

    1997-01-01

    Predictive controllers have found applications in a wide range of industrial processes. Two types of such controllers are generalized predictive control and deadbeat control. Recently, deadbeat control has been augmented to include an extended horizon. This modification, named deadbeat predictive control, retains the advantage of guaranteed stability and offers a novel way of control weighting. This paper presents an application of both predictive control techniques to vibration suppression of plate modes. Several system identification routines are presented. Both algorithms are outlined and shown to be useful in the suppression of plate vibrations. Experimental results are given and the algorithms are shown to be applicable to non- minimal phase systems.

  11. Impact of Azimuthally Controlled Fluidic Chevrons on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Norum, Thomas D.

    2008-01-01

    The impact of azimuthally controlled air injection on broadband shock noise and mixing noise for single and dual stream jets was investigated. The single stream experiments focused on noise reduction for low supersonic jet exhausts. Dual stream experiments included high subsonic core and fan conditions and supersonic fan conditions with transonic core conditions. For the dual stream experiments, air was injected into the core stream. Significant reductions in broadband shock noise were achieved in a single jet with an injection mass flow equal to 1.2% of the core mass flow. Injection near the pylon produced greater broadband shock noise reductions than injection at other locations around the nozzle periphery. Air injection into the core stream did not result in broadband shock noise reduction in dual stream jets. Fluidic injection resulted in some mixing noise reductions for both the single and dual stream jets. For subsonic fan and core conditions, the lowest noise levels were obtained when injecting on the side of the nozzle closest to the microphone axis.

  12. The spatial structure of underwater noise due to shipping activities in the Celtic Sea

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Shapiro, Georgy; Thain, Richard

    2014-05-01

    Underwater noise is now classed as pollution alongside chemical pollution and marine litter (MSFD, 2012). Underwater noise from man-made sources arises from a number of sources including shipping activities. There are numerous examples of sound-induced effects recorded for various marine mammals, either in controlled situations, or opportunistically (MSFD-GES, 2012). Broad or narrow band continuous sounds, as well as pulses, have been documented to cause effects ranging from slight behaviour change, to activity disruption, avoidance or abandonment of preferred habitat (see Clark et al., 2009). Underwater ambient noise generated by shipping activities has increased significantly over the past decades (e.g. Mcdonald et al., 2006). Noise from shipping is a major contributor to the ambient noise levels in ocean, particularly at low (

  13. A noise control package for vibrating screens1),2)

    PubMed Central

    Lowe, M. Jenae; Yantek, David S.; Yang, Junyi; Schuster, Kevin C.; Mechling, Jessie J.

    2015-01-01

    Hearing loss was the second-most common illness reported to the Mine Safety and Health Administration (MSHA) in 2009. Furthermore, between 2000 and 2010, 30% of all noise-related injury complaints reported to MSHA were for coal preparation plant employees. Previous National Institute for Occupational Safety and Health (NIOSH) studies have shown that vibrating screens are key noise sources to address in order to reduce coal preparation plant noise. In response, NIOSH researchers have developed a suite of noise controls for vibrating screens consisting of constrained layer damping (CLD) treatments, a tuned mechanism suspension, an acoustic enclosure, and spring inserts. Laboratory testing demonstrates that this noise control suite reduces the A-weighted sound power level of the vibrating screen by 6 dB. To provide a comparison to laboratory results and prove durability, field testing of two noise controls was performed on a vibrating screen in a working coal preparation plant. The spring inserts and CLD treatments were selected due to their ease of installation and practicability. Field testing of these controls yielded reductions that were comparable to laboratory results. PMID:26257468

  14. Publications in acoustic and noise control from NASA Langley Research Center during 1940-1979. [bibliographies

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1980-01-01

    Reference lists of approximately 900 published Langley Research Center reports in various areas of acoustics and noise control for the period 1940-1979 are presented. Specific topic areas covered include: duct acoustics; propagation and operations; rotating blade noise; jet noise; sonic boom; flow surface interaction noise; structural response/interior noise; human response; and noise prediction.

  15. Compressor noise control begins with design--Part 2. [Noise pollution control for natural gas pipeline compressor stations

    SciTech Connect

    Frank, L. )

    1993-09-01

    Reduction of noise pollution at gas compressor stations associated with natural gas pipelines and distribution systems, has long been a complex problem. Specified noise levels of individual components tell nothing of the overall system when it is installed and placed in a site-specific setting. Further, testing for compliance performance guarantees is virtually impossible to conduct at a distant location because one cannot distinguish among various contributing noise sources. This paper develops a plan for calculating an estimate of sound generation from a compressor station and the methods for controlling and measuring sounds of individual components. It also classifies the types of noise and gives various methods of dealing with each noise type.

  16. Hybrid Fluid-borne Noise Control in Fluid-filled Pipelines

    NASA Astrophysics Data System (ADS)

    Pan, M.; Johnston, N.; Plummer, A.

    2016-09-01

    This article reports on an initial investigation of a hybrid fluid-borne noise control system in hydraulic pipelines. The hybrid system is built by integrating an active feedforward noise controller with passive tuned flexible hoses. The active attenuator is designed to cancel the dominant harmonic pressure pulsations in the fluid line, while the passive hose is tuned to attenuate the residual high frequency pulsations. The active attenuator can effectively decrease the fluid-borne noise by superimposing a secondary anti-phase control signal. Adaptive notch filters with the filtered-X least mean square algorithm were applied for the controller and a frequency-domain least mean square filter was used for the secondary path on-line identification. The transmission line model was used to model the pipeline, and a time-domain hose model which includes coupling of longitudinal wall and fluid waves was used to model the flexible hose. Simulation results show that very good noise cancellation was achieved using the proposed approach, which has several advantages over existing fluid-borne noise control systems, being effective for a wide range of frequencies without impairing the system dynamic response much. While the flexible hoses may be less effective than purpose-built passive silencers, they can form an inexpensive and practical solution in combination with active control.

  17. Firefighter noise exposure during training activities and general equipment use.

    PubMed

    Root, Kyle S; Schwennker, Catherine; Autenrieth, Daniel; Sandfort, Delvin R; Lipsey, Tiffany; Brazile, William J

    2013-01-01

    Multiple noise measurements were taken on 6 types of fire station equipment and 15 types of emergency response vehicle-related equipment used by firefighters during routine and emergency operations at 10 fire stations. Five of the six types of fire station equipment, when measured at a distance of one meter and ear level, emitted noise equal to or greater than 85 dBA, including lawn maintenance equipment, snow blowers, compressors, and emergency alarms. Thirteen of 15 types of equipment located on the fire engines emitted noise levels equal to or greater than 85 dBA, including fans, saws, alarms, and extrication equipment. In addition, noise measurements were taken during fire engine operations, including the idling vehicle, vehicle sirens, and water pumps. Results indicated that idling fire-engine noise levels were below 85 dBA; however, during water pump and siren use, noise levels exceeded 85 dBA, in some instances, at different locations around the trucks where firefighters would be stationed during emergency operations. To determine if the duration and use of fire fighting equipment was sufficient to result in overexposures to noise during routine training activities, 93 firefighter personal noise dosimetry samples were taken during 10 firefighter training activities. Two training activities per sampling day were monitored during each sampling event, for a mean exposure time of 70 min per day. The noise dosimetry samples were grouped based on job description to compare noise exposures between the different categories of job tasks commonly associated with fire fighting. The three job categories were interior, exterior, and engineering. Mean personal dosimetry results indicated that the average noise exposure was 78 dBA during the training activities that lasted 70 min on average. There was no significant difference in noise exposure between each of the three job categories. Although firefighters routinely use equipment and emergency response vehicles that

  18. Lightweight sidewalls for aircraft interior noise control

    NASA Technical Reports Server (NTRS)

    May, D. N.; Plotkin, K. J.; Selden, R. G.; Sharp, B. H.

    1985-01-01

    A theoretical and experimental study was performed to devise lightweight sidewalls for turboprop aircraft. Seven concepts for new sidewalls were analyzed and tested for noise reduction using flat panels of 1.2 m x 1.8 m (4 ft x 6 ft), some of which were aircraft-type constructions and some of which were simpler, easier-to-construct panels to test the functioning of an acoustic principle. Aircraft-application sidewalls were then conceived for each of the seven concepts, and were subjectively evaluated for their ability to meet aircraft nonacoustic design requirements. As a result of the above, the following sidewall concepts were recommended for further investigation: a sidewall in which the interior cavity is vented to ceiling and underfloor areas; sidewalls with wall-mounted resonators, one having a conventional trim panel and one a limp one; and a sidewall with a stiff outer wall and a limp trim panel. These sidewalls appear to promise lower weights than conventional sidewalls adjusted to meet similar acoustic requirements, and further development may prove them to be practical.

  19. Effects of Noise on Asymmetric Bidirectional Controlled Teleportation

    NASA Astrophysics Data System (ADS)

    Nie, Yi-you; Sang, Ming-huang

    2016-11-01

    We present a scheme for asymmetric bidirectional controlled teleportation via a six-qubit cluster state in noisy environments, which includes the phase-damping and amplitude-damping channels. We analytically derive the fidelities of the asymmetric bidirectional controlled teleportation process in these two noise channels. We show that the fidelities only depend on the initial state and the noisy rate.

  20. Factors affecting farm noise during common agricultural activities.

    PubMed

    Franklin, R C; Depczynski, J; Challinor, K; Williams, W; Fragar, L J

    2006-05-01

    Hearing injury due to exposure to excessive noise during common farming activities is a significant problem for farmers. The aim of this study was to investigate factors that affect the level of risk to hearing caused by common farming activities. Noise levels on farms were measured across a range of activities and producer groups, and situational factors that effect noise levels were also investigated. Older tractors were found to be 6 dB louder than newer tractors. Cabs reduced noise to the operator by 16 dB, which was halved to 8 dB if a door was open. Radios added between 3 and 5 dB to the noise in the cab. These variables significantly affect the noise level at the ear of operators and others in the workplace, and affect the subsequent exposure limits that are considered safe. Situational factors need to be considered in assessing the level of risk to farmers' hearing and in choosing noise management strategies on the farm. This information has been incorporated into material about hearing and discussions with farmers who participated in field day hearing screening programs in Australia.

  1. Acoustic Aspects of Active-Twist Rotor Control

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Wilbur, Matthew L.

    2002-01-01

    The use of an Active Twist Rotor system to provide both vibration reduction and performance enhancement has been explored in recent analytical and experimental studies. Effects of active-twist control on rotor noise, however, had not been determined. During a recent wind tunnel test of an active-twist rotor system, a set of acoustic measurements were obtained to assess the effects of active-twist control on noise produced by the rotor, especially blade-vortex interaction (BVI) noise. It was found that for rotor operating conditions where BVI noise is dominant, active-twist control provided a reduction in BVI noise level. This BVI noise reduction was almost, but not quite, as large as that obtained in a similar test using HHC. However, vibration levels were usually adversely affected at operating conditions favoring minimum BVI noise. Conversely, operating conditions favoring minimum vibration levels affected BVI noise levels, but not always adversely.

  2. Updating working memory in aircraft noise and speech noise causes different fMRI activations.

    PubMed

    Saetrevik, Bjørn; Sörqvist, Patrik

    2015-02-01

    The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between "substitution processes," which involve adding new items to the working memory representation and suppressing old items, and "exclusion processes," which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees.

  3. Updating working memory in aircraft noise and speech noise causes different fMRI activations

    PubMed Central

    Sætrevik, Bjørn; Sörqvist, Patrik

    2015-01-01

    The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between “substitution processes,” which involve adding new items to the working memory representation and suppressing old items, and “exclusion processes,” which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees. PMID:25352319

  4. Voice communications in the cockpit noise environment: The role of active noise reduction

    NASA Astrophysics Data System (ADS)

    Wheeler, Peter David

    The topic of voice communications in the cockpit noise environment of modern fast-jet aircraft and helicopters is addressed, and in particular, research undertaken in support of the development of a system for reducing the noise level at the operators' ear is described by acoustic cancellation within the ear defender, known as active noise reduction (ANR). The internal noise spectra of today's high performance fast-jet aircraft and military helicopters is described, and the complex interaction of acoustic noise transmission, speech, and microphone noise pick-up, which produces the total acoustic environment at the aircrews' ears, is discussed. Means of mathematically modelling the audio channel, quantifying the components identified above, and identifying areas of shortfall in performance are derived, leading to a procedure for the development of attenuation requirements, described as the communications audit. A model of the electroacoustic characteristics of the ANR ear defender assembly is presented and the sound field distribution within the ear defender/ear cavity, and its effect upon cancellation performance, is discussed. The extensive laboratory and flight testing of the ANR system that was undertaken is reviewed, paying particular attention to the measurement and analysis techniques employed in such testing. Finally, the performance characteristics of ANR are discussed and compared with the requirements previously established. Design limitations placed upon the system by the constraints of its area of application are described, and the scope for future improvements is considered.

  5. Comparison of speech intelligibility in cockpit noise using SPH-4 flight helmet with and without active noise reduction

    NASA Technical Reports Server (NTRS)

    Chan, Jeffrey W.; Simpson, Carol A.

    1990-01-01

    Active Noise Reduction (ANR) is a new technology which can reduce the level of aircraft cockpit noise that reaches the pilot's ear while simultaneously improving the signal to noise ratio for voice communications and other information bearing sound signals in the cockpit. A miniature, ear-cup mounted ANR system was tested to determine whether speech intelligibility is better for helicopter pilots using ANR compared to a control condition of ANR turned off. Two signal to noise ratios (S/N), representative of actual cockpit conditions, were used for the ratio of the speech to cockpit noise sound pressure levels. Speech intelligibility was significantly better with ANR compared to no ANR for both S/N conditions. Variability of speech intelligibility among pilots was also significantly less with ANR. When the stock helmet was used with ANR turned off, the average PB Word speech intelligibility score was below the Normally Acceptable level. In comparison, it was above that level with ANR on in both S/N levels.

  6. Photon-noise effect on detection in coherent active images.

    PubMed

    Réfrégier, Philippe; Goudail, François; Delyon, Guillaume

    2004-01-15

    We analyze photon-noise effects on target detection performance in low-flux coherent active imagery systems. We show that when photon noise is expected, the performance of classical detection techniques designed for pure and fully developed speckle images can be improved with no increase in algorithm complexity. Furthermore, the mean photon number under which photon noise becomes sensitive is higher when the target and background mean values are unknown than in the idealized case, where they are assumed to be known, and when the reflectivity ratio between the target and the background is low.

  7. Influence of perturbative phase noise on active coherent polarization beam combining system.

    PubMed

    Ma, Pengfei; Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Su, Rongtao; Liu, Zejin

    2013-12-02

    In this manuscript, the influence of perturbative phase noise on active coherent polarization beam combining (CPBC) system is studied theoretically and experimentally. By employing a photo-detector to obtain phase error signal for feedback loop, actively coherent polarization beam combining of two 20 W-level single mode polarization-maintained (PM) fiber amplifiers are demonstrated with more than 94% combining efficiency. Then the influence of perturbative phase noise on active CPBC system is illustrated by incorporating a simulated phase noise signal in one of the two amplifiers. Experimental results show that the combining efficiency of the CPBC system is susceptible to the frequency or amplitude of the perturbative phase noise. In order to ensure the combining efficiency of the unit of CPBC system higher than 90%, the competence of our active phase control module for high power operation is discussed, which suggests that it could be worked at 100s W power level. The relationship between residual phase noise of the active controller and the normalized voltage signal of the photo-detector is developed and validated experimentally. Experimental results correspond exactly with the theoretically analyzed combining efficiency. Our method offers a useful approach to estimate the influence of phase noise on CPBC system.

  8. Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks.

    PubMed

    Solanka, Lukas; van Rossum, Mark C W; Nolan, Matthew F

    2015-07-06

    Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength.

  9. Low Dimensional Methods for Jet Noise Control

    DTIC Science & Technology

    2007-11-02

    and is capable of operating in temperatures of up to 26000 F (14500 C) with minimal growth. The pressure drop through a 3.2in. (8.13cm.) substrate...6, 50% to 100% Figure 10. New base SPL conditions with fan blade speeds. MUA unit at 85%, eductor fan on, T~f = 750 In accordance with ISO 3745...heater, control valve). Therefore, we do not anticipate any changes and will not wait for the facility’s ISO validation to continue further with this

  10. White noise improves learning by modulating activity in dopaminergic midbrain regions and right superior temporal sulcus.

    PubMed

    Rausch, Vanessa H; Bauch, Eva M; Bunzeck, Nico

    2014-07-01

    In neural systems, information processing can be facilitated by adding an optimal level of white noise. Although this phenomenon, the so-called stochastic resonance, has traditionally been linked with perception, recent evidence indicates that white noise may also exert positive effects on cognitive functions, such as learning and memory. The underlying neural mechanisms, however, remain unclear. Here, on the basis of recent theories, we tested the hypothesis that auditory white noise, when presented during the encoding of scene images, enhances subsequent recognition memory performance and modulates activity within the dopaminergic midbrain (i.e., substantia nigra/ventral tegmental area, SN/VTA). Indeed, in a behavioral experiment, we can show in healthy humans that auditory white noise-but not control sounds, such as a sinus tone-slightly improves recognition memory. In an fMRI experiment, white noise selectively enhances stimulus-driven phasic activity in the SN/VTA and auditory cortex. Moreover, it induces stronger connectivity between SN/VTA and right STS, which, in addition, exhibited a positive correlation with subsequent memory improvement by white noise. Our results suggest that the beneficial effects of auditory white noise on learning depend on dopaminergic neuromodulation and enhanced connectivity between midbrain regions and the STS-a key player in attention modulation. Moreover, they indicate that white noise could be particularly useful to facilitate learning in conditions where changes of the mesolimbic system are causally related to memory deficits including healthy and pathological aging.

  11. Collisional activation with random noise in ion trap mass spectrometry.

    PubMed

    McLuckey, S A; Goeringer, D E; Glish, G L

    1992-07-01

    Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly pronated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap.

  12. Collisional activation with random noise in ion trap mass spectrometry

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1992-07-01

    Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly protonated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap. 45 refs., 7 figs.

  13. Noise and Sound Control in Open Plan Schools.

    ERIC Educational Resources Information Center

    Schellenberg, Ben

    This annotated bibliography includes summaries of 19 articles and reports dealing with noise control and acoustical design in school buildings. A brief introduction discusses the need for careful attention to acoustics in any school construction or remodeling project, with particular emphasis on the need for special acoustical measures in an open…

  14. Coupled dynamic systems and Le Chatelier's principle in noise control

    NASA Astrophysics Data System (ADS)

    Maidanik, G.; Becker, K. J.

    2004-05-01

    Investigation of coupling an externally driven dynamic system-a master dynamic system-to a passive one-an adjunct dynamic system-reveals that the response of the adjunct dynamic system affects the precoupled response of the master dynamic system. The responses, in the two dynamic systems when coupled, are estimated by the stored energies (Es) and (E0), respectively. Since the adjunct dynamic system, prior to coupling, was with zero (0) stored energy, E0s=0, the precoupled stored energy (E00) in the master dynamic system is expected to be reduced to (E0) when coupling is instituted; i.e., one expects E0noise control of the master dynamic system would result from the coupling. It is argued that the change in the disposition of the stored energies as just described may not be the only change. The coupling may influence the external input power into the master dynamic system which may interfere with the expected noise control. Indeed, the coupling may influence the external input power such that the expected beneficial noise control may not materialize. Examples of these kinds of noise control reversals are cited.

  15. The Effect of fMRI (Noise) on Cognitive Control

    ERIC Educational Resources Information Center

    Hommel, Bernhard; Fischer, Rico; Colzato, Lorenza S.; van den Wildenberg, Wery P. M.; Cellini, Cristiano

    2012-01-01

    Stressful situations, the aversiveness of events, or increases in task difficulty (e.g., conflict) have repeatedly been shown to be capable of triggering attentional control adjustments. In the present study we tested whether the particularity of an fMRI testing environment (i.e., EPI noise) might result in such increases of the cognitive control…

  16. Transparent sound screens. [and their noise control efficiency in buildings

    NASA Technical Reports Server (NTRS)

    Bizo, F.; Draghici, R.

    1974-01-01

    Transparent sound screens consisting of glass (organic glass) plates placed at fixed angles with respect to the floor are considered. Noise levels in the screened area depend on the cumulative effect of direct, reverberated and refracted components of sound energy radiated by the source. This effect is analyzed on the analogy of the summation of electrical impedances. Inasmuch as under given circumstances sufficient noise control can be obtained, transparent screens seem to solve the problem of unimpeded supervision of installations in noisy workshops and power plants; in administrative buildings, computing centers, design bureaus, etc., they ensure acoustic comfort without space losses and without inspiring claustrophobia.

  17. Analytical investigation of adaptive control of radiated inlet noise from turbofan engines

    NASA Technical Reports Server (NTRS)

    Risi, John D.; Burdisso, Ricardo A.

    1994-01-01

    An analytical model has been developed to predict the resulting far field radiation from a turbofan engine inlet. A feedforward control algorithm was simulated to predict the controlled far field radiation from the destructive combination of fan noise and secondary control sources. Numerical results were developed for two system configurations, with the resulting controlled far field radiation patterns showing varying degrees of attenuation and spillover. With one axial station of twelve control sources and error sensors with equal relative angular positions, nearly global attenuation is achieved. Shifting the angular position of one error sensor resulted in an increase of spillover to the extreme sidelines. The complex control inputs for each configuration was investigated to identify the structure of the wave pattern created by the control sources, giving an indication of performance of the system configuration. It is deduced that the locations of the error sensors and the control source configuration are equally critical to the operation of the active noise control system.

  18. Jet noise control using the dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Bityurin, V. A.; Belyaev, I. V.; Godin, S. M.; Zaitsev, M. Yu.; Klimov, A. I.; Kopiev, V. A.; Moralev, I. A.; Ostrikov, N. N.

    2012-07-01

    We study experimentally how plasma actuators operating on the basis of surface barrier high-frequency discharge affect jet noise characteristics. The results of investigations of air jets (100-200 m/s) have demonstrated that the studied plasma actuators have control authority over the noise characteristics of these jets. An actuator's effect on the jet in the applied configuration is related to acoustic discharge excitation and to a large extent is similar to the well-known Vlasov-Ginevsky effect. It has been shown that jet excitation in the case of St ˜ 0.5 using the barrier-discharge plasma actuator leads to broadband amplification of jet sound radiation. The jet excitation in the case of St > 2 leads to broadband noise reduction if the action is sufficiently intensive.

  19. Modeling, analysis, and validation of an active T-shaped noise barrier.

    PubMed

    Fan, Rongping; Su, Zhongqing; Cheng, Li

    2013-09-01

    With ever-increasing land traffic, abatement of traffic noise using noise barriers remains significant, yet it is a challenging task due to spatial competition with other infrastructure. In this study, a deep insight into the diffraction characteristics of acoustic fields near noise barriers of various geometries and surface conditions was achieved using numerical simulations. A T-shaped passive noise barrier with acoustically soft upper surfaces was demonstrated to outperform other candidates in a middle- or high-frequency range. Based on attributes of the acoustic field diffracted by T-shaped barriers, an active control strategy was developed to revamp the T-shaped barrier, in which a filtered minimax algorithm was established to drive the secondary sound sources. This algorithm resulted in more uniformly distributed residual sound fields than a filtered-X least mean square algorithm. Performance of the actively controlled barrier was evaluated at different positions and spacings of secondary sound sources and error sensors, leading to a series of optimal criteria for the design of active noise barriers. A prototype was fabricated and validated experimentally, manifesting particular effectiveness in insulating low-frequency noise, supplementing well the capacity of a passive T-shaped barrier which is effective in the middle- or high-frequency range.

  20. Expectation-Based Control of Noise and Chaos

    NASA Technical Reports Server (NTRS)

    Zak, Michael

    2006-01-01

    A proposed approach to control of noise and chaos in dynamic systems would supplement conventional methods. The approach is based on fictitious forces composed of expectations governed by Fokker-Planck or Liouville equations that describe the evolution of the probability densities of the controlled parameters. These forces would be utilized as feedback control forces that would suppress the undesired diffusion of the controlled parameters. Examples of dynamic systems in which the approach is expected to prove beneficial include spacecraft, electronic systems, and coupled lasers.

  1. A Guide to Airborne, Impact, and Structure Borne Noise--Control in Multifamily Dwellings.

    ERIC Educational Resources Information Center

    Berendt, Raymond D.; And Others

    The control of noise on buildings is discussed extensively in this document, incorporating a broad range of criteria appropriate for isolating air borne, impact, and structure-borne noise associated with residential construction. Subject areas include--(1) noise types, sources, and transmission, (2) general principles of noise control, (3)…

  2. Active control of turbomachine discrete tones

    NASA Astrophysics Data System (ADS)

    Fleeter, Sanford

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  3. Noise in biological systems: pros, cons, and mechanisms of control.

    PubMed

    Pilpel, Yitzhak

    2011-01-01

    Genetic regulatory circuits are often regarded as precise machines that accurately determine the level of expression of each protein. Most experimental technologies used to measure gene expression levels are incapable of testing and challenging this notion, as they often measure levels averaged over entire populations of cells. Yet, when expression levels are measured at the single cell level of even genetically identical cells, substantial cell-to-cell variation (or "noise") may be observed. Sometimes different genes in a given genome may display different levels of noise; even the same gene, expressed under different environmental conditions, may display greater cell-to-cell variability in specific conditions and more tight control in other situations. While at first glance noise may seem to be an undesired property of biological networks, it might be beneficial in some cases. For instance, noise will increase functional heterogeneity in a population of microorganisms facing variable, often unpredictable, environmental changes, increasing the probability that some cells may survive the stress. In that respect, we can speculate that the population is implementing a risk distribution strategy, long before genetic heterogeneity could be acquired. Organisms may have evolved to regulate not only the averaged gene expression levels but also the extent of allowed deviations from such an average, setting it at the desired level for every gene under each specific condition. Here we review the evolving understanding of noise, its molecular underpinnings, and its effect on phenotype and fitness--when it can be detrimental, beneficial, or neutral and which regulatory tools eukaryotic cells may use to optimally control it.

  4. Regular Wave Propagation Out of Noise in Chemical Active Media

    SciTech Connect

    Alonso, S.; Sendina-Nadal, I.; Perez-Munuzuri, V.; Sancho, J. M.; Sagues, F.

    2001-08-13

    A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.

  5. Regular wave propagation out of noise in chemical active media.

    PubMed

    Alonso, S; Sendiña-Nadal, I; Pérez-Muñuzuri, V; Sancho, J M; Sagués, F

    2001-08-13

    A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.

  6. Passive control of rotorcraft high-speed impulsive noise

    NASA Astrophysics Data System (ADS)

    Szulc, O.; Doerffer, P.; Tejero, F.

    2016-10-01

    A strong, normal shock wave, terminating a local supersonic area located at the tip of a helicopter blade, not only limits the aerodynamic performance, but also constitutes an origin of the High-Speed Impulsive (HSI) noise. The application of a passive control device (a shallow cavity covered by a perforated plate) just beneath the interaction region weakens the compression level, thus reducing the main source of the HSI noise. The numerical investigation based on the URANS approach and Bohning/Doerffer (BD) transpiration law (SPARC code) confirms a large potential of the new method. Two exemplary implementations, adapted to model helicopter rotors tested at NASA Ames facility in transonic conditions: Caradonna-Tung (lifting, transonic hover) and Caradonna-Laub-Tung (non-lifting, high-speed forward flight), demonstrate the possible gains in terms of the reduction of acoustic pressure fluctuations in the near-field of the blade tip. The CFD results are validated against the experimental data obtained for the reference configurations (no control), while the analysis of the passive control arrangement is based on a purely numerical research. The normal shock wave is effectively eliminated by the wall ventilation exerting a positive impact on the generated level of the HSI noise.

  7. Reduced-Noise Gas Flow Design Guide Developed as a Noise-Control Design Tool for Meeting Glenn's Hearing Conservation and Community Noise Goals

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    2000-01-01

    A Reduced-Noise Gas Flow Design Guide has been developed for the NASA Glenn Research Center at Lewis Field by Nelson Acoustical Engineering of Elgin, Texas. Gas flow systems are a significant contributor to t he noise exposure landscape at Glenn. Because of the power of many of these systems, hearing conservation and community noise are importan t issues. The purpose of the Guide is to allow Glenn engineers and de signers to address noise emission and control at the design stage by using readily available system parameters. Although the Guide was deve loped with Glenn equipment and systems in mind, it is expected to hav e wide application in industry.

