Science.gov

Sample records for active normal faulting

  1. Normal faults, normal friction?

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Sibson, Richard H.

    2001-10-01

    Debate continues as to whether normal faults may be seismically active at very low dips (δ < 30°) in the upper continental crust. An updated compilation of dip estimates (n = 25) has been prepared from focal mechanisms of shallow, intracontinental, normal-slip earthquakes (M > 5.5; slip vector raking 90° ± 30° in the fault plane) where the rupture plane is unambiguously discriminated. The dip distribution for these moderate-to-large normal fault ruptures extends from 65° > δ > 30°, corresponding to a range, 25° < θr < 60°, for the reactivation angle between the fault and inferred vertical σ1. In a comparable data set previously obtained for reverse fault ruptures (n = 33), the active dip distribution is 10° < δ = θr < 60°. For vertical and horizontal σ1 trajectories within extensional and compressional tectonic regimes, respectively, dip-slip reactivation is thus restricted to faults oriented at θr ≤ 60° to inferred σ1. Apparent lockup at θr ≈ 60° in each dip distribution and a dominant 30° ± 5° peak in the reverse fault dip distribution, are both consistent with a friction coefficient μs ≈ 0.6, toward the bottom of Byerlee's experimental range, though localized fluid overpressuring may be needed for reactivation of less favorably oriented faults.

  2. Anatomy of a microearthquake sequence on an active normal fault.

    PubMed

    Stabile, T A; Satriano, C; Orefice, A; Festa, G; Zollo, A

    2012-01-01

    The analysis of similar earthquakes, such as events in a seismic sequence, is an effective tool with which to monitor and study source processes and to understand the mechanical and dynamic states of active fault systems. We are observing seismicity that is primarily concentrated in very limited regions along the 1980 Irpinia earthquake fault zone in Southern Italy, which is a complex system characterised by extensional stress regime. These zones of weakness produce repeated earthquakes and swarm-like microearthquake sequences, which are concentrated in a few specific zones of the fault system. In this study, we focused on a sequence that occurred along the main fault segment of the 1980 Irpinia earthquake to understand its characteristics and its relation to the loading-unloading mechanisms of the fault system. PMID:22606366

  3. Anatomy of a microearthquake sequence on an active normal fault

    PubMed Central

    Stabile, T. A.; Satriano, C.; Orefice, A.; Festa, G.; Zollo, A.

    2012-01-01

    The analysis of similar earthquakes, such as events in a seismic sequence, is an effective tool with which to monitor and study source processes and to understand the mechanical and dynamic states of active fault systems. We are observing seismicity that is primarily concentrated in very limited regions along the 1980 Irpinia earthquake fault zone in Southern Italy, which is a complex system characterised by extensional stress regime. These zones of weakness produce repeated earthquakes and swarm-like microearthquake sequences, which are concentrated in a few specific zones of the fault system. In this study, we focused on a sequence that occurred along the main fault segment of the 1980 Irpinia earthquake to understand its characteristics and its relation to the loading-unloading mechanisms of the fault system. PMID:22606366

  4. Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, central China

    NASA Astrophysics Data System (ADS)

    Rao, Gang; Lin, Aiming; Yan, Bing; Jia, Dong; Wu, Xiaojun

    2014-12-01

    This study examines the tectonic activity and structural features of active normal faults in the Weihe Graben, central China. The Weihe Graben is an area with a high level of historic seismicity, and it is one of the intracontinental systems that developed since Tertiary in the extensional environment around the Ordos Block. Analysis of high-resolution remote-sensing imagery data, field observations, and radiocarbon dating results reveal the following: i) active normal faults are mainly developed within a zone < 500 m wide along the southern border of the eastern part of the Weihe Graben; ii) the active faults that have been identified are characterized by stepwise fault scarps dipping into the graben at angles of 40°-71°; iii) there are numerous discontinuous individual fault traces, ranging in length from a few tens of meters to 450 m (generally < 200 m); iv) fault zone structures, topographic features, and fault striations on the main fault planes indicate almost pure normal-slip; and v) late Pleistocene-Holocene terrace risers, loess, and alluvial deposits have been vertically offset by up to ~ 80 m, with a non-uniform dip-slip rate (throw-rates) ranging from ~ 2.1 to 5.7 mm/yr, mostly 2-3 mm/yr. Our results reveal that active normal faults have been developing in the Weihe Graben under an ongoing extensional environment, probably associated with the pre-existing graben and spreading of the continental crust, and this is in contrast with the Ordos Block and neighboring orogenic regions. These results provide new insights into the nature of extensional tectonic deformation in intracontinental graben systems.

  5. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  6. Relationship between normal faulting and volcanic activity in the Taranaki backarc basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Giba, M.; Walsh, J. J.; Nicol, A.

    2009-04-01

    Volcanoes and normal faults are, by definition, both present within volcanic rifts. Despite this association the causal relationships between volcanism and normal faulting can be unclear and are poorly understood. One of the principal challenges for investigations of the links between faulting and volcanic activity, is the definition of the detailed temporal relationships between these two processes. The northern Taranaki Basin, which benefits from excellent seismic (2D and 3D) and drillhole coverage, provides the basis for a detailed study of volcanism and faulting over the last ca 15 Myr. Most of the basin is characterised by sedimentation rates which exceed fault displacement rates, a condition which permits displacement backstripping of these syn-sedimentary growth faults. The timing of a suite of mostly andesitic submarine volcanoes has been constrained by interdigitation of the volcanic cones with basinal sedimentary rocks. Eleven dated horizons within the ca 15 Myr and younger stratigraphy together with mapping provide a means of examining the temporal and spatial links between fault and volcanic activity within the basin. The northern Taranaki Basin has a multiphase deformation history, with extension during the Late Cretaceous to Mid Eocene (ca 80-45 Ma), followed by contraction in the Late Eocene to Early Miocene (ca 40-18 Ma) and then by Mid Miocene to recent back arc extension (ca 15-0 Ma). The youngest phase of extensional faulting initiated in the north and west of the basin and migrated to the southeast where present activity is focused. Volcanic activity also commenced in the north during the Mid Miocene and migrated towards the south and east. Volcanism and backarc extension are driven by subduction of the Pacific plate along the Hikurangi margin. The southward and eastward migration of both faulting and volcanic activity is attributed to the steepening and rotation of the subducting slab beneath the Taranaki Basin. Despite the common origin of

  7. Intracontinental active normal faulting and paleoseismicity in the eastern Weihe Graben, central China

    NASA Astrophysics Data System (ADS)

    Rao, G.; Lin, A.; Yan, B.; Jia, D.; Wu, X.

    2012-12-01

    During the past decades, tectonic deformation and seismogenic behavior of active strike-slip and thrust faults have been well investigated, due to the high-frequent occurrence of large-magnitude strike-slip and thrust-type earthquakes. In contrast, normal-faulting earthquakes of M≥7 scarcely occurred, and the rupture process and deformation features of seismogenic normal-faults are still not clear. The intracontinental graben systems around the stable Ordos Block, central China, experienced extension over the past ~50 Ma, which are ideal places to study the extensional tectonic deformation. As well, these regions with high historical seismicity including 3 large earthquakes of M≥8, provide a good chance to learn the rupture mechanism of large intracontinental normal-faulting earthquakes. Based on the 3D analysis of high-resolution remote-sensing images (0.5-m WorldView and 1-m IKONOS images) and field investigations, active normal faults are mainly distributed along the margin zones of the uplifted mountainous blocks (e.g., Weinan Loess Tableland and Huashan Mountains), characterized by the distributed fault scarps. Striations and scratch steps observed on the main fault planes, reveal a normal slip-sense of active faults in study area. In combination with the 14C age dating, the vertical offset amount of ~30 m during the past 14,050-16,270 years was observed, yielding an average vertical displacement-rate of ~1.8-2.1 mm/a, which is consistent with previous estimation in the Weihe Graben. According to the field observations of fault outcrops and the exposed trench walls, the offset strata, scarp-derived colluvial deposits and in-filled fissures generally can be observed, indicating the occurrence of paleoearthquakes. Together with the 14C ages, the late Pleistocene-Holocene activity of normal faults was demonstrated. Especially, it is concluded that at least 3 strong earthquakes associated with surface-faulting in the past 2600 years, including the most recent

  8. Active normal faulting along the Mt. Morrone south-western slopes (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Gori, Stefano; Giaccio, Biagio; Galadini, Fabrizio; Falcucci, Emanuela; Messina, Paolo; Sposato, Andrea; Dramis, Francesco

    2011-01-01

    In the present work we analyse one of the active normal faults affecting the central Apennines, i.e. the Mt. Morrone normal fault system. This tectonic structure, which comprises two parallel, NW-SE trending fault segments, is considered as potentially responsible for earthquakes of magnitude ≥ 6.5 and its last activation probably occurred during the second century AD. Structural observations performed along the fault planes have allowed to define the mainly normal kinematics of the tectonic structure, fitting an approximately N 20° trending extensional deformation. Geological and geomorphological investigations performed along the whole Mt. Morrone south-western slopes permitted us to identify the displacement of alluvial fans, attributed to Middle and Late Pleistocene by means of tephro-stratigraphic analyses and geomorphological correlations with dated lacustrine sequences, along the western fault branch. This allowed to evaluate in 0.4 ± 0.07 mm/year the slip rate of this segment. On the other hand, the lack of synchronous landforms and/or deposits that can be correlated across the eastern fault segment prevented the definition of the slip rate related to this fault branch. Nevertheless, basing on a critical review of the available literature dealing with normal fault systems evolution, we hypothesised a total slip rate of the fault system in the range of 0.4 ± 0.07 to 0.8 ± 0.09 mm/year. Moreover, basing on the length at surface of the Mt. Morrone fault system (i.e. 22-23 km) we estimated the maximum expected magnitude of an earthquake that might originate along this tectonic structure in the order of 6.6-6.7.

  9. Fluid involvement in normal faulting

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    2000-04-01

    Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if

  10. Unravelling the competing influence of regional uplift and active normal faulting in SW Calabria, Italy

    NASA Astrophysics Data System (ADS)

    Whittaker, Alex; Roda Boluda, Duna; Boulton, Sarah; Erhardt, Sebastian

    2015-04-01

    The Neogene geological and geomorphological evolution of Southern Italy is complex and is fundamentally controlled by the subduction of the Ionian slab along the Apennine belt from the Calabrian Arc, and back-arc extension driven by trench rollback. In the area of Calabria and the Straits of Messina the presence of (i) uplifted, deformed and dissected basin sediments and marine terraces, ranging in age from the early to mid-Pleistocene and (ii) seismicity associated with NE-SW normal faults that have well-developed footwall topography and triangular facets have led workers to suggest that both significant regional uplift and extensional faulting in SW Calabria have played a role in generating relief in the area since the mid Pleistocene. However, there is considerable uncertainty in the rates of total surface uplift relative to sea level in both time and space, and the relative partitioning of this uplift between a mantle-driven regional signal, potentially related to a slab tear, and the active extensional structures. Additionally, despite the widespread recognition of normal faults in Calabria to which historical earthquakes are often linked, there is much less agreement on (i) which ones are active and for what length of time; (ii) how the faults interact; and (iii) what their throw and throw rates are. In particular, the ability to resolve both regional uplift and normal faulting in SW Calabria is essential in order to fully understand the tectonic history of the region, while an understanding of location and slip rate of active faults, in an area where the population numbers more than two million people, is essential to assess regional seismic hazards. Here we address these important questions using a combination of tectonic geomorphology and structural geology. We critically examine existing constraints on the rates and distribution of active normal faulting and regional uplift in the area, and we derive new constraints on the along-strike variation in throw

  11. Numerical simulation of coastal flooding after potential reactivation of an active normal fault in northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Yu-Chang; Kuo, Chih-Yu; Chang, Kuo-Jen; Chen, Rou-Fei; Hsieh, Yu-Chung

    2016-04-01

    Rapid coastal flooding from seawards may be resulted from storm surge, tsunamis, and sudden land subsidence due to fault activities. Many observations and numerical modeling of flooding have been made for cases resulted from storm surge and tsunami events; however, coastal flooding caused by a potential normal faulting event nearby coastal areas is rarely reported. In addition to the earthquake hazards from fault rupturing and ground shaking, the accompanied hazards of earthquake-induced flooding is also important to be investigated. The Jinshan area in northern Taiwan was reported to have been flooded by a tsunami event in the year of 1867 possibly resulted from the reactivation of the Shanchiao normal fault offshore. Historical records have shown that the Shanchiao Fault that extends from Shulin along the western edge of the Taipei Basin to the town of Jinshan may have also ruptured in the year of 1694. The rupturing event has created a depression on the western side of the Taipei Basin that was later filled by sea water called the Taipei Lake. The geological conditions in northern Taiwan provide an opportunity for numerically simulating the dynamic processes of sea water flooding nearby the coastal area immediately after an earthquake-induced normal faulting event. In this study, we focused on the potential active normal faulting that may occur and result in an expected catastrophic flooding in lowland area of Jinshan in northern Taiwan. We applied the continuum shallow water equation to evaluate the unknown inundation processes including location, extent, velocity and water depths after the flooding initiated and the final state of the flooding event. The modeling results were well compared with borehole observations of the extent of previous flooding events possibly due to tsunami events. In addition, the modeling results may provide a future basis for safety evaluation of the two nuclear power plants nearby the region.

  12. Normal fault earthquakes or graviquakes

    PubMed Central

    Doglioni, C.; Carminati, E.; Petricca, P.; Riguzzi, F.

    2015-01-01

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  13. Normal fault earthquakes or graviquakes.

    PubMed

    Doglioni, C; Carminati, E; Petricca, P; Riguzzi, F

    2015-01-01

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  14. How do normal faults grow?

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher; Bell, Rebecca; Rotevatn, Atle; Tvedt, Anette

    2016-04-01

    Normal faulting accommodates stretching of the Earth's crust, and it is arguably the most fundamental tectonic process leading to continent rupture and oceanic crust emplacement. Furthermore, the incremental and finite geometries associated with normal faulting dictate landscape evolution, sediment dispersal and hydrocarbon systems development in rifts. Displacement-length scaling relationships compiled from global datasets suggest normal faults grow via a sympathetic increase in these two parameters (the 'isolated fault model'). This model has dominated the structural geology literature for >20 years and underpins the structural and tectono-stratigraphic models developed for active rifts. However, relatively recent analysis of high-quality 3D seismic reflection data suggests faults may grow by rapid establishment of their near-final length prior to significant displacement accumulation (the 'coherent fault model'). The isolated and coherent fault models make very different predictions regarding the tectono-stratigraphic evolution of rift basin, thus assessing their applicability is important. To-date, however, very few studies have explicitly set out to critically test the coherent fault model thus, it may be argued, it has yet to be widely accepted in the structural geology community. Displacement backstripping is a simple graphical technique typically used to determine how faults lengthen and accumulate displacement; this technique should therefore allow us to test the competing fault models. However, in this talk we use several subsurface case studies to show that the most commonly used backstripping methods (the 'original' and 'modified' methods) are, however, of limited value, because application of one over the other requires an a priori assumption of the model most applicable to any given fault; we argue this is illogical given that the style of growth is exactly what the analysis is attempting to determine. We then revisit our case studies and demonstrate

  15. High resolution seismic imaging of an active normal fault in the Agri Valley, Southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Improta, L.; Bruno, P.; di Fiore, V.; Mariani, S.

    2004-12-01

    The Agri Valley is an intermontane basin located in the Southern Apennine seismic belt (Italy) whose formation in tied to large NW-trending trastensional and extensional faults active since Early Pleistocene. Recent faulting activity in the area is documented by faulted paleosoils and suggested by a M7 earthquake that struck the basin in 1857. On the contrary, present-day background seismicity in the area is extremely low. Despite intense geomorphic investigations, the identification of the source responsible for this historical event and of further large seismogenic faults in the area is still a matter of debate. A new NW trending normal faulting system has been recently recognized based on subtle geomorphic expressions on the ridge bounding the basin westward. Recent faulting activity along this structure is locally documented by a trench. Aimed at yielding new information about the shallow structure of the fault, we conducted a high resolution seismic experiment in a small lacustrine basin, located 4 km south of the trench, in which the presence of the fault is inferred by a linear surface warping but trench excavation is impractical. Both multi-fold wide-angle data and multichannel near vertical reflection data have been collected along a 220-m-long profile in order to obtain an accurate model of the basin combining seismic velocity and reflectivity images. About 3600 first arrival traveltimes picked on 36 wide-angle record sections have been inverted by a non-linear tomographic technique that is specially designed to image complex structures. The tomographic inversion provides a high-resolution velocity model of the basin down to 60 m depth. The model is strongly heterogeneous and displays sharp lateral velocity variations. Seismic reflection processing has been applied to both data sets. Data have been edited for trace quality and first (refracted and direct) arrivals have been muted. A following FK dip filtering on the shot gathers reduced the energy

  16. Distribution of deformation on an active normal fault network, NW Corinth Rift

    NASA Astrophysics Data System (ADS)

    Ford, Mary; Meyer, Nicolas; Boiselet, Aurélien; Lambotte, Sophie; Scotti, Oona; Lyon-Caen, Hélène; Briole, Pierre; Caumon, Guillaume; Bernard, Pascal

    2013-04-01

    Over the last 20-25 years, geodetic measurements across the Gulf of Corinth have recorded high extension rates varying from 1.1 cm/a in the east to a maximum of 1.6 cm/a in the west. Geodetic studies also show that current deformation is confined between two relatively rigid blocks defined as Central Greece (to the north) and the Peloponnesus to the south. Active north dipping faults (<1 Ma) define the south coast of the subsiding Gulf, while high seismicity (major earthquakes and micro-seismicity) is concentrated at depth below and to the north of the westernmost Gulf. How is this intense deformation distributed in the upper crust? Our objectives here are (1) to propose two models for the distribution of deformation in the upper crust in the westernmost rift since 1 Ma, and (2) to place the tectonic behaviour of the western Gulf in the context of longer term rift evolution. Over 20 major active normal faults have been identified in the CRL area based specific characteristics (capable of generating earthquakes M> 5.5, active in the last 1 M yrs, slip rate >0.5 mm/a). Because of the uncertainty related to fault geometry at depth two models for 3D fault network geometry in the western rift down to 10 km were constructed using all available geophysical and geological data. The first model assumes planar fault geometries while the second uses listric geometries for major faults. A model for the distribution of geodetically-defined extension on faults is constructed along five NNE-SSW cross sections using a variety of data and timescales. We assume that the role of smaller faults in accommodating deformation is negligible so that extension is fully accommodated on the identified major faults. Uncertainties and implications are discussed. These models provide estimates of slip rate for each fault that can be used in seismic hazard models. A compilation of onshore and offshore data shows that the western Gulf is the youngest part of the Corinth rift having initiated

  17. Analogue experiments applied to active tectonics studies: the case of seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Seno, S.; Bonini, L.; Toscani, G.

    2010-12-01

    Lithosphere can be divided into three main zones as a function of increasing depth: an aseismic updip zone, the seismogenic zone and a deep aseismic zone. Identifying the location of these zones is a key goal to understand how a specific seismogenic fault works. The evaluation of the seismogenic structures potential in tectonically active regions needs an accurate knowledge of the geometries and kinematic of the faults. In many cases, large seismogenic faults are not clearly and unambiguously expressed at the surface, whereas in other regions with higher deformation rates a clear geological surface evidence is often associated with large earthquakes. Therefore, the characterization of the seismogenic faults and of their mutual interactions it is not always straightforward; in this case, analogue modeling can provide an independent and useful tool for the interpretation of the surface geological data. Analogue modeling applied to earthquake geology is a quite innovative technique: when combined with other datasets (e.g.: seismic tomography, seismic profiles, well-logging data, field geology, morphotectonic and palaeo-seismological data) it can provide significant insights on the long term (i.e. Quaternary) evolution of a seismogenic fault. We carried out a set of analogue models at 1 : 100,000 scale that reproduce in 2D a normal fault with a relatively low dip angle (45°-50°). In our experimental approach different materials have been used to simulate the three main zones in which the lithosphere is separated. Dry sand and wet clay simulate different mechanical behaviour of rocks during seismic cycle. The dry sand, with its negligible cohesion and ductility, represents brittle rocks that deformed by localized faulting during earthquakes. Wet clay, with its slightly greater cohesion and ductility, mimics aseismic updip zone. Glass microbeads simulate aseismic plastic zone. Preliminary results are highlighting a mutual control among the three analogue materials

  18. The three-dimensional pattern of crustal deformation associated with active normal fault systems observed using continuous GPS geodesy

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Hreinsdottir, S.

    2009-12-01

    Geological examples of shallow dipping normal faults with large displacements are exposed at numerous locations throughout the world and it is widely recognized that extensional deformation at brittle crustal levels is most efficiently accomplished by slip across such structures. It has previously been shown that lower dip angles reduce the regional stresses required to drive large horizontal displacements. Nevertheless, the traditional theory of fault mechanics—based on Anderson’s classification of stress regimes, the Coulomb failure criterion, and Byerlee’s friction law—precludes such faults from slipping at low angle. Observational support for this traditional theory includes the absence of large unequivocally low-angle normal fault earthquakes in the global catalog; all well-determined normal fault earthquakes appear to have occurred on moderate to steeply dipping planes. However, precise measurements of 3D crustal motions based on continuous GPS in central Italy and Utah reveal deformation patterns across active normal fault systems that are inconsistent with active slip across steeply dipping planes. Instead, the combination of observed horizontal and vertical surface motions are consistent with slip across low angle surfaces independently imaged in the subsurface by seismic reflection and other geophysical data. For the Alto Tiberina fault in central Italy, active aseismic creep occurs at shallow crustal levels, most likely within the brittle-frictional regime at which Andersonian-Byerlee fault mechanics should be applicable. The actively creeping portion of the fault inferred using GPS geodesy correlates well with the observed pattern of micro-seismicity, which concentrates along the inferred subsurface fault plane. GPS measurements across the greater Wasatch fault zone in the vicinity of Salt Lake City, Utah, reveal crustal motions consistent with aseismic displacement across a shallow dipping fault or sub-horizontal shear zone at mid

  19. Active uplift and normal faulting in the eastern flank of Taiwan Central Range

    NASA Astrophysics Data System (ADS)

    Chang, Chung-Pai; Hsu, Yi-Chun; Kang, Chu-Chun

    2015-04-01

    As the backbone range of Taiwan orogen, the highest peaks of the Central Range have been uplifted to nearly 4 km above sea level. A rapid exhumation rate of about 6 mm/yr over the past several million years has been determined by many previous thermochronological studies in the eastern flank of the Central Range. However, the uplift mechanism of the Central Range is still in debate. Especially, the most important structural component, the Central Range Fault in the eastern boundary of the Central Range, has never been clearly observed in the previous studies. An east-vergent "backthrusting" or "backfolding" was firstly proposed by Ernst in 1977. However, normal faulting and oblique faulting with a normal component were also proposed by the following field workers (e.g., Crespi et al., 1996; Fisher, 1999). In this study, we use the geomorphic, stratigraphic, and structural analyses to figure out the near surface geometry of the Central Range Fault, and as well use the recent earthquake data to understand the deeper structures beneath the Central Range. By combining these results, we propose a doubly vergent model with a roll-back Central Range fault to explain the local structure and the rapid uplift of the eastern flank of the Central Range. The normal faults along the eastern flank of Central Range can also be separated into three segments form the north to the south. This late-stage structure suggests that the rotation-accommodating structure is extensional in nature.

  20. The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults

    NASA Astrophysics Data System (ADS)

    Kapetanidis, V.; Deschamps, A.; Papadimitriou, P.; Matrullo, E.; Karakonstantis, A.; Bozionelos, G.; Kaviris, G.; Serpetsidaki, A.; Lyon-Caen, H.; Voulgaris, N.; Bernard, P.; Sokos, E.; Makropoulos, K.

    2015-09-01

    The Corinth Rift in Central Greece has been studied extensively during the past decades, as it is one of the most seismically active regions in Europe. It is characterized by normal faulting and extension rates between 6 and 15 mm yr-1 in an approximately N10E° direction. On 2013 May 21, an earthquake swarm was initiated with a series of small events 4 km southeast of Aigion city. In the next days, the seismic activity became more intense, with outbursts of several stronger events of magnitude between 3.3 and 3.7. The seismicity migrated towards the east during June, followed by a sudden activation of the western part of the swarm on July 15th. More than 1500 events have been detected and manually analysed during the period between 2013 May 21 and August 31, using over 15 local stations in epicentral distances up to 30 km and a local velocity model determined by an error minimization method. Waveform similarity-based analysis was performed, revealing several distinct multiplets within the earthquake swarm. High-resolution relocation was applied using the double-difference algorithm HypoDD, incorporating both catalogue and cross-correlation differential traveltime data, which managed to separate the initial seismic cloud into several smaller, densely concentrated spatial clusters of strongly correlated events. Focal mechanism solutions for over 170 events were determined using P-wave first motion polarities, while regional waveform modelling was applied for the calculation of moment tensors for the 18 largest events of the sequence. Selected events belonging to common spatial groups were considered for the calculation of composite mechanisms to characterize different parts of the swarm. The solutions are mainly in agreement with the regional NNE-SSW extension, representing typical normal faulting on 30-50° north-dipping planes, while a few exhibit slip in an NNE-SSW direction, on a roughly subhorizontal plane. Moment magnitudes were calculated by spectral analysis

  1. Active normal fault network of the Apulian Ridge (Eastern Mediterranean Sea) imaged by multibeam bathymetry and seismic data

    NASA Astrophysics Data System (ADS)

    Pellegrini, Claudio; Marchese, Fabio; Savini, Alessandra; Bistacchi, Andrea

    2016-04-01

    The Apulian ridge (North-eastern Ionian margin - Mediterranean Sea) is formed by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a NNW-SSE penetrative normal fault system and is part of the present foreland system of both the Apennine to the west and the Hellenic arc to the east. The geometry, age, architecture and kinematics of the fault network were investigated integrating data of heterogeneous sources, provided by previous studies: regional scale 2D seismics and three wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, very high resolution seismic (VHRS - Sparker and Chirp-sonar data), multi-beam echosounder bathymetry and results from sedimentological and geo-chronological analysis of sediment samples collected on the seabed. Multibeam bathymetric data allowed in particular assessing the 3D continuity of structures imaged in 2D seismics, thanks to the occurrence of continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides), revealing the vertical extent and finite displacement associated to fault scarps. A penetrative network of relatively small faults, always showing a high dip angle, composes the NNW-SSE normal fault system, resulting in frequent relay zones, which are particularly well imaged by seafloor geomorphology. In addition, numerous fault scarps appear to be roughly coeval with quaternary submarine mass-wasting deposits colonised by Cold-Water Corals (CWC). Coral colonies, yielding ages between 11 and 14 kA, develop immediately on top of late Pleistocene mass-wasting deposits. Mutual cross-cutting relationships have been recognized between fault scarps and landslides, indicating that, at least in places, these features may be coeval. We suppose that fault activity lasted at least as far as the Holocene-Pleistocene boundary and that the NNW-SSW normal fault network in the Apulian Plateau can be

  2. Normal faulting along the western side of the Matese Mountains: Implications for active tectonics in the Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Dichiarante, Anna Maria; Auciello, Eugenio; Saroli, Michele; Stoppa, Francesco

    2016-01-01

    We provide new field data from geologic mapping and bedrock structural geology along the western side of the Matese Mts in central Italy, a region of high seismicity, strain rates among the highest of the entire Apennines (4-5 mm/yr GPS-determined extension), and poorly constrained active faults. The existing knowledge on the Aquae Iuliae normal fault (AIF) was implemented with geometric and kinematic data that better constrain its total length (16.5 km), the minimum long-term throw rate (0.3-0.4 mm/yr, post-late glacial maximum, LGM), and the segmentation. For the first time, we provide evidence of post-350 ka and possibly late Quaternary activity of the Ailano - Piedimonte Matese normal fault (APMF). The APMF is 18 km long. It is composed of a main 11 km-long segment striking NW-SE and progressively bending to the E-W in its southern part, and a 7 km-long segment striking E-W to ENE-WSW with very poor evidence of recent activity. The available data suggest a possible post-LGM throw rate of the main segment of ≳0.15 mm/yr. There is no evidence of active linkage in the step-over zone between the AIF and APMF (Prata Sannita step-over). An original tectonic model is proposed by comparing structural and geodetic data. The AIF and APMF belong to two major, nearly parallel fault systems. One system runs at the core of the Matese Mts and is formed by the AIF and the faults of the Gallo-Letino-Matese Lake system. The other system runs along the western side of the Matese Mts and is formed by the APMF, linked to the SE with the Piedimonte Matese - Gioia Sannitica fault. The finite extension of the APMF might be transferred to the NW towards the San Pietro Infine fault. The nearly 2-3 mm/yr GPS-determined extension rate is probably partitioned between the two systems, with a ratio that is difficult to establish due to poor GPS coverage. The proposed model, though incomplete (several faults/transfer zones need further investigations), aids in the seismotectonic

  3. Quantifying the transient response of bedrock channels to Active Normal Faulting: New Field Observations

    NASA Astrophysics Data System (ADS)

    Whittaker, A. C.; Cowie, P. A.; Tucker, G. E.; Attal, M.; Roberts, G.

    2005-12-01

    Understanding the morphological response of the fluvial system to transient tectonic forcing is one of the major challenges facing quantitative geomorphology. In theory, insight gained from studying channel adjustment to changing tectonic rates should provide clear diagnostic tests of the many competing `erosion laws' which aim to quantify stream incision. However, fluvial algorithms in current landscape models tend to be parameterised in terms of hydraulic scaling relationships, which only describe channel width and depth as power-law functions of river discharge or upstream drainage area. Unfortunately, these scaling relationships, which have been derived from channels in tectonically quiescent areas, are not appropriate for bedrock rivers in active settings. This problem is serious for understanding non-equilibrium systems because hydraulic adjustments are an important aspect of the morphodynamic response to tectonic and climatic forcing. Recent theoretical attempts to resolve this issue still rely fundamentally on assumptions of steady-state channel form. To devise an alternative approach we need to collect geometrical data for channels incising in areas where the boundary conditions are well-constrained independently. We address this challenge by providing new and detailed field measurements of valley and bankfull channel width, depth, slope and grain-size data for an out-of-equilibrium channel with a drainage area of 65km2 crossing an active extensional fault near Fiamignano, Italy, where there are excellent constraints on current rates of fault movement, and good evidence for an increase in throw-rate approximately 700 Kyr ago. We show that in this situation channel width becomes strongly decoupled from drainage area immediately upstream of the fault and that channel aspect ratio and median grain-size are correlated with channel slope. The ratio of total stream power to coarse-fraction grain size peaks in precisely the areas where channel width

  4. Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.

    2015-05-01

    We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.

  5. Normal faults geometry and morphometry on Mars

    NASA Astrophysics Data System (ADS)

    Vaz, D. A.; Spagnuolo, M. G.; Silvestro, S.

    2014-04-01

    In this report, we show how normal faults scarps geometry and degradation history can be accessed using high resolution imagery and topography. We show how the initial geometry of the faults can be inferred from faulted craters and we demonstrate how a comparative morphometric analysis of faults scarps can be used to study erosion rates through time on Mars.

  6. The impact of regional erosion-deposition patterns on the distribution of active normal faulting in the central Italian Apennines

    NASA Astrophysics Data System (ADS)

    Geurts, Anneleen H.; Cowie, Patience A.; Huismans, Ritske; Gawthorpe, Rob

    2015-04-01

    To investigate the interaction between surface processes and faulting in active continental rifts, this study attempts to constrain their individual contributions to landscape evolution in the central Italian Apennines and to quantify the strength of interaction. The availability of independent records of deformation, surface uplift and erosion-deposition make this area especially suitable to investigate interaction and feedbacks between active tectonic deformation and surface processes. General agreement exists that the area emerged above sea level during the late Pliocene/early Pleistocene and that a combination of regional up-doming and extensional deformation has generated its high topography (elevations up to 2900 m above sea level) and a well-developed array of active normal faults. The presence of lacustrine deposits in hanging wall basins indicates that rift-internal drainage networks have been disconnected from externally draining river networks (i.e. transport of sediment out of the mountain belt) for considerable time. These observations imply that on the long-term, erosional removal of mass from the system has preferentially taken place on the eastern and western flanks of the mountain range whereas, in interior areas, locally sourced sediment has mainly become trapped in the internally drained hanging wall basins. We investigate the effect that long-term erosional unloading of the mountain flanks could have had on topographic development in the interior part of the central Apennines and, in turn, how this may have been associated with variations in the distribution of active faulting and fault slip rates over the last 1-2 million years. We use observational data that come from basin sediments, palaeoshorelines, coastal notches, levelling data, modern-day topography (DEM) and flat erosional surfaces from interior parts of the rift to reconstruct 'palaeosurfaces'. Thus we estimate the total volume of sediment that has been removed from the mountain range

  7. Nucleation, linkage and active propagation of a segmented Quaternary normal-dextral fault: the Loma del Viento fault (Campo de Dalías, Eastern Betic Cordillera, SE Spain)

    NASA Astrophysics Data System (ADS)

    Pedrera, Antonio; Marín-Lechado, Carlos; Stich, Daniel; Ruiz-Constán, Ana; Galindo-Zaldívar, Jesús; Rey-Moral, Carmen; de Lis Mancilla, Flor

    2012-02-01

    Active faults from the Campo de Dalías (SE Betic Cordillera) allow us to constrain the deformation styles involved in the development of segmented oblique-slip faults. This sector constitutes the widest outcrop of Plio-Quaternary sediments in the northern boundary of the Alboran Sea. It has emerged since the Late Pliocene, and therefore provides recent deformation markers that are not disturbed by erosive processes. The faults started to grow during the Pleistocene, reactivating previous hybrid joints, with a normal-dextral slip. We present a detailed map of the largest fault in the area, the Loma del Viento fault, comprising six onshore segments. Based on field work and aerial photography, the distributions of the contiguous joints have been mapped, and the joints reactivated as faults are identified. Some of these fault segments are hard-linked, and fault slip enhances toward the linkage sectors between them with associated sedimentary depocenters. An electrical tomography profile reveals the wedge geometry of a unit of Pleistocene conglomerates and red silts that were coevally deposited during the fault movement. Long-term slip rate in the central part of the fault is estimated at 0.07 ± 0.03 mm/y. In addition, a seismic crisis nucleated close to the Loma del Viento fault during November 2010 was recorded. Moment tensor analysis of the two mainshocks (Mw 3.5 and 4.2) provides a focal solution indicating a N120°E striking right-lateral strike-slip fault. The corrugated morphology of the Loma del Viento fault may have influenced its seismic behavior. Some of the fault segments are oblique to the general motion of the fault. These oblique segments would provide higher resistance against the general fault motion and could lock the fault, leading to accumulate elastic energy.

  8. Active tectonics in southern Xinjiang, China: Analysis of terrace riser and normal fault scarp degradation along the Hotan-Qira fault system

    NASA Technical Reports Server (NTRS)

    Avouac, Jean-Philippe; Peltzer, Gilles

    1993-01-01

    The northern piedmont of the western Kunlun mountains (Xinjiang, China) is marked at its easternmost extremity, south of the Hotan-Qira oases, by a set of normal faults trending N50E for nearly 70 km. Conspicuous on Landsat and SPOT images, these faults follow the southeastern border of a deep flexural basin and may be related to the subsidence of the Tarim platform loaded by the western Kunlun northward overthrust. The Hotan-Qira normal fault system vertically offsets the piedmont slope by 70 m. Highest fault scarps reach 20 m and often display evidence for recent reactivations about 2 m high. Successive stream entrenchments in uplifted footwallls have formed inset terraces. We have leveled topographic profiles across fault scarps and transverse abandoned terrace risers. The state of degradation of each terrace edge has been characterized by a degradation coefficient tau, derived by comparison with analytical erosion models. Edges of highest abandoned terraces yield a degradation coefficient of 33 +/- 4 sq.m. Profiles of cumulative fault scarps have been analyzed in a similar way using synthetic profiles generated with a simple incremental fault scarp model.

  9. Active tectonics in southern Xinjiang, China: Analysis of terrace riser and normal fault scarp degradation along the Hotan-Qira fault system

    SciTech Connect

    Avouac, J.P.; Peltzer, G. |

    1993-12-01

    The northern piedmont of the western Kunlun mountains (Xinjiang, China) is marked at its easternmost extremity, south of the Hotan-Qira oases, by a set of normal faults trending N50E for nearly 70 km. Conspicuous on Landsat and SPOT images, these faults follow the southeastern border of a deep flexural basin and may be related to the subsidence of the Tarim platform loaded by the western Kunlun northward overthrust. The Hotan-Qira normal fault system vertically offsets the piedmont slope by 70 m. Highest fault scarps reach 20 m and often display evidence for recent reactivations about 2 m high. Successive stream entrenchments in uplifted footwallls have formed inset terraces. We have leveled topographic profiles across fault scarps and transverse abandoned terrace risers. The state of degradation of each terrace edge has been characterized by a degradation coefficient tau, derived by comparison with analytical erosion models. Edges of highest abandoned terraces yield a degradation coefficient of 33 +/- 4 sq.m. Profiles of cumulative fault scarps have been analyzed in a similar way using synthetic profiles generated with a simple incremental fault scarp model.

  10. Fault deformation mechanisms and fault rocks in micritic limestones: Examples from Corinth rift normal faults

    NASA Astrophysics Data System (ADS)

    Bussolotto, M.; Benedicto, A.; Moen-Maurel, L.; Invernizzi, C.

    2015-08-01

    A multidisciplinary study investigates the influence of different parameters on fault rock architecture development along normal faults affecting non-porous carbonates of the Corinth rift southern margin. Here, some fault systems cut the same carbonate unit (Pindus), and the gradual and fast uplift since the initiation of the rift led to the exhumation of deep parts of the older faults. This exceptional context allows superficial active fault zones and old exhumed fault zones to be compared. Our approach includes field studies, micro-structural (optical microscope and cathodoluminescence), geochemical analyses (δ13C, δ18O, trace elements) and fluid inclusions microthermometry of calcite sin-kinematic cements. Our main results, in a depth-window ranging from 0 m to about 2500 m, are: i) all cements precipitated from meteoric fluids in a close or open circulation system depending on depth; ii) depth (in terms of P/T condition) determines the development of some structures and their sealing; iii) lithology (marly levels) influences the type of structures and its cohesive/non-cohesive nature; iv) early distributed rather than final total displacement along the main fault plane is the responsible for the fault zone architecture; v) petrophysical properties of each fault zone depend on the variable combination of these factors.

  11. Frictional Properties of a Low-Angle Normal Fault Under In Situ Conditions: Thermally-Activated Velocity Weakening

    NASA Astrophysics Data System (ADS)

    Niemeijer, André R.; Collettini, Cristiano

    2014-10-01

    The Zuccale fault is a regional, low-angle, normal fault, exposed on the Isle of Elba in central Italy that accommodated a total shear displacement of 6-8 km. The fault zone structure and fault rocks formed at <8 km crustal depth. The present-day fault structure is the final product of several deformation processes superposed during the fault history. In this study, we report results from a series of rotary shear experiments performed on 1-mm thick powdered gouges made from several fault rock types obtained from the Zuccale fault. The tests were done under conditions ranging from room temperature to in situ conditions (i.e., at temperatures up to 300 °C, applied normal stresses up to 150 MPa, and fluid-saturated.) The ratio of fluid pressure to normal stress was held constant at either λ = 0.4 or λ = 0.8 to simulate an overpressurized fault. The samples were sheared at a constant sliding velocity of 10 μm/s for at least 5 mm, after which a velocity-stepping sequence from 1 to 300 μm/s was started to determine the velocity dependence of friction. This can be represented by the rate-and-state parameter ( a-b), which was determined by an inversion of the data to the rate-and-state equations. Friction of the various fault rocks varies between 0.3 and 0.8, similar to values obtained in previous studies, and decreases with increasing phyllosilicate content. Friction decreases mildly with temperature, whereas normal stress and fluid pressure do not affect friction values systematically. All samples exhibited velocity strengthening, conditionally stable behavior under room temperature conditions and ( a- b) increased with increasing sliding velocity. In contrast, velocity weakening, accompanied by stick-slips, was observed for the strongest samples at 300 °C and sliding velocities below 10 μm/s. An increase in fluid pressure under these conditions led to a further reduction in ( a-b) for all samples, so that they exhibited unstable, stick-slip behavior at low

  12. Laboratory Simulation of Shear Band Development in Growth Normal Fault

    NASA Astrophysics Data System (ADS)

    Chu, Sheng-Shin; Lin, Ming-Lang

    2013-04-01

    According to the studies about active faults in metropolitan Taipei area, it has been indicated that Shanchiao Fault at the western rim of Taipei Basin is a highly active normal fault. Slip of the fault can cause deformation of shallower soil layers and lead to the destruction of infrastructures, residential building foundations and utility lines near the influenced area. It was interpreted that Shanchiao Fault is a growth normal fault based on geological drilling and dating information. Therefore in this study, a geological structure similar to growth normal fault (such as Shanchiao Fault) was constructed to simulate the slip induced ground deformation after an additional layer of sedimentation formed above the deformed normal fault. In this study, a sand box under gravity condition was formulated with non-cohesive sands in order to investigate the propagation of shear bands and surface deformation of a growth normal fault. With the presence of sedimentation layer on top of the deformed soil layer due to normal fault, the shear band developed along the previous shear band and propagated upward to the sand surface with a much faster speed comparing to the case when there is no sedimentation layer (i.e. normal fault only). The offset ratio of 1.3~1.5% (defines as the fault tip offset displacement over the thickness of soil layer) for this particular growth fault simulation is required in order to develop a shear band toward the ground surface. Based on the test results, it is concluded that if there is any seismic activity of Shanchiao Fault, with a smaller offset displacement from the fault tip, although the depositional thickness of the upper layer is very thick, the shear band could still be propagated to the ground surface and cause severe damages to the important facilities and infrastructure with Taipei Basin. Therefore, seismic design integrated with the knowledge of near-ground deformation characteristics due to this type of fault need to be emphasized in

  13. Slip reversals on active normal faults related to the inflation and deflation of magma chambers: Numerical modeling with application to the Yellowstone-Teton region

    NASA Astrophysics Data System (ADS)

    Hampel, Andrea; Hetzel, Ralf

    2008-04-01

    Earthquakes and coseismic slip on faults are the common response of Earth's crust to plate-tectonic forces. Here we demonstrate, using three-dimensional numerical experiments, that pulses of magmatic activity may alter the slip behavior of nearby tectonic faults by causing unusual aseismic creep and even reversals in the sense of slip. We apply our results to the Teton normal fault, Wyoming, which experienced hitherto unexplained episodes of reverse and normal creep between 1988 and 2001, to show that its anomalous behavior can be explained by inflation and deflation of two magma chambers beneath the Yellowstone caldera. Our findings imply a strong coupling between magmatism and tectonic faulting, which requires coordinated monitoring of both processes to improve our understanding of the resulting spatial and temporal strain pattern.

  14. Morphometric and geometric characterization of normal faults on Mars

    NASA Astrophysics Data System (ADS)

    Vaz, David A.; Spagnuolo, Mauro G.; Silvestro, Simone

    2014-09-01

    Using three different approaches (fault plane fitting, 3D crater rim palinspatic restorations and fault scarps morphometric analysis) we investigate the geometry and degradation history of Martian normal faults in two distinct areas. The three independent methods produce similar results, indicating that the average dip angle of the normal faults on these two locations is probably below the value that is usually assumed for Mars (∼60°). Our best estimate for this average dip angle is 46.8±9.8°, which is a value comparable with the mean dip angle inferred on Earth for seismically active normal faults. This lower average dip angle implies that all the rift strain estimates performed until now might be underestimated. From the comparative analysis of the two faulted regions (Phlegethon Catena and Claritas Fossae), we show that local and regional dip variabilities may exist on Mars. This reinforces the idea that the amount of extension associated with Martian rifts must be reconsidered. We also demonstrate the advantages of performing a comparative morphometric analysis of fault scarps. This approach enables the reconstruction of the faults scarps degradation history and can be used to evaluate how environmental conditions changed through time. After modeling the degradation of the fault scarps at the two sites we conclude that the observed morphometric variations are mainly due to the different faulting ages in an environment characterized by low scarp degradation rates (4×10-3 m/kyr) over the last 3 Ga.

  15. Preliminary Results on the Mechanics of the Active Mai'iu Low Angle Normal Fault (Dayman Dome), Woodlark Rift, SE Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Little, T. A.; Boulton, C. J.; Mizera, M.; Webber, S. M.; Oesterle, J.; Ellis, S. M.; Norton, K. P.; Wallace, L. M.; Biemiller, J.

    2015-12-01

    Rapid slip on the Mai'iu low-angle normal fault (LANF) has exhumed a smooth, corrugated fault surface contiguous for >24 km up-dip, rising from near sea level to ~2900 m. The fault emerges from the ground dipping ~21° N and flattens over the crest of the dome to dip south. Geomorphic analysis reveals a progressive back-tilting of the surface during exhumation accompanied by cross-cutting antithetic-sense high-angle faults—features that we attribute to "rolling-hinge" deformation of a once more steeply-dipping fault. Near the scarp base, the footwall exposes mafic mylonites that deformed at ~400-450°C. The younger Mai'iu fault cross-cuts this ductile mylonite zone, with most brittle slip being localized into a ~20 cm-thick, gouge-filled core. Near the range front, active faults bite across both the hangingwall and footwall of the Mai'iu fault and record overprinting across a dying, shallow (<~1 km deep) part of the fault by more optimally oriented, steeper faults. Such depth-dependent locking up of the fault suggests it weakens primarily by friction reduction rather than cohesion loss. Outcrop-scale fractures in the exhumed footwall reflect formation in an Andersonian stress regime. Previous campaign GPS data suggest the fault slips at up to ~1 cm/yr. To improve resolution and test for aseismic creep, we installed 12 GPS sites across the fault trace in 2015. Quantitative XRD indicates the gouges were derived primarily from mafic footwall, containing up to 65% corrensite and saponite. Hydrothermal friction experiments on two gouges from a relict LANF strand were done at varying normal stresses (30-120 MPa), temperatures (50-200oC), and sliding velocities (0.3-100 μm/s). Results reveal very weak frictional strength (μ=0.13-0.15 and 0.20-0.28) and velocity-strengthening behavior conducive to fault creep. At the highest temperatures (T≥150oC) and lowest sliding velocities (<3 μm/s), a transition to velocity-weakening behavior indicates the potential for

  16. Friction, overpressure and fault normal compression

    SciTech Connect

    Byerlee, J. )

    1990-11-01

    More than twenty-five years ago Miller and Low reported the existence of a threshold pore pressure gradient below which water would not flow through clay. Recent experimental observations of the shear strength of structured water on biotite surfaces have provided a physical basis for understanding this threshold gradient. The existence of this phenomenon has profound implications for the rheological properties of mature fault zones, such as the San Andreas, that contain large thickness of fault gouge. For example, a clay-filled fault zone about 1 km wide at the base of the surface could support core fluid pressure equal to the maximum principal stress over the entire seismogenic zone. As a result, the fault would have near-zero strength and the maximum principal stress measured on the flanks of the fault, would be oriented normal to the fault surface. Another consequence of the threshold gradient is that normal hydrostatic fluid pressures outside the fault zone could coexist with near-lithostatic fluid pressures in the interior of the fault zone without the need for continual replenishment of the overpressured fluid. In addition, the pore pressure at any point should never exceed the local minimum principal stress so that hydrofracture will not occur.

  17. Active normal faults and river damming: the importance of tectonics and climate in shaping the landscape of the southern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Kali, E.; van der Woerd, J.; Liu-Zeng, J.; LeBéon, M.; Leloup, P.-H.; Mahéo, G.; Tapponnier, P.; Thuizat, R.

    2012-04-01

    these data indicate vertical rates on the order of 0.6 to 1.7 mm/yr on the North-Ssouth active faults in the Ama Drime area. The peculiar course of the Arun river meandering within gorges into the footwall of the Kharta fault downstream of the paleolake remnants indicates interaction between river damming and active normal faulting. The high lake stands may be correlated to the penultimate and last interglacial stages corresponding to enhance moisture across the Himalayas. It further suggest dam buildup during cold and dry glacial stages favoring diminished fluvial erosion and enhanced morainic debris accumulation in the gorge during continuous tectonic uplift. The end of the last lake high-stand (100-120ka) is in agreement with the highest and oldest evidence of fluvial terraces downstream of the gorge. These results show the importance of fluvial and tectonic interaction in connecting closed basins to drained valleys and thus in shaping large parts of the Tibetan plateau.

  18. Tectonic Geomorphology in the Laboratory: Evolution of landscape along an active thrust, normal and strike-slip fault

    NASA Astrophysics Data System (ADS)

    Graveleau, Fabien; Strak, Vincent; Dominguez, Stéphane; Malavieille, Jacques; Chatton, Marina; Manighetti, Isabelle; Petit, Carole

    2015-04-01

    Tectonically controlled landforms develop morphologic features that provide useful markers to investigate crustal deformation and relief growth dynamics. We present here results of morphotectonic experiments obtained with an innovative approach combining tectonic and surface processes (erosion, transport and sedimentation), coupled with accurate model monitoring techniques. This approach allows for a qualitative and quantitative analysis of landscape evolution in response to active deformation in the three end-member geological settings: compression, extension and strike-slip. Experimental results outline first that experimental morphologies evolve significantly at a short timescale. Numerous morphologic markers form continuously, but their lifetime is generally short because erosion and sedimentation processes tend to destroy or bury them. For the compressional setting, the formation of terraces above an active thrust appears mainly controlled by narrowing and incision of the main channel through the uplifting hanging-wall and by avulsion of deposits on fan-like bodies. Terrace formation is irregular even under steady tectonic rates and erosional conditions. Terrace deformation analysis allows retrieving the growth history of the structure and the fault slip rate evolution. For the extensional setting, the dynamics of hanging-wall sedimentary filling appears to control the position of the base level, which in turn controls footwall erosion. Two phases of relief evolution can be evidenced: the first is a phase of relief growth and the second is a phase of upstream propagation of topographic equilibrium that is reached first in the sedimentary basin. During the phase of relief growth, the formation of triangular facets occurs by degradation of the fault scarp and their geometry (height) becomes stationary during the phase of upstream propagation of the topographic equilibrium. For the strike-slip setting, the complex morphology of the wrench zone, composed of

  19. Transfer zones in listric normal fault systems

    NASA Astrophysics Data System (ADS)

    Bose, Shamik

    Listric normal faults are common in passive margin settings where sedimentary units are detached above weaker lithological units, such as evaporites or are driven by basal structural and stratigraphic discontinuities. The geometries and styles of faulting vary with the types of detachment and form landward and basinward dipping fault systems. Complex transfer zones therefore develop along the terminations of adjacent faults where deformation is accommodated by secondary faults, often below seismic resolution. The rollover geometry and secondary faults within the hanging wall of the major faults also vary with the styles of faulting and contribute to the complexity of the transfer zones. This study tries to understand the controlling factors for the formation of the different styles of listric normal faults and the different transfer zones formed within them, by using analog clay experimental models. Detailed analyses with respect to fault orientation, density and connectivity have been performed on the experiments in order to gather insights on the structural controls and the resulting geometries. A new high resolution 3D laser scanning technology has been introduced to scan the surfaces of the clay experiments for accurate measurements and 3D visualizations. Numerous examples from the Gulf of Mexico have been included to demonstrate and geometrically compare the observations in experiments and real structures. A salt cored convergent transfer zone from the South Timbalier Block 54, offshore Louisiana has been analyzed in detail to understand the evolutionary history of the region, which helps in deciphering the kinematic growth of similar structures in the Gulf of Mexico. The dissertation is divided into three chapters, written in a journal article format, that deal with three different aspects in understanding the listric normal fault systems and the transfer zones so formed. The first chapter involves clay experimental models to understand the fault patterns in

  20. Evidence for Holocene paleoseismicity along the Basel-Reinach Active Normal Fault (Switzerland): A Seismic Source for the 1356 Earthquake in the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Meghraoui, M.; Delouis, B.; Giardini, D.

    2003-04-01

    We conducted a paleoseismic study with geomorphologic mapping, geophysical prospecting and trenching along an 8-km-long NNE-SSW trending fault scarp south of Basel. The city as well as 40 castles within a 20-km radius were destroyed or heavily damaged by the earthquake of 18th October 1356 (Io = IX-X MKS), the largest historical seismic event in central Europe. Active river incisions as well as late Quaternary alluvial terraces are uplifted along the linear Basel-Reinach fault scarp. The active normal fault shows at least two main branches reaching the surface as attested by resistivity profiles, reflection seismic data, and direct observations in six trenches. In trenches, the normal fault rupture affects three colluvial wedge deposits up to the base of the present day soil. Radiocarbon as well as thermoluminescence age determinations from other trenches helped reconstruct the Holocene events chronology. We identified three seismic events with an average coseismic movement of 0.5 - 0.8 m and a total vertical displacement of 1.8 m in the last 7800 years and five events in the last 13200 years. The most recent event occurred in the interval 610 - 1475 A.D. (2sigma) and may likely correspond to the 1356 earthquake. Furthermore, the morphology suggests both a southern and northern fault extensions that may reach 20 km across the Jura Mountains and across the Rhine Valley. Taking this fault length and a 10 km-thick seismogenic layer suggests a M 6.5 or greater event as a possible scenario for the seismic hazard assessment of the Basel region.

  1. Evidence for Holocene palaeoseismicity along the Basel-Reinach active normal fault (Switzerland): a seismic source for the 1356 earthquake in the Upper Rhine graben

    NASA Astrophysics Data System (ADS)

    Ferry, Matthieu; Meghraoui, Mustapha; Delouis, Bertrand; Giardini, Domenico

    2005-02-01

    We conducted a palaeoseismic study with geomorphologic mapping, geophysical prospecting and trenching along an 8-km-long NNE-SSW trending fault scarp south of Basel. The city as well as 40 castles within a 20-km radius were destroyed or heavily damaged by the earthquake of 1356 October 18 (Io = IX-X), the largest historical seismic event in central Europe. Active river incisions as well as late Quaternary alluvial terraces are uplifted along the linear Basel-Reinach (BR) fault scarp. The active normal fault is comprised of at least two main branches reaching the surface as evident by resistivity profiles, reflection seismic data and direct observations in six trenches. In trenches, the normal fault rupture affects three colluvial wedge deposits up to the base of the modern soil. Radiocarbon as well as thermoluminescence (TL) age determinations from other trenches helped to reconstruct the Holocene event chronology. We identified three seismic events with an average coseismic movement of 0.5-0.8 m and a total vertical displacement of 1.8 m in the last 7800 yr and five events in the last 13 200 yr. The most recent event occurred in the interval AD 500-1450 (2σ) and may correspond to the 1356 earthquake. Furthermore, the morphology suggests both a southern and northern fault extensions that may reach 20 km across the Jura mountains and across the Rhine valley. Taking this fault length and a 10-km-thick seismogenic layer suggests a Mw 6.5 or greater event as a possible scenario for the seismic hazard assessment of the Basel region.

  2. Present activity and seismogenic potential of a low-angle normal fault system (Città di Castello, Italy): Constraints from surface geology, seismic reflection data and seismicity

    NASA Astrophysics Data System (ADS)

    Brozzetti, Francesco; Boncio, Paolo; Lavecchia, Giusy; Pace, Bruno

    2009-01-01

    We present new constraints on an active low-angle normal fault system in the Città di Castello-Sansepolcro basin (CSB) of the northern Apennines of Italy. New field data from the geological survey of the Carta Geologica d' Italia (CARG project) define the surface geometry of the normal fault system and lead to an interpretation of the CROP 03 deep-crust seismic reflection profile (Castiglion Fiorentino-Urbania segment), with particular attention paid to the geometry of the Plio-Quaternary extensional structures. Surface and sub-surface geological data are integrated with instrumental and historical seismicity in order to define the seismotectonics of the area. Low-angle east-dipping reflectors are the seismic expression of the well-known Altotiberina Fault (AF), a regional extensional detachment on which both east- and west-dipping high-angle faults, bounding the CSB, sole out. The AF breakaway zone is located ˜ 10 km west of the CSB. Within the extensional allochthon, synthetic east-dipping planes prevail. Displacement along the AF is ˜ 4.5 km, which agrees with the cumulative offset due to its synthetic splays. The evolution of the CSB has mainly been controlled by the east-dipping fault system, at least since Early Pleistocene time; this system is still active and responsible for the seismicity of the area. A low level of seismic activity was recorded instrumentally within the CSB, but several damaging earthquakes have occurred in historical times. The instrumental seismicity and the intensity data points of the largest historical earthquakes (5 events with maximum MCS intensity of IX to IX-X) allow us to propose two main seismogenic structures: the Monte Santa Maria Tiberina (Mmax = 5.9) and Città di Castello (Mmax up to 6.5) normal faults. Both are synthetic splays of the AF detachment, dipping to the NE at moderate (45-50°) to low (25-30°) angles and cutting the upper crust up to the surface. This study suggests that low-angle normal faults (at least

  3. A 'Propagating' Active Across-Arc Normal Fault Shows Rupture Process of the Basement: the Case of the Southwestern Ryukyu Arc

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Shinjo, R.; Nakamura, M.; Kubo, A.; Doi, A.; Tamanaha, S.

    2011-12-01

    Ryukyu Arc is located on the southwestern extension of Japanese Island-arc towards the east of Taiwan Island along the margin of the Asian continent off China. The island-arc forms an arcuate trench-arc-backarc system. A NW-ward subduction of the Philippine Sea Plate (PSP)at a rate of 6-8 cm/y relative to the Eurasian Plate (EP) causes frequent earthquakes. The PSP is subducting almost normally in the north-central area and more obliquely around the southwestern area. Behind the arc-trench system, the Okinawa Trough (OT) was formed by back-arc rifting, where active hydrothermal vent systems have been discovered. Several across-arc submarine faults are located in the central and southern Ryukyu Arc. The East Ishigaki Fault (EIF) is one of the across-arc normal faults located in the southwestern Ryukyu Arc, ranging by 44km and extending from SE to NW. This fault was surveyed by SEABAT8160 multibeam echo sounder and by ROV Hyper-Dolphin in 2005 and 2008. The result shows that the main fault consists of five fault segments. A branched segment from the main fault was also observed. The southernmost segment is most mature (oldest but still active) and the northernmost one is most nascent. This suggests the north-westward propagation of the fault rupture corresponding to the rifting of the southwestern OT and the southward retreat of the arc-trench system. Considering that the fault is segmented and in some part branched, propagation might take place episodically rather than continuously from SE to NW. The ROV survey also revealed the rupture process of the limestone basement along this fault from the nascent stage to the mature stage. Most of the rock samples collected from the basement outcrop were limestone blocks (or calcareous sedimentary rocks). Limestone basement was observed to the west on the hanging wall far away from the main fault scarp. Then fine-grained sand with ripple marks was observed towards the main scarp. Limestone basement was observed on the main

  4. 3D modelling of the active normal fault network in the Apulian Ridge (Eastern Mediterranean Sea): Integration of seismic and bathymetric data with implicit surface methods

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Pellegrini, Caludio; Savini, Alessandra; Marchese, Fabio

    2016-04-01

    The Apulian ridge (North-eastern Ionian Sea, Mediterranean), interposed between the facing Apennines and Hellenides subduction zones (to the west and east respectively), is characterized by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a penetrative network of NNW-SSE normal faults. These are exposed onshore in Puglia, and are well represented offshore in a dataset composed of 2D seismics and wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, recent very high resolution seismics (VHRS - Sparker and Chirp-sonar data), multibeam echosounder bathymetry, and sedimentological and geo-chronological analyses of sediment samples collected on the seabed. Faults are evident in 2D seismics at all scales, and their along-strike geometry and continuity can be characterized with multibeam bathymetric data, which show continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides). Fault scarps also reveal the finite displacement accumulated in the Holocene-Pleistocene. We reconstructed a 3D model of the fault network and suitable geological boundaries (mainly unconformities due to the discontinuous distribution of quaternary and tertiary sediments) with implicit surface methods implemented in SKUA/GOCAD. This approach can be considered very effective and allowed reconstructing in details complex structures, like the frequent relay zones that are particularly well imaged by seafloor geomorphology. Mutual cross-cutting relationships have been recognized between fault scarps and submarine mass-wasting deposits (Holocene-Pleistocene), indicating that, at least in places, these features are coeval, hence the fault network should be considered active. At the regional scale, the 3D model allowed measuring the horizontal WSW-ENE stretching, which can be associated to the bending moment applied to the Apulian Plate by the combined effect

  5. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Tulliani, Valerio; Fierro, Elisa; Sapia, Vincenzo; Civico, Riccardo

    2015-04-01

    The Piano di Pezza fault is the north-westernmost segment of the >20 km long Ovindoli-Pezza active normal fault-system (central Italy). Although existing paleoseismic data document high vertical Holocene slip rates (~1 mm/yr) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time by means of high-resolution seismic and electrical resistivity tomography coupled with time domain electromagnetic (TDEM) measurements the shallow subsurface of a key section of the Piano di Pezza fault. Our surveys cross a ~5 m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing some Late Holocene alluvial fans. We provide 2-D Vp and resistivity images which clearly show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. We can estimate the dip (~50°) and the Holocene vertical displacement of the master fault (~10 m). We also recognize in the hangingwall some low-velocity/low-resistivity regions that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of several paleo-earthquakes older than the Late Holocene events previously recognized by paleoseismic trenching. Conversely, due to the limited investigation depth of seismic and electrical tomography, the estimation of the cumulative amount of Pleistocene throw is hampered. Therefore, to increase the depth of investigation, we performed 7 TDEM measurements along the electrical profile using a 50 m loop size both in central and offset configuration. The recovered 1-D resistivity models show a good match with 2-D resistivity images in the near surface. Moreover, TDEM inversion results indicate that in the hangingwall, ~200 m away from the surface fault trace, the carbonate pre-Quaternary basement may be found at ~90-100 m depth. The combined approach of electrical and

  6. Interseismic deformation for normal fault earthquakes

    NASA Technical Reports Server (NTRS)

    Reilinger, Robert

    1987-01-01

    Comparison between the coseismic vertical deformation associated with normal fault earthquakes and permanent deformation indicated by geologic structure indicates that large deformation must occur during the period between earthquakes. When sufficient geodetic and geologic information is available it is possible to estimate the spatial character of this interseismic deformation. A case in point is the 1983 Borah Peak, Idaho earthquake. This normal fault earthquake produced roughly 5 times as much basin subsidence as it did uplift of the adjacent mountain ranges. In contrast, geophysical and geological observations show that the basin is roughly as deep as the bounding range is high. A similar normal fault event in the Basin and Range, the 1959 Hebgen Lake earthquake, was also accompanied by substantially larger subsidence than uplift. In this case, postseismic geodetic measurements show broad regional uplift with a spatial pattern which is roughly consistent with that proposed for the Borah Peak event. Modeling suggests that postseismic viscoelastic relaxation and strain accumulation in an elastic lithosphere overlying a viscoelastic asthenosphere are possible physical mechanisms to generate interseismic uplift. These mechanisms may be the contemporary expression of those processes responsible for the high elevation of the Basin and Range Province.

  7. Differential river incision across active normal faults in Grand Canyon: a response to mantle-driven uplift of the western Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Karlstrom, K. E.; Crow, R.