  8. Pink noise: effect on complexity synchronization of brain activity and sleep consolidation.

    PubMed

    Zhou, Junhong; Liu, Dongdong; Li, Xin; Ma, Jing; Zhang, Jue; Fang, Jing

    2012-08-07

    In this study, we hypothesized that steady pink noise is able to change the complexity of brain activities into a characteristic level and it might have significant effect on improving sleep stability. First, we carried out the brain synchronization test in which electroencephalogram (EEG) signals of 6 subjects were recorded. The whole experiment procedure was divided into 5 blocks in the alternative feeding process of 10-min quiet and 10-min noise. After the complexity analysis of fractal dimension, we found that the complexity of the EEG signals decreased with the introduction of the pink noise exposure, showing the brain waves tended to synchronize with the pink noise induction to reach a low level. For the sleep quality experiment, 40 subjects were recruited the group of nocturnal sleep experiment and 10 participants were chosen for nap test. Each subjects slept for two consecutive experimental periods, of which one is pink noise exposed and the other is quiet. For both nocturnal sleep and nap tests, the results in the noise exposure group showed significant enhancement in the percentage of stable sleep time compared to the control group based on the analysis of electrocardiography (ECG) signal with cardiopulmonary coupling approach. This study demonstrates that steady pink noise has significant effect on reducing brain wave complexity and inducing more stable sleep time to improve sleep quality of individuals.

  9. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    NASA Technical Reports Server (NTRS)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  10. Scope for active noise abatement in vehicle diesel engines

    NASA Astrophysics Data System (ADS)

    Summerauer, I.; Boesch, N.

    1984-04-01

    Noise reduction measures must be directed to the engine, the exhaust system, and the cooling system (fan) all of which contribute approximately 90% of the sound energy emitted from commercial diesel trucks. The noise generation processes were visualized and limiting conditions fixed by law were considered in establishing criteria for active solar noise abatement measures. A more effective silencer and better vibration damping on the surface of the silencer and exhaust pipes can reduce noise from the exhaust system. Acoustic emission generated by the fan and air flow can be reduced by decreasing flow velocity or by turning on the fan only when a full cooling output is required (10% of the time). Active measures are needed on the engine itself either at the point of the solid-borne sound transmission or at the point of the solid-borne vibrations. The predominant effect is on the engine casing; oil sump; air suction pipe or air charge line; the flywheel casing; and the clutch housing.

  11. Noise influence on spike activation in a Hindmarsh-Rose small-world neural network

    NASA Astrophysics Data System (ADS)

    Zhe, Sun; Micheletto, Ruggero

    2016-07-01

    We studied the role of noise in neural networks, especially focusing on its relation to the propagation of spike activity in a small sized system. We set up a source of information using a single neuron that is constantly spiking. This element called initiator x o feeds spikes to the rest of the network that is initially quiescent and subsequently reacts with vigorous spiking after a transitional period of time. We found that noise quickly suppresses the initiator’s influence and favors spontaneous spike activity and, using a decibel representation of noise intensity, we established a linear relationship between noise amplitude and the interval from the initiator’s first spike and the rest of the network activation. We studied the same process with networks of different sizes (number of neurons) and found that the initiator x o has a measurable influence on small networks, but as the network grows in size, spontaneous spiking emerges disrupting its effects on networks of more than about N = 100 neurons. This suggests that the mechanism of internal noise generation allows information transmission within a small neural neighborhood, but decays for bigger network domains. We also analyzed the Fourier spectrum of the whole network membrane potential and verified that noise provokes the reduction of main θ and α peaks before transitioning into chaotic spiking. However, network size does not reproduce a similar phenomena; instead we recorded a reduction in peaks’ amplitude, a better sharpness and definition of Fourier peaks, but not the evident degeneration to chaos observed with increasing external noise. This work aims to contribute to the understanding of the fundamental mechanisms of propagation of spontaneous spiking in neural networks and gives a quantitative assessment of how noise can be used to control and modulate this phenomenon in Hindmarsh-Rose (H-R) neural networks.

  12. Noise control of a model scale jet engine component test facility

    SciTech Connect

    Simcox, C.D.

    1982-01-01

    Noise control is a fundamental design requirement in a test facility used for research and development of noise suppression devices and test techniques for modern fan jet engines. For every type of test in the facility, three aspects of noise control must be considered: noise exchange between the community and the test chamber, the acoustic characteristics of the chamber, and the methodology of the experiment. Boeing has designed and built a large anechoic test chamber (LTC) for engine component noise tests, with special emphasis on these three areas of noise control. Primary design goals were established by a need for high quality model scale jet engine exhaust studies, with minimum noise interaction with nearby communities. This paper discusses the noise control aspects of the LTC for both jet exhaust and fan noise testing.

  13. Application of Circulation Control Technology to Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Sankar, L. N.; Englar, R. J.; Munro, Scott E.; Li, Yi; Gaeta, R. J.

    2003-01-01

    This report is a summary of the work performed by Georgia Tech Research Institute (GTRI) under NASA Langley Grant NAG-1-2146, which was awarded as a part of NASA's Breakthrough Innovative Technologies (BIT) initiative. This was a three-year program, with a one-year no-cost extension. Each year's study has been an integrated effort consisting of computational fluid dynamics, experimental aerodynamics, and detailed noise and flow measurements. Year I effort examined the feasibility of reducing airframe noise by replacing the conventional wing systems with a Circulation Control Wing (CCW), where steady blowing was used through the trailing edge of the wing over a Coanda surface. It was shown that the wing lift increases with CCW blowing and indeed for the same lift, a CCW wing was shown to produce less noise. Year 2 effort dealt with a similar study on the role of pulsed blowing on airframe noise. The main objective of this portion of the study was to assess whether pulse blowing from the trailing edge of a CCW resulted in more, less, or the same amount of radiated noise to the farfield. Results show that a reduction in farfield noise of up to 5 dB is measured when pulse flow is compared with steady flow for an equivalent lift configuration. This reduction is in the spectral region associated with the trailing edge jet noise. This result is due to the unique advantage that pulsed flow has over steady flow. For a range of frequencies, more lift is experienced with the same mass flow as the steady case. Thus, for an equivalent lift and slot height, the pulsed system can operate at lower jet velocities, and hence lower jet noise. The computational analysis showed that for a given time-averaged mass flow rate, pulsed jets give a higher value of C(sub l) and a higher L/D than equivalent steady jets. This benefit is attributable to higher instantaneous jet velocities, and higher instantaneous C(sub mu) values for the pulsed jet. Pulsed jet benefits increase at higher

  14. The Timing of Noise-Sensitive Activities in Residential Areas

    NASA Technical Reports Server (NTRS)

    Fields, J. M.

    1985-01-01

    Data from a nationally representative survey of time use was analyzed to provide estimates of the percentage of the population which is engaged in noise sensitive activities during each hour of the day on weekdays, Fridays, Saturdays and Sundays. Estimates are provided of the percentage engaged in aural communication activities at home, sleeping at home, or simply at home. The day can be roughly divided into four noise sensitivity periods consisting of two relatively steady state periods, night and day and the early morning and evening transition periods. Weekends differ from weekdays in that the morning transition period is one hour later and the numbers of people engaged in aural communication during the day at home are approximately one-half to three-quarters greater. The extent and timing of noise sensitive activities was found to be similiar for all parts of the United States, for different sizes of urban areas, and for the three seasons surveyed (September through May). The timing of activity periods does not differ greatly by sex or age even though women and people over 65 are much more likely to be at home during the daytime.

  15. Effect of Acute Noise Exposure on Salivary Cortisol: A Randomized Controlled Trial.

    PubMed

    Pouryaghoub, Gholamreza; Mehrdad, Ramin; Valipouri, Alireza

    2016-10-01

    Cardiovascular adverse effects are interesting aspects of occupational noise exposure. One possible mechanism of these effects is an alternation in hypothalamic-pituitary-adrenal axis. Our aim was to measure salivary cortisol response to relatively high-intensity noise exposure in a controlled randomized trial study. We exposed 50 male volunteers to 90 dBA noise for 20 minutes and compared their level of salivary cortisol with 50 non-exposed controls. Salivary samples obtained before and after exposure. Before intervention means (SD) salivary cortisol level were 3.24 (0.47)ng/ml and 3.25 (0.41)ng/ml for exposed and non-exposed groups respectively. Mean salivary cortisol level increased to 4.17 ng/mlafter intervention in exposure group. This increment was statistically significant (P=0.00). Mean salivary cortisol level of the non-exposed group had statistically non-significant decrement after this period (0.2 ng/ml). The difference between salivary cortisol level of non-exposed and exposed groups after the intervention was statistically significant. Noise exposure may affect the hypothalamic-pituitary-adrenal axis activity, and this may be one of the mechanisms of noise exposure cardiovascular effects.

  16. Effects of activity interference on annoyance due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.; Powell, C. A.

    1981-01-01

    The effects of aircraft flyover noise on annoyance were compared for face to face conversation, reverie, and television viewing. Eighteen 5 minute sessions, each composed of three flyovers, were presented on each of 2 days to subjects in a simulated living room. Twelve pairs of females and 12 pairs of males were tested, once before and once after work. Flyovers varied in peak noise level from 53 to 83 dB, A weighted. On each day, subjects engaged in 18 sessions, six of conversation, six of television viewing, and six of reverie. The subjects completed subjective ratings of annoyance and acceptability following every session. Annoyance and unacceptability rating scores were significantly higher for the activity of television viewing compared to conversation or reverie. There was no difference between judgments during the latter two activities. No differences were found in the judgments when compared on the basis of "fatigue" (before/after work) or sex of the subject.

  17. Optimal periodic disturbance reduction for active noise cancelation

    NASA Astrophysics Data System (ADS)

    Kinney, C. E.; de Callafon, R. A.; Dunens, E.; Bargerhuff, R.; Bash, C. E.

    2007-08-01

    The design of an optimal internal model-based (IMB) controller by extending standard discrete time optimal control theory for IMB controllers is described. The optimal observer and state feedback gains of the IMB controller are given via the solution of discrete time algebraic Riccati equations. The design method is applied to an acoustic system that is subjected to disturbances from a server fan. Periodic disturbances from the server fan appear as harmonics of the fundamental frequency of the fan. Parametric models for the plant and non-periodic part of the disturbance are identified from experimental data. An internal model is designed in discrete time and the internal model principle is used to design a feedback controller that rejects periodic disturbances in the acoustic system. The controller is implemented in real-time and successfully attenuates the first four harmonics of the fan noise.

  18. Noise and vibration control for HVAC and piping systems

    SciTech Connect

    Yerges, J.F.; Yerges, J.R.

    1997-10-01

    This article offers engineering advice on how to avoid noise and vibration problems through good mechanical engineering design and strategic communication with other members of the construction team. The design of ducted HVAC systems must address six distinct but related issues--airborne equipment noise, equipment vibration, ductborne fan noise, duct breakout noise, flow generated noise, and ductborne crosstalk. Each and every one of these issues must be addressed, or the design will fail.

  19. Hybrid feedforward-feedback active noise reduction for hearing protection and communication.

    PubMed

    Ray, Laura R; Solbeck, Jason A; Streeter, Alexander D; Collier, Robert D

    2006-10-01

    A hybrid active noise reduction (ANR) architecture is presented and validated for a circumaural earcup and a communication earplug. The hybrid system combines source-independent feedback ANR with a Lyapunov-tuned leaky LMS filter (LyLMS) improving gain stability margins over feedforward ANR alone. In flat plate testing, the earcup demonstrates an overall C-weighted total noise reduction of 40 dB and 30-32 dB, respectively, for 50-800 Hz sum-of-tones noise and for aircraft or helicopter cockpit noise, improving low frequency (<100 Hz) performance by up to 15 dB over either control component acting individually. For the earplug, a filtered-X implementation of the LyLMS accommodates its nonconstant cancellation path gain. A fast time-domain identification method provides a high-fidelity, computationally efficient, infinite impulse response cancellation path model, which is used for both the filtered-X implementation and communication feedthrough. Insertion loss measurements made with a manikin show overall C-weighted total noise reduction provided by the ANR earplug of 46-48 dB for sum-of-tones 80-2000 Hz and 40-41 dB from 63 to 3000 Hz for UH-60 helicopter noise, with negligible degradation in attenuation during speech communication. For both hearing protectors, a stability metric improves by a factor of 2 to several orders of magnitude through hybrid ANR.

  20. Comparison of various decentralised structural and cavity feedback control strategies for transmitted noise reduction through a double panel structure

    NASA Astrophysics Data System (ADS)

    Ho, Jen-Hsuan; Berkhoff, Arthur

    2014-03-01

    This paper compares various decentralised control strategies, including structural and acoustic actuator-sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of two panels with air in between and offers the advantages of low sound transmission at high frequencies, low heat transmission, and low weight. The double panel structure is widely used, such as in the aerospace and automotive industries. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel's noise control performance. Applying active structural acoustic control to the panels or active noise control to the cavity has been discussed in many papers. In this paper, the resonances of the panels and the cavity are considered simultaneously to further reduce the transmitted noise through an existing double panel structure. A structural-acoustic coupled model is developed to investigate and compare various structural control and cavity control methods. Numerical analysis and real-time control results show that structural control should be applied to both panels. Three types of cavity control sources are presented and compared. The results indicate that the largest noise reduction is obtained with cavity control by loudspeakers modified to operate as incident pressure sources.

  1. Noise control for motor vehicles. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-02-01

    The bibliography contains citations concerning methods and equipment used to control noise generated by motor vehicles. Although emphasis is placed on noise control studies of trucks; automobiles, buses, and motorcycles are considered as well. Tire noise and specific vehicle demonstration projects are discussed. (Contains 250 citations and includes a subject term index and title list.)

  2. Noise control for motor vehicles. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning methods and equipment used to control noise generated by motor vehicles. Although emphasis is placed on noise control studies of trucks; automobiles, buses, and motorcycles are considered as well. Tire noise and specific vehicle demonstration projects are discussed. (Contains 250 citations and includes a subject term index and title list.)

  3. Vortex shedding noise control in idling circular saws using air ejection at the teeth

    NASA Astrophysics Data System (ADS)

    Yanagimoto, K.; Mote, C. D.; Ichimiya, R.

    1994-04-01

    Aerodynamically induced noise from an idling circular saw can be very intense. The purpose of the present investigation is noise reduction through vortex shedding control in idling circular saws. Reduction of aerodynamic noise in idling circular saws may be possible by controlling the shed vortices and flow structures in the space between teeth, based on the earlier observations.

  4. Noise Reduction in an Aircraft Fuselage Model Using Active Trim Panels

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Lyle, Karen H.

    1996-01-01

    An experiment was conducted to evaluate the use of force actuators on a model aircraft interior trim panel as the control element for active control of interior noise. The trim panel, designed specifically for this study, was constructed in three large identical sections and hard mounted to the ring frames of the primary structure. Piezoceramic actuators were bonded to the outer surface of the trim panels. Studies of the interior pressure response due to both the primary source alone and control sources alone were conducted as well as the control cases. A single acoustic loudspeaker, centered at the axial midpoint, generated the acoustic field to be controlled.

  5. Linear signal noise summer accurately determines and controls S/N ratio

    NASA Technical Reports Server (NTRS)

    Sundry, J. L.

    1966-01-01

    Linear signal noise summer precisely controls the relative power levels of signal and noise, and mixes them linearly in accurately known ratios. The S/N ratio accuracy and stability are greatly improved by this technique and are attained simultaneously.

  6. Noise prediction and control of Pudong International Airport expansion project.

    PubMed

    Lei, Bin; Yang, Xin; Yang, Jianguo

    2009-04-01

    The Environmental Impact Assessment (EIA) process of the third runway building project of Pudong International Airport is briefly introduced in the paper. The basic principle, the features, and the operation steps of newly imported FAA's Integrated Noise Model (INM) are discussed for evaluating the aircraft noise impacts. The prediction of the aircraft noise and the countermeasures for the noise mitigation are developed, which includes the reasonable runway location, the optimized land use, the selection of low noise aircrafts, the Fly Quit Program, the relocation of sensitive receptors and the noise insulation of sensitive buildings. Finally, the expansion project is justified and its feasibility is confirmed.

  7. Effect of Poisson noise on adiabatic quantum control

    NASA Astrophysics Data System (ADS)

    Kiely, A.; Muga, J. G.; Ruschhaupt, A.

    2017-01-01

    We present a detailed derivation of the master equation describing a general time-dependent quantum system with classical Poisson white noise and outline its various properties. We discuss the limiting cases of Poisson white noise and provide approximations for the different noise strength regimes. We show that using the eigenstates of the noise superoperator as a basis can be a useful way of expressing the master equation. Using this, we simulate various settings to illustrate different effects of Poisson noise. In particular, we show a dip in the fidelity as a function of noise strength where high fidelity can occur in the strong-noise regime for some cases. We also investigate recent claims [J. Jing et al., Phys. Rev. A 89, 032110 (2014), 10.1103/PhysRevA.89.032110] that this type of noise may improve rather than destroy adiabaticity.

  8. Signal-to-noise ratio in neuro activation PET studies

    SciTech Connect

    Votaw, J.R.

    1996-04-01

    It has become commonplace to compare scanner sensitivity characteristics by comparing noise equivalent count rate curves. However, because a 20-cm diameter uniform phantom is drastically difference from a human brain, these curves give misleading information when planning a neuro activation PET experiment. Signal-to-noise ratio (SNR) calculations have been performed using measured data (Siemens 921 scanner) from the three-dimensional (3-D) Hoffman brain phantom for the purpose of determining the optimal injection and scanning protocol for [{sup 15}O] labeled activation experiments. Region of interest (ROI) values along with the variance due to prompt (trues plus randoms) and random events were determined for various regions and radioactivity concentrations. Calculated attenuation correction was used throughout. Scatter correction was not used when calculating the SNR in activation studies because the number of scattered events is almost identical in each data acquisition and hence cancels. The results indicate that randoms correction should not be performed and that rather than being limited by the scanner capabilities, neuro activation experiments are limited by the amount of radioactivity that can be injected and the length of time the patient can stay in the scanner.

  9. Optimizing noise control strategy in a forging workshop.

    PubMed

    Razavi, Hamideh; Ramazanifar, Ehsan; Bagherzadeh, Jalal

    2014-01-01

    In this paper, a computer program based on a genetic algorithm is developed to find an economic solution for noise control in a forging workshop. Initially, input data, including characteristics of sound sources, human exposure, abatement techniques, and production plans are inserted into the model. Using sound pressure levels at working locations, the operators who are at higher risk are identified and picked out for the next step. The program is devised in MATLAB such that the parameters can be easily defined and changed for comparison. The final results are structured into 4 sections that specify an appropriate abatement method for each operator and machine, minimum allowance time for high-risk operators, required damping material for enclosures, and minimum total cost of these treatments. The validity of input data in addition to proper settings in the optimization model ensures the final solution is practical and economically reasonable.

  10. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  11. Control of absolute negative mobility via noise recycling procedure

    NASA Astrophysics Data System (ADS)

    Zeng, C. H.; Wang, H.; Qing, S.; Hu, J. H.; Li, K. Z.

    2012-10-01

    Absolute negative mobility (ANM) is investigated in a spatially-periodic symmetric system under the influence of noise consisting of the superposition of a white Gaussian noise with the same noise delayed by time τ. The effects of the noise intensity σ, the time delay τ and feedback intensity ɛ in the noise recycling are discussed. It is found that the noise intensity σ and time delay τ can induce the phenomenon of ANM, while the feedback intensity ɛ can not induce it. This phenomenon of ANM can be tested in the setup consisting of a resistively and capacitively shunted Josephson junction device by using a vertical cavity surface emitting laser to generate the noise recycling procedure.

  12. A study of the prediction of cruise noise and laminar flow control noise criteria for subsonic air transports

    NASA Technical Reports Server (NTRS)

    Swift, G.; Mungur, P.

    1979-01-01

    General procedures for the prediction of component noise levels incident upon airframe surfaces during cruise are developed. Contributing noise sources are those associated with the propulsion system, the airframe and the laminar flow control (LFC) system. Transformation procedures from the best prediction base of each noise source to the transonic cruise condition are established. Two approaches to LFC/acoustic criteria are developed. The first is a semi-empirical extension of the X-21 LFC/acoustic criteria to include sensitivity to the spectrum and directionality of the sound field. In the second, the more fundamental problem of how sound excites boundary layer disturbances is analyzed by deriving and solving an inhomogeneous Orr-Sommerfeld equation in which the source terms are proportional to the production and dissipation of sound induced fluctuating vorticity. Numerical solutions are obtained and compared with corresponding measurements. Recommendations are made to improve and validate both the cruise noise prediction methods and the LFC/acoustic criteria.

  13. Wake generator control of inlet flow to cancel flow distortion noise

    NASA Astrophysics Data System (ADS)

    Kota, V.; Wright, M. C. M.

    2006-08-01

    If the inlet flow to a fan is non-uniform, as is often the case for aircraft engines, then undesirable tonal noise can be generated. A number of authors have suggested using active cancellation to reduce the noise. The secondary field can either be generated by loudspeakers or by the fan itself if secondary non-uniformities are deliberately introduced into the flow. In the research reported here rods inserted radially into the duct were used to generate the secondary field. The distance by which each rod protrudes into the duct was adaptively adjusted in response to an array of in-duct microphones so as to minimise the radiated sound power, whereas previously only fixed rods have been considered. The ability of the steepest-descent algorithm to minimise in-duct sound power under suitable conditions, and hence reduce radiated sound power is demonstrated in both simulations and low Mach number experiments. It is shown how the ability of such a system to control noise depends on the number and position of the controller rods, and the number of acoustic duct modes to be controlled. Thus at low fan speed, when only one mode was present just two controllers achieved an in-duct noise reduction of 25 dB at the blade passing frequency, whereas at a higher fan speed with three modes present six controllers only achieved 2 dB. To implement such a scheme in practice, where large numbers of modes are typically present, it would be necessary to develop controller arrays with many actuators, but with low aerodynamic penalty. Such a system might also be useful in HVAC applications, or in wind-tunnel testing.

  14. The Effect of Non-Harmonic Active Twist Actuation on BVI Noise

    NASA Technical Reports Server (NTRS)

    Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.

    2011-01-01

    The results of a computational study examining the effects of non-harmonic active-twist control on blade-vortex interaction (BVI) noise for the Apache Active Twist Rotor are presented. Rotor aeroelastic behavior was modeled using the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics code and the rotor noise was predicted using the acoustics code PSU-WOPWOP. The application of non-harmonic active-twist inputs to the main rotor blade system comprised three parameters: azimuthal location to start actuation, azimuthal duration of actuation, and magnitude of actuation. The acoustic analysis was conducted for a single low-speed flight condition of advance ratio mu=0.14 and shaft angle-of-attack, a(sub s)=+6deg. BVI noise levels were predicted on a flat plane of observers located 1.1 rotor diameters beneath the rotor. The results indicate significant reductions of up to 10dB in BVI noise using a starting azimuthal location for actuation of 90?, an azimuthal duration of actuation of 90deg, and an actuation magnitude of +1.5 ft-lb.

  15. Publications in acoustics and noise control from the NASA Langley Research Center during 1940-1976

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1977-01-01

    Reference lists are presented of published research papers in various areas of acoustics and noise control for the period 1940-1976. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics; (2) propagation and operations; (3) rotating blade noise; (4) jet noise; (5) sonic boom; (6) flow-surface interaction noise; (7) human response; (8) structural response; (9) prediction; and (10) miscellaneous.

  16. Potential uses of vacuum bubbles in noise and vibration control

    NASA Technical Reports Server (NTRS)

    Ver, Istvan L.

    1989-01-01

    Vacuum bubbles are new acoustic elements which are dynamically more compliant than the gas volume they replace, but which are statically robust. They are made of a thin metallic shell with vacuum in their cavity. Consequently, they pose no danger in terms of contamination or fire hazard. The potential of the vacuum bubble concept for noise and vibration control was assessed with special emphases on spacecraft and aircraft applications. The following potential uses were identified: (1) as a cladding, to reduce sound radiation of vibrating surfaces and the sound excitation of structures, (2) as a screen, to reflect or absorb an incident sound wave, and (3) as a liner, to increase low frequency sound transmission loss of double walls and to increase the low frequency sound attenuation of muffler baffles. It was found that geometric and material parameters must be controlled to a very high accuracy to obtain optimal performance and that performance is highly sensitive to variations in static pressure. Consequently, it was concluded that vacuum bubbles have more potential in spacecraft applications where static pressure is controlled more than in aircraft applications where large fluctuations in static pressure are common.

  17. Using active resonator impedance matching for shot-noise limited, cavity enhanced amplitude modulated laser absorption spectroscopy.

    PubMed

    Chow, Jong H; Littler, Ian C M; Rabeling, David S; McClelland, David E; Gray, Malcolm B

    2008-05-26

    We introduce a closed-loop feedback technique to actively control the coupling condition of an optical cavity, by employing amplitude modulation of the interrogating laser. We show that active impedance matching of the cavity facilitates optimal shot-noise sensing performance in a cavity enhanced system, while its control error signal can be used for intra-cavity absorption or loss signal extraction. We present the first demonstration of this technique with a fiber ring cavity, and achieved shot-noise limited loss sensitivity. We also briefly discuss further use of impedance matching control as a tool for other applications.

  18. Experimental validation of tonal noise control from subsonic axial fans using flow control obstructions

    NASA Astrophysics Data System (ADS)

    Gérard, Anthony; Berry, Alain; Masson, Patrice; Gervais, Yves

    2009-03-01

    This paper presents the acoustic performance of a novel approach for the passive adaptive control of tonal noise radiated from subsonic fans. Tonal noise originates from non-uniform flow that causes circumferentially varying blade forces and gives rise to a considerably larger radiated dipolar sound at the blade passage frequency (BPF) and its harmonics compared to the tonal noise generated by a uniform flow. The approach presented in this paper uses obstructions in the flow to destructively interfere with the primary tonal noise arising from various flow conditions. The acoustic radiation of the obstructions is first demonstrated experimentally. Indirect on-axis acoustic measurements are used to validate the analytical prediction of the circumferential spectrum of the blade unsteady lift and related indicators generated by the trapezoidal and sinusoidal obstructions presented in Ref. [A. Gérard, A. Berry, P. Masson, Y. Gervais, Modelling of tonal noise control from subsonic axial fans using flow control obstructions, Journal of Sound and Vibration (2008), this issue, doi: 10.1016/j.jsv.2008.09.027.] and also by cylindrical obstructions used in the literature. The directivity and sound power attenuation are then given in free field for the control of the BPF tone generated by rotor/outlet guide vane (OGV) interaction and the control of an amplified BPF tone generated by the rotor/OGV interaction with an added triangular obstruction between two outlet guide vanes to enhance the primary non-uniform flow. Global control was demonstrated in free field, attenuation up to 8.4 dB of the acoustic power at BPF has been measured. Finally, the aerodynamic performances of the automotive fan used in this study are almost not affected by the presence of the control obstruction.

  19. What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations

    PubMed Central

    Fraiman, Daniel; Chialvo, Dante R.

    2012-01-01

    The study of spontaneous fluctuations of brain activity, often referred as brain noise, is getting increasing attention in functional magnetic resonance imaging (fMRI) studies. Despite important efforts, much of the statistical properties of such fluctuations remain largely unknown. This work scrutinizes these fluctuations looking at specific statistical properties which are relevant to clarify its dynamical origins. Here, three statistical features which clearly differentiate brain data from naive expectations for random processes are uncovered: First, the variance of the fMRI mean signal as a function of the number of averaged voxels remains constant across a wide range of observed clusters sizes. Second, the anomalous behavior of the variance is originated by bursts of synchronized activity across regions, regardless of their widely different sizes. Finally, the correlation length (i.e., the length at which the correlation strength between two regions vanishes) as well as mutual information diverges with the cluster's size considered, such that arbitrarily large clusters exhibit the same collective dynamics than smaller ones. These three properties are known to be exclusive of complex systems exhibiting critical dynamics, where the spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings are fully consistent with previous reports of brain critical dynamics, and are relevant for the interpretation of the role of fluctuations and variability in brain function in health and disease. PMID:22934058

  20. Active noise canceling system for mechanically cooled germanium radiation detectors

    SciTech Connect

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  1. 'NASA Invention of the Year' Controls Noise and Vibration

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Developed at NASA's Langley Research Center, the Macro-Fiber Composite (MFC) is designed to control vibration, noise, and deflections in composite structural beams and panels. Smart Material Corporation specializes in the development of piezocomposite components, and licensed the MFC technology from Langley in 2002. To date, Smart Material Corporation has sold MFCs to over 120 customers, including such industry giants as Volkswagen, Toyota, Honda, BMW, General Electric, and the tennis company, HEAD. The company estimates that its customers have filed at least 100 patents for their various unique uses of the technology. In addition, the company's product portfolio has grown to include piezoceramic fibers and fiber composites, piezoceramic actuators and sensors, and test equipment for these products. It also offers a compact, lightweight power system for MFC testing and validation. Consumer applications already on the market include piezoelectric systems as part of audio speakers, phonograph cartridges and microphones, and recreational products requiring vibration control, such as skis, snowboards, baseball bats, hockey sticks, and tennis racquets.