    2010-12-01

    High-quality gravel-constrained incision rates have been calculated in western Grand Canyon in a reach between river mile (RM) 177 and 246 where 100-840 ka basalt flows erupted and cascaded into Grand Canyon and flowed downriver over 120 km. Bedrock incision rates are calculated at numerous locations where dated basalts overly gravel-capped bedrock straths; fault slip is measured via Ar-Ar dating of offset basalts. Marked variations in incision rate take place across the active Hurricane and Toroweap normal faults, with incision rates in the footwall of the faults being subequal to the incision rate in the immediate hanging-wall plus the fault slip rate. However incision rates increase progressively away from the fault due to formation of a hanging-wall anticline. Nine new and updated incision rates based on new 40Ar/39Ar analyses from Grand Canyon’s intra-canyon basalts support and extend earlier conclusions that: 1) incision rate discrepancies across active faults are explained by fault dampening of incision rates, 2) incision rate variations in the fault block between the Toroweap and the Hurricane faults shows a hanging-wall anticline with wavelength < 5 km. 3) large-scale ~100 m/Ma discrepancy in incision between eastern (~175 m/Ma) and western Grand Canyon (~65 m/Ma) across the Hurricane fault may reflect broad mantle-driven epeirogenic surface uplift of the Colorado Plateau. This last hypothesis is supported by profile reconstructions and geodynamic models. Postulated sub-equal incision across the eastern Grand Canyon block, which would support epeirogenic uplift, are being further tested using U-Series dating of high terrace flights at RM 65, 69, 95, and 116. Neogene surface uplift of eastern Grand Canyon and the margins of the Colorado Plateau is consistent with: 1) high elevations along the plateau margins, 2) geoid anomalies, 3) tomographic and magnetotelluric data showing low-velocity conductive mantle under plateau margins, 4) temporal and spatial

  8. The property of fault zone and fault activity of Shionohira Fault, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Seshimo, K.; Aoki, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Tanaka, Y.

    2015-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (hereafter the 4.11 earthquake) formed co-seismic surface ruptures trending in the NNW-SSE direction in Iwaki City, Fukushima Prefecture, which were newly named as the Shionohira Fault by Ishiyama et al. (2011). This earthquake was characterized by a westward dipping normal slip faulting, with a maximum displacement of about 2 m (e.g., Kurosawa et al., 2012). To the south of the area, the same trending lineaments were recognized to exist even though no surface ruptures occurred by the earthquake. In an attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of observation of fault outcrops along the Shionohira Fault as well as the Coulomb stress calculations. Only a few outcrops have basement rocks of both the hanging-wall and foot-wall of the fault plane. Three of these outcrops (Kyodo-gawa, Shionohira and Betto) were selected for investigation. In addition, a fault outcrop (Nameishi-minami) located about 300 m south of the southern tip of the surface ruptures was investigated. The authors carried out observations of outcrops, polished slabs and thin sections, and performed X-ray diffraction (XRD) to fault materials. As a result, the fault zones originating from schists were investigated at Kyodo-gawa and Betto. A thick fault gouge was cut by a fault plane of the 4.11 earthquake in each outcrop. The fault materials originating from schists were fault bounded with (possibly Neogene) weakly deformed sandstone at Shionohira. A thin fault gouge was found along the fault plane of 4.11 earthquake. A small-scale fault zone with thin fault gouge was observed in Nameishi-minami. According to XRD analysis, smectite was detected in the gouges from Kyodo-gawa, Shionohira and Betto, while not in the gouge from Nameishi-minami.

  9. Fault reactivation control on normal fault growth: an experimental study

    NASA Astrophysics Data System (ADS)

    Bellahsen, Nicolas; Daniel, Jean Marc

    2005-04-01

    Field studies frequently emphasize how fault reactivation is involved in the deformation of the upper crust. However, this phenomenon is generally neglected (except in inversion models) in analogue and numerical models performed to study fault network growth. Using sand/silicon analogue models, we show how pre-existing discontinuities can control the geometry and evolution of a younger fault network. The models show that the reactivation of pre-existing discontinuities and their orientation control: (i) the evolution of the main fault orientation distribution through time, (ii) the geometry of relay fault zones, (iii) the geometry of small scale faulting, and (iv) the geometry and location of fault-controlled basins and depocenters. These results are in good agreement with natural fault networks observed in both the Gulf of Suez and Lake Tanganyika. They demonstrate that heterogeneities such as pre-existing faults should be included in models designed to understand the behavior and the tectonic evolution of sedimentary basins.

  10. Experimental and numerical models of basement-detached normal faults

    SciTech Connect

    Islam, Q.T.; Lapointe, P.R. ); Withjack, M.O. )

    1991-03-01

    The ability to infer more accurately the type, timing, and location of folds and faults that develop during the evolution of large-scale geologic structures can help explorationists to interpret subsurface structures and generate new prospects to better assess their risk factors. One type of structural setting that is of importance in many exploration plays is that of the basement-detached normal fault. Key questions regarding such structures are (1) what structures form, (2) where do the structures form, (3) when do the structures form, (4) why do the structures form Clay and finite element models were used to examine the influence of fault shape on the development of folds and faults in the hanging wall of basement-detached normal faults. The use of two, independent methods helps to overcome each method's inherent limitations, providing additional corroboration for conclusions drawn from the modeling. Three fault geometries were modeled: a fault plane dipping uniformly at 45{degree}; a fault plane that steepens from 30{degree} to 45{degree}; and a fault plane that shallows with depth from 45{degree} to 30{degree}. Results from both modeling approaches show that (1) antithetic faults form at fault bends where fault dip increases, (2) faults become progressively younger towards the footwall, (3) the zone(s) of high stress and faulting are stationary relative to the footwall, (4) anticlines with no closure form below faults shallow, and (5) closed anticlines form only above the point where faults steepen.

  11. Geometric and kinematic controls on the internal structure of a large normal fault in massive limestones: The Maghlaq Fault, Malta

    NASA Astrophysics Data System (ADS)

    Bonson, C. G.; Childs, C.; Walsh, J. J.; Schöpfer, M. P. J.; Carboni, V.

    2007-02-01

    The Maghlaq Fault is a large, left-stepping normal fault (displacement >210 m) cutting the Oligo-Miocene pre- to syn-rift carbonates of SW Malta. Two principal slip zones separate the deformed rocks of the fault zone from the undeformed wall rocks. Fault rocks derived from fully lithified, pre- to early syn-rift sediments comprise relatively continuous fine-grained veneers of cataclasite and localised fault-bound lenses of wall rock, occurring over a range of scales, which are commonly brecciated. The lenses result from the linkage of slip surfaces, the inclusion of asperities and the formation of Riedel shears within the fault zone. In contrast, fault rock incorporated from unlithified syn-rift sediments comprise relatively continuous veils of rock that deformed in a ductile manner. Anomalously thick parts of the fault zone with highly complex structure and content are associated with breached relay zones, branch-lines and bends; these structures represent progressive stages of fault segment linkage. The progressive evolution and bypassing of fault zone complexities to form a smoother and more continuous active fault surface, results in complex fault rock distributions within the fault zone. Segment linkage structures have high fracture densities which combined with their significant vertical extents suggest they are potentially important up-fault fluid flow conduits.

  12. Configuration and Correlation of Fluvial Terrace Deposits In the Lower Rio Salado Valley: A Record of Magmatic Uplift and Active Normal Faulting in the Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Sion, B. D.; Axen, G. J.; Phillips, F. M.; Harrison, B.

    2015-12-01

    The Rio Salado is a western tributary of the Rio Grande whose valley is flanked by six major terrace levels. The Rio crosses several active rift-related normal faults and the active, mid-crustal Socorro Magma Body (SMB; a sill at 19 km depth that is actively doming the land surface), providing an unusual opportunity to explore the effects of deep magma emplacement and active faulting on the terraces. Rio Salado terraces were mapped using a high-resolution DEM and digital color stereophotographs and were projected onto a valley-parallel vertical plane to construct longitudinal profiles. Three new soil pits were described to aid terrace correlation. A net incision rate of 0.41 ± 0.06 m/ka was inferred from the correlation of a major fill-cut terrace to the 122 ± 18 ka Airport surface ~25 km south of the Rio Salado. This incision rate is >1.5 times more rapid than estimated rates nearby or in other parts of New Mexico, but yields age estimates for other terraces that are consistent with soil development. Terrace gradients in the Rio Salado have increased through time, indicating either stream response to Rio Grande incision or footwall tilting from the Quaternary Loma Blanca fault (LBF). Two terraces in the LBF hanging wall are back-tilted relative to their footwall counterparts, suggesting a listric geometry for the LBF. However, two others (Qtf and Qtc) are east-tilted relative to their footwall counterparts. Both Qtf and Qtc merge eastward with the next youngest terrace in the flight, and Qtc is arched, consistent with an earlier episode of surface uplift above the SMB. Future work will involve (a) additional terrace mapping over the SMB, (b) cosmogenic 36Cl depth profile dating of the Rio Salado terraces to determine incision rates, allow regional terrace correlations, and constrain fault-slip slip rates and the record of SMB-related surface uplift, and (c) numerical modeling of SMB inflation constrained by uplift signals.

  13. Detachment and steep normal faulting in Atlantic oceanic crust west of Africa

    USGS Publications Warehouse

    Reston, T.J.; Ruoff, O.; McBride, J.H.; Ranero, C.R.; White, Robert S.

    1996-01-01

    Improved images of the internal structure of Early Cretaceous North Atlantic crust reveal both probable detachment faults and more steeply dipping normal faults. The detachment faults occur as subhorizontal structures passing ???1.5 km beneath fault blocks without offset; several steeper block-bounding faults appear to detach onto these structures. However, the detachments are bounded to the west (ridgeward) by presumably younger, more steeply west-dipping normal faults. In one possible interpretation, the detachment and the steep faults belong to the same "rolling-hinge" extension system. An intriguing alternative is that a phase of detachment faulting, perhaps related to increased magmatic activity, was succeeded by localized amagmatic extension along steeper and more deeply penetrating faults.

  14. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time-domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Tulliani, Valerio; Sapia, Vincenzo; Fierro, Elisa; Civico, Riccardo; Pantosti, Daniela

    2015-12-01

    The Piano di Pezza fault is the central section of the 35 km long L'Aquila-Celano active normal fault-system in the central Apennines of Italy. Although palaeoseismic data document high Holocene vertical slip rates (˜1 mm yr-1) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time the shallow subsurface of a key section of the main Piano di Pezza fault splay by means of high-resolution seismic and electrical resistivity tomography coupled with time-domain electromagnetic soundings (TDEM). Our surveys cross a ˜5-m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing Holocene alluvial fans. We provide 2-D Vp and resistivity images, which show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. Our data indicate that the upper fault termination has a sub-vertical attitude, in agreement with palaeoseismological trench evidence, whereas it dips ˜50° to the southwest in the deeper part. We recognize some low-velocity/low-resistivity regions in the fault hangingwall that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of some Holocene palaeo-earthquakes. We estimate a ˜13-15 m throw of this fault splay since the end of the Last Glacial Maximum (˜18 ka), leading to a 0.7-0.8 mm yr-1 throw rate that is quite in accordance with previous palaeoseismic estimation of Holocene vertical slip rates. The 1-D resistivity models from TDEM soundings collected along the trace of the electrical profile significantly match with 2-D resistivity images. Moreover, they indicate that in the fault hangingwall, ˜200 m away from the surface fault trace, the pre-Quaternary carbonate basement is at ˜90-100 m depth. We therefore provide a minimal ˜150-160 m estimate of the cumulative throw of the Piano di Pezza

  15. Late Quaternary Range-Front Fault Scarps in the Western Sierra El Mayor, Baja California, Mexico: A Geomorphologic Expression of Slip Across an Active Low-Angle Normal Fault

    NASA Astrophysics Data System (ADS)

    Spelz, R. M.; Fletcher, J.; Owen, L.

    2006-12-01

    The western margin of the Sierra El Mayor (SEM), in northeastern Baja California, is controlled by an active, top-to-the-west, low-angle normal fault named the Canada David detachment (CDD) that accommodates part of the extensional component of shearing between the Pacific and North American plates. The CDD has a length of 60 km and shows a curvilinear trace with two major antiformal and synformal megamullion pairs. Late Quaternary slip has produced a broad array of Quaternary scarps cutting alluvial fans along nearly the entire length of the CDD. Detailed mapping reveals eight regional strath terraces distinguished by surface weathering characteristics, soil profile development and relative elevation. Relative height between terraces increases in domains where the CDD and basin deposits are being uplifted due to either the basinward migration of faulting (e.g., rolling hinge) or flexural uplift in antiformal megamullion domains. Linear diffusion analysis of 46 synthetic fault scarps, with a calculated angle of repose Θo = 28.75°, reveal fault scarp domains exhibiting both multi-modal and unimodal distribution of diffusion ages (kt). Uni-modal domains are typically younger, but there is no systematic variation in scarp age with distance along the CDD. Scarps yielding negative kt ages (i.e. scarps steeper than Θo) are common in the north, near inferred locations of important historic seismic events. Microseismicity drops off significantly adjacent to these very young scarp arrays, which likely reflects a recent post-seismic stress drop. Domains of high seismic risk are identified by high microseismicity and lack of young scarps. Minimum estimates of the diffusivity constant (k) are calculated by coupling scarp diffusion ages and 10Be surface exposure ages of the faulted deposits. In the southernmost SEM a Q6 terrace with a minimum surface exposure age t = 233±6.6 ky (weighted mean of six rock samples) is cut by scarps with an average kt = 11.25±9.31 m2, which

  16. Fractal nature and scaling of normal faults, Rio Grande rift, NM: Implications for growth and strain

    SciTech Connect

    Carter, K.E.

    1994-09-01

    In this paper I introduce a suite of Quaternary normal faults from within an active continental rift and characterize the nature of the relationship between fault dimensions. I address the statistical and geological significance of the fractal analysis used in that characterization and discuss the tectonic implications. Specifically, I suggest (1) scaling laws for a previously unanalyzed population of young normal faults in rift environment; (2) implications for fault growth models in this area, in particular, addressing self-similar growth implied from the population; and (3) estimates for the total strain in this part of the basin, considering the contribution of small to unobserved faults.

  17. Slip distributions on active normal faults measured from LiDAR and field mapping of geomorphic offsets: an example from L'Aquila, Italy, and implications for modelling seismic moment release

    NASA Astrophysics Data System (ADS)

    Wilkinson, Maxwell; Roberts, Gerald P.; McCaffrey, Ken; Cowie, Patience A.; Faure Walker, Joanna P.; Papanikolaou, Ioannis; Phillips, Richard J.; Michetti, Alessandro Maria; Vittori, Eutizio; Gregory, Laura; Wedmore, Luke; Watson, Zoë K.

    2015-05-01

    Surface slip distributions for an active normal fault in central Italy have been measured using terrestrial laser scanning (TLS), in order to assess the impact of changes in fault orientation and kinematics when modelling subsurface slip distributions that control seismic moment release. The southeastern segment of the surface trace of the Campo Felice active normal fault near the city of L'Aquila was mapped and surveyed using techniques from structural geology and using TLS to define the vertical and horizontal offsets of geomorphic slopes since the last glacial maximum (15 ± 3 ka). The fault geometry and kinematics measured from 43 sites and throw/heave measurements from geomorphic offsets seen on 250 scarp profiles were analysed using a modification of the Kostrov equations to calculate the magnitudes and directions of horizontal principal strain-rates. The map trace of the studied fault is linear, except where a prominent bend has formed to link across a former left-stepping relay-zone. The dip of the fault and slip direction are constant across the bend. Throw-rates since 15 ± 3 ka decrease linearly from the fault centre to the tip, except in the location of the prominent bend where higher throw rates are recorded. Vertical coseismic offsets for two palaeo earthquake ruptures seen as fresh strips of rock at the base of the bedrock scarp also increase within the prominent bend. The principal strain-rate, calculated by combining strike, dip, slip-direction and post 15 ± 3 ka throw rate, decreases linearly from the fault centre towards the tip; the strain-rate does not increase across the prominent fault bend. The above shows that changes in fault strike, whilst having no effect on the principal horizontal strain-rate, can produce local maxima in throw-rates during single earthquakes that persist over the timescale of multiple earthquakes (15 ± 3 ka). Detailed geomorphological and structural characterisation of active faults is therefore a critical

  18. Segmentation and growth of an obliquely reactivated normal fault

    NASA Astrophysics Data System (ADS)

    Giba, M.; Walsh, J. J.; Nicol, A.

    2012-06-01

    Detailed kinematic analysis of a large (1800 m maximum displacement) reactivated normal fault in the Taranaki Basin, New Zealand, has been conducted using high quality 3D seismic data. The Parihaka Fault is approximately north-south striking in basement, where it accrued Late Cretaceous to Early Eocene displacements in response to east-west extension, and was obliquely reactivated by NW-SE extension in the Pliocene. Reactivation resulted in upward propagation, newly formed segmentation and up-dip clockwise rotation of the fault surface by up to ˜20° from the strike of the basement fault. Fault segmentation, and map-view soft-linkage by relay zones in post Miocene strata, was synchronous with the formation of antithetic faults in Late Miocene strata at bends in the fault surface. Fault segment lengths, antithetic faults and relay zone dimensions were formed geologically instantaneously during initial reactivation of the main fault at 3.7-3.4 Ma (i.e. within the first ˜10% of faulting). Rapid formation of Pliocene fault segments is followed by displacement accumulation without an increase in fault segment length until eventual relay breaching when continued ramp rotation is unsustainable. This evolutionary history is consistent with a model in which arrays of fault segments are, from inception, components of a single coherent structure.

  19. Laboratory observations of fault-normal vibrations during stick slip

    SciTech Connect

    Bodin, P.; Brown, S.; Matheson, D.

    1998-12-01

    We report laboratory observations of interface separation waves during stick slip on a fault in a uniform polymer material. Our observations, made at stress levels expected at midcrustal depths, share many macroscopic properties with ruptures of faults in rocks. We observed a drop in fault-normal stress shortly before the onset of, and during, stick slip at points along the fault during a rupture. We suggest that {ital P} wave energy in front of the propagating rupture tip is responsible for the drop in normal stress. We also interpret that stick slip took place within a traveling slip pulse, and we suggest that the dynamic stress drop within the slipping patch exceeded the overall static stress drop by a factor of at least 5 within a few millimeters of the fault. Our experiments did not resolve whether the fault surfaces actually separate or if fault-normal stress is just greatly reduced. In either case the net result is that fault slip is permitted to take place with much less frictional resistance than that expected from the applied load. Our observations provide laboratory evidence that fault-normal vibrations may play an important role in sustaining a rupture by facilitating the propagation of a transient instability. Faults may appear weak in part because they are dynamically weakened as they slip during rupture while retaining their strength during the interseismic period. {copyright} 1998 American Geophysical Union

  20. Classifying helicopter gearbox faults using a normalized energy metric

    NASA Astrophysics Data System (ADS)

    Samuel, Paul D.; Pines, Darryll J.

    2001-02-01

    A normalized energy metric is used to classify seeded faults of the OH-58A main transmission. This gearbox comprises a two-stage transmission with an overall reduction of 17.44:1. Loaded gearbox test runs are used to evaluate the sensitivity of a non-stationary fault metric for early fault detection and classification. The non-stationary fault metric consists of a simple normalized energy index developed to account for a redistribution of sideband energy of the dominant mesh frequency and its harmonics in the presence of actual gearbox faults. This index is used to qualitatively assess the presence, type and location of gearbox faults. In this work, elements of the normalized energy metric are assembled into a feature vector to serve as input into a self-organizing Kohonen neural network classifier. This classifier maps vibration features onto a two-dimensional grid. A feedforward back propagation neural network is then used to classify different faults according to how they cluster on the two-dimensional self-organizing map. Gearbox faults of OH-58A main transmission considered in this study include sun gear spalling and spiral bevel gear scoring. Results from the classification suggest that the normalized energy metric is reasonably robust against false alarms for certain geartrain faults.

  1. Landscape response to normal fault growth and linkage in the Southern Apennines, Italy.

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, Duna; Whittaker, Alex

    2016-04-01

    It is now well-established that landscape can record spatial and temporal variations in tectonic rates. However, decoding this information to extract detailed histories of fault growth is often a complex problem that requires careful integration of tectonic and geomorphic data sets. Here, we present new data addressing both normal fault evolution and coupled landscape response for two normal faults in the Southern Apennines: the Vallo di Diano and East Agri faults. By integrating published constraints with new data, we show that these faults have total throws of up to 2100 m, and Holocene throw rates of up to 1 mm/yr at their maximum. We demonstrate that geomorphology is effectively recording tectonics, with relief, channel and catchment slopes varying along fault strike as normal fault activity does. Therefore, valuable information about fault growth and interaction can be extracted from their geomorphic expression. We use the spatial distribution of knickpoints on the footwall channels to infer two episodes of base level change, which can be associated with distinct fault interaction events. From our detailed fault throw profiles, we reconstruct the amount of throw accumulated after each of these events, and the segments involved in each, and we use slip rate enhancement factors derived from fault interaction theory to estimate the magnitude of the tectonic perturbation in each case. From this approach, we are able to reconstruct pre-linkage throw rates, and we estimate that fault linkage events likely took place 0.7 ± 0.2 Ma and 1.9 ± 0.6 Ma in the Vallo di Diano fault, and 1.1 ± 0.1 and 2.3 ± 0.9 Ma in the East Agri fault. Our study suggests that both faults started their activity at 3.6 ± 0.5 Ma. These fault linkage scenarios are consistent with the knickpoint heights, and may relate to soft-linkage interaction with the Southern Apennines normal fault array, the existence of which has been the subject of considerable debate. Our combined geomorphic and

  2. Central Asia Active Fault Database

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah

    2014-05-01

    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  3. Testing simple models of brittle normal faulting: slip rate, spacing, and segmentation

    NASA Astrophysics Data System (ADS)

    Connolly, J.; Dawers, N. H.

    2005-05-01

    Fault growth and evolution is a complex process, however any predictable pattern will yield important information for assessing seismic hazard and clues to what controls fault behavior. Models of slip rate variation along strike, spacing of active faults, and scaling of segment length are investigated using data from faults located within the parabola of seismicity around the Yellowstone hotspot. Based on displacement-length relations and segment size, Cowie and Roberts used fault geometry to estimate along-strike slip rate variation in their 2001 paper (JSG,23,1901-1915). Following their model, along-strike slip rate profiles were calculated for three active normal faults: the Beaverhead, Lemhi, and Lost River faults. Though the method yields estimated slip rates, the results roughly mirror along-strike variation in total displacement, because the three faults are similar in size and age. The profiles indicate that the Beaverhead is underdisplaced, i.e. having a low slip rate relative to its length. This suggests that segment linkage occurred later in the development of the Beaverhead than in the others. Cowie and Roberts also proposed a model for fault spacing based on initial fault length and spacing, and maximum length and spacing of fully developed fault systems. Fault spacing is important in determining incidence and magnitude of fault movement. If the distance between faults is too small, strain becomes localized along one while the other exhibits a decrease in seismicity until no activity occurs. In practice it is impossible to know if the distance between the largest faults represents maximum fault spacing, because the fault population is still active and evolving; thus, it is difficult to test or implement the method. A relationship was found among faults within the study area, where spacing of adjacent active faults is proportional to the sums of their lengths. It was also observed that average segment length increases with increasing total fault length

  4. Slip distributions on active normal faults measured from Terrestrial Laser Scan (TLS) data and field mapping of geomorphic offsets: An example from L'Aquila, Italy, and implications for modeling seismic moment release

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. W.; Roberts, G.; McCaffrey, K. J.; Cowie, P. A.; Faure Walker, J.; Papanikolaou, I.; Phillips, R. J.; Michetti, A.; Vittori, E.

    2012-12-01

    Surface slip distributions for an active normal fault in Italy have been measured using terrestrial laser scanning (TLS), concentrating on offsets developed since 15 ±3 ka and for 2 palaeoearthquake ruptures, in order to assess the impact of spatial changes in fault orientation and kinematics on sub-surface slip distributions that control seismic moment release. The southeastern half of the surface trace of the Campo Felice active normal fault near the city of L'Aquila, central Italy, was scanned with TLS to define the vertical and horizontal offsets of geomorphic slopes that formed during the last glacial maximum (15 ±3 ka) from the center of the fault to its southeastern tip. Field measurements were made to define the strike and dip of the fault plane and plunge and plunge direction of the slip vector from striations on slickensides. Throw measurements from 250 TLS-derived scarp profiles were analyzed using the crossint cross section interpretation program developed by the authors specifically for this study. Field data of fault kinematics from 43 sites were combined with the TLS-derived throw measurements using a modification of the Kostrov equations to calculate the magnitude and directions of the horizontal principle strain-rates. The studied 5 km long portion of the fault has an overall strike of 140°, but has a prominent bend where the strike is 100-140°, where the fault has linked across a former left-stepping relay-zone which had an along strike length of ~600 m and across strike width of ~300 m. Throw-rates defined by TLS-derived profiles across a 15 ±3 ka bedrock fault scarp decrease linearly from 0.95 ±0.025 mm/yr at the fault center through 0.5 ±0.025 mm/yr to zero at the fault tip, except in the position of the prominent bend where throws rates increase by 0.15 ±0.025 mm/yr over a distance of ~1 km. The vertical co-seismic offsets averaged between two palaeoearthquake ruptures that manifest themselves as fresh stripes of rock at the base of

  5. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    NASA Astrophysics Data System (ADS)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  6. Influence of Transcontinental arch on Cretaceous listric-normal faulting, west flank, Denver basin

    SciTech Connect

    Davis, T.L.

    1983-08-01

    Seismic studies along the west flank of the Denver basin near Boulder and Greeley, Colorado illustrate the interrelationship between shallow listric-normal faulting in the Cretaceous and deeper basement-controlled faulting. Deeper fault systems, primarily associated with the Transcontinental arch, control the styles and causative mechanisms of listric-normal faulting that developed in the Cretaceous. Three major stratigraphic levels of listric-normal faulting occur in the Boulder-Greeley area. These tectonic sensitive intervals are present in the following Cretaceous formations: Laramie-Fox Hills-upper Pierre, middle Pierre Hygiene zone, and the Niobrara-Carlile-Greenhorn. Documentation of the listric-normal fault style reveals a Wattenberg high, a horst block or positive feature of the greater Transcontinental arch, was active in the east Boulder-Greeley area during Cretaceous time. Paleotectonic events associated with the Wattenberg high are traced through analysis of the listric-normal fault systems that occur in the area. These styles are important to recognize because of their stratigraphic and structural influence on Cretaceous petroleum reservoir systems in the Denver basin. Similar styles of listric-normal faulting occur in the Cretaceous in many Rocky Mountain foreland basins.

  7. Tectonic geomorphology of a large normal fault: Akşehir fault, SW Turkey

    NASA Astrophysics Data System (ADS)

    Topal, Savaş; Keller, Edward; Bufe, Aaron; Koçyiğit, Ali

    2016-04-01

    In order to better understand the activity of the Akşehir normal fault in SW Turkey and the associated seismic hazard, we investigated the tectonic geomorphology of a 60-km stretch of the 100-km-long Akşehir fault block. The fault can be separated into seven geomorphic segments (1 to 7 from NW to SE) along the mountain front. Segment length varies from about 9 to 14 km, and relief of the horst block varies from about 0.6 km in the SE to 1.0 km in the NW. Analysis of the tectonic geomorphology of 32 drainage basins and mountain front facets using a combination of geomorphic indices reveals a general pattern of high slip rates in the northern and central segments and low slip rates in the southern, probably older, segments. We show that mountain front sinuosity varies from about 1.1 to 1.4 on segments S1-S6 to 2.4 on segment S7, suggesting that the six northern segments are more active than the southernmost segment. Similarly, χ analysis and slope-area analysis of streams reveal a pattern of steepest channels draining the central and northern segments of the horst. The ratio of valley floor width to valley height varies from 0.2 to 0.6, which are typical values for tectonically active mountain fronts; and alluvial fans along segments S1, S2, and S4 are back-tilted. Finally, we show that (1) shapes of the ~ 100-900m high mountain front facets are mostly triangular (~ 80%) and partly trapezoidal (~ 20%); (2) facet slopes range from 6 to 22°; (3) facets at the NW and SE segment ends are larger than the intervening facets; and (4) steepest facets occur along the central segments. Uplift rates estimated from the slope of mountain front facets range from about 0.06 m/ky on the southernmost fault segment (S7) to 0.23 m/ky on the more central S5 and 0.16 m/ky on the northern segment (S1). The estimated pattern of uplift is consistent with the pattern of geomorphic indices. The vertical relief of the facets suggests that uplift of the mountain front initiated in the late

  8. Creep and locking of a low-angle normal fault: Insights from the Altotiberina fault in the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Anderlini, L.; Serpelloni, E.; Belardinelli, M. E.

    2016-05-01

    While low-angle normal faults have been recognized worldwide from geological studies, whether these structures are active or capable of generating big earthquakes is still debated. We provide new constraints on the role and modes of the Altotiberina fault (ATF) in accommodating extension in the Northern Apennines. We model GPS velocities to study block kinematics, faults slip rates and interseismic coupling of the ATF, which is active and accounts, with its antithetic fault, for a large part of the observed chain normal 3 mm/yr tectonic extension. A wide portion of the ATF creeps at the long-term slip rate (1.7 ± 0.3 mm/yr), but the shallow locked portions are compatible with M > 6.5 earthquakes. We suggest that positive stress accumulation due to ATF creep is most likely released by more favorable oriented splay faults, whose rupture may propagate downdip along low-angle normal fault surface and reduce the probability of occurrence of a seismic rupture of the shallower locked portion.

  9. Porosity variations in and around normal fault zones: implications for fault seal and geomechanics

    NASA Astrophysics Data System (ADS)

    Healy, David; Neilson, Joyce; Farrell, Natalie; Timms, Nick; Wilson, Moyra

    2015-04-01

    Porosity forms the building blocks for permeability, exerts a significant influence on the acoustic response of rocks to elastic waves, and fundamentally influences rock strength. And yet, published studies of porosity around fault zones or in faulted rock are relatively rare, and are hugely dominated by those of fault zone permeability. We present new data from detailed studies of porosity variations around normal faults in sandstone and limestone. We have developed an integrated approach to porosity characterisation in faulted rock exploiting different techniques to understand variations in the data. From systematic samples taken across exposed normal faults in limestone (Malta) and sandstone (Scotland), we combine digital image analysis on thin sections (optical and electron microscopy), core plug analysis (He porosimetry) and mercury injection capillary pressures (MICP). Our sampling includes representative material from undeformed protoliths and fault rocks from the footwall and hanging wall. Fault-related porosity can produce anisotropic permeability with a 'fast' direction parallel to the slip vector in a sandstone-hosted normal fault. Undeformed sandstones in the same unit exhibit maximum permeability in a sub-horizontal direction parallel to lamination in dune-bedded sandstones. Fault-related deformation produces anisotropic pores and pore networks with long axes aligned sub-vertically and this controls the permeability anisotropy, even under confining pressures up to 100 MPa. Fault-related porosity also has interesting consequences for the elastic properties and velocity structure of normal fault zones. Relationships between texture, pore type and acoustic velocity have been well documented in undeformed limestone. We have extended this work to include the effects of faulting on carbonate textures, pore types and P- and S-wave velocities (Vp, Vs) using a suite of normal fault zones in Malta, with displacements ranging from 0.5 to 90 m. Our results show a

  10. Does magmatism influence low-angle normal faulting?

    USGS Publications Warehouse

    Parsons, Thomas E.; Thompson, George A.

    1993-01-01

    Synextensional magmatism has long been recognized as a ubiquitous characteristic of highly extended terranes in the western Cordillera of the United States. Intrusive magmatism can have severe effects on the local stress field of the rocks intruded. Because a lower angle fault undergoes increased normal stress from the weight of the upper plate, it becomes more difficult for such a fault to slide. However, if the principal stress orientations are rotated away from vertical and horizontal, then a low-angle fault plane becomes more favored. We suggest that igneous midcrustal inflation occurring at rates faster than regional extension causes increased horizontal stresses in the crust that alter and rotate the principal stresses. Isostatic forces and continued magmatism can work together to create the antiformal or domed detachment surface commonly observed in the metamorphic core complexes of the western Cordillera. Thermal softening caused by magmatism may allow a more mobile mid-crustal isostatic response to normal faulting.

  11. Microroughness Variation with Inferred Changes in Fault-Normal Stress Along a Pseudotachylyte-Bearing Fault

    NASA Astrophysics Data System (ADS)

    Resor, P. G.; Shervais, K.; Di Toro, G.; Griffith, W. A.

    2014-12-01

    Experimental simulations of earthquake-like conditions reveal a significant decrease in effective steady-state friction during dynamic slip. Unlike static friction, the effective dynamic friction coefficient has a clear dependence on the applied normal stress, typical of lubrication. In the case of melt generation it has been hypothesized that the steady state represents a balance between melt generation, melt extrusion, and fault surface microtopography. We have undertaken an investigation of a pseudotachylyte-bearing fault zone to determine if similar relationships between fault-normal stress and fault zone geometry result from natural earthquake slip. The study area is a single fault strand with ~60 cm of slip within the Gole Larghe Fault Zone, Italy. At the outcrop scale, this strand is distinctly wavy with contractional and extensional bends as well as relatively straight (neutral) sections. In order to quantify the pseudotachylyte geometry and microroughness of fault surfaces we collected cm-scale cores from locations along the fault that we infer to have experienced different fault-normal stress during slip. The internal geometry of the cores was imaged with ~0.03 mm resolution using high-resolution x-ray computed tomography (CT). The pseudotachylyte-bearing fault zone was then segmented from the CT volume by combining manual interpretation with gradient-based edge detection. Finally, the microroughness of the fault zone surfaces (contact between pseudotachylyte and wall rock) was quantified using Fourier spectral analysis. Both the geometry and microroughness of the fault zone vary with inferred fault-normal stress. Regions of low stress have thicker pseudotachylyte (up to 5.080 mm) and are rougher at short wavelengths (0.01 mm). Regions of high stress are thinner (as low as 0.256 mm) and are smoother at short wavelengths. At wavelengths near the grain-scale (1 mm) spectral power is poorly correlated with stress, indicating that the scaling of roughness

  12. Packaged Fault Model for Geometric Segmentation of Active Faults Into Earthquake Source Faults

    NASA Astrophysics Data System (ADS)

    Nakata, T.; Kumamoto, T.

    2004-12-01

    In Japan, the empirical formula proposed by Matsuda (1975) mainly based on the length of the historical surface fault ruptures and magnitude, is generally applied to estimate the size of future earthquakes from the extent of existing active faults for seismic hazard assessment. Therefore validity of the active fault length and defining individual segment boundaries where propagating ruptures terminate are essential and crucial to the reliability for the accurate assessments. It is, however, not likely for us to clearly identify the behavioral earthquake segments from observation of surface faulting during the historical period, because most of the active faults have longer recurrence intervals than 1000 years in Japan. Besides uncertainties of the datasets obtained mainly from fault trenching studies are quite large for fault grouping/segmentation. This is why new methods or criteria should be applied for active fault grouping/segmentation, and one of the candidates may be geometric criterion of active faults. Matsuda (1990) used _gfive kilometer_h as a critical distance for grouping and separation of neighboring active faults. On the other hand, Nakata and Goto (1998) proposed the geometric criteria such as (1) branching features of active fault traces and (2) characteristic pattern of vertical-slip distribution along the fault traces as tools to predict rupture length of future earthquakes. The branching during the fault rupture propagation is regarded as an effective energy dissipation process and could result in final rupture termination. With respect to the characteristic pattern of vertical-slip distribution, especially with strike-slip components, the up-thrown sides along the faults are, in general, located on the fault blocks in the direction of relative strike-slip. Applying these new geometric criteria to the high-resolution active fault distribution maps, the fault grouping/segmentation could be more practically conducted. We tested this model

  13. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones

    USGS Publications Warehouse

    Choy, G.L.; Kirby, S.H.

    2004-01-01

    The behavior of apparent stress for normal-fault earthquakes at subduction zones is derived by examining the apparent stress (?? a = ??Es/Mo, where E s is radiated energy and Mo is seismic moment) of all globally distributed shallow (depth, ?? 1 MPa) are also generally intraslab, but occur where the lithosphere has just begun subduction beneath the overriding plate. They usually occur in cold slabs near trenches where the direction of plate motion across the trench is oblique to the trench axis, or where there are local contortions or geometrical complexities of the plate boundary. Lower ??a (< 1 MPa) is associated with events occurring at the outer rise (OR) complex (between the OR and the trench axis), as well as with intracrustal events occurring just landward of the trench. The average apparent stress of intraslab-normal-fault earthquakes is considerably higher than the average apparent stress of interplate-thrust-fault earthquakes. In turn, the average ?? a of strike-slip earthquakes in intraoceanic environments is considerably higher than that of intraslab-normal-fault earthquakes. The variation of average ??a with focal mechanism and tectonic regime suggests that the level of ?? a is related to fault maturity. Lower stress drops are needed to rupture mature faults such as those found at plate interfaces that have been smoothed by large cumulative displacements (from hundreds to thousands of kilometres). In contrast, immature faults, such as those on which intraslab-normal-fault earthquakes generally occur, are found in cold and intact lithosphere in which total fault displacement has been much less (from hundreds of metres to a few kilometres). Also, faults on which high ??a oceanic strike-slip earthquakes occur are predominantly intraplate or at evolving ends of transforms. At subduction zones, earthquakes occurring on immature faults are likely to be more hazardous as they tend to generate higher amounts of radiated energy per unit of moment than

  14. Active Fault Characterization in the Urban Area of Vienna

    NASA Astrophysics Data System (ADS)

    Decker, Kurt; Grupe, Sabine; Hintersberger, Esther

    2016-04-01

    The identification of active faults that lie beneath a city is of key importance for seismic hazard assessment. Fault mapping and characterization in built-up areas with strong anthropogenic overprint is, however, a challenging task. Our study of Quaternary faults in the city of Vienna starts from the re-assessment of a borehole database of the municipality containing several tens of thousands of shallow boreholes. Data provide tight constraints on the geometry of Quaternary deposits and highlight several locations with fault-delimited Middle to Late Pleistocene terrace sediments of the Danube River. Additional information is obtained from geological descriptions of historical outcrops which partly date back to about 1900. The latter were found to be particularly valuable by providing unprejudiced descriptions of Quaternary faults, sometimes with stunning detail. The along-strike continuations of some of the identified faults are further imaged by industrial 2D/3D seismic acquired outside the city limits. The interpretation and the assessment of faults identified within the city benefit from a very well constrained tectonic model of the active Vienna Basin fault system which derived from data obtained outside the city limits. This data suggests that the urban faults are part of a system of normal faults compensating fault-normal extension at a releasing bend of the sinistral Vienna Basin Transfer Fault. Slip rates estimated for the faults in the city are in the range of several hundredths of millimetres per year and match the slip rates of normal faults that were trenched outside the city. The lengths/areas of individual faults estimated from maps and seismic reach up to almost 700 km² suggesting that all of the identified faults are capable of producing earthquakes with magnitudes M>6, some with magnitudes up to M~6.7.

  15. Quaternary normal faulting in southeastern Sicily (Italy):a seismic source for the 1693 large earthquake

    NASA Astrophysics Data System (ADS)

    Bianca, Marcello; Monaco, Carmelo; Tortorici, Luigi; Cernobori, Licio

    1999-11-01

    We present geological and morphological data, combined with an analysis of seismic reflection lines across the Ionian offshore zone and information on historical earthquakes, in order to yield new constraints on active faulting in southeastern Sicily. This region, one of the most seismically active of the Mediterranean, is affected by WNW-ESE regional extension producing normal faulting of the southern edge of the Siculo-Calabrian rift zone. Our data describe two systems of Quaternary normal faults, characterized by different ages and related to distinct tectonic processes. The older NW-SE-trending normal fault segments developed up to ~400 kyr ago and, striking perpendicular to the main front of the Maghrebian thrust belt, bound the small basins occurring along the eastern coast of the Hyblean Plateau. The younger fault system is represented by prominent NNW-SSE-trending normal fault segments and extends along the Ionian offshore zone following the NE-SW-trending Avola and Rosolini-Ispica normal faults. These faults are characterized by vertical slip rates of 0.7-3.3 mm yr-1 and might be associated with the large seismic events of January 1693. We suggest that the main shock of the January 1693 earthquakes (M~7) could be related to a 45 km long normal fault with a right-lateral component of motion. A long-term net slip rate of about 3.7 mm yr-1 is calculated, and a recurrence interval of about 550+/-50 yr is proposed for large events similar to that of January 1693.

  16. Centrifuge modeling of buried continuous pipelines subjected to normal faulting

    NASA Astrophysics Data System (ADS)

    Moradi, Majid; Rojhani, Mahdi; Galandarzadeh, Abbas; Takada, Shiro

    2013-03-01

    Seismic ground faulting is the greatest hazard for continuous buried pipelines. Over the years, researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method. The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches. This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting. The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods. The influence of factors such as faulting offset, burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated. Finally, the tensile rupture of a pipeline due to normal faulting is investigated.

  17. Using outcrop observations, 3D discrete feature network (DFN) fluid-flow simulations, and subsurface data to constrain the impact of normal faults and opening mode fractures on fluid flow in an active asphalt mine

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Aydin, A.; Durlofsky, L.; Karimi-Fard, M.; Brownlow, D. T.

    2008-12-01

    An active quarry near Uvalde, TX which mines asphaltic limestone from the Anacacho Formation offers an ideal setting to study fluid-flow in fractured and faulted carbonate rocks. Semi-3D exposures of normal faults and fractures in addition to visual evidence of asphalt concentrations in the quarry help constrain relationships between geologic structures and the flow and transport of hydrocarbons. Furthermore, a subsurface dataset which includes thin sections and measured asphalt concentration from the surrounding region provides a basis to estimate asphalt concentrations and constrain the depositional architecture of both the previously mined portions of the quarry and the un-mined surrounding rock volume. We characterized a series of normal faults and opening mode fractures at the quarry and documented a correlation between the intensity and distribution of these structures with increased concentrations of asphalt. The three-dimensional depositional architecture of the Anacacho Formation was characterized using the subsurface thin sections. Then outcrop exposures of faults, fractured beds, and stratigraphic contacts were mapped and their three-dimensional positions were recorded with differential gps devices. These two datasets were assimilated and a quarry-scale, geologically realistic, three-dimensional Discrete Feature Network (DFN) which represents the geometries and material properties of the matrix, normal faults, and fractures within the quarry was constructed. We then performed two-point flux, control-volume finite- difference fluid-flow simulations with the DFN to investigate the 3D flow and transport of fluids. The results were compared and contrasted with available asphalt concentration estimates from the mine and the aforementioned data from the surrounding drill cores.

  18. Kinematically Coupled Strike-Slip and Normal Faults in the Lake Mead Strike-Slip Fault System, Southeast Nevada

    NASA Astrophysics Data System (ADS)

    Kattenhorn, S. A.; Marshall, S. T.; Cooke, M. L.

    2008-12-01

    The Lake Mead fault system consists of a ~95 km long, northeast-trending zone of strike-slip faults of Miocene age that accommodate a total left-lateral offset of 20-65 km. We use a combination of detailed field mapping and numerical modeling to show that a previously unnamed left-lateral strike-slip segment of the Lake Mead fault system and a dense cluster of dominantly west-dipping normal faults acted in concert to accommodate regional left-lateral offset. We suggest that the strike-slip fault that we refer to as the Pinto Ridge fault: (1) was kinematically related to other faults of the Lake Mead fault system; (2) was responsible for the creation of the normal fault cluster at Pinto Ridge; and (3) utilized these normal faults as linking structures between separate strike-slip fault segments to create a longer, through-going fault. Results from numerical models demonstrate that the observed location and curving strike patterns of the normal fault cluster is consistent with the faults having formed as secondary structures as the result of the perturbed stress field around the slipping Pinto Ridge fault. Comparison of mechanical efficiency of various normal fault geometries within extending terranes suggests that the observed west dip of normal faults reflects a west- dipping anisotropy at depth, such as a detachment. The apparent terminations of numerous strike-slip faults of the Lake Mead fault system into west-dipping normal faults suggest that a west-dipping detachment may be regionally coherent.

  19. The Cordillera Blanca normal fault and its contribution to the Andean topographic evolution (northern Peru)

    NASA Astrophysics Data System (ADS)

    Margirier, Audrey; Robert, Xavier; Schwartz, Stéphane; Audin, Laurence

    2015-04-01

    Nature and localization of Quaternary tectonics remains largely unconstrained in Peruvian Andes as well as the mechanism driving rock uplift. The Cordillera Blanca normal fault accommodates extension in a convergent context. The fault system trends parallel to the subduction zone, just above the Peruvian flat-slab, and separate the Cordilleras Blanca and Negra. The Cordillera Blanca batholith (8-5 Ma) is an elongated pluton, emplaced at ~6 km depth in the Jurassic sedimentary country rocks. The Cordillera Blanca range (6768 m) that comprises the highest Peruvian peak built the footwall of the fault. The ~200 km-long fault has showed ~4500 m of vertical displacement since 5 Ma. This normal fault is described as active despite the lack of historical seismicity and constitutes a striking singularity within the prevailing compressional setting of the Andean orogeny. This region is a perfect target to explore the contribution of large normal fault in relief building. Our goals are to determine if the fault was pre-existing before the Cordillera Blanca batholith emplacement, when it has been reactivated and how does it interact with the batholith exhumation. For that purpose, we focus on brittle deformation analysis from a regional scale (faults trends) to outcrop scale (fault planes, striaes and kinematics). We present here new structural data and focal mechanisms indicating a senestral transtensive component on the Cordillera Blanca normal fault and a regional extensional regime in the Cordillera Negra area. We compare the paleotensors obtained from the inversion of the microstructural data and focal mechanisms with the exhumation history deduced from the thermochronological data to constrain the role of the normal fault in relation with relief building. We propose that the Cordillera Blanca normal fault is an inherited tectonic feature reactivated in transtension after the slab flattening at ~8 Ma. The differential exhumation of the Cordillera Blanca with respect to

  20. Spatiotemporal analysis of Quaternary normal faults in the Northern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.; Reed, P.

    2010-12-01

    The mid-Tertiary Basin-and-Range extensional tectonic event developed most of the normal faults that bound the ranges in the northern Rocky Mountains within Montana, Wyoming, and Idaho. The interaction of the thermally induced stress field of the Yellowstone hot spot with the existing Basin-and-Range fault blocks, during the last 15 my, has produced a new, spatially and temporally variable system of normal faults in these areas. The orientation and spatial distribution of the trace of these hot-spot induced normal faults, relative to earlier Basin-and-Range faults, have significant implications for the effect of the temporally varying and spatially propagating thermal dome on the growth of new hot spot related normal faults and reactivation of existing Basin-and-Range faults. Digitally enhanced LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 4 and 5 Thematic Mapper (TM) bands, with spatial resolution of 30 m, combined with analytical GIS and geological techniques helped in determining and analyzing the lineaments and traces of the Quaternary, thermally-induced normal faults in the study area. Applying the color composite (CC) image enhancement technique, the combination of bands 3, 2 and 1 of the ETM+ and TM images was chosen as the best statistical choice to create a color composite for lineament identification. The spatiotemporal analysis of the Quaternary normal faults produces significant information on the structural style, timing, spatial variation, spatial density, and frequency of the faults. The seismic Quaternary normal faults, in the whole study area, are divided, based on their age, into four specific sets, which from oldest to youngest include: Quaternary (>1.6 Ma), middle and late Quaternary (>750 ka), latest Quaternary (>15 ka), and the last 150 years. A density map for the Quaternary faults reveals that most active faults are near the current Yellowstone National Park area (YNP), where most seismically active faults, in the past 1.6 my

  1. Fault zone structure and inferences on past activities of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.

    2010-12-01

    The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.

  2. The Bear River Fault Zone, Wyoming and Utah: Complex Ruptures on a Young Normal Fault

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Hecker, S.; Haproff, P.; Beukelman, G.; Erickson, B.

    2012-12-01

    The Bear River fault zone (BRFZ), a set of normal fault scarps located in the Rocky Mountains at the eastern margin of Basin and Range extension, is a rare example of a nascent surface-rupturing fault. Paleoseismic investigations (West, 1994; this study) indicate that the entire neotectonic history of the BRFZ may consist of two large surface-faulting events in the late Holocene. We have estimated a maximum per-event vertical displacement of 6-6.5 m at the south end of the fault where it abuts the north flank of the east-west-trending Uinta Mountains. However, large hanging-wall depressions resulting from back rotation, which front scarps that locally exceed 15 m in height, are prevalent along the main trace, obscuring the net displacement and its along-strike distribution. The modest length (~35 km) of the BRFZ indicates ruptures with a large displacement-to-length ratio, which implies earthquakes with a high static stress drop. The BRFZ is one of several immature (low cumulative displacement) normal faults in the Rocky Mountain region that appear to produce high-stress drop earthquakes. West (1992) interpreted the BRFZ as an extensionally reactivated ramp of the late Cretaceous-early Tertiary Hogsback thrust. LiDAR data on the southern section of the fault and Google Earth imagery show that these young ruptures are more extensive than currently mapped, with newly identified large (>10m) antithetic scarps and footwall graben. The scarps of the BRFZ extend across a 2.5-5.0 km-wide zone, making this the widest and most complex Holocene surface rupture in the Intermountain West. The broad distribution of Late Holocene scarps is consistent with reactivation of shallow bedrock structures but the overall geometry of the BRFZ at depth and its extent into the seismogenic zone are uncertain.

  3. Hanging-wall deformation above a normal fault: sequential limit analyses

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoping; Leroy, Yves M.; Maillot, Bertrand

    2015-04-01

    The deformation in the hanging wall above a segmented normal fault is analysed with the sequential limit analysis (SLA). The method combines some predictions on the dip and position of the active fault and axial surface, with geometrical evolution à la Suppe (Groshong, 1989). Two problems are considered. The first followed the prototype proposed by Patton (2005) with a pre-defined convex, segmented fault. The orientation of the upper segment of the normal fault is an unknown in the second problem. The loading in both problems consists of the retreat of the back wall and the sedimentation. This sedimentation starts from the lowest point of the topography and acts at the rate rs relative to the wall retreat rate. For the first problem, the normal fault either has a zero friction or a friction value set to 25o or 30o to fit the experimental results (Patton, 2005). In the zero friction case, a hanging wall anticline develops much like in the experiments. In the 25o friction case, slip on the upper segment is accompanied by rotation of the axial plane producing a broad shear zone rooted at the fault bend. The same observation is made in the 30o case, but without slip on the upper segment. Experimental outcomes show a behaviour in between these two latter cases. For the second problem, mechanics predicts a concave fault bend with an upper segment dip decreasing during extension. The axial surface rooting at the normal fault bend sees its dips increasing during extension resulting in a curved roll-over. Softening on the normal fault leads to a stepwise rotation responsible for strain partitioning into small blocks in the hanging wall. The rotation is due to the subsidence of the topography above the hanging wall. Sedimentation in the lowest region thus reduces the rotations. Note that these rotations predicted by mechanics are not accounted for in most geometrical approaches (Xiao and Suppe, 1992) and are observed in sand box experiments (Egholm et al., 2007, referring

  4. Uniform pattern of normal faulting at the temporally distributed centers of eruption along the path of the Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Davarpanah, Armita; Babaie, Hassan

    2016-04-01

    The northeasterly migration of the Yellowstone hotspot (YHS) has led both to the successive eruption of lava from a temporally ordered set of calderas, and related thermally-induced normal faulting along the Snake River Plain (SRP) over the past 16.6 Ma. We have applied a series of structural and statistical methods to analyze the spatial distribution and orientation of the normal faults to understand the kinematics of the mid-Tertiary-Quaternary faulting event along the SRP in the northern Rockies. The azimuths of the linear directional mean (LDM) and the directional (autocorrelation) anisotropy ellipses in the semivariograms, applying Ordinary Kriging, for different sets of normal fault traces give an estimate for the horizontal component of extension for normal faulting. The sub-parabolic spatial pattern of the normal fault LDMs, and their sub-parallel alignment with the minor axes of the Standard Deviation Ellipses (SDEs) in and around different caldera, suggest uniform normal faulting during thermally-induced extensions along the SRP. The asymmetric, sub-parabolic distribution of the spatial trajectories (form lines) of the LDMs and the major axes of the directional (anisotropy) ellipses of the traces of normal faults in the youngest three calderas are similar to the reported parabolic distribution of earthquake epicenters along active normal faults around the YHS. The parallelism of the axis of the sub-parabolic pattern with the trajectories of the LDMs, the major axes of the directional anisotropy ellipses, and the deduced extension directions for each caldera, suggest systematic and progressive normal faulting due to the thermal regime of the hotspot as it migrated to the northeast. This implies that the age of normal faulting progressively decreases to the northeast.

  5. Fault stability under conditions of variable normal stress

    USGS Publications Warehouse

    Dieterich, J.H.; Linker, M.F.

    1992-01-01

    The stability of fault slip under conditions of varying normal stress is modelled as a spring and slider system with rate- and state-dependent friction. Coupling of normal stress to shear stress is achieved by inclining the spring at an angle, ??, to the sliding surface. Linear analysis yields two conditions for unstable slip. The first, of a type previously identified for constant normal stress systems, results in instability if stiffness is below a critical value. Critical stiffness depends on normal stress, constitutive parameters, characteristic sliding distance and the spring angle. Instability of the first type is possible only for velocity-weakening friction. The second condition yields instability if spring angle ?? <-cot-1??ss, where ??ss is steady-state sliding friction. The second condition can arise under conditions of velocity strengthening or weakening. Stability fields for finite perturbations are investigated by numerical simulation. -Authors

  6. Architectural and microstructural characterization of a seismogenic normal fault in dolostones (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Demurtas, Matteo; Fondriest, Michele; Clemenzi, Luca; Balsamo, Fabrizio; Storti, Fabrizio; Di Toro, Giulio

    2015-04-01

    Fault zones cutting carbonate sequences represent significant seismogenic sources worldwide (e.g. L'Aquila 2009, MW 6.1). Though seismological and geophysical techniques (double differences method, trapped waves, etc.) allow us to investigate down to the decametric scale the structure of active fault zones, further geological field surveys and microstructural studies of exhumed seismogenic fault zones are required to support interpretation of geophysical data, quantify the geometry of fault zones and identify the fault processes active during the seismic cycle. Here we describe the architecture (i.e. fault geometry and fault rock distribution) of the well-exposed footwall-block of the Campo Imperatore Fault Zone (CIFZ) by means of remote sensed analyses, field surveys, mineralogical (XRD, micro-Raman spectroscopy) and microstructural (FE-SEM, optical microscope cathodoluminescence) investigations. The CIFZ dips 58° towards N210 and its strike mimics that of the arcuate Gran Sasso Thrust Belt (Central Apennines). The CIFZ was exhumed from 2-3 km depth and accommodated a normal throw of ~2 km starting from the Early-Pleistocene. In the studied area, the CIFZ puts in contact the Holocene deposits at the hangingwall with dolomitized Jurassic carbonate platform successions (Calcare Massiccio) at the footwall. From remote sensed analyses, structural lineaments both inside and outside the CIFZ have a typical NW-SE Apenninic strike, which is parallel to the local trend of the Gran Sasso Thrust. Based on the density of the fracture/fault network and the type of fault zone rocks, we distinguished four main structural domains within the ~300 m thick CIFZ footwall-block, which include (i) a well-cemented (white in color) cataclastic zone (up to ~40 m thick) at the contact with the Holocene deposits, (ii) a well-cemented (brown to grey in color) breccia zone (up to ~15 m thick), (iii) an high strain damage zone (fracture spacing < 2-3 cm), and (iv) a low strain damage zone

  7. Diverse Pseudotachylites Associated with the Whipple Detachment Fault: Implications for Seismogenesis on Low-Angle Normal Faults

    NASA Astrophysics Data System (ADS)

    Gentry, E.; Behr, W. M.; Wafforn, S.

    2014-12-01

    The Whipple detachment fault in E. California is a classic example of a large-displacement (~40 km), low-angle normal fault formed during Miocene Basin and Range extension. The footwall of this fault exhibits a range of mid-crustal rocks deformed near the brittle-ductile transition, including mylonites, cataclasites, and pseudotachylites, which provide insight into mid-crustal rheology from steady-state to seismic strain rates. Here we focus on a diverse array of pseudotachylites discovered in the Whipple footwall that have not been previously described. We examine the structural contexts, morphologies, and compositions of the pseudotachylites and discuss their implications for seismogenesis on continental low-angle normal faults. Veins that we interpret to be pseudotachylites occur as planar, anastomosing, and reservoir-like injections found along the margins of dikes, along mini-detachments kinematically linked to the Whipple fault, and within a few tens of centimeters below the silicified, erosionally resistant "microbreccia ledge" of the main detachment. The orientations of the vein generation surfaces are dominantly shallowly E-dipping, subparallel to the detachment fault itself; some occur on higher angle normal faults that sole into low angle shear zones. Veins were not found cutting the microbreccia ledge itself, suggesting that comminution and silicification post-dates pseudotachylite formation. In thin section, the veins exhibit a range in composition and degree of preservation. Some contain lath-shaped spherulites, others contain opaque, microcrystalline matrices with relict flow banding and embayed, primarily quartz clasts. Some pseudotachylite veins grade into cataclasites at their margins, suggesting cataclasis was precursory to vein formation, whereas others cut pristine mylonites with no evidence of earlier brittle deformation. Those that cut pristine mylonites contain clasts with dynamically recrystallized quartz grains with diameters of 5-7

  8. Faceted spurs at normal fault scarps: Insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Petit, C.; Gunnell, Y.; Gonga-Saholiariliva, N.; Meyer, B.; SéGuinot, J.

    2009-05-01

    We present a combined surface processes and tectonic model which allows us to determine the climatic and tectonic parameters that control the development of faceted spurs at normal fault scarps. Sensitivity tests to climatic parameter values are performed. For a given precipitation rate, when hillslope diffusion is high and channel bedrock is highly resistant to erosion, the scarp is smooth and undissected. When, instead, the bedrock is easily eroded and diffusion is limited, numerous channels develop and the scarp becomes deeply incised. Between these two end-member states, diffusion and incision compete to produce a range of scarp morphologies, including faceted spurs. The sensitivity tests allow us to determine a dimensionless ratio of erosion, f, for which faceted spurs can develop. This study evidences a strong dependence of facet slope angle on throw rate for throw rates between 0.4 and 0.7 mm/a. Facet height is also shown to be a linear function of fault throw rate. Model performance is tested on the Wasatch Fault, Utah, using topographic, geologic, and seismologic data. A Monte Carlo inversion on the topography of a portion of the Weber segment shows that the 5 Ma long development of this scarp has been dominated by a low effective precipitation rate (˜1.1 m/a) and a moderate diffusion coefficient (0.13 m2/a). Results demonstrate the ability of our model to estimate normal fault throw rates from the height of triangular facets and to retrieve the average long-term diffusion and incision parameters that prevailed during scarp evolution using an accurate 2-D misfit criterion.

  9. Unusual low-angle normal fault earthquakes after the 2011 Tohoku-oki megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Yagi, Yuji; Okuwaki, Ryo; Enescu, Bogdan; Fukahata, Yukitoshi

    2015-06-01

    A few low-angle normal fault earthquakes at approximately the depth of the plate interface, with a strike nearly parallel to the trench axis, were detected immediately after the 2011 Tohoku-oki earthquake. After that, however, no such normal fault events have been observed until the occurrence of the 2014 M W 6.6 Fukushima-oki earthquake. Here we analyze the teleseismic body waveforms of the 2014 Fukushima-oki earthquake. We first compare the observed teleseismic body waves of the 2014 Fukushima-oki earthquake with those of the largest previous low-angle normal fault aftershock ( M W 6.6), which occurred on 12 March 2011, and then estimate the centroid depth and moment tensor solution of the 2014 Fukushima-oki earthquake. The teleseismic body waves and moment tensor solution of the 2014 Fukushima-oki earthquake are similar to those of the 2011 normal fault aftershock, which suggests that the 2014 Fukushima-oki earthquake occurred at a similar depth and had a similar mechanism to that of the 2011 aftershock. We detected five low-angle normal fault aftershocks at approximately the depth of the plate interface, with a strike nearly parallel to the trench axis, and confirmed that all of them except for the 2014 Fukushima-oki earthquake occurred within 17 days after the mainshock. The occurrence of these low-angle normal fault events is likely to reflect the reversal of shear stress due to overshooting of slip during the 2011 Tohoku-oki earthquake. We speculate that a fast but heterogeneous recovery of stress state at the plate interface may explain why these events preferentially occurred immediately after the megathrust event, while one of them occurred with a significant delay. In order to better understand the characteristics of stress state in the crust, we have to carefully observe the ongoing seismic activity around this region.

  10. Normal faulting in the northern Shanxi Grabens, China

    NASA Astrophysics Data System (ADS)

    Middleton, Tim; Walker, Richard; Parsons, Barry; Wang, Weitao; Schwenninger, Jean-Luc; Sherlock, Sarah

    2014-05-01

    The Ordos Plateau forms a piece of non-deforming continental lithosphere in northeastern China. Despite being thousands of kilometres from the nearest plate boundary, numerous devastating earthquakes have been recorded around the margins of the plateau over the past 2000 years. Continental deformation in this part of Asia is believed to be caused by the ongoing collision of India with Eurasia; India is currently moving northwards at 40 mm/a. The rate of deformation around the Ordos Plateau, however, is significantly less; typical slip rates for faults bordering the plateau are of the order of 1 mm/a. This deformation is nonetheless important because the adjacent North China Plain is one of the most densely populated regions on Earth. The combined population of Beijing, Hebei and Shanxi Provinces is in excess of 125 million people-all potentially at risk from future earthquakes. Assessing the seismic hazard is clearly of vital societal importance. The plateau is surrounded by extensional rift systems on all sides, except for the Liupanshan in the southwestern corner, where thrust faulting is dominant. The Hetao Graben lies to the north of the plateau, the Yinchuan Graben to the west, the Weihe Graben to the south and the Shanxi Grabens to the east, where they form an S-shaped series of en-echelon basins some 1200 km long. The northern portion of the Shanxi Grabens is characterised by east-northeast striking normal faults and asymmetric half-grabens with footwall blocks tilted to the south-southeast. GPS measurements in this region are sparse, but the existing data suggests a rate of extension across the northern Shanxi grabens of anywhere between 0 mm/a and 4 mm/a. We have used optically stimulated luminescence dating of sedimentary quartz grains and Ar-Ar dating of basaltic lavas to determine ages for features which have been offset by the faulting. Combined with scarp heights and field measurements of fault dip, this data suggest a total extension rate across the

  11. Illuminating Northern California's Active Faults

    NASA Astrophysics Data System (ADS)

    Prentice, Carol S.; Crosby, Christopher J.; Whitehill, Caroline S.; Arrowsmith, J. Ramón; Furlong, Kevin P.; Phillips, David A.

    2009-02-01

    Newly acquired light detection and ranging (lidar) topographic data provide a powerful community resource for the study of landforms associated with the plate boundary faults of northern California (Figure 1). In the spring of 2007, GeoEarthScope, a component of the EarthScope Facility construction project funded by the U.S. National Science Foundation, acquired approximately 2000 square kilometers of airborne lidar topographic data along major active fault zones of northern California. These data are now freely available in point cloud (x, y, z coordinate data for every laser return), digital elevation model (DEM), and KMZ (zipped Keyhole Markup Language, for use in Google Earth™ and other similar software) formats through the GEON OpenTopography Portal (http://www.OpenTopography.org/data). Importantly, vegetation can be digitally removed from lidar data, producing high-resolution images (0.5- or 1.0-meter DEMs) of the ground surface beneath forested regions that reveal landforms typically obscured by vegetation canopy (Figure 2).

  12. Architecture of a low-angle normal fault zone, southern Basin and Range (SE California)

    NASA Astrophysics Data System (ADS)

    Goyette, J. A.; John, B. E.; Campbell-Stone, E.; Stunitz, H.; Heilbronner, R.; Pec, M.

    2009-12-01

    Exposures of the denuded Cenozoic detachment fault system in the southern Sacramento Mountains (SE California) delimit the architecture of a regional low-angle normal fault, and highlight the evolution of these enigmatic faults. The fault was initiated ~23 Ma in quartzo-feldspathic basement gneiss and granitoids at a low-angle (<20 degrees); isostatic accommodation due to unloading and doming of the footwall continued until ~16 Ma, leading to initiation of a secondary breakaway accommodating up to 5km of additional ENE-directed slip. Minimum-relief structure contours define the fault as a continuous low-angle structure with both slip-parallel (NE) and slip-normal (NW) corrugations. Fault dip of the secondary breakaway is ~7° based on the contour map, and 10-15° measured at outcrop, flattening to <2° down dip. Slip-parallel corrugations plunge NE with wavelengths between 600m and >2km, and amplitudes up to 100m. These corrugations are continuous along their hinges for up to 3.6 km. Damage zone fracture intensity varies both laterally, and perpendicular to the fault plane (over an area of 25km2), decreasing with depth in the footwall, and varies as a function of lithology and proximity to corrugation walls. Deformation is concentrated into narrow damage zones (<4m) where gouge is developed. In contrast, thick damage zones (>100m) are found in areas where low-fracture intensity horses are corralled by sub-horizontal zones of cataclasite (up to 8m) and thick zones of epidote (up to 20cm) and silica-rich alteration (up to 1m). Sub-vertical shear and extension fractures, and sub-horizontal shear fractures/zones dominate the NE side of the core complex. In all cases, sub-vertical fractures verge into or are truncated by low-angle fractures that dominate the top of the damage zone. These low-angle fractures have an antithetic dip to the detachment fault plane. Some sub-vertical fractures become curviplanar close to the fault, where they are folded into parallelism with

  13. Earthquake recurrence on the southern San Andreas modulated by fault-normal stress

    NASA Technical Reports Server (NTRS)

    Palmer, Randy; Weldon, Ray; Humphreys, Eugene; Saucier, Francois

    1995-01-01

    Earthquake recurrence data from the Pallett Creek and Wrightwood paleoseismic sites on the San Andreas fault appear to show temporal variations in repeat interval. We investigate the interaction between strike-slip faults and auxiliary reverse and normal faults as a physical mechanism capable of producing such variations. Under the assumption that fault strength is a function of fault-normal stress (e.g. Byerlee's Law), failure of an auxiliary fault modifies the strength of the strike-slip fault, thereby modulating the recurrence interval for earthquakes. In our finite element model, auxiliary faults are driven by stress accumulation near restraining and releasing bends of a strike-slip fault. Earthquakes occur when fault strength is exceeded and are incorporated as a stress drop which is dependent on fault-normal stress. The model is driven by a velocity boundary condition over many earthquake cycles. Resulting synthetic strike-slip earthquake recurrence data display temporal variations similar to observed paleoseismic data within time windows surrounding auxiliary fault failures. Our simple model supports the idea that interaction between a strike-slip fault and auxiliary reverse or normal faults can modulate the recurrence interval of events on the strike-slip fault, possibly producing short term variations in earthquake recurrence interval.

  14. The 2011 Hawthorne, Nevada, Earthquake Sequence; Shallow Normal Faulting

    NASA Astrophysics Data System (ADS)

    Smith, K. D.; Johnson, C.; Davies, J. A.; Agbaje, T.; Knezevic Antonijevic, S.; Kent, G.

    2011-12-01

    Range front fault at this latitude. At least two faults have been imaged within the sequence; these structures are at shallow depth (3-6 km), strike NE, and dip ~NW. Prior to temporary station installation event depths were poorly constrained, with the nearest network station 25 km from the source area. Early sequence moment tensor solutions show depths are on the order of 2-6 km and locations using the near source stations also confirm the shallow depths of the Hawthorne sequence. S-P times of 0.5 sec and less have been observed on a near-source station, illustrating extremely shallow source depths for some events. Along with the 2011 Hawthorne activity, very shallow depths in Nevada have been observed from near source stations in the 2008 west Reno earthquake sequence (primarily strike-slip faulting; main shock Mw 5.0) and the 1993 Rock Valley sequence in southern NNSS (strike-slip faulting; main shock Mw 4.0). These shallow sequences tend to include high rates of low magnitude earthquakes continuing over several months duration.

  15. Do the Billecocha normal faults (Ecuador) reveal extension due to lithospheric body forces in the northern Andes?

    NASA Astrophysics Data System (ADS)

    Ego, F.; Sébrier, M.; Carey-Gailhardis, E.; Beate, B.

    1996-11-01

    Active compressional and transcurrent structures are widely reported for the entire northern Andes, whereas there is no clear evidence of extensional tectonics in that region. In contrast, both active compressional and extensional structures occur extensively in the Central Andes. Extensional tectonism in the central Andes occurs mainly in high plateaus of large wavelength (≥ 100 km), and is interpreted to have resulted from the effect of compensated high topography at the lithospheric scale. The observation of Holocene normal faults on the low wavelength (≤ 15 km) Billecocha high plateau in the northern Ecuadorian Andes raises a problem. Could the lithospheric body forces be the cause of the normal faulting in a chain with a mean altitude of ≤ 2800 m? Compared to the central Andes, where normal faulting is widely distributed across the chain, normal faulting on the Billecocha plateau is concentrated in a restricted 4-km-wide zone. In addition, normal faulting does not extend further than a few kilometres eastward, where compressive structures have been observed. Considering the local character of the extension, body forces at the lithospheric scale cannot be responsible for this normal faulting, and thus we can preclude a significant lowering of the magnitude of σHmax in the northern Andes with respect to the central Andes. Analysis of these normal faults shows that normal faulting occurred between 10,000 yr and 6000 yr B.P. In addition, the relationship between the geometrical parameters (vertical throw and rupture length) of the major normal fault differs significantly from that given empirically by methods based on scale laws. In such a case, the Billecocha normal faults are unlikely to have a tectonic origin. Various local processes (e.g., gravity gliding, "sackung") that may be possible are contemplated for triggering the normal faulting. In addition, a theoretical simple 2-D model is proposed in where local conditions peculiar to the plateau

  16. Mechanical controls on the spatial and temporal variability of faulting mechanisms in sandstone along the Moab normal fault, Utah

    NASA Astrophysics Data System (ADS)

    Davatzes, N. C.; Aydin, A.

    2003-12-01

    Segmentation is a fundamental characteristic of faults. However, the effect of segmentation on the process of fault development, the architecture of the fault zone, and the properties of faults are poorly understood. Along the Moab fault, a basin scale normal fault with ~1 km of throw in SE Utah, segmentation is associated with localized changes in the density and types of structures associated with faulting in sandstone. Changes in the types of structural elements are associated with fault development by two different mechanisms in sandstone: (1) cataclastic shear failure that produces deformation bands and (2) the repeated formation and subsequent shearing of joints that leads to the formation of a brecciated fault zone. Deformation bands are prevalent along the entire length of the fault system and band density is greatest within relays between normal fault segments that are subjected to a component of strike-parallel contraction. The joints and sheared joints only occur at intersections between normal fault segments and relays that are subjected to strike-parallel extension where they overprint deformation bands. We contend that spatial variation of the faulting mechanisms in sandstone is associated with the stress perturbation around the fault. We used the geometry and kinematics of the fault segments and an estimated burial depth of 2 km to simulate the mechanical behavior of the fault system in linear elastic boundary element models using Poly3D. We looked specifically for changes in the stress state that would cause a transition from deformation band formation to joint formation because joints are the youngest structural elements wherever they occur. Joints form normal to the least compressive principal stress when this stress exceeds the tensile strength of the rock. We also note that cataclasis in deformation bands represent a loss of volume, whereas jointing and breccia formation are dilatant processes. Consequently the mean stress can act as an

  17. Fault Population Analyses in the Eastern California Shear Zone: Insights into the Development of Young, Actively Evolving Plate Boundary Structures

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Dawers, N. H.; Amer, R. M.

    2014-12-01

    Relationships between cumulative fault displacement, slip rate and length, along with fault population statistics are analyzed for faults located within the Eastern California Shear Zone (ECSZ), focusing on areas north of the Garlock fault. Here many faults are geologically young and in an early stage of evolution, while many older and larger faults are also still active. We analyze scaling relationships for both strike-slip and normal faults in order to determine whether the two fault populations share the same properties or not. Cumulative displacement, slip rate and length data are collected from published maps and literature sources. The dataset spans fault lengths from tens of meters to hundreds of kilometers. Results of fault scaling analyses indicate that displacement has a linear relationship with fault length for normal faults in this area over the entire length span, whereas strike-slip faults do not have a clear displacement-length scaling relation. For a given length, the subset of strike-slip faults typically exhibits a much larger displacement than that for the normal faults. The slip rate versus length trends are similar but are considerably more scattered. In addition, we define a subpopulation of normal faults that are kinematically related to the right-lateral strike-slip faults; these have a maximum length set by the spacing between the right-lateral faults. Fault size-frequency distributions also indicate differences between the normal and strike-slip fault populations. Overall, the normal faults have higher ratios of cumulative number to fault length than the strike-slip population does, which we relate to different patterns of localization of faulting. We interpret these trends as reflecting different tectonic histories, with the majority of normal faults being intraplate faults associated with Basin and Range extension and the strike-slip faults being kinematically connected with plate boundary.

  18. Tectonics From Topography: Strong Correlation Between Mountain Front Steepness and Holocene Slip Rates Along the Wasatch Normal Fault, USA.

    NASA Astrophysics Data System (ADS)

    McCoy, S. W.; Struble, W. T.; Hobley, D. E. J.; Tucker, G. E.

    2015-12-01

    The footwalls of active normal faults are often decorated with facet slopes: semi-planar, steeply dipping slopes made of bedrock, or bedrock thinly mantled by regolith, that rise up out of the fault trace. Here we test two hypotheses to determine whether normal-fault facet surfaces record information about the local fault slip rate on a 10-100 ky timescale. 1) If rock-mass strength is spatially uniform, relative variations in slip rate along strike of a normal fault can be estimated directly from facet slope angle. 2) If erosion rate is independently known, estimates of absolute slip rates can be obtained. These hypotheses are based on a simple mathematical model of footwall development that predicts that facet slope angle is set by the ratio of bedrock erosion rate to fault slip rate. We tested these hypotheses by first compiling data from the Wasatch Fault Zone (Utah, USA) where the rates of fault slip are unusually well known as a result of decades of intensive paleoseismology studies, and where millennial-scale erosion rates along the range front have been measured using cosmogenic radionuclides. We then mapped spatial variations in facet morphology along the entire length of the range front using 1 m resolution topographic data. We find a strong correlation between along-strike measurements of facet angle and Holocene slip rate. The mean facet steepness of each fault segment varies systematically from > 35 degrees in the center of the fault array to < 20 degrees at the southern end. Assuming characteristic fault dips of 50-60 degrees and erosion rates of 0.1-0.2 mm/yr, our predictions of absolute 100 ka average slip rates are consistent with estimates previously made from offset geomorphic features. These results demonstrate the feasibility of facet-slope analysis as a low-cost paleoseismology tool that can extract information about the rates of slip on range-bounding normal faults, and hence seismic hazard, directly from topography.

  19. Secondary Normal Faulting Near the Terminus of a Strike-Slip Fault Segment in the Lake Mead Fault System, SE Nevada

    NASA Astrophysics Data System (ADS)

    Marshall, S. T.; Kattenhorn, S. A.

    2003-12-01

    The 95 km long Lake Mead Fault System (LMFS), located about 50 km east of Las Vegas and about 100 km west of the relatively undeformed Colorado Plateau, consists of a group of NE/SW-trending Miocene left-lateral strike-slip faults with a total offset of 65-110 km. Previous work suggests that the LMFS acted as a transform zone to accommodate differential extension between the southern Basin and Range to the north and the metamorphic core complexes of the Colorado River extensional corridor to the south. Studies of individual faults of the LMFS have shown that strike-slip faulting was the dominant mode of deformation while normal faulting, pull-apart basins, and push up structures formed as localized secondary structures related to strike-slip faults. This study focuses on the portion of the LMFS west of the Overton Arm of Lake Mead, which consists of the Bitter Spring Valley Fault (BSVF) and the Hamblin Bay Fault (HBF). Both faults have estimated offsets of 20-60 km, but past mapping efforts have been inconsistent with respect to the BSVF trace locations and degree of fault complexity. In order to demonstrate that the apparent complexity of the BSVF is the result of segmentation and secondary normal faults associated with individual segments, we focused field mapping efforts on an apparent segment of the BSVF near Pinto Ridge, located southwest of the Echo Hills and about 5 km NW of the more prominent HBF. We have identified nine normal faults that initiate near the SW tip of a segment of the BSVF and die out to the south before reaching the HBF. The offset on all these faults is a maximum at their northern intersection with the BSVF, then steadily decreases to zero away from the BSVF. These normal faults range from 0.6 km-2.25 km in length and have variable fault trace patterns. The normal fault originating closest to the SW tip of the BSVF segment curves with increasing distance away towards parallelism with the BSVF. The eight other normal faults are all oriented

  20. Geologic and geochemical study of the Picacho gold mine, California: gold in a low-angle normal fault environment

    NASA Astrophysics Data System (ADS)

    Losh, Steven; Purvance, Dan; Sherlock, Ross; Jowett, E. Craig

    2005-03-01

    The Picacho gold deposit, located in southeasternmost California, is a low-grade gold deposit in a nearly flat-lying denudational fault of regional extent and probable Oligocene age. The deposit is hosted by intensely fractured and faulted Mesozoic leucogranite and by chloritic augen gneiss and schist, and is overlain unconformably and in fault contact by unmineralized late Oligocene Quechan volcanic rocks. The deposit is structurally characterized by normal and normal-oblique faults of low to high dip at shallow depths in the mine, merging downward with a synchronous, low-dipping ore-stage extensional fault system (the Chocolate Mountains/Gatuna Fault) of probable Oligocene age in deeper portions of the deposit. The fault system was infiltrated during much of its active life by hot, dilute, highly exchanged meteoric water having temperatures of 170°-210° C, salinity <2 wt% NaCl equivalent and calculated δ18Ofluid between -2.6‰ and 5.2‰. This main-stage fluid precipitated quartz, pyrite, and specular hematite, accompanied by silicification and sericitization. Auriferous ore-stage pyrite was precipitated late in the fault evolution probably by mixing of reducing ore fluid with relatively oxidized main-stage fluid during regional Oligocene extension on the Chocolate Mountains/Gatuna Fault. The Picacho deposit is characterized by a gold-arsenic-antimony geochemical signature consistent with bisulfide complexing of gold in reducing fluid, in contrast with typical denudation fault-hosted base-metal-rich deposits associated with high-salinity fluids elsewhere in the southwestern United States. The deposit is overprinted by Miocene normal faults having a wide range of dips. These postore faults are associated with red earthy hematite precipitation, pyrite oxidation, and supergene enrichment of gold.

  1. Active faulting in apparently stable peninsular India: Rift inversion and a Holocene-age great earthquake on the Tapti Fault

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Mitra, Supriyo; Sloan, R. Alastair; Gaonkar, Sharad; Reynolds, Kirsty

    2014-08-01

    We present observations of active faulting within peninsular India, far from the surrounding plate boundaries. Offset alluvial fan surfaces indicate one or more magnitude 7.6-8.4 thrust-faulting earthquakes on the Tapti Fault (Maharashtra, western India) during the Holocene. The high ratio of fault displacement to length on the alluvial fan offsets implies high stress-drop faulting, as has been observed elsewhere in the peninsula. The along-strike extent of the fan offsets is similar to the thickness of the seismogenic layer, suggesting a roughly equidimensional fault rupture. The subsiding footwall of the fault is likely to have been responsible for altering the continental-scale drainage pattern in central India and creating the large west flowing catchment of the Tapti river. A preexisting sedimentary basin in the uplifting hanging wall implies that the Tapti Fault was active as a normal fault during the Mesozoic and has been reactivated as a thrust, highlighting the role of preexisting structures in determining the rheology and deformation of the lithosphere. The slip sense of faults and earthquakes in India suggests that deformation south of the Ganges foreland basin is driven by the compressive force transmitted between India and the Tibetan Plateau. The along-strike continuation of faulting to the east of the Holocene ruptures we have studied represents a significant seismic hazard in central India.

  2. Asymmetrical Growth of Footwall Topography in the Cordillera Blanca, Peru: Implications for Normal Fault Control on Landscape Evolution

    NASA Astrophysics Data System (ADS)

    Giovanni, M. K.; Horton, B. K.

    2007-12-01

    Morphometric parameters and hypsometry of the >5-km-high Cordillera Blanca in Peru provide insights into the topographic evolution of the uplifted footwall of an active, high-magnitude-slip, low-angle normal fault within a contractional orogenic belt. The modern tectonic activity, mappable fault trace, high relief, and uniform footwall lithology make the Cordillera Blanca an ideal locality to test models for the evolution of topography related to normal faulting. Most models for normal fault growth suggest a tectonic and geomorphic symmetry in which maximum slip and maximum surface uplift occur along the central segments of the fault, with net slip, footwall uplift, and hangingwall subsidence diminishing along strike toward the fault tips. A digital elevation model (DEM) of the Cordillera Blanca permits extraction of important geomorphic metrics for footwall transverse drainages and the hanging-wall axial river, including hypsometry, drainage area, drainage length, relief, channel gradient, surface slope, aspect ratio, and longitudinal profile. These data reveal a pronounced asymmetry in which footwall relief, exposed fault relief, channel gradient, and surface slope are greatest along the northern fault segment and become systematically lower southward along strike. In contrast to most models for normal fault growth, largely based on late Cenozoic systems in the Basin and Range province of the western United States, the Cordillera Blanca demonstrates that abrupt and significant along-strike variations in displacement and footwall uplift are possible in major normal fault systems. The causes of an asymmetric distribution of fault slip and footwall topography in the Cordillera Blanca may be related to: (a) mechanical coupling between the subducting flat Nazca slab and the overriding South American plate; (b) gravitational collapse of overthickened crust along reactivated thrust faults; (c) climatic processes linked to the effect of glacial erosion in the footwall

  3. Mechanism for Normal Faulting in the Subducting Plate at the Mariana Trench

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Lin, J.; Behn, M. D.; Olive, J. A. L.

    2014-12-01

    We investigate the characteristics of normal faulting between the trench and outer rise in the subducting Pacific plate through analysis of high-resolution multi-beam bathymetry and geophysical data and geodynamic modeling. Analysis of multi-beam bathymetry data reveals significant variations in normal faulting characteristics along the Mariana trench: (1) The vast majority of the observed surface normal faulting scarps are observed to be sub-parallel to the local strike of the Mariana trench axis, indicating that the orientation of normal faults is predominantly controlled by subduction-related stresses rather than by pre-existing abyssal hill fabrics. (2) Trench-parallel normal fault scarps become apparant as the subducting plate approaches the outer rise of the Mariana trench, indicating that normal faulting initiates in this region. (3) Along the Mariana trench, the Challenger Deep region is associated with the greatest trench depth and largest average values of normal fault throw, while regions with seamounts near the trench axis show the smallest average values of fault throw. To explore the mechanisms that control normal faulting in a subducting plate, we perform numerical simulations of elasto-plastic plate subjected to tectonic loading, bending, and horizontal forces from slab pull. Modeling results suggest that bending-induced extensional stresses in the upper plate reaches maximum values near the outer rise, consistent with the onset of normal faulting in this region. However, bending alone does not predict the continued growth of normal faults toward the trench. We hypothesize that this additional fault growth could be related to (1) tectonic stresses induced by steep topographic slopes; and/or (2) slab pulling forces that are originated in the upper mantle due to the negative buoyancy of a subducted slab but are transmitted to the shallower part of the lithospheric plate prior to its subduction.

  4. Joints at high angles to normal fault strike: an explanation using 3-D numerical models of fault-perturbed stress fields

    NASA Astrophysics Data System (ADS)

    Kattenhorn, Simon A.; Aydin, Atilla; Pollard, David D.

    2000-01-01

    Structural methods based on homogeneous stress states predict that joints growing in an extending crust form with strike orientations identical to normal faults. However, we document a field example where the strikes of genetically related normal faults and joints are almost mutually perpendicular. Field relationships allowed us to constrain the fracture sequence and tectonic environment for fault and joint growth. We hypothesize that fault slip can perturb the surrounding stress field in a manner that controls the orientations of induced secondary structures. Numerical models were used to examine the stress field around normal faults, taking into consideration the effects of 3-D fault shape, geometrical arrangement of overlapping faults, and a range of stress states. The calculated perturbed stress fields around model normal faults indicate that it is possible for joints to form at high angles to fault strike. Such joint growth may occur at the lateral tips of an isolated fault, but is most likely in a relay zone between overlapping faults. However, the angle between joints and faults is also influenced by the remote stress state, and is particularly sensitive to the ratio of fault-parallel to fault-perpendicular stress. As this ratio increases, joints can propagate away from faults at increasingly higher angles to fault strike. We conclude that the combined remote stress state and perturbed local stress field associated with overlapping fault geometries resulted in joint growth at high angles to normal fault strike at a field location in Arches National Park, Utah.

  5. Anisotropy of fractal dimension of normal faults in northern Rocky Mountains: Implications for the kinematics of Cenozoic extension and Yellowstone hotspot's thermal expansion

    NASA Astrophysics Data System (ADS)

    Davarpanah, Armita; Babaie, Hassan A.

    2013-11-01

    The Basin and Range fault blocks, which were formed by an extensional event around 17 Ma, have continuously been deforming by younger, diachronous system of cross normal faults in southwest Montana and southeastern Idaho since 16.6 Ma. Reactivation of these two mid-Tertiary-Quaternary systems of normal faults, and two older, approximately N-S and E-W sets of regional normal faults, has evolved into a seismically active block faulted terrain. For both fault systems, high fractal dimensions occur in areas characterized by a large number of fault traces, high fault trace linear density, and maximum fault trace azimuthal variation. The major axis of the anisotropy ellipse of the fractal dimensions for each set of the two normal fault systems is sub-perpendicular to the linear directional mean of the faults, and gives an estimate for the direction of extension. Indentations on the point distribution on the anisotropy ellipse of fractal dimensions indicate heterogeneities due to the presence of several fault sets and/or variation in their trend. Domains in which there is only one set of faults produce smooth, well-defined fractal anisotropy ellipses with no indentations. The axial ratio of the anisotropy ellipse provides a measure for the range of variation in the trend of the faults. The trace length, linear density, and fractal dimension of the cross normal faults, decrease, in a direction across and away from the Snake River Plain (SRP), suggesting a diminishing effect of faulting probably due to the attenuation of the Yellowstone hotspot-related thermal doming with distance from centers of eruption. The spatio-temporal distribution of the trajectories of the minor axes of the anisotropy ellipses of fractal dimensions and the linear directional mean of the cross faults define a set of asymmetric, sub-parabolic spatio-temporal pattern about the axis of the SRP, with their apices located on diachronous centers of eruption.

  6. Thrust-faulting earthquake induced many normal-faulting aftershocks, in northeastern Chiba Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Kato, A.; Hirata, N.; Nakagawa, S.; Kasahara, K.; Sato, H.; Kurashimo, E.; Nanjo, K.; Panayotopoulos, Y.; Obara, K.; Aketagawa, T.; Kimura, H.

    2010-12-01

    A thrust faulting type earthquake of a local body wave magnitude (MJMA) of 4.9 occurred near the upper interface of the subducting Philippine Sea Plate (PHS) in northeastern Chiba Prefecture on July 22, 2010. We have been developing a dense seismic net work call the MeSO-net in the Tokyo Metropolitan area. So far, 249 stations are available for the study of a large felt earthquakes and small event as low as M=1.5. We also deployed a temporary seismic array 24 of which were used for the analysis of the aftershocks. We locate the July 22 earthquake(MJMA=4.9) and its 19 aftershocks (M>1.5) by the double difference location algorithm. We also determine focal mechanisms for the main- and after-shocks. The locations of the main shock and three aftershocks are closely distributed near the upper interface of PHS, which is consistent with the idea that the event occurred on the plate interface. However, most aftershocks whose focal mechanism is normal-fault type with a T-axis directing NE-SW are located off the upper interface indicating that intra-slab events are also generated by the event. Acknowledgement: The present study is supported by Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

  7. Low-angle normal faults-low differential stress at mid crustal levels

    NASA Technical Reports Server (NTRS)

    Power, W. L.

    1985-01-01

    A simple model for frictional slip on pre-existing faults that considers the local stress state near the fault and the effect of non-hydrostatic fluid pressures predicts that low-angle normal faulting is restricted to areas of the crust characterized by low differential stress and nearly lithostatic fluid pressures. The model considers frictional slip on a cohesionless low-angle normal fault governed by the failure criterion tau = mu sub f (sigma (*) sub n) =mu sub f (sigma sub n - P sub f) where tau and sigma sub n are the shear and normal stresses across the fault plane, mu sub f is the static coefficient of friction, and P sub f is the pore fluid pressure. As a first approximation, the model considers a vertical greatest principal compressive stress, sigma sub 1. It is apparent that if slip on low-angle normal faults is governed by the avove frictional failure criterion, slip on the low-angle normal fault occurs only if the least effective principal stress, sigma (*) sub 3 = sigma sub 3 - P sub f, is tensile, whenever tan superscrip -1(mu sub f d, where d is the dip of the fault. If detachment faulting occurs at any significant depth in the crust, P sub f sigma sub 3 is required. In light of this conclusion I allow P sub f to vary as necessary to allow slip on the low-angle normal fault.

  8. Meteoric water in normal fault systems: Oxygen and hydrogen isotopic measurements on authigenic phases in brittle fault rocks

    NASA Astrophysics Data System (ADS)

    Haines, S. H.; Anderson, R.; Mulch, A.; Solum, J. G.; Valley, J. W.; van der Pluijm, B. A.

    2009-12-01

    The nature of fluid circulation systems in normal fault systems is fundamental to understanding the nature of fluid movement within the upper crust, and has important implications for the on-going controversy about the strength of faults. Authigenic phases in clay gouges and fault breccias record the isotopic signature of the fluids they formed in equilibrium with, and can be used to understand the ‘plumbing system’ of brittle fault environments. We obtained paired oxygen and hydrogen isotopic measurements on authigenic illite and/or smectite in clay gouge from normal faults in two geologic environments, 1.) low-angle normal faults (Ruby Mountains detachment, NV; Badwater Turtleback, CA; Panamint range-front detachment; CA; Amargosa detachment; CA; Waterman Hills detachment, CA), and 2.) An intracratonic high-angle normal fault (Moab Fault, UT). All authigenic phases in these clay gouges are moderately light isotopically with respect to oxygen (illite δ18O -2.0 - + 11.5 ‰ SMOW, smectite δ18O +3.6 and 17.9 ‰) and very light isotopically with respect to hydrogen (illite δD -148 to -98 ‰ SMOW, smectite δD -147 to -92 ‰). Fluid compositions calculated from the authigenic clays at temperatures of 50 - 130 ○C (as indicated by clay mineralogy) indicate that both illite and smectite in normal fault clay gouge formed in the presence of near-pristine to moderately-evolved meteoric fluids and that igneous or metamorphic fluids are not involved in clay gouge formation in these normal fault settings. We also obtained paired oxygen and hydrogen isotopic measurements on chlorites derived from footwall chlorite breccias in 4 low-angle normal fault detachment systems (Badwater and Mormon Point Turtlebacks, CA, the Chemehuevi detachment, CA, and the Buckskin-Rawhide detachment, AZ). All chlorites are isotopically light to moderately light with respect to oxygen (δ18O +0.29 to +8.1 ‰ SMOW) and very light with respect to hydrogen (δD -97 to -113 ‰) and indicate

  9. Tectonic origin for polygonal normal faults in pelagic limestones of the Cingoli anticline hinge (Italy)

    NASA Astrophysics Data System (ADS)

    Petracchini, Lorenzo; Antonellini, Marco; Billi, Andrea; Scrocca, Davide

    2016-04-01

    Polygonal faults are a relatively-recent new class of normal faults which are thought to be formed during early burial and diagenesis as a consequence of heterogeneous lateral volume changes. Polygonal faults are non-systematically oriented and, in map view, they form rhombus-, pentagon-, or hexagon-like pattern, suggesting a non-tectonic origin. Furthermore, polygonal faults are layer bound and they are restricted to particular stratigraphic level. Predicting the pattern of polygonal normal fault results crucial for geofluid exploration and exploitation, but, despite the large number of studies, the origin of these faults remains still largely controversial. One of the main reason for this uncertainty is that they are poorly known in outcrops. Polygonal faults have been identified in few localities within Mesozoic chalk (United Kingdom, France, and Egypt), in Paleogene claystone (Belgium), and in the Cretaceous Khoman Formation (Egypt) where polygonal faults have been observed in an extensive exposure of chalk. In this study, we describe an outcrop in the Cingoli anticline hinge, which is located at external front of the northern Apennines fold-thrust belt (Italy), showing normal faults that we interpreted as syn-tectonically (syn-thrusting) polygonal faults. The outcrop shows three vertical exposures of sub-horizontal fine-grained marly limestones with chert interlayers of Albian-Turonian age. Intraformational short normal faults affect the carbonate and chert beds. These faults are poorly-systematic and they cut through the carbonate beds whereas usually stop against the chert layers. The fault surfaces are often characterized by slickolites, clayey residue, and micro-breccias including clasts of chert and carbonate. Fault displacement is partly or largely accommodated by pressure solution. At the fault tips, the displacement is generally transferred, via a lateral step, to an adjacent similar fault segment. The aim of our study is to understand the nucleation

  10. Is the Lishan fault of Taiwan active?

    NASA Astrophysics Data System (ADS)

    Kuo-Chen, Hao; Wu, Francis; Chang, Wu-Lung; Chang, Chih-Yu; Cheng, Ching-Yu; Hirata, Naoshi

    2015-10-01

    The Lishan fault has been characterized alternately as a major discontinuity in stratigraphy, structures and metamorphism, a ductile shear zone, a tectonic suture or non-existent. In addition to being a geological boundary, it also marks transitions in subsurface structures. Thus, the seismicity to the west of the fault permeates through the upper and mid-crust while beneath the Central Range it is noticeably less and largely concentrated in the upper 12 km. A prominent west-dipping conductive zone extends upward to meet the Lishan fault. Also, the eastward increase of crust thickness from ~ 30 km in the Taiwan Strait quickens under the Lishan fault to form a root of over 50 km under the Central Range. In the past, the small magnitude seismicity along the Lishan fault has been noticed but is too diffuse for definitive association with the fault. Recent processing of aftershock records of the 1999 Mw 7.6 Chi-Chi earthquake using Central Weather Bureau data and, especially, data from three post-Chi-Chi deployments of seismic stations across central Taiwan yielded hypocenters that appear to link directly to the Lishan structure. The presence of a near 4-km-long vertical seismic zone directly under the surface trace of the Lishan fault indicates that it is an active structure from the surface down to about 35 km, and the variety of focal mechanisms indicates that the fault motion can be complex and depth-dependent.

  11. From accommodation zones to metamorphic core complexes: Tracking the progressive development of major normal fault systems

    SciTech Connect

    Faulds, J.E. . Dept. of Geology)

    1992-01-01

    The along-strike dimension in rifted continental crust is critical to assessing models of continental extension because individual normal faults or fault systems can potentially be traced from their tips in accommodation zones to their culminations in metamorphic core complexes. Accommodation zones and the linkages between the zones and core complexes have not been thoroughly studied or incorporated extensively into models of continental extension. Regionally extensive, gently dipping normal faults (i.e., detachment faults) that surface in metamorphic core complexes terminate and flip polarity in accommodation zones. Diametrical lateral transport of upper-plate rocks in positively dipping detachment terranes should presumably induce strike-slip faulting on segments of accommodation zones paralleling the extension direction. Most accommodation zones correspond, however, to belts of intermeshing conjugate normal faults with little strike-slip faulting. Normal faults simply terminate along-strike in the zones with little, if any, transfer of slip to strike-slip faults. Decreases in cumulative strain within individual normal fault systems toward some accommodation zones cannot alone account for the lack of strike-slip faulting. These findings pose a serious challenge to generally accepted notions of large-magnitude, lateral motion of parts of detachment terranes. Large-scale lateral translations of rifted continental crust may be governed more by discrete axes of extension than by detachment geometries. The dovetail-like interfingering of conjugate normal fault systems and attendant tilt-block domains observed in some accommodation zones (e.g., Colorado River extensional corridor, US) does suggest, however, that at least some major normal faults projecting into the zones from metamorphic core complexes have listric geometries that flatten out at relatively shallow depths.

  12. Active faulting in the Walker Lane

    NASA Astrophysics Data System (ADS)

    Wesnousky, Steven G.

    2005-06-01

    Deformation across the San Andreas and Walker Lane fault systems accounts for most relative Pacific-North American transform plate motion. The Walker Lane is composed of discontinuous sets of right-slip faults that are located to the east and strike approximately parallel to the San Andreas fault system. Mapping of active faults in the central Walker Lane shows that right-lateral shear is locally accommodated by rotation of crustal blocks bounded by steep-dipping east striking left-slip faults. The left slip and clockwise rotation of crustal blocks bounded by the east striking faults has produced major basins in the area, including Rattlesnake and Garfield flats; Teels, Columbus and Rhodes salt marshes; and Queen Valley. The Benton Springs and Petrified Springs faults are the major northwest striking structures currently accommodating transform motion in the central Walker Lane. Right-lateral offsets of late Pleistocene surfaces along the two faults point to slip rates of at least 1 mm/yr. The northern limit of northwest trending strike-slip faults in the central Walker Lane is abrupt and reflects transfer of strike-slip to dip-slip deformation in the western Basin and Range and transformation of right slip into rotation of crustal blocks to the north. The transfer of strike slip in the central Walker Lane to dip slip in the western Basin and Range correlates to a northward broadening of the modern strain field suggested by geodesy and appears to be a long-lived feature of the deformation field. The complexity of faulting and apparent rotation of crustal blocks within the Walker Lane is consistent with the concept of a partially detached and elastic-brittle crust that is being transported on a continuously deforming layer below. The regional pattern of faulting within the Walker Lane is more complex than observed along the San Andreas fault system to the west. The difference is attributed to the relatively less cumulative slip that has occurred across the Walker

  13. Forced folding and basement-detached normal faulting in the Haltenbanken area, offshore Norway

    SciTech Connect

    Withjack, M.O.; Meisling, K.E.; Russell, L.R.

    1988-01-01

    Triassic evaporites affected the structural development of the Haltenbanken area of offshore Norway during the Late Jurassic and Early Cretaceous by mechanically isolating Triassic and younger strata from older strata and basement. Many folds in the Haltenbanken area are forced folds above basement-involved normal faults. Forced folds formed, at least in part, because Triassic evaporites behaved ductilely, decoupling overlying strata from underlying faulted strata and basement. Seismic data show that these forced folds are asymmetric flexures that affect Lower Cretaceous, Jurassic, and Triassic strata. Strata beneath the Traiassic evaporites are faulted. Some forced folds die out along strike into, and are cut by, basement-involved normal faults. Folding predominated above salt swells where decoupling was enhanced, whereas faulting occurred on the flanks of salt swells where salt thicknesses were reduced and decoupling was less effective. Many normal faults in the Haltenbanken area are basement-detached and flatten within the Triassic evaporites. Seismic data show that rollover anticlines and antithetic normal faults affect Lower Cretaceous, Jurassic, and Triassic strata within the hanging walls of these basement-detached normal faults. Strata beneath the evaporites are not affected by this deformation. Some basement-detached normal faults may be secondary structures associated with forced folding. Others, especially those with large displacements, may have formed in response to gravity sliding.

  14. Forced folding and basement-detached normal faulting in the Haltenbanken area, offshore Norway

    SciTech Connect

    Withjack, M.O.; Meisling, K.E.; Russell, L.R.

    1988-02-01

    Triassic evaporites affected the structural development of the Haltenbanken area of offshore Norway during the Late Jurassic and Early Cretaceous by mechanically isolating Triassic and younger strata from older strata and basement. Many folds in the Haltenbanken area are forced folds above basement-involved normal faults. Forced folds formed, at least in part, because Triassic evaporites behaved ductilely, decoupling overlying strata from underlying faulted strata and basement. Seismic data show that these forced folds are asymmetric flexures that affect Lower Cretaceous, Jurassic, and Triassic strata. Strata beneath the Triassic evaporites are faulted. Some forced folds die out along strike into, and are cut by, basement-involved normal faults. Folding predominated above salt swells where decoupling was enhanced, whereas faulting occurred on the flanks of salt swells where salt thicknesses were reduced and decoupling was less effective. Many normal faults in the Haltenbanken area are basement-detached and flatten within the Triassic evaporites. Seismic data show that rollover anticlines and antithetic normal faults affect Lower Cretaceous, Jurassic, and Triassic strata within the hanging walls of these basement-detached normal faults. Strata beneath the evaporites are not affected by this deformation. Some basement-detached normal faults may be secondary structures associated with forced folding. Others, especially those with large displacements, may have formed in response to gravity sliding.

  15. A model for the geomorphic development of normal-fault facets

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Hobley, D. E. J.; McCoy, S. W.

    2014-12-01

    Triangular facets are among the most striking landforms associated with normal faulting. The genesis of facets is of great interest both for the information facets contain about tectonic motion, and because the progressive emergence of facets makes them potential recorders of both geomorphic and tectonic history. In this report, we present observations of triangular facets in the western United States and in the Italian Central Apennines. Facets in these regions typically form quasi-planar surfaces that are aligned in series along and above the trace of an active fault. Some facet surfaces consist mainly of exposed bedrock, with a thin and highly discontinuous cover of loose regolith. Other facets are mantled by a several-decimeter-thick regolith cover. Over the course of its morphologic development, a facet slope segment may evolve from a steep (~60 degree) bedrock fault scarp, well above the angle of repose for soil, to a gentler (~20-40 degree) slope that can potentially sustain a coherent regolith cover. This evolutionary trajectory across the angle of repose renders nonlinear diffusion theory inapplicable. To formulate an alternative process-based theory for facet evolution, we use a particle-based approach that acknowledges the possibility for both short- and long-range sediment-grain motions, depending on the topography. The processes of rock weathering, grain entrainment, and grain motion are represented as stochastic state-pair transitions with specified transition rates. The model predicts that facet behavior can range smoothly along the spectrum from a weathering-limited mode to a transport-limited mode, depending on the ratio of fault-slip rate to bare-bedrock regolith production rate. The model also implies that facets formed along a fault with pinned tips should show systematic variation in slope angle that correlates with along-fault position and slip rate. Preliminary observations from central Italy and the eastern Basin and Range are consistent

  16. Active, capable, and potentially active faults - a paleoseismic perspective

    USGS Publications Warehouse

    Machette, M.N.

    2000-01-01

    Maps of faults (geologically defined source zones) may portray seismic hazards in a wide range of completeness depending on which types of faults are shown. Three fault terms - active, capable, and potential - are used in a variety of ways for different reasons or applications. Nevertheless, to be useful for seismic-hazards analysis, fault maps should encompass a time interval that includes several earthquake cycles. For example, if the common recurrence in an area is 20,000-50,000 years, then maps should include faults that are 50,000-100,000 years old (two to five typical earthquake cycles), thus allowing for temporal variability in slip rate and recurrence intervals. Conversely, in more active areas such as plate boundaries, maps showing faults that are <10,000 years old should include those with at least 2 to as many as 20 paleoearthquakes. For the International Lithosphere Programs' Task Group II-2 Project on Major Active Faults of the World our maps and database will show five age categories and four slip rate categories that allow one to select differing time spans and activity rates for seismic-hazard analysis depending on tectonic regime. The maps are accompanied by a database that describes evidence for Quaternary faulting, geomorphic expression, and paleoseismic parameters (slip rate, recurrence interval and time of most recent surface faulting). These maps and databases provide an inventory of faults that would be defined as active, capable, and potentially active for seismic-hazard assessments.

  17. Normal Fault Basin Geometries From Gravity Analyses in the La Paz - Los Cabos Region, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Busch, M. M.; Coyan, J. A.; Arrowsmith, J. R.; Umhoefer, P. J.; Martinez-Gutierrez, G.

    2008-12-01

    The southern cape region of the Baja California peninsula is ruptured by an array of roughly north-striking, left-stepping active normal faults, which accommodate regional transtension. Dominant faults within this system include the Carrizal, San Juan de los Planes (SJP) (and offshore Espiritu Santo fault), La Gata, and San Jose del Cabo (SJC) faults. We conducted gravity surveys across the basins bounded by these faults to gain insight into fault slip rates and basin evolution to better understand the role of upper-crustal processes during development of an obliquely rifted plate margin. The geodetic location of each gravity observation station was measured to cm-scale accuracy with real-time kinematic GPS and the relative gravity was measured with a LaCoste and Romberg Model G gravity meter to an accuracy of 0.01 mgal. Gravity data were modeled as a 2D two-layer model with a bedrock density of 2.67 g/cm3 and a basin fill density of 2.1 or 2.2 g/cm3. The hanging wall of the east-dipping Carrizal fault hosts the La Paz basin. In the subsurface, this basin is a half-graben that is manifest as two smaller basins (few hundred meters deep) separated by a bedrock high, which likely reflects the two main east-dipping splays (Carrizal and Centenario faults). The SJP basin is a graben bound by the SJP fault on the west and the La Gata fault on the east and has a modeled maximum depth of approximately 1.5 km. This basin is marked by a series of relict normal faults dipping toward the basin center. The maximum depth to bedrock is just northwest of center, asymmetric toward the SJP fault, indicating that slip may be greater along the SJP than along the La Gata fault. It might also mark the possible location of basin inception, indicating that as the basin evolved, faulting moved outward to the presently active SJP and La Gata Faults. The SJC basin has a maximum depth of approximately 2.5 km. The favored gravity model depicts the SJC basin as resulting from slip along a series

  18. Fault activation due to glacially induced stresses

    NASA Astrophysics Data System (ADS)

    Steffen, R.; Lund, B.; Wu, P. P.

    2013-12-01

    Melting glaciers worldwide have an effect on sea level, but also on the stability of pre-existing faults. The load due to continental ice sheets or glaciers depresses the surface below, leading to changes in the lithospheric stresses. The accumulation of ice mass increases the vertical stress, and the horizontal stresses increase due to the accompanying flexure of the lithosphere. During deglaciation, ice-mass loss causes a simultaneous decrease in vertical stress; however, horizontal stresses decrease only slowly due to the slow readjusting of the Earth. After the end of deglaciation, only the induced horizontal stresses remain as the process of glacial isostatic adjustment (GIA) proceeds visco-elastically. The modelling of this process and the estimation of fault slip is enabled by a new GIA-fault model. However, this finite-element model is only available in two dimensions, and the extension to three dimensions is a necessary step further to allow the comparison of obtained fault slips to observations of glacially induced faults in Europe and North America. The model has several input parameters, which affect the activation time of faults and their resulting slip (e.g. ice history, rheology of the Earth, frictional properties, pore-fluid pressure). We will present the results of the new 3D model and show the sensitivity of faults with respect to modelling parameters. Furthermore, a comparison to observations will be presented.

  19. Fault activation due to glacially induced stresses

    NASA Astrophysics Data System (ADS)

    Steffen, Rebekka; Lund, Björn

    2014-05-01

    Melting glaciers worldwide have an effect on sea level, but also on the stability of pre-existing faults. The load due to continental ice sheets or glaciers depresses the surface below, leading to changes in the lithospheric stresses. The accumulation of ice mass increases the vertical stress, and the horizontal stresses increase due to the accompanying flexure of the lithosphere. During deglaciation, ice-mass loss causes a simultaneous decrease in vertical stress; however, horizontal stresses decrease only slowly due to the slow readjusting of the Earth. After the end of deglaciation, only the induced horizontal stresses remain as the process of glacial isostatic adjustment (GIA) proceeds visco-elastically. The modelling of this process and the estimation of fault slip is enabled by a new GIA-fault model. However, this finite-element model is only available in two dimensions, and the extension to three dimensions is a necessary step further to allow the comparison of obtained fault slips to observations of glacially induced faults in Europe and North America. The model has several input parameters, which affect the activation time of faults and their resulting slip (e.g. ice history, rheology of the Earth, frictional properties, pore-fluid pressure). We will present the results of the new 3D model and show the sensitivity of faults with respect to modelling parameters. Furthermore, a comparison to observations will be presented.

  20. Experimentally generated normal faults in single-layer and multilayer limestone specimens at confining pressure

    NASA Astrophysics Data System (ADS)

    Patton, Thomas L.; Logan, John M.; Friedman, Melvin

    1998-09-01

    We examined the deformation of single-layer and multilayer rock veneers at confining pressure due to slip on an underlying, pre-existing, 70°-dipping normal fault. Single-layer specimens consisted of centimeter-thick Indiana Limestone veneers; centimeter-thick multilayer specimens consisted of three layers of Indiana Limestone or two layers of Indiana Limestone separated by a middle layer of weaker, Austin Chalk. The experiments investigated the evolution of induced deformation features — fractures, faults and folds — as functions of; (1) offset on the pre-existing normal fault, (2) confining pressure (100 MPa and 200 MPa), (3) `bedding' (three-layer specimens), and (4) compositional layering (three-layer specimens with a weak middle layer). Single-layer limestone specimens deformed at 200-MPa confining pressure provided the most reproducible results, forming arrays of nested arcuate normal faults; the concave sides of the faults faced in the hanging wall direction. Older faults of the array, propagating from the tip of the pre-existing fault, died out upward into the hanging wall. Younger faults formed towards the footwall side of the array and propagated to the upper surface of the specimen. These latter faults accommodated subsequent slip on the pre-existent fault, and in doing so, fragmented and offset the monoclinally folded upper surface of the specimen. Reducing the confining pressure to 100 MPa produced a more brittle behavior in the specimen, manifested as fewer faults with more irregular profiles and less monoclinal folding at the upper surface of the specimen. Introducing bedding and weak layering in the specimens at 100-MPa confining pressure increased the bulk ductile response of the specimen. Our model-generated deformation features share strong similarities with those documented in other laboratory normal-fault experiments in sand and clay, and with normal-fault features found in outcrop.

  1. Genesis and growth of the NW trending normal fault array of the Levant Basin

    NASA Astrophysics Data System (ADS)

    Ghalayini, Ramadan; Homberg, Catherine; Daniel, Jean-Marc; Nader, Fadi

    2015-04-01

    The Levant basin, located in the Eastern Mediterranean region, presents a conspicuous normal fault array in the interpreted Oligo-Miocene units. How did the faults grow, evolve and interact with each other is important in order to increase our understanding on the growth of normal fault systems in general and the structural setting of the Levant Basin in particular. Found offshore Lebanon, and partly offshore SE Cyprus and Israel, these faults are layer bound and comprised only in the Oligo-Miocene units, bounded by the base Messinian horizon and Eocene unconformity horizon at their top and bottom respectively. They correlate well with the thickness of the Oligo-Miocene sediments which might explain their distribution. Quantitative and qualitative fault analysis techniques were applied to a 3D seismic reflection dataset. Deduced thickness variations at the Miocene interval (across the faults) and growth index calculations show that the motion of these faults is syn-sedimentary since the Early Miocene time. As observed in cross-section; most of the faults are throughgoing faults and do not show significant refraction or bifurcation. However, the displacement data show that the fault history is complex and imply that the Cenozoic package is characterized by a significant mechanical layering. The latter has influenced the fault development with preferential and double nucleation sites of fault segments which later linked by vertical tip propagation. An asymmetry in the upward and downward vertical restriction is also deduced and horizontal linkages also occurred. The various geometric observations and displacement distribution indicate a strong resemblance between the normal faults of the Levant Basin and the widely documented polygonal fault systems. As polygonal faults are characterized by polygonal planform geometry and the faults in the Levant Basin are linear, we attribute the difference in their planform geometry to a regional anisotropic NW-SE stress field

  2. Identifying paleoseismic information from limestone normal faults with a handheld XRF

    NASA Astrophysics Data System (ADS)

    Fritzon, Ruben; Stroeven, Arjen P.; Skelton, Alasdair; Goodfellow, Brad W.; Caffee, Marc W.

    2014-05-01

    Predicting earthquakes would help immensely in saving human lives and protecting economic interest but a reliable method has not yet been found. When making risk assessments scientists continue to rely on paleoseismic studies. Determining a fast and cheap proxy for paleoseismicity is therefore of much interest. Surface exposure dating is an emergent method for paleoseismic studies of active normal fault scarps in the Mediterranean region. This method gives crucial paleoearthquake information such as timing and vertical slip along the fault but the analysis of cosmogenic nuclides is costly and the sampling is both complicated and time consuming. In our study we employ an Olympus Innov-X DeltaTM handheld XRF to analyse the geochemistry of a scarp surface in order to determine the number and magnitude of slips along the fault. This method requires no drilling and it is possible to analyse the results at the fault scarp. Exposure dating is still required to yield the timeframe of the paleoearthquake record, but the number of sampling points may be significantly reduced since it would be possible to pin-point the sampling locations around suspected former soil horizons. We have analysed 200 sample points with the handheld XRF from a 6.8 m section of the limestone normal fault scarp surface close to Sparta, southern Greece. Our profile is taken next to the Benedetti et al.[Geophysical Research Letters, 29, 8 (2002)] sampling site. Our results show significant variations in Yttrium concentration along the profile with a strong peak just below the present soil cover at the base of the section and then repeated peaks up along the transect on the subaerially exposed scarp surface. These Yttrium concentrations at the surface are correlated with Yttrium concentrations in the rock determined from drill cores taken every 10 cm from the same profile. The preliminary dataset appears to indicate a good correlation between the Yttrium concentrations and the earthquake events

  3. InSAR measurements around active faults: creeping Philippine Fault and un-creeping Alpine Fault

    NASA Astrophysics Data System (ADS)

    Fukushima, Y.

    2013-12-01

    Recently, interferometric synthetic aperture radar (InSAR) time-series analyses have been frequently applied to measure the time-series of small and quasi-steady displacements in wide areas. Large efforts in the methodological developments have been made to pursue higher temporal and spatial resolutions by using frequently acquired SAR images and detecting more pixels that exhibit phase stability. While such a high resolution is indispensable for tracking displacements of man-made and other small-scale structures, it is not necessarily needed and can be unnecessarily computer-intensive for measuring the crustal deformation associated with active faults and volcanic activities. I apply a simple and efficient method to measure the deformation around the Alpine Fault in the South Island of New Zealand, and the Philippine Fault in the Leyte Island. I use a small-baseline subset (SBAS) analysis approach (Berardino, et al., 2002). Generally, the more we average the pixel values, the more coherent the signals are. Considering that, for the deformation around active faults, the spatial resolution can be as coarse as a few hundred meters, we can severely 'multi-look' the interferograms. The two applied cases in this study benefited from this approach; I could obtain the mean velocity maps on practically the entire area without discarding decorrelated areas. The signals could have been only partially obtained by standard persistent scatterer or single-look small-baseline approaches that are much more computer-intensive. In order to further increase the signal detection capability, it is sometimes effective to introduce a processing algorithm adapted to the signal of interest. In an InSAR time-series processing, one usually needs to set the reference point because interferograms are all relative measurements. It is difficult, however, to fix the reference point when one aims to measure long-wavelength deformation signals that span the whole analysis area. This problem can be

  4. Jurassic normal and strike-slip faults at Crater Island, northwestern Utah

    USGS Publications Warehouse

    Miller, D.M.; Allmendinger, R.W.

    1991-01-01

    At Crater Island, northern Silver Island Mountains, northwestern Utah, an unbroken Tertiary fault block within the Basin and Range province exhibits Jurassic or older structures that are virtually unmodified by subsequent tectonism. Widespread high-angle faults, mainly striking north and north-east, offset the moderately west-dipping strata down to the west, thereby extending the strata parallel to bedding by 10% to 20%. The normal faults merge with a north northwest dextral strike-slip fault system. The two fault systems are kinematically compatible, suggesting that they may have been contemporaneous. The data indicate that minor thrusting, probably during the Jurassic, was followed by extensional faulting within a strike-slip fault system, probably close in time to intrusion. -from Authors

  5. Seismic imaging of deformation zones associated with normal fault-related folding

    NASA Astrophysics Data System (ADS)

    Lapadat, Alexandru; Imber, Jonathan; Iacopini, David; Hobbs, Richard

    2016-04-01

    Folds associated with normal faulting, which are mainly the result of fault propagation and linkage of normal fault segments, can exhibit complex deformation patterns, with multiple synthetic splay faults, reverse faults and small antithetic Riedel structures accommodating flexure of the beds. Their identification is critical in evaluating connectivity of potential hydrocarbon reservoirs and sealing capacity of faults. Previous research showed that seismic attributes can be successfully used to image complex structures and deformation distribution in submarine thrust folds. We use seismic trace and coherency attributes, a combination of instantaneous phase, tensor discontinuity and semblance attributes to identify deformation structures at the limit of seismic resolution, which accommodate seismic scale folding associated with normal faulting from Inner Moray Firth Basin, offshore Scotland. We identify synthetic splay faults and reverse faults adjacent to the master normal faults, which are localized in areas with highest fold amplitudes. This zone of small scale faulting is the widest in areas with highest fault throw / fold amplitude, or where a bend is present in the main fault surface. We also explore the possibility that changes in elastic properties of the rocks due to deformation can contribute to amplitude reductions in the fault damage zones. We analyse a pre-stack time-migrated 3D seismic data-set, where seismic reflections corresponding to a regionally-continuous and homogeneous carbonate layer display a positive correlation between strain distribution and amplitude variations adjacent to the faults. Seismic amplitude values are homogeneously distributed within the undeformed area of the footwall, with a minimum deviation from a mean amplitude value calculated for each seismic line. Meanwhile, the amplitude dimming zone is more pronounced (negative deviation increases) and widens within the relay zone, where sub-seismic scale faults, which accommodate

  6. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  7. The northwest trending north Boquerón Bay-Punta Montalva Fault Zone; A through going active fault system in southwestern Puerto Rico

    USGS Publications Warehouse

    Roig‐Silva, Coral Marie; Asencio, Eugenio; Joyce, James

    2013-01-01

    The North Boquerón Bay–Punta Montalva fault zone has been mapped crossing the Lajas Valley in southwest Puerto Rico. Identification of the fault was based upon detailed analysis of geophysical data, satellite images, and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (local magnitude greater than 5.0) with numerous locally felt earthquakes. Focal mechanism solutions suggest strain partitioning with predominantly east–west left-lateral displacements with small normal faults striking mostly toward the northeast. Northeast-trending fractures and normal faults can be found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, an east–west-trending 30-km-long fault-controlled depression. Areas of preferred erosion within the alluvial fan trend toward the west-northwest parallel to the onland projection of the North Boquerón Bay fault. The North Boquerón Bay fault aligns with the Punta Montalva fault southeast of the Lajas Valley. Both faults show strong southward tilting of Miocene strata. On the western end, the Northern Boquerón Bay fault is covered with flat-lying Holocene sediments, whereas at the southern end the Punta Montalva fault shows left-lateral displacement of stream drainage on the order of a few hundred meters.

  8. Active and inactive faults in southern California viewed from Skylab

    NASA Technical Reports Server (NTRS)

    Merifield, P. M.; Lamar, D. L.

    1975-01-01

    The application is discussed of Skylab imagery along with larger scale photography and field investigations in preparing fault maps of California for use in land use planning. The images were used to assist in distinguishing active from inactive faults (by recognizing indications of recent displacement), determining the length of potentially active faults, identifying previously unmapped faults, and gaining additional information on regional tectonic history.

  9. Laboratory observations of fault strength in response to changes in normal stress

    USGS Publications Warehouse

    Kilgore, Brian D.; Lozos, Julian; Beeler, Nicholas M.; Oglesby, David

    2012-01-01

    Changes in fault normal stress can either inhibit or promote rupture propagation, depending on the fault geometry and on how fault shear strength varies in response to the normal stress change. A better understanding of this dependence will lead to improved earthquake simulation techniques, and ultimately, improved earthquake hazard mitigation efforts. We present the results of new laboratory experiments investigating the effects of step changes in fault normal stress on the fault shear strength during sliding, using bare Westerly granite samples, with roughened sliding surfaces, in a double direct shear apparatus. Previous experimental studies examining the shear strength following a step change in the normal stress produce contradictory results: a set of double direct shear experiments indicates that the shear strength of a fault responds immediately, and then is followed by a prolonged slip-dependent response, while a set of shock loading experiments indicates that there is no immediate component, and the response is purely gradual and slip-dependent. In our new, high-resolution experiments, we observe that the acoustic transmissivity and dilatancy of simulated faults in our tests respond immediately to changes in the normal stress, consistent with the interpretations of previous investigations, and verify an immediate increase in the area of contact between the roughened sliding surfaces as normal stress increases. However, the shear strength of the fault does not immediately increase, indicating that the new area of contact between the rough fault surfaces does not appear preloaded with any shear resistance or strength. Additional slip is required for the fault to achieve a new shear strength appropriate for its new loading conditions, consistent with previous observations made during shock loading.

  10. Late Quaternary Normal Faulting and Hanging Wall Basin Evolution of the Southwestern Rift Margin from Gravity and Geology, B.C.S., MX and Exploring the Influence of Text-Figure Format on Introductory Geology Learning

    ERIC Educational Resources Information Center

    Busch, Melanie M. D.

    2011-01-01

    An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely…

  11. Active fault traces along Bhuj Fault and Katrol Hill Fault, and trenching survey at Wandhay, Kachchh, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Morino, Michio; Malik, Javed N.; Mishra, Prashant; Bhuiyan, Chandrashekhar; Kaneko, Fumio

    2008-06-01

    Several new active fault traces were identified along Katrol Hill Fault (KHF). A new fault (named as Bhuj Fault, BF) that extends into the Bhuj Plain was also identified. These fault traces were identified based on satellite photo interpretation and field survey. Trenches were excavated to identify the paleoseismic events, pattern of faulting and the nature of deformation. New active fault traces were recognized about 1km north of the topographic boundary between the Katrol Hill and the plain area. The fault exposure along the left bank of Khari River with 10m wide shear zone in the Mesozoic rocks and showing displacement of the overlying Quaternary deposits is indicative of continued tectonic activity along the ancient fault. The E-W trending active fault traces along the KHF in the western part changes to NE-SW or ENE-WSW near Wandhay village. Trenching survey across a low scarp near Wandhay village reveals three major fault strands F1, F2, and F3. These fault strands displaced the older terrace deposits comprising Sand, Silt and Gravel units along with overlying younger deposits from units 1 to 5 made of gravel, sand and silt. Stratigraphic relationship indicates at least three large magnitude earthquakes along KHF during Late Holocene or recent historic past.

  12. Normal-fault development in two-phase experimental models of shortening followed by extension and comparison to natural examples

    NASA Astrophysics Data System (ADS)

    Warrell, K. F.; Withjack, M. O.; Schlische, R. W.

    2014-12-01

    Field- and seismic-reflection-based studies have documented the influence of pre-existing thrust faults on normal-fault development during subsequent extension. Published experimental (analog) models of shortening followed by extension with dry sand as the modeling medium show limited extensional reactivation of moderate-angle thrust faults (dipping > 40º). These dry sand models provide insight into the influence of pre-existing thrusts on normal-fault development, but these models have not reactivated low-angle (< 35º) thrust faults as seen in nature. New experimental (analog) models, using wet clay over silicone polymer to simulate brittle upper crust over ductile lower crust, suggest that low-angle thrust faults from an older shortening phase can reactivate as normal faults. In two-phase models of shortening followed by extension, normal faults nucleate above pre-existing thrust faults and likely link with thrusts at depth to create listric faults, movement on which produces rollover folds. Faults grow and link more rapidly in two-phase than in single-phase (extension-only) models. Fewer faults with higher displacements form in two-phase models, likely because, for a given displacement magnitude, a low-angle normal fault accommodates more horizontal extension than a high-angle normal fault. The resulting rift basins are wider and shallower than those forming along high-angle normal faults. Features in these models are similar to natural examples. Seismic-reflection profiles from the outer Hebrides, offshore Scotland, show listric faults partially reactivating pre-existing thrust faults with a rollover fold in the hanging wall; in crystalline basement, the thrust is reactivated, and in overlying sedimentary strata, a new, high-angle normal fault forms. Profiles from the Chignecto subbasin of the Fundy basin, offshore Canada, show full reactivation of thrust faults as low-angle normal faults where crystalline basement rocks make up the footwall.

  13. Dynamic rupture activation of backthrust fault branching

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Fukuyama, Eiichi; Ben-Zion, Yehuda; Ampuero, Jean-Paul

    2015-03-01

    We perform dynamic rupture simulations to investigate the possible reactivation of backthrust branches triggered by ruptures along a main thrust fault. Simulations with slip-weakening fault friction and uniform initial stress show that fast propagation speed or long propagation distance of the main rupture promotes reactivation of backthrust over a range of branch angles. The latter condition may occur separately from the former if rupture speed is limited by an increasing slip-weakening distance towards the junction direction. The results suggest a trade-off between the amplitude and duration of the dynamic stress near the main rupture front for backthrust reactivation. Termination of the main rupture by a barrier can provide enhanced loading amplitude and duration along a backthrust rooted near the barrier, facilitating its reactivation especially with a high frictional resistance. The free surface and depth-dependent initial stress can have several additional effects. The sign of the triggered motion along the backthrust can be reversed from thrust to normal if a deeply nucleated main rupture breaks the free surface, while it is preserved as thrust if the main rupture is terminated by a barrier at depth. The numerical results are discussed in relation to several recent megathrust earthquakes in Sumatra, Chile, and Japan, and related topics such as branch feedbacks to the main fault. The dynamic view on backthrust fault branching provided by the study fills a gap not covered by quasi-static models or observations. A specific examined case of antithetic fault branching may be useful for indicating a barrier-like behavior along the main fault.

  14. Exhumation history of an active fault to constrain a fault-based seismic hazard scenario: the Pizzalto fault (central Apennines, Italy) example.

    NASA Astrophysics Data System (ADS)

    Tesson, Jim; Pace, Bruno; Benedetti, Lucilla; Visini, Francesco; Delli Rocioli, Mattia; Didier, Bourles; Karim, keddadouche; Gorges, Aumaitre

    2016-04-01

    A prerequisite to constrain fault-based and time-dependent earthquake rupture forecast models is to acquire data on the past large earthquake frequency on an individual seismogenic source and to compare all the recorded occurrences in the active fault-system. We investigated the Holocene seismic history of the Pizzalto normal fault, a 13 km long fault segment belonging to the Pizzalto-Rotella-Aremogna fault system in the Apennines (Italy). We collected 44 samples on the Holocene exhumed Pizzalto fault plane and analyzed their 36Cl and rare earth elements content. Conjointly used, the 36Cl and REE concentrations show that at least 6 events have exhumed 4.4 m of the fault scarp between 3 and 1 ka BP, the slip per event ranging from 0.3 to 1.2 m. No major events have been detected over the last 1 ka. The Rotella-Aremogna-Pizzalto fault system has a clustered earthquake behaviour with a mean recurrence time of 1.2 ka and a low to moderate probability (ranging from 4% to 26%) of earthquake occurrence over the next 50 years. We observed similarities between seismic histories of several faults belonging to two adjacent fault systems. This could again attest that non-random processes occurring in the release of the strain accumulated on faults, commonly referred to as fault interactions and leading to apparent synchronization. If these processes were determined as being the main parameter controlling the occurrence of earthquakes, it would be crucial to take them into account in seismic hazard models.

  15. Quantifying Coseismic Normal Fault Rupture at the Seafloor: The 2004 Les Saintes Earthquake (Mw 6.3) Along the Roseau Fault (French Antilles)

    NASA Astrophysics Data System (ADS)

    Escartin, J.; Leclerc, F.; Cannat, M.; Petersen, S.; Augustin, N.; Bezos, A.; Bonnemains, D.; Chavagnac, V.; Choi, Y.; Godard, M.; Haaga, K.; Hamelin, C.; Ildefonse, B.; Jamieson, J. W.; John, B. E.; Leleu, T.; Massot-Campos, M.; Mevel, C.; Nomikou, P.; Olive, J. A. L.; Paquet, M.; Rommevaux, C.; Rothenbeck, M.; Steinführer, A.; Tominaga, M.; Triebe, L.; Garcia, R.; Gracias, N.; Feuillet, N.; Deplus, C.