  2. Evaluating the effectiveness of active noise reduction in flight helmets

    NASA Astrophysics Data System (ADS)

    Forshaw, S. E.; Rylands, J. M.; Crabtree, R. B.

    1988-08-01

    The advent of high powered fixed- and rotary-wing aircraft and tracked armoured fighting vehicles has increased the level of noise to which crews are exposed. Active noise reduction (ANR) offers a means of increasing the attenuation at low and mid frequencies. It relies on sensing the sound inside a circumaural device and cancelling it by means of negative feedback through a miniature speaker inside the enclosed volume. This study was carried out to investigate laboratory procedures appropriate for measuring the effectiveness of ANR devices. The procedures were: ear-canal measurements using an acoustic test fixture (an objective procedure), and masked threshold and loudness balance tests (psycho-physical procedures). In addition, the effect of ANR on signal detection and speech reception was investigated. The results do not clearly permit one procedure to be recommended for the evaluation of ANR systems. Signal detection performance and speech intelligibility may be used, but the results are specific to the acoustic environment of the listener and the detection task or speech-system parameters of the evaluation. When the attenuation of the ANR system is measured objectively with a transducer inside the earmuff/ear-canal volume, the location of the transducer affects the observed ANR attenuations.

  3. Technique for controlling cross-talk noise in volume holography

    NASA Astrophysics Data System (ADS)

    Neifeld, Mark A.; McDonald, Mark

    1996-08-01

    We study cross-talk noise in holographic memory and estimate storage limits. We examine the effects of reduced angular density and the use of an apodized reconstruction beam on capacity, cross-talk noise, and diffraction efficiency. Experimental Bragg-selectivity curves with and without an apodized reconstruction beam verify the expected reduction in cross talk.

  4. Controlling Technically Produced Noise to Reduce Psychological Stress

    ERIC Educational Resources Information Center

    Carlestam, Gosta

    1973-01-01

    Discusses the causes and problems associated with increasing levels of noise pollution in urban societies. Particular attention is given to noise emanating from aircraft and to possible means of reducing this problem and its resulting psychological stress and social strain. (JR)

  5. Experimental Study of Active Techniques for Blade/Vortex Interaction Noise Reduction

    NASA Astrophysics Data System (ADS)

    Kobiki, Noboru; Murashige, Atsushi; Tsuchihashi, Akihiko; Yamakawa, Eiichi

    This paper presents the experimental results of the effect of Higher Harmonic Control (HHC) and Active Flap on the Blade/Vortex Interaction (BVI) noise. Wind tunnel tests were performed with a 1-bladed rotor system to evaluate the simplified BVI phenomenon avoiding the complicated aerodynamic interference which is characteristically and inevitably caused by a multi-bladed rotor. Another merit to use this 1-bladed rotor system is that the several objective active techniques can be evaluated under the same condition installed in the same rotor system. The effects of the active techniques on the BVI noise reduction were evaluated comprehensively by the sound pressure, the blade/vortex miss distance obtained by Laser light Sheet (LLS), the blade surface pressure distribution and the tip vortex structure by Particle Image Velocimetry (PIV). The correlation among these quantities to describe the effect of the active techniques on the BVI conditions is well obtained. The experiments show that the blade/vortex miss distance is more dominant for BVI noise than the other two BVI governing factors, such as blade lift and vortex strength at the moment of BVI.

  6. A study of poultry processing plant noise characteristics and potential noise control techniques

    NASA Technical Reports Server (NTRS)

    Wyvill, J. C.; Jape, A. D.; Moriarity, L. J.; Atkins, R. D.

    1980-01-01

    The noise environment in a typical poultry processing plant was characterized by developing noise contours for two representative plants: Central Soya of Athens, Inc., Athens, Georgia, and Tip Top Poultry, Inc., Marietta, Georgia. Contour information was restricted to the evisceration are of both plants because nearly 60 percent of all process employees are stationed in this area during a normal work shift. Both plant evisceration areas were composed of tile walls, sheet metal ceilings, and concrete floors. Processing was performed in an assembly-line fashion in which the birds travel through the area on overhead shackles while personnel remain at fixed stations. Processing machinery was present throughout the area. In general, the poultry processing noise problem is the result of loud sources and reflective surfaces. Within the evisceration area, it can be concluded that only a few major sources (lung guns, a chiller component, and hock cutters) are responsible for essentially all direct and reverberant sound pressure levels currently observed during normal operations. Consequently, any effort to reduce the noise problem must first address the sound power output of these sources and/or the absorptive qualitities of the room.

  7. Advanced Noise Control Fan: A 20-Year Retrospective

    NASA Technical Reports Server (NTRS)

    Sutliff, Dan

    2016-01-01

    The ANCF test bed is used for evaluating fan noise reduction concepts, developing noise measurement technologies, and providing a database for Aero-acoustic code development. Rig Capabilities: 4 foot 16 bladed rotor @ 2500 rpm, Auxiliary air delivery system (3 lbm/sec @ 6/12 psi), Variable configuration (rotor pitch angle, stator count/position, duct length), synthetic acoustic noise generation (tone/broadband). Measurement Capabilities: 112 channels dynamic data system, Unique rotating rake mode measuremen, Farfield (variable radius), Duct wall microphones, Stator vane microphones, Two component CTA w/ traversing, ESP for static pressures.

  8. Computer-controlled noise adaption for acoustical test facilities

    NASA Astrophysics Data System (ADS)

    Wedig, W. V.; Ams, A.

    1990-09-01

    For acoustical noise tests of elastic structures, statistically representative signals generated from white noise by means of spectrum shapers and band pass filters are needed. Subsequently, these signals are amplified and transformed into physical test noise by acoustical sirens. A mathematical model of the entire system based on measurements of frequency transfer functions in order to predict an optimal amplitude modulation of the spectrum shaper is presented. The prediction is performed by means of a nonlinear optimization procedure which iterates the tuning parameters of the shaper with respect to the stored frequency data of the entire system.

  9. Dopamine Activation Preserves Visual Motion Perception Despite Noise Interference of Human V5/MT

    PubMed Central

    Yousif, Nada; Fu, Richard Z.; Abou-El-Ela Bourquin, Bilal; Bhrugubanda, Vamsee; Schultz, Simon R.

    2016-01-01

    When processing sensory signals, the brain must account for noise, both noise in the stimulus and that arising from within its own neuronal circuitry. Dopamine receptor activation is known to enhance both visual cortical signal-to-noise-ratio (SNR) and visual perceptual performance; however, it is unknown whether these two dopamine-mediated phenomena are linked. To assess this, we used single-pulse transcranial magnetic stimulation (TMS) applied to visual cortical area V5/MT to reduce the SNR focally and thus disrupt visual motion discrimination performance to visual targets located in the same retinotopic space. The hypothesis that dopamine receptor activation enhances perceptual performance by improving cortical SNR predicts that dopamine activation should antagonize TMS disruption of visual perception. We assessed this hypothesis via a double-blinded, placebo-controlled study with the dopamine receptor agonists cabergoline (a D2 agonist) and pergolide (a D1/D2 agonist) administered in separate sessions (separated by 2 weeks) in 12 healthy volunteers in a William's balance-order design. TMS degraded visual motion perception when the evoked phosphene and the visual stimulus overlapped in time and space in the placebo and cabergoline conditions, but not in the pergolide condition. This suggests that dopamine D1 or combined D1 and D2 receptor activation enhances cortical SNR to boost perceptual performance. That local visual cortical excitability was unchanged across drug conditions suggests the involvement of long-range intracortical interactions in this D1 effect. Because increased internal noise (and thus lower SNR) can impair visual perceptual learning, improving visual cortical SNR via D1/D2 agonist therapy may be useful in boosting rehabilitation programs involving visual perceptual training. SIGNIFICANCE STATEMENT In this study, we address the issue of whether dopamine activation improves visual perception despite increasing sensory noise in the visual cortex

  10. Inter-Noise 86 - Progress in noise control; Proceedings of the International Conference on Noise Control Engineering, Cambridge, MA, July 21-23, 1986. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Lotz, Robert

    The conference presents papers on legislative structure and engineering manpower in noise abatement legislation in Australia, fluid borne noise generation and transmission in hydraulic piping systems, and the application of the Fast Field Program to outdoor sound propagation. Other topics include a prediction model for airport ground noise propagation, diffraction by a barrier with finite acoustic impedance, sound propagation over curved barriers, the damping capacity of graphite epoxy composites in a vacuum, the realization of an airport noise monitoring system for determining the traffic flow in the surroundings of a military airbase, and the prediction of aircraft noise around airports by a simulation procedure. Papers are also presented on the effects of weather conditions on airport noise prediction, a prediction of the light aircraft interior sound pressure level from the measured sound pressure flowing into the cabin, and measurements with reference sources in the ISO 3740 series.

  11. Improving postural control by applying mechanical noise to ankle muscle tendons.

    PubMed

    Borel, Liliane; Ribot-Ciscar, Edith

    2016-08-01

    The application of subthreshold mechanical vibrations with random frequencies (white mechanical noise) to ankle muscle tendons is known to increase muscle proprioceptive information and to improve the detection of ankle movements. The aim of the present study was to analyze the effect of this mechanical noise on postural control, its possible modulation according to the sensory strategies used for postural control, and the consequences of increasing postural difficulty. The upright stance of 20 healthy young participants tested with their eyes closed was analyzed during the application of four different levels of noise and compared to that in the absence of noise (control) in three conditions: static, static on foam, and dynamic (sinusoidal translation). The quiet standing condition was conducted with the eyes open and closed to determine the subjects' visual dependency to maintain postural stability. Postural performance was assessed using posturographic and motion analysis evaluations. The results in the static condition showed that the spectral power density of body sway significantly decreased with an optimal level of noise and that the higher the spectral power density without noise, the greater the noise effect, irrespective of visual dependency. Finally, noise application was ineffective in the foam and dynamic conditions. We conclude that the application of mechanical noise to ankle muscle tendons is a means to improve quiet standing only. These results suggest that mechanical noise stimulation may be more effective in more impaired populations.

  12. Sources, control, and effects of noise from aircraft propellers and rotors

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Greene, G. C.; Dempsey, T. K.

    1981-01-01

    Recent NASA and NASA sponsored research on the prediction and control of propeller and rotor source noise, on the analysis and design of fuselage sidewall noise control treatments, and on the measurement and quantification of the response of passengers to aircraft noise is described. Source noise predictions are compared with measurements for conventional low speed propellers, for new high speed propellers (propfans), and for a helicopter. Results from a light aircraft demonstration program are considered which indicates that about 5 dB reduction of flyover noise can be obtained without significant performance penalty. Sidewall design studies are examined for interior noise control in light general aviation aircraft and in large transports using propfan propulsion. The weight of the added acoustic treatment is estimated and tradeoffs between weight and noise reduction are discussed. A laboratory study of passenger response to combined broadband and tonal propeller-like noise is described. Subject discomfort ratings of combined tone broadband noises are compared with ratings of broadband (boundary layer) noise alone and the relative importance of the propeller tones is examined.

  13. A study of poultry processing plant noise control techniques

    NASA Technical Reports Server (NTRS)

    Wyvill, J. C.; Morrison, W. G., Jr.

    1981-01-01

    A number of techniques can be used to reduce noise in poultry processing plants. In general, covering the ceiling with a noise-absorbing medium is a practical first step. Once the reflected noise levels are abated, treatment of specific identifiable noise courses can take place. The development, flammability, and mechanical properties of acoustic panels to be vertically suspended from the ceiling are discussed as well as the covers need to comply with USDA cleanability requirements. The isolation of drive motors and pumps from large expansive areas, the muffling of pneumatic devices, and the insulation of ice chutes are methods of source quieting. Proper maintenance of machinery and vibration monitoring are also needed to reduce hearing damage risk and to improve worker productivity and employee/supervisor relations.

  14. Using the ideal function concept for machine noise control

    NASA Astrophysics Data System (ADS)

    Landsberger, Brian

    2003-10-01

    An engineered system reaches its ideal function when all its input energy is transformed efficiently into creating the output energy. This leaves less energy available for creating unwanted noise and vibration. A large hydraulic pump evaluation is used to demonstrate the relation between energy efficiency and unwanted noise. Measurements were taken while conducting speed sweeps at various load conditions. Sound in the hemisphere surrounding the pump, acceleration at various locations on and around the pump, and shaft rotation instantaneous phase measurements were used to determine the magnitude, character, and source of the sound. A particularly loud noise level associated with a certain operating region was determined to result from driven vibration of the pump case. The disturbance appeared to originate from pulsations in the pump flow and pressure. This operating region also had a several percent drop in pump efficiency. In this example, more efficient energy transformation would have the dual benefit of higher efficiency and lower noise.

  15. Jet Engine Noise Generation, Prediction and Control. Chapter 86

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Envia, Edmane

    2004-01-01

    Aircraft noise has been a problem near airports for many years. It is a quality of life issue that impacts millions of people around the world. Solving this problem has been the principal goal of noise reduction research that began when commercial jet travel became a reality. While progress has been made in reducing both airframe and engine noise, historically, most of the aircraft noise reduction efforts have concentrated on the engines. This was most evident during the 1950 s and 1960 s when turbojet engines were in wide use. This type of engine produces high velocity hot exhaust jets during takeoff generating a great deal of noise. While there are fewer commercial aircraft flying today with turbojet engines, supersonic aircraft including high performance military aircraft use engines with similar exhaust flow characteristics. The Pratt & Whitney F100-PW-229, pictured in Figure la, is an example of an engine that powers the F-15 and F-16 fighter jets. The turbofan engine was developed for subsonic transports, which in addition to better fuel efficiency also helped mitigate engine noise by reducing the jet exhaust velocity. These engines were introduced in the late 1960 s and power most of the commercial fleet today. Over the years, the bypass ratio (that is the ratio of the mass flow through the fan bypass duct to the mass flow through the engine core) has increased to values approaching 9 for modern turbofans such as the General Electric s GE-90 engine (Figure lb). The benefits to noise reduction for high bypass ratio (HPBR) engines are derived from lowering the core jet velocity and temperature, and lowering the tip speed and pressure ratio of the fan, both of which are the consequences of the increase in bypass ratio. The HBPR engines are typically very large in diameter and can produce over 100,000 pounds of thrust for the largest engines. A third type of engine flying today is the turbo-shaft which is mainly used to power turboprop aircraft and helicopters

  16. Control of linear accelerator noise in the Los Alamos free-electron laser (FEL)

    SciTech Connect

    Lynch, M.T.

    1986-01-01

    The Los Alamos FEL requires tight control of the amplitudes and phases of the fields in two linear accelerator tanks to obtain stable lasing. The accelerator control loops must establish constant, stable, repeatable amplitudes and phases of the rf fields and must have excellent bandwidth to control high-frequency noise components. A model of the feedback loops has been developed that agrees well with measurements and allows easy substitution of components and circuits, thus reducing breadboarding requirements. The model permits both frequency and time-domain analysis. This paper describes the accelerator control scheme and our model and discusses the control of noise in feedback loops, showing how low-frequency-noise components (errors) can be corrected, but high-frequency-noise components (errors) are actually amplified by the feedback circuit. Measurements of noise in both open- and closed-loop modes are shown and comparison is made with results from the model calculations.

  17. Active control of transmitted sound in buildings

    NASA Astrophysics Data System (ADS)

    Thompsett, Russell Harvey George

    The problem of noise from neighbours has increased dramatically over the last few years. Many of the noise complaints are due to the high level, low frequency noise from modern stereo equipment, and are often described in terms of the low frequency characteristics of the music; the repetitive, booming, bass beat. The objective of this research was to establish the feasibility of applying active noise control to alleviate this problem. The initial approach was to evaluate the possibility of exploiting the dominance of individual modes in the response of rooms at low frequency to effect global control. However, initial investigations using a modal model of the sound field revealed that this would be difficult due to the contribution of many acoustic modes excited off resonance. This conclusion was supported by measurements of acoustic room responses in typical buildings, illustrating a non-resonant characteristic. Consequently, attention was turned to the feasibility of using local active control systems to create zones of quiet by concentrating control at a specific location near the observers ears, for example in a seat headrest, or near the pillows of a bed. The lack of a reference signal in either approach requires the use of a feedback control strategy. With a typically non-resonant system, the predictability in the disturbance necessary for successful feedback control must be contained in the primary excitation, namely the music. Examples of different music styles were investigated and of those with the potential to be a nuisance surprisingly few were significantly more predictable than a random disturbance. As expected the most encouraging control performance simulations were found for modern dance music, with a strong repetitive beat. A real-time, local controller was demonstrated in the laboratory with such a disturbance signal and the properties of the quiet zone were measured. The subjective response when hearing the controller in operation was found to be

  18. Inertia Wheel on Low-Noise Active Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Carabelli, S.; Genta, G.; Silvagni, M.; Tonoli, A.

    2002-01-01

    Magnetic bearings are particularly suited for space applications for a number of reasons: - they are ideally suited for vacuum applications; - the lack of lubrication and wear enhances the reliability and guaranties a long maintenance-free operation - the low drag torque decreases power consumption and reduces the torque exerted on the stator of the machine. - the possibility of insulating actively the spacecraft from the excitation due to unbalance of the rotating system In the case of reaction wheels, a well designed magnetic suspension allows high speed operation with a very low power consumption and vibration level. Conversely, microgravity (and possibly vacuum) operation is an advantage for magnetic bearings. The absence of static forces allows to operate with low current levels, thus reducing electrical noise and allowing to reach even lower vibration levels than in Earth applications of magnetic bearings. Active magnetic bearings (AMB) allow to adapt the working characteristics of the system to the operating needs: it is possible to use the actuators to lock the system during launch (absence of grabbers) and to stiffen the suspension when the spacecraft is accelerated (impulsive phases), while working in conditions optimised for microgravity when this is needed. Magnetic suspension systems designed for microgravity environment cannot be correctly tested on the ground. Testing in ground conditions results in the need of grossly overdesigning the levitation device; furthermore, in some cases ground testing is completely impossible, if not by introducing devices which compensate for the Earth gravitational field. If the compensation for the gravitational force is supplied by the same actuators used for microgravity operation, the actuators and the power amplifiers must be overdesigned and in some cases the suspension can be altogether impossible. They work in conditions which are much different from nominal ones and, above all, it is impossible to reach the

  19. Interior noise control ground test studies for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Cannon, Mark R.; Burge, Paul L.; Boyd, Robert P.

    1989-01-01

    The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.

  20. Contemporary theories of 1/f noise in motor control.

    PubMed

    Diniz, Ana; Wijnants, Maarten L; Torre, Kjerstin; Barreiros, João; Crato, Nuno; Bosman, Anna M T; Hasselman, Fred; Cox, Ralf F A; Van Orden, Guy C; Delignières, Didier

    2011-10-01

    1/f noise has been discovered in a number of time series collected in psychological and behavioral experiments. This ubiquitous phenomenon has been ignored for a long time and classical models were not designed for accounting for these long-range correlations. The aim of this paper is to present and discuss contrasted theoretical perspectives on 1/f noise, in order to provide a comprehensive overview of current debates in this domain. In a first part, we propose a formal definition of the phenomenon of 1/f noise, and we present some commonly used methods for measuring long-range correlations in time series. In a second part, we develop a theoretical position that considers 1/f noise as the hallmark of system complexity. From this point of view, 1/f noise emerges from the coordination of the many elements that compose the system. In a third part, we present a theoretical counterpoint suggesting that 1/f noise could emerge from localized sources within the system. In conclusion, we try to draw some lines of reasoning for going beyond the opposition between these two approaches.

  1. Distinct promoter activation mechanisms modulate noise-driven HIV gene expression

    NASA Astrophysics Data System (ADS)

    Chavali, Arvind K.; Wong, Victor C.; Miller-Jensen, Kathryn

    2015-12-01

    Latent human immunodeficiency virus (HIV) infections occur when the virus occupies a transcriptionally silent but reversible state, presenting a major obstacle to cure. There is experimental evidence that random fluctuations in gene expression, when coupled to the strong positive feedback encoded by the HIV genetic circuit, act as a ‘molecular switch’ controlling cell fate, i.e., viral replication versus latency. Here, we implemented a stochastic computational modeling approach to explore how different promoter activation mechanisms in the presence of positive feedback would affect noise-driven activation from latency. We modeled the HIV promoter as existing in one, two, or three states that are representative of increasingly complex mechanisms of promoter repression underlying latency. We demonstrate that two-state and three-state models are associated with greater variability in noisy activation behaviors, and we find that Fano factor (defined as variance over mean) proves to be a useful noise metric to compare variability across model structures and parameter values. Finally, we show how three-state promoter models can be used to qualitatively describe complex reactivation phenotypes in response to therapeutic perturbations that we observe experimentally. Ultimately, our analysis suggests that multi-state models more accurately reflect observed heterogeneous reactivation and may be better suited to evaluate how noise affects viral clearance.

  2. Distinct promoter activation mechanisms modulate noise-driven HIV gene expression

    PubMed Central

    Chavali, Arvind K.; Wong, Victor C.; Miller-Jensen, Kathryn

    2015-01-01

    Latent human immunodeficiency virus (HIV) infections occur when the virus occupies a transcriptionally silent but reversible state, presenting a major obstacle to cure. There is experimental evidence that random fluctuations in gene expression, when coupled to the strong positive feedback encoded by the HIV genetic circuit, act as a ‘molecular switch’ controlling cell fate, i.e., viral replication versus latency. Here, we implemented a stochastic computational modeling approach to explore how different promoter activation mechanisms in the presence of positive feedback would affect noise-driven activation from latency. We modeled the HIV promoter as existing in one, two, or three states that are representative of increasingly complex mechanisms of promoter repression underlying latency. We demonstrate that two-state and three-state models are associated with greater variability in noisy activation behaviors, and we find that Fano factor (defined as variance over mean) proves to be a useful noise metric to compare variability across model structures and parameter values. Finally, we show how three-state promoter models can be used to qualitatively describe complex reactivation phenotypes in response to therapeutic perturbations that we observe experimentally. Ultimately, our analysis suggests that multi-state models more accurately reflect observed heterogeneous reactivation and may be better suited to evaluate how noise affects viral clearance. PMID:26666681

  3. Interior noise control prediction study for high-speed propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Rennison, D. C.; Wilby, J. F.; Marsh, A. H.; Wilby, E. G.

    1979-01-01

    An analytical model was developed to predict the noise levels inside propeller-driven aircraft during cruise at M = 0.8. The model was applied to three study aircraft with fuselages of different size (wide body, narrow body and small diameter) in order to determine the noise reductions required to achieve the goal of an A-weighted sound level which does not exceed 80 dB. The model was then used to determine noise control methods which could achieve the required noise reductions. Two classes of noise control treatments were investigated: add-on treatments which can be added to existing structures, and advanced concepts which would require changes to the fuselage primary structure. Only one treatment, a double wall with limp panel, provided the required noise reductions. Weight penalties associated with the treatment were estimated for the three study aircraft.

  4. Noise control, sound, and the vehicle design process

    NASA Astrophysics Data System (ADS)

    Donavan, Paul

    2005-09-01

    For many products, noise and sound are viewed as necessary evils that need to be dealt with in order to bring the product successfully to market. They are generally not product ``exciters'' although some vehicle manufacturers do tune and advertise specific sounds to enhance the perception of their products. In this paper, influencing the design process for the ``evils,'' such as wind noise and road noise, are considered in more detail. There are three ingredients to successfully dealing with the evils in the design process. The first of these is knowing how excesses in noise effects the end customer in a tangible manner and how that effects customer satisfaction and ultimately sells. The second is having and delivering the knowledge of what is required of the design to achieve a satisfactory or even better level of noise performance. The third ingredient is having the commitment of the designers to incorporate the knowledge into their part, subsystem or system. In this paper, the elements of each of these ingredients are discussed in some detail and the attributes of a successful design process are enumerated.

  5. Identification procedures for the charge-controlled nonlinear noise model of microwave electron devices

    NASA Astrophysics Data System (ADS)

    Filicori, Fabio; Traverso, Pier Andrea; Florian, Corrado; Borgarino, Mattia

    2004-05-01

    The basic features of the recently proposed Charge-Controlled Non-linear Noise (CCNN) model for the prediction of low-to-high-frequency noise up-conversion in electron devices under large-signal RF operation are synthetically presented. It is shown that the different noise generation phenomena within the device can be described by four equivalent noise sources, which are connected at the ports of a "noiseless" device model and are non-linearly controlled by the time-varying instantaneous values of the intrinsic device voltages. For the empirical identification of the voltage-controlled equivalent noise sources, different possible characterization procedures, based not only on conventional low-frequency noise data, but also on different types of noise measurements carried out under large-signal RF operating conditions are discussed. As an example of application, the measurement-based identification of the CCNN model for a GaInP heterojunction bipolar microwave transistor is presented. Preliminary validation results show that the proposed model can describe with adequate accuracy not only the low-frequency noise of the HBT, but also its phase-noise performance in a prototype VCO implemented by using the same monolithic GaAs technology.

  6. Interior Noise Reduction by Adaptive Feedback Vibration Control

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.

    1998-01-01

    The objective of this project is to investigate the possible use of adaptive digital filtering techniques in simultaneous, multiple-mode identification of the modal parameters of a vibrating structure in real-time. It is intended that the results obtained from this project will be used for state estimation needed in adaptive structural acoustics control. The work done in this project is basically an extension of the work on real-time single mode identification, which was performed successfully using a digital signal processor (DSP) at NASA, Langley. Initially, in this investigation the single mode identification work was duplicated on a different processor, namely the Texas Instruments TMS32OC40 DSP. The system identification results for the single mode case were very good. Then an algorithm for simultaneous two mode identification was developed and tested using analytical simulation. When it successfully performed the expected tasks, it was implemented in real-time on the DSP system to identify the first two modes of vibration of a cantilever aluminum beam. The results of the simultaneous two mode case were good but some problems were identified related to frequency warping and spurious mode identification. The frequency warping problem was found to be due to the bilinear transformation used in the algorithm to convert the system transfer function from the continuous-time domain to the discrete-time domain. An alternative approach was developed to rectify the problem. The spurious mode identification problem was found to be associated with high sampling rates. Noise in the signal is suspected to be the cause of this problem but further investigation will be needed to clarify the cause. For simultaneous identification of more than two modes, it was found that theoretically an adaptive digital filter can be designed to identify the required number of modes, but the algebra became very complex which made it impossible to implement in the DSP system used in this study

  7. Trichotomous noise controlled signal amplification in a generalized Verhulst model

    NASA Astrophysics Data System (ADS)

    Mankin, Romi; Soika, Erkki; Lumi, Neeme

    2014-10-01

    The long-time limit of the probability distribution and statistical moments for a population size are studied by means of a stochastic growth model with generalized Verhulst self-regulation. The effect of variable environment on the carrying capacity of a population is modeled by a multiplicative three-level Markovian noise and by a time periodic deterministic component. Exact expressions for the moments of the population size have been calculated. It is shown that an interplay of a small periodic forcing and colored noise can cause large oscillations of the mean population size. The conditions for the appearance of such a phenomenon are found and illustrated by graphs. Implications of the results on models of symbiotic metapopulations are also discussed. Particularly, it is demonstrated that the effect of noise-generated amplification of an input signal gets more pronounced as the intensity of symbiotic interaction increases.

  8. Active control system trends

    NASA Technical Reports Server (NTRS)

    Yore, E. E.; Gunderson, D. C.

    1976-01-01

    The active control concepts which achieve the benefit of improved mission performance and lower cost and generate system trends towards improved dynamic performance, more integration, and digital fly by wire mechanization are described. Analytical issues and implementation requirements and tools and approaches developed to address the analytical and implementation issues are briefly discussed.

  9. Publications in acoustics and noise control from the NASA Langley Research Center during 1940 - 1974

    NASA Technical Reports Server (NTRS)

    Smith, G. C. (Compiler); Laneave, J. N. (Compiler)

    1975-01-01

    This document contains reference lists of published Langley Research Center papers in various areas of acoustics and noise control for the period 1940-1974. The research work was performed either in-house by the center staff or by other personnel supported entirely or in part by grants or contracts. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics, (2) Propagation and operations, (3) Rotating blade noise, (4) Jet noise, (5) Sonic boom, (6) Flow-surface interaction noise, (7) Human response, and (8) Structural response.

  10. Effect of Unpleasant Loud Noise on Hippocampal Activities during Picture Encoding: An fMRI Study

    ERIC Educational Resources Information Center

    Hirano, Yoshiyuki; Fujita, Masafumi; Watanabe, Kazuko; Niwa, Masami; Takahashi, Toru; Kanematsu, Masayuki; Ido, Yasushi; Tomida, Mihoko; Onozuka, Minoru

    2006-01-01

    The functional link between the amygdala and hippocampus in humans has not been well documented. We examined the effect of unpleasant loud noise on hippocampal and amygdaloid activities during picture encoding by means of fMRI, and on the correct response in humans. The noise reduced activity in the hippocampus during picture encoding, decreased…

  11. Cortical activity predicts which older adults recognize speech in noise and when.

    PubMed

    Vaden, Kenneth I; Kuchinsky, Stefanie E; Ahlstrom, Jayne B; Dubno, Judy R; Eckert, Mark A

    2015-03-04

    Speech recognition in noise can be challenging for older adults and elicits elevated activity throughout a cingulo-opercular network that is hypothesized to monitor and modify behaviors to optimize performance. A word recognition in noise experiment was used to test the hypothesis that cingulo-opercular engagement provides performance benefit for older adults. Healthy older adults (N = 31; 50-81 years of age; mean pure tone thresholds <32 dB HL from 0.25 to 8 kHz, best ear; species: human) performed word recognition in multitalker babble at 2 signal-to-noise ratios (SNR = +3 or +10 dB) during a sparse sampling fMRI experiment. Elevated cingulo-opercular activity was associated with an increased likelihood of correct recognition on the following trial independently of SNR and performance on the preceding trial. The cingulo-opercular effect increased for participants with the best overall performance. These effects were lower for older adults compared with a younger, normal-hearing adult sample (N = 18). Visual cortex activity also predicted trial-level recognition for the older adults, which resulted from discrete decreases in activity before errors and occurred for the oldest adults with the poorest recognition. Participants demonstrating larger visual cortex effects also had reduced fractional anisotropy in an anterior portion of the left inferior frontal-occipital fasciculus, which projects between frontal and occipital regions where activity predicted word recognition. Together, the results indicate that older adults experience performance benefit from elevated cingulo-opercular activity, but not to the same extent as younger adults, and that declines in attentional control can limit word recognition.

  12. A theoretical and experimental study of wood planer noise and its control

    NASA Technical Reports Server (NTRS)

    Stewart, J. S.

    1972-01-01

    A combined analytical and experimental study of wood planer noise is made and the results applied to the development of practical noise control techniques. The dominant mechanisms of sound generation are identified and an analysis is presented which accurately predicts the governing levels of noise emission. Planing operations in which the length of the board is much greater than the width are considered. The dominant source of planer noise is identified as the board being surfaced, which is set into vibration by the impact of cutterhead knives. This is determined from studies made both in the laboratory and in the field concerning the effect of board width on the resulting noise, which indicate a six decibel increase in noise level for each doubling of board width. The theoretical development of a model for board vibration defines the vibrational field set up in the board and serves as a guide for cutterhead redesign.

  13. Rotor Flapping Response to Active Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh; Johnson, Wayne

    2004-01-01

    Rotor active control using higher harmonic blade pitch has been proposed as a means to reduce both rotor radiated noise and airframe vibration and to enhance rotor performance. The higher harmonic input, however, can affect rotor thrust and cyclic flapping - the basic trim characteristics of the rotor. Some of the trim changes can negate the active control benefits. For example, wind tunnel test results of a full scale BO-105 rotor with individual-blade control indicate some rotor performance improvements, accompanied with changes in rotor trim, using two-per-rev blade pitch input. The observed performance benefits could therefore be a simple manifestation of the trim change rather than an efficient redistribution of the rotor airloads. More recently, the flight test of the BO-105 helicopter equip,ped with individual-blade-control actuators also reported trim changes whenever the two-per-rev blade pitch for noise reduction was activated. The pilot had to adjust the trim control to maintain the aircraft under a constant flight path. These two cases highlight the, importance of trim considerations in the application of active control to rotorcraft.

  14. Noise in brain activity engenders perception and influences discrimination sensitivity.

    PubMed

    Bernasconi, Fosco; De Lucia, Marzia; Tzovara, Athina; Manuel, Aurelie L; Murray, Micah M; Spierer, Lucas

    2011-12-07

    Behavioral and brain responses to identical stimuli can vary with experimental and task parameters, including the context of stimulus presentation or attention. More surprisingly, computational models suggest that noise-related random fluctuations in brain responses to stimuli would alone be sufficient to engender perceptual differences between physically identical stimuli. In two experiments combining psychophysics and EEG in healthy humans, we investigated brain mechanisms whereby identical stimuli are (erroneously) perceived as different (higher vs lower in pitch or longer vs shorter in duration) in the absence of any change in the experimental context. Even though, as expected, participants' percepts to identical stimuli varied randomly, a classification algorithm based on a mixture of Gaussians model (GMM) showed that there was sufficient information in single-trial EEG to reliably predict participants' judgments of the stimulus dimension. By contrasting electrical neuroimaging analyses of auditory evoked potentials (AEPs) to the identical stimuli as a function of participants' percepts, we identified the precise timing and neural correlates (strength vs topographic modulations) as well as intracranial sources of these erroneous perceptions. In both experiments, AEP differences first occurred ~100 ms after stimulus onset and were the result of topographic modulations following from changes in the configuration of active brain networks. Source estimations localized the origin of variations in perceived pitch of identical stimuli within right temporal and left frontal areas and of variations in perceived duration within right temporoparietal areas. We discuss our results in terms of providing neurophysiologic evidence for the contribution of random fluctuations in brain activity to conscious perception.

  15. Active-passive gradient shielding for MRI acoustic noise reduction.

    PubMed

    Edelstein, William A; Kidane, Tesfaye K; Taracila, Victor; Baig, Tanvir N; Eagan, Timothy P; Cheng, Yu-Chung N; Brown, Robert W; Mallick, John A

    2005-05-01

    An important source of MRI acoustic noise-magnet cryostat warm-bore vibrations caused by eddy-current-induced forces-can be mitigated by a passive metal shield mounted on the outside of a vibration-isolated, vacuum-enclosed shielded gradient set. Finite-element (FE) calculations for a z-gradient indicate that a 2-mm-thick Cu layer wrapped on the gradient assembly can decrease mechanical power deposition in the warm bore and reduce warm-bore acoustic noise production by about 25 dB. Eliminating the conducting warm bore and other magnet parts as significant acoustic noise sources could lead to the development of truly quiet, fully functioning MRI systems with noise levels below 70 dB.

  16. Noise annoyance and activity disturbance before and after the erection of a roadside noise barrier.

    PubMed

    Nilsson, Mats E; Berglund, Birgitta

    2006-04-01

    Questionnaire studies were conducted in a residential area before and after the erection of a 2.25 m high noise barrier of conventional type along a heavily traveled road (19,600 vehicles/24 h). The interval between studies was two years. Houses closest to the barrier received a sound-level reduction from -70.0 to 62.5 dB Lden at the most exposed facade. The sound-level reduction decreased with distance to the road, and was negligible for houses at more than 100 m distance. Up to this distance, the noise barrier reduced residents' noise annoyance outdoors and indoors as well as improved speech communication outdoors. Indoors, speech communication and sleep disturbance were slightly but nonsignificantly improved. Predictions of the number of annoyed persons from published exposure-response curves (in Lden) agreed with the percentage of residents being annoyed when indoors, before and after the barrier. Conversely, the percentage of residents being annoyed when outdoors clearly exceeded the predictions. These results suggest that these exposure-response curves may be used in predicting indoor situations, but they should not be applied in situations where outdoor annoyance is at focus.

  17. Transitioning Active Flow Control to Applications

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Horta, Lucas G.; Chen, Fang-Jenq

    1999-01-01

    Active Flow Control Programs at NASA, the U.S. Air Force, and DARPA have been initiated with the goals of obtaining revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. These programs envision the use of actuators, sensors, and controllers on applications such as aircraft wings/tails, engine nacelles, internal ducts, nozzles, projectiles, weapons bays, and hydrodynamic vehicles. Anticipated benefits of flow control include reduced weight, part count, and operating cost and reduced fuel burn (and emissions), noise and enhanced safety if the sensors serve a dual role of flow control and health monitoring. To get from the bench-top or laboratory test to adaptive distributed control systems on realistic applications, reliable validated design tools are needed in addition to sub- and large-scale wind-tunnel and flight experiments. This paper will focus on the development of tools for active flow control applications.

  18. Through-wall imaging and characterization of human activity using ultrawideband (UWB) random noise radar

    NASA Astrophysics Data System (ADS)

    Lai, Chieh-Ping; Narayanan, Ram M.

    2005-05-01

    Recent terrorist activities and law-enforcement situations involving hostage situations underscore the need for effective through-wall imaging. Current building interior imaging systems are based on short-pulse waveforms, which require specially designed antennas to subdue unwanted ringing. In addition, periodically transmitted pulses of energy are easily recognizable by the intelligent adversary who may employ appropriate countermeasures to confound detection. A coherent polarimetric random noise radar architecture is being developed based on UWB technology and software defined radio, which has great promise in its ability to covertly image obscured targets. The main advantages of the random noise radar lie in two aspects: first, random noise waveform has an ideal "thumbtack" ambiguity function, i.e., its down range and cross range resolution can be separately controlled, thus providing unambiguous high resolution imaging at any distance; second, random noise waveform is inherently low probability of intercept (LPI) and low probability of detection (LPD), i.e., it is immune from detection, jamming, and interference. Thus, it is an ideal candidate sensor for covert imaging of obscured regions in hostile environments. The coherency in the system can be exploited to field a fully-polarimetric system that can take advantage of polarization features in target recognition. Moving personnel can also be detected using Doppler processing. Simulation studies are used to analyze backscattered signals from the walls, and humans and other targets behind the walls. Real-time data processing shows human activity behind the wall and human target tracking. The high resolution provides excellent multipath and clutter rejection.

  19. Inexact fuzzy integer chance constraint programming approach for noise control within an urban environment

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Huang, Gordon; Dai, Liming; Fan, Yurui

    2016-08-01

    This article introduces an inexact fuzzy integer chance constraint programming (IFICCP) approach for identifying noise reduction strategy under uncertainty. The IFICCP method integrates the interval programming and fuzzy chance constraint programming approaches into a framework, which is able to deal with uncertainties expressed as intervals and fuzziness. The proposed IFICCP model can be converted into two deterministic submodels corresponding to the optimistic and pessimistic conditions. The modelling approach is applied to a hypothetical control measure selection problem for noise reduction. Results of the case study indicate that useful solutions for noise control practices can be acquired. Three acceptable noise levels for two communities are considered. For each acceptable noise level, several decision alternatives have been obtained and analysed under different fuzzy confidence levels, which reflect the trade-offs between environmental and economic considerations.

  20. Activated protein C rescues the cochlea from noise-induced hearing loss.

    PubMed

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Satoh, Yasushi; Shiotani, Akihiro

    2014-10-02

    Activated protein C (APC) is a serine/threonine protease and a physiological anticoagulant that exerts anti-inflammatory and anti-apoptotic effects. Although recent studies have revealed that APC has the potential to protect endothelial cells from apoptosis, the mechanisms of its cytoprotective effect are not fully understood. We examined the potential of APC to protect against noise-induced hearing loss (NIHL) and investigated phosphorylation of serine-threonine kinase (Akt) and inhibition of apoptosis as possible cytoprotective mechanisms. We administered intraperitoneal injections of APC (150, 300 U/kg) or normal saline to rats 30 min before exposure to a sound pressure level (SPL) of 126 dB and 4-kHz octave band noise for 5h. The auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) were measured before and after exposure. ABR and DPOAE measurements revealed greater improvement in the APC group than in the control group 28 days after exposure. Our examination of outer hair cells (OHCs) at 28 days after noise exposure revealed a significantly higher OHC survival rate in the APC group than in the control group. Immunohistochemical analyses for cleaved-caspase 3, phospho-p38 (p-p38), TUNEL, and phospho-Akt (p-Akt) revealed strong immunoreactivities against cleaved-caspase 3, p-p38, and TUNEL in the inner ear tissues of the control group; however, these signals were decreased in the APC group. Moreover, APC significantly induced activation of p-Akt in the cochlea. These findings suggest that APC has a novel protective effect on the cochlea against NIHL that is mediated by p-Akt and the anti-apoptotic signaling pathway.

  1. 40 CFR 2.303 - Special rules governing certain information obtained under the Noise Control Act of 1972.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... information obtained under the Noise Control Act of 1972. 2.303 Section 2.303 Protection of Environment... Special rules governing certain information obtained under the Noise Control Act of 1972. (a) Definitions. For the purposes of this section: (1) Act means the Noise Control Act of 1972, 42 U.S.C. 4901 et...

  2. 40 CFR 2.303 - Special rules governing certain information obtained under the Noise Control Act of 1972.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... information obtained under the Noise Control Act of 1972. 2.303 Section 2.303 Protection of Environment... Special rules governing certain information obtained under the Noise Control Act of 1972. (a) Definitions. For the purposes of this section: (1) Act means the Noise Control Act of 1972, 42 U.S.C. 4901 et...

  3. 40 CFR 2.303 - Special rules governing certain information obtained under the Noise Control Act of 1972.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... information obtained under the Noise Control Act of 1972. 2.303 Section 2.303 Protection of Environment... Special rules governing certain information obtained under the Noise Control Act of 1972. (a) Definitions. For the purposes of this section: (1) Act means the Noise Control Act of 1972, 42 U.S.C. 4901 et...

  4. 40 CFR 2.303 - Special rules governing certain information obtained under the Noise Control Act of 1972.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information obtained under the Noise Control Act of 1972. 2.303 Section 2.303 Protection of Environment... Special rules governing certain information obtained under the Noise Control Act of 1972. (a) Definitions. For the purposes of this section: (1) Act means the Noise Control Act of 1972, 42 U.S.C. 4901 et...

  5. 40 CFR 2.303 - Special rules governing certain information obtained under the Noise Control Act of 1972.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... information obtained under the Noise Control Act of 1972. 2.303 Section 2.303 Protection of Environment... Special rules governing certain information obtained under the Noise Control Act of 1972. (a) Definitions. For the purposes of this section: (1) Act means the Noise Control Act of 1972, 42 U.S.C. 4901 et...

  6. [Actuator placement for active sound and vibration control

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Two refereed journal publications and ten talks given at conferences, seminars, and colloquia resulted from research supported by NASA. They are itemized in this report. The two publications were entitled "Reactive Tabu and Search Sensor Selection in Active Structural Acoustic Control Problems" and "Quelling Cabin Noise in Turboprop Aircraft via Active Control." The conference presentations covered various aspects of actuator placement, including location problems, for active sound and vibration control of cylinders, of commuter jets, of propeller driven or turboprop aircraft, and for quelling aircraft cabin or interior noise.

  7. Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise

    NASA Technical Reports Server (NTRS)

    Eckstein, M. P.; Ahumada, A. J. Jr; Watson, A. B.

    1997-01-01

    Studies of visual detection of a signal superimposed on one of two identical backgrounds show performance degradation when the background has high contrast and is similar in spatial frequency and/or orientation to the signal. To account for this finding, models include a contrast gain control mechanism that pools activity across spatial frequency, orientation and space to inhibit (divisively) the response of the receptor sensitive to the signal. In tasks in which the observer has to detect a known signal added to one of M different backgrounds grounds due to added visual noise, the main sources of degradation are the stochastic noise in the image and the suboptimal visual processing. We investigate how these two sources of degradation (contrast gain control and variations in the background) interact in a task in which the signal is embedded in one of M locations in a complex spatially varying background (structured background). We use backgrounds extracted from patient digital medical images. To isolate effects of the fixed deterministic background (the contrast gain control) from the effects of the background variations, we conduct detection experiments with three different background conditions: (1) uniform background, (2) a repeated sample of structured background, and (3) different samples of structured background. Results show that human visual detection degrades from the uniform background condition to the repeated background condition and degrades even further in the different backgrounds condition. These results suggest that both the contrast gain control mechanism and the background random variations degrade human performance in detection of a signal in a complex, spatially varying background. A filter model and added white noise are used to generate estimates of sampling efficiencies, an equivalent internal noise, an equivalent contrast-gain-control-induced noise, and an equivalent noise due to the variations in the structured background.

  8. Phase noise analysis of voltage controlled oscillator used in cesium atomic clock

    NASA Astrophysics Data System (ADS)

    Zhi, Menghui; Tang, Liang; Qiao, Donghai

    2017-03-01

    Coherent population trapping (CPT) cesium frequency standard plays a significant role in precision guidance of missile and global positioning system (GPS). Low noise 4.596 GHz voltage controlled oscillator (VCO) is an indispensable part of microwave signal source in cesium frequency standard. Low-phase noise is also the most important and difficult performance indicator of VCO. Starting from phase noise analysis method proposed by Leeson, the formulas about the relationship between phase noise of output signal of oscillator feedback model and phase fluctuation spectrum of amplifier, phase noise of oscillator are derived in this paper. Finally, the asymptote model of microwave oscillator is proposed based on the formula derivation. The experiment shows that when the reverse bias voltage of variode is 1.8 V, the designed oscillation frequency of VCO is 4.596 GHz, the power is ‑1 dBm and the DC power consumption is 19.6 mW. The tendency of phase noise simulation curve and actual test curve conform to asymptote model. The phase noise in 1 and 10 kHz is, respectively, ‑60.86 and ‑86.58 dBc/Hz. The significance of the paper lies in determining the main factors influencing oscillator phase noise and providing guiding direction for the design of low-phase noise VCO.

  9. On optimal control of linear systems in the presence of multiplicative noise

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1976-01-01

    This correspondence considers the problem of optimal regulator design for discrete time linear systems subjected to white state-dependent and control-dependent noise in addition to additive white noise in the input and the observations. A pseudo-deterministic problem is first defined in which multiplicative and additive input disturbances are present, but noise-free measurements of the complete state vector are available. This problem is solved via discrete dynamic programming. Next is formulated the problem in which the number of measurements is less than that of the state variables and the measurements are contaminated with state-dependent noise. The inseparability of control and estimation is brought into focus, and an 'enforced separation' solution is obtained via heuristic reasoning in which the control gains are shown to be the same as those in the pseudo-deterministic problem. An optimal linear state estimator is given in order to implement the controller.

  10. Noise control at fossil fuel power plants: an industrywide assessment of costs and benefits. Final report

    SciTech Connect

    Hoover, R.M.

    1983-12-01

    This report presents the results of a study on the costs and perceived benefits of noise control measures currently installed at fossil power plants. Information for this study was sought from the entire fossil power plant industry in this country through a questionnaire survey and through discussions with utility personnel. A total of 84 power companies responded with information on plants. In addition, five power plants with extensive noise control measures were selected for detailed study. For these plants, case histories were prepared following plant visits and discussions with utility personnel regarding the specific noise control measures. Based on these case histories and the results of the questionnaire survey, noise control costs and perceived benefits are presented for major power plant equipment categories including draft fans, boiler feed pumps, turbine-generator systems, valves, and transformers. 12 references, 14 figures, 7 tables.

  11. Active control of multi-dimensional random sound in ducts

    NASA Technical Reports Server (NTRS)

    Silcox, R. J.; Elliott, S. J.

    1990-01-01

    Previous work has demonstrated how active control may be applied to the control of random noise in ducts. These implementations, however, have been restricted to frequencies where only plane waves are propagating in the duct. In spite of this, the need for this technology at low frequencies has progressed to the point where commercial products that apply these concepts are currently available. Extending the frequency range of this technology requires the extension of current single channel controllers to multi-variate control systems as well as addressing the problems inherent in controlling higher order modes. The application of active control in the multi-dimensional propagation of random noise in waveguides is examined. An adaptive system is implemented using measured system frequency response functions. Experimental results are presented illustrating attained suppressions of 15 to 30 dB for random noise propagating in multiple modes.

  12. A Kalman filter for feedback control of rotating external kink instabilities in the presence of noise

    SciTech Connect

    Hanson, Jeremy M.; De Bono, Bryan; Levesque, Jeffrey P.; Mauel, Michael E.; Maurer, David A.; Navratil, Gerald A.; Pedersen, Thomas Sunn; Shiraki, Daisuke; James, Royce W.

    2009-05-15

    The simulation and experimental optimization of a Kalman filter feedback control algorithm for n=1 tokamak external kink modes are reported. In order to achieve the highest plasma pressure limits in ITER, resistive wall mode stabilization is required [T. C. Hender et al., Nucl. Fusion 47, S128 (2007)] and feedback algorithms will need to distinguish the mode from noise due to other magnetohydrodynamic activity. The Kalman filter contains an internal model that captures the dynamics of a rotating, growing n=1 mode. This model is actively compared with real-time measurements to produce an optimal estimate for the mode's amplitude and phase. On the High Beta Tokamak-Extended Pulse experiment [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)], the Kalman filter algorithm is implemented using a set of digital, field-programmable gate array controllers with 10 {mu}s latencies. Signals from an array of 20 poloidal sensor coils are used to measure the n=1 mode, and the feedback control is applied using 40 poloidally and toroidally localized control coils. The feedback system with the Kalman filter is able to suppress the external kink mode over a broad range of phase angles between the sensed mode and applied control field. Scans of filter parameters show good agreement between simulation and experiment, and feedback suppression and excitation of the kink mode are enhanced in experiments when a filter made using optimal parameters from the scans is used.

  13. Noise control by sonic crystal barriers made of recycled materials.

    PubMed

    Sánchez-Dehesa, José; Garcia-Chocano, Victor M; Torrent, Daniel; Cervera, Francisco; Cabrera, Suitberto; Simon, Francisco

    2011-03-01

    A systematic study of noise barriers based on sonic crystals made of cylinders that use recycled materials like absorbing component is reported here. The barriers consist of only three rows of perforated metal shells filled with rubber crumb. Measurements of reflectance and transmittance by these barriers are reported. Their attenuation properties result from a combination of sound absorption by the rubber crumb and reflection by the periodic distribution of scatterers. It is concluded that the porous cylinders can be used as building blocks whose physical parameters can be optimized in order to design efficient barriers adapted to different noisy environments.

  14. Noise filtering algorithm for the MFTF-B computer based control system

    SciTech Connect

    Minor, E.G.

    1983-11-30

    An algorithm to reduce the message traffic in the MFTF-B computer based control system is described. The algorithm filters analog inputs to the control system. Its purpose is to distinguish between changes in the inputs due to noise and changes due to significant variations in the quantity being monitored. Noise is rejected while significant changes are reported to the control system data base, thus keeping the data base updated with a minimum number of messages. The algorithm is memory efficient, requiring only four bytes of storage per analog channel, and computationally simple, requiring only subtraction and comparison. Quantitative analysis of the algorithm is presented for the case of additive Gaussian noise. It is shown that the algorithm is stable and tends toward the mean value of the monitored variable over a wide variety of additive noise distributions.

  15. Active control of convection

    NASA Astrophysics Data System (ADS)

    Singer, Jonathan; Bau, Haim H.

    1991-12-01

    It is demonstrated theoretically that active (feedback) control can be used to alter the characteristics of thermal convection in a toroidal, vertical loop heated from below and cooled from above. As the temperature difference between the heated and cooled sections of the loop increases, the flow in the uncontrolled loop changes from no motion to steady, time-independent motion to temporally oscillatory, chaotic motion. With the use of a feedback controller effecting small perturbations in the boundary conditions, one can maintain the no-motion state at significantly higher temperature differences than the critical one corresponding to the onset of convection in the uncontrolled system. Alternatively, one can maintain steady, time-independent flow under conditions in which the flow would otherwise be chaotic. That is, the controller can be used to suppress chaos. Likewise, it is possible to stabilize periodic nonstable orbits that exist in the chaotic regime of the uncontrolled system. Finally, the controller also can be used to induce chaos in otherwise laminar (fully predictable), nonchaotic flow.

  16. Evaluation of noise associated with geothermal-development activities. Final report, July 31, 1979-April 30, 1982

    SciTech Connect

    Long, M.; Stern, R.

    1982-01-01

    This report was prepared for the purpose of ascertaining the current state of noise generation, suppression, and mitigation techniques associated with geothermal development. A description of the geothermal drilling process is included as well as an overview of geothermal development activities in the United States. Noise sources at the well site, along geothermal pipelines, and at the power plants are considered. All data presented are measured values by workers in the field and by Marshall Long/Acoustics. One particular well site was monitored for a period of 55 continuous days, and includes all sources of noise from the time that the drilling rig was brought in until the time that it was moved off site. A complete log of events associated with the drilling process is correlated with the noise measurements including production testing of the completed well. Data are also presented which compare measured values of geothermal noise with federal, state, county, and local standards. A section on control of geothermal noise is also given. Volume I of this document presents summary information.

  17. Design of sidewall treatment of cabin noise control of a twin engine turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1983-01-01

    An analytical procedure was used to predict the noise transmission into the cabin of a twin engine general aviation aircraft. This model was then used to optimize the interior A weighted noise levels to an average value of about 85 dBA. The surface pressure noise spectral levels were selected utilizing experimental flight data and empirical predictions. The add on treatments considered in this optimization study include aluminum honeycomb panels, constrained layer damping tape, porous acoustic blankets, acoustic foams, septum barriers and limp trim panels which are isolated from the vibration of the main sidewall structure. To reduce the average noise level in the cabin from about 102 kBA (baseline) to 85 dBA (optimized), the added weight of the noise control treatment is about 2% of the total gross takeoff weight of the aircraft.

  18. Fighting noise with noise: Where the contest stands for powerplant applications

    SciTech Connect

    O'Keefe, W.

    1994-07-01

    This article examines the use of active noise cancellation in power plant applications. The article examines the basic concepts of active noise cancellation, types of controls and generators for the canceling noise, economic trade-off, noise regulations, working conditions and impact to employees, demonstration projects and commercial applications.

  19. Reactive control of subsonic axial fan noise in a duct.

    PubMed

    Liu, Y; Choy, Y S; Huang, L; Cheng, L

    2014-10-01

    Suppressing the ducted fan noise at low frequencies without varying the flow capacity is still a technical challenge. This study examines a conceived device consisting of two tensioned membranes backed with cavities housing the axial fan for suppression of the sound radiation from the axial fan directly. The noise suppression is achieved by destructive interference between the sound fields from the axial fan of a dipole nature and sound radiation from the membrane via vibroacoustics coupling. A two-dimensional model with the flow effect is presented which allows the performance of the device to be explored analytically. The air flow influences the symmetrical behavior and excites the odd in vacuo mode response of the membrane due to kinematic coupling. Such an asymmetrical effect can be compromised with off-center alignment of the axial fan. Tension plays an important role to sustain the performance to revoke the deformation of the membrane during the axial fan operation. With the design of four appropriately tensioned membranes covered by a cylindrical cavity, the first and second blade passage frequencies of the axial fan can be reduced by at least 20 dB. The satisfactory agreement between experiment and theory demonstrates that its feasibility is practical.

  20. Environmental noise levels affect the activity budget of the Florida manatee

    NASA Astrophysics Data System (ADS)

    Miksis-Olds, Jennifer L.; Donaghay, Percy L.; Miller, James H.; Tyack, Peter L.

    2005-09-01

    Manatees inhabit coastal bays, lagoons, and estuaries because they are dependent on the aquatic vegetation that grows in shallow waters. Food requirements force manatees to occupy the same areas in which human activities are the greatest. Noise produced from human activities has the potential to affect these animals by eliciting responses ranging from mild behavioral changes to extreme aversion. This study quantifies the behavioral responses of manatees to both changing levels of ambient noise and transient noise sources. Results indicate that elevated environmental noise levels do affect the overall activity budget of this species. The proportion of time manatees spend feeding, milling, and traveling in critical habitats changed as a function of noise level. More time was spent in the directed, goal-oriented behaviors of feeding and traveling, while less time was spent milling when noise levels were highest. The animals also responded to the transient noise of approaching vessels with changes in behavioral state and movements out of the geographical area. This suggests that manatees detect and respond to changes in environmental noise levels. Whether these changes legally constitute harassment and produce biologically significant effects need to be addressed with hypothesis-driven experiments and long-term monitoring. [For Animal Bioacoustics Best Student Paper Award.

  1. Noise control for a ChamberCore cylindrical structure using long T-shaped acoustic resonators

    NASA Astrophysics Data System (ADS)

    Li, Deyu; Vipperman, Jeffrey S.

    2003-10-01

    The Air Force Research Laboratory, Space Vehicles Directorate has developed a new advanced composite launch vehicle fairing (referred to as ``ChamberCore''). The ChamberCore is sandwich-type structure fabricated from multi-layered composite face sheets separated by channels that form passive acoustic chambers. These acoustic chambers have a potential to create an acoustic resonator network that can be used to attenuate noise inside the closed ChamberCore cylindrical structure. In this study, first, the feasibility of using cylindrical Helmholtz resonators to control noise in a mock-scale ChamberCore composite cylinder is investigated. The targeted frequencies for noise control are the first four acoustic cavity resonances of the ChamberCore cylinder. The optimal position of the Helmholtz resonators for controlling each targeted cavity mode is discussed, and the effects of resonator spacing on noise attenuation are also experimentally evaluated. Next, six long T-shaped acoustic resonators are designed and constructed within the acoustic chambers of the structure and investigated. Several tests are conducted to evaluate the noise control ability of the resonators in the ChamberCore cylinder. Reductions ranging from 3.2 to 6.0 dB were observed in the overall mean-square noise reduction spectrum at the targeted inner cavity resonance frequencies. [Work supported by AFRL/DV.