    2014-12-01

    Direct observations of coseismic fault displacement and rupture-related features are essential to understand seismic cycles, to quantify seismic hazard, and to constrain rupture dynamics. They are also needed to trace the paleoseismic history of active faults. Such observations in submarine environments are practically absent, but critical to assess associated tsunami hazard. The ODEMAR cruise studied a ~10 km section of the Roseau Fault (RF) off Les Saintes Islands (Guadeloupe, French Lesser Antilles), a normal fault that generated a Mw 6.3 earthquake in 2004 that triggered a tsunami (<3.5 m of run-up). Microbathymetric data and video observations conducted with the autonomous underwater vehicle ABYSS (GEOMAR) and the remotely operated vehicle VICTOR (IFREMER) allow us to document recent fault-related deformation features. First, the RF hangingwall shows an indurated and ubiquitous rippled sediment layer, locally covered by recent, unconsolidated sediments reworked by currents. Seafloor photomosaics show the indurated layer disrupted by extensional cracks (up to few m long, several 10s of cm wide, ~30 cm deep) along >1 km and by the RF scarp base, that are certainly very young as they are not covered by unconsolidated sediments. Second, video imagery reveals well-preserved, subvertical and polished fault planes exposed at the RF scarp base. Videomosacing and video derived 3D terrain models of a fault outcrop (~12 m long, ~5 m high) reveal on the fault plane a thin, continuous line of unconsolidated sediment sub-parallel to and 10s' of cm above the fault/sediment contact. The line represents the paleo-fault/sediment contact prior to a very recent displacement event, as strong currents in the area would otherwise have washed out the sediment. The fault surface above this line is rougher than that below it. Based on the apparent young age of these features, and given the recurrence time of seismic events along the RF (hundreds to a few thousands of years for Mw 6

  16. Lateral migration of fault activity in Weihe basin

    NASA Astrophysics Data System (ADS)

    Feng, Xi-Jie; Dai, Wang-Qiang

    2004-03-01

    Lateral migration of fault activity in Weihe basin is a popular phenomenon and its characteristics are also typical. Taking the activity migrations of Wangshun Mountain piedmont fault toward Lishan piedmont fault and Weinan platform front fault, Dabaopi-Niujiaojian fault toward Shenyusi-Xiaojiazhai fault, among a serial of NE-trending faults from Baoji city to Jingyang County as examples, their migration time and process are analyzed and discussed in the present paper. It is useful for further understanding the structure development and physiognomy evolution history of Weihe basin.

  17. Comparison between inversion of focal mecanisms and paleostress analysis, interpretation of normal fault in SW Alps.

    NASA Astrophysics Data System (ADS)

    Bauve, Victorien; Rolland, Yann; Bethoux, Nicole; Sanchez, Guillaume; Darnault, Romain; Plateau, Romain

    2013-04-01

    Seismic hazard assessment of active faults in slow orogenic domains is a challenging issue and even more in regional with polyphase tectonic history. We present a multi-disciplinary approach combining geological observations and sismological analysis along the south-western flank of the Alpine arc (France and Italy). Statistical analysis of strieated fault planes and data inversion allow paleo-stress/strain analysis of fractures that mainly formed in the Miocene to present (20-0 Ma). These data are compared to 'modern' stress tensors computated from focal mechanisms of the 1968-2006 regional sismological database. The paleo-stress tensors are compared with modern stresses in terms of the distribution of orientations and stress ratios in the SW Alps space. In this study 46 new paleo-stress tensors are calculated based on more 850 faults measurements mainly from the edge and into the Argentera-Mercantour massif and 9 new inversions of focal mechanisms. Paleo-stress analysis provides orientations similar to those derived from the focal mechanisms of current regional seismicity, with the main stress 1 oriented north-south, in agreement with a major N140° right-lateral strike-slip active fault system (e.g., Sanchez et al.,2010). The ratios of normal and reverse focal mechanism are sensibly different between south Alps and western Alps. The study of deformation, fracturation and pebbles in Pliocene molasses basin of Nice is in agreement with ongoing strike-slip deformation at least since the early Pliocene (Bauve et al., 2012). With this study we better constrain the kinematics of SW Alps, and their bearing on seismological hazard. Since 20 Ma, the SW Alps are dominated by a transpressive strain characterised by permutation between reverse and stike-slip fault with high phi ratio ((2-3)/(1-3)). The extensional stress are clearly localized around the Tinée valley, on the NW edge of the crystalline basement, characterised by large slope instabilities and active

  18. Identification of recently active faults and folds in Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Marliyani, G. I.; Arrowsmith, R.; Helmi, H.

    2013-12-01

    We analyze the spatial pattern of active deformation in Java, Indonesia with the aim of characterizing the deformation of the upper plate of the subduction zone in this region. The lack of detailed neotectonic studies in Java is mostly because of its relatively low rate of deformation in spite of significant historical seismic activity. In addition, the abundance of young volcanic materials as well as the region's high precipitation rate and vegetation cover obscure structural relationships and prevent reliable estimates of offset along active faults as well as exhumed intra-arc faults. Detailed maps of active faults derived from satellite and field-based neotectonic mapping, paleoseismic data, as well as new data on the fault kinematics and estimates of orientation of principal stresses from volcano morphology characterize recently active faults and folds. The structures in West Java are dominated by strike-slip faulting, while Central and northern part of East Java are dominated by folds and thrusting with minor normal faulting. The structures vary in length from hundreds meters to tens of kilometers and mainly trend N75°E, N8°E with some minor N45°W. Our preliminary mapping indicates that there are no large scale continuous structures in Java, and that instead deformation is distributed over wide areas along small structures. We established several paleoseismic sites along some of the identified structures. We excavated two shallow trenches along the Pasuruan fault, a normal fault striking NW-SE that forms a straight 13 km scarp cutting Pleistocene deltaic deposits of the north shore of East Java. The trenches exposed faulted and folded fluvial, alluvial and colluvial strata that record at least four ground-rupturing earthquakes since the Pleistocene. The Pasuruan site proves its potential to provide a paleoseismic record rarely found in Java. Abundant Quaternary volcanoes are emplaced throughout Java; most of the volcanoes show elongation in N100°E and N20

  19. Normal fault populations across the Costa Rica margin, NW of the Osa Penninsula, and implications for upper plate stress

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.

    2015-12-01

    The upper plate of the Costa Rica subduction zone is dissected by hundreds of normal faults that cut through the uppermost 500 - 1000m of slope sediment cover sequences within the upper slope and outer shelf of the Costa Rica margin. These faults are typically spaced 10s to 100s of m apart and have only small offsets of < 30 m. We have mapped more than 100 of these faults by tracing them along the inline, crossline and horizontal slices through a 3D seismic reflection data volume. These data were acquired on the R/V Langseth in 2011 using a 3,300 in3airgun source and a 6,000 m streamer with inline and crossline spacing of 18.75 m and 12.5 m respectively. Two primary populations of normal faults have conjugate sets that can be mapped across the upper slope and the outer shelf. The first set strikes slightly west of north and rotates systematically from 345° at the northern edge of the survey, which is located midway between the shelf break and the shoreline, to an orientation of 325° beneath the upper slope. We interpret this set as a result of WNW-ESE extension, which has been hypothesized to be a result of the collision between the Cocos Ridge (~75 km to the SE) and the Costa Rica margin (La Femina, et al., 2009). The second set of normal faults strikes east with an azimuth of 85°. This set of faults has a consistent orientation across the shelf and upper slope. This orientation is roughly parallel to the orientation of the subducting basement ridges (78°), which form horst and graben structures on the down going plate. These faults may be a result of uplift and extension as subducting ridges pass underneath. However, beneath the upper slope additional fault populations emerge with dominant azimuths primarily oriented at 5° and 65°. These faults appear to mark the localized extension caused by growth and uplift in the underlying margin wedge. Further, recent movement on shallow thrust faults indicates active shortening of the upper plate. We speculate that

  20. Normal block faulting in the Airport Graben, Managua pull-apart rift, Nicaragua: gravity and magnetic constraints

    NASA Astrophysics Data System (ADS)

    Campos-Enriquez, J. O.; Zambrana Arias, X.; Keppie, D.; Ramón Márquez, V.

    2012-12-01

    Regional scale models have been proposed for the Nicaraguan depression: 1) parallel rifting of the depression (and volcanic front) due to roll back of the underlying subducted Cocos plate; 2) right-lateral strike-slip faulting parallel to the depression and locally offset by pull-apart basins; 3) right-lateral strike-slip faulting parallel to the depression and offset by left-lateral transverse or bookshelf faults. At an intermediate scale, Funk et al. (2011) interpret the depression as half graben type structures. The E-W Airport graben lies in the southeastern part of the Managua graben (Nicaragua), across which the active Central American volcanic arc is dextrally offset, possibly the result of a subducted transform fault where the subduction angle changes. The Managua graben lies within the late Quaternary Nicaragua depression produced by backarc rifting during roll back of the Middle American Trench. The Managua graben formed as a pull-apart rift associated with dextral bookshelf faulting during dextral shear between the forearc and arc and is the locus of two historical, large earthquakes that destroyed the city of Managua. In order to asses future earthquake risk, four E-W gravity and magnetic profiles were undertaken to determine its structure across the Airport graben, which is bounded by the Cofradia and Airport fault zones, to the east and west, respectively. These data indicated the presence of a series of normal faults bounding down-thrown and up-thrown fault blocks and a listric normal fault, Sabana Grande Fault. The models imply that this area has been subjected to tectonic extension. These faults appear to be part of the bookshelf suite and will probably be the locus of future earthquakes, which could destroy the airport and surrounding part of Managua. Three regional SW-NE gravity profiles running from the Pacific Ocean up to the Caribbean See indicate a change in crustal structure: from north to south the crust thins. According to these regional

  1. Normal fault growth above pre-existing structures: insights from discrete element modelling

    NASA Astrophysics Data System (ADS)

    Wrona, Thilo; Finch, Emma; Bell, Rebecca; Jackson, Christopher; Gawthorpe, Robert; Phillips, Thomas

    2016-04-01

    In extensional systems, pre-existing structures such as shear zones may affect the growth, geometry and location of normal faults. Recent seismic reflection-based observations from the North Sea suggest that shear zones not only localise deformation in the host rock, but also in the overlying sedimentary succession. While pre-existing weaknesses are known to localise deformation in the host rock, their effect on deformation in the overlying succession is less well understood. Here, we use 3-D discrete element modelling to determine if and how kilometre-scale shear zones affect normal fault growth in the overlying succession. Discrete element models use a large number of interacting particles to describe the dynamic evolution of complex systems. The technique has therefore been applied to describe fault and fracture growth in a variety of geological settings. We model normal faulting by extending a 60×60×30 km crustal rift-basin model including brittle and ductile interactions and gravitation and isostatic forces by 30%. An inclined plane of weakness which represents a pre-existing shear zone is introduced in the lower section of the upper brittle layer at the start of the experiment. The length, width, orientation and dip of the weak zone are systematically varied between experiments to test how these parameters control the geometric and kinematic development of overlying normal fault systems. Consistent with our seismic reflection-based observations, our results show that strain is indeed localised in and above these weak zones. In the lower brittle layer, normal faults nucleate, as expected, within the zone of weakness and control the initiation and propagation of neighbouring faults. Above this, normal faults nucleate throughout the overlying strata where their orientations are strongly influenced by the underlying zone of weakness. These results challenge the notion that overburden normal faults simply form due to reactivation and upwards propagation of pre

  2. Fault and graben growth along active magmatic divergent plate boundaries in Iceland and Ethiopia

    NASA Astrophysics Data System (ADS)

    Trippanera, D.; Acocella, V.; Ruch, J.; Abebe, B.

    2015-11-01

    Recent studies highlight the importance of annual-scale dike-induced rifting episodes in developing normal faults and graben along the active axis of magmatic divergent plate boundaries (MDPB). However, the longer-term (102-105 years) role of diking on the cumulative surface deformation and evolution of MDPB is not yet well understood. To better understand the longer-term normal faults and graben along the axis of MDPB, we analyze fissure swarms in Iceland and Ethiopia. We first focus on the simplest case of immature fissure swarms, with single dike-fed eruptive fissures; these consist of a <1 km wide graben bordered by normal faults with displacement up to a few meters, consistent with theoretical models and geodetic data. A similar structural pattern is found, with asymmetric and multiple graben, within wider mature fissure swarms, formed by several dike-fed eruptive fissures. We then consider the lateral termination of normal faults along these grabens to detect their upward or downward propagation. Most faults terminate as open fractures on flat surface, suggesting downward fault propagation; this is consistent with recent experiments showing dike-induced normal faults propagating downward from the surface. However, some normal faults also terminate as open fractures on monoclines, which resemble fault propagation folds; this suggests upward propagation of reactivated buried faults, promoted by diking. These results suggest that fault growth and graben development, as well as the longer-term evolution of the axis of MDPB, may be explained only through dike emplacement and that any amagmatic faulting is not necessary.

  3. Coexistence of low-angle normal and high-angle strike- to oblique-slip faults during Late Miocene mineralization in eastern Elba Island (Italy)

    NASA Astrophysics Data System (ADS)

    Liotta, Domenico; Brogi, Andrea; Meccheri, Marco; Dini, Andrea; Bianco, Caterina; Ruggieri, Giovanni

    2015-10-01

    In this paper we deal with the kinematic and chronological relationships among low angle normal faults and high angle strike- to oblique-slip faults in an exhumed mineralized area, where shear veins and minor associated structures filled with the same mineral assemblage has been interpreted as indicators of coeval fault activities. The study area is located in the eastern Elba Island, where a mineralized late Miocene-early Pliocene low-angle normal fault (Zuccale fault) and high-angle strike- to oblique-slip faults extensively crop out, the latter giving rise to the Capoliveri-Porto Azzurro shear zone. The field study highlighted that: (a) the damage zones of both fault sets are mineralized by syn-kinematic tourmaline, graphite, Fe-oxides and/or Fe-oxyhydroxides shear veins, thus indicating their coeval activity during the hydrothermal event (5.9-5.4 Ma); (b) the Capoliveri-Porto Azzurro shear zone is constituted by a network of fractures, whose geometry and kinematics display the evolution of a NE-trending left-lateral oblique-slip transtensional shear zone; (c) its internal architecture is defined by tourmaline and Fe-oxides and/or Fe-oxyhydroxides mineralized veins, framed in the same kinematic field characterizing the Zuccale fault evolution; for this reason, the Capoliveri-Porto Azzurro shear zone is interpreted as a transfer zone active during the low-angle fault activity; (d) the Capoliveri-Porto Azzurro shear zone played the role of a significant normal fault during the Late Pliocene-Pleistocene, therefore favouring the deepening of the Tyrrhenian Basin with respect to the uplift and exhumation of the mid-crustal rocks of the Elba Island. It is finally argued that the interaction between the low-angle normal fault and the almost vertical shear zone determined an increase of permeability, favouring the mineralizing fluid flow during the hydrothermal stage and, reasonably, the previous emplacement of the Porto Azzurro magmatic body.

  4. Syn-thrusting polygonal normal faults exposed in the hinge of the Cingoli anticline, northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Petracchini, Lorenzo; Antonellini, Marco; Billi, Andrea; Scrocca, Davide

    2015-11-01

    The Cingoli arcuate anticline is part of the Apennines fold-thrust belt in Italy. The anticline involves sedimentary carbonate strata generally affected by syn-thrusting contractional structures such as bed-normal pressure solution seams, folds, and reverse faults. An exception is constituted by an outcrop in the anticline hinge, where sub-horizontal carbonate and chert beds are affected by joints and intraformational short normal faults. These faults are poorly-systematic and conceivably polygonal in map view. They cut through the carbonate beds while usually stop against the chert layers that are bent and extended along the faults themselves. At the fault tips, the displacement is generally transferred, via a lateral step, to an adjacent similar fault segment. The fault surfaces are often characterized by slickolites, greenish clayey residue, and micro-breccias including chert and carbonate clasts. Fault displacement is partly or largely accommodated by pressure solution. The faults, in effect, are usually accompanied by bed-parallel pressure solution seams in the two contractional quadrants located at the present or past fault tips. The pressure solution features fade away departing from the faults. This evidence and others are analytically explained with fault tip stress distributions. The faults are interpreted as polygonal normal faults syn-tectonically (syn-thrusting) nucleated in response to multi-directional stretching processes occurred at the Cingoli triple-folded anticline extrados. The faults then grew through a four-stage process: (1. stop) the faults stopped at the competent chert beds; (2. shrink) faulting produced shrinkage (pressure solution) of carbonate beds at the fault compressive tips; (3. shrink and step) the faults stepped laterally at the competent chert beds; (4. shatter) the chert beds were shattered along the fault surfaces. The case presented constitutes the first reported one of syn-thrusting non-diagenetic polygonal normal faults.

  5. Evolution and dynamics of active faults in southeastern Egyptian Western Desert

    NASA Astrophysics Data System (ADS)

    Abdeen, Mamdouh

    2016-07-01

    Remote sensing data processing and analysis together with interpretation of earthquake data that are followed by extensive field studies on some of the prevailing NS and EW striking faults indicate that these faults have an intimate relationship and were formed synchronously as a conjugate Riedel shears. Parallel to the NS and the EW faults open fractures filled with blown sand dominate the area of study. The Quaternary terraces adjacent to these faults are offset by the faults. Kinematic indicators on the NS striking faults indicate major sinistral (left-lateral) strike slip and minor dip-slip (normal) movement. On the other hand, kinematic indicators on the EW striking faults indicate major dextral (right-lateral) strike slip and minor dip-slip (normal) movement. Paleo-stress analysis of the fault striae measured on the NS and EW faults indicate that these faults were formed under NNE-SSW oriented extension. Instrumental earthquake data analysis shows a comparable extension direction to that derived from field measurements of slickenlineation. These observations indicate that the NS- and EW-striking faults are contemporaneous and are related to the Red Sea rifting that is currently active.

  6. Tectonic geomorphology of large normal faults bounding the Cuzco rift basin within the southern Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Byers, C.; Mann, P.

    2015-12-01

    The Cuzco basin forms a 80-wide, relatively flat valley within the High Andes of southern Peru. This larger basin includes the regional capital of Cuzco and the Urubamba Valley, or "Sacred Valley of the Incas" favored by the Incas for its mild climate and broader expanses of less rugged and arable land. The valley is bounded on its northern edge by a 100-km-long and 10-km-wide zone of down-to-the-south systems of normal faults that separate the lower area of the down-dropped plateau of central Peru and the more elevated area of the Eastern Cordillera foldbelt that overthrusts the Amazon lowlands to the east. Previous workers have shown that the normal faults are dipslip with up to 600 m of measured displacements, reflect north-south extension, and have Holocene displacments with some linked to destructive, historical earthquakes. We have constructed topographic and structural cross sections across the entire area to demonstrate the normal fault on a the plateau peneplain. The footwall of the Eastern Cordillera, capped by snowcapped peaks in excess of 6 km, tilts a peneplain surface northward while the hanging wall of the Cuzco basin is radially arched. Erosion is accelerated along the trend of the normal fault zone. As the normal fault zone changes its strike from east-west to more more northwest-southeast, normal displacement decreases and is replaced by a left-lateral strike-slip component.

  7. Oblique normal faulting along the northern edge of the Majella Anticline, central Italy: Inferences on hydrocarbon migration and accumulation

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; Alessandroni, Mauro; Tondi, Emanuele; Aydin, Atilla

    2010-09-01

    Along the northern edge of the Majella anticline, in a large quarry originally excavated by ancient Romans, we studied the deformation mechanisms and internal architectures of faults characterized by both normal and lateral components of slip. These oblique normal faults, which crosscut Miocene carbonate grainstones, are associated with hydrocarbons in the form of tar. Within the faults, tar is present in the breccia of the fault cores, as well as in the surrounding fractured and faulted damage zones. Outside of them, tar is found within the porous carbonate beds flanking the oblique normal faults. We propose a conceptual model of fault nucleation and development. In this model, incipient faulting was characterized by shearing of the pre-existing pressure solution seams and formation of two main sets of tail pressure solution seams. With ongoing faulting, exhumation, and growth of the Majella anticline, the main deformation mechanism switched to predominant opening-mode failure in the form of tail joints and veins within the evolving oblique normal faults. This processes allowed the linkage of isolated slip surfaces across contiguous carbonate beds, and the development of isolated pods of fragmented rocks along the evolving faults. Brecciation and cataclasis localized only along the main slip surfaces of the oblique normal faults, forming a zone of intense deformation, the fault core, surrounded by less-deformed fractured, faulted and fragmented carbonates of the damage zone. Tar distribution was used as a proxy for fault and fracture permeability. Well-developed oblique normal faults, as a whole, form combined barrier-conduit structures to fluid flow. The cataclastic rocks, if continuous along the fault cores, form seals for cross-fault fluid flow, whereas the fault breccia and the surrounding carbonate damage zones act as conduits to fluid flow. Less-evolved oblique normal faults may form either distributed or localized conduits for fluid flow, depending on the

  8. Oblique normal faulting along the northern edge of the Majella Anticline, central Italy: Inferences on hydrocarbon migration and accumulation

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; Alessandroni, Mauro; Tondi, Emanuele; Aydin, Atilla

    2009-07-01

    Along the northern edge of the Majella anticline, in a large quarry originally excavated by ancient Romans, we studied the deformation mechanisms and internal architectures of faults characterized by both normal and lateral components of slip. These oblique normal faults, which crosscut Miocene carbonate grainstones, are associated with hydrocarbons in the form of tar. Within the faults, tar is present in the breccia of the fault cores, as well as in the surrounding fractured and faulted damage zones. Outside of them, tar is found within the porous carbonate beds flanking the oblique normal faults. We propose a conceptual model of fault nucleation and development. In this model, incipient faulting was characterized by shearing of the pre-existing pressure solution seams and formation of two main sets of tail pressure solution seams. With ongoing faulting, exhumation, and growth of the Majella anticline, the main deformation mechanism switched to predominant opening-mode failure in the form of tail joints and veins within the evolving oblique normal faults. This processes allowed the linkage of isolated slip surfaces across contiguous carbonate beds, and the development of isolated pods of fragmented rocks along the evolving faults. Brecciation and cataclasis localized only along the main slip surfaces of the oblique normal faults, forming a zone of intense deformation, the fault core, surrounded by less-deformed fractured, faulted and fragmented carbonates of the damage zone. Tar distribution was used as a proxy for fault and fracture permeability. Well-developed oblique normal faults, as a whole, form combined barrier-conduit structures to fluid flow. The cataclastic rocks, if continuous along the fault cores, form seals for cross-fault fluid flow, whereas the fault breccia and the surrounding carbonate damage zones act as conduits to fluid flow. Less-evolved oblique normal faults may form either distributed or localized conduits for fluid flow, depending on the

  9. Geophysical characterization of buried active faults: the Concud Fault (Iberian Chain, NE Spain)

    NASA Astrophysics Data System (ADS)

    Pueyo Anchuela, Óscar; Lafuente, Paloma; Arlegui, Luis; Liesa, Carlos L.; Simón, José L.

    2015-12-01

    The Concud Fault is a ~14-km-long active fault that extends close to Teruel, a city with about 35,000 inhabitants in the Iberian Range (NE Spain). It shows evidence of recurrent activity during Late Pleistocene time, posing a significant seismic hazard in an area of moderate-to-low tectonic rates. A geophysical survey was carried out along the mapped trace of the southern branch of the Concud Fault to evaluate the geophysical signature from the fault and the location of paleoseismic trenches. The survey identified a lineation of inverse magnetic dipoles at residual and vertical magnetic gradient, a local increase in apparent conductivity, and interruptions of the underground sediment structure along GPR profiles. The origin of these anomalies is due to lateral contrast between both fault blocks and the geophysical signature of Quaternary materials located above and directly south of the fault. The spatial distribution of anomalies was successfully used to locate suitable trench sites and to map non-exposed segments of the fault. The geophysical anomalies are related to the sedimentological characteristics and permeability differences of the deposits and to deformation related to fault activity. The results illustrate the usefulness of geophysics to detect and map non-exposed faults in areas of moderate-to-low tectonic activity where faults are often covered by recent pediments that obscure geological evidence of the most recent earthquakes. The results also highlight the importance of applying multiple geophysical techniques in defining the location of buried faults.

  10. Seismic slip on an upper-plate normal fault during a large subduction megathrust rupture

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen P.; Rietbrock, Andreas

    2016-04-01

    Quantification of stress accumulation and release during subduction zone seismic cycles requires an understanding of the distribution of fault slip during earthquakes. Reconstructions of slip are typically constrained to a single, known fault plane. Yet, slip has been shown to occur on multiple faults within the subducting plate owing to stress triggering, resulting in phenomena such as earthquake doublets. However, rapid stress triggering from the plate interface to faults in the overriding plate has not been documented before. We have analysed seismic data from the magnitude 7.1 Araucania earthquake that occurred in the Chilean subduction zone in January 2011. We find that the earthquake, which was reported as a single event in global moment tensor solutions, was instead composed of two ruptures on two separate faults. We use 3-D full waveform simulations to better constrain the centroid of the second rupture. Within 12 s, a thrust earthquake (Mw 6.8) on the plate interface triggered a second large rupture on a normal fault 30 km away in the overriding plate (Mw 6.7). We define this set of events as a 'closely spaced doublet' (CSD). This configuration of partitioned rupture is consistent with normal-faulting mechanisms in the ensuing aftershock sequence. We conclude that plate interface rupture can trigger almost instantaneous slip in the overriding plate of a subduction zone. This shallow upper-plate rupture may be masked from teleseismic data, posing a challenge for real-time tsunami warning systems.

  11. Controls on low-stress hydro-fracture dilatancy in thrust, wrench and normal fault terrains

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    1981-02-01

    Arrays of parallel extension fractures and veins are sometimes associated with exhumed faults and seem to be the product of repeated hydro-fracturing under a shared stress regime. Here theoretical considerations are used to suggest that this type of hydro-fracture dilatancy is essentially a low differential stress phenomenon. It may develop under hydrostatic fluid pressures around normal faults at shallow depths, but can only occur in association with thrusts when fluid pressures exceed the litho-static load. This contrasts with most existing models for dilatancy, where the effects only become pronounced at high stress levels and are best developed around thrust faults.

  12. Low-Angle Normal Faults in the Gulf of California Extensional Province: Constraints on Mechanics

    NASA Astrophysics Data System (ADS)

    Axen, G. J.

    2005-12-01

    The mechanics and tectonic role(s) of low-angle normal faults (LANFs or detachments) remain controversial. Four LANFs evolved in the Gulf of California rift as integral parts of the late Cenozoic Pac-N.Am. dextral-extensional plate boundary. They cut older intrusive and metamorphic rocks and late Cenozoic syntectonic marine and nonmarine upper plate strata. These LANFs display only brittle tectonites, with slip generally <20 km. Only the southern Cañada David fault remains active; its northern part was deactivated by the Laguna Salada fault. Unlike "typical" LANFs, isostatic footwall rebound is minimal or absent, especially for east-dipping LANFs that root toward axial basins underlain by new mafic crust, the density of which may have impeded rebound. Significant LANFs formed only north of Puertecitos, B.C., where the rift axis and western flank trend about 20 degrees more northerly than elsewhere, and where the angle between the rift axis and the relative plate-motion vector is largest. Thus, LANF formation may be favored above some threshold (e.g., of extension rate, minimum work criterion, etc.) reflected by this angle. The west Salton detachment cuts gently across older, steeper foliation or isotropic granitoids, so its orientation was not controlled by anisotropy. It is exposed within kilometers of its breakaway, where it intersected an older, low relief erosion surface, demonstrating that the fault dipped gently to within ~1 km or less of Earth's surface. Thus, if models are correct in which LANF dip is controlled by rotated stress-fields, then stress rotation occurred even at very shallow depths. Some such models invoke basal shear traction to rotate the stress field; such boundary conditions might fit the NW Gulf if it opened largely in response to shear between oceanic microplates and the overlying continent. These models predict uniform LANF dip directions, but three LANFs dip east and one (Cañada David) dips west, so it seems unlikely that this, or any

  13. Fault Segmentation and its Implication to the Evaluation of Future Earthquakes from Active Faults in Japan

    NASA Astrophysics Data System (ADS)

    Awata, Y.; Yoshioka, T.

    2005-12-01

    Segmentation of active faults is essential for the evaluation both of past and future faulting using geologic data from paleoseismological sites. A behavioral segment is defined as the smallest segment of fault having a characteristic history of faulting. More over, we have to estimate the earthquake segments that can be consist of multiple faulting along a system of behavioral segments. Active fault strands in Japan are segmented into behavioral segments based on fault discontinuity of 2-3 km and larger (Active Fault Res. Group, GSJ, 2000), large bend of fault strand and paleoseismicity. 431 behavioral segments, >= 10 km in length and >= 0.1 m/ky in long-term slip-rate, are identified from a database of active faults in Japan, that is constructed at AFRC, GSJ/AIST. The length of the segments is averaged 21 km and approximately 70 km in maximum. Only 8 segments are exceed 45 km in length. These lengths are very similar to those of historical surface ruptures not only in Japan since 1891 Nobi earthquake, but also in other regions having different tectonic setting. According to the scaling law between fault length and amount of displacement of behavioral segment, a maximum length of ca. 70 km can estimate a slip of ca. 14 m. This amount of slip is as large as world largest slip occurred during the 1931 Fuyun earthquake of M 8, 1999 Chichi earthquake of M 7.4 and the 2001 Central Kunlun earthquake of M 7.9 in East Asia. Recent geological and seismological studies on large earthquakes have revealed that multiple-rupturing is very common during large earthquakes. Therefore, evaluation of simultaneous faulting along a system of active faults is indispensable for the estimation of earthquake size. A Matsuda's (1990) idea of "seismogenic faults", that is divided or grouped based on the geometric discontinuity of 5 km, may useful for the best estimation of earthquake segment. The Japanese behavioral segments are grouped into "seismogenic faults", each consists of about 2

  14. Variations in normal faulting and plate deformation along the Mariana trench

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Lin, J.

    2015-12-01

    We investigate variations in normal faulting along the Mariana trench through analyzing deformation of the subducting Pacific plate and geodynamic modeling. Detailed investigation was focused on three areas where high-resolution multibeam bathymetry data are available: the Southern (S) region at 140.8-144°E; the Central (C) region at 14.7-16.8°N; and the Northern (N) region at 18-21.2°N. In each of the study regions, we analyzed seafloor normal faults and calculated the statistics of fault parameters including strike, throw, density, and location relative to the trench axis. Our analysis revealed several key constraints: (1) Most of the normal faults are sub-parallel to the local strike of the trench axis, indicating that the normal faults were initiated by bending stresses in the subducting plate and not by pre-existing seafloor abyssal tectonic fabrics. (2) The normal faults were likely initiated within the outer rise region and reached maximum throw toward the trench. (3) The S-region has the largest trench relief (average of ~6 km) as well as the largest fault throw (maximum throw reached ~320 m when averaged over 5 km of trench-perpendicular profiles). In contrast, the N-region has much smaller trench relief (~2 km) and smaller fault throw (maximum fault throw reached only ~180 m). We then modeled the subducting plate as an elasto-plastic slab subjected to tectonic forcing at the trench axis, including vertical load (V0), bending moment (M0), and horizontal tensional force (F0). Using the above observations as constraints, modeling revealed the following key results: (1) The best-fitting solutions for the S-region are V0 = 5.8 x 1012 N/m, M0 = 9.6 x 1016 N, and F0 = 3.6 x 1012 N/m, yielding the horizontal extensional force to vertical loading ratio F0/V0 = 62%. (2) The best-fitting V0 for the N- and C-regions are about 33% and 41% that of the S-region. Meanwhile, the best-fitting M0 for the N- and C-regions are about 80% and 60% that of the S-region. (3

  15. Simultaneous measurement of real contact area and fault normal stiffness during frictional sliding

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Nagata, K.; Kilgore, B. D.; Nakatani, M.

    2010-12-01

    The tectonic stresses that lead to earthquake slip are concentrated in small regions of solid contact between asperities or gouge particles within the fault. Fault strength is proportional to the contact area within the shearing portion of the fault zone and many fault properties of interest to earthquake hazard research, e.g., occurrence time, recurrence interval, precursory slip, triggered earthquake slip, are controlled by processes acting at the highly stressed contact regions. Unfortunately the contact-scale physical processes controlling earthquake occurrence cannot be easily observed or measured directly. In this pilot study we simultaneously directly measure contact area using transmitted light intensity (LI) [Dieterich and Kilgore, 1994; 1996] and continuously monitor the normal stiffness of the fault using acoustic wave transmission (AT) [Nagata et al., 2008]. The objective of our study is to determine relations amongst contacting area, stiffness, strength, normal stress, shear displacement, and time of contact during sliding. Interface stiffness is monitored using acoustic compressive waves transmitted across the fault. Because the fault is more compliant in compression than the surrounding rock, the fault has an elastic wave transmission coefficient that depends on the fault normal stiffness. Contact area is measured by LI: regions in contact transmit light efficiently while light is scattered elsewhere; therefore transmitted light intensity is presumed proportional to contact area. LI and AT are expected to be correlated; e.g., an elastic contact model suggests that stiffness goes as the square root of contact area. We observe LI and AT for sliding at slip speeds between 0.01 and 10 microns/s and normal stresses between 1 and 2.5 MPa while conducting standard velocity-step, normal stress-step and slide-hold-slide tests. AT and LI correlate during all tests, at all conditions. If the physical relationship, or even an empirical calibration between AT and

  16. Segmentation and the coseismic behavior of Basin and Range normal faults: examples from east-central Idaho and southwestern Montana, U.S.A.

    USGS Publications Warehouse

    Crone, A.J.; Haller, K.M.

    1991-01-01

    The range-front normal faults of the Lost River and Lemhi Ranges, and the Beaverhead and Tendoy Mountains in east-central Idaho and southwestern Montana have well-preserved fault scarps on Quaternary deposits along much of their lengths. Fault-scarp morphology, the age of deposits displaced by the faults, and the morphology of the range fronts provide a basis for dividing the faults into segments that are typically 20-25 km long. The Lost River, Lemhi and Beaverhead fault zones are 141-151 km long, and each has six segments. The 60-km-long Red Rock fault (the range-front fault of the Tendoy Mountains) has two central segments that have been active in late Quaternary time; these two segments span the central 27 km of the fault. We recognize four characteristics that help to identify segment boundaries: (1) major en e??chelon offsets or pronounced gaps in the continuity of fault scarps; (2) distinct, persistent, along-strike changes in fault-scarp morphology that indicate different ages of faulting; (3) major salients in the range front; and (4) transverse bedrock ridges where the cumulative throw is low compared to other places along the fault zone. Only features whose size is measured on the scale of kilometers are regarded as significant enough to represent a segment boundary that could inhibit or halt a propagating rupture. The ability to identify segments of faults that are likely to behave as independent structural entities will improve seismic-hazard assessment. However, one should not assume that the barriers at segment boundaries will completely stop all propagating ruptures. The topographic expression of mountain ranges is evidence that, at times during their history, all barriers fail. Some barriers apparently create 'leaky' segment boundaries that impede propagating ruptures but do not completely prevent faulting on adjacent segments. ?? 1991.

  17. Numerical reconstruction of Late-Cenosoic evolution of normal-fault scarps in Baikal Rift Zone

    NASA Astrophysics Data System (ADS)

    Byzov, Leonid; San'kov, Vladimir

    2014-05-01

    Numerical landscape development modeling has recently become a popular tool in geo-logic and geomorphic investigations. We employed this technique to reconstruct Late-Cenosoic evolution of Baikal Rift Zone mountains. The objects of research were Barguzin Range and Svyatoy Nos Upland. These structures are formed under conditions of crustal extension and bounded by active normal faults. In our experiments we used instruments, engineered by Greg Tucker (University of Colo-rado) - CHILD (Channel-Hillslope Integrated Landscape Development) and 'Bedrock Fault Scarp'. First program allowed constructing the complex landscape model considering tectonic uplift, fluvial and hillslope processes; second program is used for more accurate simulating of triangular facet evolution. In general, our experiments consisted in testing of tectonic parameters, and climatic char-acteristic, erosion and diffusion properties, hydraulic geometry were practically constant except for some special runs. Numerous experiments, with various scenarios of development, showed that Barguzin range and Svyatoy Nos Upland has many common features. These structures characterized by internal differentiation, which appear in height and shape of slopes. At the same time, individual segments of these objects are very similar - this conclusion refers to most developing parts, with pronounced facets and V-shaped valleys. Accordingly modelling, these landscapes are in a steady state and are undergoing a uplift with rate 0,4 mm/yr since Early Pliocene (this solution accords with AFT-dating). Lower segments of Barguzin Range and Svyatoy Nos Upland also have some general fea-tures, but the reasons of such similarity probably are different. In particular, southern segment of Svyatoy Nos Upland, which characterized by relative high slope with very weak incision, may be formed as result very rapid fault movement or catastrophic landslide. On the other hand, a lower segment of Barguzin Range (Ulun segment, for example

  18. Cataclastic Rocks Associated With Extreme Crustal Extension, Southern Basin and Range: Evidence for Paleoseismicity Along Low-Angle Normal Faults?

    NASA Astrophysics Data System (ADS)

    Campbell-Stone, E.; John, B.; Stunitz, H.; Heilbronner, R.; Goyette, J.

    2008-12-01

    The denuded Cenozoic detachment fault system exposed in the Sacramento and Chemehuevi mountains area (SE California) provides evidence for the evolution of a regional, low-angle normal fault system. The Chemehuevi-Sacramento detachment fault accommodated at least 18 km of NE-SW directed extension (up to 100%) within the upper and middle crust, between 24 and 12 Ma. In the Sacramento Mountains the fault system comprises a single detachment fault surrounding a domed footwall of syntectonic and Proterozoic crystalline rocks. In contrast, the Chemehuevi Mountains preserve a stacked sequence of anastomosing, northeast-dipping low-angle normal faults that discordantly cut heterogeneous Proterozoic and Mesozoic quartzofeldspathic basement. Geographic patterns of Ar/Ar and FT cooling ages from the Chemehuevi footwall provide a basis for interpreting the unroofing history of the domed footwall through mineral closure temperatures between ~550-490°C and ~110°C. At the onset of extension ~23 Ma, granitic rocks exposed in the SW and NE areas of the footwall were at ~100°C and >400°C respectively, separated by a distance of ~23 km in the known slip direction. This gradual increase in temperature with depth is attributed to the gentle warping of an originally subhorizontal isothermal surface, and constrains the exposed part of the detachment fault to an initial regional dip of less than 30°. Fault rock type and the mineral deformation mechanisms associated with movement on the Chemehuevi- Sacramento detachment fault suggest that both faults were initiated and moved within the brittle and semi- brittle, seismogenic regime. Fault rocks produced by slip include incoherent gouge, breccia, rocks of the cataclasite series, and rare protomylonite and pseudotachylite. Fault rock thickness varies from less than 1 m to more than 200 m; those associated with small displacement detachments are characterized by microfracturing over broad regions (up to 200 m thick), with evidence for

  19. Zoning surface rupture hazard along normal faults: Insight from L'Aquila, 2009 (Mw 6.3, Central Italy) and other global earthquakes

    NASA Astrophysics Data System (ADS)

    Boncio, P.; Galli, P.; Naso, G.; Pizzi, A.

    2012-04-01

    Surface fault rupture hazard (SFRH) is a localized seismic hazard due to the breaching of the ground surface from slip along a fault during a large earthquake. This motion may offset, tilt, distort and damage buildings on or in the vicinity of the fault trace. Although SFRH should be one of the most easily detectable seismic hazards, due to the visibility of active fault traces, the April 6, 2009 L'Aquila earthquake in central Italy (Mw 6.3) demonstrates that there is much progress to be made in assessing the hazard. Indeed, the 2009 normal faulting surface ruptures occurred across populated areas, producing mild-to-moderate damages to infrastructure (e.g., pipelines, roads) and buildings, including structures less than a few years old. Similar to other countries with SFRH, Italy does not have explicit and comprehensive codes and/or regulations concerning this important issue. Following the observation of surface faulting occurred during the 2009 earthquake, we propose general criteria for delineating zones of SFRH along active normal faults. Our proposal, which is explicitly inspired to the Californian Alquist-Priolo Earthquake Fault Zoning Act, compares the 2009 coseismic surficial faults to surface rupture data collected globally for several normal faulting earthquakes. We propose Earthquake Fault Zones (EFZ) and fault Setbacks (S) which are asymmetrically shaped around the fault trace. The zones are wider on the hanging wall, consistently with the observation of wider coseismic rupture zones in the hanging wall block compared to the footwall block. For faults mapped in detail, we suggest a 150 m-wide EFZ on the hanging wall and a 30 m-wide EFZ on the footwall. The suggested widths of the S on the hanging wall and footwall are 40 m and 15 m, respectively. Considering the data collected for the L'Aquila fault system and abroad, we are confident that our proposal is conservative enough for Apennine-like normal faults and, applicable to Italy and other areas with

  20. Late Pleistocene to Present - normal and strike slip - faulting in the western Gulf of Corinth; data from high resolution seismic reflection SISCOR surveys

    NASA Astrophysics Data System (ADS)

    Beckers, Arnaud; Bodeux, Sarah; Beck, Christian; Hubert-Ferrari, Aurélia; Tripsanas, Efthymios; Sakellariou, Dimitris; De Batist, Marc; De Rycker, Koen; Bascou, Pascale; Versteeg, Willem

    2013-04-01

    The Gulf of Corinth is one of the fastest-spreading intracontinental rift on Earth, a 120km long E-W structure propagating westward toward the Aegean subduction zone. Present day kinematics (GPS data) indicates an opening direction oriented NNE-SSW and an opening rate increasing westward from 11 mm y-1 in the central part to 16 mm y-1 in the westernmost part. The high extension rate in the western part of the rift would imply a high seismic hazard if faults are not creeping. Our work concerns this western extremity of the Gulf of Corinth, for which we propose an accurate map of submarine faults. The map is based on two high-resolution seismic reflection surveys (single channel sparker) performed aboard HCMR's R/V ALKYON, within the frame of SISCOR ANR Project. About 600 km of seismic lines were acquired, with a 200 mstwt maximum penetration, down to what we infer to represent the MIS 5 discontinuity. The highlighted faults network can be described as follows. In the eastern part, where the water depth reaches 450m, the sedimentary infill is faulted by the known North Eratini, South Eratini and West Channel faults. At the longitude of the Trizonia Island, the seafloor in mainly horizontal and the only fault is the south dipping Trizonia fault. Between the Trizonia Island and the Mornos Delta, the shallower northern part of the gulf shows a diffuse pattern of deformation with faults striking mainly E-W and ESE-WNW. It shows south and north dipping normal faults, strike-slip faults, as well as an inherited basement relief. To the south of this complex fault network, numerous mass transport deposits coming from the Mornos Delta and from steep slopes at the western end of the Trizonia fault make the identification of active faults difficult. In the southern part of the rift, no fault has been observed between the Psatopyrgos fault bounding the southern side of the Gulf and the Mornos Delta. To the West, between the Mornos Delta and the Rion Straits, three main south

  1. Evaluation of fault-normal/fault-parallel directions rotated ground motions for response history analysis of an instrumented six-story building

    USGS Publications Warehouse

    Kalkan, Erol; Kwong, Neal S.

    2012-01-01

    According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  2. Quaternary Geology and Surface Faulting Hazard: Active and Capable Faults in Central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.

    2015-12-01

    The 2009 L'Aquila earthquake (Mw 6.1), in central Italy, raised the issue of surface faulting hazard in Italy, since large urban areas were affected by surface displacement along the causative structure, the Paganica fault. Since then, guidelines for microzonation were drew up that take into consideration the problem of surface faulting in Italy, and laying the bases for future regulations about related hazard, similarly to other countries (e.g. USA). More specific guidelines on the management of areas affected by active and capable faults (i.e. able to produce surface faulting) are going to be released by National Department of Civil Protection; these would define zonation of areas affected by active and capable faults, with prescriptions for land use planning. As such, the guidelines arise the problem of the time interval and general operational criteria to asses fault capability for the Italian territory. As for the chronology, the review of the international literature and regulatory allowed Galadini et al. (2012) to propose different time intervals depending on the ongoing tectonic regime - compressive or extensional - which encompass the Quaternary. As for the operational criteria, the detailed analysis of the large amount of works dealing with active faulting in Italy shows that investigations exclusively based on surface morphological features (e.g. fault planes exposition) or on indirect investigations (geophysical data), are not sufficient or even unreliable to define the presence of an active and capable fault; instead, more accurate geological information on the Quaternary space-time evolution of the areas affected by such tectonic structures is needed. A test area for which active and capable faults can be first mapped based on such a classical but still effective methodological approach can be the central Apennines. Reference Galadini F., Falcucci E., Galli P., Giaccio B., Gori S., Messina P., Moro M., Saroli M., Scardia G., Sposato A. (2012). Time

  3. Late Quaternary tectonic activity and paleoseismicity of the Eastern Messinia Fault Zone, SW Peloponessus (Messinia, Greece).

    NASA Astrophysics Data System (ADS)

    Valkaniotis, Sotirios; Betzelou, Konstantina; Zygouri, Vassiliki; Koukouvelas, Ioannis; Ganas, Athanassios

    2015-04-01

    The southwestern part of Peloponnesus, Messinia and Laconia, is an area of significant tectonic activity situated near the Hellenic trench. Most of the deformation in this area is accommodated by the Eastern Messinia Fault Zone, bordering the western part of Taygetos Mt range and the west coast of Mani peninsula. The Eastern Messinia Fault Zone (EMFZ) is a complex system of primarily normal faults dipping westwards with a strike of NNW-SSE to N-S direction attaining a total length of more than 100 km from the northern Messinia plain in the north to the southern part of Mani peninsula in the south. The continuity of the EMFZ is disrupted by overlapping faults and relay ramp structures. The central part of the EMFZ, from the town of Oichalia to the city of Kalamata, was investigated by detailed field mapping of fault structures and post-alpine sediment formations together with re-evaluation of historical and modern seismicity. Several fault segments with lengths of 6 to 10 km were mapped, defined and evaluated according to their state of activity and age. Analysis of fault striation measurements along fault planes of the fault zone shows a present regime of WSW-ENE extension, in accordance with focal mechanisms from modern seismicity. Known faults like the Katsareika and Verga faults near the city of Kalamata are interpreted as older-generation faults that are re-activated (e.g. the 1986 Ms 6.0 Kalamata earthquake on Verga Fault) as part of a system of distributed deformation. New fault segments, some of them previously unmapped like the Asprohoma fault to the west of Kalamata, and offshore faults like Kitries and Kourtissa, are being assigned to the EMFZ. Moreover, a paleoseismological trench was excavated in the northern part of Pidima fault segment, one of the most prominent active segments of the central part of the EMFZ, in order to examine the paleoearthquake record of the fault system. A significant number of historical and instrumental earthquakes in the area

  4. The influence of normal fault on initial state of stress in rock mass

    NASA Astrophysics Data System (ADS)

    Tajduś, Antoni; Cała, Marek; Tajduś, Krzysztof

    2016-03-01

    Determination of original state of stress in rock mass is a very difficult task for rock mechanics. Yet, original state of stress in rock mass has fundamental influence on secondary state of stress, which occurs in the vicinity of mining headings. This, in turn, is the cause of the occurrence of a number of mining hazards, i.e., seismic events, rock bursts, gas and rock outbursts, falls of roof. From experience, it is known that original state of stress depends a lot on tectonic disturbances, i.e., faults and folds. In the area of faults, a great number of seismic events occur, often of high energies. These seismic events, in many cases, are the cause of rock bursts and damage to the constructions located inside the rock mass and on the surface of the ground. To estimate the influence of fault existence on the disturbance of original state of stress in rock mass, numerical calculations were done by means of Finite Element Method. In the calculations, it was tried to determine the influence of different factors on state of stress, which occurs in the vicinity of a normal fault, i.e., the influence of normal fault inclination, deformability of rock mass, values of friction coefficient on the fault contact. Critical value of friction coefficient was also determined, when mutual dislocation of rock mass part separated by a fault is impossible. The obtained results enabled formulation of a number of conclusions, which are important in the context of seismic events and rock bursts in the area of faults.

  5. Is There any Relationship Between Active Tabriz Fault Zone and Bozkush Fault Zones, NW Iran?

    NASA Astrophysics Data System (ADS)

    ISIK, V.; Saber, R.; Caglayan, A.

    2012-12-01

    Tectonic plate motions and consequent earthquakes can be actively observed along the northwestern Iran. The Tabriz fault zone (TFZ), also called the North Tabriz fault, active right-lateral strike-slip fault zone with slip rates estimated as ~8 mm/yr, has been vigorously deforming much of northwestern Iran for over the past several million years. Historical earthquakes on the TFZ consist of large magnitude, complimentary rupture length and changed the landscape of regions surrounding the fault zone. The TFZ in the city of Bostanabad is more segmented with several strands and joined by a series of WNW-ESE trending faults, called the Bozkush fault zones. The Bozkush fault zones (BFZ's) (south and north), bounding arch-shaped Bozkush mountains, generates not only hundreds of small earthquakes each year but also has provided significant earthquakes that have been historically documented. The rock units deformed within the BFZ's include Eocene-Oligocene volcanic rocks with intercalation limestone, Oligo-Miocene clastic rocks with intercalation gypsiferous marl and Plio-Quaternary volcano-sedimentary rocks, travertine and alluvium. The North and South Bozkush fault zones are characterized by development of structures typically associated with transpression. These include right-lateral strike-slip faults, thrust faults and foldings. Our field studies indicate that these zones include step to sub-vertical fault surfaces trending NW and NE with slickenlines. Slickensides preserve brittle kinematic indicators (e.g., Riedel shear patterns, slickenside marks) suggesting both dextral displacements and top-to-the-NE/NW and-SE/SW sense of shearing. Besides, mesoscopic and microscopic ductile kinematic indicators (e.g., asymmetric porphyroclasts, C/S fabrics) within Miocene gypsum marl show dextral displacements. Fault rocks along most of these faults consist of incohesive fault breccia and gauge. Adjacent to the fault contact evidence of bedding in Oligo-Miocene and Plio

  6. ­­Are current models for normal fault array evolution applicable to natural rifts?

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Jackson, C. A. L.

    2015-12-01

    Conceptual models predicting the geometry and evolution of normal fault arrays are vital to assess rift physiography, syn-rift sediment dispersal and seismic hazard. Observations from data-rich rifts and numerical and physical models underpin widely used fault array models predicting: i) during rift initiation, arrays are defined by multiple, small, isolated faults; ii) as rifting progresses, strain localises onto fewer larger structures; and iii) with continued strain, faulting migrates toward the rift axis, resulting in rift narrowing. Some rifts display these characteristics whereas others do not. Here we present several case studies documenting fault migration patterns that do not fit this ideal. In this presentation we will begin by reviewing existing fault array models before presenting a series of case studies (including from the northern North Sea and the Gulf of Corinth), which document fault migration patterns that are not predicted by current fault evolution models. We show that strain migration onto a few, large faults is common in many rifts but that, rather than localising onto these structures until the cessation of rifting, strain may 'sweep' across the basin. Furthermore, crustal weaknesses developed in early tectonic events can cause faults during subsequent phases of extension to grow relatively quickly and accommodate the majority if not all of the rift-related strain; in these cases, strain migration does not and need not occur. Finally, in salt-influenced rifts, strain localisation may not occur at all; rather, strain may become progressively more diffuse due to tilting of the basement and intrastratal salt décollements, thus leading to superimposition of thin-skinned, gravity-driven and thick-skinned, plate-driven, basement-involved extension. We call for the community to unite to develop the next-generation of normal fault array models that include complexities such as the thermal and rheological properties of the lithosphere, specific

  7. Probable slow slips in the mid-crust of Hsinchu, northwestern Taiwan: Temporal correlation between normal faulting earthquakes and relative uplift

    NASA Astrophysics Data System (ADS)

    Pu, H. C.; Lin, C. H.

    2016-05-01

    To investigate the seismic behavior of crustal deformation, we deployed a dense seismic network at the Hsinchu area of northwestern Taiwan during the period between 2004 and 2006. Based on abundant local micro-earthquakes recorded at this seismic network, we have successfully determined 274 focal mechanisms among ∼1300 seismic events. It is very interesting to see that the dominant energy of both seismic strike-slip and normal faulting mechanisms repeatedly alternated with each other within two years. Also, the strike-slip and normal faulting earthquakes were largely accompanied with the surface slipping along N60°E and uplifting obtained from the continuous GPS data, individually. Those phenomena were probably resulted by the slow uplifts at the mid-crust beneath the northwestern Taiwan area. As the deep slow uplift was active below 10 km in depth along either the boundary fault or blind fault, the push of the uplifting material would simultaneously produce both of the normal faulting earthquakes in the shallow depths (0-10 km) and the slight surface uplifting. As the deep slow uplift was stop, instead, the strike-slip faulting earthquakes would be dominated as usual due to strongly horizontal plate convergence in the Taiwan. Since the normal faulting earthquakes repeatedly dominated in every 6 or 7 months between 2004 and 2006, it may conclude that slow slip events in the mid crust were frequent to release accumulated tectonic stress in the Hsinchu area.

  8. Modeling the effect of preexisting joints on normal fault geometries using a brittle and cohesive material

    NASA Astrophysics Data System (ADS)

    Kettermann, M.; van Gent, H. W.; Urai, J. L.

    2012-04-01

    , stereo-photography at the final stage of deformation enabled the creation of 3D models to preserve basic geometric information. The models showed that at the surface the deformation localized always along preexisting joints, even when they strike at an angle to the basement-fault. In most cases faults intersect precisely at the maximum depth of the joints. With increasing fault-joint angle the deformation occurred distributed over several joints by forming stepovers with fractures oriented normal to the strike of the joints. No fractures were observed parallel to the basement fault. At low angles stepovers coincided with wedge-shaped structures between two joints that remain higher than the surrounding joint-fault intersection. The wide opening gap along the main fault allowed detailed observations of the fault planes at depth, which revealed (1) changing dips according to joint-fault angles, (2) slickenlines, (3) superimposed steepening fault-planes, causing sharp sawtooth-shaped structures. Comparison to a field analogue at Canyonlands National Park, Utah/USA showed similar structures and features such as vertical fault escarpments at the surface coinciding with joint-surfaces. In the field and in the models stepovers were observed as well as conjugate faulting and incremental fault-steepening.

  9. Normal faulting in the Simav graben of western Turkey reassessed with calibrated earthquake relocations

    NASA Astrophysics Data System (ADS)

    Karasözen, Ezgi; Nissen, Edwin; Bergman, Eric A.; Johnson, Kendra L.; Walters, Richard J.

    2016-06-01

    Western Turkey has a long history of large earthquakes, but the responsible faults are poorly characterized. Here we reassess the past half century of instrumental earthquakes in the Simav-Gediz region, starting with the 19 May 2011 Simav earthquake (Mw 5.9), which we image using interferometric synthetic aperture radar and regional and teleseismic waveforms. This event ruptured a steep, planar normal fault centered at 7-9 km depth but failed to break the surface. However, relocated main shock and aftershock hypocenters occurred beneath the main slip plane at 10-22 km depth, implying rupture initiation in areas of low coseismic slip. These calibrated modern earthquakes provide the impetus to relocate and reassess older instrumental events in the region. Aftershocks of the 1970 Gediz earthquake (Mw 7.1) form a narrow band, inconsistent with source models that invoke low-angle detachment faulting, and may include events triggered dynamically by the unilateral main shock rupture. Epicenters of the 1969 Demirci earthquakes (Mw 5.9, 6.0) are more consistent with slip on the south dipping Akdağ fault than the larger, north dipping Simav fault. A counterintuitive aspect of recent seismicity across our study area is that the largest event (Mw 7.1) occurred in an area of slower extension and indistinct surface faulting, yet ruptured the surface, while recent earthquakes in the well-defined and more rapidly extending Simav graben are smaller (Mw <6.0) and failed to produce surface breaks. Though our study area bounds a major metamorphic core complex, there is no evidence for involvement of low-angle normal faulting in any of the recent large earthquakes.

  10. Height of faceted spurs, a proxy for determining long-term throw rates on normal faults: Evidence from the North Baikal Rift System, Siberia

    NASA Astrophysics Data System (ADS)

    Petit, Carole; Meyer, Bertrand; Gunnell, Yanni; Jolivet, Marc; San'kov, Vladimir; Strak, Vincent; Gonga-Saholiariliva, Nahossio

    2010-05-01

    We present new results on the long-term throw rates of active normal faults in the North Baikal Rift (NBR), eastern Siberia, based on a statistical analysis of triangular faceted scarps. Faceted spurs or triangular facets are morphologic features frequently observed along normal fault scarps, and result from the progressive denudation and incision of the footwall during fault activity. Fault-bounded ridges in the NBR display such typical morphologies with several contiguous facets separated by fault-perpendicular catchments. Over a range of 20 fault segments analyzed, triangular facet heights vary from ~200 to >900 m. As fault scarps have been developing under similar long-term climatic conditions, we infer that the scatter in mean facet height arises from long-term differences in fault throw rate. We compare the morphology of NBR facets with results obtained in a previously published numerical model of facet growth, which predicts that the mean height of triangular facets is proportional to the fault throw rate. Using facet height as an input, model results provide estimates of the long-term fault throw rates in the NBR. These vary between 0.2 and 1.2 mm/yr. The throw rates are then compared with the cumulated throw, which has been constrained by geophysical and stratigraphic data in the basins. This provides an estimate of the age of fault and basin initiation. We show that the modern stage of basin development started circa 3 Myr ago, except for the North Baikal basin (~ 8 Ma). Our results also suggest that a proportion of the observed throw is inherited from an earlier tectonic stage.

  11. How Faults Shape the Earth.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1992-01-01

    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  12. Weakness and mechanical anisotropy of phyllosilicate-rich cataclasites developed after mylonites of a low-angle normal fault (Simplon Line, Western Alps)

    NASA Astrophysics Data System (ADS)

    Bolognesi, Francesca; Bistacchi, Andrea

    2016-02-01

    The Simplon Fault Zone is a late-collisional low-angle normal fault (LANF) of the Western Alps. The hanging wall shows evidence of brittle deformation only, while the footwall is characterized by a c. 1 km-thick shear zone (the Simplon Fault Zone), which continuously evolved, during exhumation and cooling, from amphibolite facies conditions to brittle-cataclastic deformations. Due to progressive localization of the active section of the shear zone, the thermal-rheological evolution of the footwall resulted in a layered structure, with higher temperature mylonites preserved at the periphery of the shear zone, and cataclasites occurring at the core (indicated as the Simplon Line). In order to investigate the weakness of the Simplon Line, we studied the evolution of brittle/cataclastic fault rocks, from nucleation to the most mature ones. Cataclasites are superposed on greenschist facies mylonites, and their nucleation can be studied at the periphery of the brittle fault zone. This is characterized by fractures, micro-faults and foliated ultracataclasite seams that develop along the mylonitic SCC‧ fabric, exploiting the weak phases mainly represented by muscovite and chlorite. Approaching the fault core, both the thickness and frequency of cataclasite horizons increase, and, as their thickness increases, they become less and less foliated. The fault core itself is represented by a thicker non-foliated cataclasite horizon. No Andersonian faults or fractures can be found in the footwall damage zone and core zone, whilst they are present in the hanging wall and in the footwall further from the fault. Applying a stress model based on slip tendency, we have been able to calculate that the friction coefficient of the Simplon Line cataclasites was <0.25, hence this fault zone is absolutely weak. In contrast with other fault zones, the weakening effect of fluids was of secondary importance, since they accessed the fault zone only after an interconnected fracture network

  13. Pore-fluid chemistry and chemical reactions on the Wasatch normal fault, Utah

    NASA Astrophysics Data System (ADS)

    Parry, W. T.; Wilson, Paula N.; Bruhn, R. L.

    1988-08-01

    Mineral assemblages and fluid inclusions (F.I.) in hydrothermally altered and tectonically deformed Oligocene quartz monzonite in the footwall of the active Wasatch normal fault, Utah have been used to estimate fluid pressure, temperature, chemical composition, and chemical reactions associated with progressive displacement of the fault. Vein filling and pervasive alteration mineralogy includes (earliest to latest) biotite-K-feldspar, chlorite-epidote-sericite, and laumontite-prehnite-clay. Secondary F.I. in quartz, associated with chlorite-epidote-sericite alteration, consist of CO 2 and salt solution; the homogenization temperature mode is 285°C, XCO2 is 0.03-0.32, and salinity ranges from 4.5-17.3 wt.% NaCl equivalent; estimated minimum entrapment pressures vary from 600-2950 bars. The homogenization temperature mode of secondary F.I. associated with the laumontite-prehnite assemblage is 100°C, salinity ranges from 2.0-16.0 wt.% NaCl equivalent, and no CO 2 was detected; entrapment pressures are presumed to have been hydrostatic and below 460 bars. Fluid pressure and temperature evolved along a path from lithostatic to hydrostatic with continued displacement of the footwall relative to the hanging wall. Age constraints are provided by a 17.6 ± 0.6 m.y. K-Ar age of hydrothermal seriate from a sample with mean Th of 309°C, and 7.3 to 9.6 m.y. fission track ages of apatite (closure temperature 120 ± 15° C). Calculated equilibrium phase diagrams illustrate the systematic variation in cation activities, CO 2 fugacity, and alteration minerals as fluid temperature and pressure decrease. The ratios of a Ca 2+/(a H +) 2 and a Mg 2+/(a H +) 2 increase and the ratio aK+/ aH+ decreases by more than two orders of magnitude each as temperature decreases and alteration mineralogy changes from K-feldspar and muscovite to muscovite and clay. The hot aqueous fluids affect the mechanical behavior of the rock during faulting. Crack sealing by alteration product minerals

  14. Finding Active Faults in a Glaciated and Forested Landscape: the Southern Whidbey Island Fault, Washington

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Sherrod, B. L.; Wells, R. E.; Weaver, C. S.

    2004-12-01

    The Puget Lowland, Washington, lies within the Cascadia forearc and is underlain by at least six seismically active and regionally significant crustal faults that together accommodate several mm/yr of net north-south shortening. The surface expression of pre-15-ka slip on Puget Lowland faults has been largely scoured away or covered by glacial deposits, and younger fault geomorphology is often concealed by vegetation and urban development. High-resolution aeromagnetic and lidar surveys, followed by geologic site investigations, have identified and confirmed late Holocene deformation on each of these mostly concealed but potentially hazardous faults. Most geomorphic features identified in lidar data are closely associated with linear magnetic anomalies that reflect the underlying basement structure of the fault and help map its full extent. The southern Whidbey Island fault (SWIF) is a case in point. The northwest-striking SWIF was mapped previously using borehole data and potential-field anomalies on Whidbey Island and marine seismic-reflection surveys beneath surrounding waterways. Gravity inversions and aeromagnetic mapping suggest that the SWIF extends at least 50 km southeast, from Vancouver Island to the Washington mainland, and transitions along its length from northeast-side-down beneath Puget Sound to northeast-side-up on the mainland. Abrupt subsidence at a coastal marsh on south-central Whidbey Island suggests that the SWIF experienced a MW 6.5 to 7.0 earthquake about 3 ka. Southeast of Whidbey Island, a hypothesized southeastward projection of the SWIF makes landfall between the cities of Seattle and Everett. Linear, northwest-striking magnetic anomalies in this mainland region do coincide with this hypothesized projection, are low in amplitude, and are best illuminated in residual magnetic fields. The most prominent of the residual magnetic anomalies extends at least 16 km, lies approximately on strike with the SWIF on Whidbey Island, and passes within

  15. Illuminating Northern California’s Active Faults

    USGS Publications Warehouse

    Prentice, Carol S.; Crosby, Christopher J.; Whitehill, Caroline S.; Arrowsmith, J. Ramon; Furlong, Kevin P.; Philips, David A.

    2009-01-01

    Newly acquired light detection and ranging (lidar) topographic data provide a powerful community resource for the study of landforms associated with the plate boundary faults of northern California (Figure 1). In the spring of 2007, GeoEarthScope, a component of the EarthScope Facility construction project funded by the U.S. National Science Foundation, acquired approximately 2000 square kilometers of airborne lidar topographic data along major active fault zones of northern California. These data are now freely available in point cloud (x, y, z coordinate data for every laser return), digital elevation model (DEM), and KMZ (zipped Keyhole Markup Language, for use in Google EarthTM and other similar software) formats through the GEON OpenTopography Portal (http://www.OpenTopography.org/data). Importantly, vegetation can be digitally removed from lidar data, producing high-resolution images (0.5- or 1.0-meter DEMs) of the ground surface beneath forested regions that reveal landforms typically obscured by vegetation canopy (Figure 2)

  16. A review of recently active faults in Taiwan

    USGS Publications Warehouse

    Bonilla, Manuel G.