  2. Reward Pays the Cost of Noise Reduction in Motor and Cognitive Control.

    PubMed

    Manohar, Sanjay G; Chong, Trevor T-J; Apps, Matthew A J; Batla, Amit; Stamelou, Maria; Jarman, Paul R; Bhatia, Kailash P; Husain, Masud

    2015-06-29

    Speed-accuracy trade-off is an intensively studied law governing almost all behavioral tasks across species. Here we show that motivation by reward breaks this law, by simultaneously invigorating movement and improving response precision. We devised a model to explain this paradoxical effect of reward by considering a new factor: the cost of control. Exerting control to improve response precision might itself come at a cost--a cost to attenuate a proportion of intrinsic neural noise. Applying a noise-reduction cost to optimal motor control predicted that reward can increase both velocity and accuracy. Similarly, application to decision-making predicted that reward reduces reaction times and errors in cognitive control. We used a novel saccadic distraction task to quantify the speed and accuracy of both movements and decisions under varying reward. Both faster speeds and smaller errors were observed with higher incentives, with the results best fitted by a model including a precision cost. Recent theories consider dopamine to be a key neuromodulator in mediating motivational effects of reward. We therefore examined how Parkinson's disease (PD), a condition associated with dopamine depletion, alters the effects of reward. Individuals with PD showed reduced reward sensitivity in their speed and accuracy, consistent in our model with higher noise-control costs. Including a cost of control over noise explains how reward may allow apparent performance limits to be surpassed. On this view, the pattern of reduced reward sensitivity in PD patients can specifically be accounted for by a higher cost for controlling noise.

  3. Ambient noise and temporal patterns of boat activity in the US Virgin Islands National Park.

    PubMed

    Kaplan, Maxwell B; Mooney, T Aran

    2015-09-15

    Human activity is contributing increasing noise to marine ecosystems. Recent studies have examined the effects of boat noise on marine fishes, but there is limited understanding of the prevalence of this type of sound source. This investigation tracks vessel noise on three reefs in the US Virgin Islands National Park over four months in 2013. Ambient noise levels ranged from 106 to 129dBrms re 1μPa (100Hz-20kHz). Boat noise occurred in 6-12% of samples. In the presence of boat noise, ambient noise in a low-frequency band (100-1000Hz) increased by >7dB above baseline levels and sound levels were significantly higher. The frequency with the most acoustic energy shifted to a significantly lower frequency when boat noise was present during the day. These results indicate the abundance of boat noise and its overlap with reef organism sound production, raising concern for the communication abilities of these animals.

  4. Comparison ofdvanced turboprop interior noise control ground and flight test data

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Tran, Boi N.

    1992-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight sts with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  5. The Effect of Human Activities and Their Associated Noise on Ungulate Behavior

    PubMed Central

    Brown, Casey L.; Hardy, Amanda R.; Barber, Jesse R.; Fristrup, Kurt M.; Crooks, Kevin R.; Angeloni, Lisa M.

    2012-01-01

    Background The effect of anthropogenic noise on terrestrial wildlife is a relatively new area of study with broad ranging management implications. Noise has been identified as a disturbance that has the potential to induce behavioral responses in animals similar to those associated with predation risk. This study investigated potential impacts of a variety of human activities and their associated noise on the behavior of elk (Cervus elaphus) and pronghorn (Antilocapra americana) along a transportation corridor in Grand Teton National Park. Methodology/Principal Findings We conducted roadside scan surveys and focal observations of ungulate behavior while concurrently recording human activity and anthropogenic noise. Although we expected ungulates to be more responsive with greater human activity and noise, as predicted by the risk disturbance hypothesis, they were actually less responsive (less likely to perform vigilant, flight, traveling and defensive behaviors) with increasing levels of vehicle traffic, the human activity most closely associated with noise. Noise levels themselves had relatively little effect on ungulate behavior, although there was a weak negative relationship between noise and responsiveness in our scan samples. In contrast, ungulates did increase their responsiveness with other forms of anthropogenic disturbance; they reacted to the presence of pedestrians (in our scan samples) and to passing motorcycles (in our focal observations). Conclusions These findings suggest that ungulates did not consistently associate noise and human activity with an increase in predation risk or that they could not afford to maintain responsiveness to the most frequent human stimuli. Although reduced responsiveness to certain disturbances may allow for greater investment in fitness-enhancing activities, it may also decrease detections of predators and other environmental cues and increase conflict with humans. PMID:22808175

  6. Calcium-activated potassium conductance noise in snail neurons.

    PubMed

    Westerfield, M; Lux, H D

    1982-11-01

    Current fluctuations were measured in small, 3-6 micrometers-diameter patches of soma membrane in bursting neurons of the snail, Helix pomatia. The fluctuations dramatically increased in magnitude with depolarization of the membrane potential under voltage clamp conditions. Two components of conductance noise were identified in the power spectra calculated from the membrane currents. One component had a corner frequency which increased with depolarization. This component was blocked by intracellular injection of TEA and was relatively insensitive to extracellular calcium levels (as long as the total number of effective divalent cations remained constant). It was identified as fluctuations of the voltage-dependent component of delayed outward current. The second component of conductance noise had a corner frequency which decreased with depolarization. It was relatively unaffected by TEA injection and was reversibly blocked by substitution of extracellular calcium with magnesium, cobalt, or nickel. This second component of noise was identified as fluctuations of the calcium-dependent potassium current. The results suggest that the two components of delayed outward current are conducted through physically distinct channels.

  7. Low-noise encoding of active touch by layer 4 in the somatosensory cortex

    PubMed Central

    Andrew Hires, Samuel; Gutnisky, Diego A; Yu, Jianing; O'Connor, Daniel H; Svoboda, Karel

    2015-01-01

    Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise. DOI: http://dx.doi.org/10.7554/eLife.06619.001 PMID:26245232

  8. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    PubMed

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation.

  9. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex

    PubMed Central

    Ranaweera, Ruwan D.; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G.; Luh, Wen-Ming; Talavage, Thomas M.

    2015-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation. PMID:26519093

  10. Air Traffic Controllers’ Long-Term Speech-in-Noise Training Effects: A Control Group Study

    PubMed Central

    Zaballos, María T.P.; Plasencia, Daniel P.; González, María L.Z.; de Miguel, Angel R.; Macías, Ángel R.

    2016-01-01

    Introduction: Speech perception in noise relies on the capacity of the auditory system to process complex sounds using sensory and cognitive skills. The possibility that these can be trained during adulthood is of special interest in auditory disorders, where speech in noise perception becomes compromised. Air traffic controllers (ATC) are constantly exposed to radio communication, a situation that seems to produce auditory learning. The objective of this study has been to quantify this effect. Subjects and Methods: 19 ATC and 19 normal hearing individuals underwent a speech in noise test with three signal to noise ratios: 5, 0 and −5 dB. Noise and speech were presented through two different loudspeakers in azimuth position. Speech tokes were presented at 65 dB SPL, while white noise files were at 60, 65 and 70 dB respectively. Results: Air traffic controllers outperform the control group in all conditions [P<0.05 in ANOVA and Mann-Whitney U tests]. Group differences were largest in the most difficult condition, SNR=−5 dB. However, no correlation between experience and performance were found for any of the conditions tested. The reason might be that ceiling performance is achieved much faster than the minimum experience time recorded, 5 years, although intrinsic cognitive abilities cannot be disregarded. Discussion: ATC demonstrated enhanced ability to hear speech in challenging listening environments. This study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions, although good cognitive qualities are likely to be a basic requirement for this training to be effective. Conclusion: Our results show that ATC outperform the control group in all conditions. Thus, this study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions. PMID:27991470

  11. Reduced In-Plane, Low Frequency Noise of an Active Flap Rotor

    DTIC Science & Technology

    2009-05-01

    decibels at a moderate airspeed, level flight condition at advance ratio of 0.30. Reduced noise levels were attributed to selective active flap schedules...that modified in-plane blade airloads on the advancing side of the rotor, generating counter-acting acoustic pulses that partially offset the negative...by up to 6 decibels at a moderate airspeed, level flight condition at advance ratio of 0.30. Reduced noise levels were attributed to selective active

  12. Reduction of blade-vortex interaction noise using higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Booth, Earl R., Jr.; Jolly, J. Ralph, Jr.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1989-01-01

    An acoustics test using an aeroelastically scaled rotor was conducted to examine the effectiveness of higher harmonic blade pitch control for the reduction of impulsive blade-vortex interaction (BVI) noise. A four-bladed, 110 in. diameter, articulated rotor model was tested in a heavy gas (Freon-12) medium in Langley's Transonic Dynamics Tunnel. Noise and vibration measurements were made for a range of matched flight conditions, where prescribed (open-loop) higher harmonic pitch was superimposed on the normal (baseline) collective and cyclic trim pitch. For the inflow-microphone noise measurements, advantage was taken of the reverberance in the hard walled tunnel by using a sound power determination approach. Initial findings from on-line data processing for three of the test microphones are reported for a 4/rev (4P) collective pitch control for a range of input amplitudes and phases. By comparing these results to corresponding baseline (no control) conditions, significant noise reductions (4 to 5 dB) were found for low-speed descent conditions, where helicopter BVI noise is most intense. For other rotor flight conditions, the overall noise was found to increase. All cases show increased vibration levels.

  13. Reduction of blade-vortex interaction noise through higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Booth, Earl R., Jr.; Jolly, J. Ralph, Jr.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1990-01-01

    An acoustics test using an aeroelastically scaled rotor was conducted to examine the effectiveness of higher harmonic blade pitch control for the reduction of impulsive blade-vortex interaction (BVI) noise. A four-bladed, 110 in. diameter, articulated rotor model was tested in a heavy gas (Freon-12) medium in Langley's Transonic Dynamics Tunnel. Noise and vibration measurements were made for a range of matched flight conditions, where prescribed (open-loop) higher harmonic pitch was superimposed on the normal (baseline) collective and cyclic trim pitch. For the inflow-microphone noise measurements, advantage was taken of the reverberance in the hard walled tunnel by using a sound power determination approach. Initial findings from on-line data processing for three of the test microphones are reported for a 4/rev (4P) collective pitch control for a range of input amplitudes and phases. By comparing these results to corresponding baseline (no control) conditions, significant noise reductions (4 to 5 dB) were found for low-speed descent conditions, where helicopter BVI noise is most intense. For other rotor flight conditions, the overall noise was found to increase. All cases show increased vibration levels.

  14. Lead-Lag Control for Helicopter Vibration and Noise Reduction

    NASA Technical Reports Server (NTRS)

    Gandhi, Farhan

    1995-01-01

    As a helicopter transitions from hover to forward flight, the main rotor blades experience an asymmetry in flow field around the azimuth, with the blade section tangential velocities increasing on the advancing side and decreasing on the retreating side. To compensate for the reduced dynamic pressure on the retreating side, the blade pitch angles over this part of the rotor disk are increased. Eventually, a high enough forward speed is attained to produce compressibility effects on the advancing side of the rotor disk and stall on the retreating side. The onset of these two phenomena drastically increases the rotor vibratory loads and power requirements, thereby effectively establishing a limit on the maximum achievable forward speed. The alleviation of compressibility and stall (and the associated decrease in vibratory loads and power) would potentially result in an increased maximum forward speed. In the past, several methods have been examined and implemented to reduce the vibratory hub loads. Some of these methods are aimed specifically at alleviating vibration at very high flight speeds and increasing the maximum flight speed, while others focus on vibration reduction within the conventional flight envelope. Among the later are several types passive as well as active schemes. Passive schemes include a variety of vibration absorbers such as mechanical springs, pendulums, and bifilar absorbers. These mechanism are easy to design and maintain, but incur significant weight and drag penalties. Among the popular active control schemes in consideration are Higher Harmonic Control (HHC) and Individual Blade Control (IBC). HHC uses a conventional swash plate to generate a multi-cyclic pitch input to the blade. This requires actuators capable of sufficiently high power and bandwidth, increasing the cost and weight of the aircraft. IBC places actuators in the rotating reference frame, requiring the use of slip rings capable of transferring enough power to the actuators

  15. Balanced noise control design: A case study for co-generation power plant

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Hertil, Salem

    2002-11-01

    Power generation plant generally requires noise mitigation treatment to achieve the specified noise regulations. In this paper, a case study of the noise control design for a cogeneration power plant was presented. Major noise sources included two GE gas combustion turbines, two generators, two heat recovery steam generators (HRSGs), one steam turbine and generator, one 12-cell cooling tower, and other accessory equipment. The acoustic modeling software Cadna/A was used to predict the noise contributions from sources. During the acoustic modeling, alternative noise mitigation measures underwent two specific investigations before they were chosen as a noise solution recommendation. The first was to determine the technical feasibility of attenuating the source equipment. The second was to perform a cost benefit analysis, necessary to find the most cost-effective solution. For example, several acoustic wall and roof assemblies were entered into the acoustic model and the acoustic performance of the ventilation system was varied until we were able to arrive at the most economical acoustic solution. This is the premise on which so called balanced design is based.

  16. A Nonlinear Spacecraft Attitude Controller and Observer with an Unknown Constant Gyro Bias and Gyro Noise

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Sanner, Robert M.

    2001-01-01

    A nonlinear control scheme for attitude control of a spacecraft is combined with a nonlinear gyro bias observer for the case of constant gyro bias, in the presence of gyro noise. The observer bias estimates converge exponentially to a mean square bound determined by the standard deviation of the gyro noise. The resulting coupled, closed loop dynamics are proven to be globally stable, with asymptotic tracking which is also mean square bounded. A simulation of the proposed observer-controller design is given for a rigid spacecraft tracking a specified, time-varying attitude sequence to illustrate the theoretical claims.

  17. Fault-tolerant controlled deterministic secure quantum communication using EPR states against collective noise

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Yang, Chun-Wei; Hwang, Tzonelih

    2016-11-01

    This paper proposes two new fault-tolerant controlled deterministic secure quantum communication (CDSQC) protocols based only on Einstein-Podolsky-Rosen (EPR) entangled states. The proposed protocols are designed to be robust against the collective-dephasing noise and the collective-rotation noise, respectively. Compared to the existing fault-tolerant controlled quantum communication protocols, the proposed protocols not only can do without a quantum channel between the receiver and the controller as the state-of-the-art protocols do, but also have the advantage that the number of quantum particles required in the CDSQC protocols is reduced owing to the use of the simplest entangled states.

  18. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation

    PubMed Central

    Wu, Juan; Ma, Jun

    2017-01-01

    As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected. PMID:28358824

  19. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation.

    PubMed

    Wu, Juan; Xu, Yong; Ma, Jun

    2017-01-01

    As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected.

  20. Hot topics in noise

    NASA Astrophysics Data System (ADS)

    Stinson, Michael R.

    2003-10-01

    Our world continues to be a noisy place and the challenge to ``increase and diffuse knowledge of noise propagation, passive and active noise control, and the effects of noise'' remains. In the last several years, noise in the classroom has emerged as one of the hotter topics: Considerable progress has been made in the underpinning research, the formulation of recommendations, and the process of educating society on the social and personal impact of inadequate acoustical conditions in classrooms. The establishment of the ANSI S12.60-2002 standard for classroom acoustics was a milestone event. Noise in cities and the understanding of our soundscapes are subjects of ongoing significance. The development of standards and regulations is a continuing process, with urban community noise regulations, aviation noise, and the preservation of natural quiet in national parks being of current concern. New methods to reduce noise are under development and include passive and active methods of noise control, techniques for modeling the performance of noise barriers, and approaches for designing product sound quality.

  1. Automatic noise limiter-blanker

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1976-01-01

    A blanker system that may be used with audio noise limiters or automatic noise limiters was described. The system employs a pair of silicon diodes and two RC filters connected across the feedback impedance of an operational amplifier so as to counteract impulse noise interference caused by local spherics activity or 60 Hz harmonics radiated from ac motor control systems. The following information is given: circuit diagram and description, operating details, evaluation, discussion of other noise blanking methods.

  2. Numerical solution of the state dependent noise problem. [optimal stationary control of linear systems

    NASA Technical Reports Server (NTRS)

    Kleinman, D. L.

    1976-01-01

    A numerical technique is given for solving the matrix quadratic equation that arises in the optimal stationary control of linear systems with state (and/or control) dependent noise. The technique exploits fully existing, efficient algorithms for the matrix Lyapunov and Ricatti equations. The computational requirements are discussed, with an associated example.

  3. Diffusion of active particles with stochastic torques modeled as α-stable noise

    NASA Astrophysics Data System (ADS)

    Nötel, Jörg; Sokolov, Igor M.; Schimansky-Geier, Lutz

    2017-01-01

    We investigate the stochastic dynamics of an active particle moving at a constant speed under the influence of a fluctuating torque. In our model the angular velocity is generated by a constant torque and random fluctuations described as a Lévy-stable noise. Two situations are investigated. First, we study white Lévy noise where the constant speed and the angular noise generate a persistent motion characterized by the persistence time {τ }D. At this time scale the crossover from ballistic to normal diffusive behavior is observed. The corresponding diffusion coefficient can be obtained analytically for the whole class of symmetric α-stable noises. As typical for models with noise-driven angular dynamics, the diffusion coefficient depends non-monotonously on the angular noise intensity. As second example, we study angular noise as described by an Ornstein-Uhlenbeck process with correlation time {τ }c driven by the Cauchy white noise. We discuss the asymptotic diffusive properties of this model and obtain the same analytical expression for the diffusion coefficient as in the first case which is thus independent on {τ }c. Remarkably, for {τ }c\\gt {τ }D the crossover from a non-Gaussian to a Gaussian distribution of displacements takes place at a time {τ }G which can be considerably larger than the persistence time {τ }D.

  4. Screening of Potential Landing Gear Noise Control Devices at Virginia Tech For QTD II Flight Test

    NASA Technical Reports Server (NTRS)

    Ravetta, Patricio A.; Burdisso, Ricardo A.; Ng, Wing F.; Khorrami, Mehdi R.; Stoker, Robert W.

    2007-01-01

    In support of the QTD II (Quiet Technology Demonstrator) program, aeroacoustic measurements of a 26%-scale, Boeing 777 main landing gear model were conducted in the Virginia Tech Stability Tunnel. The objective of these measurements was to perform risk mitigation studies on noise control devices for a flight test performed at Glasgow, Montana in 2005. The noise control devices were designed to target the primary main gear noise sources as observed in several previous tests. To accomplish this task, devices to reduce noise were built using stereo lithography for landing gear components such as the brakes, the forward cable harness, the shock strut, the door/strut gap and the lower truck. The most promising device was down selected from test results. In subsequent stages, the initial design of the selected lower truck fairing was improved to account for all the implementation constraints encountered in the full-scale airplane. The redesigned truck fairing was then retested to assess the impact of the modifications on the noise reduction potential. From extensive acoustic measurements obtained using a 63-element microphone phased array, acoustic source maps and integrated spectra were generated in order to estimate the noise reduction achievable with each device.

  5. Feedback sensor noise rejection control strategy for quadrotor UAV system

    NASA Astrophysics Data System (ADS)

    Tanveer, M. Hassan; Hazry, D.; Ahmed, S. Faiz; Joyo, M. Kamran; Warsi, Faizan A.; Kamarudin, H.; Wan, Khairunizam; Razlan, Zuradzman M.; Shahriman A., B.; Hussain, A. T.

    2015-05-01

    This paper describes a methodology for estimating the true value of all parameters from feedback sensor of quadrotor systems. A simple gyroscope and accelerometer sensors are taken into account for calculating the accurate value of system. Secondly, for filtering and controlling the feedback data of system, a Non-linear Model Predictive Control (NMPC) is proposed. For testing the accuracy of proposed technique a complete model of quadrotor with feedback system is implemented on Matlab and simulation results shows the effectiveness of proposed technique and controller design.

  6. A high intensity acoustic source for active attenuation of exhaust noise

    NASA Astrophysics Data System (ADS)

    Glendinning, A. G.; Elliott, S. J.; Nelson, P. A.

    1988-04-01

    An electropneumatic sound source was developed for active noise control systems applied in hostile environments such as the exhaust systems of gas turbines and internal combustion engines. It employs a gas bearing to support the friction free motion of a sliding plate which is used to modulate the supply of compressed air. The sliding plate is driven by an electrodynamic vibrator. Experimental results demonstrate that this arrangement reduces harmonic distortion to at least 20 dB below the fundamental driving frequency for most operating conditions. A theoretical analysis of the transducer enables predictions to be made of the acoustic volume velocity (source strength) produced by the transducer as a function of the upstream pressure and displacement of the sliding valve. Applicability of the transducer to gas turbine and internal combustion engine exhaust systems was tested, and net power consumption resulting from the operation of the device was estimated.

  7. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission?

    PubMed

    Salari, Vahid; Scholkmann, Felix; Bokkon, Istvan; Shahbazi, Farhad; Tuszynski, Jack

    2016-01-01

    For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to 'internal photons' inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350-700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation.

  8. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission?

    PubMed Central

    Salari, Vahid; Scholkmann, Felix; Bokkon, Istvan; Shahbazi, Farhad; Tuszynski, Jack

    2016-01-01

    For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to ‘internal photons’ inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350–700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation. PMID:26950936

  9. An alternative method for noise analysis using pixel variance as part of quality control procedures on digital mammography systems

    NASA Astrophysics Data System (ADS)

    Bouwman, R.; Young, K.; Lazzari, B.; Ravaglia, V.; Broeders, M.; van Engen, R.

    2009-11-01

    According to the European Guidelines for quality assured breast cancer screening and diagnosis, noise analysis is one of the measurements that needs to be performed as part of quality control procedures on digital mammography systems. However, the method recommended in the European Guidelines does not discriminate sufficiently between systems with and without additional noise besides quantum noise. This paper attempts to give an alternative and relatively simple method for noise analysis which can divide noise into electronic noise, structured noise and quantum noise. Quantum noise needs to be the dominant noise source in clinical images for optimal performance of a digital mammography system, and therefore the amount of electronic and structured noise should be minimal. For several digital mammography systems, the noise was separated into components based on the measured pixel value, standard deviation (SD) of the image and the detector entrance dose. The results showed that differences between systems exist. Our findings confirm that the proposed method is able to discriminate systems based on their noise performance and is able to detect possible quality problems. Therefore, we suggest to replace the current method for noise analysis as described in the European Guidelines by the alternative method described in this paper.

  10. Active control of transmission loss with smart foams.

    PubMed

    Kundu, Abhishek; Berry, Alain

    2011-02-01

    Smart foams combine the complimentary advantages of passive foam material and spatially distributed piezoelectric actuator embedded in it for active noise control applications. In this paper, the problem of improving the transmission loss of smart foams using active control strategies has been investigated both numerically and experimentally inside a waveguide under the condition of plane wave propagation. The finite element simulation of a coupled noise control system has been undertaken with three different smart foam designs and their effectiveness in cancelling the transmitted wave downstream of the smart foam have been studied. The simulation results provide insight into the physical phenomenon of active noise cancellation and explain the impact of the smart foam designs on the optimal active control results. Experimental studies aimed at implementing the real-time control for transmission loss optimization have been performed using the classical single input/single output filtered-reference least mean squares algorithm. The active control results with broadband and single frequency primary source inputs demonstrate a good improvement in the transmission loss of the smart foams. The study gives a comparative description of the transmission and absorption control problems in light of the modification of the vibration response of the piezoelectric actuator under active control.

  11. A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation.

    PubMed

    Huang, Yong; Tao, Gang

    2014-09-01

    The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.

  12. A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation

    SciTech Connect

    Huang, Yong E-mail: taogang@njust.edu.cn; Tao, Gang E-mail: taogang@njust.edu.cn

    2014-09-01

    The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.

  13. Output feedback control for a class of nonlinear systems with actuator degradation and sensor noise.

    PubMed

    Ai, Weiqing; Lu, Zhenli; Li, Bin; Fei, Shumin

    2016-11-01

    This paper investigates the output feedback control problem of a class of nonlinear systems with sensor noise and actuator degradation. Firstly, by using the descriptor observer approach, the origin system is transformed into a descriptor system. On the basis of the descriptor system, a novel Proportional Derivative (PD) observer is developed to asymptotically estimate sensor noise and system state simultaneously. Then, by designing an adaptive law to estimate the effectiveness of actuator, an adaptive observer-based controller is constructed to ensure that system state can be regulated to the origin asymptotically. Finally, the design scheme is applied to address a flexible joint robot link problem.

  14. Strong suppression of shot noise in a feedback-controlled single-electron transistor.

    PubMed

    Wagner, Timo; Strasberg, Philipp; Bayer, Johannes C; Rugeramigabo, Eddy P; Brandes, Tobias; Haug, Rolf J

    2017-03-01

    Feedback control of quantum mechanical systems is rapidly attracting attention not only due to fundamental questions about quantum measurements, but also because of its novel applications in many fields in physics. Quantum control has been studied intensively in quantum optics but progress has recently been made in the control of solid-state qubits as well. In quantum transport only a few active and passive feedback experiments have been realized on the level of single electrons, although theoretical proposals exist. Here we demonstrate the suppression of shot noise in a single-electron transistor using an exclusively electronic closed-loop feedback to monitor and adjust the counting statistics. With increasing feedback response we observe a stronger suppression and faster freezing of charge current fluctuations. Our technique is analogous to the generation of squeezed light with in-loop photodetection as used in quantum optics. Sub-Poisson single-electron sources will pave the way for high-precision measurements in quantum transport similar to optical or optomechanical equivalents.

  15. The recurrent nature of type 1 noise active regions during 1965 through 1969

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    The recurrent tendency of type I noise sources in metric frequencies is studied during the period from 1965 to 1969. It is shown that their recurrent period is slightly longer than 27.0 days and that the number of such recurrent trends for those noise sources is generally four. Discussion is given on the close relationship between those sources and the active regions where proton flares occur.

  16. Scanning probe microscope simulator for the assessment of noise in scanning probe microscopy controllers

    SciTech Connect

    Wutscher, T.; Niebauer, J.; Giessibl, F. J.

    2013-07-15

    We present an electronic circuit that allows to calibrate and troubleshoot scanning probe microscopy (SPM) controllers with respect to their noise performance. The control signal in an SPM is typically highly nonlinear—the tunneling current in scanning tunneling microscopy (STM) varies exponentially with distance. The exponential current-versus-voltage characteristics of diodes allow to model the current dependence in STM. Additional inputs allow to simulate the effects of external perturbations and the reactions of the control electronics. We characterized the noise performance of the feedback controller using the apparent topography roughness of recorded images. For a comparison of different STM controllers, an optimal gain parameter was determined by exploring settling times through a rectangular perturbation signal. We used the circuit to directly compare the performance of two types of SPM controllers used in our laboratory.

  17. Scanning probe microscope simulator for the assessment of noise in scanning probe microscopy controllers

    NASA Astrophysics Data System (ADS)

    Wutscher, T.; Niebauer, J.; Giessibl, F. J.

    2013-07-01

    We present an electronic circuit that allows to calibrate and troubleshoot scanning probe microscopy (SPM) controllers with respect to their noise performance. The control signal in an SPM is typically highly nonlinear—the tunneling current in scanning tunneling microscopy (STM) varies exponentially with distance. The exponential current-versus-voltage characteristics of diodes allow to model the current dependence in STM. Additional inputs allow to simulate the effects of external perturbations and the reactions of the control electronics. We characterized the noise performance of the feedback controller using the apparent topography roughness of recorded images. For a comparison of different STM controllers, an optimal gain parameter was determined by exploring settling times through a rectangular perturbation signal. We used the circuit to directly compare the performance of two types of SPM controllers used in our laboratory.

  18. A Novel Method to Predict Circulation Control Noise

    DTIC Science & Technology

    2016-03-17

    OASPL computed from 1 to 16 kHz. . . . . . . . 162 5 LIST OF FIGURES 1.1 A sample circulation control airfoil...Doppler effect included and (c),(d) Doppler effect removed. . .......... . . 82 3.32 (a) Spectral and (b) time series data comparison between Curle ’s...analogy employing the DNS full forces and DNS pressure at r = 75, () = 80°. 83 3.33 (a) Spectral and (b) time series data comparison between Curle’s

  19. Third-order leader-following consensus with circumstance noise under impulsive and switching control

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Han, Dun; Li, Dandan; Jia, Qiang; Wang, Yaqi

    2014-02-01

    This research is aimed at investigating the leader-follower problem of third-order multi-agent with noise perturbation over fixed network under impulsive and switching control. Based on stochastic differential equation theory and hybrid control theory, effective impulsive and switching controllers are proposed, and the sufficient conditions for reaching multi-agent leader-following consensus are acquired. Numerical simulations verify the validity of the theoretical research results.