    1975-01-01

    Six faults associated with five large earthquakes produced surface displacements ranging from 1 to 3 m in the period 1906 through 1951. Four of the ruptures occurred in the western coastal plain and foothills, and two occurred in the Longitudinal Valley of eastern Taiwan. Maps are included showing the locations and dimensions of the displacements. The published geological literature probably would not lead one to infer the existence of a fault along most of the 1906 rupture, except for descriptions of the rupture itself. Over most of its length the 1935 rupture on the Chihhu fault is parallel to but more than 0.5 km from nearby faults shown on geologic maps published in 1969 and 1971; only about 1.5 km of its 15 km length coincides with a mapped fault. The coastal plain part of the Tuntzuchio fault which ruptured in 1935 is apparently not revealed by landforms, and only suggested by other data. Part of the 1946 Hsinhua faulting coincides with a fault identified in the subsurface by seismic work but surface indications of the fault are obscure. The 1951 Meilun faulting occurred along a conspicuous pre-1951 scarp and the 1951 Yuli faulting occurred near or in line with pre-1951 scarps. More than 40 faults which, according to the published literature, have had Pleistocene or later movement are shown on a small-scale map. Most of these faults are in the densely-populated western part of Taiwan. The map and text calls attention to faults that may be active and therefore may be significant in planning important structures. Equivocal evidence suggestive of fault creep was found on the Yuli fault and the Hsinhua fault. Fault creep was not found at several places examined along the 1906 fault trace. Tectonic uplift has occurred in Taiwan in the last 10,000 years and application of eustatic sea level curves to published radiocarbon dates shows that the minimum rate of uplift is considerably different in different parts of the island. Incomplete data indicate that the rate is

  17. Progressive overprinting of normal fault systems and their role in Tertiary exhumation of the East Humboldt-Wood Hills Metamorphic Complex northeast Nevada

    NASA Astrophysics Data System (ADS)

    Mueller, Karl J.; Snoke, Arthur W.

    1993-01-01

    Low- and high-angle, normal-sense faults present along the northern margin of the East Humboldt-Wood Hills metamorphic complex record a protracted history of episodic extensional unroofing. The earliest extension associated with the exhumation of the metamorphic complex occurred in the mid-Eocene (about 50 Ma) during slip along the west-rooted Wells Peak fault. Subsequent extension developed during movement along the east-rooted Black Mountain fault system in the late Eocene (about 35 Ma). Continued exhumation of the high-grade metamorphic rocks, occurred during the late Oligocene to early Miocene (about 29-23 Ma) along a west-rooted, normal-sense, plastic-to-brittle shear zone exposed along the length of the East Humboldt Range and much of the Ruby Mountains. The mylonitic shear zone, Wells Peak fault, and Black Mountain fault system were all overprinted by the west-rooted, low- to high-angle Mary's River fault system which was active from mid-Miocene to Holocene. Broadly coeval extension in the Windermere Hills was also accommodated by the development of high-angle, north and east dipping normal faults between approximately 35-12 Ma and 12-10 Ma.

  18. Active faults of the Baikal depression

    USGS Publications Warehouse

    Levi, K.G.; Miroshnichenko, A.I.; San'kov, V. A.; Babushkin, S.M.; Larkin, G.V.; Badardinov, A.A.; Wong, H.K.; Colman, S.; Delvaux, D.

    1997-01-01

    The Baikal depression occupies a central position in the system of the basins of the Baikal Rift Zone and corresponds to the nucleus from which the continental lithosphere began to open. For different reasons, the internal structure of the Lake Baikal basin remained unknown for a long time. In this article, we present for the first time a synthesis of the data concerning the structure of the sedimentary section beneath Lake Baikal, which were obtained by complex seismic and structural investigations, conducted mainly from 1989 to 1992. We make a brief description of the most interesting seismic profiles which provide a rough idea of a sedimentary unit structure, present a detailed structural interpretation and show the relationship between active faults in the lake, heat flow anomalies and recent hydrothermalism.

  19. Extreme Hydrothermal Conditions Near an Active Geological Fault, DFDP-2B Borehole, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Sutherland, R.; Townend, J.; Toy, V.; Allen, M.; Baratin, L. M.; Barth, N. C.; Beacroft, L.; Benson, A.; Boese, C. M.; Boles, A.; Boulton, C. J.; Capova, L.; Carpenter, B. M.; Celerier, B. P.; Chamberlain, C. J.; Conze, R.; Cooper, A.; Coussens, J.; Coutts, A.; Cox, S.; Craw, L.; Doan, M. L.; Eccles, J. D.; Faulkner, D.; Grieve, J.; Grochowski, J.; Gulley, A.; Henry, G.; Howarth, J. D.; Jacobs, K. M.; Jeppson, T.; Kato, N.; Keys, S.; Kirilova, M.; Kometani, Y.; Lukács, A.; Langridge, R.; Lin, W.; Little, T.; Mallyon, D.; Mariani, E.; Marx, R.; Massiot, C.; Mathewson, L.; Melosh, B.; Menzies, C. D.; Moore, J.; Morales, L. F. G.; Morgan, C.; Mori, H.; Niemeijer, A. R.; Nishikawa, O.; Nitsch, O.; Paris Cavailhes, J.; Pooley, B.; Prior, D. J.; Pyne, A.; Sauer, K. M.; Savage, M. K.; Schleicher, A.; Schmitt, D. R.; Shigematsu, N.; Taylor-Offord, S.; Tobin, H. J.; Upton, P.; Valdez, R. D.; Weaver, K.; Wiersberg, T.; Williams, J. N.; Yeo, S.; Zimmer, M.; Broderick, N.

    2015-12-01

    The DFDP-2B borehole sampled rocks above and within the upper part of the Alpine Fault, New Zealand, to a depth of 893 m in late 2014. The experiment was the first to drill a major geological fault zone that is active and late in its earthquake cycle. We determined ambient fluid pressures 8-10% above hydrostatic and a geothermal gradient of 130-150 °C/km in rocks above the fault. These unusual ambient conditions can be explained by a combination of: rock advection that transports heat from depth by uplift and oblique slip on the fault; and fluid advection through fractured rock, driven by topographic forcing, which concentrates heat and causes fluid over-pressure in the valley. Highly-anomalous ambient conditions can exist in the vicinity of active faults, and earthquake and mineralization processes occur within these zones.

  20. Fault mirrors in seismically active fault zones: A fossil of small earthquakes at shallow depths

    NASA Astrophysics Data System (ADS)

    Kuo, Li-Wei; Song, Sheng-Rong; Suppe, John; Yeh, En-Chao

    2016-03-01

    Fault mirrors (FMs) are naturally polished and glossy fault slip surfaces that can record seismic deformation at shallow depths. They are important for investigating the processes controlling dynamic fault slip. We characterize FMs in borehole samples from the hanging wall damage zone of the active Hsiaotungshi reverse fault, Taiwan. Here we report the first documented occurrence of the combination of silica gel and melt patches coating FMs, with the silica gel resembling those observed on experimentally formed FMs that were cataclastically generated. In addition, the melt patches, which are unambiguous indicators of coseismic slip, suggest that the natural FMs were produced at seismic rates, presumably resulting from flash heating at asperities on the slip surfaces. Since flash heating is efficient at small slip, we propose that these natural FMs represent fossils of small earthquakes, formed in either coseismic faulting and folding or aftershock deformation in the active Taiwan fold-and-thrust belt.

  1. Mapping of normal fault scarps in airborne laser swath mapping data using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Sare, R.; Hilley, G. E.

    2015-12-01

    Wavelet analysis of Digital Elevation Models (DEMs) successfully identifies degraded fault scarps where earthquakes produce topographic steps and provides an estimate of their morphologic age. However, these methods may fail to detect relatively young, sloping scarps created by more gently-dipping normal faults, misidentifying them as mature, highly-degraded vertical scarps if they are detected at all. We present new wavelet templates incorporating initial scarp slope and above- and below-scarp surface angles to better describe the curvature of observed fault scarps. These templates are based on an analytic solution for scarp curvature, allowing for more accurate estimation of the relative age of the scarp. Synthetic tests show that scarp-like landforms that went largely undetected by a vertical-scarp template are more clearly detected using profile geometries that reflect subtle changes in curvature due to scarp and far-field slope angles. Analysis of DEMs from sites in Surprise Valley in the northwestern Basin and Range and near Jenny Lake on the Teton rangefront illustrates the effects of along-strike variability in scarp morphology on best-fit template parameters. Where normal fault scarps have high slopes, they are identified by filters designed to detect topographic step functions. Scarps with finite initial slopes, as well as those that cut surfaces with different angles above and below the scarp, can be resolved with higher signal-to-noise ratios using more sophisticated template functions. Adaptive use of different wavelet templates could reduce the number of false negatives in wavelet analysis of data from complex faulting regimes, improving the robustness of these methods and enabling automated fault mapping of large areas.

  2. Architectural evolution of the Nojima fault and identification of the activated slip layer by Kobe earthquake

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidemi; Omura, Kentaro; Matsuda, Tatsuo; Ikeda, Ryuji; Kobayashi, Kenta; Murakami, Masaki; Shimada, Koji

    2007-07-01

    Evolutionary history of Nojima Fault zone is clarified by comprehensive examinations of petrological, geophysical, and geochemical characterizations on a fault zone in deep-drilled core penetrating the Nojima Fault. On the basis of the results, we reconstruct a whole depth profile of the architecture of the Nojima Fault and identify the primal slip layer activated by 1995 Kobe earthquake. The deepest part (8- to 12-km depth) of the fault zone is composed of thin slip layers of pseudotachylite (5 to 10 mm thick each, 10 cm in total). Middle depth (4- to 8-km depth) of the fault zone is composed of fault core (6 to 10 m thick), surrounded by thick (100 m thick) damage zone, characterized by zeolite precipitation. The shallow part of the fault zone (1- to 4-km depth) is composed of distributed narrow shear zones, which are characterized by combination of thin (0.5 cm thick each, 10 cm in total) ultracataclasite layers at the core of shear zones, surrounded by thicker (1 to 3 m thick) damage zones associated with carbonate precipitation. An extremely thin ultracataclasite layer (7 mm thick), activated by the 1995 Kobe earthquake, is clearly identified from numerous past slip layers, overprinting one of the shear zones, as evidenced by conspicuous geological and geophysical anomalies. The Nojima Fault zone was 10 to 100 times thicker at middle depth than that of shallower and deeper depths. The thickening would be explained as a combination of physical and chemical effects as follows. (1) Thickening of "fault core" at middle depth would be attributed to normal stress dependence on thickness of the shear zone and (2) an extreme thickening of "damage zone" in middle depth of the crust would result from the weakening of the fault zone due to super hydrostatic fluid pressure at middle depths. The high fluid pressure would result from faster sealing with low-temperature carbonate at the shallower fault zone.

  3. Inner structure and deformation mechanisms of normal faults in conglomerates and carbonate grainstones (Granada Basin, Betic Cordillera, Spain): Inferences on fault permeability

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; Ruano, Patricia; Rustichelli, Andrea; Tondi, Emanuele; Galindo-Zaldívar, Jesús; Sanz de Galdeano, Carlos

    2012-12-01

    In the southeastern area of the Neogene-Quaternary Granada Basin, ˜E-W trending normal faults crosscut ˜80 m-thick clay-bearing conglomerates and ˜30-40 m-thick carbonate grainstones containing centimeter-thick microconglomerate and sand interbeds. Three fundamental failure modes took place during fault nucleation: (1) phyllosilicate shear banding in the conglomerates, (2) jointing, mainly in the carbonate grainstones and (3) pressure solution in the carbonate matrix and grains of the microconglomerate and sand interbeds. Within the conglomerates, normal faults developed by pronounced clay smearing and, ultimately, cataclasis. Jointing also occurred within some of the pebbles surrounding the cataclastic rocks. In contrast, in the carbonate grainstones fault growth was characterized by predominant jointing and rock fragmentation, which localized in the extensional quadrants and/or releasing jogs of the evolving slip surfaces. Brecciation and cataclasis occurred only around the well-developed slip surfaces. Based upon their inner structure, we qualitatively assign a combined barrier-conduit fluid behavior to the tens of meters-throw normal faults juxtaposing the conglomerates against the carbonate grainstones. The inner fault cores inhibit fault-orthogonal fluid flow along their entire length. Instead, fault damage zones act as fluid barriers in the conglomerates, and as composite fluid conduits in the carbonate grainstones.

  4. Hydrogen Gas Emissions from Active Faults and Identification of Flow Pathway in a Fault Zone

    NASA Astrophysics Data System (ADS)

    Ishimaru, T.; Niwa, M.; Kurosawa, H.; Shimada, K.

    2010-12-01

    It has been observed that hydrogen gas emissions from the subsurface along active faults exceed atmospheric concentrations (e.g. Sugisaki et. al., 1983). Experimental studies have shown that hydrogen gas is generated in a radical reaction of water with fractured silicate minerals due to rock fracturing caused by fault movement (e.g. Kita et al., 1982). Based on such research, we are studying an investigation method for an assessment of fault activity using hydrogen gas emissions from fracture zones. To start, we have devised portable equipment for rapid and simple in situ measurement of hydrogen gas emissions (Shimada et al., 2008). The key component of this equipment is a commercially available and compact hydrogen gas sensor with an integral data logger operable at atmospheric pressure. In the field, we have drilled shallow boreholes into incohesive fault rocks to depths ranging from 15 to 45 cm using a hand-operated drill with a 9mm drill-bit. Then, we have measured the hydrogen gas concentrations in emissions from active faults such as: the western part of the Atotsugawa fault zone, the Atera fault zone and the Neodani fault in central Japan; the Yamasaki fault zone in southwest Japan; and the Yamagata fault zone in northeast Japan. In addition, we have investigated the hydrogen gas concentrations in emissions from other major geological features such as tectonic lines: the Butsuzo Tectonic Line in the eastern Kii Peninsula and the Atokura Nappe in the Northeastern Kanto Mountains. As a result of the investigations, hydrogen gas concentration in emissions from the active faults was measured to be in the approximate range from 6,000 ppm to 26,000 ppm in two to three hours after drilling. A tendency for high concentrations of hydrogen gas in active faults was recognized, in contrast with low concentrations in emissions from tectonic lines that were observed to be in the range from 730 ppm to 2,000 ppm. It is inferred that the hydrogen gas migrates to ground

  5. Shallow seismicity migration in a normal fault test site in northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Amato, A.; Braun, T.; Cattaneo, M.; Chiaraluce, L.; Cocco, M.; D'Alema, E.; di Stefano, R.; Frapiccini, M.; Latorre, D.; Marzorati, S.; Monachesi, G.; Moretti, M.; Piana Agostinetti, N.; Piccinini, D.; Saccorotti, G.; Valoroso, L.; Selvaggi, G.

    2010-12-01

    In 2008-2010 a high-density, real-time seismic network has been installed in the northern Apennines, integrating the INGV permanent national network. While the national network uses satellite links and leased telephone lines, the additional stations are connected with WiFi radio links and INGV-made GAIA digitizers. In march 2010, 10 additional remote stations were installed to further improve the monitoring. At present, a total of 30 stations are operational in the area. The scientific target of the network, funded by INGV and by the Italian Ministry of Research (project Airplane RBPR05B2ZJ) is to understand the deformation process in the area, characterized by: i) extension at 2-3 mm/yr; ii) a regional east-dipping, low-angle normal fault (the Alto Tiberina Fault, ATF) that limits the seismicity downward in the upper 10-15 km of the crust; iii)historical earthquakes as large as M6.5; iv) a high rate of background seismicity. The extensional area is underlayed by the west-dipping Adriatic continental slab with seismicity down to 70-80 km below the belt. During the first year of operation, we located more than 3,000 local earthquakes with magnitude in the range -0.5 to 3.8. Part of the seismicity, located with both absolute and relative techniques, clusters on shallow high-angle normal faults above the ATF, and show a clear migration both along strike (at about 0.5 km/day) and in depth. This pattern has strong similarities with that observed in previous large normal faulting events in the Apennines, and is likely related to fluid migration. Such a dense network allows us to detect seismogenic processes with an unprecedented detail. Data are accumulating fast and will illuminate other parts of this complex fault system. Ongoing developments include a continuous GPS network and borehole seismometers.

  6. Evolution of the internal structure of fault zones in three-dimensional numerical models of normal faults

    NASA Astrophysics Data System (ADS)

    Schöpfer, Martin P. J.; Childs, Conrad; Walsh, John J.; Manzocchi, Tom

    2016-01-01

    Fault zone internal structure is characterised by heterogeneous distributions of both continuous (drag, lens rotation) and discontinuous (joints, faults) deformation which cannot be easily modelled using continuum numerical methods. Distinct element method (DEM) models, that exhibit bulk rheologies comparable to rock, demonstrate emergent behaviours that make them ideal for modelling both the nucleation and growth of fault zones. The ability to model fault zones numerically allows extant conceptual models for fault zone evolution based on outcrop studies to be tested, and controls on fault zone structure to be analysed. Three-dimensional DEM models of faults zones in mechanically layered sequences demonstrate that internal fault zone structure is predominantly controlled by the geometry of the initial fault. Whether the initial fault is a segmented array or an irregular surface determines the complexity of structure it will develop as displacement increases. Confining pressure at the time of faulting determines the irregularity of the initial fault array and also the efficiency with which irregularities are incorporated into a fault and subsequently comminuted, leading to a relationship whereby brittle faulting at high confining pressure results in less complex internal fault zone structure than at low confining pressure.

  7. Zipper Faults

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Passchier, C. W.

    2015-12-01

    Intersecting simultaneously active pairs of faults with different orientations and opposing slip sense ("conjugate faults") present geometrical and kinematic problems. Such faults rarely offset each other, even when they have displacements of many km. A simple solution to the problem is that the two faults merge, either zippering up or unzippering, depending on the relationship between the angle of intersection and the slip senses. A widely recognized example of this is the so-called blind front developed in some thrust belts, where a backthrust branches off a decollement surface at depth. The decollement progressively unzippers, so that its hanging wall becomes the hanging wall of the backthrust, and its footwall becomes the footwall of the active decollement. The opposite situation commonly arises in core complexes, where conjugate low-angle normal faults merge to form a single detachment; in this case the two faults zipper up. Analogous situations may arise for conjugate pairs of strike-slip faults. We present kinematic and geometrical analyses of the Garlock and San Andreas faults in California, the Najd fault system in Saudi Arabia, the North and East Anatolian faults, the Karakoram and Altyn Tagh faults in Tibet, and the Tonale and Guidicarie faults in the southern Alps, all of which appear to have undergone zippering over distances of several tens to hundreds of km. The zippering process may produce complex and significant patterns of strain and rotation in the surrounding rocks, particularly if the angle between the zippered faults is large. A zippering fault may be inactive during active movement on the intersecting faults, or it may have a slip rate that differs from either fault. Intersecting conjugate ductile shear zones behave in the same way on outcrop and micro-scales.

  8. Evidence of multi-stage faulting by clay mineral analysis: Example in a normal fault zone affecting arkosic sandstones (Annot sandstones)

    NASA Astrophysics Data System (ADS)

    Buatier, Martine D.; Cavailhes, Thibault; Charpentier, Delphine; Lerat, Jérémy; Sizun, Jean Pierre; Labaume, Pierre; Gout, Claude

    2015-06-01

    Fault affecting silicoclastic sediments are commonly enriched in clay minerals. Clays are sensitive to fluid-rock interactions and deformation mechanisms; in this paper, they are used as proxy for fault activity and behavior. The present study focuses on clay mineral assemblages from the Point Vert normal fault zone located in the Annot sandstones, a Priabonian-Rupelian turbidite succession of the Alpine foredeep in SE France. In this area, the Annot sandstones were buried around 6-8 km below the front of Alpine nappes soon after their deposition and exhumed during the middle-late Miocene. The fault affects arkosic sandstone beds alternating with pelitic layers, and displays throw of about thirty meters. The fault core zone comprises intensely foliated sandstones bounding a corridor of gouge about 20 cm thick. The foliated sandstones display clay concentration along S-C structures characterized by dissolution of K-feldspar and their replacement by mica, associated with quartz pressure solution, intense microfracturation and quartz vein precipitation. The gouge is formed by a clayey matrix containing fragments of foliated sandstones and pelites. However, a detailed petrographical investigation suggests complex polyphase deformation processes. Optical and SEM observations show that the clay minerals fraction of all studied rocks (pelites and sandstones from the damage and core zones of the fault) is dominated by white micas and chlorite. These minerals have two different origins: detrital and newly-formed. Detrital micas are identified by their larger shape and their chemical composition with a lower Fe-Mg content than the newly-formed white micas. In the foliated sandstones, newly-formed white micas are concentrated along S-C structures or replace K-feldspar. Both types of newly formed micas display the same chemical composition confirmed microstructural observations suggesting that they formed in the same conditions. They have the following structural formulas: Na0

  9. Evolution of Ground Deformation Zone on Normal Fault Using Distinct Element Method and Centrifuge Modeling

    NASA Astrophysics Data System (ADS)

    Lyu, Jhen-Yi; Chang, Yu-Yi; Lee, Chung-Jung; Lin, Ming-Lang

    2015-04-01

    The depth and character of the overlying earth deposit contribute to fault rupture path. For cohesive soil, for instance, clay, tension cracks on the ground happen during faulting, limiting the propagation of fracture in soil mass. The cracks propagate downwards while the fracture induced by initial displacement of faulting propagates upwards. The connection of cracks and fracture will form a plane that is related to tri-shear zone. However the mechanism of the connection has not been discussed thoroughly. By obtaining the evolution of ground deformation zone we can understand mechanism of fault propagation and crack-fracture connection. A series of centrifuge tests and numerical modeling are conducted at this study with acceleration conditions of 40g, 50g, 80g and dip angle of 60° on normal faulting. The model is with total overburden thick, H, 0.2m, vertical displacement of moving wall, ∆H. At the beginning, hanging wall and the left-boundary wall moves along the plane of fault. When ∆H/H equals to 25%, both of the walls stop moving. We then can calculate the width of ground deformation in different depth of each model by a logic method. Models of this study consist of two different type overburden material to simulate sand and clay in situ. Different from finite element method, with application of distinct element method the mechanism of fault propagation in soil mass and the development of ground deformation zone can be observed directly in numerical analysis of faulting. The information of force and deformation in the numerical model are also easier to be obtained than centrifuge modeling. Therefore, we take the results of centrifuge modeling as the field outcrop then modify the micro-parameter of numerical analysis to make sure both of them have the same attitude. The results show that in centrifuge modeling narrower ground deformation zone appears in clayey overburden model as that of sandy overburden model is wider on footwall. Increasing the strength

  10. Assessing active faulting by hydrogeological modeling and superconducting gravimetry: A case study for Hsinchu Fault, Taiwan

    NASA Astrophysics Data System (ADS)

    Lien, Tzuyi; Cheng, Ching-Chung; Hwang, Cheinway; Crossley, David

    2014-09-01

    We develop a new hydrology and gravimetry-based method to assess whether or not a local fault may be active. We take advantage of an existing superconducting gravimeter (SG) station and a comprehensive groundwater network in Hsinchu to apply the method to the Hsinchu Fault (HF) across the Hsinchu Science Park, whose industrial output accounts for 10% of Taiwan's gross domestic product. The HF is suspected to pose seismic hazards to the park, but its existence and structure are not clear. The a priori geometry of the HF is translated into boundary conditions imposed in the hydrodynamic model. By varying the fault's location, depth, and including a secondary wrench fault, we construct five hydrodynamic models to estimate groundwater variations, which are evaluated by comparing groundwater levels and SG observations. The results reveal that the HF contains a low hydraulic conductivity core and significantly impacts groundwater flows in the aquifers. Imposing the fault boundary conditions leads to about 63-77% reduction in the differences between modeled and observed values (both water level and gravity). The test with fault depth shows that the HF's most recent slip occurred in the beginning of Holocene, supplying a necessary (but not sufficient) condition that the HF is currently active. A portable SG can act as a virtual borehole well for model assessment at critical locations of a suspected active fault.

  11. Weakening mechanisms along Low-Angle Normal Faults in pelagic limestones (Southern Apennine, Italy): insights from microstructural analysis

    NASA Astrophysics Data System (ADS)

    Novellino, R.; Prosser, G.; Viti, C.; Spiess, R.; Agosta, F.; Tavarnelli, E.; Bucci, F.

    2013-12-01

    Low-Angle Normal Faults (LANFs) consist of shallowly-dipping extensional tectonic structures, whose origin relates to a mechanical paradox currently debated by a number of researches. The easy slip along these faults suggests a strain-weakening process active during fault nucleation and growth. Weakening mechanisms may include: i) presence of weak minerals; ii) high fluid pressure which, causing a drastic reduction of the effective stress, and iii) dynamic fault weakening during coseismic rupture. In the Basilicata portion of Southern Apennines, LANFs have been extensively studied by geological mapping and field structural analysis. Differently, a detailed microstructural observations are not hitherto available in the geological literature. For this reason, in this note, we summarize the results of microstructural analysis carried out on fault rock samples collected from a well-exposed mesoscopic LANFs. The present work is aimed at analyzing the weakening mechanisms that took place along the study faults. The incipient study LANFs are characterized by a narrow and discontinuous damage zone surrounding a very thin fault core that include a discrete slip-surface. The offset is in the range of tens of centimeters to few meters. At the microscope scale, the sampled rocks reveal the coexistence of different structural features such as: i) pervasive shape preferred orientation defined by elongated grains of calcite, producing a distinct foliation; ii) Crush Microbreccia (CM), formed of angular clasts locally in contact with each other; iii) several Ultracataclastic Veins (UV), departing from the slip-surfaces and cutting across the slip-zone. TEM investigation reveal the presence of ultrafine to calcite-nanoparticles (<200 nm) aggregate within UV, and iv) decarbonation features, where calcite grains exhibit irregular boundaries, vacuum and vesicles, most likely related to degassing processes. Thermal decomposition results in formation of a calcite aggregate made of

  12. Active Fault Topography and Fault Outcrops in the Central Part of the Nukumi fault, the 1891 Nobi Earthquake Fault System, Central Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Ueta, K.; Inoue, D.; Aoyagi, Y.; Yanagida, M.; Ichikawa, K.; Goto, N.

    2010-12-01

    It is important to evaluate the magnitude of earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults are often decided on the basis of geometric distances except for known these paleoseismic records. We have been studied the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the paleoseismic record and the geometric distance. Geomorphological, geological and reconnaissance microearthquake surveys are concluded. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. The study area of this work is the southeastern Nukumi fault and the northwestern Neodani fault. We interpret DEM using shaded relief map and stereoscopic bird's-eye view made from 2m mesh DEM data which is obtained by airborne laser scanner of Kokusai Kogyo Co., Ltd. Aerial photographic survey is for confirmation of DEM interpretation using 1/16,000 scale photo. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along the Nukumi fault and the Neodani fault . From Ogotani 2km southeastern of Nukumi pass which is located at the southeastern end of surface rupture along the Nukumi fault by previous study to Neooppa 9km southeastern of Nukumi pass, we can interpret left lateral topographies and small uphill-facing fault scarps on the terrace surface by detail DEM investigation. These topographies are unrecognized by aerial photographic survey because of heavy vegetation. We have found several new

  13. Stress Triggering of Conjugate Normal Faulting: Late Aftershocks of the 1983 M 7.3 Borah Peak, Idaho Earthquake

    SciTech Connect

    Suzette J. Payne; James Zollweg; David Rodgers

    2004-06-01

    The 1984 Devil Canyon sequence was a late aftershock sequence of the 28 October 1983 Ms 7.3 Borah Peak, Idaho, earthquake. The sequence began on 22 August 1984 with the ML 5.8 Devil Canyon earthquake, which nucleated at a depth of 12.8 ± 0.7 km between the surface traces of two normal faults, the Challis segment of the Lost River fault and the Lone Pine fault. Two hundred thirty-seven aftershocks were recorded by a temporary array during a 3-week period. Their focal mechanisms and hypocenter distribution define a cross-sectional "V" pattern whose base corresponds to the ML 5.8 event, whose tips correspond to the exposed fault traces, and whose sides define two planar fault zones oriented N25°W, 75°SW (Challis fault segment) and N39°W, 58°NE (Lone Pine fault). This pattern describes a graben bounded by conjugate normal faults. Temporal aspects of the Devil Canyon sequence provide strong evidence that slip on conjugate normal faults occurs sequentially. Aftershocks occurred primarily along the Challis segment until the occurrence of the 8 September 1984 ML 5.0 earthquake along the Lone Pine fault, after which aftershocks primarily occurred along this fault. These observations are consistent with worldwide seismologic and geologic observations and with physical and numerical models of conjugate normal faulting. Aftershocks of the Devil Canyon sequence occurred immediately northwest of the ML 5.8 Devils Canyon earthquake, which itself was immediately northwest of the Thousand Springs segment of the Lost River fault (the fault that slipped in association with the Ms 7.3 Borah Peak earthquake). Coulomb failure stress analysis indicates that stress increases resulting from both the Borah Peak mainshock and Devil Canyon ML 5.8 earthquake were sufficient to induce failure on the Lone Pine fault. These space–time patterns suggest that conjugate normal faults may transfer stress or accommodate stress changes at the terminations of major normal faults in the Basin and

  14. Results From NICLAKES Survey of Active Faulting Beneath Lake Nicaragua, Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Funk, J.; Mann, P.; McIntosh, K.; Wulf, S.; Dull, R.; Perez, P.; Strauch, W.

    2006-12-01

    In May of 2006 we used a chartered ferry boat to collect 520 km of seismic data, 886 km of 3.5 kHz subbottom profiler data, and 35 cores from Lake Nicaragua. The lake covers an area of 7700 km2 within the active Central American volcanic arc, forms the largest lake in Central America, ranks as the twentieth largest freshwater lake in the world, and has never been previously surveyed or cored in a systematic manner. Two large stratovolcanoes occupy the central part of the lake: Concepcion is presently active, Maderas was last active less than 2000 years ago. Four zones of active faulting and doming of the lake floor were mapped with seismic and 3.5 kHz subbottom profiling. Two of the zones consist of 3-5-km-wide, 20-30-km-long asymmetric rift structures that trend towards the inactive cone of Maderas Volcano in a radial manner. The northeastern rift forms a 20-27-m deep depression on the lake bottom that is controlled by a north-dipping normal fault. The southwestern rift forms a 25-35-m deep depression controlled by a northeast-dipping normal fault. Both depressions contain mound-like features inferred to be hydrothermal deposits. Two zones of active faulting are associated with the active Concepcion stratovolcano. A 600-m-wide and 6-km-long fault bounded horst block extends westward beneath the lake from a promontory on the west side of the volcano. Like the two radial rift features of Maderas, the horst points roughly towards the active caldera of Concepcion. A second north-south zone of active faulting, which also forms a high, extends off the north coast of Concepcion and corresponds to a localized zone of folding and faulting mapped by previous workers and inferred by them to have formed by gravitational spreading of the flank of the volcano. The close spatial relation of these faults to the two volcanic cones in the lake suggests that the mechanism for faulting is a result of either crustal movements related to magma intrusion or gravitational sliding and is

  15. Syn-orogenic extensional pulses within the contractional history of thrust wedges. The Val di Lima low-angle normal fault case study, Northern Apennines, Italy.

    NASA Astrophysics Data System (ADS)

    Clemenzi, Luca; Molli, Giancarlo; Storti, Fabrizio; Muchez, Philippe; Swennen, Rudy; Torelli, Luigi

    2014-05-01

    overpressures locally influenced active deformation processes and favored shear localization. We propose that the folded low-angle extensional fault system indicates the occurrence of an extensional pulse that affected this sector of the thrust wedge during the orogenic contractional history. In particular, the fault system is considered to be the flat portion of a stair-case extensional fault system developed in the shallower portion of the thrust wedge to compensate for its supercritical taper produced by uplift of the internal zone due to deep-rooted thrusting. Important pulses of wedge extension, similar to the one described here, are likely to occur during the geological history of most thrust wedges, because their long-term evolution is characterized by complex interactions among tectonics, gravitational body forces, and (sub)surface processes. The systems of brittle extensional fault zones, resulting from such extensional pulses, affect fluid circulation through the upper crust by producing articulated networks of hydraulic conduits, barriers, or mixed conduit-barrier systems. In particular, as demonstrated by our results, the effects of extensional fault zones on fluid circulation is twofold: i) they provide effective fluid pathways allowing deep infiltration of surface-derived marine or meteoric water; ii) they can trigger fluid overpressuring, especially in the footwall of shallow-dipping fault segments. Eventually, fluid circulation can exert a strong influence on the mechanical behavior of thrust wedges either by reducing the effective normal stress at depth or triggering the formation of hydrous clay minerals lowering the frictional properties of fault zones.

  16. Reconstructing normal fault systems with synextensional lacustrine sediments: Examples from northeast Nevada

    SciTech Connect

    Mueller, K.J. . Dept. of Geology)

    1993-04-01

    The Tertiary history of the Windermere Hills, NE Nevada includes the development of five overprinted extensional fault systems which range from late Eocene to middle Miocene in age. Definition of the age, stratigraphic architecture and sedimentary facies in synextensional half-grabens permits reconstruction of the complex extensional chronology of this area. The earliest Tertiary strata exposed in the region consist of late Eocene calc-alkaline volcanic deposits whose thickness does not change significantly within the study area. This, and recognition that these strata are tilted similar amounts as younger synextensional sediments suggest they are not directly associated with normal faulting. Conglomerate interbedded in the calc-alkaline volcanic sequence is associated with steep-sided volcanic landforms suggesting that late Eocene (39-41 Ma) relief was produced by volcanic processes and not extensional faulting. Early Oligocene and middle Miocene synextensional deposits are differentiated by their wedge-shaped stratigraphic architecture, fault bounded margins, and abrupt thickness and facies variations. Sedimentary facies in these basins are dominated by aggraded lacustrine fan delta deposits which fine abruptly basinward. Age dating of these strata suggest that 1-3 kilometers of sediment were deposited in 2-4 Ma in rapidly subsiding half-grabens. Synextensional sediments are also associated with similarly aged unconformities and paleovalleys in adjacent uplifted blocks. Definition of the timing of basin margin faults hinges on their correct correlation with coarse-grained marginal facies associated with a particular episode of extension. Problems are illustrated in fault bounded half-grabens which contain fine-grained lacustrine sediments in marginal settings.

  17. 3D seismic analysis of gravity-driven and basement influenced normal fault growth in the deepwater Otway Basin, Australia

    NASA Astrophysics Data System (ADS)

    Robson, A. G.; King, R. C.; Holford, S. P.

    2016-08-01

    We use three-dimensional (3D) seismic reflection data to analyse the structural style and growth of a normal fault array located at the present-day shelf-edge break and into the deepwater province of the Otway Basin, southern Australia. The Otway Basin is a Late Jurassic to Cenozoic, rift-to-passive margin basin. The seismic reflection data images a NW-SE (128-308) striking, normal fault array, located within Upper Cretaceous clastic sediments and which consists of ten fault segments. The fault array contains two hard-linked fault assemblages, separated by only 2 km in the dip direction. The gravity-driven, down-dip fault assemblage is entirely contained within the 3D seismic survey, is located over a basement plateau and displays growth commencing and terminating during the Campanian-Maastrichtian, with up to 1.45 km of accumulated throw (vertical displacement). The up-dip normal fault assemblage penetrates deeper than the base of the seismic survey, but is interpreted to be partially linked along strike at depth to major basement-involved normal faults that can be observed on regional 2D seismic lines. This fault assemblage displays growth initiating in the Turonian-Santonian and has accumulated up to 1.74 km of throw. Our detailed analysis of the 3D seismic data constraints post-Cenomanian fault growth of both fault assemblages into four evolutionary stages: [1] Turonian-Santonian basement reactivation during crustal extension between Australia and Antarctica. This either caused the upward propagation of basement-involved normal faults or the nucleation of a vertically isolated normal fault array in shallow cover sediments directly above the reactivated basement-involved faults; [2] continued Campanian-Maastrichtian crustal extension and sediment loading eventually created gravitational instability on the basement plateau, nucleating a second, vertically isolated normal fault array in the cover sediments; [3] eventual hard-linkage of fault segments in both fault

  18. Normal-faulting slip maxima and stress-drop variability: a geological perspective

    USGS Publications Warehouse

    Hecker, S.; Dawson, T.E.; Schwartz, D.P.

    2010-01-01

    We present an empirical estimate of maximum slip in continental normal-faulting earthquakes and present evidence that stress drop in intraplate extensional environments is dependent on fault maturity. A survey of reported slip in historical earthquakes globally and in latest Quaternary paleoearthquakes in the Western Cordillera of the United States indicates maximum vertical displacements as large as 6–6.5 m. A difference in the ratio of maximum-to-mean displacements between data sets of prehistoric and historical earthquakes, together with constraints on bias in estimates of mean paleodisplacement, suggest that applying a correction factor of 1.4±0.3 to the largest observed displacement along a paleorupture may provide a reasonable estimate of the maximum displacement. Adjusting the largest paleodisplacements in our regional data set (~6 m) by a factor of 1.4 yields a possible upper-bound vertical displacement for the Western Cordillera of about 8.4 m, although a smaller correction factor may be more appropriate for the longest ruptures. Because maximum slip is highly localized along strike, if such large displacements occur, they are extremely rare. Static stress drop in surface-rupturing earthquakes in the Western Cordillera, as represented by maximum reported displacement as a fraction of modeled rupture length, appears to be larger on normal faults with low cumulative geologic displacement (<2 km) and larger in regions such as the Rocky Mountains, where immature, low-throw faults are concentrated. This conclusion is consistent with a growing recognition that structural development influences stress drop and indicates that this influence is significant enough to be evident among faults within a single intraplate environment.

  19. Gently dipping normal faults identified with Space Shuttle radar topography data in central Sulawesi, Indonesia, and some implications for fault mechanics

    USGS Publications Warehouse

    Spencer, J.E.

    2011-01-01

    Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.

  20. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada

    USGS Publications Warehouse

    Caine, J.S.; Bruhn, R.L.; Forster, C.B.

    2010-01-01

    Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.

  1. Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples

    SciTech Connect

    Janssen, C.; Wirth, R.; Wenk, H. -R.; Morales, L.; Naumann, R.; Kienast, M.; Song, S. -R.; Dresen, G.

    2014-08-20

    The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has been observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.

  2. Active and inactive faults in southern California viewed from Skylab

    NASA Technical Reports Server (NTRS)

    Merifield, P. M.; Lamar, D. L.

    1977-01-01

    A number of prominent linears in basement terrane of the Peninsular Ranges appeared on Skylab images. In most cases, they were represented by straight or gently curved valleys; however, detailed field investigations have shown that several of these linears mark previously unmapped faults which form two distinct fault sets; one set trends northeast, the other west-northwest. No indications of recent movement were present on these faults which were truncated by seismically active, northwest trending fault zones such as the Elsinore and San Jacinto. Right-lateral separation is demonstrable on the northeast trending set.

  3. Preliminary models of normal fault development in subduction zones: lithospheric strength and outer rise deformation

    NASA Astrophysics Data System (ADS)

    Naliboff, J. B.; Billen, M. I.

    2010-12-01

    A characteristic feature of global subduction zones is normal faulting in the outer rise region, which reflects flexure of the downgoing plate in response to the slab pull force. Variations in the patterns of outer rise normal faulting between different subduction zones likely reflects both the magnitude of flexural induced topography and the strength of the downgoing plate. In particular, the rheology of the uppermost oceanic lithosphere is likely to strongly control the faulting patterns, which have been well documented recently in both the Middle and South American trenches. These recent observations of outer rise faulting provide a unique opportunity to test different rheological models of the oceanic lithosphere using geodynamic numerical experiments. Here, we develop a new approach for modeling deformation in the outer rise and trench regions of downgoing slabs, and discuss preliminary 2-D numerical models examining the relationship between faulting patterns and the rheology of the oceanic lithosphere. To model viscous and brittle deformation within the oceanic lithosphere we use the CIG (Computational Infrastructure for Geodynamics) finite element code Gale, which is designed to solve long-term tectonic problems. In order to resolve deformation features on geologically realistic scales (< 1 km), we model only the portion of the subduction system seaward of the trench. Horizontal and vertical stress boundary conditions on the side walls drive subduction and reflect, respectively, the ridge-push and slab-pull plate-driving forces. The initial viscosity structure of the oceanic lithosphere and underlying asthenosphere follow a composite viscosity law that takes into account both Newtonian and non-Newtonian deformation. The viscosity structure is consequently governed primarily by the strain rate and thermal structure, which follows a half-space cooling model. Modification of the viscosity structure and development of discrete shear zones occurs during yielding

  4. Induced seismicity of a normal blind undetected reservoir-bounding fault influenced by dissymmetric fractured damage zones

    NASA Astrophysics Data System (ADS)

    Rohmer, J.

    2014-04-01

    Fluid injection in deep sedimentary porous formations might induce shear reactivation of reservoir bounding faults. Here, we focus on `blind' 1000-m-long normal faults (with shear displacement ≤10 m), which can hardly be detected using conventional seismic surveys, but might potentially induce seismicity felt on surface. The influence of the dissymmetry in the internal structure of the fractured damage zone DZ is numerically investigated by using 2-D plane-strain finite-element simulations of a 1500-m-deep fluid injection into a porous reservoir. The problem is solved within the framework of fully saturated isothermal elasto-plastic porous media by both accounting for fault slip weakening and shear-induced degradation of fault core permeability. The numerical results show that the presence of a thick fractured hanging wall's DZ (with Young's modulus decreasing with the distance to the fault core due to the presence of fractures) strongly controls the magnitude M of the seismic event induced by the rupture. In the case modelled, M changed by more than 1.0 unit when the DZ thickness is varied from 5 to 50 m (M ranges from ˜0.1 to ˜1.5, i.e. from a `low' to a `low-to-moderate' seismicity activity). However, further extending DZ up to 90 m has little effect and the relationship reaches a quasi-horizontal plateau. This tendency is confirmed considering other initial conditions and injection scenarios. Finally, the presence of a thicker footwall DZ appears to lower the influence of hanging wall's DZ, but with lesser impact than the degree of fracturing.

  5. Post 4 Ma initiation of normal faulting in southern Tibet. Constraints from the Kung Co half graben

    NASA Astrophysics Data System (ADS)

    Mahéo, G.; Leloup, P. H.; Valli, F.; Lacassin, R.; Arnaud, N.; Paquette, J.-L.; Fernandez, A.; Haibing, L.; Farley, K. A.; Tapponnier, P.

    2007-04-01

    The timing of E-W extension of the Tibetan plateau provides a test of mechanical models of the geodynamic evolution of the India-Asia convergence zone. In this work we focus on the Kung Co half graben (Southern Tibet, China), bounded by an active N-S normal fault with a minimum vertical offset of 1600 m. To estimate the onset of normal faulting we combined high and medium temperature (U-Pb, Ar/Ar) and low temperature ((U-Th)/He) thermochronometry of the Kung Co pluton, a two-mica granite of the northern Himalayan granitic belt that outcrop in the footwall of the fault. Biotite and muscovite Ar/Ar ages , are close from each other [˜ 16 Ma ± 0.2 (Ms) and ˜ 15 ± 0.4 Ma (Bt)], which is typical of fast cooling. The zircon and apatite (U-Th)/He ages range from 11.3 to 9.6 Ma and 9.9 to 3.7 Ma respectively. These He ages are indicative of (1) fast initial cooling, from 11.3 to ˜ 9 Ma, gradually decreasing with time and (2) a high geothermal gradient (˜ 400 °C/km), close to the surface at ˜ 10 Ma. The Kung Co pluton was emplaced at about 22 Ma (U-Pb on zircon) at less than 10 km depth and 520-545 °C. Subsequent to its shallow emplacement, the pluton underwent fast thermal re-equilibration ending around 7.5 Ma, followed by a period of slow cooling caused either by the end of the thermal re-equilibration or by very slow exhumation (0.02-0.03 mm/yr) from ˜ 7.5 Ma to at least 4 Ma. In either case the data suggest that the exhumation rate increased after 4 Ma. We infer this increase to be related to the initiation of the Kung Co normal fault. A critical examination of previously published data show that most ˜ N-S Tibetan normal faults may have formed less than 5 Ma ago rather than in the Miocene as assumed by several authors. Such a young age implies that E-W extension is not related to the Neogene South Tibetan magmatism (25 to 8 Ma). Consequently, models relating E-W extension to magmatism, such as convective removal of the lower lithosphere, may be inappropriate

  6. Geochemistry, mineralization, structure, and permeability of a normal-fault zone, Casino mine, Alligator Ridge district, north central Nevada

    NASA Astrophysics Data System (ADS)

    Hammond, K. Jill; Evans, James P.

    2003-05-01

    We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as

  7. Contrasting strike-slip motions on thrust and normal faults: Implications for space-geodetic monitoring of surface deformation

    NASA Astrophysics Data System (ADS)

    Hampel, Andrea; Li, Tao; Maniatis, Georgios

    2013-04-01

    Recent GPS records of surface deformation caused by earthquakes on intra-continental dip-slip faults revealed in unprecedented detail a significant strike-slip component near the fault tips, which is markedly different for thrust and normal faults. In the hanging wall of the thrust fault ruptured during the 2003 Chengkung (Taiwan) earthquake, a divergent displacement pattern was recorded (Hsu et al., 2009). In contrast, a convergent slip pattern was observed in the hanging wall of the normal fault that produced the 2009 L'Aquila (Italy) earthquake (Cheloni et al., 2010; Serpelloni et al., 2012). Remarkably, such convergent slip patterns are also evident in field records of cumulative fault slip (e.g., Jackson et al., 1982; Roberts & Koukouvelas 1996), which underlines the coseismic origin of the cumulative slip pattern. Here we use three-dimensional numerical modeling to demonstrate that the observed fault-parallel motions are a characteristic feature of the coseismic slip pattern on normal and thrust faults (Hampel et al., in press). Modeled slip vectors converge toward the center of normal faults whereas they diverge for thrust faults, which causes contrasting fault-parallel displacements at the model surface. Our model also predicts divergent movements in normal fault footwalls, which were recorded for the first time during the L'Aquila earthquake. During the postseismic phase, viscous flow in the lower crust induces fault-parallel surface displacements, which have the same direction as the coseismic displacements but are distributed over a larger area that extends far beyond the fault tips. Hence, detecting this signal requires GPS stations in the prolongation of the fault's strike. Postseismic velocities vary over several orders of magnitude depending on the lower-crustal viscosity and may reach tens of millimeters per year for low viscosities. Our study establishes the link between coseismic and cumulative slip patterns on normal and thrust faults and

  8. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    NASA Astrophysics Data System (ADS)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a

  9. Miocene Metamorphism and Exhumation of the Granulite-Eclogite Anticlinorium of the Ama Drime Through Normal Faulting Associated to Large Scale E-W Folding

    NASA Astrophysics Data System (ADS)

    Kali, E.; Arnaud, N. O.; Leloup, H. P.; Maheo, G.; Boutonnet, E.; Li, H.

    2007-12-01

    High grade rocks have been exhumed in the core of a foliation dome forming the Ama Drime range west of Dingye graben. This range is bordered on its western and eastern sides by two major presently active normal faults which cut the STDS, the eastern one forming the western border of the Dingye graben. The footwall of this fault consists of sillimanite-garnet bearing gneisses with kyanite relics, locally migmatitic and intruded by deformed and undeformed leucogranites. C/S relations show top to the east ductile normal shearing prior to brittle normal faulting presently active. Petrological study of gneisses via minerals microprobe analysis and pseudosections show minimum pressures of equilibration of 13.5 kbar and temperature of 800°C, followed by decompression to 6kbar and 700°C contemporaneous with the onset of ductile normal shearing and melting. SHRIMP U/Pb dating of monazite from migmatites give middle-miocene ages for the melting event while SIMS U/Pb dating of zircons from orthogneisses from the same unit reveal ages of more than 2 Ga. PT conditions and proterozoic ages indicate that this unit belong to Lower Himalayan Cristalline Series, (LHCS as in Groppo et al., 2007, J Metam. Geol) but also reveal that middle-miocene high grade rocks have been exhumed by the ductile normal fault. The same study was carried out on samples from the hanging-wall of the normal fault which consists of garnet- sillimanite micaschists with staurolite relics, locally intruded by undeformed and deformed tourmaline bearing leucogranites, and are sheared top to North probably in relation with the overlying STDS. U/Pb SIMS dating of zircons on undeformed and deformed leucogranite give middle Miocene ages for the end of the deformation associated with the STDS. Moreoever, Paleozoic inheritage in zircons show that the units located to the east of the active normal fault belong to the High Himalayan Crystallines series. PT paths constrained by garnet isopleths show decompression and

  10. Seismic images of an extensional basin, generated at the hangingwall of a low-angle normal fault: The case of the Sansepolcro basin (Central Italy)

    NASA Astrophysics Data System (ADS)

    Barchi, Massimiliano R.; Ciaccio, Maria Grazia

    2009-12-01

    The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.

  11. How the differential load induced by normal fault scarps controls the distribution of monogenic volcanism

    NASA Astrophysics Data System (ADS)

    Maccaferri, F.; Acocella, V.; Rivalta, E.

    2015-09-01

    Understanding shallow magma transfer and the related vent distribution is crucial for volcanic hazard. Here we investigate how the stress induced by topographic scarps linked to normal faults affects the distribution of monogenic volcanoes at divergent plate boundaries. Our numerical models of dyke propagation below a fault scarp show that the dykes tend to propagate toward and erupt on the footwall side. This effect, increasing with the scarp height, is stronger for dykes propagating underneath the hanging wall side and decreases with the distance from the scarp. A comparison to the East African Rift System, Afar and Iceland shows that (1) the inner rift structure, which shapes the topography, controls shallow dyke propagation; (2) differential loading due to mass redistribution affects magma propagation over a broad scale range (100-105 m). Our results find application to any volcanic field with tectonics- or erosion-induced topographic variations and should be considered in any volcanic hazard assessment.

  12. Spatial distribution of microfractures in damage zone along active faults

    NASA Astrophysics Data System (ADS)

    Mizoguchi, K.; Ueta, K.

    2011-12-01

    For basement faults without overlying quaternary sediments, there are few methods to determine whether the fault is active or not. Recently, we focus on microfracture characteristics of damage zone along active faults as used for the assessment of seismic activity of basement faults. In this study, we examined a newly-found active fault (Sasaki et al., 2011) located to the east of the epicentral area of 1943 Tottori earthquake, southwest Japan. The fault zone consists of the 75 cm thick fault core of the purple-colored clayey fault gouge and the fault breccia with cataclastic foliation, and the surrounding damage zone developed in Cretaceous Kyushozan granite. A subsidiary fault accompanying a fault core of white clayey fault gouge that ranges from 3 to 5 mm thickness is located at about 110 m from the main fault. We collected ten orientated samples 9 m to 180 m from the main fault. The samples were coated with epoxy and then thin sections were cut perpendicular to the fault plane and parallel to a horizontal plane because the slip direction is unknown. Microfracture density data were collected from 40 quartz grains per thin section (per sample). A thin section is marked with a square grid at 3 mm intervals and we picked one grain up in each square of the grid marked on the thin section to reduce operator sampling bias resulting from the selection of quartz grains. Quartz is suitable to estimate the damage that the rock sample has sustained because quartz without cleavage acts as an isotropic medium for fracturing and it is physically and chemically resistant to weathering than other minerals constituting the granite. We counted the number of microfractures that intersected a line which was drawn from the edge of each quartz grain, through the center point, to the other edge of the grain. The linear microfracture density for each sample is calculated to be the total number of microfractures intersecting the lines divided by the total counting line length. Under the

  13. First direct observation of coseismic slip and seafloor rupture along a submarine normal fault and implications for fault slip history

    NASA Astrophysics Data System (ADS)

    Escartín, Javier; Leclerc, Frédérique; Olive, Jean-Arthur; Mevel, Catherine; Cannat, Mathilde; Petersen, Sven; Augustin, Nico; Feuillet, Nathalie; Deplus, Christine; Bezos, Antoine; Bonnemains, Diane; Chavagnac, Valérie; Choi, Yujin; Godard, Marguerite; Haaga, Kristian A.; Hamelin, Cédric; Ildefonse, Benoit; Jamieson, John W.; John, Barbara E.; Leleu, Thomas; MacLeod, Christopher J.; Massot-Campos, Miquel; Nomikou, Paraskevi; Paquet, Marine; Rommevaux-Jestin, Céline; Rothenbeck, Marcel; Steinführer, Anja; Tominaga, Masako; Triebe, Lars; Campos, Ricard; Gracias, Nuno; Garcia, Rafael; Andreani, Muriel; Vilaseca, Géraud

    2016-09-01

    Properly assessing the extent and magnitude of fault ruptures associated with large earthquakes is critical for understanding fault behavior and associated hazard. Submarine faults can trigger tsunamis, whose characteristics are defined by the geometry of seafloor displacement, studied primarily through indirect observations (e.g., seismic event parameters, seismic profiles, shipboard bathymetry, coring) rather than direct ones. Using deep-sea vehicles, we identify for the first time a marker of coseismic slip on a submarine fault plane along the Roseau Fault (Lesser Antilles), and measure its vertical displacement of ∼ 0.9 m in situ. We also map recent fissuring and faulting of sediments on the hangingwall, along ∼3 km of rupture in close proximity to the fault's base, and document the reactivation of erosion and sedimentation within and downslope of the scarp. These deformation structures were caused by the 2004 Mw 6.3 Les Saintes earthquake, which triggered a subsequent tsunami. Their characterization informs estimates of earthquake recurrence on this fault and provides new constraints on the geometry of fault rupture, which is both shorter and displays locally larger coseismic displacements than available model predictions that lack field constraints. This methodology of detailed field observations coupled with near-bottom geophysical surveying can be readily applied to numerous submarine fault systems, and should prove useful in evaluating seismic and tsunamigenic hazard in all geodynamic contexts.

  14. Miocene strike-slip and normal fault controls on Au-Ag mineralization in the Talapoosa district, Lyon County, Nevada

    SciTech Connect

    Dilles, P.A.; Carpenter, A.S.

    1993-04-01

    Structurally controlled epithermal stockwork Au-Ag mineralization formed at the intersection of three complexly interacting fault sets in intermediate Miocene volcanic rocks at the Talapoosa District (TD) on the western margin of the Walker Lane during the mid.-late Miocene. The TD lies at the intersection of the N 75[degree] W Talapoosa-Gooseberry (T-G) lineament with the N 70[degree] E Carson River fault system. Earliest high angle faults guided the dacite intrusive and early hydrothermal fluids. In response to increasing down to the south motion on these faults, first low angle then moderate angle striking, south dipping normal faults evolved. The Hematite fault separates argillized hanging wall from stockwork mineralized footwall in the Dyke zone, but is offset by the 40--65[degree] S dipping Talapoosa Fault (TF). The TF, traceable for over 1,500 m, is the primary conduit flooring tabular south dipping stockwork mineralization in the Bear Creek, Dyke and East Hill zones. The TF has accommodated at least 150 m of dip-slip motion, as well as repeated strike-slip and rare oblique-slip motions. High angle left-lateral and normal faults horsetail and flatten to moderate southerly dips creating mineralized brecciated zones where they merge with the TF in the Dyke zone. Significant post mineral faulting occurred on all fault sets as the core of the district was subsequently uplifted as a horst. Latest left-lateral and normal motions on faults displace the TF and Lousetown Fm. The authors preliminary interpretation of structural data is that low to moderate south dipping faults evolved above the intersection of right-lateral N 20-40[degree] W strike-slip faults of the Walker Lane bent toward (older ) N 75[degree] W faults of the T-G lineament. During and after mineralization left-lateral and normal faults of the Carson River system merged into and moved in concert with the Talapoosa fault, shattering hangingwall andesites and reacting older structures.

  15. Near-Surface Seismic Reflection and GPR Imaging of the Active Emigrant Peak Fault, Fish Lake Valley, NV

    NASA Astrophysics Data System (ADS)

    Black, R. A.; Christie, M. W.; Tsoflias, G. P.; Stockli, D. F.

    2007-12-01

    Multifaceted near-surface geophysical studies of active faulting in the Eastern California Shear Zone are being conducted at the University of Kansas. During the summer of 2006 shallow seismic reflection and GPR data sets were acquired across the active Emigrant Peak fault on the east side of Fish Lake Valley, Nevada. This fault is a normal fault that aids in the transfer of regional right-lateral deformation associated with the Death Valley/Fish Lake Valley fault zone. Locally a 20 m high scarp marks the trace of the main fault across a large, active alluvial fan. The GPR experiment produced a pseudo-3D image approximately 500m by 115m in size with a bin size of 1m by 5m. Depth penetration was dependent on antenna frequency, but reached approximately 25m in the dry alluvial fan sediments. Two 2-D seismic lines were acquired with a depth penetration of approximately 200m using a 30.06 caliber rifle source. The main line was over 400m in length and the cross line over 150m in length. CMP bins were 0.25m in size. Both data types were processed to migrated images and imported into an industry-standard reflection interpretation package. Analysis of the GPR volume allowed the interpretation of numerous normal faults parallel to the main Emigrant fault both near the main scarp and as 'off-fault' deformation. Some are down-to-the-basin 'growth faults' and some are antithetic in nature. Faults were only mapped if they were continuous across many x-lines. The migrated seismic images contain numerous reflections, grouped in packages of short reflectors of different amplitudes and dip orientations. The GPR fault planes were transferred onto the seismic data and correlated with obvious breaks in dip and amplitude between the reflection packages. After basic interpretation of the faults the stratigraphic changes across the fault planes were analyzed on the seismic data to estimate offsets at different depths for each fault. Currently, we are working to estimate a quantitative

  16. Low Angle Normal Fault System Controls the Structure Evolution of Baiyun Deepwater Basin and Its Lithosphere Thinning, Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Ren, J.; Yang, L.

    2015-12-01

    The discovery of the transition area from ~30 km to weakly thinned continental crust (<12 km) in Baiyun deepwater basin, Northern South China Sea leads to two questions: What controls extreme crustal thinning and what is the nature of Baiyun basin. The 3D seismic data newly acquired show that Baiyun basin is an asymmetric half graben mainly controlled by a set of north-dipping normal faults converging in deep. By employing the principle of back-stripping, we estimate the fault dips and slip amount would be in the absence of post-rift sediments and seawater loading. Results show these Middle Eocene faults were extremely active, with a high accumulation horizontal displacement (> 10 km) and an initial very low angle (<7°), followed by a rotated into sub-horizontal. A general scenario for extension of the uppermost continental crust probably includes simultaneous operation of low angle normal fault (F1) as well as parallel arrays of step-faults (domino-faults, f2-f9). Under such a scenario, it shows no obvious extension discrepancy in Baiyun basin. Our results indicate that Baiyun sag preserves information recording the continent thinning before the seafloor spreading, and it could be an abandoned inner rifted basin.

  17. Widening of normal fault zones due to the inhibition of vertical propagation

    NASA Astrophysics Data System (ADS)

    Roche, Vincent; Homberg, Catherine; van der Baan, Mirko; Rocher, Muriel

    2015-04-01

    Fault zones structures are the result of a progressive development and are largely controlled by fault geometry inherited from the early stage of faulting. In this paper, we document this early stage, based on detailed observations on mesocale faults in layered rocks in two outcrops. Study includes analyses of fault structures, along-planes displacement profiles, and far-field displacement profiles. This last profile take into account the total strain induced by fault zones including folding and segmentation. The vertical propagation of the studied faults is stopped by layer-parallel faults. This restriction involves a flat-topped displacement profile along the fault plane. Far from the restricted tip, fault structures correspond to simple planar slip surfaces exhibiting dip refraction due to layering. Near the restricted tips, their structures range from planar structures to complex fault zone characterized by abundant parallel fault segment. In one site, fault-related folding also occurs at the fault tips. Unlike the segmentation, fault-related folding is not restricted by the layer-parallel fault. Far-field displacement profiles have therefore flat topped shape along the restricted faults exhibiting segmentation, whereas profiles become more triangular when folding take place. Based on the observations, we developed a model of fault zone evolution in which the complexities and the width of fault zone are inherited during the fault restriction period. In this model fault propagation alternates between periods of vertical restriction and vertical propagation. In the course of restriction, faults form first as simple isolated planar structures, then, fault zone complexity, specifically the number of sub parallel segments, increases to accommodate increasing strain. Eventually the fault should finally propagate through the layer-parallel faults with a complex geometry. This model implies that fault widening is controlled by the fault capacity to propagate vertically

  18. Evidence against Late Quaternary activity along the Northern Karakoram Fault

    NASA Astrophysics Data System (ADS)

    Robinson, A. C.; Owen, L. A.; Hedrick, K.; Blisniuk, K.; Sharp, W. D.; Chen, J.; Schoenbohm, L. M.; Imrecke, D. B.; Yuan, Z.; Li, W.

    2012-12-01

    Although the entire 1000 km long Karakoram fault has long been interpreted to be active, recent work based primarily on interpretation of satellite imagery suggests that the northern end of the fault, where it enters the Pamir mountains, is inactive. We present field observations and geochronologic data from the southern end of the Tashkurgan valley, in the Pamir, on the Karakoram fault where it splits into two identifiable strands; an eastern strand which is the main trace of the Karakoram fault, and a western strand called the Achiehkopai fault. These results support the interpretation that the northern Karakoram fault is currently inactive, and has been for at least 200 ka: 1) Near the village of Dabudaer in the southern Tashkurgan valley the main trace of the Karakoram fault is orthogonally cut by a narrow incised valley with no observed lateral offset across the fault. Within this valley, a strath terrace ~50 m above the active drainage which overlies the main trace of the Karakoram fault which is capped by a carbonate cemented conglomerate. U-series analyses of carbonate cement from a correlative deposit located several km away yields a minimum depositional age of 76±12 ka. This age is coeval with the local Tashkurgan glacial stage we dated using Be-10 surface exposure dating (66±10 ka; Owen et al., 2012, Quaternary Science Reviews) suggesting both the conglomerate and strath terrace formed during this glacial stage. 2) ~25 km south of Dabudar, the main trace of the Karakoram projects beneath Tashkurgan glacial stage moraine and fluvial-glacial deposits which similarly show no evidence of disturbance by strike-slip deformation. Both of the above results demonstrate the main trace of the Karakoram fault has been inactive since at least ~70 ka. 3) Both the Karakoram and Achiehkopai faults are overlain by older Dabudaer glacial stage moraine deposits which are interpreted to be at least as old as the penultimate glacial, but may be >200 ka based on our Be-10

  19. Is the central Piedmont suture a low-angle normal fault

    SciTech Connect

    Dennis, A.J. )

    1991-11-01

    In the crystalline southern Appalachians, the Carolina arc terrane is in fault contact with the Piedmont terrace along a seismically reflective surface dipping toward the hinterland and called the central Piedmont suture. The central Piedmont suture may be interpreted as a thrust, but existing data also support a Silurian-Devonian, normal-slip origin: (1) There are lower grade rocks in the hanging wall than in the footwall. (2) A normal-fault solution allows simultaneous metamorphism of the Piedmont terrane and Carolina terrane, prior to their juxtaposition along the central Piedmont suture. (3) Mineral ages in the Piedmont terrane are older in the west than in the east, consistent with an eastward-progressive unroofing. (4) Along the western edge of the Carolina terrane, a linear belt of Devonian subalkalic to alkalic granitoids and gabbro-norites with low initial {sup 87}Sr/{sup 86}Sr ratios may represent mantle-derived magmas along the axis of rifting that are contemporary with major crustal extension. The westernmost Piedmont terrane includes the Chauga belt. The Chauga belt comprises metavolcanic and metaplutonic units similar in rock type and age to those of the western Carolina terrane. Chauga belt rocks are interpreted to be the westernmost exposures of the Carolina terrane, translated west on the lower plate by extension. The Piedmont and Carolina terranes may thus compose a single lithotectonic element. The Piedmont terrane would represent the basement on which the arc was constructed; the terrane was uplifted during extension along a major low-angle normal fault, recognized today as the central Piedmont suture.

  20. Successive episodes of normal faulting and fracturing resulting from progressive extension during the uplift of the Holy Cross Mountains, Poland

    NASA Astrophysics Data System (ADS)

    Konon, Andrzej

    2004-03-01

    Conjugate normal faults, extension fractures and mesh-fracture structures were investigated in Devonian carbonate rocks from the southern part of the Holy Cross Mountains (HCM) (Central Poland). Strata folded during Variscan deformations were later subject to uplift, resulting in increasing extension in the upper part of the rock mass. At a relatively shallow depth, faults and fractures developed in an orderly vertical succession. First, mesh fracture structures and conjugate normal fault sets enclosing acute dihedral angles (2Θ) of over 45° were formed. Next, conjugate normal faults with 2Θ less than 45° and sub-vertical extension fractures developed. The occurrences of conjugate normal sets enclosing different dihedral acute angles and extension fractures with similar strikes, juxtaposed with each other at the same stratigraphic level, point to the fact that the uplifted rock mass underwent successive changes in a stress regime leading to the formation of these structures. The first sets of conjugate normal faults and fractures developed when the HCM were uplifted during a late stage of Variscan deformations. The next sets of extension fractures and conjugate normal faults developed during the following uplift events interrupted by periods of sedimentation of the Mesozoic and younger strata.

  1. Ductile deformation, boudinage and low angle normal faults. An overview of the structural variability at present-day rifted margins

    NASA Astrophysics Data System (ADS)

    Clerc, Camille; Jolivet, Laurent; Ringenbach, Jean-Claude; Ballard, Jean-François

    2016-04-01

    High quality industrial seismic profiles acquired along most of the world's passive margins present stunningly increased resolution that leads to unravel an unexpected variety of structures. An important benefit of the increased resolution of recent seismic profiles is that they provide an unprecedented access to the processes occurring in the middle and lower continental crust. We present a series of so far unreleased profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear and low angle detachment faulting. The lower crust in passive margins appears much more intensely deformed than usually represented. At the foot of both magma-rich and magma-poor margins, we observe clear indications of ductile deformation of the deep continental crust along large-scale shallow dipping shear zones. These shear zones generally show a top-to-the-continent sense of shear consistent with the activity of overlying continentward dipping normal faults observed in the upper crust. This pattern is responsible for a migration of the deformation and associated sedimentation and/or volcanic activity toward the ocean. In some cases, low angle shear zones define an anastomosed pattern that delineates boudin-like structures. The interboudins areas seem to localize the maximum of deformation. The lower crust is intensely boudinaged and the geometry of those boudins seems to control the position and dip of upper crustal normal faults. We present some of the most striking examples (Uruguay, West Africa, Barents sea…) and discuss their implications for the time-temperature-subsidence history of the margins.

  2. Active faults and minor plates in NE Asia

    NASA Astrophysics Data System (ADS)

    Kozhurin, Andrey I.; Zelenin, Egor A.

    2014-05-01

    Stated nearly 40 yr ago the uncertainty with plate boundaries location in NE Asia (Chapman, Solomon, 1976) still remains unresolved. Based on the prepositions that a plate boundary must, first, reveal itself in linear sets of active structures, and, second, be continuous and closed, we have undertaken interpretation of medium-resolution KH-9 Hexagon satellite imageries, mostly in stereoscopic regime, for nearly the entire region of NE Asia. Main findings are as follows. There are two major active fault zones in the region north of the Bering Sea. One of them, the Khatyrka-Vyvenka zone, stretches NE to ENE skirting the Bering Sea from the Kamchatka isthmus to the Navarin Cape. Judging by the kinematics of the Olyutorsky 2006 earthquake fault, the fault zones move both right-laterally and reversely. The second active fault zone, the Lankovaya-Omolon zone, starts close to the NE margin of the Okhotsk Sea and extends NE up to nearly the margin of the Chukcha Sea. The fault zone is mostly right-lateral, with topographically expressed cumulative horizontal offsets amounting to 2.5-2.6 km. There may be a third NE-SW zone between the major two coinciding with the Penzhina Range as several active faults found in the southern termination of the Range indicate. The two active fault zones divide the NE Asia area into two large domains, which both could be parts of the Bering Sea plate internally broken and with uncertain western limit. Another variant implies the Khatyrka-Vyvenka zone as the Bering Sea plate northern limit, and the Lankovaya-Omolon zone as separating an additional minor plate from the North-American plate. The choice is actually not crucial, and more important is that both variants leave the question of where the Bering Sea plate boundary is in Alaska. The Lankovaya-Omolon zone stretches just across the proposed northern boundary of the Okhorsk Sea plate. NW of the zone, there is a prominent left-lateral Ulakhan fault, which is commonly interpreted to be a

  3. Geodynamics of the Dead Sea Fault: Do active faulting and past earthquakes determine the seismic gaps?

    NASA Astrophysics Data System (ADS)

    Meghraoui, Mustapha

    2014-05-01

    The ~1000-km-long North-South trending Dead Sea transform fault (DSF) presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short term slip rates along the DSF. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. However, recent GPS results showing ~2.5 mm/yr velocity rate of the northern DSF appears to be quite different than the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern where the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this paper, we discuss the role of the DSF in the regional geodynamics and its implication on the identification of seismic gaps.

  4. Tsunamigenic potential of Mediterranean fault systems and active subduction zones

    NASA Astrophysics Data System (ADS)

    Petricca, Patrizio; Babeyko, Andrey

    2016-04-01

    Since the North East Atlantic and Mediterranean Tsunami Warning System (NEAMTWS) is under development by the European scientific community, it becomes necessary to define guidelines for the characterization of the numerous parameters must be taken into account in a fair assessment of the risk. Definition of possible tectonic sources and evaluation of their potential is one of the principal issues. In this study we systematically evaluate tsunamigenic potential of up-to-now known real fault systems and active subduction interfaces in the NEAMTWS region. The task is accomplished by means of numerical modeling of tsunami generation and propagation. We have simulated all possible uniform-slip ruptures populating fault and subduction interfaces with magnitudes ranging from 6.5 up to expected Mmax. A total of 15810 individual ruptures were processed. For each rupture, a tsunami propagation scenario was computed in linear shallow-water approximation on 1-arc minute bathymetric grid (Gebco_08) implying normal reflection boundary conditions. Maximum wave heights at coastal positions (totally - 23236 points of interest) were recorded for four hours of simulation and then classified according to currently adopted warning level thresholds. The resulting dataset allowed us to classify the sources in terms of their tsunamigenic potential as well as to estimate their minimum tsunamigenic magnitude. Our analysis shows that almost every source in the Mediterranean Sea is capable to produce local tsunami at the advisory level (i.e., wave height > 20 cm) starting from magnitude values of Mw=6.6. In respect to the watch level (wave height > 50 cm), the picture is less homogeneous: crustal sources in south-west Mediterranean as well as East-Hellenic arc need larger magnitudes (around Mw=7.0) to trigger watch levels even at the nearby coasts. In the context of the regional warning (i.e., source-to-coast distance > 100 km) faults also behave more heterogeneously in respect to the minimum

  5. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir

    2016-01-01

    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  6. An active footwall shortcut thrust revealed by seismic reflection profiling: a case study of the Futaba fault, northern Honshu, Japan

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Ishiyama, Tatsuya; Kato, Naoko; Higashinaka, Motonori; Kurashimo, Eiji; Iwasaki, Takaya; Abe, Susumu

    2013-04-01

    The Futaba fault is located along the Pacific cast of southern part of Northern Honshu and continues at least 100 km. Based on tectonic morphological research, its central part show the active tectonic features. Due to the effect of M9 Tohoku Oki earthquake 2011, the evaluation of Coulomb stress changes on the fault surface is concerned for the assess of seismic hazards. To investigate the deep geometry of seismogenic source fault and basic crustal structure, we performed deep seismic reflection profiling along the 58-km-long seismic line across the Futaba fault. The seismic data were obtained using four vibroseis trucks and 1164 channel recorders. The seismic section portrays the half graben filled by 1000-m-thick lower Miocene fluvial sediments, suggesting that the Futaba fault reactivated as a west dipping normal fault during the early Miocene associated with opening of the Sea of Japan. On the hanging wall of the Miocene normal fault, Mesozoic metamorphic rocks are cropping out forming a narrow range parallel to the fault. On the footwall of this range, footwall shortcut thrust is clearly identified by the deformation of Plio-Pleistocene sediments on the seismic section. The deeper extension of the Futaba fault can be traced down to 4.5 seconds (TWT) and sub-horizontal reflectors are developed around 6-7 seconds (TWT). The dip angle of the Futaba fault in the seismogenic zone is about 45 degrees. The footwall shortcut thrust was formed at the shallow high-angle part of the Futaba fault as a low-angle (30 degrees) reverse fault. The formation of half graben is limited along the northern part of this fault system. The footwall shortcut thrust was developed along a 40-km-long segment only accompanied with the Miocene half graben. The southern segment of the surface trace of the Futaba fault suggests a straight geometry may represent a change in dip angle.

  7. The large normal-faulting Mariana Earthquake of April 5, 1990 in uncoupled subduction zone

    NASA Astrophysics Data System (ADS)

    Yoshida, Yasuhiro; Satake, Kenji; Abe, Katsuyuki

    1992-02-01

    A large, Ms = 7.5, shallow earthquake occurred beneath the Mariana trench on April 5, 1990. From the relocated aftershock distribution, the fault area is estimated to be 70 × 40 km2. A tsunami observed on the Japanese islands verifies that the depth of the main shock is shallow. For waveform analysis, we use long-period surface waves and body waves recorded at global networks of GDSN, IRIS, GEOSCOPE and ERIOS. The centroid moment tensor (CMT) solution from surface waves indicates normal faulting on a fault whose strike is parallel to the local axis of the Mariana trench, with the tension axis perpendicular to it. The seismic moment is 1.4 × 1020 Nm (× 1027 dyn.cm) which gives Mw = 7.3. Far-field P and SH waves from 13 stations are used to determine the source time function. Since the sea around the epicentral region is about 5 km deep, body waveforms are contaminated with water reverberations. The inversion results in a source time function with a predominantly single event with a duration of 10 sec, a seismic moment of 2.1 × 1020 Nm, and a focal mechanism given by strike = 198°, dip = 48°, slip = 90°. The short duration indicates a small area of the rupture. The location of the main shock with respect to the aftershock area suggests that the nodal plane dipping to the west is preferred for the fault plane. The local stress drop of the single subevent is estimated to be 150 MPa (1.5 Kbars). The Mariana earthquake is considered to have occurred in an uncoupled region, in response to the gravitational pull caused by the downgoing Pacific plate.

  8. Challenges and perspectives in the geological study of active faults.

    NASA Astrophysics Data System (ADS)

    Rizza, M.

    2011-12-01

    Identification of active faults is important for understanding regional seismicity and seismic hazard. A large part of the world's population lives in areas where destructive earthquakes or tsunamis were recorded in the past. Most of the difficulties in estimating seismic hazard and anticipating earthquakes are due to a lack of knowledge about the location of active faults and their seismic history. Even where active faults are known the characteristics of past earthquakes and the seismic cycle are uncertain and subject to discussion. Investigations carried out on active faults during the past decade, however, have provided new high-quality data and powerful tools to better understand crustal deformation and the recurrence of earthquakes. In morphotectonic studies, the ever-improving resolution of satellites images allows geologists to identify with more certainty the traces of active faults and even earthquake surface ruptures of the past. The advantage of satellite imagery for identifying neotectonic features is it gives access to large areas, sometimes difficult to reach in the field and provides synoptic views. Using the potential of high-resolution imagery and digital elevation models, geologists can produce detailed 3D reconstructions of fault morphology and geometry, including the kinematics of repeated slip. The development of new dating techniques, coupled with paleoseismology and quantitative geomorphology, now allows bracketing the occurrence of paleoearthquakes back to several thousand years, as well as analyzing long time sequences of events. Despite such wealth of new data, however, the work remaining to do is huge. Earthquake forecast (location, timing, magnitude) remains an unsolved problem for the earthquake community at large (seismologists, geodesists, paleoseismologists and modelers). The most important challenges in the next decade will be to increase the efficiency of neotectonic studies to create more complete active fault databases and

  9. Eocene activity on the Western Sierra Fault System and its role incising Kings Canyon, California

    NASA Astrophysics Data System (ADS)

    Sousa, Francis J.; Farley, Kenneth A.; Saleeby, Jason; Clark, Marin

    2016-04-01

    Combining new and published apatite (U-Th)/He and apatite 4He/3He data from along the Kings River canyon, California we rediscover a west-down normal fault on the western slope of the southern Sierra Nevada, one of a series of scarps initially described by Hake (1928) which we call the Western Sierra Fault System. Integrating field observations with apatite (U-Th)/He data, we infer a single fault trace 30 km long, and constrain the vertical offset across this fault to be roughly a kilometer. Thermal modeling of apatite 4He/3He data documents a pulse of footwall cooling near the fault and upstream in the footwall at circa 45-40 Ma, which we infer to be the timing of a kilometer-scale incision pulse resulting from the fault activity. In the context of published data from the subsurface of the Sacramento and San Joaquin Valleys, our data from the Western Sierra Fault System suggests an Eocene tectonic regime dominated by low-to-moderate magnitude extension, surface uplift, and internal structural deformation of the southern Sierra Nevada and proximal Great Valley forearc.

  10. Evolution of a major segmented normal fault during multiphase rifting: The origin of plan-view zigzag geometry

    NASA Astrophysics Data System (ADS)

    Henstra, Gijs A.; Rotevatn, Atle; Gawthorpe, Robert L.; Ravnås, Rodmar

    2015-05-01

    This case study addresses fault reactivation and linkage between distinct extensional episodes with variable stretching direction. Using 2-D and 3-D seismic reflection data we demonstrate how the Vesterdjupet Fault Zone, one of the basin-bounding normal fault zones of the Lofoten margin (north Norway), evolved over c. 150 Myr as part of the North Atlantic rift. This fault zone is composed of NNE-SSW- and NE-SW-striking segments that exhibit a zigzag geometry. The structure formed during Late Jurassic and Early Cretaceous rifting from selective reactivation and linkage of Triassic faults. A rotation of the overall stress field has previously been invoked to have taken place between the Triassic and Jurassic rift episodes along the Lofoten margin. A comparison to recent physical analogue models of non-coaxial extension reveals that this suggested change in least principal stress for the Lofoten margin may best explain the zigzag-style linkage of the Triassic faults, although alternative models cannot be ruled out. This study underlines the prediction from physical models that the location and orientation of early phase normal faults can play a pivotal role in the evolution of subsequent faults systems in multi-rift systems.

  11. Analysis of Landsat TM data for active tectonics: the case of the Big Chino Fault, Arizona

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano

    1994-12-01

    The Big Chino Valley is a 50 km-long tectonic depression of the Basin and Range province of the South- western United States. It is bordered on the NE side by an important normal fault, the Big Chino Fault. The activity of the latter has been hypothesised on the basis of the presence of a 20 m-high fault scarp and on local geomorphological studies. Moreover, a magnitude 4.9 earthquake occurred in southern Arizona in 1976 has been attributed to this fault. The climate in the Big Chino Valley is semi-arid with average rainfall of about 400 mm per year; a very sparse vegetation cover is present, yielding a good possibility for the geo-lithologic application of remote sensing data. The analysis of the TM spectral bands shows, in the short wave infrared, a clear variation in the reflected radiance across the fault scarp. Also the available radar (SLAR) images show a marked difference in response between the two sides of the fault. An explanation of this phenomena has been found in the interaction between the geomorphic evolution, the pedological composition, and the periodic occurrence of coseismic deformation along the fault. Other effects of the latter process have been investigated on colour D- stretched images whose interpretation allowed to detect two paleoseismic events of the Big Chino Fault. This work demonstrates that important information on the seismological parameters of active faults in arid and semiarid climates can be extracted from the analysis of satellite spectral data in the visible and near -infrared.

  12. New GPS Network on the Active Fault System in Taiwan

    NASA Astrophysics Data System (ADS)

    Hou, C.; Chen, Y.; Hu, J.; Lin, C.; Chen, C.; Wang, J.; Chung, L.; Chung, W.; Hsieh, C.; Chen, Y.

    2004-12-01

    According to the historical records, disastrous earthquakes occurred in Taiwan were caused by reactivations of active faults. In last century, there were five with the surface rupture: 1906 Meishan Eq. (the Meishan F.), 1935 Hsihchu Eq. (the Shihtan and the Tuntzuchiao F.), 1946 Hsinhua Eq. (Hsinhua F.), 1951 Hualien-Taitung Eq. (Longitudinal Valley F.), and 1999 Chi-Chi Eq. (the Chelungpu F.). In order to identify earthquake associated surface rupture and further to mitigate potential hazards, the investigation and monitoring on the active fault system are of great urgency. Central Geological Survey (CGS) of Taiwan is currently executing a 5-year (2002-2006) project, integrating geological and geodetic data to better characterize short-term and long-term spatial and temporal variations in deformation across major already-known active faults of Taiwan. For the former, we use field survey, drilling, geophysical exploration, and trenching to recognize the long-term slip rate and recurrence interval of each fault. For the latter, we deploy near-fault campaign-style GPS and leveling monitoring networks. Here we further combine the result of other GPS networks including continuous-mode. This project is actually concentrated on fault-specific investigation.. Until Dec. 2004, we have set up 756 GPS stations and 27 precise leveling lines including 1024 leveling benchmarks. For the purpose of understanding temporal variability and receive continuous record, the CGS began to deploy 6~10 new GPS stations of continuous mode since 2004. Upon the completion of the geodetic project, we are supposed to provide information on short-term slip rates of major active faults. By integrating other geological datasets we will also evaluate the short-term and long-term behavior of the active faults, and further offer insight into spatial and temporal variability in deformation processes.

  13. Fault-slip accumulation in an active rift over thousands to millions of years and the importance of paleoearthquake sampling

    NASA Astrophysics Data System (ADS)

    Mouslopoulou, Vasiliki; Nicol, Andrew; Walsh, John; Begg, John; Townsend, Dougal; Hristopulos, Dionissios

    2013-04-01

    The catastrophic earthquakes that recently (September 4th, 2010 and February 22nd, 2011) hit Christchurch, New Zealand, show that active faults, capable of generating large-magnitude earthquakes, can be hidden beneath the Earth's surface. In this study we combine near-surface paleoseismic data with deep (<5 km) onshore seismic-reflection lines to explore the growth of normal faults over short (<27 kyr) and long (>1 Ma) timescales in the Taranaki Rift, New Zealand. Our analysis shows that the integration of different timescale datasets provides a basis for identifying active faults not observed at the ground surface, estimating maximum fault-rupture lengths, inferring maximum short-term displacement rates and improving earthquake hazard assessment. We find that fault displacement rates become increasingly irregular (both faster and slower) on shorter timescales, leading to incomplete sampling of the active-fault population. Surface traces have been recognised for <50% of the active faults and along ∼50% of their lengths. The similarity of along-strike displacement profiles for short and long time intervals suggests that fault lengths and maximum single-event displacements have not changed over the last 3.6 Ma. Therefore, rate changes are likely to reflect temporal adjustments in earthquake recurrence intervals due to fault interactions and associated migration of earthquake activity within the rift.

  14. Fault-slip accumulation in an active rift over thousands to millions of years and the importance of paleoearthquake sampling

    NASA Astrophysics Data System (ADS)

    Mouslopoulou, Vasiliki; Nicol, Andrew; Walsh, John J.; Begg, John G.; Townsend, Dougal B.; Hristopulos, Dionissios T.

    2012-03-01

    The catastrophic earthquakes that recently (September 4th, 2010 and February 22nd, 2011) hit Christchurch, New Zealand, show that active faults, capable of generating large-magnitude earthquakes, can be hidden beneath the Earth's surface. In this article we combine near-surface paleoseismic data with deep (<5 km) onshore seismic-reflection lines to explore the growth of normal faults over short (<27 kyr) and long (>1 Ma) timescales in the Taranaki Rift, New Zealand. Our analysis shows that the integration of different timescale datasets provides a basis for identifying active faults not observed at the ground surface, estimating maximum fault-rupture lengths, inferring maximum short-term displacement rates and improving earthquake hazard assessment. We find that fault displacement rates become increasingly irregular (both faster and slower) on shorter timescales, leading to incomplete sampling of the active-fault population. Surface traces have been recognised for <50% of the active faults and along ≤50% of their lengths. The similarity of along-strike displacement profiles for short and long time intervals suggests that fault lengths and maximum single-event displacements have not changed over the last 3.6 Ma. Therefore, rate changes are likely to reflect temporal adjustments in earthquake recurrence intervals due to fault interactions and associated migration of earthquake activity within the rift.

  15. Erosion influences the seismicity of active thrust faults.

    PubMed

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J Bruce H

    2014-01-01

    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface. PMID:25412707

  16. Active faulting in northern Chile: ramp stacking and lateral decoupling along a subduction plate boundary?

    NASA Astrophysics Data System (ADS)

    Armijo, Rolando; Thiele, Ricardo

    1990-04-01

    Two large features parallel to the coastline of northern Chile have long been suspected to be the sites of young or active deformation: (1) The 700-km long Coastal Scarp, with average height (above sea level) of about 1000 m; (2) The Atacama Fault zone, that stretches linearly for about 1100 km at an average distance of 30-50 km from the coastline. New field observations combined with extensive analysis of aerial photographs demonstrate that both the Coastal Scarp and the Atacama Fault are zones of Quaternary and current fault activity. Little-degraded surface breaks observed in the field indicate that these fault zones have recently generated large earthquakes ( M = 7-8). Normal fault offsets observed in marine terraces in the Coastal Scarp (at Mejillones Peninsula) require tectonic extension roughly orthogonal to the compressional plate boundary. Strike-slip offsets of drainage observed along the Salar del Carmen and Cerro Moreno faults (Atacama Fault system) imply left-lateral displacements nearly parallel to the plate boundary. The left-lateral movement observed along the Atacama Fault zone may be a local consequence of E-W extension along the Coastal Scarp. But if also found everywhere along strike, left-lateral decoupling along the Atacama Fault zone would be in contradiction with the right lateral component of Nazca-South America motion predicted by models of present plate kinematics. Clockwise rotation with left-lateral slicing of the Andean orogen south of the Arica bend is one way to resolve this contradiction. The Coastal Scarp and the Atacama Fault zone are the most prominent features with clear traces of activity within the leading edge of continental South America. The great length and parallelism of these features with the subduction zone suggest that they may interact with the subduction interface at depth. We interpret the Coastal Scarp to be a west-dipping normal fault or flexure and propose that it is located over an east-dipping ramp stack at

  17. Activity of faults observed in caves of the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Plan, Lukas; Grasemann, Bernhard; Mitrovič, Ivanka; Stemberk, Josef

    2015-04-01

    Major recent tectonic process in the Eastern Alps involves the Neogene and Quaternary lateral extrusion of parts of the Eastern Alps towards the Pannonian Basin coeval with north-south shortening of the collision realm between the Adriatic Plate and the Bohemian Massif (European Plate). Within the framework of the FWF project "Speleotect" (2013-2017), we observe recent activity of the major fault systems of the Eastern Alps, such as the (1) Salzach-Ennstal-Mariazell-Puchberg (SEMP), (2) Mur-Mürz, (3) Periadriatic, (4) Lavanttal, and (5) Vienna Basin marginal Faults. Totally seven high-accuracy 3D crack-gauges TM71 with automated reading devices were installed in five selected karst caves with faults younger than the particular caves and correlated to one of these fault zones. The recorded micro-displacement events have been compared to known regional fault kinematics and to regional seismic activity (seismic data provided by the ZAMG). Already within the first year of observation, several micro displacement events were registered; these events sometimes revealed the same mechanisms as the geologically documented kinematics of the particular active faults, but in some cases performed completely opposite kinematics. These micro displacement events occurred in seismically rather quiet periods, however, usually about 1 - 10 days prior to local seismic events of different magnitudes (varying between ML 0.1 and 3.3). Further, in some caves gravitational mass movements were recorded that accompanied the tectonic moments.

  18. Low Angle Normal Fault (LANF)-zone architecture and permeability features in bedded carbonate from inner Northern Apennines (Rapolano Terme, Central Italy)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Novellino, Rocco

    2015-01-01

    Fault zones have the capacity to be hydraulic conduits within upper crustal levels, allowing migration of large volume of fluids through shallow and deeper geological environments. Low-angle normal faults (LANFs) crosscutting carbonate rocks produce damaged volumes that may have a relevant role in channelling or hosting geothermal fluids, therefore deserving of investigation to better predict mining targets. Deformation along LANFs zones, dissecting carbonate successions, produces permeable volumes presently exploited in the Larderello and Monte Amiata geothermal areas (Italy). In this paper, the architectural and permeability features of an exhumed LANF-zone exposed in the Northern Apennines, (Rapolano Terme, central Italy), affecting Cretaceous bedded limestone, are presented. Such a fault was not affected by circulation of geothermal fluids, but its features could reveal much on the potential impact on fluids migration in the active geothermal areas, therefore resulting an intriguing analogue. The study LANF-zone consists of faults, which enucleated at depth > 4 km. During its earlier stage of evolution, dissolution seams, often arranged in s-c fabric, characterised the whole damage zone. Dissolution seams developed under very low-grade metamorphism (T = 100-150 °C) as indicated by illite crystallinty analyses. Fault zone architecture and permeability features changed during the fault growth and exhumation. Permeability heterogeneity and anisotropy characterised the LANF zone during its development. If geofluids circulated within the fault zone, it could be an effective barrier during its earlier evolution, being accompanied by dissolution seams. On the contrary, it could play as combined barriers-conduits during its later evolution (progressively at shallower levels) being characterised by intersecting fault planes, which define pipe-like conduits parallel to the direction of the tectonic transport. Such a configuration could have the capacity to impact on

  19. Initiation and development of normal faults within the German alpine foreland basin: The inconspicuous role of basement structures

    NASA Astrophysics Data System (ADS)

    Hartmann, Hartwig; Tanner, David C.; Schumacher, Sandra

    2016-06-01

    In a large seismic cube within the German Alpine Molasse Basin, we recognize large normal faults with lateral alternating dips that displace the Molasse sediments. They are disconnected but strike parallel to fault lineaments of the underlying carbonate platform. This raises the question how such faults could independently develop. Structural analysis suggests that the faults grew both upward and downward from the middle of the Molasse package, i.e., they newly initiated within the Molasse sediments and were not caused by reactivation of the faults in the carbonate platform and/or crystalline basement. Numerical modeling of the basin proves that temporarily and spatially confined extensional stresses existed within the Molasse sediments but not in the carbonate platform and basement during lithospheric bending. The workflow shown here gives a new and as yet undocumented insight in the tectonic and structural processes within a foreland basin that was affected by buckling and bending in front of the orogen.

  20. Fault mirrors of seismically active faults: A fossil of small earthquakes at shallow depths

    NASA Astrophysics Data System (ADS)

    Kuo, L.; Song, S.; Suppe, J.

    2013-12-01

    Many faults are decorated with naturally polished and glossy surfaces named fault mirrors (FMs) formed during slips. The characterization of FMs is of paramount importance to investigate physico-chemical processes controlling dynamic fault mechanics during earthquakes. Here we present detailed microstructural and mineralogical observations of the FMs from borehole cores of seismically active faults. The borehole cores were recovered from 600 to 800 m depth located in the hanging wall of the Hsiaotungshi fault in Taiwan which ruptured during 1935 Mw7.1 Hsinchu-Taichung earthquake. Scanning electron microscope (SEM) images of FMs show that two distinct textural domains, fault gouge and coated materials (nanograins, melt patchs, and graphite), were cut by a well-defined boundary. Melt patches and graphite, determined by X-ray diffraction (XRD), Transmission electron microscope (TEM), and SEM-EDS analysis, were found to be distributed heterogeneously on the slip surfaces. On the basis of the current kinematic cross section of the Hsiaotungshi fault, all the FMs were exhumed less than 5 km, where ambient temperatures are less than 150°C. It seems that the amorphous materials on the FMs were generated by seismic slips. The sintering nanograins coating the slip surfaces was also suggested to be produced at high slip rates from both natural observation and recent rock deformation experiments. In addition, graphite could be produced by seismic slips and lubricate the fault based on the rock deformation experiments. Our observation suggests that the FMs were composed of several indicators of coseismic events (melt patches, sintering nanograins, and graphite) corresponding to small thermal perturbation generated by seismic slips. Although the contribution of these coseismic indicators on frictional behavior remains largely unknown, it suggests that multiple dynamic weakening mechanisms such as flash heating, powder lubrication and graphitization may be involved during

  1. Influence of low-angle normal faulting on radial fracture pattern associated to pluton emplacement in Tuscany, Italy

    NASA Astrophysics Data System (ADS)

    Balsamo, F.; Rossetti, F.; Salvini, F.

    2003-04-01

    Fault-related fracture distribution significantly influences fluid flow in the sub-surface. Fault zone can act either as barriers or conduits to fluid migration, or as mixed conduit/barrier systems, depending on several factors that include the enviromental condition of deformation (pore fluid pressure, regional stress fields, overburden etc.), the kinematics of the fault and its geometry, and the rock type. The aim of this study is to estimate the boundary conditions of deformation along the Boccheggiano Fault, in the central Appennines. Seismic and deep well data are avaible for the Boccheggiano area, where a fossil geothermal system is exposed. The dominant structural feature of the studied area is a NW-SE trending low-angle detachment fault (Boccheggiano fault, active since the upper Miocene times), separating non-metamorphic sedimentary sequences of the Tuscan meso-cenozoic pelagiac succession and oceanic-derived Ligurids in the hangingwall, from green-schists facies metamorphic rocks of Paleozoic age in the footwall. Gouge-bearing mineralized damage zone (about 100 m thick) is present along the fault. The deep geometry of the Boccheggiano Fault is well imaged in the seismic profiles. The fault is shallow-dipping toward NE and flattens at the top of a magmatic intrusion, which lies at about 1000 m below the ground-level. Geometrical relationships indicate syn-tectonic pluton emplacement at the footwall of the Boccheggiano fault. Statistical analysis of fracture distribution pointed out a strong control of both azimuth and frequency by their position with respect to the Boccheggiano Fault: (i) a NW-SE trending fracture set within the fault zone, (ii) a radial pattern associated away from fault zone. Interpretation of structural and seismic data suggest an interplay between the near-field deformation associated with the rising intrusion during its emplacement (radial fracturing) and the NE-SW far-field extensional tectonic regime (NW-SE fractures) recognized in

  2. Variation of the fractal dimension anisotropy of two major Cenozoic normal fault systems over space and time around the Snake River Plain, Idaho and SW Montana

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.

    2012-12-01

    The interaction of the thermally induced stress field of the Yellowstone hotspot (YHS) with existing Basin and Range (BR) fault blocks, over the past 17 m.y., has produced a new, spatially and temporally variable system of normal faults around the Snake River Plain (SRP) in Idaho and Wyoming-Montana area. Data about the trace of these new cross faults (CF) and older BR normal faults were acquired from a combination of satellite imageries, DEM, and USGS geological maps and databases at scales of 1:24,000, 1:100,000, 1:250,000, 1:1000, 000, and 1:2,500, 000, and classified based on their azimuth in ArcGIS 10. The box-counting fractal dimension (Db) of the BR fault traces, determined applying the Benoit software, and the anisotropy intensity (ellipticity) of the fractal dimensions, measured with the modified Cantor dust method applying the AMOCADO software, were measured in two large spatial domains (I and II). The Db and anisotropy of the cross faults were studied in five temporal domains (T1-T5) classified based on the geologic age of successive eruptive centers (12 Ma to recent) of the YHS along the eastern SRP. The fractal anisotropy of the CF system in each temporal domain was also spatially determined in the southern part (domain S1), central part (domain S2), and northern part (domain S3) of the SRP. Line (fault trace) density maps for the BR and CF polylines reveal a higher linear density (trace length per unit area) for the BR traces in the spatial domain I, and a higher linear density of the CF traces around the present Yellowstone National Park (S1T5) where most of the seismically active faults are located. Our spatio-temporal analysis reveals that the fractal dimension of the BR system in domain I (Db=1.423) is greater than that in domain II (Db=1.307). It also shows that the anisotropy of the fractal dimension in domain I is less eccentric (axial ratio: 1.242) than that in domain II (1.355), probably reflecting the greater variation in the trend of the BR

  3. Development of normal faults during emplacement of a thrust sheet: an example from the Lewis allochthon, Glacier National Park, Montana (U.S.A.)

    NASA Astrophysics Data System (ADS)

    Yin, An; Kelty, Thomas K.

    Geologic mapping in southern Glacier National Park, Montana, reveals the presence of widespread, E-dipping normal faults within the basal portion of the Lewis allochthon. The displacement along the normal faults increases downward from less than 1 m at the highest exposure, 200-300 m above the Lewis Thrust, to a maximum of 200 m near or at the Lewis Thrust. The normal faults are located below discrete, bedding-parallel shear zones associated with mesoscopic structures characterized by NE- or SW-trending striations on bedding surfaces and asymmetric E-verging folds. These shear zones lie directly below the E-directed Brave Dog Fault, a major bedding-subparallel fault within the Lewis allochthon. The shear zones are interpreted to have formed during the development of the Brave Dog Fault. Striations on the Brave Dog Fault, normal faults and shear surfaces in the shear zones are consistent with the transport direction of the Lewis Thrust. The kinematic compatibility of the normal faults with the Lewis Thrust, the concentration of the normal faults along the basal part of the Lewis plate, and the increase in displacement along them toward the Lewis Thrust, all suggest that their development was synkinematic with eastward emplacement of the Lewis allochthon. The normal faults may have formed as Riedel shears (R) that accommodated a bulk, simple-shear strain within the thrust plate between the simultaneously moving subhorizontal Brave Dog and Lewis faults.

  4. Active fault kinematics and crustal stresses along the Ionian margin of southeastern Sicily

    NASA Astrophysics Data System (ADS)

    Adam, J.; Reuther, C.-D.; Grasso, M.; Torelli, L.

    2000-11-01

    Since the late Cretaceous onset of plate convergence between Africa and Europe, the Malta Escarpment has been converted from a Mesozoic passive margin into a mega-hinge fault system with an additional sinistral strike-slip component. The modern tectonic stress regime with NW-SE-directed maximum horizontal stresses has been established since Late Messinian times. Since the Pleistocene, sinistral strike-slip deformation and contemporaneous normal faulting along the Malta Escarpment have induced the opening of oblique trending onshore grabens at the eastern margin of the Hyblean Plateau. In this study, we focus on the kinematics, the controlling state of stress, and the temporal variation of the neotectonic to active strike-slip and normal fault structures. The stress-tensor calculations reveals that the widespread map-scaled to meso-scaled normal fault structures are governed by the long-term extensional state of stress during the Quaternary. This long-term stress tensor is predominantly controlled by gravitational induced stresses due to vertical load ( σ1= SV) and lateral extension due to the topographic gradient of the Malta Escarpment ( σ3= Sh=NE-SW). In this case, the average tectonic stresses ( σ2= SH=NW-SE) transmitted by the regional to plate-tectonic stress field are significantly smaller than the gravitational induced stresses. In contrast, the clear localization of conjugate sets of meso-scaled strike-slip fault structures and shear zones without accompanying normal fault structures give strong indications for episodic seismotectonic strike-slip faulting under critical stress conditions. In this state, tectonically induced maximum horizontal stresses are successively increased by ongoing plate convergence from low-level stress magnitudes ( σ1= SV, σ2= SH=NW-SE) up to critical stress magnitudes ( σ1= SH=NW-SE, σ2= SV), which are significantly larger than gravitational stresses. At the critical state, seismotectonic stress release occurs by active

  5. Seismic Source Parameters of Normal-Faulting Inslab Earthquakes in Central Mexico

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pérez, Quetzalcoatl; Singh, Shri Krishna

    2016-08-01

    We studied 62 normal-faulting inslab earthquakes in the Mexican subduction zone with magnitudes in the range of 3.6 ≤ M w ≤ 7.3 and hypocentral depths of 30 ≤ Z ≤ 108 km. We used different methods to estimate source parameters to observe differences in stress drop, corner frequencies, source dimensions, source duration, energy-to-moment ratio, radiated efficiency, and radiated seismic energy. The behavior of these parameters is derived. We found that normal-faulting inslab events have higher radiated seismic energy, energy-to-moment ratio, and stress drop than interplate earthquakes as expected. This may be explained by the mechanism dependence of radiated seismic energy and apparent stress reported in previous source parameter studies. The energy-to-moment ratio data showed large scatter and no trend with seismic moment. The stress drop showed no trend with seismic moment, but an increment with depth. The radiated seismic efficiencies showed similar values to those obtained from interplate events, but higher than near-trench events. We found that the source duration is independent of the depth. We also derived source scaling relationships for the mentioned parameters. The low level of uncertainties for the seismic source parameters and scaling relationships showed that the obtained parameters are robust. Therefore, reliable source parameter estimation can be carried out using the obtained scaling relationships. We also studied regional stress field of normal-faulting inslab events. Heterogeneity exists in the regional stress field, as indicated by individual stress tensor inversions conducted for two different depth intervals ( Z < 40 km and Z > 40 km, respectively). While the maximum stress axis ( σ 1) appears to be consistent and stable, the orientations of the intermediate and minimum stresses ( σ 2 and σ 3) vary over the depth intervals. The stress inversion results showed that the tensional axes are parallel to the dip direction of the subducted

  6. Seismic Source Parameters of Normal-Faulting Inslab Earthquakes in Central Mexico

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pérez, Quetzalcoatl; Singh, Shri Krishna

    2016-06-01

    We studied 62 normal-faulting inslab earthquakes in the Mexican subduction zone with magnitudes in the range of 3.6 ≤ M w ≤ 7.3 and hypocentral depths of 30 ≤ Z ≤ 108 km. We used different methods to estimate source parameters to observe differences in stress drop, corner frequencies, source dimensions, source duration, energy-to-moment ratio, radiated efficiency, and radiated seismic energy. The behavior of these parameters is derived. We found that normal-faulting inslab events have higher radiated seismic energy, energy-to-moment ratio, and stress drop than interplate earthquakes as expected. This may be explained by the mechanism dependence of radiated seismic energy and apparent stress reported in previous source parameter studies. The energy-to-moment ratio data showed large scatter and no trend with seismic moment. The stress drop showed no trend with seismic moment, but an increment with depth. The radiated seismic efficiencies showed similar values to those obtained from interplate events, but higher than near-trench events. We found that the source duration is independent of the depth. We also derived source scaling relationships for the mentioned parameters. The low level of uncertainties for the seismic source parameters and scaling relationships showed that the obtained parameters are robust. Therefore, reliable source parameter estimation can be carried out using the obtained scaling relationships. We also studied regional stress field of normal-faulting inslab events. Heterogeneity exists in the regional stress field, as indicated by individual stress tensor inversions conducted for two different depth intervals (Z < 40 km and Z > 40 km, respectively). While the maximum stress axis (σ 1) appears to be consistent and stable, the orientations of the intermediate and minimum stresses (σ 2 and σ 3) vary over the depth intervals. The stress inversion results showed that the tensional axes are parallel to the dip direction of the subducted plate

  7. Active fault database of Japan: Its construction and search system

    NASA Astrophysics Data System (ADS)

    Yoshioka, T.; Miyamoto, F.

    2011-12-01

    The Active fault database of Japan was constructed by the Active Fault and Earthquake Research Center, GSJ/AIST and opened to the public on the Internet from 2005 to make a probabilistic evaluation of the future faulting event and earthquake occurrence on major active faults in Japan. The database consists of three sub-database, 1) sub-database on individual site, which includes long-term slip data and paleoseismicity data with error range and reliability, 2) sub-database on details of paleoseismicity, which includes the excavated geological units and faulting event horizons with age-control, 3) sub-database on characteristics of behavioral segments, which includes the fault-length, long-term slip-rate, recurrence intervals, most-recent-event, slip per event and best-estimate of cascade earthquake. Major seismogenic faults, those are approximately the best-estimate segments of cascade earthquake, each has a length of 20 km or longer and slip-rate of 0.1m/ky or larger and is composed from about two behavioral segments in average, are included in the database. This database contains information of active faults in Japan, sorted by the concept of "behavioral segments" (McCalpin, 1996). Each fault is subdivided into 550 behavioral segments based on surface trace geometry and rupture history revealed by paleoseismic studies. Behavioral segments can be searched on the Google Maps. You can select one behavioral segment directly or search segments in a rectangle area on the map. The result of search is shown on a fixed map or the Google Maps with information of geologic and paleoseismic parameters including slip rate, slip per event, recurrence interval, and calculated rupture probability in the future. Behavioral segments can be searched also by name or combination of fault parameters. All those data are compiled from journal articles, theses, and other documents. We are currently developing a revised edition, which is based on an improved database system. More than ten

  8. Study on the Late Quaternary Activity of Niyang River Fault

    NASA Astrophysics Data System (ADS)

    Fangtou, T.

    2015-12-01

    Niyang River fault with north-west trending is located on the west side of the Eastern Himalayan Syntaxis. It dislocated the eastern segment of Brahmaputra fault zone. We study the late Quaternary activity of the Niyang River fault by the high-resolution image data in combination with detailed field investigation, GPS observation, trenching and radiocarbon dating of charcoal samples. The GPS observation data shows that the movement characteristics of Niyang River fault is dextral strike-slip with extrusion at present, its strike-slip rate is 3~4mm/a and its extrusion rate is 2~3mm/a. The trench at Bayi town revealed that the first terraces of Niyang River was dislocated 50cm by the fault and it is dated to be 1220±40cal.a BP.. We found that third Lake terraces of the Linzhi ancient lakes was dislocated about 1.5m at Mirui town and it is dated to be 18060±60cal.a BP.. By the fault influence, there are different elevations at the same level terraces of Niyang river and the Linzhi ancient lakes both sides of Niyang river near Bayi town. The altitude of the second terraces of Niyang River is about 20 meters at eastern side higher than western side and it is dated to be between 8860±40cal.a BP. and 9870±50cal.a BP., the altitude of the third lake terraces of the Linzhi ancient lakes is about 60 meters at eastern side higher than western side. So, the average vertical slip rate of Niyang River fault was about 2mm/a since Holocene and its average vertical slip rate was about 3mm/a since late period of the late Pleistocene. This is consistent with GPS observation data. All these data suggest that Niyang River fault is active since Holocene. So further detailed research will be necessary to determine the range of the latest activity of this fault, movement characteristics and velocity and recurrence intervals of major earthquakes. These data will be a great significance for earthquake zonation and assessment of seismic risk in this region. Keywords:Niyang River fault

  9. Mid-crustal Hydrofracture Array Associated with Normal Fault Development Over > 1500 km2 of the Otago Schist Belt, New Zealand.

    NASA Astrophysics Data System (ADS)

    Begbie, M. J.; Sibson, R. H.

    2001-12-01

    Vein swarms in metamorphic terranes such as the Otago Schist Belt, New Zealand provide evidence of past hydrothermal flow systems leading to fault initiation and reactivation. In NW Otago, lower greenschist quartzo-feldspathic schists are pervaded by abundant quartz-filled hydraulic extension fractures with associated normal faults hosting quartz-scheelite mineralisation. Normal faults and hydrofractures form, respectively at angles between 40-60° and subperpendicular to the schist foliation. Removing the effects of Cenozoic folding reveals a regional subhorizontal schist foliation and an aligned subvertical hydrofracture array striking NNW, parallel to a set of low-slip normal faults; the array extends over an area > 1500 km2 and through a depth interval of > 5 km. These structures are inferred to have developed during late Cretaceous exhumation of the schist in an extensional regime with σ 1 subvertical and σ 3 oriented WSW-ENE (present coordinates). The hydrofracture array comprises a mesh of interlinked extensional-shear and pure extension veins with bulk extensional strains of up to 5%. Typical vein frequencies across strike approach 10 m-1, with most veins 0.5-1 cm thick. Veins hosted by extensional-shear and pure extension fractures show mutually cross-cutting relations and incremental growth textures. The fracture mesh defines a paleoflow system at depths approaching the base of the seismogenic zone where formation and reactivation of the mesh required suprahydrostatic fluid pressures with Pf > σ 3. Hydrofracturing apparently preceded the development of major throughgoing normal faults. Low-displacement normal faults cross-cut the hydrofracture array and are infilled with laminated quartz (-scheelite) veins up to 2 m thick. Total displacement across individual faults is on the order of a few tens of metres, with vein textures developed incrementally, suggesting intermittent slip and fluid flow episodes. Sustained fluid flow only occurred in active

  10. Control Structures for VSC-based FACTS Devices under Normal and Faulted AC-systems

    NASA Astrophysics Data System (ADS)

    Babaei, Saman

    This thesis is concerned with improving the Flexible AC Transmission Systems (FACTS) devices performance under the normal and fault AC-system conditions by proposing new control structures and also converter topologies. The combination of the increasing electricity demand and restrictions in expanding the power system infrastructures has urged the utility owners to deploy the utility-scaled power electronics in the power system. Basically, FACTS is referred to the application of the power electronics in the power systems. Voltage Source Converter (VSC) is the preferred building block of the FACTS devices and many other utility-scale power electronics applications. Despite of advances in the semiconductor technology and ultra-fast microprocessor based controllers, there are still many issues to address and room to improve[25]. An attempt is made in this thesis to address these important issues of the VSC-based FACTS devices and provide solutions to improve them.

  11. How the differential load induced by normal fault scarps controls the distribution of monogenic volcanism

    NASA Astrophysics Data System (ADS)

    Maccaferri, Francesco; Acocella, Valerio; Rivalta, Eleonora

    2016-04-01

    Understanding shallow magma transfer and the related vent distribution is crucial for volcanic hazard. In the present study we investigate the link between the stress induced by topographic scarps and the distribution of monogenic volcanoes at divergent plate boundaries. With a numerical model of dyke propagation we show that vertical dykes beneath a normal fault scarp tend to deflect towards the footwall side of the scarp. This effect increases with the scarp height, is stronger for dykes propagating underneath the hanging wall side, and decreases with the distance from the scarp. A comparison to the East African Rift System, Afar and Iceland shows that: 1) the inner rift structure, which shapes the topography, controls shallow dyke propagation; 2) differential loading due to mass redistribution affects magma propagation over a broad scale range (100 - 105 m). Our results find application to any volcanic field with tectonics- or erosion-induced topographic variations.

  12. Active tectonics west of New Zealand's Alpine Fault: South Westland Fault Zone activity shows Australian Plate instability

    NASA Astrophysics Data System (ADS)

    De Pascale, Gregory P.; Chandler-Yates, Nicholas; Dela Pena, Federico; Wilson, Pam; May, Elijah; Twiss, Amber; Cheng, Che

    2016-04-01

    The 300 km long South Westland Fault Zone (SWFZ) is within the footwall of the Central Alpine Fault (<20 km away) and has 3500 m of dip-slip displacement, but it has been unknown if the fault is active. Here the first evidence for SWFZ thrust faulting in the "stable" Australian Plate is shown with cumulative dip-slip displacements up to 5.9 m (with 3 m throw) on Pleistocene and Holocene sediments and gentle hanging wall anticlinal folding. Cone penetration test (CPT) stratigraphy shows repeated sequences within the fault scarp (consistent with thrusting). Optically stimulated luminescence (OSL) dating constrains the most recent rupture post-12.1 ± 1.7 ka with evidence for three to four events during earthquakes of at least Mw 6.8. This study shows significant deformation is accommodated on poorly characterized Australian Plate structures northwest of the Alpine Fault and demonstrates that major active and seismogenic structures remain uncharacterized in densely forested regions on Earth.

  13. Variation in aseismic slip and fault normal strain along the creeping section of the San Andreas fault from GPS, InSAR and trilateration data

    NASA Astrophysics Data System (ADS)

    Rolandone, F.; Johanson, I.; Bürgmann, R.; Agnew, D.

    2004-12-01

    In central California most of the relative motion between the Pacific and North American plates is accommodated by strike slip along the San Andreas fault system. However, a small amount of convergence is accommodated by compressional structures in the California Coast Ranges on both sides of the fault. Recent examples of such activity are the Coalinga and the 2003 San Simeon earthquakes. Along the central San Andreas fault (CSAF), from San Juan Bautista to Parkfield, almost all the slip along the CSAF in the brittle upper crust is accommodated aseismically. We use GPS, InSAR and trilateration data to resolve both the distribution of aseismic slip along the CSAF, and the deformation across adjacent, secondary fault structures. In 2003 and 2004, we conducted several GPS surveys along the CSAF. We resurveyed 15 stations of the San Benito triangulation and trilateration network, which extends 40 km to the northeast of the creeping segment. We combine these measurements with old EDM measurements and data from a GPS campaign in 1998. We also occupied 13 sites along the creeping segment, for which previous data exist in the SCEC archive. These dense GPS measurements, along with data from permanent GPS stations in the area, allow us to constrain the regional strain distribution and contributions from adjacent faults. With the addition of InSAR data, we can also better resolve active strain accumulation and aseismic slip along the CSAF. We use a stack of about 10 interferograms from ERS-1 and ERS-2 satellites spanning 8 years. InSAR is well suited to monitoring details of the shallow slip along the CSAF and, in concert with the broadly spaced GPS velocities, to resolving the distribution of deformation along and across the plate boundary. The results are the basis for determining the kinematics of spatially variable fault slip on the CSAF, and help to better constrain the fault's constitutive properties, and fault interaction processes.

  14. Patterns of mineral transformations in clay gouge, with examples from low-angle normal fault rocks in the western USA

    NASA Astrophysics Data System (ADS)

    Haines, Samuel H.; van der Pluijm, Ben A.

    2012-10-01

    Neoformed minerals in shallow fault rocks are increasingly recognized as key to the behavior of faults in the elasto-frictional regime, but neither the conditions nor the processes which wall-rock is transformed into clay minerals are well understood. Yet, understanding of these mineral transformations is required to predict the mechanical and seismogenic behavior of faults. We therefore present a systematic study of clay gouge mineralogy from 30 outcrops of 17 low-angle normal faults (LANF's) in the American Cordillera to demonstrate the range and type of clay transformations in natural fault gouges. The sampled faults juxtapose a wide and representative range of wall rock types, including sedimentary, metamorphic and igneous rocks under shallow-crustal conditions. Clay mineral transformations were observed in all but one of 28 faults; one fault contains only mechanically derived clay-rich gouge, which formed entirely by cataclasis. Clay mineral transformations observed in gouges show four general patterns: 1) growth of authigenic 1Md illite, either by transformation of fragmental 2M1 illite or muscovite, or growth after the dissolution of K-feldspar. Illitization of fragmental illite-smectite is observed in LANF gouges, but is less common than reported from faults with sedimentary wall rocks; 2) 'retrograde diagenesis' of an early mechanically derived chlorite-rich gouge to authigenic chlorite-smectite and saponite (Mg-rich tri-octahedral smectite); 3) reaction of mechanically derived chlorite-rich gouges with Mg-rich fluids at low temperatures (50-150 °C) to produce localized lenses of one of two assemblages: sepiolite + saponite + talc + lizardite or palygorskite +/- chlorite +/- quartz; and 4) growth of authigenic di-octahedral smectite from alteration of acidic volcanic wall rocks. These transformation groups are consistent with patterns observed in fault rocks elsewhere. The main controls for the type of neoformed clay in gouge appear to be wall

  15. Extensional deformation structures within a convergent orogen: The Val di Lima low-angle normal fault system (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Clemenzi, Luca; Molli, Giancarlo; Storti, Fabrizio; Muchez, Philippe; Swennen, Rudy; Torelli, Luigi

    2014-09-01

    A low-angle extensional fault system affecting the non metamorphic rocks of the carbonate dominated Tuscan succession is exposed in the Lima valley (Northern Apennines, Italy). This fault system affects the right-side-up limb of a kilometric-scale recumbent isoclinal anticline and is, in turn, affected by superimposed folding and late-tectonic high-angle extensional faulting. The architecture of the low-angle fault system has been investigated through detailed structural mapping and damage zone characterization. Pressure-depth conditions and paleofluid evolution of the fault system have been studied through microstructural, mineralogical, petrographic, fluid inclusion and stable isotope analyses. Our results show that the low-angle fault system was active during exhumation of the Tuscan succession at about 180°C and 5 km depth, with the involvement of low-salinity fluids. Within this temperature - depth framework, the fault zone architecture shows important differences related to the different lithologies involved in the fault system and to the role played by the fluids during deformation. In places, footwall overpressuring influenced active deformation mechanisms and favored shear strain localization. Our observations indicate that extensional structures affected the central sector of the Northern Apennines thrust wedge during the orogenic contractional history, modifying the fluid circulation through the upper crust and influencing its mechanical behavior.

  16. Active faulting on the Wallula fault within the Olympic-Wallowa Lineament (OWL), eastern Washington State

    NASA Astrophysics Data System (ADS)

    Sherrod, B. L.; Lasher, J. P.; Barnett, E. A.

    2013-12-01

    Several studies over the last 40 years focused on a segment of the Wallula fault exposed in a quarry at Finley, Washington. The Wallula fault is important because it is part of the Olympic-Wallowa lineament (OWL), a ~500-km-long topographic and structural lineament extending from Vancouver Island, British Columbia to Walla Walla, Washington that accommodates Basin and Range extension. The origin and nature of the OWL is of interest because it contains potentially active faults that are within 50 km of high-level nuclear waste facilities at the Hanford Site. Mapping in the 1970's and 1980's suggested the Wallula fault did not offset Holocene and late Pleistocene deposits and is therefore inactive. New exposures of the Finley quarry wall studied here suggest otherwise. We map three main packages of rocks and sediments in a ~10 m high quarry exposure. The oldest rocks are very fine grained basalts of the Columbia River Basalt Group (~13.5 Ma). The next youngest deposits include a thin layer of vesicular basalt, white volcaniclastic deposits, colluvium containing clasts of vesicular basalt, and indurated paleosols. A distinct angular unconformity separates these vesicular basalt-bearing units from overlying late Pleistocene flood deposits, two colluvium layers containing angular clasts of basalt, and Holocene tephra-bearing loess. A tephra within the loess likely correlates to nearby outcrops of Mazama ash. We recognize three styles of faults: 1) a near vertical master reverse or oblique fault juxtaposing very fine grained basalt against late Tertiary-Holocene deposits, and marked by a thick (~40 cm) vertical seam of carbonate cemented breccia; 2) subvertical faults that flatten upwards and displace late Tertiary(?) to Quaternary(?) soils, colluvium, and volcaniclastic deposits; and 3) flexural slip faults along bedding planes in folded deposits in the footwall. We infer at least two Holocene earthquakes from the quarry exposure. The first Holocene earthquake deformed

  17. Evaluating knickpoint recession along an active fault for paleoseismological analysis: The Huoshan Piedmont, Eastern China

    NASA Astrophysics Data System (ADS)

    Wei, Zhanyu; Bi, Lisi; Xu, Yueren; He, Honglin

    2015-04-01

    Ground-rupturing earthquakes can generate tectonic knickpoints within upstream reaches of streams across active fault zones. These knickpoints are characteristic of upstream propagation of time-related process once generated by an earthquake, so analysis of knickpoint series in streams which cross fault zones can be used to infer paleoearthquake events. We studied the knickpoints along the Huoshan Piedmont Fault (HPF), which is an active normal fault in the Shanxi Faulted Basin zone, China, and demonstrate that analysis of knickpoints shows evidence for two paleoearthquakes in the HPF. First, we identified knickpoints in bedrock reaches upstream of the HPF using high-resolution DEMs derived from IRS-P5 stereo images and the stream-gradient method. After excluding non-faulting knickpoints, 47 knickpoints were identified in 23 bedrock reaches upstream from the HPF. Analysis of the most recent knickpoints caused by the 1303 CE Hongdong Earthquake allowed for local calibration of the retreat rates. Applying these retreat rates across the study area allows for the estimation of the age of other knickpoints, and constrains the age ranges of two knickpoint groups to be 2269-3336 a BP and 4504-5618 a BP. These ages constrain the ages of two paleoearthquake events at 2710 ± 102 and 4980 ± 646 a BP. The knickpoints along the HPF obey the parallel retreating model in which knickpoint morphology was roughly maintained during retreat, so the heights of knickpoints represent the coseismic vertical displacements generated by the earthquakes along the HPF. The vertical offsets for these three earthquake events are similar and are approximately 4 m, which indicates that the ruptures on the HPF obey a characteristic slip model with a similar slip distribution for several successive earthquakes. These results provide additional evidence of paleoearthquakes on the HPF and show that analysis of knickpoint recession along an active fault is a valuable tool for paleoseismology.

  18. Brittle extension of the continental crust along a rooted system of low-angle normal faults: Colorado River extensional corridor

    NASA Technical Reports Server (NTRS)

    John, B. E.; Howard, K. A.

    1985-01-01

    A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona.

  19. Coulomb stress changes caused by repeated normal faulting earthquakes during the 1997 Umbria-Marche (central Italy) seismic sequence

    NASA Astrophysics Data System (ADS)

    Nostro, Concetta; Chiaraluce, Lauro; Cocco, Massimo; Baumont, David; Scotti, Oona

    2005-05-01

    We investigate fault interaction through elastic stress transfer among a sequence of moderate-magnitude main shocks (5 < Mw < 6) which ruptured distinct normal fault segments during a seismic sequence in the Umbria-Marche region (central Apennines). We also model the spatial pattern of aftershocks and their faulting mechanisms through Coulomb stress changes. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. Our modeling results show that seven out of eight main shocks of the sequence occur in areas of enhanced Coulomb stress, implying that elastic stress transfer may have promoted the occurrence of these moderate-magnitude events. Our modeling results show that stress changes caused by normal faulting events reactivated and inverted the slip of a secondary N-S trending strike-slip fault inherited from compressional tectonics in its shallowest part (1-3 km). Of the 1517 available aftershocks, 82% are located in areas of positive stress changes for optimally oriented planes (OOPs) for Coulomb failure. However, only 45% of the 322 available fault plane solutions computed from polarity data is consistent with corresponding focal mechanisms associated with the OOPs. The comparison does not improve if we compute the optimally oriented planes for Coulomb failure by fixing the strike orientation of OOPs using information derived from structural geology. Our interpretation of these modeling results is that elastic stress transfer alone cannot jointly explain the aftershock spatial distribution and their focal mechanisms.

  20. Shallow Seismic Reflection Study of Recently Active Fault Scarps, Mina Deflection, Western Nevada

    NASA Astrophysics Data System (ADS)

    Black, R. A.; Christie, M.; Tsoflias, G. P.; Stockli, D. F.

    2006-12-01

    During the spring and summer of 2006 University of Kansas geophysics students and faculty acquired shallow, high resolution seismic reflection data over actively deforming alluvial fans developing across the Emmigrant Peak (in Fish Lake Valley) and Queen Valley Faults in western Nevada. These normal faults represent a portion of the transition from the right-lateral deformation associated with the Walker Lane/Eastern California Shear Zone to the normal and left-lateral faulting of the Mina Deflection. Data were gathered over areas of recent high resolution geological mapping and limited trenching by KU students. An extensive GPR data grid was also acquired. The GPR results are reported in Christie, et al., 2006. The seismic data gathered in the spring included both walkaway tests and a short CMP test line. These data indicated that a very near-surface P-wave to S-wave conversion was taking place and that very high quality S-wave reflections were probably dominating shot records to over one second in time. CMP lines acquired during the summer utilized a 144 channel networked Geode system, single 28 hz geophones, and a 30.06 downhole rifle source. Receiver spacing was 0.5 m, source spacing 1.0m and CMP bin spacings were 0.25m for all lines. Surveying was performed using an RTK system which was also used to develop a concurrent high resolution DEM. A dip line of over 400m and a strike line over 100m in length were shot across the active fan scarp in Fish Lake Valley. Data processing is still underway. However, preliminary interpretation of common-offset gathers and brute stacks indicates very complex faulting and detailed stratigraphic information to depths of over 125m. Depth of information was actually limited by the 1024ms recording time. Several west-dipping normal faults downstep towards the basin. East-dipping antithetic normal faulting is extensive. Several distinctive stratigraphic packages are bound by the faults and apparent unconformitites. A CMP dip line

  1. Sliding mode fault detection and fault-tolerant control of smart dampers in semi-active control of building structures

    NASA Astrophysics Data System (ADS)

    Yeganeh Fallah, Arash; Taghikhany, Touraj

    2015-12-01

    Recent decades have witnessed much interest in the application of active and semi-active control strategies for seismic protection of civil infrastructures. However, the reliability of these systems is still in doubt as there remains the possibility of malfunctioning of their critical components (i.e. actuators and sensors) during an earthquake. This paper focuses on the application of the sliding mode method due to the inherent robustness of its fault detection observer and fault-tolerant control. The robust sliding mode observer estimates the state of the system and reconstructs the actuators’ faults which are used for calculating a fault distribution matrix. Then the fault-tolerant sliding mode controller reconfigures itself by the fault distribution matrix and accommodates the fault effect on the system. Numerical simulation of a three-story structure with magneto-rheological dampers demonstrates the effectiveness of the proposed fault-tolerant control system. It was shown that the fault-tolerant control system maintains the performance of the structure at an acceptable level in the post-fault case.

  2. 40Ar/ 39Ar dating constraints on the high-angle normal faulting along the southern segment of the Tan-Lu fault system: An implication for the onset of eastern China rift-systems

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zhou, Su

    2009-01-01

    High-angle normal faulting in eastern China was an important tectonic process responsible for the rifting of the eastern Asian continental margin. Along the southern segment of the Tan-Lu fault system, part of the eastern China rift-system, 55-70° east-dipping normal faults are the oldest structures within this rift-system. Chlorite, pseudotachylite, and fault breccia are found in fault zones, which are characterized by microstructures and syn-deformation chlorite minerals aligned parallel to a down-dip stretching lineation. 40Ar/ 39Ar dating of syn-deformation chlorite and K-feldspar from the fault gouge zone yields cooling ages of ˜75-70 Ma, interpreted as the timing of slip along the normal faults. This age is older than that of opening of the Japanese sea and back-arc extension in the west Pacific, but similar to the onset of the Indo-Asian (soft?) collision.

  3. Constraining fault activity by investigating tectonically-deformed Quaternary palaeoshorelines using a synchronous correlation method: the Capo D'Orlando Fault as a case study (NE Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Meschis, Marco; Roberts, Gerald P.; Robertson, Jennifer

    2016-04-01

    Long-term curstal extension rates, accommodated by active normal faults, can be constrained by investigating Late Quaternary vertical movements. Sequences of marine terraces tectonically deformed by active faults mark the interaction between tectonic activity, sea-level changes and active faulting throughout the Quaternary (e.g. Armijo et al., 1996, Giunta et al, 2011, Roberts et al., 2013). Crustal deformation can be calculated over multiple seismic cycles by mapping Quaternary tectonically-deformed palaeoshorelines, both in the hangingwall and footwall of active normal faults (Roberts et al., 2013). Here we use a synchronous correlation method between palaeoshorelines elevations and the ages of sea-level highstands (see Roberts et al., 2013 for further details) which takes advantage of the facts that (i) sea-level highstands are not evenly-spaced in time, yet must correlate with palaeoshorelines that are commonly not evenly-spaced in elevation, and (ii) that older terraces may be destroyed and/or overprinted by younger highstands, so that the next higher or lower paleoshoreline does not necessarily correlate with the next older or younger sea-level highstand. We investigated a flight of Late Quaternary marine terraces deformed by normal faulting as a result of the Capo D'Orlando Fault in NE Sicily (e.g. Giunta et al., 2011). This fault lies within the Calabrian Arc which has experienced damaging seismic events such as the 1908 Messina Straits earthquake ~ Mw 7. Our mapping and previous mapping (Giunta et al. (2011) demonstrate that the elevations of marine terraces inner edges change along the strike the NE - SW oriented normal fault. This confirms active deformation on the Capo D'Orlando Fault, strongly suggesting that it should be added into the Database of Individual Seismogenic Sources (DISS, Basili et al., 2008). Giunta et al. (2011) suggested that uplift rates and hence faults lip-rates vary through time for this examples. We update the ages assigned to

  4. Structural Analysis of Active North Bozgush Fault Zone (NW Iran)

    NASA Astrophysics Data System (ADS)

    Saber, R.; Isik, V.; Caglayan, A.