  20. Field evaluation of measuring indoor noise exposure in workplace with task-based active RFID technology.

    PubMed

    Huang, Fu-Chuan; Shih, Tung-Sheng; Lee, Jiunn-Fwu; Wang, Te-Shun; Wang, Peng-Yau

    2010-03-01

    This paper describes the research using RFEMS (Radio Frequency Identification Exposure Monitoring System), which is designed by applying the task-based active RFID (radio frequency identification) technology, to measure the indoor noise exposure dose in a workplace. The RFEMS and sound level meter are mounted on the vests of eight workers to carry out on-site field test by monitoring the time activity pattern (TAP), and the noise dose level exposed by the workers. The data are recorded and instantaneously transmitted to a computer to be saved in the server and later compared to those obtained using the standard method. The results that have a 0.909 correlation coefficient (R(2)), and 1.64% average measure error confirm the accuracy of using RFEMS for monitoring TAP. Additionally, the combined use of RFEMS and sound level meter leads to the development of a semi noise dosimetry (SND), a real-time electronic indirect noise dosimetry (REIND), and an equivalent electronic recording indirect noise dosimetry (EEIND). The results obtained using these three devices are well correlated with the results monitored by using a PND (personal noise dosimetry) with correlation coefficients (R(2)) of 0.915, 0.779 and 0.873, respectively. The errors of noise dose expressed in TWA (time weight average) for these three methods are 0.81, 1.57 and 1.23 dBA, respectively; they are well within the general errors of the average dosimetries. These observations indicate that the RFEMS developed in this research is applicable for conducting task-based measurements of indoor noise. It uses a relatively inexpensive sound level meter to measure the noise exposure doses that are comparable to those obtained with a standard dosimetry in addition to monitoring the worker's time activity pattern. The findings will assist in studying the source of long-term noise exposed by workers, and hence this devise is a valuable tool for tracing and monitoring long-term noise exposure with reduced manpower

  1. Blade-Mounted Flap Control for BVI Noise Reduction Proof-of-Concept Test

    NASA Technical Reports Server (NTRS)

    Dawson, Seth; Hassan, Ahmed; Straub, Friedrich; Tadghighi, Hormoz

    1995-01-01

    This report describes a wind tunnel test of the McDonnell Douglas Helicopter Systems (MDHS) Active Flap Model Rotor at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The test demonstrated that BVI noise reductions and vibration reductions were possible with the use of an active flap. Aerodynamic results supported the acoustic data trends, showing a reduction in the strength of the tip vortex with the deflection of the flap. Acoustic results showed that the flap deployment, depending on the peak deflection angle and azimuthal shift in its deployment schedule, can produce BVI noise reductions as much as 6 dB on the advancing and retreating sides. The noise reduction was accompanied by an increase in low frequency harmonic noise and high frequency broadband noise. A brief assessment of the effect of the flap on vibration showed that significant reductions were possible. The greatest vibration reductions (as much as 76%) were found in the four per rev pitching moment at the hub. Performance improvement cam results were inconclusive, as the improvements were predicted to be smaller than the resolution of the rotor balance.

  2. Resonant activation in a colored multiplicative thermal noise driven closed system

    SciTech Connect

    Ray, Somrita; Bag, Bidhan Chandra; Mondal, Debasish

    2014-05-28

    In this paper, we have demonstrated that resonant activation (RA) is possible even in a thermodynamically closed system where the particle experiences a random force and a spatio-temporal frictional coefficient from the thermal bath. For this stochastic process, we have observed a hallmark of RA phenomena in terms of a turnover behavior of the barrier-crossing rate as a function of noise correlation time at a fixed noise variance. Variance can be fixed either by changing temperature or damping strength as a function of noise correlation time. Our another observation is that the barrier crossing rate passes through a maximum with increase in coupling strength of the multiplicative noise. If the damping strength is appreciably large, then the maximum may disappear. Finally, we compare simulation results with the analytical calculation. It shows that there is a good agreement between analytical and numerical results.

  3. Active control of convection

    SciTech Connect

    Bau, H.H.

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  4. Feedback Control of a Morphing Chevron for Takeoff and Cruise Noise Reduction

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Schiller, Noah H.; Mabe, James H.; Ruggeri, Robert T.; Butler, G. W.

    2004-01-01

    Noise from commercial high-bypass ratio turbofan engines is generated by turbulent mixing of the hot jet exhaust, fan stream, and ambient air. Serrated aerodynamic devices, known as chevrons, along the trailing edges of a jet engine primary and secondary exhaust nozzle have been shown to reduce jet noise at takeoff and shock-cell noise at cruise conditions. Their optimum shape is a finely tuned compromise between noise-benefit and thrust-loss. The design of a full scale Variable Geometry Chevron (VGC) fan-nozzle incorporating Shape Memory Alloy (SMA) actuators is described in a companion paper. This paper describes the development and testing of a proportional-integral control system that regulates the heating of the SMA actuators to control the VGC s tip immersion. The VGC and control system were tested under representative flow conditions in Boeing s Nozzle Test Facility (NTF). Results from the NTF test which demonstrate controllable immersion of the VGC are described. The paper also describes the correlation between strains and temperatures on the chevron with a photogrammetric measurement of the chevron's tip immersion.

  5. Acoustic and vibration response of a structure with added noise control treatment under various excitations.

    PubMed

    Rhazi, Dilal; Atalla, Noureddine

    2014-02-01

    The evaluation of the acoustic performance of noise control treatments is of great importance in many engineering applications, e.g., aircraft, automotive, and building acoustics applications. Numerical methods such as finite- and boundary elements allow for the study of complex structures with added noise control treatment. However, these methods are computationally expensive when used for complex structures. At an early stage of the acoustic trim design process, many industries look for simple and easy to use tools that provide sufficient physical insight that can help to formulate design criteria. The paper presents a simple and tractable approach for the acoustic design of noise control treatments. It presents and compares two transfer matrix-based methods to investigate the vibroacoustic behavior of noise control treatments. The first is based on a modal approach, while the second is based on wave-number space decomposition. In addition to the classical rain-on-the-roof and diffuse acoustic field excitations, the paper also addresses turbulent boundary layer and point source (monopole) excitations. Various examples are presented and compared to a finite element calculation to validate the methodology and to confirm its relevance along with its limitations.

  6. Noise-induced ectopic activity in a simple cardiac cell model

    NASA Astrophysics Data System (ADS)

    Hastings, Harold

    2005-03-01

    Ectopic activity in the form of premature ventricular contractions (PVCs) is relatively common in the normal heart. Although PVCs are normally harmless, sometimes but rarely PVCs can generate spiral waves of activation through interaction with other waves of activation, potentially progressing to ventricular tachycardia, followed by ventricular fibrillation and sudden cardiac death. Clusters of PVCs have been found to be significantly more dangerous than isolated PVCs. We model PVC generation by applying triggers (noise) to the generic FitzHugh-Nagumo model as substrate, and study the effects the noise level and excitability. We find: exponential waiting time behavior at fixed parameter levels; no evidence of clustering at fixed parameter levels; and a sharp increase in PVCs as excitability approaches the auto-oscillatory threshold or noise increases beyond a similar threshold. This produces sharp increases in theoretical rates of PVC-induced fibrillation, consistent with results of A Gelzer et al. in animal models. Partially supported by the NSF and NIH.

  7. Feedforward control of sound transmission using an active acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Cheer, Jordan; Daley, Stephen; McCormick, Cameron

    2017-02-01

    Metamaterials have received significant interest in recent years due to their potential ability to exhibit behaviour not found in naturally occurring materials. This includes the generation of band gaps, which are frequency regions with high levels of wave attenuation. In the context of acoustics, these band gaps can be tuned to occur at low frequencies where the acoustic wavelength is large compared to the material, and where the performance of traditional passive noise control treatments is limited. Therefore, such acoustic metamaterials have been shown to offer a significant performance advantage compared to traditional passive control treatments, however, due to their resonant behaviour, the band gaps tend to occur over a relatively narrow frequency range. A similar long wavelength performance advantage can be achieved using active noise control, but the systems in this case do not rely on resonant behaviour. This paper demonstrates how the performance of an acoustic metamaterial, consisting of an array of Helmholtz resonators, can be significantly enhanced by the integration of an active control mechanism that is facilitated by embedding loudspeakers into the resonators. Crucially, it is then also shown how the active acoustic metamaterial significantly outperforms an equivalent traditional active noise control system. In both cases a broadband feedforward control strategy is employed to minimise the transmitted pressure in a one-dimensional acoustic control problem and a new method of weighting the control effort over a targeted frequency range is described.

  8. Optimal output feedback control of linear systems in presence of forcing and measurement noise

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1974-01-01

    The problem of obtaining an optimal control law, which is constrained to be a linear feedback of the available measurements, for both continuous and discrete time linear systems subjected to additive white process noise and measurement noise was Necessary conditions are obtained for minimizing a quadratic performance function for both finite and infinite terminal time cases. The feedback gains are constrained to be time invariant for the infinite terminal time cases. For all the cases considered, algorithms are derived for generating sequences of feedback gain matrices which successively improve the performance function. A continuous time numerical example is included for the purpose of demonstration.

  9. Synchronization of two different systems by using generalized active control

    NASA Astrophysics Data System (ADS)

    Ho, Ming-Chung; Hung, Yao-Chen

    2002-09-01

    We have already generalized the techniques from active control theory, and applied them to synchronize two different systems. In this Letter, we demonstrate these techniques by period-system, Lorenz and Rossler systems. Moreover, the effect of external noise is also included in our discussion.

  10. Noise and Complexity in Human Postural Control: Interpreting the Different Estimations of Entropy

    PubMed Central

    Rhea, Christopher K.; Silver, Tobin A.; Hong, S. Lee; Ryu, Joong Hyun; Studenka, Breanna E.; Hughes, Charmayne M. L.; Haddad, Jeffrey M.

    2011-01-01

    Background Over the last two decades, various measures of entropy have been used to examine the complexity of human postural control. In general, entropy measures provide information regarding the health, stability and adaptability of the postural system that is not captured when using more traditional analytical techniques. The purpose of this study was to examine how noise, sampling frequency and time series length influence various measures of entropy when applied to human center of pressure (CoP) data, as well as in synthetic signals with known properties. Such a comparison is necessary to interpret data between and within studies that use different entropy measures, equipment, sampling frequencies or data collection durations. Methods and Findings The complexity of synthetic signals with known properties and standing CoP data was calculated using Approximate Entropy (ApEn), Sample Entropy (SampEn) and Recurrence Quantification Analysis Entropy (RQAEn). All signals were examined at varying sampling frequencies and with varying amounts of added noise. Additionally, an increment time series of the original CoP data was examined to remove long-range correlations. Of the three measures examined, ApEn was the least robust to sampling frequency and noise manipulations. Additionally, increased noise led to an increase in SampEn, but a decrease in RQAEn. Thus, noise can yield inconsistent results between the various entropy measures. Finally, the differences between the entropy measures were minimized in the increment CoP data, suggesting that long-range correlations should be removed from CoP data prior to calculating entropy. Conclusions The various algorithms typically used to quantify the complexity (entropy) of CoP may yield very different results, particularly when sampling frequency and noise are different. The results of this study are discussed within the context of the neural noise and loss of complexity hypotheses. PMID:21437281

  11. Active-Twist Rotor Control Applications for UAVs

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Wilkie, W. Keats

    2004-01-01

    The current state-of-the-art in active-twist rotor control is discussed using representative examples from analytical and experimental studies, and the application to rotary-wing UAVs is considered. Topics include vibration and noise reduction, rotor performance improvement, active blade tracking, stability augmentation, and rotor blade de-icing. A review of the current status of piezoelectric fiber composite actuator technology, the class of piezoelectric actuators implemented in active-twist rotor systems, is included.

  12. Low-noise humidity controller for imaging water mediated processes in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Gaponenko, I.; Gamperle, L.; Herberg, K.; Muller, S. C.; Paruch, P.

    2016-06-01

    We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variation of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown.

  13. The Coanda effect in gas-dynamic noise control. [pressure reduction by silencers

    NASA Technical Reports Server (NTRS)

    Vasilescu, G.

    1974-01-01

    The principle types of silencers are discussed for gas dynamic noise of free steam and gas expansions, as well as the results of research in gas dynamics of jets and applied acoustics. Gas dynamic noise attenuation by means of the Coanda effect is due to fluid decompression in a Coanda ejector of the external type, where a structural change takes place in the acoustic frequency spectrum and in its direction, as well as a substantial decrease in the fluid's velocity, temperature and concentration. This process is continued in the second phase with absorption of the acoustic waves by means of an active structure.

  14. Thin broadband noise absorption through acoustic reactance control by electro-mechanical coupling without sensor.

    PubMed

    Zhang, Yumin; Chan, Yum-Ji; Huang, Lixi

    2014-05-01

    Broadband noise with profound low-frequency profile is prevalent and difficult to be controlled mechanically. This study demonstrates effective broadband sound absorption by reducing the mechanical reactance of a loudspeaker using a shunt circuit through electro-mechanical coupling, which induces reactance with different signs from that of loudspeaker. An RLC shunt circuit is connected to the moving coil to provide an electrically induced mechanical impedance which counters the cavity stiffness at low frequencies and reduces the system inertia above the resonance frequency. A sound absorption coefficient well above 0.5 is demonstrated across frequencies between 150 and 1200 Hz. The performance of the proposed device is superior to existing passive absorbers of the same depth (60 mm), which has lower frequency limits of around 300 Hz. A passive noise absorber is further proposed by paralleling a micro-perforated panel with shunted loudspeaker which shows potentials in absorbing band-limit impulse noise.

  15. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  16. Reduced In-Plane, Low Frequency Helicopter Noise of an Active Flap Rotor

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Janakiram, Ram D.; Barbely, Natasha L.; Solis, Eduardo

    2009-01-01

    Results from a recent joint DARPA/Boeing/NASA/Army wind tunnel test demonstrated the ability to reduce in-plane, low frequency noise of the full-scale Boeing-SMART rotor using active flaps. Test data reported in this paper illustrated that acoustic energy in the first six blade-passing harmonics could be reduced by up to 6 decibels at a moderate airspeed, level flight condition corresponding to advance ratio of 0.30. Reduced noise levels were attributed to selective active flap schedules that modified in-plane blade airloads on the advancing side of the rotor, in a manner, which generated counteracting acoustic pulses that partially offset the negative pressure peaks associated with in-plane, steady thickness noise. These favorable reduced-noise operating states are a strong function of the active flap actuation amplitude, frequency and phase. The associated noise reductions resulted in reduced aural detection distance by up to 18%, but incurred significant vibratory load penalties due to increased hub shear forces. Small reductions in rotor lift-to-drag ratios, of no more than 3%, were also measured

  17. Nonequilibrium dynamics of active matter with correlated noise: A dynamical renormalization group study

    NASA Astrophysics Data System (ADS)

    Kachan, Devin; Levine, Alex; Bruinsma, Robijn

    2014-03-01

    Biology is rife with examples of active materials - soft matter systems driven into nonequilibrium steady states by energy input at the micro scale. For example, solutions of active micron scale swimmers produce active fluids showing phenomena reminiscent of turbulent convection at low Reynolds number; cytoskeletal networks driven by endogenous molecular motors produce active solids whose mechanics and low frequency strain fluctuations depend sensitively on motor activity. One hallmark of these systems is that they are driven at the micro scale by temporally correlated forces. In this talk, we study how correlated noise at the micro scale leads to novel long wavelength and long time scale dynamics at the macro scale in a simple model system. Specifically, we study the fluctuations of a ϕ4 scalar field obeying model A dynamics and driven by noise with a finite correlation time τ. We show that the effective dynamical system at long length and time scales is driven by white noise with a renormalized amplitude and renormalized transport coefficients. We discuss the implications of this result for a broad class of active matter systems driven at the micro scale by colored noise.

  18. Location optimization of a long T-shaped acoustic resonator array in noise control of enclosures

    NASA Astrophysics Data System (ADS)

    Yu, Ganghua; Cheng, Li

    2009-11-01

    Acoustic resonators are widely used in various noise control applications. In the pursuit of better performance and broad band control, multiple resonators or a resonator array are usually needed. The interaction among resonators significantly impacts on the control performance and leads to the requirement for a systematic design tool to determine their locations. In this work, simulated annealing (SA) algorithm is employed to optimize the locations of a set of long T-shaped acoustic resonators (TARs) for noise control inside an enclosure. Multiple optimal configurations are shown to exist. The control performance in terms of sound pressure level reduction, however, seems to be independent of the initial resonator-locations. Optimal solutions obtained from the SA approach are shown to outperform other existing methods for a TAR array design. Numerical simulations are systematically verified by experiments. Optimal locations are then synthesized, leading to a set of criteria, applicable to the present configuration, to guide engineering applications. It is concluded that the proposed optimization approach provides a systematic and effective tool to optimize the locations of TARs in noise control inside enclosures.

  19. Fan Noise Reduction: An Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2001-01-01

    Fan noise reduction technologies developed as part of the engine noise reduction element of the Advanced Subsonic Technology Program are reviewed. Developments in low-noise fan stage design, swept and leaned outlet guide vanes, active noise control, fan flow management, and scarfed inlet are discussed. In each case, a description of the method is presented and, where available, representative results and general conclusions are discussed. The review concludes with a summary of the accomplishments of the AST-sponsored fan noise reduction research and a few thoughts on future work.

  20. Adaptive control and noise suppression by a variable-gain gradient algorithm

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.; Mehta, R. S.

    1987-01-01

    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.

  1. Optimal guidance and control for investigating aircraft noise-impact reduction

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Carson, T. M.

    1978-01-01

    A methodology for investigating the reduction of community noise impact is reported. This report is concerned with the development of two models to provide data: a guidance generator and an aircraft control generator suitable for various current and advanced types of aircraft. The guidance generator produces the commanded path information from inputs chosen by an operator from a graphic scope display of a land-use map of the terminal area. The guidance generator also produces smoothing at the junctions of straight-line paths.The aircraft control generator determines the optimal set of the available controls such that the aircraft will follow the commanded path. The solutions for the control functions are given and shown to be dependent on the class of aircraft to be considered, that is, whether the thrust vector is rotatable and whether the thrust vector affects the aerodynamic forces. For the class of aircraft possessing a rotatable thrust vector, the solution is redundant; this redundancy is removed by the additional condition that the noise inpact be minimized. Information from both the guidance generator and the aircraft control generator is used by the footprint program to construct the noise footprint.

  2. Numerical simulation of tandem-cylinder noise-reduction using plasma-based flow control

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Eltaweel, Ahmed; Thomas, Flint; Kozlov, Alexey; Kim, Dongjoo

    2011-11-01

    The noise of low-Mach-number flow over tandem cylinders at ReD = 22 , 000 and its reduction using plasma actuators are simulated numerically to confirm and extend earlier experimental results. The numerical approach is based on large-eddy simulation for the turbulent flow field, a semi-empirical plasma actuation model, and Lighthill's theory for acoustic calculation. Excellent agreement between LES and experimental results is obtained for both the baseline flow and flow with plasma control in terms of wake velocity profiles, turbulence intensity, and frequency spectra of pressure fluctuations on the downstream cylinder. The validated flow-field results allow an accurate acoustic analysis based on Lighthill's equation, which is solved using a boundary-element method. The effectiveness of plasma actuators for reducing noise is demonstrated. In the baseline flow, the acoustic field is dominated by the interaction of the downstream cylinder with the upstream wake. With flow control the interaction noise is reduced drastically through suppression of vortex shedding from the upstream cylinder, and the vortex-shedding noise from the downstream cylinder becomes dominant. The peak sound pressure level is reduced by approximately 15 dB. Supported by NASA Cooperative Agreement NNX07AO09A.

  3. Improved PHIP polarization using a precision, low noise, voltage controlled current source.

    PubMed

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  4. Noise-based body-wave seismic tomography in an active underground mine.

    NASA Astrophysics Data System (ADS)

    Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.

    2014-12-01

    Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from

  5. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  6. Feedback controlled electromigration for the fabrication of point contacts and noise measurement applications

    NASA Astrophysics Data System (ADS)

    Campbell, Jennifer Maureen

    Lithographically fabricated point contacts serve as important examples of mesoscopic conductors, as electrodes for molecular electronics, and as ultra-sensitive transducers for mechanical motion. We have developed a reproducible technique for fabricating metallic point contacts through electromigration. We employ fast analog feedback in a four-wire configuration in combination with slower computer controlled feedback to avoid catastrophic instability even when there is significant series resistance. This hybrid system allows electromigration to proceed while dissipating approximately constant power in the wire. We are able to control the final resistance of the point contact precisely below 5 kO and to within a factor of three when the target resistance approaches 12 kO where only a single conducting channel remains. This system makes it possible to efficiently create point contacts through electromigration for fundamental studies of atomic-size conductors or applications such as displacement transducers. As an application of the hybrid feedback system for forming point contacts, we have developed a low-temperature, high-frequency noise measurement system. The system, which operates from 0.8 to 1.5 GHz at temperatures as low as 320 mK, takes advantage of impedance matching techniques to improve power transfer by up to 65%. This is accomplished by combining an inductor with unavoidable stray capacitance to form a resonant LC circuit. Noise measurement tests with a photodiode-LED pair at room temperature demonstrated the ability to resolve shot noise down to 5 x 10--26 A 2/Hz. This corresponds to the shot noise of 155 nA through a single channel point contact. We designed and fabricated an aluminum superconducting planar inductor coupled to a gold point contact wire to test the noise measurement system at ultra-low temperatures. Finite element simulations suggested that the inductor may not be superconducting at the onset of electromigration but the study was not

  7. Carbon Nanotube Thin Films for Active Noise Cancellation, Solar Energy Harvesting, and Energy Storage in Building Windows

    NASA Astrophysics Data System (ADS)

    Hu, Shan

    This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of

  8. Subjective Listening Effort and Electrodermal Activity in Listening Situations with Reverberation and Noise

    PubMed Central

    Haeder, Kristina; Imbery, Christina; Weber, Reinhard

    2016-01-01

    Disturbing factors like reverberation or ambient noise can impair speech recognition and raise the listening effort needed for successful communication in daily life. Situations with high listening effort are thought to result in increased stress for the listener. The aim of this study was to explore possible measures to determine listening effort in situations with varying background noise and reverberation. For this purpose, subjective ratings of listening effort, speech recognition, and stress level, together with the electrodermal activity as a measure of the autonomic stress reaction, were investigated. It was expected that the electrodermal activity would show different stress levels in different acoustic situations and might serve as an alternative to subjective ratings. Ten young normal-hearing and 17 elderly hearing-impaired subjects listened to sentences from the Oldenburg sentence test either with stationary background noise or with reverberation. Four listening situations were generated, an easy and a hard one for each of the two disturbing factors, which were related to each other by the Speech Transmission Index. The easy situation resulted in 100% and the hard situation resulted in 30 to 80% speech recognition. The results of the subjective ratings showed significant differences between the easy and the hard listening situations in both subject groups. Two methods of analyzing the electrodermal activity values revealed similar, but nonsignificant trends. Significant correlations between subjective ratings and physiological electrodermal activity data were observed for normal-hearing subjects in the noise situation. PMID:27698257

  9. Interior Noise

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Wilby, John F.

    1991-01-01

    The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.

  10. Reduction of Helicopter BVI Noise, Vibration, and Power Consumption Through Individual Blade Control

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Blaas, Achim; Teves, Dietrich; Kube, Roland; Warmbrodt, William (Technical Monitor)

    1994-01-01

    A wind tunnel test was conducted with a full-scale BO 105 helicopter rotor to evaluate the potential of open-loop individual blade control (IBC) to improve rotor performance, to reduce blade vortex interaction (BVI) noise, and to alleviate helicopter vibrations. The wind tunnel test was an international collaborative effort between NASA/U.S. Army AFDD, ZF Luftfahrttechnik, Eurocopter Deutschland, and the German Aerospace Laboratory (DLR) and was conducted under the auspices of the U.S./German MOU on Rotorcraft Aeromechanics. In this test the normal blade pitch links of the rotor were replaced by servo-actuators so that the pitch of each blade could be controlled independently of the other blades. The specially designed servoactuators and IBC control system were designed and manufactured by ZF Luftfahrttechnik, GmbH. The wind tunnel test was conducted in the 40- by 80-Foot Wind Tunnel at the NASA Ames Research Center. An extensive amount of measurement information was acquired for each IBC data point. These data include rotor performance, static and dynamic hub forces and moments, rotor loads, control loads, inboard and outboard blade pitch motion, and BVI noise data. The data indicated very significant (80 percent) simultaneous reductions in both BVI noise and hub vibrations could be obtained using multi-harmonic input at the critical descent (terminal approach) condition. The data also showed that performance improvements of up to 7 percent could be obtained using 2P input at high-speed forward flight conditions.

  11. Initial results of a model rotor higher harmonic control (HHC) wind tunnel experiment on BVI impulsive noise reduction

    NASA Astrophysics Data System (ADS)

    Splettstoesser, W. R.; Lehmann, G.; van der Wall, B.

    1989-09-01

    Initial acoustic results are presented from a higher harmonic control (HHC) wind tunnel pilot experiment on helicopter rotor blade-vortex interaction (BVI) impulsive noise reduction, making use of the DFVLR 40-percent-scaled BO-105 research rotor in the DNW 6m by 8m closed test section. Considerable noise reduction (of several decibels) has been measured for particular HHC control settings, however, at the cost of increased vibration levels and vice versa. The apparently adverse results for noise and vibration reduction by HHC are explained. At optimum pitch control settings for BVI noise reduction, rotor simulation results demonstrate that blade loading at the outer tip region is decreased, vortex strength and blade vortex miss-distance are increased, resulting altogether in reduced BVI noise generation. At optimum pitch control settings for vibration reduction adverse effects on blade loading, vortex strength and blade vortex miss-distance are found.

  12. A separation theorem for the stochastic sampled-data LQG problem. [control of continuous linear plant disturbed by white noise

    NASA Technical Reports Server (NTRS)

    Halyo, N.; Caglayan, A. K.

    1976-01-01

    This paper considers the control of a continuous linear plant disturbed by white plant noise when the control is constrained to be a piecewise constant function of time; i.e. a stochastic sampled-data system. The cost function is the integral of quadratic error terms in the state and control, thus penalizing errors at every instant of time while the plant noise disturbs the system continuously. The problem is solved by reducing the constrained continuous problem to an unconstrained discrete one. It is shown that the separation principle for estimation and control still holds for this problem when the plant disturbance and measurement noise are Gaussian.

  13. Automatic exposure control and estimation of effective system noise in diffuse fluorescence tomography.

    PubMed

    Kepshire, Dax L; Dehghani, Hamid; Leblond, Frederic; Pogue, Brian W

    2009-12-07

    A diffuse fluorescence tomography system, based upon time-correlated single photon counting, is presented with an automated algorithm to allow dynamic range variation through exposure control. This automated exposure control allows the upper and lower detection levels of fluorophore to be extended by an order of magnitude beyond the previously published performance and benefits in a slight decrease in system effective noise. The effective noise level is used as a metric to characterize the system performance, integrating both model-mismatch and calibration bias errors into a single parameter. This effective error is near 7% of the reconstructed fluorescent yield value, when imaging in just few minutes. Quantifying protoporphyrin IX concentrations down to 50 ng/ml is possible, for tumor-sized regions. This fluorophore has very low fluorescence yield, but high biological relevance for tumor imaging, given that it is produced in the mitochondria, and upregulated in many tumor types.

  14. A web-based noise control prediction model for rooms using the method of images

    NASA Astrophysics Data System (ADS)

    Dance, Stephen

    2002-11-01

    Previous simple models could only predict sound levels in untreated rooms. Now, using the method of images, it has become possible to accurately predict the sound level in fitted industrial rooms from any computer on the Internet. Thus, a powerful tool in an acoustician's armory is available to all, while requiring only the minimal amount of input data to construct the model. This is only achievable if the scope of the model is reduced to one or two acoustic parameters. Now, two common noise control techniques have been implemented into the image source model: acoustic barriers and absorptive patches. Predictions using the model with and without noise control techniques will be demonstrated, so the advantages can be clearly seen in typical industrial rooms. The models are now available on the web, running directly inside Netscape or Internet Explorer.