    2013-12-01

    NW Iran is one of the seismically active regions between Zagros Thrust Belt at the south and Caucasus at the north. Not only large magnitude historical earthquakes (Ms>7), but also 1987 Bozgush, 1997 Ardebil (Mw 6.1) and 2012 Ahar-Varzagan (Mw 6.4) earthquakes reveal that the region is seismically active. The North Bozgush Fault Zone (NBFZ) in this region has tens of kilometers in length and hundreds of meters in width. The zone has produced some large and destructive earthquakes (1593 M:6.1 and 1883 M:6.2). The NBFZ affects the Cenozoic units and along this zone Eocene units thrusted over Miocene and/or Plio-Quaternary sedimentary units. Together with morphologic features (stream offsets and alluvial fan movements) affecting the young unites reveal that the zone is active. The zone is mainly characterized by strike-slip faults with reverse component and reverse faults. Reverse faults striking N55°-85°E and dip of 40°-50° to the SW while strike-slip faults show right lateral slip with N60°-85°W and N60°-80°E directions. Our structural data analysis in NBFZ indicates that the axis direction of σ2 principal stress is vertical and the stress ratio (R) is 0.12. These results suggest that the tectonic regime along the North Bozgush Fault Zone is transpressive. Obtained other principal stresses (σ1, σ3) results are compatible with stress directions and GPS velocity suggested for NW Iran.

  5. High Frequency Monitoring of the Aigion Fault Activity

    NASA Astrophysics Data System (ADS)

    Cornet, Francois; Bourouis, Seid

    2013-04-01

    In 2007, a high frequency monitoring system was deployed in the 1000 m deep AIG10 well that intersects the Aigion fault at a depth of 760 m. This active 15 km long fault is located on the south shore of the Corinth rift, some 40 km east from Patras, in western central Greece. The borehole intersects quaternary sediments down to 495 m, then cretaceous and tertiary heavily tectonized deposits from the Pindos nappe. Below the fault encountered at 760 m, the borehole remains within karstic limestone of the Gavrovo Tripolitza nappe. The monitoring system involved two geophones located some 15 m above the fault, and two hydrophones located respectively at depths equal to 500 m and 250 m. The frequency domain for the data acquisition system ranged from a few Hz to 2500 Hz. The seismic velocity structure close to the borehole was determined through both sonic logs and vertical seismic profiles. This monitoring system has been active during slightly over six months and has recorded signals from microseismic events that occurred in the rift, the location of which was determined thanks to the local 11 stations, three components, short period (2 Hz), monitoring system. In addition, the borehole monitoring system has recorded more than 1000 events not identified with the regional network. Events were precisely correlated with pressure variations associated with two human interventions. These extremely low magnitude events occurred at distances that reached at least up to 1500 m from the well. They were associated, some ten days later, with some local rift activity. A tentative model is proposed that associates local short slip instabilities in the upper part of the fault close to the well, with a longer duration pore pressure diffusion process. Results demonstrate that the Aigion fault is continuously creeping down to a depth at least equal to 5 km but probably deeper.

  6. Fault Activity, Seismicity and GPS Deformation of the Seismic Gap along the Red River Fault Zone (RRFZ) in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Xue-Ze, Wen; Shengli, Ma; Fang, Du; Feng, Long

    2016-04-01

    Along the middle segment of the NW-trending and dextral-slip Red River fault zone (RRFZ), also the Honghe fault zone, Yunnan, China, there has been little of modern seismicity since the 1970's. Some Chinese researchers believed that this fault segment is inactive in the late Quaternary. However, more and more evidence shows that the middle segment of RRFZ is geologically-active in the late Quaternary, even is a Holocene-active one with evidence of paleo-earthquakes occurring. Our study suggests that along the fault segment there has been no any major earthquake occurring for over 500 years at least, and a large-scale seismic gap, the Honghe seismic gap, have formed there. On the modern seismicity, the middle segment of RRFZ has presented as a fault portion without or with very few small earthquakes occurring since the 1980's, but surrounded by several areas with low b-values, suggesting relatively high stress having built-up there. Also, GPS deformation analysis suggests that this fault segment has tightly locked already. Such tight locking would be associated with the fault geometry: A large-scale restraining bend of about 30°over a distance of ~100 km exists along the main fault trace along RRFZ between Yuanjiang and Yuanyang. However, how such a restraining bend makes the middle segment of RRFZ have tightly locked? How much strain has built up there? Moreover, how about the long-term seismic potential of major earthquake on the middle segment of RRFZ, and on some secondary active faults of the two sides of the segment, especially on the parallel faults Chuxiong, Qujiang and Shiping. All these are issues we want to study further. Keywords: Red River Fault Zone, Seismic Gap, Fault Activity, Seismicity, GPS Deformation

  7. Mechanisms of clay smear formation in unconsolidated sediments - insights from 3-D observations of excavated normal faults

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; Thronberens, Sebastian; Juarez, Oscar; Lajos Urai, Janos; Ziegler, Martin; Asmus, Sven; Kruger, Ulrich

    2016-05-01

    Clay smears in normal faults can form seals for hydrocarbons and groundwater, and their prediction in the subsurface is an important problem in applied and basic geoscience. However, neither their complex 3-D structure, nor their processes of formation or destruction are well understood, and outcrop studies to date are mainly 2-D. We present a 3-D study of an excavated normal fault with clay smear, together with both source layers, in unlithified sand and clay of the Hambach open-cast lignite mine in Germany. The faults formed at a depth of 150 m, and have shale gouge ratios between 0.1 and 0.3. The fault zones are layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. The thickness of clay smears in two excavated fault zones of 1.8 and 3.8 m2 is approximately log-normal, with values between 5 mm and 5 cm, without holes. The 3-D thickness distribution is heterogeneous. We show that clay smears are strongly affected by R and R' shears, mostly at the footwall side. These shears can locally cross and offset clay smears, forming holes in the clay smear, while thinning of the clay smear by shearing in the fault core is less important. The thinnest parts of the clay smears are often located close to source layer cut-offs. Locally, the clay smear consists of overlapping patches of sheared clay, separated by sheared sand. More commonly, it is one amalgamated zone of sheared sand and clay. A microscopic study of fault-zone samples shows that grain-scale mixing can lead to thickening of the low permeability smears, which may lead to resealing of holes.

  8. Testing Damage Scenarios. From Historical Earthquakes To Silent Active Faults

    NASA Astrophysics Data System (ADS)

    Galli, P.; Orsini, G.; Bosi, V.; di Pasquale, G.; Galadini, F.

    Italy is rich with historical scenarios of disruption and death that arrived up to us through the insight descriptions of hundreds of manuscripts, reports, treatises, letters and epigraphs. All these historical data constitute today one of the most powerful data-base of earthquake-induced effects. Moreover, it is now possible to relate many of these earthquakes to geological structures, the seismogenetic behavior of which has been investigated by means of paleoseismological studies. On the basis of these information and of those gathered through the national census (performed on popu- lation and dwellings by ISTAT, Italian Institute of Statistics in 1991) we developed a methodology (FaCES, Fault-Controlled Earthquake Scenario) which reproduce the damage scenario caused by the rupture of a defined fault, providing an estimate of the losses in terms of damages to building and consequences to population. The reliabil- ity of scenarios has been tested by comparing the historical damage distribution of an earthquake with that obtained applying FaCES to the responsible fault. Finally, we hypothesize the scenario related to three historically-silent faults of central Apennines (Mt. Vettore, Mt. Gorzano and Gran Sasso faults), the Holocene activity of which has been recently ascertained though paleoseimological analyses.

  9. Microstructural Character and Strain Localization at Initiation of a Low-Angle Normal Fault in Crystalline Basement (Chemehuevi Mountains, SE California)

    NASA Astrophysics Data System (ADS)

    LaForge, J.; John, B. E.; Grimes, C. B.; MacDonald, C.

    2014-12-01

    Exposures of the Miocene Chemehuevi detachment (CDF) system provide a natural laboratory to study the initiation of low-angle normal faults (LANF) active near the base of the seismogenic zone (5-15 km paleodepth). The regional fault system formed at ≤20° dip in heterogeneous gneissic and granitoid rocks, with ambient footwall temperatures from <200 to >400°C. The fault system is characterized by three stacked low-angle normal faults; the CDF preferentially localized ≥ 18 km of NE directed slip rendering the deepest fault, the Mohave Wash Fault (MWF), inactive after 1-2 km of slip. At outcrop scale, damage zones to each fault are planar, but at map scale both the MWF and CDF are corrugated parallel to slip. Detailed macro- and microstructural studies of the MWF, sampled over 15 km down dip, provide insight into strain localization at initiation. At outcrop scale, the MWF is defined by a damage zone 10s of meters thick of fractured host rock cut by anastomosing principal slip zones of cohesive cataclasite (≤2 m thick), locally hosting chlorite, epidote and quartz. At structurally shallow levels (T 200-250° C; 6-8 km paleodepth at initiation), the MWF cuts isotropic granitic rocks, and exhibits dominantly cataclastic deformation overprinting localized crystal plasticity. Five km down dip (T 300-350° C), cataclasis remains the primary deformation mechanism; syntectonic dikes show plastic deformation with no brittle overprint. Rare pseudotachylite is present within meters of the principle slip zone. At the structurally deepest exposures of the MWF (T ≥ 400°C; 12-15 km paleodepth), gneissic basement cut by syntectonic dikes host a well-developed mylonitic lineation parallel to the extension direction, both reworked by cataclasis. Oxygen isotope data collected from fault rocks hosting quartz-epidote pairs indicate early infiltration of surface-derived fluids. Calculated oxygen isotope temperatures from the fault rocks and footwall are consistently 50-200° C

  10. Aseismic slip and fault-normal strain along the central creeping section of the San Andreas fault

    NASA Astrophysics Data System (ADS)

    Rolandone, F.; Bürgmann, R.; Agnew, D. C.; Johanson, I. A.; Templeton, D. C.; d'Alessio, M. A.; Titus, S. J.; DeMets, C.; Tikoff, B.

    2008-07-01

    We use GPS data to measure the aseismic slip along the central San Andreas fault (CSAF) and the deformation across adjacent faults. Comparison of EDM and GPS data sets implies that, except for small-scale transients, the fault motion has been steady over the last 40 years. We add 42 new GPS velocities along the CSAF to constrain the regional strain distribution. Shear strain rates are less than 0.083 +/- 0.010 μstrain/yr adjacent to the creeping SAF, with 1-4.5 mm/yr of contraction across the Coast Ranges. Dislocation modeling of the data gives a deep, long-term slip rate of 31-35 mm/yr and a shallow (0-12 km) creep rate of 28 mm/yr along the central portion of the CSAF, consistent with surface creep measurements. The lower shallow slip rate may be due to the effect of partial locking along the CSAF or reflect reduced creep rates late in the earthquake cycle of the adjoining SAF rupture zones.

  11. Aseismic slip and fault-normal strain along the central creeping section of the San Andreas fault

    USGS Publications Warehouse

    Rolandone, F.; Burgmann, R.; Agnew, D.C.; Johanson, I.A.; Templeton, D.C.; d'Alessio, M. A.; Titus, S.J.; DeMets, C.; Tikoff, B.

    2008-01-01

    We use GPS data to measure the aseismic slip along the central San Andreas fault (CSAF) and the deformation across adjacent faults. Comparison of EDM and GPS data sets implies that, except for small-scale transients, the fault motion has been steady over the last 40 years. We add 42 new GPS, velocities along the CSAF to constrain the regional strain distribution. Shear strain rates are less than 0.083 ?? 0.010 ??strain/yr adjacent to the creeping SAF, with 1-4.5 mm/yr of contraction across the Coast Ranges. Dislocation modeling of the data gives a deep, long-term slip rate of 31-35 mm/yr and a shallow (0-12 km) creep rate of 28 mm/yr along the central portion of the CSAF, consistent with surface creep measurements. The lower shallow slip rate may be due to the effect of partial locking along the CSAF or reflect reduced creep rates late in the earthquake cycle of the adjoining SAF rupture zones. Copyright 2008 by the American Geophysical Union.

  12. A geochemical examination of the Dixie Valley fault, Nevada: Implications for the propagation and behavior of seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Hedderly-Smith, David Arthur

    Temporally and spatially overlapping assemblages of hydrothermal alteration minerals occur as a narrow band along the footwall of the 1954 rupture segment of the Dixie Valley fault in west-central Nevada. From earliest to latest, the alteration assemblages are (1) potassium feldspar and biotite; (2) chlorite and epidote; (3) sericite, quartz, kaolinite and smectite; and (4) prehnite, laumontite, stilbite, kaolinite, illite and smectite. Study of over 400 liquid-vapor fluid inclusions has revealed four major groups: moderate salinity inclusions (type I), carbon dioxide-bearing inclusions (type II), low eutectic temperature inclusions (type III), and halite-bearing inclusions (type IV). These represent differing hydrothermal fluids along the fault at different points in time. Homogenization temperatures of fluid inclusions range from 80sp°C to 400sp°C with modes at 280sp°C and 180sp°C. Salinities vary from 0 to 48 weight percent NaCl equivalent with the mode between 0 and 1 weight percent and an average of 3.3 weight percent. COsb2-bearing fluid inclusions contain XsbCOsb2 ranging from 0.030 to 0.512. Low eutectic inclusions contain XsbNaCl/(XsbNaCl + XsbCaClsb2) ranging from 0.22 to 0.98. Evidence from COsb2-bearing fluid inclusions demonstrates fluid pressure cycling from the lithostatic to the hydrostatic regime and also suggests cycling of the COsb2 content of the fluids within the fault system. A model for earthquake propagation is proposed whereby pore fluids within a sealed fault reservoir attain near-lithostatic pressures prior to seismogenic rupture, after which pressure drops to near the hydrostat. Ambient pore fluids saturated in hydrothermal species flow into and upward through the rupture zone where quartz and other minerals precipitate under the lower pressure and temperature conditions, resealing the reservoir. Aseismic creep produces a renewed increase in fluid pressure which eventually again nears the lithostatic limit. A new seismogenic model

  13. Inferring Earthquake Physics from Deep Drilling Projects of Active Faults

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Smith, S. A. F.; Kuo, L. W.; Mittempergher, S.; Remitti, F.; Spagnuolo, E.; Mitchell, T. M.; Gualtieri, A.; Hadizadeh, J.; Carpenter, B. M.

    2014-12-01

    Deep drilling projects of active faults offer the opportunity to correlate physical and chemical processes identified in core samples with experiments reproducing the seismic cycle in the laboratory and with high-resolution seismological and geophysical data. Here we discuss the constraints about earthquakes source processes at depth gained by fault cores retrieved from the deep drilling projects SAFOD (2.7 km depth, San Andreas Fault), J-FAST (0.9 km depth, following the Mw 9.0 Tohoku 2011 earthquake), TCDP (1.1 km depth, following the Mw 7.6 Chi-Chi 1999 earthquake) and WFSD (1.2 km depth, following the Mw 7.9 Wenchuan 2008 earthquake). Recovered samples were tested at room temperature with the rotary shear apparatus SHIVA installed in Rome (INGV, Italy). All the tested samples were made by clay-rich gouges (usually including smectite/illite), though their bulk mineralogy and modal composition were different (e.g., SAFOD samples included saponite, WFSD carbonaceous materials). The gouges were investigated before and after the experiments with scanning and transmission electron microscopy, X-Ray diffraction, micro-Raman spectroscopy, etc. A common behavior of all the tested gouges was that their friction coefficient was low (often less than 0.1) under room-humidity and wet conditions when sheared at slip rates of ca. 1 m/s (seismic deformation conditions). Moreover, when the natural fault rocks next to the principal slipping zones were sheared from sub-seismic (few micrometers/s) to seismic slip rates, the experimental products had similar microstructures to those found in the principal slipping zones of the drilled faults. This included the formation of mirror-like surfaces, graphite-rich materials, foliated gouges, nanograins, amorphous materials, etc. In most cases the mechanical data were consistent with several seismological (> 50 m of seismic slip for the fault zone drilled by J-FAST) and geophysical observations (absence of a thermal anomaly in the fault

  14. Active faults crossing trunk pipeline routes: some important steps to avoid disaster

    NASA Astrophysics Data System (ADS)

    Besstrashnov, V. M.; Strom, A. L.

    2011-05-01

    Assessment of seismic strong motion hazard produced by earthquakes originating within causative fault zones allows rather low accuracy of localisation of these structures that can be provided by indirect evidence of fault activity. In contrast, the relevant accuracy of localisation and characterisation of active faults, capable of surface rupturing, can be achieved solely by the use of direct evidence of fault activity. This differentiation requires strict definition of what can be classified as "active fault" and the normalisation of methods used for identification and localisation of active faults crossing oil and natural gas trunk pipelines.

  15. Evaluation of feasibility of mapping seismically active faults in Alaska

    NASA Technical Reports Server (NTRS)

    Gedney, L. D. (Principal Investigator); Vanwormer, J. D.

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery is proving to be exceptionally useful in delineating structural features in Alaska which have never been recognized on the ground. Previously unmapped features such as seismically active faults and major structural lineaments are especially evident. Among the more significant results of this investigation is the discovery of an active strand of the Denali fault. The new fault has a history of scattered activity and was the scene of a magnitude 4.8 earthquake on October 1, 1972. Of greater significance is the disclosure of a large scale conjugate fracture system north of the Alaska Range. This fracture system appears to result from compressive stress radiating outward from around Mt. McKinley. One member of the system was the scene of a magnitude 6.5 earthquake in 1968. The potential value of ERTS-1 imagery to land use planning is reflected in the fact that this earthquake occurred within 10 km of the site which was proposed for the Rampart Dam, and the fault on which it occurred passes very near the proposed site for the bridge and oil pipeline crossing of the Yukon River.

  16. Active faulting induced by the slip partitioning in the Lesser Antilles arc

    NASA Astrophysics Data System (ADS)

    Leclerc, Frédérique; Feuillet, Nathalie

    2010-05-01

    AGUADOMAR marine cruise data acquired 11 years ago allowed us to identified and map two main sets of active faults within the Lesser Antilles arc (Feuillet et al., 2002; 2004). The faults belonging to the first set, such as Morne-Piton in Guadeloupe, bound up to 100km-long and 50km-wide arc-perpendicular graben or half graben that disrupt the fore-arc reef platforms. The faults of the second set form right-stepping en echelon arrays, accommodating left-lateral slip along the inner, volcanic islands. The two fault systems form a sinistral horsetail east of the tip of the left-lateral Puerto Rico fault zone that takes up the trench-parallel component of convergence between the North-American and Caribbean plates west of the Anegada passage. In other words, they together accommodate large-scale slip partitioning along the northeastern arc, consistent with recent GPS measurements (Lopez et al., 2006). These intraplate faults are responsible for a part of the shallow seismicity in the arc and have produce damaging historical earthquakes. Two magnitude 6.3 events occurred in the last 25 years along the inner en echelon faults, the last one on November 21 2004 in Les Saintes in the Guadeloupe archipelago. To better constrain the seismic hazard related to the inner arc faults and image the ruptures and effects on the seafloor of Les Saintes 2004 earthquake, we acquired new marine data between 23 February and 25 March 2009 aboard the French R/V le Suroît during the GWADASEIS cruise. We present here the data (high-resolution 72 channel and very high-resolution chirp 3.5 khz seismic reflection profiles, EM300 multibeam bathymetry, Küllenberg coring and SAR imagery) and the first results. We identified, mapped and characterized in detail several normal to oblique fault systems between Martinique and Saba. They offset the seafloor by several hundred meters and crosscut all active volcanoes, among them Nevis Peak, Soufriere Hills, Soufriere de Guadeloupe and Montagne Pel

  17. Frictional properties of the active San Andreas Fault at SAFOD: Implications for fault strength and slip behavior

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Saffer, D. M.; Marone, C.

    2015-07-01

    We present results from a comprehensive laboratory study of the frictional strength and constitutive properties for all three active strands of the San Andreas Fault penetrated in the San Andreas Observatory at Depth (SAFOD). The SAFOD borehole penetrated the Southwest Deforming Zone (SDZ), the Central Deforming Zone (CDZ), both of which are actively creeping, and the Northeast Boundary Fault (NBF). Our results include measurements of the frictional properties of cuttings and core samples recovered at depths of ~2.7 km. We find that materials from the two actively creeping faults exhibit low frictional strengths (μ = ~0.1), velocity-strengthening friction behavior, and near-zero or negative rates of frictional healing. Our experimental data set shows that the center of the CDZ is the weakest section of the San Andreas Fault, with μ = ~0.10. Fault weakness is highly localized and likely caused by abundant magnesium-rich clays. In contrast, serpentine from within the SDZ, and wall rock of both the SDZ and CDZ, exhibits velocity-weakening friction behavior and positive healing rates, consistent with nearby repeating microearthquakes. Finally, we document higher friction coefficients (μ > 0.4) and complex rate-dependent behavior for samples recovered across the NBF. In total, our data provide an integrated view of fault behavior for the three active fault strands encountered at SAFOD and offer a consistent explanation for observations of creep and microearthquakes along weak fault zones within a strong crust.

  18. A numerical modelling approach to investigate the surface processes response to normal fault growth in multi-rift settings

    NASA Astrophysics Data System (ADS)

    Pechlivanidou, Sofia; Cowie, Patience; Finch, Emma; Gawthorpe, Robert; Attal, Mikael

    2016-04-01

    This study uses a numerical modelling approach to explore structural controls on erosional/depositional systems within rifts that are characterized by complex multiphase extensional histories. Multiphase-rift related topography is generated by a 3D discrete element model (Finch et al., Basin Res., 2004) of normal fault growth and is used to drive the landscape evolution model CHILD (Tucker et al., Comput. Geosci., 2001). Fault populations develop spontaneously in the discrete element model and grow by both tip propagation and segment linkage. We conduct a series of experiments to simulate the evolution of the landscape (55x40 km) produced by two extensional phases that differ in the direction and in the amount of extension. In order to isolate the effects of fault propagation on the drainage network development, we conduct experiments where uplift/subsidence rates vary both in space and time as the fault array evolves and compare these results with experiments using a fixed fault array geometry with uplift rate/subsidence rates that vary only spatially. In many cases, areas of sediment deposition become uplifted and vise-versa due to complex elevation changes with respect to sea level as the fault array develops. These changes from subaerial (erosional) to submarine (depositional) processes have implications for sediment volumes and sediment caliber as well as for the sediment routing systems across the rift. We also explore the consequences of changing the angle between the two phases of extension on the depositional systems and we make a comparison with single-phase rift systems. Finally, we discuss the controls of different erodibilities on sediment supply and detachment-limited versus transport-limited end-member models for river erosion. Our results provide insights into the nature and distribution of sediment source areas and the sediment routing in rift systems where pre-existing rift topography and normal fault growth exert a fundamental control on

  19. A dense, intersecting array of normal faults on the outer shelf off Southern Costa Rica, associated with subducting Quepos ridge

    NASA Astrophysics Data System (ADS)

    Silver, E. A.; Kluesner, J. W.; Gibson, J. C.; Bangs, N. L.; McIntosh, K. D.; von Huene, R.; Orange, D.; Ranero, C. R.

    2012-12-01

    Use of narrow, fixed swath multibeam data with high sounding densities has allowed order of magnitude improvement in image resolution with EM122 multibeam and backscatter data, as part of a 3D seismic study west of the Osa Peninsula. On the outer shelf, along the projection of the subducting Quepos Ridge, we mapped a dense array of faults cutting an arcuate, well-layered set of outcropping beds in the backscatter imagery (mosaicked at 2 m), with roughly N-S and E-W trends. The N-S trends dominate, and show inconsistent offsets, implying that the faults are normal and not strike-slip. The faults also show normal displacement in the 3D seismic data, consistent with the surface interpretation. The outcropping beds (of late Pleistocene age, based on Expedition 334 drilling), may have been truncated during the late Pleistocene low sea-level stand. The outermost shelf (edged by arcuate bathymetric contours) does not show these folded beds, as it was below wave base and buried by a thin sediment layer. However, narrow lines of small pockmarks and mounds follow the fault trends exactly, indicating that fluid flow through the faults is expressed at the surface, including a gas plume that extends to the sea-surface. The almost unprecedented increase in resolution of the EM122 data allows us to infer that the N-S, E-W grid of faults overlying the NE-trending Quepos Ridge projection (and NE directed subduction) formed by extensional arching above the ridge, not by collisional slip lines at a rigid indenter (as proposed earlier based on sandbox models). The extensional fault pattern also facilitates fluid and gas flow through the sedimentary section.

  20. Erosion influence the seismicity of active thrust faults

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J. Bruce H.

    2015-04-01

    Assessing seismic hazards remains one of the most challenging scientific issue in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show with a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1 to 20 mm/yr, as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1 to ~10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to promote the rupture of deep continental earthquakes up to the surface or to trigger shallow seismicity. We illustrate this last point by identifying seismic events in Taiwan, by the mean of a coupled statistical and mechanical approach, that were induced by intense erosional events.

  1. Erosion influence the seismicity of active thrust faults

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J. Bruce H.

    2016-04-01

    Assessing seismic hazards remains one of the most challenging scientific issue in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show with a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ˜0.1 to 20 mm/yr, as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ˜0.1 to ˜10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to promote the rupture of deep continental earthquakes up to the surface or to trigger shallow seismicity. We illustrate this last point by identifying seismic events in Taiwan, by the mean of a coupled statistical and mechanical approach, that were induced by intense erosional events.

  2. Active Features of Guguan-Guizhen Fault at the Northeast Margin of Qinghai-Tibet Block since Late Quaternary

    NASA Astrophysics Data System (ADS)

    Shi, Yaqin; Feng, Xijie; Li, Gaoyang; Ma, Ji; Li, Miao; Zhang, Yi

    2015-04-01

    Guguan-Guizhen fault is located at the northeast margin of Qinghai-Tibet Block and northwest margin of Ordos Block; it is the boundary of the two blocks, and one of the multiple faults of northwest Haiyuan-Liupanshan-Baoji fault zone. Guguan-Guizhen fault starts from Putuo Village, Huating County, Gansu Province, and goes through Badu Town, Long County in Shaanxi Province ends in Guozhen Town in Baoji City, Shaanxi Province. The fault has a full length of about 130km with the strike of 310-330°, the dip of SW and the rake of 50-60°, which is a sinistral slip reverse fault in the north part, and a sinistral slip normal fault in the southeast part. Guguan-Guizhen fault has a clear liner structure in satellite images and significant landform elevation difference with a maximum difference of 80m, and is higher in the east lower in the west. The northwest side of Guguan-Guizhen fault is composed of purplish-red Lower Cretaceous sandstones and river terrace; the northeast side is composed of Ordovician Limestone. Shigou, Piliang, Songjiashan, Tianjiagou and Chenjiagou fault profiles are found to the south of Badu Village. After 14C and optically stimulated luminescence dating, the fault does not dislocate the stratum since late Pleistocene (90.5±4.4ka) in Shigou, Piliang and Songjiashan fault profiles, and does not dislocate the cobble layer of Holocene first terrace and recent sliderock (3180±30 BP). But the fault dislocated the stratum of middle Pleistocene in some of the fault profiles. All the evidences above indicate that the fault is active in middle Pleistocene, and being silence since late Pleistocene. It might be active in Holocene to the north of Badu Village due to collapses are found in a certain area. The cause of these collapses is Qinlong M6-7 earthquake in 600 A.D., and might be relevant with Guguan-Guizhen fault after analysis of the scale, feature and age determination of the collapse. If any seismic surface rupture and ancient earthquake traces

  3. Buttressing and reverse reactivation of a normal fault in the Jurassic rocks of the Asturian Basin, NW Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Uzkeda, H.; Bulnes, M.; Poblet, J.; García-Ramos, J. C.; Piñuela, L.

    2013-06-01

    A detailed structural analysis was carried out on the Jurassic rocks cropping out along the cliffs of La Conejera Inlet (Asturias, Spain). It includes a geological map and a distortion-free cross-section constructed via photogrammetric methods. La Conejera Inlet is located within the Asturian Basin, a Permian-Mesozoic extensional basin partially formed during the opening of the Bay of Biscay. It suffered selective basin inversion during a Cenozoic contraction responsible for the Pyrenees and its western prolongation along the north margin of the Iberian Peninsula. The study of the structures (folds, faults, joints and veins) of the hangingwall of two normal faults with opposite dip senses reveals that it underwent a later compressional stage in which one fault block acted as a buttress. The contractional deformation in the hangingwall, interpreted as a deformed rollover anticline with an associated antithetic fault, diminishes on moving away from one of the main faults. The positive inversion tectonics produced not only a buttressing effect, but it also involved a certain amount of reverse reactivation of one of the main faults that still preserves a normal displacement. The original normal motion would have taken place during the Middle?-Late Jurassic, related to an embryonic stage of the opening of the Bay of Biscay. The later contractional stage would have been caused by the Cenozoic Alpine shortening. The good outcrop quality allows a relative chronology for the observed structures to be established. Employing all the available information we tried to reconstruct the structure at depth and predict the detachment depth, and to estimate the amounts of extension (the present-day value and that before the compression) and compression.

  4. Detachments and normal faulting in the Marche fold-and-thrust belt (central Apennines, Italy): inferences on fluid migration paths

    NASA Astrophysics Data System (ADS)

    Ghisetti, Francesca; Vezzani, Livio

    2000-04-01

    In the outermost domains of the central Apennines fold-and-thrust belt, the structural architecture of the late Miocene-early Pliocene contractional edifice was controlled by competence contrasts in the Calcareous-Marly sequences of Mesozoic-Tertiary age, and by a different state of lithification of the rock units at the onset of deformation. Field data on relative chronology of outcrop-scale structures (cleavage, veins, faults, folds) are presented for the three largest thrust-ramp anticlines of the Marche fold-and-thrust belt: Monte Gorzano, Acquasanta and Montagna dei Fiori-Montagnone. The data show that the timing and geometry of deformation structures differ for: (1) the lower Calcareous interval of late Triassic-early Cretaceous age (LCI) bounded on top by the intermediate detachment (ID) of the Fucoidi Marls; (2) the upper Calcareous-Marly interval (UCMI) of late Cretaceous-Oligocene age; (3) the uppermost detachment zone (UDZ) of lower-middle Miocene age; (4) the topmost Messinian Flysch sequence (FS). In the UDZ early episodes of deformation are manifested by compaction of a poorly lithified sequence followed by pervasive development of layer-parallel pressure-solution cleavage. Reverse faults ramp obliquely across the stratigraphic sequence, and are coated by multiple overgrowths of calcite fibers. These structures are deformed by large, eastward-verging asymmetric folds with N-S axial trends, and are cut by late generations of reverse faults. Normal faults started to develop in the fold backlimbs during the final stages of shortening, in middle-late Pliocene times. These early normal faults were reactivated during episodes of late Pliocene-Pleistocene extensional downfaulting, and are now superposed on the compressional edifice. The UDZ is interpreted to have temporarily sealed the upward escape of fluids during the initial episodes of shortening. Pervasive interlayer flow in the poorly lithified sequence was responsible for development of broken beds

  5. Fault Activity Investigations in the Lower Tagus Valley (Portugal) With Seismic and Geoelectric Methods

    NASA Astrophysics Data System (ADS)

    Carvalho, J. G.; Gonçalves, R.; Torres, L. M.; Cabral, J.; Mendes-Victor, L. A.

    2004-05-01

    The Lower Tagus River Valley is located in Central Portugal, and includes a large portion of the densely populated area of Lisbon. It is sited in the Lower Tagus Cenozoic Basin, a tectonic depression where up to 2,000 m of Cenozoic sediments are preserved, which was developed in the Neogene as a compressive foredeep basin related to tectonic inversion of former Mesozoic extensional structures. It is only a few hundred kilometers distant from the Eurasia-Africa plate boundary, and is characterized by a moderate seismicity presenting a diffuse pattern, with historical earthquakes having caused serious damage, loss of lives and economical problems. It has therefore been the target of several seismic hazard studies in which extensive geological and geophysical research was carried out on several geological structures. This work focuses on the application of seismic and geoelectric methods to investigate an important NW-SE trending normal fault detected on deep oil-industry seismic reflection profiles in the Tagus Cenozoic Basin. In these seismic sections this fault clearly offsets horizons that are ascribed to the Upper Miocene. However, due to the poor near surface resolution of the seismic data and the fact that the fault is hidden under the recent alluvial cover of the Tagus River, it was not clear whether it displaced the upper sediments of Holocene age. In order to constrain the fault geometry and kinematics and to evaluate its recent tectonic activity, a few high-resolution seismic reflection profiles were acquired and refraction interpretation of the reflection data was performed. Some vertical electrical soundings were also carried out. A complex fault system was detected, apparently with normal and reverse faulting. The collected data strongly supports the possibility that one of the detected faults affects the uppermost Neogene sediments and very probably the Holocene alluvial sediments of the Tagus River. The evidence of recent activity on this fault, its

  6. Paleoseismology from Paleoshorelines: Combining Lidar Data and Geochronology to Resolve Displacement of Pleistocene Pluvial Shorelines along Normal Faults in the Northwestern Basin and Range

    NASA Astrophysics Data System (ADS)

    Egger, A. E.; Ibarra, D. E.

    2012-12-01

    Paleoshorelines of pluvial lakes in the Basin and Range are commonly used to determine lake highstands and to assess past climate in a now-arid region. However, because paleoshorelines record a paleohorizontal datum, these features can provide insight into tectonic processes at a variety of scales as well. Deviations of a paleoshorelines from a modern horizontal plane may be caused by isostatic rebound of the crust resulting from lake removal or by offset along faults since a given lake stillstand. While isostatic rebound has a significant effect over large lake basins such as Bonneville and Lahontan, the effect is negligible in smaller lakes that fill a single valley, often within terminal basins. As a result, variability in shoreline elevations can be attributed primarily to offset along normal faults. Pluvial lakes occupied valleys in the Basin and Range between >1 Ma to <12 ka, a time range for which fault slip rates have proven difficult to determine using traditional paleoseismic and geologic records. Trenches provide paleoseismic records across a single fault, but a single valley may contain several seismically active faults, and the time resolution is typically limited by the maximum age of radiocarbon dating and the earthquake recurrence interval. Geologic records typically provide average slip rates over time rather than timing of individual seismic events. In the northwestern Basin and Range, where the strain rate is low and earthquake recurrence intervals are long, it is particularly critical to extend the traditional paleoseismic record as far back as possible. By precisely dating paleoshorelines and using high-resolution topographic data to correlate them across active faults, it is possible to greatly enhance the record of slip rate along normal fault systems. Newly acquired airborne lidar data in Surprise Valley, a small terminal basin in northeastern California, reveals a mappable series of shorelines that occur throughout the valley on both sides

  7. Fault Mechanics and Active Strain Along the Garlock Fault in SE California

    NASA Astrophysics Data System (ADS)

    Rittase, W.; Walker, D.; Taylor, M.; Kirby, E.

    2008-12-01

    We report here results from new geologic mapping along a 38 km segment of the Garlock Fault (GF) between US 395 and the Slate Range, and an 8 km segment at the northern terminus of the Blackwater- Calico fault (BCF) in the Lava Mountains. This study area lies within the ENE-striking central segment of the sinistral GF. NNW-striking faults of the dextral Eastern California shear zone approach the GF, but do not offset it: exact mechanisms of strain transfer across the GF from the Mojave Desert to the Basin and Range is enigmatic. Field mapping reveals that the GF is complex with numerous sub-parallel strands both north and south of the mapped fault. Holocene slip on the GF is dominantly sinistral, but a major zone to the north adjacent to the bedrock of the southern Slate Range is dip-slip. The mapped portion of the northern BCF is expressed as a bedrock scarp and does not cut Holocene sediments. Significant N-S shortening is superimposed along the GF adjacent to the southern Slate Range, in the Christmas Canyon area, and the Lava Mountains. Pliocene- Pleistocene sediments are uplifted and deformed into E-W open to chevron folds in the Christmas Canyon and Slate Range areas. Cretaceous quartz-monzonite and overlying Miocene strata are deformed by similar structures in the northern Lava Mountains. In general, areas of topographic uplifts are disjointed and spatially restrictive in comparison to the more continuous GF and the BCF. These observations suggest several possibilities for the region. (1) Active slip on the GF and the Eastern California shear zone are driven by a single, Mojave-wide stress field with sigma-1 oriented roughly N-S. (2) The GF may be a weak zone in the lithosphere and crust with sigma-1 oriented nearly perpendicular to strike as evidenced by ENE- to East-trending fold hinges in Pliocene-Pleistocene sediments. (3) The continuous trace of the GF rupture through the 38-km-long study area suggests that it, at least locally, poses a mechanical

  8. Dilatant normal faulting in jointed cohesive rocks: insights from physical modeling

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; von Hagke, Christoph; Urai, Janos

    2016-04-01

    Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights on geometry of fault zones in brittle rocks and eventually allows for predicting their subsurface appearance. We assess the evolution of dilatant faults in fractured rocks using analogue models with cohesive powder. The upper layer contains pre-formed joint sets, and we vary the angle between joints and a rigid basement fault in our experiments. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. We tested the influence of different angles between the strike of the basement fault and the joint set (joint fault (JF) angles of 0°, 4°, 8°, 12°, 16°, 20°, and 25°). During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. Results show robust structural features in models: damage zone width increases by about 50 % and the number of secondary fractures within this zone by more than 100 % with increasing JF-angle. Interestingly, the map-view area fraction of open gaps increases by only 3%. Secondary joints and fault step-overs are oriented at a high angle to the primary joint orientation. Due to the length of the pre-existing open joints, areas far beyond the fractured regions are connected to the system. In contrast

  9. Palaeoseismology of the L'Aquila faults (central Italy, 2009, Mw 6.3 earthquake): implications for active fault linkage

    NASA Astrophysics Data System (ADS)

    Galli, Paolo A. C.; Giaccio, Biagio; Messina, Paolo; Peronace, Edoardo; Zuppi, Giovanni Maria

    2011-12-01

    Urgent urban-planning problems related to the 2009 April, Mw 6.3, L'Aquila earthquake prompted immediate excavation of palaeoseismological trenches across the active faults bordering the Aterno river valley; namely, the Mt. Marine, Mt. Pettino and Paganica faults. Cross-cutting correlations amongst existing and new trenches that were strengthened by radiocarbon ages and archaeological constraints show unambiguously that these three investigated structures have been active since the Last Glacial Maximum period, as seen by the metric offset that affected the whole slope/alluvial sedimentary succession up to the historical deposits. Moreover, in agreement with both 18th century accounts and previous palaeoseismological data, we can affirm now that these faults were responsible for the catastrophic 1703 February 2, earthquake (Mw 6.7). The data indicate that the Paganica-San Demetrio fault system has ruptured in the past both together with the conterminous Mt. Pettino-Mt. Marine fault system, along more than 30 km and causing an Mw 6.7 earthquake, and on its own, along ca. 19 km, as in the recent 2009 event and in the similar 1461 AD event. This behaviour of the L'Aquila faults has important implications in terms of seismic hazard assessment, while it also casts new light on the ongoing fault linkage processes amongst these L'Aquila faults.

  10. Lithofacies analysis of colluvial sediments - an aid in interpreting the recent history of Quaternary normal faults in the Basin and Range Province, western United States

    USGS Publications Warehouse

    Nelson, A.R.

    1992-01-01

    Inferring the frequency and magnitude of past earthquakes from the stratigraphy in exposures of normal-faulted sediments is difficult because colluvial lithofacies assemblages adjacent to faults are complex. A lithofacies code scheme, similar to those used in the analysis of fluvial and glacial lithofacies sequences, provides a concise way of illustrating lithofacies relations in fault exposures. The architecture of lithofacies assemblages near fault scarps in semiarid areas is explained by a model of colluvial sedimentation in response to a single surface faulting event. Analysis of lithofacies assemblages exposed in three trenches across normal faults in the eastern Basin and Range shows how the model can be used to interpret fault histories. -from Author

  11. Rapid Slip-Rate and Low Shear Strength of a High Finite-Slip Low-Angle Normal Fault: Normanby Island, Woodlark Rift, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Little, T. A.; Monteleone, B.; Baldwin, S. L.; Fitzgerald, P. G.

    2006-12-01

    A metamorphic core complex (MCC) punctuates the attenuated continental crust of Normanby Island in the D'Entrecasteaux Group of SE Papua New Guinea, 30 km west of the seafloor- spreading tip of the Woodlark Basin. The lower plate of this north-vergent MCC has been uplifted by as much as ~1100 m above sealevel and exposes a >1 km thick carapace of blueschist-derived quartzose mylonites that have a subhorizontal top-to-the-NNE shear fabric. Onshore, the variably back-tilted, inactive detachment fault capping these mylonites has been eroded away, but its corrugated geomorphology is preserved in the landscape of the asymmetric dome. Corrugations and stretching lineations parallel solutions for Woodlark- Australia plate motions from 3.6-0.52 Ma. North of the island, the detachment fault is preserved as a ~12° N-dipping scarp on the seafloor. The northern, submarine part of the Woodlark rift contains several active half-grabens, and has been the site of several >Mw 6.0 earthquakes on planes dipping 23-30° N. Focal depths in this part of the rift are <8-9 km (Abers {it et al.,} 1997). The ~40-km exhumed length of the fault, and estimates of the temperature and minimum depth (8-10 km) of mylonitization imply a finite dip-slip of at least 50 km. ODP stratigraphic data from nearby Moresby Seamount suggest that slip on the Normanby fault had begun by ~3.8 Ma. 40Ar/39Ar data from the lower plate have yielded plateau ages on mylonitic white mica of 3-4 Ma, interpreted as cooling ages. A preliminary estimate of the age gradient parallel to transport suggests a minimum slip-rate of ~24 ±5mm/yr (assumes a geotherm at dynamic equilibrium) on this rolling hinge-style MCC, one of the fastest slip-rates ever determined for a normal fault. This is ~70% of the rift's spreading rate during that interval, implying marked strain localization on a single, highly evolved low-angle normal fault. MCC's in the Woodlark Rift are bounded transversely by continental transform faults that

  12. Growth and linkage of the quaternary Ubrique Normal Fault Zone, Western Gibraltar Arc: role on the along-strike relief segmentation

    NASA Astrophysics Data System (ADS)

    Jiménez-Bonilla, Alejandro; Balanya, Juan Carlos; Exposito, Inmaculada; Diaz-Azpiroz, Manuel; Barcos, Leticia

    2015-04-01

    Strain partitioning modes within migrating orogenic arcs may result in arc-parallel stretching that produces along-strike structural and topographic discontinuities. In the Western Gibraltar Arc, arc-parallel stretching has operated from the Lower Miocene up to recent times. In this study, we have reviewed the Colmenar Fault, located at the SW end of the Subbetic ranges, previously interpreted as a Middle Miocene low-angle normal fault. Our results allow to identify younger normal fault segments, to analyse their kinematics, growth and segment linkage, and to discuss its role on the structural and relief drop at regional scale. The Colmenar Fault is folded by post-Serravallian NE-SW buckle folds. Both the SW-dipping fault surfaces and the SW-plunging fold axes contribute to the structural relief drop toward the SW. Nevertheless, at the NW tip of the Colmenar Fault, we have identified unfolded normal faults cutting quaternary soils. They are grouped into a N110˚E striking brittle deformation band 15km long and until 3km wide (hereafter Ubrique Normal Fault Zone; UNFZ). The UNFZ is divided into three sectors: (a) The western tip zone is formed by normal faults which usually dip to the SW and whose slip directions vary between N205˚E and N225˚E. These segments are linked to each other by left-lateral oblique faults interpreted as transfer faults. (b) The central part of the UNFZ is composed of a single N115˚E striking fault segment 2,4km long. Slip directions are around N190˚E and the estimated throw is 1,25km. The fault scarp is well-conserved reaching up to 400m in its central part and diminishing to 200m at both segment terminations. This fault segment is linked to the western tip by an overlap zone characterized by tilted blocks limited by high-angle NNE-SSW and WNW-ESE striking faults interpreted as "box faults" [1]. (c) The eastern tip zone is formed by fault segments with oblique slip which also contribute to the downthrown of the SW block. This kinematic

  13. Spatial Evolution of Neogene Normal Faults, Northern Owens Valley: Constraints on Oblique-slip Partioning Within the Eastern California Shear Zone.

    NASA Astrophysics Data System (ADS)

    Sheehan, T. P.; Dawers, N.

    2005-05-01

    Simple geometric constraints can be used to predict fault interaction at depth. Such interaction within crustal scale fault populations plays an important role in the tectonic evolution of extensional tectonic settings. Here we use a theoretical relationship between fault dip, horizontal fault spacing, and depth to the base of the seismogenic zone to explain the late Cenozoic temporal and spatial evolution of faulting within the Eastern California shear zone, including the northern extent of Owens Valley, California. Our results show that during its evolution, the east-dipping Sierra Nevada frontal fault in northern Owens Valley became inactive due to intersection with the larger west-dipping range-bounding fault of the White Mountains. The horizontal spacing of 10 km between these two conjugate faults is such that they intersect within the brittle seismic layer resulting in the locking of this segment of Sierra Nevada frontal fault. Continued accumulation of normal displacement along the White Mountains fault zone has since resulted in the present-day half-graben basement structure of northern Owens Valley. This down-dropping along the eastern margin of the valley imposes a flexural tension across the surface of the Coyote Warp, which can be considered a large relay zone between the Sierra Nevada frontal fault and the Round Valley fault further west. It is suggested that this tension is responsible for the formation of west-dipping antithetic normal faults that are distributed locally around the Coyote Warp. This extensional fault geometry has imposed a kinematic restraint on the development and distribution of right-lateral shear within this part of the Eastern California shear zone, including northeastward transfer of right-lateral slip from the Owens Valley fault to the White Mountains fault.

  14. Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges

    NASA Astrophysics Data System (ADS)

    Hodges, Kip; Bowring, Samuel; Davidek, Kathleen; Hawkins, David; Krol, Michael

    1998-06-01

    East-striking, low-angle normal faults of the South Tibetan detachment system have played an important role in exposing the high-grade metamorphic core of the Himalayan orogen. In the Mount Everest region of southern Tibet, granites both pre- and postdate an important fault of the system, the Qomolangma detachment. New U-Pb and 40Ar/39Ar geochronologic data for these rocks constrain the age of brittle faulting to between 16.67 ± 0.04 and 16.37 ± 0.40 Ma, significantly expanding the known age range for extension in the central Himalaya (widely regarded as ca. 20 22 Ma). More importantly, they indicate an average displacement rate of ≥47 mm/yr and a consequent tectonic unroofing rate of ≥8.2 mm/yr. Such unroofing is faster than all but the highest estimates of combined physical and chemical erosion rates in mountainous regions, suggesting that large-displacement normal faulting can be an extremely efficient agent of mass redistribution in orogenic systems.

  15. Diachronous Growth of Normal Fault Systems in Multiphase Rift Basins: Structural Evolution of the East Shetland Basin, Northern North Sea

    NASA Astrophysics Data System (ADS)

    Claringbould, Johan S.; Bell, Rebecca E.; A-L. Jackson, Christopher; Gawthorpe, Robert L.; Odinsen, Tore

    2015-04-01

    Our ability to determine the structural evolution and interaction of fault systems (kinematically linked group of faults that are in the km to 10s of km scale) within a rift basin is typically limited by the spatial extent and temporal resolution of the available data and methods used. Physical and numerical models provide predictions on how fault systems nucleate, grow and interact, but these models need to be tested with natural examples. Although field studies and individual 3D seismic surveys can provide a detailed structural evolution of individual fault systems, they are often spatially limited and cannot be used examine the interaction of fault systems throughout the entire basin. In contrast, regional subsurface studies, commonly conducted on widely spaced 2D seismic surveys, are able to capture the general structural evolution of a rift basin, but lack the spatial and temporal detail. Moreover, these studies typically describe the structural evolution of rifts as comprising multiple discrete tectonic stages (i.e. pre-, syn- and post-rift). This simplified approach does not, however, consider that the timing of activity can be strongly diachronous along and between faults that form part of a kinematically linked system within a rift basin. This study focuses on the East Shetland Basin (ESB), a multiphase rift basin located on the western margin of the North Viking Graben, northern North Sea. Most previous studies suggest the basin evolved in response to two discrete phases of extension in the Permian-Triassic and Middle-Late Jurassic, with the overall geometry of the latter rift to be the result of selective reactivation of faults associated with the former rift. Gradually eastwards thickening intra-rift strata (deposited between two rift phases) that form wedges between and within fault blocks have led to two strongly contrasting tectonic interpretations: (i) Early-Middle Jurassic differential thermal subsidence after Permian-Triassic rifting; or (ii

  16. Detecting young, slow-slipping active faults by geologic and multidisciplinary high-resolution geophysical investigations: A case study from the Apennine seismic belt, Italy

    NASA Astrophysics Data System (ADS)

    Improta, L.; Ferranti, L.; de Martini, P. M.; Piscitelli, S.; Bruno, P. P.; Burrato, P.; Civico, R.; Giocoli, A.; Iorio, M.; D'Addezio, G.; Maschio, L.

    2010-11-01

    The Southern Apennines range of Italy presents significant challenges for active fault detection due to the complex structural setting inherited from previous contractional tectonics, coupled to very recent (Middle Pleistocene) onset and slow slip rates of active normal faults. As shown by the Irpinia Fault, source of a M6.9 earthquake in 1980, major faults might have small cumulative deformation and subtle geomorphic expression. A multidisciplinary study including morphological-tectonic, paleoseismological, and geophysical investigations has been carried out across the extensional Monte Aquila Fault, a poorly known structure that, similarly to the Irpinia Fault, runs across a ridge and is weakly expressed at the surface by small scarps/warps. The joint application of shallow reflection profiling, seismic and electrical resistivity tomography, and physical logging of cored sediments has proved crucial for proper fault detection because performance of each technique was markedly different and very dependent on local geologic conditions. Geophysical data clearly (1) image a fault zone beneath suspected warps, (2) constrain the cumulative vertical slip to only 25-30 m, (3) delineate colluvial packages suggesting coseismic surface faulting episodes. Paleoseismological investigations document at least three deformation events during the very Late Pleistocene (<20 ka) and Holocene. The clue to surface-rupturing episodes, together with the fault dimension inferred by geological mapping and microseismicity distribution, suggest a seismogenic potential of M6.3. Our study provides the second documentation of a major active fault in southern Italy that, as the Irpinia Fault, does not bound a large intermontane basin, but it is nested within the mountain range, weakly modifying the landscape. This demonstrates that standard geomorphological approaches are insufficient to define a proper framework of active faults in this region. More in general, our applications have wide

  17. Late Quaternary reef growth history of Les Saintes submarine plateau: a key to constrain active faulting kinematics in Guadeloupe (FWI)

    NASA Astrophysics Data System (ADS)

    Leclerc, F.; Feuillet, N.; Deplus, C.; Cabioch, G.; Tapponnier, P.; LeBrun, J.; Bazin, S.; Beauducel, F.; Boudon, G.; Le Friant, A.; De Min, L.; Melezan, D.

    2012-12-01

    The damaging November 21 2004 earthquake (Mw 6.3) occurred on a large normal fault system offshore Les Saintes archipelago in Guadeloupe. To better constrain the seismic hazard related to this fault system, new data were acquired in 2009 and 2010 during the GWADASEIS and BATHYSAINTES cruises. Digital Elevation Models (DEM), with a horizontal resolution of 2.5 m, were calculated with the bathymetric data acquired at shallow depth on Les Saintes insular shelf. Together with seismic reflection profiles, this data makes it possible to identify and map the fault system and to understand its kinematics with respect to the plateau formation. The 15km wide, -45m deep drowned plateau of Les Saintes is composed of four coral terraces, down to 110 m bsl, piled-up on the Upper Pliocene to Quaternary Les Saintes volcanic centres. The shallowest terrace corresponds to a drowned Holocene reef system. Reef typical features, as double barriers, pinnacles, spurs and grooves, are well identified in the bathymetry. Seismic reflection profiles indicate that the Holocene terrace overlays Pleistocene ones. Geophysical data and reef growth modeling tend to show that the reef plateau has formed under subsidence conditions (~0.35 mm/yr) since Ionian ages, recording the main sea level highstands, before being drowned during the last sea level rise, around 11ka BP. The four terraces are crosscut by several NW-SE striking normal faults, which have scarps up to 8m. They offset them, the older, the more, inducing syntectonic sedimentation. The fault system extends from the northern plateau's edge to Les Saintes channel, toward Dominica, constituting the eastern side of Les Saintes graben. In the channel, the Roseau Fault, responsible for the 2004 earthquake, bounds the graben western side. The new data confirms its extent to the north, as the fault offsets the plateau's western cliff by several tens of meter, counter-slope like, dipping under Les Saintes islands and inducing a high seismic

  18. Seismic sources and stress transfer interaction among axial normal faults and external thrust fronts in the Northern Apennines (Italy): A working hypothesis based on the 1916-1920 time-space cluster of earthquakes

    NASA Astrophysics Data System (ADS)

    Bonini, Marco; Corti, Giacomo; Donne, Dario Delle; Sani, Federico; Piccardi, Luigi; Vannucci, Gianfranco; Genco, Riccardo; Martelli, Luca; Ripepe, Maurizio

    2016-06-01

    In this study we analyse the main potential seismic sources in some axial and frontal sectors of the Northern Apennines, in Italy. This region was hit by a peculiar series of earthquakes that started in 1916 on the external thrust fronts near Rimini. Later, in 1917-1921, seismicity (up to Mw ≈ 6.5) shifted into the axial zone and clearly migrated north-westward, along the belt of active normal faults. The collection of fault-slip data focused on the active normal faults potentially involved in this earthquake series. The acquired data allowed us to better characterize the geometry and kinematics of the faults. In a few instances, the installation of local seismic networks during recent seismic sequences allowed the identification of the causative faults that are hinted to be also responsible for past earthquakes, particularly in the Romagna region and north-eastern Mugello. The Coulomb stress changes produced by the historical earthquakes generally brought closer to failure all the faults that supposedly caused the main seismic events of 1916-1921. However, the stress change magnitude is generally small and thus the static stress interaction among the main seismic sources is not supported by a significant seismic correlation. Significant stress change loading may be instead inferred for the triggering of a number of seismic events on neighbouring normal faults by the Garfagnana 1920 earthquake. In addition, the computation of the seismic stress changes suggests that seismic events with magnitude ≥ 6 may transmit stresses from the axial normal faults to specific external thrusts and vice versa. It is possible that a correlation may be made between loading applied by the major 1917-1920 extensional ruptures and the increased seismicity on the distal external thrusts.

  19. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  20. Mapping of active faults based on the analysis of high-resolution seismic reflection profiles in offshore Montenegro

    NASA Astrophysics Data System (ADS)

    Vucic, Ljiljana; Glavatovic, Branislav

    2014-05-01

    High-resolution seismic-reflection data analysis is considered as important tool for mapping of active tectonic faults, since seismic exploration methods on varied scales can image subsurface structures of different depth ranges. Mapping of active faults for the offshore area of Montenegro is performed in Petrel software, using reflection database consist of 2D profiles in length of about 3.500 kilometers and 311 square kilometers of 3D seismics, acquired from 1979 to 2003. Montenegro offshore area is influenced by recent tectonic activity with numerous faults, folded faults and over trusts. Based on reflection profiles analysis, the trust fault system offshore Montenegro is reveled, parallel to the coast and extending up to 15 kilometers from the offshore line. Then, the system of normal top carbonate fault planes is mapped and characterized on the southern Adriatic, with NE trending. The tectonic interpretation of the seismic reflection profiles in Montenegro point toward the existence of principally reverse tectonic forms in the carbonate sediments, covered by young Quaternary sandy sediments of thickness 1-3 kilometers. Also, reflective seismic data indicate the active uplifting of evaporite dome on about 10 kilometers of coastline.

  1. Normal faulting of the Daiichi-Kashima Seamount in the Japan Trench revealed by the Kaiko I cruise, Leg 3

    USGS Publications Warehouse

    Kobayashi, K.; Cadet, J.-P.; Aubouin, J.; Boulegue, J.; Dubois, J.; von, Huene R.; Jolivet, L.; Kanazawa, T.; Kasahara, J.; Koizumi, K.-i.; Lallemand, S.; Nakamura, Y.; Pautot, G.; Suyehiro, K.; Tani, S.; Tokuyama, H.; Yamazaki, T.

    1987-01-01

    A detailed topographic and geophysical survey of the Daiichi-Kashima Seamount area in the southern Japan Trench, northwestern Pacific margin, clearly defines a high-angle normal fault which splits the seamount into two halves. A fan-shaped zone was investigated along 2-4 km spaced, 100 km long subparallel tracks using narrow multi-beam (Seabeam) echo-sounder with simultaneous measurements of gravity, magnetic total field and single-channel seismic reflection records. Vertical displacement of the inboard half was clearly mapped and its normal fault origin was supported. The northern and southern extensions of the normal fault beyond the flank of the seamount were delineated. Materials on the landward trench slope are displaced upward and to sideways away from the colliding seamount. Canyons observed in the upper landward slope terminate at the mid-slope terrace which has been uplifted since start of subduction of the seamount. Most of the landward slope except for the landward walls aside the seamount comprises only a landslide topography in a manner similar to the northern Japan Trench wall. This survey was conducted on R/V "Jean Charcot" as a part of the Kaiko I cruise, Leg 3, in July-August 1984 under the auspices of the French-Japanese scientific cooperative program. ?? 1987.

  2. Growth and interaction of active faults within a nascent shear zone, central Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Oskin, M.; Strane, M.

    2006-12-01

    Compilation of new slip-distribution and slip-rate data from the Mojave Desert portion of the Eastern California shear zone (ECSZ) lends insight into the role of fault growth and interaction of conjugate fault systems in accommodating shear. Dextral faults of the Mojave Desert ECSZ approach but do not appear to cut the bounding ENE-striking sinistral Pinto Mountain and Garlock faults. Differing styles of accommodation of these bounding faults occur at opposite ends of the 140 km-long NW-striking Hidalgo-Calico-Blackwater dextral fault system. Total slip and slip rate of the Blackwater fault gradually diminish northward. The fault terminates as a single strand with a zero-slip fault tip before intersecting the Garlock fault. In contrast, the Calico and Hidalgo faults spread displacement southward onto multiple fault strands spaced several kilometers apart. Active folding further distributes displacement onto the adjacent Bullion and Mesquite Lake faults. These mechanisms appear to maintain a uniform gradient of displacement approaching the Pinto Mountain fault. The highest displacement (9.8 ± 0.2 km) and slip rate (1.8 ± 0.3 mm/yr) occur in the central part of the Hidalgo-Calico-Blackwater fault system where strain is concentrated onto a single fault strand. A significant drop in total displacement and slip rate occurs along the northern Calico fault. Strain appears to be transferred here onto ENE-striking sinistral faults that separate domains of clockwise rotation in the central Mojave Desert. The kinematically incompatible intersection of sinistral and dextral faults is accommodated, at least in part, by active folding and uplift of the Calico Mountains and Mud Hills. Total slip and slip rate are not correlative for dextral faults of the Mojave ECSZ, indicating ongoing evolution of the fault network. For example, the Lenwood fault is a highly segmented, immature dextral fault with only 1.0 ± 0.1 km of total displacement yet its slip rate (1.5 ± 0.4 mm/yr) is

  3. Searching for Seismically Active Faults in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Antunes, V.; Arroucau, P.

    2015-12-01

    The repeated occurrence of large magnitude earthquakes in southwest Iberia in historical and instrumental times suggests the presence of active fault segments in the region. However, due to an apparently diffuse seismicity pattern defining a broad region of distributed deformation west of Gibraltar Strait, the question of the location, dimension and geometry of such structures is still open to debate. We recently developed a new algorithm for earthquake location in 3D complex media with laterally varying interface depths, which allowed us to relocate 2363 events having occurred from 2007 to 2013, using P- and S-wave catalog arrival times obtained from the Portuguese Meteorological Institute (IPMA, Instituto Portugues do Mar e da Atmosfera), for a study area lying between 8.5˚W and 5˚W in longitude and 36˚ and 37.5˚ in latitude. The most remarkable change in the seismicity pattern after relocation is an apparent concentration of events, in the North of the Gulf of Cadiz, along a low angle northward-dipping plane rooted at the base of the crust, which could indicate the presence of a major fault. If confirmed, this would be the first structure clearly illuminated by seismicity in a region that has unleashed large magnitude earthquakes. Here, we present results from the joint analysis of focal mechanism solutions and waveform similarity between neighboring events from waveform cross-correlation in order to assess whether those earthquakes occur on the same fault plane.

  4. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    NASA Astrophysics Data System (ADS)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  5. Safety enhancement of oil trunk pipeline crossing active faults on Sakhalin Island

    NASA Astrophysics Data System (ADS)

    Tishkina, E.; Antropova, N.; Korotchenko, T.

    2015-11-01

    The article explores the issues concerning safety enhancement of pipeline active fault crossing on Sakhalin Island. Based on the complexity and analysis results, all the faults crossed by pipeline system are classified into five categories - from very simple faults to extremely complex ones. The pipeline fault crossing design is developed in accordance with the fault category. To enhance pipeline safety at fault crossing, a set of methods should be applied: use of pipes of different safety classes and special trench design in accordance with soil permeability characteristics.

  6. The West Salton Detachment Fault, Salton Trough, California: a Primary Low-Angle Normal Fault in an Evolving Dextral Wrench Zone

    NASA Astrophysics Data System (ADS)

    Axen, G. J.; Janecke, S.; Steely, A.; Shirvell, C.; Fluette, A.; Kairouz, M.; Housen, B.; Stockli, D.; Dorsey, R.; Grove, M.

    2006-12-01

    The west Salton detachment fault (WSDF), bounded the W rift flank, and was largely coeval with the southern San Andreas fault (SSAF). The WSDF is exposed in ~E-trending folds: broad, apparently primary corrugations S. Santa Rosa Mts., Borrego Valley-Pinyon Mts., Whale Peak, Vallecito Valley, and Tiera Blanca Mts) and narrow, post-WSDF folds (e.g., adjacent to San Felipe and Earthquake Valley faults). WSDF slip may have begun at ~12+, ~8.1, 5.5 or 4.6 Ma and was probably rapid from ~5 to 2 Ma. Two (U-Th)/He vertical transects from the WSDF footwall show rapid cooling since 12 Ma, and very rapid cooling between ~5.5-4.5 and ~2 Ma. Subsidence curves from the Fish Creek Vallecito basin (FCVB; Dorsey et al., this session) show increased rates at ~8.1 Ma, 5.5, and 4.6 Ma. Syntectonic conglomerate (base ~8.1 Ma) there records earliest extension, but may have been only local. Widespread marine deposits (~6.3 to 4.25 Ma) locally contain syndetachment fault-scarp facies; eustatic sea level rise may have controlled initial marine flooding. Subsidence was most rapid from ~4.6 to 3 Ma. Upper-plate normal faults are rare but folds formed locally. At Borrego Mtn. a WNW-trending anticline formed by ~6 Ma and persisted until after 4 Ma, coeval with WSDF slip. Folding at Split Mtn may have begun earlier. The WSDF has at least 5 km of E or NE slip, from offset basement but higher WSDF strands carry syntectonic conglomerates some additional distance. (U-Th)/He apatite ages from the upper and lower plates suggest ~2.4 km of footwall exhumation, yielding 5-15 km of slip, depending upon dip assumed. WSDF striae scatter widely, but concentrate at 090-110, probably the main or most recent slip direction. CW vertical- axis rotations have occurred (Housen et al., this session): ~3-4 m.y. old FCVB strata are rotated 19° ± 12°, and footwall La Posta pluton at Whale Peak rotated perhaps 36° (relative to the Peninsular Range La Posta). Similar rotations were common in N Baja CA in latest

  7. Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, J.-C.; Angelier, J.; Chu, H.-T.; Hu, J.-C.; Jeng, F.-S.