  15. Analysis of helicopter blade-vortex interaction noise with application to adaptive-passive and active alleviation methods

    NASA Astrophysics Data System (ADS)

    Tauszig, Lionel Christian

    This study focuses on detection and analysis methods of helicopter blade-vortex interactions (BVI) and applies these methods to two different BVI noise alleviation schemes---an adaptive-passive and an active scheme. A standard free-wake analysis based on relaxation methods is extended in this study to compute high-resolution blade loading, to account for blade-to-blade dissimilarities, and dual vortices when there is negative loading at the blade tips. The free-wake geometry is still calculated on a coarse azimuthal grid and then interpolated to a high-resolution grid to calculate the BVI induced impulsive loading. Blade-to-blade dissimilarities are accounted by allowing the different blades to release their own vortices. A number of BVI detection criteria, including the spherical method (a geometric criterion developed in this thesis) are critically examined. It was determined that high-resolution azimuthal discretization is required in virtually all detection methods except the spherical method which detected the occurrence of parallel BVI even while using a low-resolution azimuthal mesh. Detection methods based on inflow and blade loads were, in addition, found to be sensitive to vortex core size. While most BVI studies use the high-resolution airloads to compute BVI noise, the total noise can often be due to multiple dominant interactions on the advancing and retreating sides. A methodology is developed to evaluate the contribution of an individual interaction to the total BVI noise, based on using the loading due to an individual vortex as an input to the acoustic code WOPWOP. The adaptive-passive BVI alleviation method considered in this study comprises of reducing the length of one set of opposite blades (of a 4-bladed rotor) in low-speed descent. Results showed that differential coning resulting from the blade dissimilarity increases the blade-vortex miss-distances and reduces the BVI noise by 4 dB. The Higher Harmonic Control Aeroacoustic Rotor Test (HART

  16. [Noise exposure in neonatal intensive care units].

    PubMed

    Magnavita, V; Arslan, E; Benini, F

    1994-01-01

    This study evaluates the exposure of newborn babies in neonatal intensive care units (NICU) to noise which can cause hearing lesions directly (acoustic trauma) as well as indirectly (hypoxia). Moreover, noise can have an aggravating effect when combined with other potentially harmful factors in the NICU, such as ototoxic medication or stress due to other external stimuli, such as excessively bright light, lack of a day/night rhythm or pain. Sound pressure levels were measured in the NICU and inside the cribs in various experimental conditions, classified under 3 different types of sound events: constant background noise, variations in background noise and impulsive events. The main sources of noise detected were crib noise generated by ventilation and temperature control systems, ambient noise in the room, noise caused by the staff in the NICU, noise generated by crib alarm systems and NICU apparatus and noise caused by activity on the crib cover or on its plexiglas top. Findings revealed that the influence of ambient noise is fairly irrelevant. Background noise and its variations concerned with activities in the department never exceeded the limits considered potentially harmful to adults (DRC), whereas the impulsive noise generated by staff on the cribs or on the plexiglas tops was considerable and potentially harmful. These findings demonstrate that it is feasible and relatively easy to control noise in the NICU and significantly reduce the impulsive noise component by training staff to be more careful and avoid any unnecessary jolting and rough handling on and near the cribs.

  17. Controls Considerations for Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2004-01-01

    This presentation discusses active control of turbine tip clearance from a control systems perspective. It is a subset of charts that were presented at the 2003 meeting of the International Society of Air Breathing Engines which was held August 31 through September 5 in Cleveland, Ohio. The associated reference paper is cited at the end of the presentation. The presentation describes active tip clearance control research being conducted by NASA to improve turbine engine systems. The target application for this effort is commercial aircraft engines. However, it is believed that the technologies developed as part of this research will benefit a broad spectrum of current and future turbomachinery. The first part of the presentation discusses the concept of tip clearance, problems associated with it, and the benefits of controlling it. It lays out a framework for implementing tip clearance controls that enables the implementation to progress from purely analytical to hardware-in-the-loop to fully experimental. And it briefly discusses how the technologies developed will be married to the previously described ACC Test Rig for hardware-in-the-loop demonstrations. The final portion of the presentation, describes one of the key technologies in some detail by presenting equations and results for a functional dynamic model of the tip clearance phenomena. As shown, the model exhibits many of the clearance dynamics found in commercial gas turbine engines. However, initial attempts to validate the model identified limitations that are being addressed to make the model more realistic.

  18. Human ECG signal parameters estimation during controlled physical activity

    NASA Astrophysics Data System (ADS)

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  19. Active self-testing noise measurement sensors for large-scale environmental sensor networks.

    PubMed

    Domínguez, Federico; Cuong, Nguyen The; Reinoso, Felipe; Touhafi, Abdellah; Steenhaut, Kris

    2013-12-13

    Large-scale noise pollution sensor networks consist of hundreds of spatially distributed microphones that measure environmental noise. These networks provide historical and real-time environmental data to citizens and decision makers and are therefore a key technology to steer environmental policy. However, the high cost of certified environmental microphone sensors render large-scale environmental networks prohibitively expensive. Several environmental network projects have started using off-the-shelf low-cost microphone sensors to reduce their costs, but these sensors have higher failure rates and produce lower quality data. To offset this disadvantage, we developed a low-cost noise sensor that actively checks its condition and indirectly the integrity of the data it produces. The main design concept is to embed a 13 mm speaker in the noise sensor casing and, by regularly scheduling a frequency sweep, estimate the evolution of the microphone's frequency response over time. This paper presents our noise sensor's hardware and software design together with the results of a test deployment in a large-scale environmental network in Belgium. Our middle-range-value sensor (around €50) effectively detected all experienced malfunctions, in laboratory tests and outdoor deployments, with a few false positives. Future improvements could further lower the cost of our sensor below €10.

  20. Active Self-Testing Noise Measurement Sensors for Large-Scale Environmental Sensor Networks

    PubMed Central

    Domínguez, Federico; Cuong, Nguyen The; Reinoso, Felipe; Touhafi, Abdellah; Steenhaut, Kris

    2013-01-01

    Large-scale noise pollution sensor networks consist of hundreds of spatially distributed microphones that measure environmental noise. These networks provide historical and real-time environmental data to citizens and decision makers and are therefore a key technology to steer environmental policy. However, the high cost of certified environmental microphone sensors render large-scale environmental networks prohibitively expensive. Several environmental network projects have started using off-the-shelf low-cost microphone sensors to reduce their costs, but these sensors have higher failure rates and produce lower quality data. To offset this disadvantage, we developed a low-cost noise sensor that actively checks its condition and indirectly the integrity of the data it produces. The main design concept is to embed a 13 mm speaker in the noise sensor casing and, by regularly scheduling a frequency sweep, estimate the evolution of the microphone's frequency response over time. This paper presents our noise sensor's hardware and software design together with the results of a test deployment in a large-scale environmental network in Belgium. Our middle-range-value sensor (around €50) effectively detected all experienced malfunctions, in laboratory tests and outdoor deployments, with a few false positives. Future improvements could further lower the cost of our sensor below €10. PMID:24351634

  1. PHYCAA+: an optimized, adaptive procedure for measuring and controlling physiological noise in BOLD fMRI.

    PubMed

    Churchill, Nathan W; Strother, Stephen C

    2013-11-15

    The presence of physiological noise in functional MRI can greatly limit the sensitivity and accuracy of BOLD signal measurements, and produce significant false positives. There are two main types of physiological confounds: (1) high-variance signal in non-neuronal tissues of the brain including vascular tracts, sinuses and ventricles, and (2) physiological noise components which extend into gray matter tissue. These physiological effects may also be partially coupled with stimuli (and thus the BOLD response). To address these issues, we have developed PHYCAA+, a significantly improved version of the PHYCAA algorithm (Churchill et al., 2011) that (1) down-weights the variance of voxels in probable non-neuronal tissue, and (2) identifies the multivariate physiological noise subspace in gray matter that is linked to non-neuronal tissue. This model estimates physiological noise directly from EPI data, without requiring external measures of heartbeat and respiration, or manual selection of physiological components. The PHYCAA+ model significantly improves the prediction accuracy and reproducibility of single-subject analyses, compared to PHYCAA and a number of commonly-used physiological correction algorithms. Individual subject denoising with PHYCAA+ is independently validated by showing that it consistently increased between-subject activation overlap, and minimized false-positive signal in non gray-matter loci. The results are demonstrated for both block and fast single-event task designs, applied to standard univariate and adaptive multivariate analysis models.

  2. Noise-induced hearing loss and associated factors among vector control workers in a Malaysian state.

    PubMed

    Masilamani, Retneswari; Rasib, Abdul; Darus, Azlan; Ting, Anselm Su

    2014-11-01

    This study aims to determine the prevalence and associated factors of noise-induced hearing loss (NIHL) among vector control workers in the state of Negeri Sembilan, Malaysia. This was an analytical cross-sectional study conducted on 181 vector control workers who were working in district health offices in a state in Malaysia. Data were collected using a self-administered questionnaire and audiometry. Prevalence of NIHL was 26% among this group of workers. NIHL was significantly associated with the age-group of 40 years and older, length of service of 10 or more years, current occupational noise exposure, listening to loud music, history of firearms use, and history of mumps/measles infection. Following logistic regression, age of more than 40 years and noise exposure in current occupation were associated with NIHL with an odds ratio of 3.45 (95% confidence interval = 1.68-7.07) and 6.87 (95% confidence interval = 1.54-30.69), respectively, among this group of vector control workers.

  3. Rotor blade vortex interaction noise

    NASA Astrophysics Data System (ADS)

    Yu, Yung H.

    2000-02-01

    Blade-vortex interaction noise-generated by helicopter main rotor blades is one of the most severe noise problems and is very important both in military applications and community acceptance of rotorcraft. Research over the decades has substantially improved physical understanding of noise-generating mechanisms, and various design concepts have been investigated to control noise radiation using advanced blade planform shapes and active blade control techniques. The important parameters to control rotor blade-vortex interaction noise and vibration have been identified: blade tip vortex structures and its trajectory, blade aeroelastic deformation, and airloads. Several blade tip design concepts have been investigated for diffusing tip vortices and also for reducing noise. However, these tip shapes have not been able to substantially reduce blade-vortex interaction noise without degradation of rotor performance. Meanwhile, blade root control techniques, such as higher-harmonic pitch control (HHC) and individual blade control (IBC) concepts, have been extensively investigated for noise and vibration reduction. The HHC technique has proved the substantial blade-vortex interaction noise reduction, up to 6 dB, while vibration and low-frequency noise have been increased. Tests with IBC techniques have shown the simultaneous reduction of rotor noise and vibratory loads with 2/rev pitch control inputs. Recently, active blade control concepts with smart structures have been investigated with the emphasis on active blade twist and trailing edge flap. Smart structures technologies are very promising, but further advancements are needed to meet all the requirements of rotorcraft applications in frequency, force, and displacement.

  4. Neuromorphic learning of continuous-valued mappings from noise-corrupted data. Application to real-time adaptive control

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Merrill, Walter C.

    1990-01-01

    The ability of feed-forward neural network architectures to learn continuous valued mappings in the presence of noise was demonstrated in relation to parameter identification and real-time adaptive control applications. An error function was introduced to help optimize parameter values such as number of training iterations, observation time, sampling rate, and scaling of the control signal. The learning performance depended essentially on the degree of embodiment of the control law in the training data set and on the degree of uniformity of the probability distribution function of the data that are presented to the net during sequence. When a control law was corrupted by noise, the fluctuations of the training data biased the probability distribution function of the training data sequence. Only if the noise contamination is minimized and the degree of embodiment of the control law is maximized, can a neural net develop a good representation of the mapping and be used as a neurocontroller. A multilayer net was trained with back-error-propagation to control a cart-pole system for linear and nonlinear control laws in the presence of data processing noise and measurement noise. The neurocontroller exhibited noise-filtering properties and was found to operate more smoothly than the teacher in the presence of measurement noise.

  5. An analytical model for study of interior noise control for high-speed, propeller-driven aircraft

    NASA Astrophysics Data System (ADS)

    Revell, J. D.; Balena, F. J.; Koval, L. R.

    1980-06-01

    An analytical method is described for prediction of the interior noise levels for propeller-driven aircraft, given the exterior noise signature and its harmonic spectrum, and a description of the fuselage sidewall structure and various candidate 'add-on' noise-control elements. The structural response is described by the theory of Koval but simplified to consider the stiffeners as 'smeared' elements. The incremental transmission loss (TL) due to add-on-noise-control elements is derived from the Beranek and Work method. Comparisons between experimental data and the theory are presented. The method is reasonably accurate below the ring frequency, but is somewhat conservative at normal incidence angle. This method is, however, expedient computationally, is economical and permits rapid comparisons of noise-control penalties for various treatment concepts.

  6. Noise-Induced Loss of Hair Cells and Cochlear Synaptopathy Are Mediated by the Activation of AMPK

    PubMed Central

    Hill, Kayla; Yuan, Hu; Wang, Xianren

    2016-01-01

    Noise-induced hearing loss (NIHL) is a major unresolved public health problem. Here, we investigate pathomechanisms of sensory hair cell death and suggest a novel target for protective intervention. Cellular survival depends upon maintenance of energy homeostasis, largely by AMP-activated protein kinase (AMPK). In response to a noise exposure in CBA/J mice, the levels of phosphorylated AMPKα increased in hair cells in a noise intensity-dependent manner. Inhibition of AMPK via siRNA or the pharmacological inhibitor compound C attenuated noise-induced loss of outer hair cells (OHCs) and synaptic ribbons, and preserved auditory function. Additionally, noise exposure increased the activity of the upstream AMPK kinase liver kinase B1 (LKB1) in cochlear tissues. The inhibition of LKB1 by siRNA attenuated the noise-increased phosphorylation of AMPKα in OHCs, reduced the loss of inner hair cell synaptic ribbons and OHCs, and protected against NIHL. These results indicate that noise exposure induces hair cell death and synaptopathy by activating AMPK via LKB1-mediated pathways. Targeting these pathways may provide a novel route to prevent NIHL. SIGNIFICANCE STATEMENT Our results demonstrate for the first time that the activation of AMP-activated protein kinase (AMPK) α in sensory hair cells is noise intensity dependent and contributes to noise-induced hearing loss by mediating the loss of inner hair cell synaptic ribbons and outer hair cells. Noise induces the phosphorylation of AMPKα1 by liver kinase B1 (LKB1), triggered by changes in intracellular ATP levels. The inhibition of AMPK activation by silencing AMPK or LKB1, or with the pharmacological inhibitor compound C, reduced outer hair cell and synaptic ribbon loss as well as noise-induced hearing loss. This study provides new insights into mechanisms of noise-induced hearing loss and suggests novel interventions for the prevention of the loss of sensory hair cells and cochlear synaptopathy. PMID:27413159

  7. Reduction of interior sound fields in flexible cylinders by active vibration control

    NASA Technical Reports Server (NTRS)

    Jones, J. D.; Fuller, C. R.

    1988-01-01

    The mechanisms of interior sound reduction through active control of a thin flexible shell's vibrational response are presently evaluated in view of an analytical model. The noise source is a single exterior acoustic monopole. The active control model is evaluated for harmonic excitation; the results obtained indicate spatially-averaged noise reductions in excess of 20 dB over the source plane, for acoustic resonant conditions inside the cavity.

  8. Task-specific noise exposure during manual concrete surface grinding in enclosed areas-influence of operation variables and dust control methods.

    PubMed

    Akbar-Khanzadeh, Farhang; Ames, April L; Milz, Sheryl A; Akbar-Khanzadeh, Mahboubeh

    2013-01-01

    Noise exposure is a distinct hazard during hand-held concrete grinding activities, and its assessment is challenging because of the many variables involved. Noise dosimeters were used to examine the extent of personal noise exposure while concrete grinding was performed with a variety of grinder sizes, types, accessories, and available dust control methods. Noise monitoring was conducted in an enclosed area covering 52 task-specific grinding sessions lasting from 6 to 72 minutes. Noise levels, either in minute average noise level (Lavg, dBA) or in minute peak (dBC), during concrete grinding were significantly (P < 0.01) correlated with general ventilation (GV: on, off), dust control methods (uncontrolled, wet, Shop-Vac, HEPA, HEPA-Cyclone), grinding cup wheel (blade) sizes of 4-inch (100 mm), 5-inch (125 mm) and 6-inch (150 mm), and surface orientation (horizontal, inclined). Overall, minute Lavg during grinding was 97.0 ± 3.3 (mean ± SD), ranging from 87.9 to 113. The levels of minute Lavg during uncontrolled grinding (98.9 ± 5.2) or wet-grinding (98.5 ± 2.7) were significantly higher than those during local exhaust ventilation (LEV) grinding (96.2 ± 2.8). A 6-inch grinding cup wheel generated significantly higher noise levels (98.7 ± 2.8) than 5-inch (96.3 ± 3.2) or 4-inch (95.3 ± 3.5) cup wheels. The minute peak noise levels (dBC) during grinding was 113 ± 5.2 ranging from 104 to 153. The minute peak noise levels during uncontrolled grinding (119 ± 10.2) were significantly higher than those during wet-grinding (115 ± 4.5) and LEV-grinding (112 ± 3.4). A 6-inch grinding cup wheel generated significantly higher minute peak noise levels (115 ± 5.3) than 5-inch (112 ± 4.5) or 4-inch (111 ± 5.4) cup wheels. Assuming an 8-hour work shift, the results indicated that noise exposure levels during concrete grinding in enclosed areas exceeded the recommended permissible exposure limits and workers should be protected by engineering control methods, safe

  9. Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches

    PubMed Central

    Page, Karen M.

    2016-01-01

    During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules—morphogens—guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can qualitatively

  10. Noise Protection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.

  11. Promoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression.

    PubMed

    Hansen, Anders S; O'Shea, Erin K

    2013-11-05

    Numerous transcription factors (TFs) encode information about upstream signals in the dynamics of their activation, but how downstream genes decode these dynamics remains poorly understood. Using microfluidics to control the nucleocytoplasmic translocation dynamics of the budding yeast TF Msn2, we elucidate the principles that govern how different promoters convert dynamical Msn2 input into gene expression output in single cells. Combining modeling and experiments, we classify promoters according to their signal-processing behavior and reveal that multiple, distinct gene expression programs can be encoded in the dynamics of Msn2. We show that both oscillatory TF dynamics and slow promoter kinetics lead to higher noise in gene expression. Furthermore, we show that the promoter activation timescale is related to nucleosome remodeling. Our findings imply a fundamental trade-off: although the cell can exploit different promoter classes to differentially control gene expression using TF dynamics, gene expression noise fundamentally limits how much information can be encoded in the dynamics of a single TF and reliably decoded by promoters.

  12. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    PubMed Central

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-01-01

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water. PMID:23389344

  13. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    PubMed

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  14. An Engineering Approach to Management of Occupational and Community Noise Exposure at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    1997-01-01

    Workplace and environmental noise issues at NASA Lewis Research Center are effectively managed via a three-part program that addresses hearing conservation, community noise control, and noise control engineering. The Lewis Research Center Noise Exposure Management Program seeks to limit employee noise exposure and maintain community acceptance for critical research while actively pursuing engineered controls for noise generated by more than 100 separate research facilities and the associated services required for their operation.

  15. Predicting the effect of urban noise on the active space of avian vocal signals.

    PubMed

    Parris, Kirsten M; McCarthy, Michael A

    2013-10-01

    Urbanization changes the physical environment of nonhuman species but also markedly changes their acoustic environment. Urban noise interferes with acoustic communication in a range of animals, including birds, with potentially profound impacts on fitness. However, a mechanistic theory to predict which species of birds will be most affected by urban noise is lacking. We develop a mathematical model to predict the decrease in the active space of avian vocal signals after moving from quiet forest habitats to noisy urban habitats. We find that the magnitude of the decrease is largely a function of signal frequency. However, this relationship is not monotonic. A metaregression of observed increases in the frequency of birdsong in urban noise supports the model's predictions for signals with frequencies between 1.5 and 4 kHz. Using results of the metaregression and the model described above, we show that the expected gain in active space following observed frequency shifts is up to 12% and greatest for birds with signals at the lower end of this frequency range. Our generally applicable model, along with three predictions regarding the behavioral and population-level responses of birds to urban noise, represents an important step toward a theory of acoustic communication in urban habitats.

  16. Variation in harbour porpoise activity in response to seismic survey noise

    PubMed Central

    Pirotta, Enrico; Brookes, Kate L.; Graham, Isla M.; Thompson, Paul M.

    2014-01-01

    Animals exposed to anthropogenic disturbance make trade-offs between perceived risk and the cost of leaving disturbed areas. Impact assessments tend to focus on overt behavioural responses leading to displacement, but trade-offs may also impact individual energy budgets through reduced foraging performance. Previous studies found no evidence for broad-scale displacement of harbour porpoises exposed to impulse noise from a 10 day two-dimensional seismic survey. Here, we used an array of passive acoustic loggers coupled with calibrated noise measurements to test whether the seismic survey influenced the activity patterns of porpoises remaining in the area. We showed that the probability of recording a buzz declined by 15% in the ensonified area and was positively related to distance from the source vessel. We also estimated received levels at the hydrophones and characterized the noise response curve. Our results demonstrate how environmental impact assessments can be developed to assess more subtle effects of noise disturbance on activity patterns and foraging efficiency. PMID:24850891

  17. Open-loop control of noise amplification in a separated boundary layer flow

    SciTech Connect

    Boujo, E. Gallaire, F.; Ehrenstein, U.

    2013-12-15

    Linear optimal gains are computed for the subcritical two-dimensional separated boundary-layer flow past a bump. Very large optimal gain values are found, making it possible for small-amplitude noise to be strongly amplified and to destabilize the flow. The optimal forcing is located close to the summit of the bump, while the optimal response is the largest in the shear layer. The largest amplification occurs at frequencies corresponding to eigenvalues which first become unstable at higher Reynolds number. Nonlinear direct numerical simulations show that a low level of noise is indeed sufficient to trigger random flow unsteadiness, characterized here by large-scale vortex shedding. Next, a variational technique is used to compute efficiently the sensitivity of optimal gains to steady control (through source of momentum in the flow, or blowing/suction at the wall). A systematic analysis at several frequencies identifies the bump summit as the most sensitive region for control with wall actuation. Based on these results, a simple open-loop control strategy is designed, with steady wall suction at the bump summit. Linear calculations on controlled base flows confirm that optimal gains can be drastically reduced at all frequencies. Nonlinear direct numerical simulations also show that this control allows the flow to withstand a higher level of stochastic noise without becoming nonlinearly unstable, thereby postponing bypass transition. In the supercritical regime, sensitivity analysis of eigenvalues supports the choice of this control design. Full restabilization of the flow is obtained, as evidenced by direct numerical simulations and linear stability analysis.

  18. Controlled quantum key distribution with three-photon polarization-entangled states via the collective noise channel

    SciTech Connect

    Dong Li; Xiu Xiaoming; Gao Yajun; Yi, X. X.

    2011-10-15

    Using three-photon polarization-entangled GHZ states or W states, we propose controlled quantum key distribution protocols for circumventing two main types of collective noise, collective dephasing noise, or collective rotation noise. Irrespective of the number of controllers, a three-photon state can generate a one-bit secret key. The storage technique of quantum states is dispensable for the controller and the receiver, and it therefore allows performing the process in a more convenient mode. If the photon cost in a security check is disregarded, then the efficiency theoretically approaches unity.

  19. An objective method and measuring equipment for noise control and acoustic diagnostics of motorcars. [acoustic diagnostics on automobile engines

    NASA Technical Reports Server (NTRS)

    Kacprowski, J.; Motylewski, J.; Miazga, J.

    1974-01-01

    An objective method and apparatus for noise control and acoustic diagnostics of motorcar engines are reported. The method and apparatus let us know whether the noisiness of the vehicle under test exceeds the admissible threshold levels given by appropriate standards and if so what is the main source of the excessive noise. The method consists in measuring both the overall noise level and the sound pressure levels in definite frequency bands while the engine speed is controlled as well and may be fixed at prescribed values. Whenever the individually adjusted threshold level has been exceeded in any frequency band, a self-sustaining control signal is sent.

  20. A Review of Noise and Vibration Control Technologies for Rotorcraft Transmissions

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.

    2016-01-01

    An expanded commercial use of rotorcraft can alleviate runway congestion and improve the accessibility of routine air travel. To date, commercial use has been hindered by excessive cabin noise. The primary noise source is structure-borne vibration originating from the main rotor gearbox. Despite significant advancements in gear design, the gear mesh tones generated often exceed 100 dB. This paper summarizes the findings of a literature survey of vibration control technologies that serve to attenuate this vibration near the source, before it spreads into the airframe and produces noise. The scope is thus limited to vibration control treatments and modifications of the gears, driveline, housing structures, and the strut connections to the airframe. The findings of the literature are summarized and persistent and unresolved issues are identified. An emphasis is placed on components and systems that have been demonstrated in flight vehicles. Then, a discussion is presented of emerging technologies that have the potential to make significant advancements over the state of the art.

  1. Effects of image noise, respiratory motion, and motion compensation on 3D activity quantification in count-limited PET images

    NASA Astrophysics Data System (ADS)

    Siman, W.; Mawlawi, O. R.; Mikell, J. K.; Mourtada, F.; Kappadath, S. C.

    2017-01-01

    The aims of this study were to evaluate the effects of noise, motion blur, and motion compensation using quiescent-period gating (QPG) on the activity concentration (AC) distribution—quantified using the cumulative AC volume histogram (ACVH)—in count-limited studies such as 90Y-PET/CT. An International Electrotechnical Commission phantom filled with low 18F activity was used to simulate clinical 90Y-PET images. PET data were acquired using a GE-D690 when the phantom was static and subject to 1-4 cm periodic 1D motion. The static data were down-sampled into shorter durations to determine the effect of noise on ACVH. Motion-degraded PET data were sorted into multiple gates to assess the effect of motion and QPG on ACVH. Errors in ACVH at AC90 (minimum AC that covers 90% of the volume of interest (VOI)), AC80, and ACmean (average AC in the VOI) were characterized as a function of noise and amplitude before and after QPG. Scan-time reduction increased the apparent non-uniformity of sphere doses and the dispersion of ACVH. These effects were more pronounced in smaller spheres. Noise-related errors in ACVH at AC20 to AC70 were smaller (<15%) compared to the errors between AC80 to AC90 (>15%). The accuracy of ACmean was largely independent of the total count. Motion decreased the observed AC and skewed the ACVH toward lower values; the severity of this effect depended on motion amplitude and tumor diameter. The errors in AC20 to AC80 for the 17 mm sphere were  -25% and  -55% for motion amplitudes of 2 cm and 4 cm, respectively. With QPG, the errors in AC20 to AC80 of the 17 mm sphere were reduced to  -15% for motion amplitudes  <4 cm. For spheres with motion amplitude to diameter ratio  >0.5, QPG was effective at reducing errors in ACVH despite increases in image non-uniformity due to increased noise. ACVH is believed to be more relevant than mean or maximum AC to calculate tumor control and normal tissue complication probability

  2. The Data Acquisition and Control Systems of the Jet Noise Laboratory at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jansen, B. J., Jr.

    1998-01-01

    The features of the data acquisition and control systems of the NASA Langley Research Center's Jet Noise Laboratory are presented. The Jet Noise Laboratory is a facility that simulates realistic mixed flow turbofan jet engine nozzle exhaust systems in simulated flight. The system is capable of acquiring data for a complete take-off assessment of noise and nozzle performance. This paper describes the development of an integrated system to control and measure the behavior of model jet nozzles featuring dual independent high pressure combusting air streams with wind tunnel flow. The acquisition and control system is capable of simultaneous measurement of forces, moments, static and dynamic model pressures and temperatures, and jet noise. The design concepts for the coordination of the control computers and multiple data acquisition computers and instruments are discussed. The control system design and implementation are explained, describing the features, equipment, and the experiences of using a primarily Personal Computer based system. Areas for future development are examined.

  3. Quantum governor: Automatic quantum control and reduction of the influence of noise without measuring

    SciTech Connect

    Kallush, S.; Kosloff, R.

    2006-03-15

    The problem of automatically protecting a quantum system against noise in a closed circuit is analyzed. A general scheme is developed built from two steps. First, a distillation step is induced in which undesired components are removed to another degree of freedom of the system. Later a recovering step is employed in which the system gains back its initial density. An optimal-control method is used to generate the distilling operator. The scheme is demonstrated by a simulation of a two-level bit influenced by white noise. Undesired deviations from the target were shown to be reduced by at least two orders of magnitude on average. The relations between the quantum version of the classical Watt's governor and the field of quantum information are also discussed.

  4. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  5. Noise Response Data Reveal Novel Controllability Gramian for Nonlinear Network Dynamics

    PubMed Central

    Kashima, Kenji

    2016-01-01

    Control of nonlinear large-scale dynamical networks, e.g., collective behavior of agents interacting via a scale-free connection topology, is a central problem in many scientific and engineering fields. For the linear version of this problem, the so-called controllability Gramian has played an important role to quantify how effectively the dynamical states are reachable by a suitable driving input. In this paper, we first extend the notion of the controllability Gramian to nonlinear dynamics in terms of the Gibbs distribution. Next, we show that, when the networks are open to environmental noise, the newly defined Gramian is equal to the covariance matrix associated with randomly excited, but uncontrolled, dynamical state trajectories. This fact theoretically justifies a simple Monte Carlo simulation that can extract effectively controllable subdynamics in nonlinear complex networks. In addition, the result provides a novel insight into the relationship between controllability and statistical mechanics. PMID:27264780

  6. Noise policy: Past and present

    NASA Astrophysics Data System (ADS)

    Lang, William W.

    2004-05-01

    Leo Beranek and the firm Bolt Beranek and Newman have played a defining role in the formulation of noise policy in America. The firm that he and Richard Bolt founded in 1948 with fewer than a half-dozen others grew to become the world's largest acoustical consulting firm with more than 2000 employees. Two decades later in 1971, Leo Beranek was a key founder of the Institute of Noise Control Engineering of the U.S.A. The Institute, which inaugurated the INTER-NOISE series of annual noise congresses in 1972 under Beranek's direction, played a major role in the enactment by the Congress of the Noise Control Act of 1972. NCA-72 identified the Environmental Protection Agency as the leading Federal agency with oversight responsibilities responsible for implementing the noise policies defined by the Congress. In 1981, funding for EPA's noise program was withdrawn. Since then, leadership at the Federal level for implementing a coordinated national noise policy has been absent, but a dozen Federal agencies remain active in the noise field. With the exception of aircraft, no product emission regulations on major sources of noise are enforced today. To rectify this situation, Leo Beranek has recently been playing a leadership role in a concerted effort to rejuvenate America's national noise policy.

  7. Demonstration of Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  8. Global-mode based linear feedback control of a supersonic jet for noise reduction

    NASA Astrophysics Data System (ADS)

    Natarajan, Mahesh; Freund, Jonathan; Bodony, Daniel

    2016-11-01

    The loudest source of high-speed jet noise appears to be describable by unsteady wavepackets that resemble instabilities. We seek to reduce their acoustic impact with a control strategy that uses global modes to model their dynamics and structural sensitivity of the linearized compressible Navier-Stokes operator to identify an effective linear feedback control. For a case with co-located actuators and sensors adjacent the nozzle, we demonstrate the method on an axisymmetric Mach 1.5 jet. Direct numerical simulations using this control show significant noise reduction. Eigenanalysis of the controlled mean flows reveal fundamental changes in the spectrum at frequencies lower than that used by the control, with the quieter flows having unstable eigenvalues that correspond to eigenfunctions without significant support in the acoustic field. A specific trend is observed in the mean flow quantities as the flow becomes quieter, with changes in the mean flow becoming significant only further downstream of the nozzle exit. The quieter flows also have a stable shock-cell structure that extends further downstream. A phase plot of the POD coefficients for the flows show that the quieter flows are more regular in time. Funded by the Office of Naval Research.

  9. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  10. Toward Active Control of Noise from Hot Supersonic Jets

    DTIC Science & Technology

    2012-02-15

    Mj = 1.55) conditions at a nominal total temperature of 1350°F. CFD analysis will yield comparative data on these same 6 configurations. These...and has completed a check-out experiment in their facility. WBS 1.3 This task is waiting on time-resolved snap-shots from the CFD which should be...531.33 kPa (77.06 psi) To 1005.4 K (1350 °F) 1005.4 K (1350 °F) M 1.55 1.74 Table 2. Operating conditions for CFD simulations of the faceted

  11. Wet active chevron nozzle for controllable jet noise reduction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Kinzie, Kevin W. (Inventor)

    2011-01-01

    Disposed at or toward the trailing edge of one or more nozzles associated with a jet engine are injection ports which can selectively be made to discharge a water stream into a nozzle flow stream for the purpose of increasing turbulence in somewhat of a similar fashion as mechanically disposed chevrons have done in the known art. Unlike mechanically disposed chevrons of the known art, the fluid flow may be secured thereby increasing the engine efficiency. Various flow patterns, water pressures, orifice designs or other factors can be made operative to provide desired performance characteristics.

  12. Toward Active Control of Noise from Hot Supersonic Jets

    DTIC Science & Technology

    2013-11-15

    propagation work. Following the peer review , the original work plan for the extension period was determined to be too broad in scope. Therefore, a new extension work plan with reduced scope was proposed.

  13. Toward Active Control of Noise from Hot Supersonic Jets

    DTIC Science & Technology

    2012-07-24

    tics and MHz PIV in High-Temperature, Shock-Containing, Jets," was submitted and ac - PAGE 2 QUARTERLY PROGRESS REPORT NO. 4 - N00014-11-1-0752... combustor is housed upstream of the nozzle section and is followed by a ceramic flow conditioner and settling chamber upstream of the main contraction...correct the probe’s axial position from the nozzle to within 1%. Acoustic Arrays Measurements of the near- and far-field pressures were ac - quired

  14. Toward Active Control of Noise from Hot Supersonic Jets

    DTIC Science & Technology

    2012-11-15

    1 Come Nazi », no Cortortoody, Pmauro Matenad. 1-0 010 (mi) 10 15 20 25 X 3o Cone Noult wiBi ConMroody. OvwaiponOM 1-0 010 (ma) • Page 45...5 75 «5 95 105115125135145 x/D, (d), StDj = 0.4, / = 9.6 kHz 15 25 35 45 55 65 75 SS 95 105 1 IS 125135145 X/Dj (e), StDj = 0.6

  15. Fractional active disturbance rejection control.

    PubMed

    Li, Dazi; Ding, Pan; Gao, Zhiqiang

    2016-05-01

    A fractional active disturbance rejection control (FADRC) scheme is proposed to improve the performance of commensurate linear fractional order systems (FOS) and the robust analysis shows that the controller is also applicable to incommensurate linear FOS control. In FADRC, the traditional extended states observer (ESO) is generalized to a fractional order extended states observer (FESO) by using the fractional calculus, and the tracking differentiator plus nonlinear state error feedback are replaced by a fractional proportional-derivative controller. To simplify controller tuning, the linear bandwidth-parameterization method has been adopted. The impacts of the observer bandwidth ωo and controller bandwidth ωc on system performance are then analyzed. Finally, the FADRC stability and frequency-domain characteristics for linear single-input single-output FOS are analyzed. Simulation results by FADRC and ADRC on typical FOS are compared to demonstrate the superiority and effectiveness of the proposed scheme.

  16. Active Control of Stationary Vortices

    NASA Astrophysics Data System (ADS)

    Nino, Giovanni; Breidenthal, Robert; Bhide, Aditi; Sridhar, Aditya

    2016-11-01

    A system for active stationary vortex control is presented. The system uses a combination of plasma actuators, pressure sensors and electrical circuits deposited on aerodynamic surfaces using printing electronics methods. Once the pressure sensors sense a change on the intensity or on the position of the stationary vortices, its associated controller activates a set of plasma actuator to return the vortices to their original or intended positions. The forces produced by the actuators act on the secondary flow in the transverse plane, where velocities are much less than in the streamwise direction. As a demonstration case, the active vortex control system is mounted on a flat plate under low speed wind tunnel testing. Here, a set of vortex generators are used to generate the stationary vortices and the plasma actuators are used to move them. Preliminary results from the experiments are presented and compared with theoretical values. Thanks to the USAF AFOSR STTR support under contract # FA9550-15-C-0007.

  17. Control of sound radiation with active/adaptive structures

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Rogers, C. A.; Robertshaw, H. H.

    1992-01-01

    Recent research is discussed in the area of active structural acoustic control with active/adaptive structures. Progress in the areas of structural acoustics, actuators, sensors, and control approaches is presented. Considerable effort has been given to the interaction of these areas with each other due to the coupled nature of the problem. A discussion is presented on actuators bonded to or embedded in the structure itself. The actuators discussed are piezoceramic actuators and shape memory alloy actuators. The sensors discussed are optical fiber sensors, Nitinol fiber sensors, piezoceramics, and polyvinylidene fluoride sensors. The active control techniques considered are state feedback control techniques and least mean square adaptive algorithms. Results presented show that significant progress has been made towards controlling structurally radiated noise by active/adaptive means applied directly to the structure.

  18. Effects of three activities on annoyance responses to recorded flyovers. [human tolerance of jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Shepherd, W. T.; Fletcher, J. L.

    1975-01-01

    Human subjects participated in an experiment in which they were engaged in TV viewing, telephone listening, or reverie (no activity) for a 1/2-hour session. During the session, they were exposed to a series of recorded aircraft sounds at the rate of one flight every 2 minutes. At each session, four levels of flyover noise, separated by 5 db increments were presented several times in a Latin Square balanced sequence. The peak levels of the noisiest flyover in any session was fixed at 95, 90, 85, 75, or 70 db. At the end of the test session, subjects recorded their responses to the aircraft sounds, using a bipolar scale which covered the range from very pleasant to extremely annoying. Responses to aircraft noises are found to be significantly affected by the particular activity in which the subjects are engaged.

  19. Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators.

    PubMed

    Chan, H B; Stambaugh, C

    2007-08-10

    We explore fluctuation-induced switching in parametrically driven micromechanical torsional oscillators. The oscillators possess one, two, or three stable attractors depending on the modulation frequency. Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation barriers are found to have a power law dependence on frequency detuning with critical exponents that are in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a different power law dependence with an exponent that is device specific.

  20. Annoyance and activity disturbance induced by high-speed railway and conventional railway noise: a contrastive case study

    PubMed Central

    2014-01-01

    Background High-speed railway (HR, Electrified railway with service speed above 200 km/h.) noise and conventional railway (CR, Electrified railway with service speed under 200 km/h.) noise are different in both time and frequency domain. There is an urgent need to study the influence of HR noise and consequently, develop appropriate noise evaluation index and limits for the total railway noise including HR and CR noise. Methods Based on binaural recording of HR and CR noises in a approximate semi-free field, noise annoyance and activity disturbance induced by maximal train pass-by events in China were investigated through laboratory subjective evaluation. 80 students within recruited 102 students, 40 males and 40 females, 23.9 ± 2.1 years old, were finally selected as the subjects. After receiving noise stimulus via headphone of a binaural audio playback system, subjects were asked to express the annoyance or activity disturbance due to railway noise at a 0-100 numerical scale. Results The results show that with the same annoyance rating (A) or activity disturbance rating (D), the A-weighted equivalent sound pressure level (LAeq) of CR noise is approximately 7 dB higher than that of HR noise. Linear regression analysis between some acoustical parameters and A (or D) suggests that the coefficient of determination (R2) is higher with the instantaneous fast A-weighted sound pressure level (LAFmax) than that with LAeq. A combined acoustical parameter, LHC = 1.74LAFmax + 0.008LAFmax(Lp-LAeq), where Lp is the sound pressure level, was derived consequently, which could better evaluate the total railway noise, including HR and CR noise. More importantly, with a given LHC, the noise annoyance of HR and CR noise is the same. Conclusions Among various acoustical parameters including LHC and LAeq, A and D have the highest correlation with LHC. LHC has been proved to be an appropriate index to evaluate the total railway noise, including both HR and CR. However

  1. H2 control of discrete-time periodic systems with Markovian jumps and multiplicative noise

    NASA Astrophysics Data System (ADS)

    Ma, Hongji; Jia, Yingmin

    2013-10-01

    This paper addresses the problem of optimal and robust H2 control for discrete-time periodic systems with Markov jump parameters and multiplicative noise. To analyse the system performance in the presence of exogenous random disturbance, an H2 norm is firstly established on the basis of Gramian matrices. Further, under the condition of exact observability, a necessary and sufficient condition is presented for the solvability of H2 optimal control problem by means of a generalised Riccati equation. When the transition probabilities of jump parameter are incompletely measurable, an H2-guaranteed cost norm is exploited and the robust H2 controller is designed through a linear matrix inequality (LMI) optimisation approach. An example of a networked control system is supplied to illustrate the proposed results.

  2. Fan Noise Research at NASA

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.

    1994-01-01

    Results of recent NASA research to reduce aircraft turbofan noise are described. As the bypass ratio of a turbofan engine increases from five to as much as 20, the dominant source of engine noise is the fan. A primary mechanism of tone noise generation is the rotor blade wakes interacting with downstream stator vanes. Methods of analyzing rotor stator tone noise generation are described and sample results are given. The role of an acoustic modal description is emphasized. Wind tunnel tests of model fans and nacelles are described including a novel rotating microphone technique for modal measurement. Sample far field results are given showing the effects of inlet length, and modal measurements are shown which point to a new generation mechanism. Concepts for active fan noise control at the source are addressed. Implications of the research which have general relevance to fan noise generation and control are discussed.

  3. Fan noise research at NASA

    NASA Astrophysics Data System (ADS)

    Groeneweg, John F.

    Results of recent NASA research to reduce aircraft turbofan noise are described. As the bypass ratio of a turbofan engine increases from 5 to as much as 20, the dominant source of engine noise is the fan. A primary mechanism of tone noise generation is the rotor blade wakes interacting with downstream stator vanes. Methods of analyzing rotor-stator tone noise generation are described and sample results are given. The role of an acoustic modal description is emphasized. Wind tunnel tests of model fans and nacelles are described including a novel rotating microphone technique for modal measurement. Sample far field results are given showing the effects of inlet length, and modal measurements are shown which point to a new generation mechanism. Concepts for active fan noise control at the source are addressed. Implications of the research which have general relevance to fan noise generation and control are discussed.

  4. Modeling of Broadband Liners Applied to the Advanced Noise Control Fan

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2015-01-01

    The broadband component of fan noise has grown in relevance with an increase in bypass ratio and incorporation of advanced fan designs. Therefore, while the attenuation of fan tones remains a major factor in engine nacelle acoustic liner design, the simultaneous reduction of broadband fan noise levels has received increased interest. As such, a previous investigation focused on improvements to an established broadband acoustic liner optimization process using the Advanced Noise Control Fan (ANCF) rig as a demonstrator. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom liner designs were carried through design, fabrication, and testing. This paper addresses a number of areas for further research identified in the initial assessment of the ANCF study. Specifically, incident source specification and uncertainty in some aspects of the predicted liner impedances are addressed. This information is incorporated in updated predictions of the liner performance and comparisons with measurement are greatly improved. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of various liner designs. This study also provides further confidence in the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  5. Improved Broadband Liner Optimization Applied to the Advanced Noise Control Fan

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.; Ayle, Earl; Ichihashi, Fumitaka

    2014-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more desirable. This paper describes improvements to a previously established broadband acoustic liner optimization process using the Advanced Noise Control Fan rig as a demonstrator. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom designs are carried through design, fabrication, and testing to validate the efficacy of the design process. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of these liner designs. This study also provides an application for demonstrating the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  6. Hanbury-Brown Twiss noise correlation with time controlled quasi-particles in ballistic quantum conductors

    NASA Astrophysics Data System (ADS)

    Glattli, D. C.; Roulleau, P.

    2016-02-01

    We study the Hanbury Brown and Twiss correlation of electronic quasi-particles injected in a quantum conductor using current noise correlations and we experimentally address the effect of finite temperature. By controlling the relative time of injection of two streams of electrons it is possible to probe the fermionic antibunching, performing the electron analog of the optical Hong Ou Mandel (HOM) experiment. The electrons are injected using voltage pulses with either sine-wave or Lorentzian shape. In the latter case, we propose a set of orthogonal wavefunctions, describing periodic trains of multiply charged electron pulses, which give a simple interpretation to the HOM shot noise. The effect of temperature is then discussed and experimentally investigated. We observe a perfect electron anti-bunching for a large range of temperature, showing that, as recently predicted, thermal mixing of the states does not affect anti-bunching properties, a feature qualitatively different from dephasing. For single charge Lorentzian pulses, we provide experimental evidence of the prediction that the HOM shot noise variation versus the emission time delay is remarkably independent of the temperature.

  7. Spherical loudspeaker array for local active control of sound.

    PubMed

    Rafaely, Boaz

    2009-05-01

    Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.

  8. Extended active disturbance rejection controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2012-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  9. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2014-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  10. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  11. Experimentation Toward the Analysis of Gear Noise Sources Controlled by Sliding Friction and Surface Roughness

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake M.

    2004-01-01

    In helicopters and other rotorcraft, the gearbox is a major source of noise and vibration (N&V). The two N&V excitation mechanisms are the relative displacements between mating gears (transmission errors) and the friction associated with sliding between gear teeth. Historically, transmission errors have been minimized via improved manufacturing accuracies and tooth modifications. Yet, at high torque loads, noise levels are still relatively high though transmission errors might be somewhat minimal. This suggests that sliding friction is indeed a dominant noise source for high power density rotorcraft gearboxes. In reality, friction source mechanism is associated with surface roughness, lubrication regime properties, time-varying friction forces/torques and gear-mesh interface dynamics. Currently, the nature of these mechanisms is not well understood, while there is a definite need for analytical tools that incorporate sliding resistance and surface roughness, and predict their effects on the vibro- acoustic behavior of gears. Toward this end, an experiment was conducted to collect sound and vibration data on the NASA Glenn Gear-Noise Rig. Three iterations of the experiment were accomplished: Iteration 1 tested a baseline set of gears to establish a benchmark. Iteration 2 used a gear-set with low surface asperities to reduce the sliding friction excitation. Iteration 3 incorporated low viscosity oil with the baseline set of gears to examine the effect of lubrication. The results from this experiment will contribute to a two year project in collaboration with the Ohio State University to develop the necessary mathematical and computer models for analyzing geared systems and explain key physical phenomena seen in experiments. Given the importance of sliding friction in the gear dynamic and vibro-acoustic behavior of rotorcraft gearboxes, there is considerable potential for research & developmental activities. Better models and understanding will lead to quiet and

  12. Minimum-noise production of translation factor eIF4G maps to a mechanistically determined optimal rate control window for protein synthesis

    PubMed Central

    Meng, Xiang; Firczuk, Helena; Pietroni, Paola; Westbrook, Richard; Dacheux, Estelle; Mendes, Pedro; McCarthy, John E.G.

    2017-01-01

    Gene expression noise influences organism evolution and fitness. The mechanisms determining the relationship between stochasticity and the functional role of translation machinery components are critical to viability. eIF4G is an essential translation factor that exerts strong control over protein synthesis. We observe an asymmetric, approximately bell-shaped, relationship between the average intracellular abundance of eIF4G and rates of cell population growth and global mRNA translation, with peak rates occurring at normal physiological abundance. This relationship fits a computational model in which eIF4G is at the core of a multi-component–complex assembly pathway. This model also correctly predicts a plateau-like response of translation to super-physiological increases in abundance of the other cap-complex factors, eIF4E and eIF4A. Engineered changes in eIF4G abundance amplify noise, demonstrating that minimum stochasticity coincides with physiological abundance of this factor. Noise is not increased when eIF4E is overproduced. Plasmid-mediated synthesis of eIF4G imposes increased global gene expression stochasticity and reduced viability because the intrinsic noise for this factor influences total cellular gene noise. The naturally evolved eIF4G gene expression noise minimum maps within the optimal activity zone dictated by eIF4G's mechanistic role. Rate control and noise are therefore interdependent and have co-evolved to share an optimal physiological abundance point. PMID:27928055

  13. Object discrimination through active electrolocation: Shape recognition and the influence of electrical noise.

    PubMed

    Schumacher, Sarah; Burt de Perera, Theresa; von der Emde, Gerhard

    2016-12-12

    The weakly electric fish Gnathonemus petersii can recognise objects using active electrolocation. Here, we tested two aspects of object recognition; first whether shape recognition might be influenced by movement of the fish, and second whether object discrimination is affected by the presence of electrical noise from conspecifics. (i) Unlike other object features, such as size or volume, no parameter within a single electrical image has been found that encodes object shape. We investigated whether shape recognition might be facilitated by movement-induced modulations (MIM) of the set of electrical images that are created as a fish swims past an object. Fish were trained to discriminate between pairs of objects that either created similar or dissimilar levels of MIM of the electrical images. As predicted, the fish were able to discriminate between objects up to a longer distance if there was a large difference in MIM between the objects than if there was a small difference. This supports an involvement of MIMs in shape recognition but the use of other cues cannot be excluded. (ii) Electrical noise might impair object recognition if the noise signals overlap with the EODs of an electrolocating fish. To avoid jamming, we predicted that fish might employ pulsing strategies to prevent overlaps. To investigate the influence of electrical noise on discrimination performance, two fish were tested either in the presence of a conspecific or of playback signals and the electric signals were recorded during the experiments. The fish were surprisingly immune to jamming by conspecifics: While the discrimination performance of one fish dropped to chance level when more than 22% of its EODs overlapped with the noise signals, the performance of the other fish was not impaired even when all its EODs overlapped. Neither of the fish changed their pulsing behaviour, suggesting that they did not use any kind of jamming avoidance strategy.

  14. Proximal versus distal control of two-joint planar reaching movements in the presence of neuromuscular noise.

    PubMed

    Nguyen, Hung P; Dingwell, Jonathan B

    2012-06-01

    Determining how the human nervous system contends with neuro-motor noise is vital to understanding how humans achieve accurate goal-directed movements. Experimentally, people learning skilled tasks tend to reduce variability in distal joint movements more than in proximal joint movements. This suggests that they might be imposing greater control over distal joints than proximal joints. However, the reasons for this remain unclear, largely because it is not experimentally possible to directly manipulate either the noise or the control at each joint independently. Therefore, this study used a 2 degree-of-freedom torque driven arm model to determine how different combinations of noise and/or control independently applied at each joint affected the reaching accuracy and the total work required to make the movement. Signal-dependent noise was simultaneously and independently added to the shoulder and elbow torques to induce endpoint errors during planar reaching. Feedback control was then applied, independently and jointly, at each joint to reduce endpoint error due to the added neuromuscular noise. Movement direction and the inertia distribution along the arm were varied to quantify how these biomechanical variations affected the system performance. Endpoint error and total net work were computed as dependent measures. When each joint was independently subjected to noise in the absence of control, endpoint errors were more sensitive to distal (elbow) noise than to proximal (shoulder) noise for nearly all combinations of reaching direction and inertia ratio. The effects of distal noise on endpoint errors were more pronounced when inertia was distributed more toward the forearm. In contrast, the total net work decreased as mass was shifted to the upper arm for reaching movements in all directions. When noise was present at both joints and joint control was implemented, controlling the distal joint alone reduced endpoint errors more than controlling the proximal joint

  15. Subtractive, divisive and non-monotonic gain control in feedforward nets linearized by noise and delays

    PubMed Central

    Mejias, Jorge F.; Payeur, Alexandre; Selin, Erik; Maler, Leonard; Longtin, André

    2014-01-01

    The control of input-to-output mappings, or gain control, is one of the main strategies used by neural networks for the processing and gating of information. Using a spiking neural network model, we studied the gain control induced by a form of inhibitory feedforward circuitry—also known as “open-loop feedback”—, which has been experimentally observed in a cerebellum-like structure in weakly electric fish. We found, both analytically and numerically, that this network displays three different regimes of gain control: subtractive, divisive, and non-monotonic. Subtractive gain control was obtained when noise is very low in the network. Also, it was possible to change from divisive to non-monotonic gain control by simply modulating the strength of the feedforward inhibition, which may be achieved via long-term synaptic plasticity. The particular case of divisive gain control has been previously observed in vivo in weakly electric fish. These gain control regimes were robust to the presence of temporal delays in the inhibitory feedforward pathway, which were found to linearize the input-to-output mappings (or f-I curves) via a novel variability-increasing mechanism. Our findings highlight the feedforward-induced gain control analyzed here as a highly versatile mechanism of information gating in the brain. PMID:24616694

  16. Electrical Maxwell demon and Szilard engine utilizing Johnson noise, measurement, logic and control.

    PubMed

    Kish, Laszlo Bela; Granqvist, Claes-Göran

    2012-01-01

    We introduce a purely electrical version of Maxwell's demon which does not involve mechanically moving parts such as trapdoors, etc. It consists of a capacitor, resistors, amplifiers, logic circuitry and electronically controlled switches and uses thermal noise in resistors (Johnson noise) to pump heat. The only types of energy of importance in this demon are electrical energy and heat. We also demonstrate an entirely electrical version of Szilard's engine, i.e., an information-controlled device that can produce work by employing thermal fluctuations. The only moving part is a piston that executes work, and the engine has purely electronic controls and it is free of the major weakness of the original Szilard engine in not requiring removal and repositioning the piston at the end of the cycle. For both devices, the energy dissipation in the memory and other binary informatics components are insignificant compared to the exponentially large energy dissipation in the analog part responsible for creating new information by measurement and decision. This result contradicts the view that the energy dissipation in the memory during erasure is the most essential dissipation process in a demon. Nevertheless the dissipation in the memory and information processing parts is sufficient to secure the Second Law of Thermodynamics.

  17. Electrical Maxwell Demon and Szilard Engine Utilizing Johnson Noise, Measurement, Logic and Control

    PubMed Central

    Kish, Laszlo Bela; Granqvist, Claes-Göran

    2012-01-01

    We introduce a purely electrical version of Maxwell's demon which does not involve mechanically moving parts such as trapdoors, etc. It consists of a capacitor, resistors, amplifiers, logic circuitry and electronically controlled switches and uses thermal noise in resistors (Johnson noise) to pump heat. The only types of energy of importance in this demon are electrical energy and heat. We also demonstrate an entirely electrical version of Szilard's engine, i.e., an information-controlled device that can produce work by employing thermal fluctuations. The only moving part is a piston that executes work, and the engine has purely electronic controls and it is free of the major weakness of the original Szilard engine in not requiring removal and repositioning the piston at the end of the cycle. For both devices, the energy dissipation in the memory and other binary informatics components are insignificant compared to the exponentially large energy dissipation in the analog part responsible for creating new information by measurement and decision. This result contradicts the view that the energy dissipation in the memory during erasure is the most essential dissipation process in a demon. Nevertheless the dissipation in the memory and information processing parts is sufficient to secure the Second Law of Thermodynamics. PMID:23077525

  18. The effects of spontaneous activity, background noise, and the stimulus ensemble on information transfer in neurons.

    PubMed

    Chacron, Maurice J; Longtin, André; Maler, Leonard

    2003-11-01

    Information theory is playing an increasingly important role in the analysis of neural data as it can precisely quantify the reliability of stimulus-response functions. Estimating the mutual information between a neural spike train and a time varying stimulus is, however, not trivial in practice and requires assumptions about the specific computations being performed by the neuron under study. Consequently, estimates of the mutual information depend on these assumptions and their validity must be ascertained in the particular physiological context in which experiments are carried out. Here we compare results obtained using different information measures that make different assumptions about the neural code (i.e. the way information is being encoded and decoded) and the stimulus ensemble (i.e. the set of stimuli that the animal can encounter in nature). Our comparisons are carried out in the context of spontaneously active neurons. However, some of our results are also applicable to neurons that are not spontaneously active. We first show conditions under which a single stimulus provides a good sample of the entire stimulus ensemble. Furthermore, we use a recently introduced information measure that is based on the spontaneous activity of the neuron rather than on the stimulus ensemble. This measure is compared to the Shannon information and it is shown that the two differ only by a constant. This constant is shown to represent the information that the neuron's spontaneous activity transmits about the fact that no stimulus is present in the animal's environment. As a consequence, the mutual information measure based on spontaneous activity is easily applied to stimuli that mimic those seen in nature, as it does not require a priori knowledge of the stimulus ensemble. Finally, we consider the effect of noise in the animal's environment on information transmission about sensory stimuli. Our results show that, as expected, such 'background' noise will increase the

  19. Active control of combustion instabilities

    NASA Astrophysics Data System (ADS)

    Al-Masoud, Nidal A.

    A theoretical analysis of active control of combustion thermo-acoustic instabilities is developed in this dissertation. The theoretical combustion model is based on the dynamics of a two-phase flow in a liquid-fueled propulsion system. The formulation is based on a generalized wave equation with pressure as the dependent variable, and accommodates all influences of combustion, mean flow, unsteady motions and control inputs. The governing partial differential equations are converted to an equivalent set of ordinary differential equations using Galerkin's method by expressing the unsteady pressure and velocity fields as functions of normal mode shapes of the chamber. This procedure yields a representation of the unsteady flow field as a system of coupled nonlinear oscillators that is used as a basis for controllers design. Major research attention is focused on the control of longitudinal oscillations with both linear and nonlinear processes being considered. Starting with a linear model using point actuators, the optimal locations of actuators and sensors are developed. The approach relies on the quantitative measures of the degree of controllability and component cost. These criterion are arrived at by considering the energies of the system's inputs and outputs. The optimality criteria for sensor and actuator locations provide a balance between the importance of the lower order (controlled) and the higher (residual) order modes. To address the issue of uncertainties in system's parameter, the minimax principles based controller is used. The minimax corresponds to finding the best controller for the worst parameter deviation. In other words, choosing controller parameters to minimize, and parameter deviation to maximize some quadratic performance metric. Using the minimax-based controller, a remarkable improvement in the control system's ability to handle parameter uncertainties is achieved when compared to the robustness of the regular control schemes such as LQR

  20. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.