    2001-04-01

    Data from continuously monitored creepmeters across the active Chihshang Fault in eastern Taiwan are presented. The Chihshang Fault is an active segment of the Longitudinal Valley Fault, the main suture between the converging Philippine and Eurasian plates in Taiwan. Since the 1951 earthquake (Mw=7.0), no earthquake larger than magnitude 6.0 occurred in the Chihshang area. At least during the last 20 years, the Chihshang Fault underwent a steady creep movement, resulting in numerous fractures at the surface. Five creepmeters were installed in 1998 at two sites, Tapo and Chinyuan, within the Chihshang active fault zone. One-year results (from August 1998 to July 1999) show a horizontal shortening of 19.4±0.3 mm and 17.3±0.7 mm, at Tapo and Chinyuan, respectively. These annual shortening rates are in a good agreement with other estimates of strain rate independently obtained from geodetic measurements and geological site investigation. The creepmeter measurements were made on a daily basis, providing accurate information on the previously unknown evolution of creep during the year. The records of fault creep at the Tapo site thus revealed close seasonal correlation with average rainfall: the period of high creep rate coincides with the wet season, whereas that of low creep rate coincides with the dry season. Also, in comparison with the Tapo site, the creep behaviour as a function of time is complex at the Chinyuan site. Possible factors of irregularity are under investigation (thermal effect acting on the concrete basement of the creepmeters, earth tide effect, water table variations in a nearby rice field, and rainfall). The comparison between GPS measurements across the Longitudinal Valley (31 mm/year of horizontal displacement) and the creepmeter measurement across the Chihshang Fault zone (17-19 mm/year of horizontal displacement) suggests that there exists other shortening deformation across the active fault zone in addition to those we have measured from the

  8. Active faulting at Delphi, Greece: Seismotectonic remarks and a hypothesis for the geologic environment of a myth

    NASA Astrophysics Data System (ADS)

    Piccardi, Luigi

    2000-07-01

    Historical data are fundamental to the understanding of the seismic history of an area. At the same time, knowledge of the active tectonic processes allows us to understand how earthquakes have been perceived by past cultures. Delphi is one of the principal archaeological sites of Greece, the main oracle of Apollo. It was by far the most venerated oracle of the Greek ancient world. According to tradition, the mantic proprieties of the oracle were obtained from an open chasm in the earth. Delphi is directly above one of the main antithetic active faults of the Gulf of Corinth Rift, which bounds Mount Parnassus to the south. The geometry of the fault and slip-parallel lineations on the main fault plane indicate normal movement, with minor right-lateral slip component. Combining tectonic data, archaeological evidence, historical sources, and a reexamination of myths, it appears that the Helice earthquake of 373 B.C. ruptured not only the master fault of the Gulf of Corinth Rift at Helice, but also the antithetic fault at Delphi, similarly to the Corinth earthquake of 1981. Moreover, the presence of an active fault directly below the temples of the oldest sanctuary suggests that the mythological oracular chasm might well have been an ancient tectonic surface rupture.

  9. Bering Sea earthquake of February 21, 1991: Active faulting along the Bering shelf edge

    SciTech Connect

    Abers, G.A. ); Ekstroem, G. ); Marlow, M.S.; Geist, E.L. )

    1993-02-10

    On February 21, 1991, an M[sub S] = 6.8 shallow earthquake occurred in the eastern Bering Sea in an area which previously has shown no significant seismic activity. The earthquake was located on the Bering Shelf close to the shelf edge, near one of the elongate basins (Zhemchun Basin) that follow the outer shelf. To better understand the causes of this unusual event, we relocated the earthquake and its aftershocks, determined its source mechanism and depth, and examined multichannel seismic observations of structures near the epicenter. The event was relocated from regional and teleseismic P and S arrival times using a nonlinear inverse technique, as were the 19 previous well-recorded Bering Sea earthquakes in global catalogs (1964-1987). The 1991 mainshock epicenter was located on the western flank of Zhemchug Basin. The only four previous events with small (< 1[degrees]) location errors relocated at the outer shelf near the Pribilof Islands. The focal mechanism for the 1991 event, determined by inversion of teleseismic, broadband body waves and centroid-moment tensor data, shows oblique normal faulting with the T-axis, oriented north-south. One nodal plane dips steeply to the northeast and strikes parallel to the basin axis, subparallel to faults that bound Zhemchug Basin. This earthquake may be due to slip on one of these normal faults, several of which are seen to offset young strata on a multichannel seismic line 30 km south of the earthquake. It has previously been suggested that the large canyons that cut the Bering Shelf and the adjacent outer-shelf basins are fault controlled, but this event and its aftershocks provide the first strong evidence to support the hypothesis that these structures are currently active and produce earthquakes. 34 refs., 8 figs., 2 tabs.

  10. Detached strata in a Tertiary low-angle normal fault terrane, southeastern California: a sedimentary record of unroofing, breaching, and continued slip

    SciTech Connect

    Miller, J.M.G.; John, B.E.

    1988-07-01

    Miocene sedimentary strata exposed in the eastern Chemehuevi Mountains, southeastern California, record development of an evolving low-angle normal fault system. The sequence includes more than 1 km of conglomerate and sandstone with rare interbedded monolithologic breccia and volcanic flows. Clasts of Peach Springs Tuff in basal units indicate that this succession is younger than 18 Ma. These rocks have been displaced by a regionally extensive low-angle normal fault, the Chemehuevi detachment, and are folded and faulted. Structural reconstructions and the character of associated fault rocks indicate that the Chemeheuvi fault was initiated at a low angle and that the footwall was progressively unloaded through thinning and displacement of its cover during extensional deformation. The syntectonic sedimentary rocks described here provide evidence that movement continued on the gently dipping (< 15/sup 0/) fault even after part of the fault was breached and the footwall eroded. The Conglomerates and sandstones were deposited by stream flow and debris flow on alluvial fans. Synsedimentary faulting is suggested by angular discordance below one monolithologic breccia bed and by local coarsening-upward sequences. Clast types reveal progressive unroofing of hanging-wall rocks to exposer the Chemehuevi fault zone, from which chloritic, brecciated granite clasts were derived. Clasts were then derived from both the hanging wall and the footwall, footwall debris being dominant high in the section. Distinctive clasts show that late displacement on this evolving fault system was on the order of 1 to 5 km.

  11. Deformation mechanisms, architecture, and petrophysical properties of large normal faults in platform carbonates and their role in the release of carbon dioxide from earth's interior in central Italy

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio

    2006-04-01

    A challenging theme of research in structural geology is the process of faulting in carbonate rocks: how do the resulting internal architecture and petrophysical properties of faults affect subsurface fluid flow. A better understanding of this process is important to evaluate the potential oil and gas recovery from carbonate reservoirs, and to plan CO 2 containment in the depleted reservoirs. Carbonate rocks may deform with different mechanisms depending primarily on their original sedimentary fabric, diagenetic history, fluid content, and tectonic environment. In this dissertation I investigate the deformation mechanisms, petrophysics, and internal fluid composition of large, seismic, basin-bounding normal faults in low porosity platform carbonates. Based on the nature, orientation, and abutting relationships of the structural elements preserved within the faults and in the surrounding carbonate host rocks, I was able to characterize the mechanisms of fault growth and the fault architecture. Incipient faulting occurred at shallow depths by sequential formation and shearing of pressure solution seams and joints/veins; with ongoing deformation and exhumation, the joint-based mechanism became predominant. The end result is a mature normal fault that juxtaposes basin sedimentary rocks of the hanging wall against deformed carbonates of the footwall. The deformed carbonates of the fault footwalls are composed of rocks with low porosity and permeability and major slip surfaces in the fault core, and fragmented carbonate matrices with high porosity and permeability, and small faults in the damage zone. The degree of fragmentation in the damage zone generally increases towards the fault hanging wall, forming structural domains characterized by different deformation intensity. The rocks of the fault core have sub-spherical pores, those of the damage zone have elongated, crack-like, pores. The permeability structure of the normal fault zones is therefore made up of a fault

  12. Simultaneous normal faulting and extensional flexuring during rifting: an example from the southernmost Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Ustaszewski, Kamil; Schumacher, Markus E.; Schmid, Stefan M.

    2005-09-01

    The southern end of the Upper Rhine Graben (URG) is formed by a major continental transfer zone, which was localised by the reactivation of ENE-oriented basement faults of Late Palaeozoic origin. A combination of subcrop data (derived from exploration wells and reflection seismic lines) and palaeostress analysis provided new constraints on the timing and kinematics of interacting basement faults. Rifting in the southern URG began in the Upper Priabonian under regional WNW ESE-directed extension, oriented roughly perpendicular to the graben axis. In the study area, this led to the formation of NNE-trending half-grabens. Simultaneously, ENE-trending basement faults, situated in the area of the future Rhine-Bresse Transfer Zone (RBTZ), were reactivated in a sinistrally transtensive mode. In the sedimentary cover the strike-slip component was accommodated by the development of en-échelon aligned extensional flexures. Flexuring and interference between the differently oriented basement faults imposed additional, but locally confined extension in the sedimentary cover, which deviated by as much as 90° from the regional WNW ESE extension. The interference of regional and local stresses led to a regime approaching radial extension at the intersection between the URG and RBTZ.

  13. Morphologic and Geochronological constraints on the long (> Ma) and short (10-100 Kyr) term vertical rates on south Tibetan normal faults.

    NASA Astrophysics Data System (ADS)

    Kali, E.; van der Woerd, J.; Arnaud, N.; Leloup, P. H.; Mahéo, G.; Liu-Zeng, J.; Chevalier, M. L.; Lacassin, R.; Tapponnier, P.; Thuizat, R.

    2009-04-01

    Quantification of slip and exhumation rates along the long recognized north-south trending active normal faults of the Tibetan plateau are key data in order to constrain mechanical models of the geodynamic evolution of the India-Asia convergence zone. In this study, we combine morphologic, structural, petrological analysis and low to medium thermo-chronology of Quaternary and basement rocks in order to compare short-term and long-term fault rates along two of the main Tibetan rifts systems: Yadong-Gulu and Xainza-Dinggye. At the southern end of the Xainza-Dingyye rift system the Ama Drime range (Everest region) is a horst flanked on each side by N-S trending ductile normal shear zones and active normal faults. Petrological studies combined with U/Pb and Ar/Ar geochronology reveal that the horst formation induced an exhumation on the order of 2 to 4 kbar (7 to 15 km), starting at ~12 Ma. This corresponds to exhumation rates of 0.6 to 1.3 mm/year. Low temperature geochronology (apatite (U-Th)/He dating) indicate Pliocene apparent exhumation rates of about 1 mm/yr since ~5 Ma for the whole massif (this study, Jessup et al., 2008). Short term fault rates can be obtained using cosmogenic nuclide exposure ages of offset geomorphic features such as terraces or moraines. Such features are abundant along the western flank of the Ama Drime range, where the Kharta active fault separates the range from the Kharta basin where the Arun river has abandoned fluvial terraces. The river crosses the fault three times carving deep gorges into the footwall before finally crossing the Himalayas. In the southern part of the Kharta basin, river terraces ~100 m above the present riverbed are offset between 10 and 15 m by one branch of the normal fault. 10Be cosmogenic nuclide exposure ages of these terraces range between 9 and 11 kyr, consistent with aggradation after the Last Glacial Maximum (LGM ~20 ka), followed by rapid incision of the Arun. Together, offsets and ages imply a vertical

  14. Offshore active faults of the Mikata fault zone in Fukui, Japan, revealed by high-resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Sugiyama, Y.; Sakamoto, I.; Takino, Y.; Murakami, F.; Hosoya, T.; Usami, T.

    2014-12-01

    The Mikata fault zone are located in coastal and shallow sea area off Fukui Prefecture, West Japan. National Institute of Advanced Industrial Science and Technology (AIST) and Tokai University conducted, as part of MEXT 2013 nearshore active fault survey project, a high-resolution multi-channel seismic survey using Boomer and a 12-channel streamer cable, acoustic profiling survey using parametric sub-bottom profiler and shallow-sea offshore drilling, in order to clarify distribution and activity of the Mikata fault zone. The seismic reflection surveys identified four reflection surfaces as vertical displacement markers in the post-glacial deposits at a depth ranging from ca. 4.5m to ca. 17m below the sea bottom on the downthrown side. We estimated the age of each marker reflection surface by using the C14 age and others from 4m-long core obtained on the downthrown side of fault and the sea level change in the latest Pleistocene and early Holocene around Japan. The results of these surveys have revealed that the fault system was reactivated three times since the latest Pleistocene. The vertical slip rate and average recurrence interval of the fault system are estimated at ca. 0.8-1.0 m/ky and 2,000-3,800 years, respectively.

  15. Aftershocks illuninate the 2011 Mineral, Virginia, earthquake causative fault zone and nearby active faults

    USGS Publications Warehouse

    Horton, Jr., J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M

    2015-01-01

    Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.

  16. Elastic-wave propagation and site amplification in the Salt Lake Valley, Utah, from simulated normal faulting earthquakes

    USGS Publications Warehouse

    Benz, H.M.; Smith, R.B.

    1988-01-01

    The two-dimensional seismic response of the Salt Lake valley to near- and far-field earthquakes has been investigated from simulations of vertically incident plane waves and from normal-faulting earthquakes generated on the basin-bounding Wasatch fault. The plane-wave simulations were compared with observed site amplifications in the Salt Lake valley, based on seismic recordings from nuclear explosions in southern Nevada, that show 10 times greater amplification with the basin than measured values on hard-rock sites. Synthetic seismograms suggest that in the frequency band 0.3 to 1.5 Hz at least one-half the site amplitication can be attributed to the impedance contrast between the basin sediments and higher velocity basement rocks. -from Authors

  17. Aftershocks of the 2010 Mw 7.4 Bonin Islands normal-faulting earthquake: Implication for deformation of the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Obana, K.; Takahashi, T.; No, T.; Kaiho, Y.; Kodaira, S.; Yamashita, M.; Sato, T.; Noguchi, N.; Nakamura, T.

    2011-12-01

    distribution before the OBS deployment using three seismic stations on Chichi-jima and Haha-jima Islands operated by JMA and National Research Institute for Earth Science and Disaster Prevention (NIED), Japan. We used a matched filter technique [e.g., Shelly et al., 2007] with the aftershocks determined by the OBSs as templates. The aftershocks immediately after the mainshock occurred only in a 80 km long area near the central part of the aftershock area. The aftershock area expanded over hours or days in an ESE direction away from the trench. Faults oriented from NW-SE to E-W directions have been identified around the aftershock area including a region far away from the trench [e.g., Okamura, et al., 1992]. The aftershock distribution and its expansion suggest that the mainshock occurred beneath the outer trench-slope near the trench. Then, the aftershock activity expanded along the pre-existing faults within the Pacific plate. Consideration of both normal faults formed near the trench and pre-existing fractures formed far away from the trench is required to understand the deformation and hydration of the oceanic plate prior to the subduction.

  18. Fault detection and isolation for an active wheelset control system

    NASA Astrophysics Data System (ADS)

    Mirzapour, Mohammad; Mei, T. X.; Xuesong, Jin

    2014-05-01

    Active control for railway wheelsets in the primary suspension has been shown to offer a number of performance gains, and especially it can be used to stabilise the wheelsets without compromising the vehicle's performance on curves. However, the use of actuators, sensors and data processors to replace the traditional passive suspension raises the issue of system safety in the event of a failure of the active control, which could result in the loss of stability (i.e. wheelset hunting), and in more severe cases, derailment. This paper studies the key issue of condition monitoring for an actively controlled railway system, with a focus on actuator failures to detect and isolate failure modes in such a system. It seeks to establish the necessary basis for fault detection to ensure system reliability in the event of malfunction in one of the two actuators. Computer simulations are used to demonstrate the effectiveness of the method.

  19. The Eidsfjord shear zone, Lofoten-Vesterålen, north Norway: An Early Devonian, paleoseismogenic low-angle normal fault

    NASA Astrophysics Data System (ADS)

    Steltenpohl, Mark G.; Moecher, David; Andresen, Arild; Ball, Jacob; Mager, Stephanie; Hames, Willis E.

    2011-05-01

    We report structural and 40Ar/39Ar isotopic information on the Eidsfjord shear zone that document it to be a seismogenic, tops-west (hinterland directed), Devonian ductile low angle (25-30° dip, shallowing locally) normal detachment fault. Anorthosite/migmatitic gneiss in the detachment's upper plate, mangerite in the lower plate, and detachment mylonites are all cut by generations of abundant pseudotachylyte occurring over approximately 150 km2. The mean of four laser 40Ar/39Ar plateau ages for single crystals of recrystallized muscovite from mylonites defining the Eidsfjord shear zone indicates an age of 403.6 ± 1.1 Ma (2σ) for deformation and recrystallization. 40Ar/39Ar step-heating analyses are reported for muscovite from mylonitized rocks of the Fiskefjord shear zone, a nearby tops-east Caledonian thrust that was reactivated as a tops-west normal fault, documenting cooling of the upper plate through the ˜350 °C isotherm at ˜457 Ma. Together with Middle-Ordovician tectonothermal relics found farther west in Lofoten, tops-down-to-the-west normal-slip movement on these extensional shear zones explains maintenance of high-crustal levels throughout the Siluro-Devonian Scandian event. Potassium feldspar 40Ar/39Ar results document a pulse, or multiple pulses, of uplift and cooling between ca. 235 Ma and 185 Ma, consistent with formation of Triassic-Jurassic rift basins flanking the Lofoten Ridge. The Eidsfjord detachment appears to mark the northern terminus of the Early Devonian detachment system traceable 800 km southward to the Nordfjord-Sogn detachment and westward across the North Atlantic to detachments of roughly the same age on the conjugate side of the orogen in East Greenland. The timing, geometry, kinematics, and rheological development of Eidsfjord detachment are grossly similar to the Nordfjord-Sogn detachment but the former contrasts in that it presently lacks exposed deposits of Devonian sedimentary rocks, has smaller magnitudes of displacement

  20. Fault kinematics and active tectonics at the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): Geodynamic implications for NNE Iran

    NASA Astrophysics Data System (ADS)

    Javidfakhr, Bita; Bellier, Olivier; Shabanian, Esmaeil; Siame, Lionel; Léanni, Laëtitia; Bourlès, Didier; Ahmadian, Seiran

    2011-10-01

    The Alborz is a region of active deformation within the Arabia-Eurasia collision zone. The Abr and the Khij Faults are two NE-trending left-lateral strike-slip faults in the eastern Alborz that correspond to the Shahrud fault system extended through an area of about 95 km × 55 km. Tectonic landforms typically associated with active strike-slip faults, such as deflected stream channels, offset ridges and fault scarps are documented along the mentioned faults. Detailed analyses of satellite images and digital topographic data accompanied by field surveys allowed us to measure horizontal offsets of about 420 ± 50 m and 400 ± 50 m for the Abr and Khij Faults, respectively. A total of 8 quartz-rich samples were sampled and dated from two different fan surfaces using in situ-produced 10Be cosmogenic dating method. Minimum exposure ages for the abandonment of the alluvial fan surfaces of 115 ± 14 kyr along the Abr Fault and of 230 ± 16 kyr along the Khij Fault imply that both faults are active with slip rates of about 3-4 mm yr -1 and 1-3 mm yr -1, respectively. The results of our study provide the first direct quantitative geological estimates of slip rate along these two active faults and place a new constraint on slip distribution between the faults in the eastern Alborz. Fault kinematic studies (from fault slip data) indicate a N35°E-trending maximum stress axis comprising a dominant strike-slip regime in agreement with the geomorphological analyses. The left-lateral strike-slip faulting along the Abr and Khij Faults and their associated fault zones in the eastern Alborz can be due to the westward component of motion of the South Caspian Basin with respect to Eurasia and Central Iran.

  1. Structural styles of the High Atlas mountains, Morocco: Potential hydrocarbon traps in the footwall of thrusts developed from the reactivation of syn-rift normal faults

    SciTech Connect

    Beauchamp, W.; Allmendinger, R.W.; Barazangi, M. )

    1996-01-01

    Large asymmetrical folds and box folds created by fault bend and fault propagation folding characterize the style of deformation in the High Atlas mountains. Several compressional phases of faulting and folding from the Lower Jurassic through Cenozoic indicate a long and varied tectonic origin for the High Atlas intracontinental mountain belt. Footwall shortcut faults are formed with the inversion of syn-rift listric: normal faults, and progress into low angle thrust faults with fault bend fold geometries. This style of deformation is illustrated on reprocessed seismic reflection data and confirmed by field mapping. Geological field mapping, air photographs, and Thematic Mapper imagery provide important constraints for the interpretation of seismic reflection profiles along the margins of the High Atlas mountains. Balanced cross sections across the High Atlas suggest large horizontal displacements along low angle thrust faults. These thrusts place massive Lower Jurassic carbonates above post-rift Upper Cretaceous and Tertiary rocks. Refolding of thrusts and large scale regional folds indicate oblique slip deformation during and after the inversion of syn-rift normal faults. Low angle thrusts propagate along detachments in shales and marts of the Lower Jurassic. Lower Jurassic shales provide an excellent seal for potential sandstone reservoirs in the Middle Jurassic and Triassic sandstones in the footwall of thrusts.

  2. Structural styles of the High Atlas mountains, Morocco: Potential hydrocarbon traps in the footwall of thrusts developed from the reactivation of syn-rift normal faults

    SciTech Connect

    Beauchamp, W.; Allmendinger, R.W.; Barazangi, M.

    1996-12-31

    Large asymmetrical folds and box folds created by fault bend and fault propagation folding characterize the style of deformation in the High Atlas mountains. Several compressional phases of faulting and folding from the Lower Jurassic through Cenozoic indicate a long and varied tectonic origin for the High Atlas intracontinental mountain belt. Footwall shortcut faults are formed with the inversion of syn-rift listric: normal faults, and progress into low angle thrust faults with fault bend fold geometries. This style of deformation is illustrated on reprocessed seismic reflection data and confirmed by field mapping. Geological field mapping, air photographs, and Thematic Mapper imagery provide important constraints for the interpretation of seismic reflection profiles along the margins of the High Atlas mountains. Balanced cross sections across the High Atlas suggest large horizontal displacements along low angle thrust faults. These thrusts place massive Lower Jurassic carbonates above post-rift Upper Cretaceous and Tertiary rocks. Refolding of thrusts and large scale regional folds indicate oblique slip deformation during and after the inversion of syn-rift normal faults. Low angle thrusts propagate along detachments in shales and marts of the Lower Jurassic. Lower Jurassic shales provide an excellent seal for potential sandstone reservoirs in the Middle Jurassic and Triassic sandstones in the footwall of thrusts.

  3. Deep geometry and evolution of the northern part of Itoigwa-Shizuoka Tectonic Line active fault system, Central Japan, revealed by Seismic profiling

    NASA Astrophysics Data System (ADS)

    Sato, H.; Ikeda, Y.; Iwasaki, T.; Matsuta, N.; Takeda, T.; Kawasaki, S.; Kozawa, T.; Elouai, D.; Hirata, N.; Kawanaka, T.

    2003-12-01

    The northern Fossa Magna (NFM) is a Miocene rift system produced in the final stages of the opening of the Sea of Japan. It divides the major structure of Japan into SW and NE portions. The Itoigawa-Shizuoka Tectonic Line (ISTL) bounds the western part of the northern Fossa Magna and forms an active fault system showing the one of the largest slip rates in the Japanese islands. Based on the paleo-seismological data, the ISTL active fault system was evaluated to have the highest seismic risk among active faults within inland Japan. A quantitative understanding of active tectonic processes, including crustal deformation and related destructive earthquakes, is important in reducing seismic hazards through precise estimation of strong ground motions. The structure of the crust, especially the deep geometry of active fault systems, is the most important piece information required to construct such a dynamic model. In this context, the seismic reflection profiling was performed across the northern part of the ISTL active fault system by three seismic lines. Obtained seismic sections are interpreted based on the pattern of reflectors, surface geology and velocity model by refraction analysis, using the balanced cross section technique. The 68-km-long Itoshizu 2002 seismic section across the northern middle part of the ISTL active fault system suggest that the Miocene NFM basin was formed by an east dipping normal fault with shallow flat (6 km), deeper ramp (6 15 km) and deeper flat at 15 km in depth. This unique geometry is interpreted that this low-angle normal fault was produced by Miocene high thermal regime, estimated from the thick volcanic rocks at the base of the basin fill. Namely, the normal fault reflects the brittle-ductile boundary in Miocene. Consequently, since the Pliocene, the basin fill was strongly folded by the reverse faulting along the pre-existing normal faults in the Pre-Neogene rocks. The reverse faults in the basin fill produced fault

  4. Distribution and migration of aftershocks of the 2010 Mw 7.4 Ogasawara Islands intraplate normal-faulting earthquake related to a fracture zone in the Pacific plate

    NASA Astrophysics Data System (ADS)

    Obana, Koichiro; Takahashi, Tsutomu; No, Tetsuo; Kaiho, Yuka; Kodaira, Shuichi; Yamashita, Mikiya; Sato, Takeshi; Nakamura, Takeshi

    2014-04-01

    describe the aftershocks of a Mw 7.4 intraplate normal-faulting earthquake that occurred 150 km east Ogasawara (Bonin) Islands, Japan, on 21 December 2010. It occurred beneath the outer trench slope of the Izu-Ogasawara trench, where the Pacific plate subducts beneath the Philippine Sea plate. Aftershock observations using ocean bottom seismographs (OBSs) began soon after the earthquake and multichannel seismic reflection surveys were conducted across the aftershock area. Aftershocks were distributed in a NW-SE belt 140 km long, oblique to the N-S trench axis. They formed three subparallel lineations along a fracture zone in the Pacific plate. The OBS observations combined with data from stations on Chichi-jima and Haha-jima Islands revealed a migration of the aftershock activity. The first hour, which likely outlines the main shock rupture, was limited to an 80 km long area in the central part of the subsequent aftershock area. The first hour activity occurred mainly around, and appears to have been influenced by, nearby large seamounts and oceanic plateau, such as the Ogasawara Plateau and the Uyeda Ridge. Over the following days, the aftershocks expanded beyond or into these seamounts and plateau. The aftershock distribution and migration suggest that crustal heterogeneities related to a fracture zone and large seamounts and oceanic plateau in the incoming Pacific plate affected the rupture of the main shock. Such preexisting structures may influence intraplate normal-faulting earthquakes in other regions of plate flexure prior to subduction.

  5. The 1954 Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes: A triggered normal faulting sequence

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Kathleen M.; Stein, Ross S.; King, Geoffrey C. P.

    1996-11-01

    In 1954, four earthquakes of M > 6.0 occurred within a 30 km radius in a period of six months. The Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes are among the largest to have been recorded geodetically in the Basin and Range province. The Fairview Peak earthquake (M = 7.2, December 12, 1954) followed two events in the Rainbow Mountains (M = 6.2, July 6, and M = 6.5, August 24, 1954) by 6 months. Four minutes later the Dixie Valley fault ruptured (M = 6.7, December 12, 1954). The changes in static stresses caused by the events are calculated using the Coulomb-Navier failure criterion and assuming uniform slip on rectangular dislocations embedded in an elastic half-space. Coulomb stress changes are resolved on optimally oriented faults and on each of the faults that ruptured in the chain of events. These calculations show that each earthquake in the Rainbow Mountain-Fairview Peak-Dixie Valley sequence was preceded by a static stress change that encouraged failure. The magnitude of the stress increases transferred from one earthquake to another ranged from 0.01 MPa (0.1 bar) to over 0.1 MPa (1 bar). Stresses were reduced by up to 0.1 MPa over most of the Rainbow Mountain-Fairview Peak area as a result of the earthquake sequence.

  6. Segmentation and the coseismic behavior of basin and range normal faults. Examples from east-central Idaho and southwestern Montana, USA

    USGS Publications Warehouse

    Crone, Anthony J.; Haller, Kathleen M.

    1991-01-01

    The range-front normal faults of the Lost River and Lemhi Ranges, and the Beaverhead and Tendoy Mountains in east-central Idaho and southwestern Montana have well-preserved fault scarps on Quaternary deposits along much of their lengths. Fault-scarp morphology, the age of deposits displaced by the faults, and the morphology of the range fronts provide a basis for dividing the faults into segments that are typically 20-25 km long. Four characteristics are recognized that help to identify segment boundaries: (1) major en echelon offsets or pronounced gaps in the continuity of fault scarps; (2) distinct, persistent, along-strike changes in fault-scarp morphology that indicate different ages of faulting; (3) major salients in the range front; and (4) transverse bedrock ridges where the cumulative throw is low compared to other places along the fault zone. Only features whose size is measured on the scale of kilometers are regarded as significant enough to represent a segment boundary that could inhibit or halt a propagating rupture. The ability to identify segments of faults that are likely to behave as independent structural entities will improve seismic-hazard assessment. However, one should not assume that the barriers at segment boundaries will completely stop all propagating ruptures.

  7. Structural inheritance during normal fault growth in multi-phase rifts; a case study from the Northern North Sea

    NASA Astrophysics Data System (ADS)

    Fazli Khani, Hamed; Bell, Rebecca E.; Fossen, Haakon; A-L. Jackson, Christopher; Rotevatn, Atle; Gawthorpe, Robert L.

    2015-04-01

    In multi-phase rift systems such as the northern North Sea rift, pre-existing basement structures influence the nucleation, growth and linkage of rift-related normal faults. However, our understanding of the degree of physical and kinematic linkage between basement and cover structures is limited, since deep structures are generally poorly imaged on seismic reflection data. In the North Sea Rift, two main phases of rifting are recognized in the Permian-Triassic and Middle Jurassic-to-Early Cretaceous. Moreover, prior to rifting, the area underwent multiple episodes of deformation during the Ordovician-Devonian Caledonian orogeny and Devonian extension. In this study we investigate the influence of pre-existing structures on the i) evolution of Permian-Triassic and Middle Jurassic-Early Cretaceous normal fault systems and ii) distribution of strain during reactivation of older structures in the northern North Sea rift. For this purpose we utilize 2D (-9 s TWT) and 3D seismic reflection and borehole data from the North Viking Graben, covering the Horda Platform in the east and the East Shetland Basin in the west. We show that low-angle (< 30°) intrabasement reflections extend, in some areas, upward into the Triassic section. West-dipping and east-dipping intrabasement structures are identified in the Horda Platform and East Shetland Basin respectively, while in the Northern Viking Graben area both west and east-dipping structures are mapped. At depth, some of intrabasement structures terminate against high-amplitude reflections in the lower-crust. This study documents dissimilar development of Intrabasement structures in the Horda Platform, Viking Graben and East Shetland Basin. In the Viking Graben and Horda Platform these structures are more developed and in some places cross-cut each other, while in the East Shetland Basin, only two sets of structures have been mapped. We also show that intrabasement structures in the Horda Platform are generally lower angle than

  8. Estimation of active faulting in a slow deformation area: Culoz fault as a case study (Jura-Western Alps junction).

    NASA Astrophysics Data System (ADS)

    de La Taille, Camille; Jouanne, Francois; Crouzet, Christian; Jomard, Hervé; Beck, Christian; de Rycker, Koen; van Daele, Maarten; Lebourg, Thomas

    2014-05-01

    The north-western Alps foreland is considered as still experiencing distal effects of Alpine collision, resulting in both horizontal and vertical relative displacements. Based on seismological and geodetic surveys, detailed patterns of active faulting (including subsurface décollements, blind ramps and deeper crustal thrusts have been proposed (Thouvenot et al., 1998), underlining the importance of NW-SE left-lateral strike-slip offsets as along the Vuache and Culoz faults (cf. the 1996 Epagny event: M=5.4; Thouvenot et al., 1998 and the 1822 Culoz event I=VII-VIII; Vogt, 1979). In parallel to this tectonic evolution, the last glaciation-deglaciation cycles contributed to develop large and over-deepened lacustrine basins, such as Lake Le Bourget (Perrier, 1980). The fine grain, post LGM (ie post 18 ky), sedimentary infill gives a good opportunity to evidence late quaternary tectonic deformations. This study focuses on the Culoz fault, extending from the Jura to the West, to the Chautagne swamp and through the Lake Le Bourget to the East. Historical earthquakes are known nearby this fault as ie the 1822 Culoz event. The precise location and geometry of the main fault is illustrated but its Eastern termination still needs to be determined. High resolution seismic sections and side-scan sonar images performed in the 90's (Chapron et al., 1996) showed that the Col du Chat and Culoz faults have locally deformed the quaternary sedimentary infill of the lake. These studies, mainly devoted to paleo-climate analysis were not able to determine neither the geometry of the fault, or to quantify the observed deformations. A new campaign devoted to highlight the fault geometry and associated deformation, has been performed in October 2013. Very tight profiles were performed during this high resolution seismic survey using seistec boomer and sparker sources. In several places the rupture reaches the most recent seismic reflectors underlying that these faults were active during

  9. Strike-slip fault geometry in Turkey and its influence on earthquake activity

    NASA Technical Reports Server (NTRS)

    Barka, A. A.; Kadinsky-Cade, K.

    1988-01-01

    The geometry of Turkish strike-slip faults is reviewed, showing that fault geometry plays an important role in controlling the location of large earthquake rupture segments along the fault zones. It is found that large earthquake ruptures generally do not propagate past individual stepovers that are wider than 5 km or bends that have angles greater than about 30 degrees. It is suggested that certain geometric patterns are responsible for strain accumulation along portions of the fault zone. It is shown that fault geometry plays a role in the characteristics of earthquake behavior and that aftershocks and swarm activity are often associated with releasing areas.

  10. Structural and Lithologic Characteristics of the Wenchuan Earthquake Fault Zone and its Relationship with Seismic Activity

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, H.; Pei, J.; Li, T.; Huang, Y.; Zhao, Z.

    2010-12-01

    the older earthquake, but rather along the edge of the gouge. According to the gouge statistics of the whole fault zone, seismic events have the obvious tendency towards the foot wall, and the thickness of gouge is proportional to the activity of the fault, indicating that the width of fault zone is directly related to the number and evolution history of earthquakes . Repeated earthquakes maybe the main cause for the formation of the Longmenshan Moutains

  11. An underwater landslide or slump on an active submarine fault - a possible source of a devastating tsunami?

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.

    2007-12-01

    A Mw 7.7 earthquake and subsequent large-scale tsunami occurred on 17th July 2006 off the southern coast of Java Island, Indonesia. A maximum of 7.7 m inundation height was recorded in Pangandaran on the southern coast of Java, according to the field survey just after the tsunami (Tsuji et al., 2006). However, since there are few residents who noticed the earthquake tremors, the earthquake may possibility be so-called "tsunami earthquake". The aftershocks from July to September occurred on the fore-arc area and their CMT solution suggests the predominant north-south tensile stress. R/V MIRAI passed the aftershock area in 2004 and 2005 with continuous multibeam bathymetric survey. The processed topographic map shows a lot of amphitheatres with the scale of 8-20 km along the fault scarps. Convexity landforms are located below the footwall of the amphitheatres, apparently the relics of an underwater landslide, and their relative elevation exceeds 1000 m in maximum. This area is characterised by the southeastern extension of Mentawai Fault and its associated minor faults ranging from the Sumatra fore-arc area. The observed amphitheatres and relics of underwater landslides are located along the active faults. Considering that the tsunami wave height distribution is concentrated on a specific narrow area compared with the scale of the mainshock, the mainshock possibly triggered underwater landslides on these amphitheatres and the slides generated a large-scale tsunami. The Ryukyu district was attacked by a M7-class earthquake followed by a devastating tsunami in 1771. 'The East Ishigaki Fault,' one of the across-arc active normal faults in this area was studied precisely by multibeam echo sounding. The study revealed a slump on the segmented active fault. The slump itself may generate a tsunami with the wave height of several meters and might cause the 1771 tsunami together with the faulting itself. Some recent geohazards also show that a landslide or a slump is

  12. Lahars in and around the Taipei basin: Implications for the activity of the Shanchiao fault

    NASA Astrophysics Data System (ADS)

    Song, Sheng-Rong; Chen, Tsu-Mo; Tsao, Shuhjong; Chen, Huei-Fen; Liu, Huan-Chi

    2007-11-01

    In the last decade, more than 21 deep geological cores have been drilled in the Taipei basin to obtain a firmer grasp of its basic geology and engineering properties prior to the construction of new infrastructure. Thirteen of those cores contain lahar deposits, with the number of layers varying from one to three and the thickness of each layer varying from several to over 100 m. Based on their occurrence, petrology and geochemistry, it has been determined that the deposits originated from the southern slope of the Tatun Volcano Group (TVG). K-Ar age dating has shown that the lower layer of lahars was deposited less than 0.4 Ma, and this is clearly correlated to outcrops in the Kauntu, Chengtzeliao and Shihtzutao areas. These findings may well suggest that the Taipei basin has been formed in last 0.4 Ma and that the Shanchiao normal fault commenced its activity within this period. The surface trace and the activity of the Shanchiao normal fault have also been inferred and subsequently defined from stratigraphic data derived from these cores.

  13. The January 2010 Efpalion earthquakes (Gulf of Corinth, Central Greece): earthquake interactions and blind normal faulting

    NASA Astrophysics Data System (ADS)

    Ganas, Athanassios; Chousianitis, Kostas; Batsi, Evaggelia; Kolligri, Maria; Agalos, Apostolos; Chouliaras, Gerassimos; Makropoulos, Kostas

    2013-04-01

    On 18 January 2010, 15:56 UTC, a M w = 5.1 (National Observatory of Athens; NOA) earthquake occurred near the town of Efpalion (western Gulf of Corinth, Greece), about 10 km to the east of Nafpaktos, along the north coast of the Gulf. Another strong event occurred on 22 January 2010, 00:46 UTC with M w = 5.1 (NOA) approximately 3 km to the NE of the first event. We processed the seismological and geodetic data to examine fault plane geometry, dip direction, and earthquake interactions at the western tip of the Corinth rift. Our data include relocated epicenters of 1,760 events for the period January-June 2010 and daily global positioning system observations from the Efpalio station for the period 1 December 2009-1 March 2010. We suggest that the first event ruptured a blind, north-dipping fault, accommodating north-south extension of the Western Gulf of Corinth. The dip direction of the second event is rather unclear, although a south dip plane is weakly imaged in the post-22 January 2010 aftershock distribution. A Coulomb stress model based on homogeneous slip distribution of the first event showed static stress triggering of the second event of the order of 22-34 KPa that was transferred along the plane of failure. We also point out the existence of north dipping, high-angle faults at 10-15 km depths, which were reactivated because of Coulomb stress transfer, to the west and south of Efpalion. The January 2010 earthquakes ended a 15-year-old quiescence in that area of the Gulf. The crustal volume near Efpalion was also characterized by b values in the range 0.6-0.8 (1970-2010 period).

  14. Relative tectonic activity assessment along the East Anatolian strike-slip fault, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Khalifa, Abdelrahman

    2016-04-01

    The East Anatolian transform fault is a morphologically distinct and seismically active left-lateral strike-slip fault that extends for ~ 500 km from Karlıova to the Maraş defining the boundary between the Anatolian Block and Syrian Foreland. Deformed landforms along the East Anatolian fault provide important insights into the nature of landscape development within an intra-continental strike-slip fault system. Geomorphic analysis of the East Anatolian fault using geomorphic indices including mountain front sinuosity, stream length-gradient index, drainage density, hypsometric integral, and the valley-width to valley height ratio helped differentiate the faulting into segments of differing degrees of the tectonic and geomorphic activity. Watershed maps for the East Anatolian fault showing the relative relief, incision, and maturity of basins along the fault zone help define segments of the higher seismic risk and help evaluate the regional seismic hazard. The results of the geomorphic indices show a high degree of activity, reveal each segment along the fault is active and represent a higher seismic hazard along the entire fault.

  15. Late Quaternary Normal Faulting and Hanging Wall Basin Evolution of the Southwestern Rift Margin From Gravity and Geology, B.C.S., MX and Exploring the Influence of Text-Figure Format on Introductory Geology Learning

    NASA Astrophysics Data System (ADS)

    Busch, Melanie M. D.

    2011-12-01

    An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely rifted plate margin, gravity surveys were conducted across the normal-fault-bounded basins within the gulf-margin array and, along with optically stimulated luminescence dating of offset surfaces, fault-slip rates were estimated and fault patterns across basins were assessed, providing insight into sedimentary basin evolution. Additionally, detailed geologic and geomorphic maps were constructed along two faults within the system, leading to a more complete understanding of the role of individual normal faults within a larger array. These faults slip at a low rate (0.1--1 mm/yr) and have relatively shallow hanging wall basins (˜500--3000 m). Overall, the gulf-margin faults accommodate protracted, distributed deformation at a low rate and provide a minor contribution to overall rifting. Integrating figures with text can lead to greater science learning than when either medium is presented alone. Textbooks, composed of text and graphics, are a primary source of content in most geology classes. It is essential to understand how students approach learning from text and figures in textbook-style learning materials and how the arrangement of the text and figures influences their learning approach. Introductory geology students were eye tracked while learning from textbook-style materials composed of text and graphics. Eye fixation data showed that students spent less time examining the figure than the text, but the students who more frequently examined the figure tended to improve more from the pretest to the posttest. In general, students tended to examine the figure at natural breaks in the reading. Textbook-style materials

  16. Identifying buried segments of active faults in the northern Rio Grande Rift using aeromagnetic, LiDAR,and gravity data, south-central Colorado, USA

    USGS Publications Warehouse

    Ruleman, Cal; Grauch, V. J.

    2013-01-01

    Combined interpretation of aeromagnetic and LiDAR data builds on the strength of the aeromagnetic method to locate normal faults with significant offset under cover and the strength of LiDAR interpretation to identify the age and sense of motion of faults. Each data set helps resolve ambiguities in interpreting the other. In addition, gravity data can be used to infer the sense of motion for totally buried faults inferred solely from aeromagnetic data. Combined interpretation to identify active faults at the northern end of the San Luis Basin of the northern Rio Grande rift has confirmed general aspects of previous geologic mapping but has also provided significant improvements. The interpretation revises and extends mapped fault traces, confirms tectonic versus fluvial origins of steep stream banks, and gains additional information on the nature of active and potentially active partially and totally buried faults. Detailed morphology of surfaces mapped from the LiDAR data helps constrain ages of the faults that displace the deposits. The aeromagnetic data provide additional information about their extents in between discontinuous scarps and suggest that several totally buried, potentially active faults are present on both sides of the valley.

  17. Contribution of high resolution PLEIADES imagery to active faults analysis. Case study of the Longriba Fault System, eastern Tibet.

    NASA Astrophysics Data System (ADS)

    Ansberque, Claire; Bellier, Olivier; Godard, Vincent; Lasserre, Cécile; Wang, Mingming; Xu, Xiwei; Tan, Xibin

    2015-04-01

    High resolution imagery has largely developed during those two last decades allowing the possibility to observe and quantify geological and geomorphological features ranging from meter to few centimeters. Active tectonic and geomorphological studies have greatly benefited from the systematic use of such data. For that reason, we tested the contribution of PLEAIDES images to the analysis of an active strike-slip fault system in eastern Tibet. We used 50 cm resolution panchromatic PLEIADES images in order to map active fault segmentation, localize offsets of geomorphic markers and quantify vertical and horizontal displacements. We propose a preliminary study using PLEIADES images along the Longriba Fault System (LFS). The LFS, located at the eastern Tibetan Plateau margin, is constituted of two NW-SE dextral strike-slip and parallel fault zones: Longriqu and Maoergai, 80 and 120 km-long, respectively. It accommodates ~4 mm/yr dextral slip and very few vertical motion. We used stereo-pairs to build relative Digital Elevation Models (DEMs) (without ground control points) with a horizontal resolution ranging from 2 to 5 m, in order to understand the geometry of the system. We measured fault segments with lengths ranging from a hundred meters to several kilometers which are relatively close from each others, and several offsets of geomorphic markers (alluvial fans, ridges, rivers) ranging from a few meters to ~40 m. According to the segmentation deduced from those results we suggest that the fault has a high seismic potential (>Mw7.0) and that probably many surface rupturing earthquakes occurred along the LFS over the Holocene.

  18. Recent, slow normal and strike-slip faulting in the Pasto Ventura region of the southern Puna Plateau, NW Argentina

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Schoenbohm, Lindsay M.; Cosca, Michael

    2013-01-01

    Recent normal and strike-slip faulting on the Puna Plateau of NW Argentina has been linked to lithospheric foundering, gravitational spreading, plate boundary forces and a decrease in crustal shortening from north to south. However, the timing, kinematics and rate of extension remain poorly constrained. We focus on the Pasto Ventura region (NW Argentina) located on the southern Puna Plateau and recent deformation (<1 Ma). Field mapping and kinematic analysis across offset volcanic cinder cones show that the overall extension direction is subhorizontal, is oriented NE-SW to NNE-SSW, and occurs at a slow, time-integrated rate of 0.02 to 0.08 mm/yr since at least 0.8-0.5 Ma. A regional compilation from this study and existing data shows that recent extension across the Puna Plateau is subhorizontal but varies in azimuthal orientation dramatically. Data from the Pasto Ventura region are consistent with a number of models to explain normal and strike-slip faulting on the Puna Plateau, all of which likely influence the region. Some role for lower lithospheric foundering through dripping appears to be seen based on the regional extension directions and ages of mafic volcanism in the southern Puna Plateau.

  19. Recent, slow normal and strike-slip faulting in the Pasto Ventura region of the southern Puna Plateau, NW Argentina

    USGS Publications Warehouse

    Zhou, Renjie; Schoenbohm, Lindsay M.; Cosca, Michael

    2013-01-01

    Recent normal and strike-slip faulting on the Puna Plateau of NW Argentina has been linked to lithospheric foundering, gravitational spreading, plate boundary forces and a decrease in crustal shortening from north to south. However, the timing, kinematics and rate of extension remain poorly constrained. We focus on the Pasto Ventura region (NW Argentina) located on the southern Puna Plateau and recent deformation (<1 Ma). Field mapping and kinematic analysis across offset volcanic cinder cones show that the overall extension direction is subhorizontal, is oriented NE-SW to NNE-SSW, and occurs at a slow, time-integrated rate of 0.02 to 0.08 mm/yr since at least 0.8–0.5 Ma. A regional compilation from this study and existing data shows that recent extension across the Puna Plateau is subhorizontal but varies in azimuthal orientation dramatically. Data from the Pasto Ventura region are consistent with a number of models to explain normal and strike-slip faulting on the Puna Plateau, all of which likely influence the region. Some role for lower lithospheric foundering through dripping appears to be seen based on the regional extension directions and ages of mafic volcanism in the southern Puna Plateau.

  20. Active faults crossing trunk pipeline routes: some important steps to avoid the disaster

    NASA Astrophysics Data System (ADS)

    Besstrashnov, Vladimir; Strom, Alexander

    2010-05-01

    Trunk pipelines that pass through tectonically active areas connecting oil and gas reservoirs with terminals and refineries cross active faults that can produce large earthquakes. Besides strong motion affecting vast areas, these earthquakes are often associated with surface faulting that provides additional hazard to pipelines. To avoid significant economic losses and environmental pollution, pipelines should be designed to sustain both effects (shaking and direct rupturing) without pipe damage and spill. Special studies aimed to provide necessary input data for the designers should be performed in the course of engineering survey. However, our experience on conducting and review of such studies for several oil and gas trunk pipelines in Russia show urgent need of more strict definition of basic conceptions and approaches used for identification and localization of these potentially hazardous tectonic features. Identification of active faults (fault zones) considered as causative faults - sources of strong motion caused by seismic waves that affect dozens kilometers of pipeline route can be done by use of both direct and indirect evidence of Late Pleistocene - Holocene activity of faults and fault zones. Since strong motion parameters can be considered as constant within the near-field zone, which width in case of large earthquake is up to dozens kilometers, accuracy of active fault location is not so critical and ±1-2 km precision provided by use of indirect evidence is acceptable. In contrast, if one have to identify and characterize zones of potential surface rupturing that require special design of the endangered pipeline section, only direct evidence of such activity can provide reliable input data for crossing design with relevant accuracy of fault location, amount and direction of displacement. Only traces of surface faults displacing Late Pleistocene - Holocene sediments and/or geomorphic features are considered as direct evidence of fault activity. Just

  1. A test of the longevity of impact-induced faults as preferred sites for later tectonic activity

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Duxbury, Elizabeth D.

    1987-01-01

    The hypothesis that impact-induced faults have been preferred sites for later deformation in response to lithospheric stresses has been suggested for several planets and satellites. This hypothesis is investigated on earth by examining whether terrestrial impact structures show higher rates of nearby earthquake activity than do surrounding intraplate regions. For 28 of 30 probable impact structures having an original crater 20 km or more in diameter, the rates of nearby seismicity have been no higher than the regional background rates. For two large probable impact structures, Vredefort and Charlevoix, with higher than normal rates of nearby seismicity, factors other than slip on impact-induced faults appear to control the occurrence of earthquakes. It is concluded that impact-induced faults, at least on earth, do not persist as lithospheric 'weak zones' for periods in excess of several million years after the impact event.

  2. Geological and tectonic implications obtained from first seismic activity investigation around Lembang fault

    NASA Astrophysics Data System (ADS)

    Afnimar; Yulianto, Eko; Rasmid

    2015-12-01

    The Lembang fault located at northern part of populated Bandung basin is the most conspicuous fault that potentially capable in generating earthquakes. The first seismic investigation around Lembang fault has been done by deploying a seismic network from May 2010 till December 2011 to estimate the seismic activities around that fault. Nine events were recorded and distributed around the fault. Seven events were likely to be generated by the Lembang fault and two events were not. The events related to the Lembang fault strongly suggest that this fault has left-lateral kinematic. It shows vector movement of Australian plate toward NNE might have been responsible for the Lembang fault kinematic following its initial vertical gravitational movement. The 1-D velocity model obtained from inversion indicates the stratigraphy configuration around the fault composed at least three layers of low Vp/Vs at the top, high Vp/Vs at the middle layer and moderate Vp/Vs at the bottom. In comparison with general geology of the area, top, mid and bottom layers may consecutively represent Quaternary volcanic layer, pre-Quaternary water-filled sedimentary layer and pre-Quaternary basement. Two eastern events related to minor faults and were caused by a gravitational collapse.

  3. Transition from collision to subduction in Western Greece: the Katouna-Stamna active fault system and regional kinematics

    NASA Astrophysics Data System (ADS)

    Pérouse, E.; Sébrier, M.; Braucher, R.; Chamot-Rooke, N.; Bourlès, D.; Briole, P.; Sorel, D.; Dimitrov, D.; Arsenikos, S.

    2016-06-01

    Transition from subduction to collision occurs in Western Greece and is accommodated along the downgoing plate by the Kefalonia right-lateral fault that transfers the Hellenic subduction front to the Apulian collision front. Here we present an active tectonic study of Aitolo-Akarnania (Western Greece) that highlights how such a transition is accommodated in the overriding plate. Based on new multi-scale geomorphic and tectonic observations, we performed an accurate active fault trace mapping in the region, and provide evidence for active normal and left-lateral faulting along the Katouna-Stamna Fault (KSF), a 65-km-long NNW-striking fault system connecting the Amvrakikos Gulf to the Patras Gulf. We further show that the Cenozoic Hellenide thrusts located west of the KSF are no longer active, either in field observation or in GPS data, leading us to propose that the KSF forms the northeastern boundary of a rigid Ionian Islands-Akarnania Block (IAB). Cosmic ray exposure measurements of 10Be and 36Cl were performed on a Quaternary alluvial fan offset along the KSF (~50 m left-lateral offset). A maximum abandonment age of ~12-14 ka for the alluvial fan surface can be determined, giving an estimated KSF minimum geological left-lateral slip rate of ~4 mm year-1, in agreement with high GPS slip rates (~10 mm year-1). Despite this high slip rate, the KSF is characterized by subdued morphological evidence of tectonic activity, a gypsum-breccia bedrock and a low level of seismicity, suggesting a dominantly creeping behavior for this fault. Finally, we discuss how the IAB appears to have been progressively individualized during the Pleistocene (younger than ~1.5 Ma).

  4. Outcrop examples of soft-sediment deformation associated with normal fault terminations in deepwater, Eocene turbidites: A previously undescribed conjugate fault termination style?

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    2014-12-01

    A set of small-scale, layer-bound faults developed in a package of three Eocene turbidite sandstone beds in a wave cut platform, Thandwe Beach, Myanmar display unusual downward terminations between converging conjugate faults. The faults were initially triggered by loading during deposition of the uppermost turbidite sandstone in the fault-affected stratigraphic package. The growth of a small gravity-driven anticline, and subsequent loading by a post-deformation turbidite modified the initial fault geometry, and re-mobilized part of the layer-bound sequence causing thinning of the sequence to zero in the vicinity of the fold crest. Typically conjugate faults display an X-shaped pattern of intersection, while the observed faults before reaching the point of intersection die out in a drastically thinned basal sandstone located in a keystone block, which requires either an underlying detachment or that a volume of sand and fluid was lost from the basal layer. Probably a combination of gravity-driven detachment (primary) movement and volume loss (secondary) permitted development of the faults. The structures described represent yet another aspect of the wide variety of gravity-driven features that form in the deepwater turbidite fan settings. It is thought that such features have not been previously described in the literature, and represent a new style variant within the general theme of conjugate fault development.

  5. Active tectonics of the Ganzi-Yushu fault in the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shi, Feng; He, Honglin; Densmore, Alexander L.; Li, An; Yang, Xiaoping; Xu, Xiwei

    2016-04-01

    The ongoing convergence between India and Eurasia apparently is accommodated not merely by crustal shortening in Tibet, instead also by motions along strike slip faults which are usually boundaries between tectonic blocks, especially in the Tibetan Plateau. Quantification of this strike slip faulting is fundamental for understanding the collision between India and Eurasia. Here, we use a variety of geomorphic observations to place constraints on the late Quaternary kinematics and slip rates of the Ganzi-Yushu fault, one of the significant strike-slip faults in eastern Tibet. The Ganzi-Yushu fault is an active, dominantly left-lateral strike-slip structure that can be traced continuously for up to 500 km along the northern boundary of the clockwise-rotating southeastern block of the Tibetan Plateau. We analyse geomorphic evidence for deformation, and calculate the late Quaternary slip rates at four sites along the eastern portion of the fault trace. The latest Quaternary apparent throw rates are variable along strike but are typically ~ 1 mm/a. Rates of strike-slip displacement are likely to be an order of magnitude higher, 8-11 mm/a. Trenching at two locations suggests that the active fault behaviour is dominated by strike-slip faulting and reveals several earthquake events with refined information of timing. The 2010 Mw 6.9 Yushu earthquake, which occurred on the northwestern segment of the Ganzi-Yushu fault zone, provides additional evidence for fault activity. These observations agree with GPS-derived estimates, and show that late Quaternary slip rates on the Ganzi-Yushu fault are comparable to those on other major active strike-slip faults in the eastern Tibetan Plateau.

  6. Faults and associated landslides on the Torrey Pines mesa, an expression of the active Rose Canyon fault zone, La Jolla, California

    SciTech Connect

    Rindell, A.K. )

    1993-04-01

    The Rose Canyon fault zone (RCFZ), San Diego's active NW striking right-lateral wrench, bends to the left at La Jolla, creating a poorly understood zone of transpression. North of La Jolla, continuing investigations along seacliffs and road-cuts have exposed a number of en echelon, NE striking antithetic faults previously interpreted as either E-W striking faults, landslides, and/or Eocene soft-sediment deformations. However, thrust faulting and left-lateral movement, in addition to antithetic strikes, indicates that at least one of these, the Marine Fisheries fault, is associated with the RCFZ. A graben formed by a left-step along this fault has led to land subsidence and engineering problems for the National Marine Fisheries building. In addition, progressive seacliff retreat here and at other locations is partly controlled by fault associated fractures. A cliff-face exposure of the Salk fault reveals diverging fault splays flattening to the near horizontal with movement occurring along bedding planes within the sedimentary section, creating the appearance of landsliding. Classic flower structures have also been found up to 5 km inland, along NE strikes to the shoreline exposures of the Salk and Scripps faults. Faults traces are generally obscured by urbanization and numerous ancient and/or presently active coherent landslides. Although these faults are classified as only potentially active, timing and risk of seismic movement are not well constrained. In addition, record rainfalls in San Diego County have dramatically increased landsliding potential. A well exposed dike, dated at 11 Ma (older than the Pliocene age of the RCFZ), is exposed from the seacliffs offshore towards the RCFZ. It has a significant magnetic anomaly ranging up to 450 gammas and appears to be offset by the Marine Fisheries and Scripps faults. Measuring offsets of this and other reported and suspected offshore dikes may better define total offset from both the RCFZ and antithetic faulting.

  7. Upper Pleistocene - Holocene activity of the Carrascoy Fault (Murcia, SE Spain): preliminary results from paleoseismological research.

    NASA Astrophysics Data System (ADS)

    Martin-Banda, Raquel; Garcia-Mayordomo, Julian; Insua-Arevalo, Juan M.; Salazar, Angel; Rodriguez-Escudero, Emilio; Alvarez-Gomez, Jose A.; Martinez-Diaz, Jose J.; Herrero, Maria J.; Medialdea, Alicia

    2014-05-01

    The Carrascoy Fault is located in the Internal Zones of the Betic Cordillera (Southern Spain). In particular, the Carrascoy Fault is one of the major faults forming the Eastern Betic Shear Zone, the main structure accommodating the convergence between Nubian and Eurasian plates in the westernmost Mediterranean. So far, the Carrascoy Fault has been defined as a left-lateral strike-slip fault. It extends for at least 31 km in a NE-SW trend from the village of Zeneta (Murcia) at its northeastern tip, to the Cañaricos village, controlling the northern edge of the Carrascoy Range and its linkage to the Guadalentin Depression towards the southwest. This is an area of moderate seismic activity, but densely populated, the capital of the region, Murcia, being settled very close to the fault. Hence, the knowledge of the structure and kinematics of the Carrascoy Fault is essential for assessing reliably the seismic hazard of the region. We present a detailed-scale geological and geomorphological map along the fault zone created from a LIDAR DEM combined with fieldwork, and geological and geophysical information. Furthermore, a number of trenches have been dug across the fault at different locations providing insights in the fault most recent activity as well as paleoseismic data. Preliminary results suggest that the Cararscoy Fault has recently changed its kinematic showing a near pure reverse motion. According to this, the fault can be divided into two distinct segments, the eastern one: Zeneta - Fuensanta, and the western one: Fuensanta - Cañaricos, each one having its own characteristic style and geodynamics. Some new active strands of the fault locate at the foot of the very first relief towards the North of the older strand, forming the current southern border of the Guadalentin Depression. These new faults show an increasingly reverse component westwards, so that the Fuensanta - Cañaricos segment is constituted by thrusts, which are blind at its western end

  8. 3D Geometry of Active Shortening, Uplift and Subsidence West of the Alpine Fault (South Island, New Zealand)

    NASA Astrophysics Data System (ADS)

    Ghisetti, F.; Sibson, R. H.; Hamling, I. J.

    2014-12-01

    The Alpine Fault is the principal component of the transform boundary between the Australian and Pacific plates across the South Island of New Zealand, linking the opposite dipping Hikurangi and Puysegur subduction zones. In the northern South Island, the transition from the subducted W-dipping Pacific slab of the Hikurangi margin to the intra-continental transform margin is defined by earthquake foci from 350 to 100 km deep. West of the Alpine Fault the Australian crust above the slab has been incorporated into the collisional plate boundary and uplifted in a compressional belt up to 100 km wide. Retro-deformation and back-stripping of 10 regional transects utilising surface geology, seismic reflection lines and exploration wells define the progressive deformation of the Australian crust since 35 Ma along the collisional margin. The reconstructed geometry of faulted basement blocks is tied to localisation and evolution of overlying sedimentary basins, coeval with displacement on the Alpine Fault. Amounts of shortening, uplift and subsidence and fault activity are heterogeneous in space and time across the margin, and are controlled by compressional reactivation of inherited high-angle, N-S Paleogene normal faults oblique to the margin. However, significant differences also occur along the strike of the collisional margin, with major contrasts in uplift and subsidence north and south of lat. 41°.7, i.e. the region overlying the southern termination of the Hikurangi slab. These differences are highlighted by present day hydrographic anomalies in the Buller region, and by the pattern of filtered topography at > 75 km wavelength. Our data show that the 3D geometry of the Australian plate cannot be entirely attributed to inherited crustal heterogeneity of a flexured "retro-foreland" domain in the footwall of the Alpine Fault, and suggest the need of deeper dynamic interaction between the Pacific and Australian lithosphere along the subduction-collision margin.

  9. The 1998 March 14 Fandoqa earthquake (Mw 6.6) in Kerman province, southeast Iran: re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of the Gowk fault zone

    NASA Astrophysics Data System (ADS)

    Berberian, M.; Jackson, J. A.; Fielding, E.; Parsons, B. E.; Priestley, K.; Qorashi, M.; Talebian, M.; Walker, R.; Wright, T. J.; Baker, C.

    2001-08-01

    The 1998 March 14 Fandoqa earthquake (Ms6.6) was the penultimate in a series of five substantial earthquakes on the Gowk fault system of southeast Iran since 1981, all of which were associated with co-seismic surface ruptures. We use observations of surface faulting, analysis of P and SH body waves, SAR interferometry and geomorphology to investigate the ruptures in these earthquakes and how they are related both to each other and to the regional active tectonics. The 1998 Fandoqa earthquake produced 23km of surface faulting with up to 3m right-lateral strike-slip and 1m vertical offsets. SAR interferometry and seismic waveforms show that the main rupture plane dipped west at ~50° and had a normal component, although the surface ruptures were more complicated, being downthrown to both the east and the west on steep faults in near-surface sediments. In addition, SAR interferometry shows that a nearby thrust with a similar strike but dipping at ~6°W moved about 8cm in a time interval and in a position that makes it likely that its slip was triggered by the Fandoqa earthquake. The 1998 surface ruptures in the Gowk valley followed part of a much longer (~80km) set of co-seismic ruptures with smaller offsets that were observed after larger earthquakes in 1981 (Mw6.6 and 7.1). The main ruptures in these 1981 earthquakes probably occurred on different, deeper parts of the same fault system, producing only minor reactivation of the shallower faults at the surface. Although the 1981-1998 earthquake sequence apparently ruptured parts of the same fault system repeatedly, these earthquakes had very different rupture characteristics: an important lesson for the interpretation of both palaeoseismological trenching investigations and historical accounts of earthquakes. The regional kinematics, which involve oblique right-lateral and convergent motion, are evidently achieved by a complex configuration of faults with normal, reverse and strike-slip components. Some of the

  10. Digital Database of Recently Active Traces of the Hayward Fault, California

    USGS Publications Warehouse

    Lienkaemper, James J.

    2006-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Hayward Fault Zone, California. The mapped traces represent the integration of the following three different types of data: (1) geomorphic expression, (2) creep (aseismic fault slip),and (3) trench exposures. This publication is a major revision of an earlier map (Lienkaemper, 1992), which both brings up to date the evidence for faulting and makes it available formatted both as a digital database for use within a geographic information system (GIS) and for broader public access interactively using widely available viewing software. The pamphlet describes in detail the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map. [Last revised Nov. 2008, a minor update for 2007 LiDAR and recent trench investigations; see version history below.

  11. Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines

    NASA Astrophysics Data System (ADS)

    Wu, Weiliang; Lin, Tian Ran; Tan, Andy C. C.

    2015-12-01

    A signal processing technique is presented in this paper to normalize and separate the source of non-linear acoustic emission (AE) signals of a multi-cylinder diesel engine for condition monitoring applications and fault detection. The normalization technique presented in the paper overcomes the long-existing non-linearity problem of AE sensors so that responses measured by different AE sensors can be quantitatively analysed and compared. A source separation algorithm is also developed in the paper to separate the mixture of the normalized AE signals produced by a multi-cylinder diesel engine by utilising the system parameters (i.e., wave attenuation constant and the arrival time delay) of AE wave propagation determined by a standard pencil lead break test on the engine cylinder head. It is shown that the source separation algorithm is able to separate the signal interference of adjacent cylinders from the monitored cylinder once the wave attenuation constant and the arrival time delay along the propagation path are known. The algorithm is particularly useful in the application of AE technique for condition monitoring of small-size diesel engines where signal interference from the neighbouring cylinders is strong.

  12. Extensional strain and displacement distribution due to mesoscale normal faults in Late Miocene-Pliocene sedimentary rocks along the northwestern side of the Red Sea, Egypt

    NASA Astrophysics Data System (ADS)

    Zaky, Kh. S.

    2015-09-01

    Field observations are presented on the NW-SE mesoscale, dip-slip, normal faults in the Late Miocene-Pliocene sedimentary rocks, along the northwestern part of the SW side of the Red Sea, Egypt. These faults were initiated parallel to the Red Sea, and were originated by the NE-SW extension associated with the Red Sea opening in the Late Oligocene-Early Miocene time. About 100 mesoscale normal faults were measured in the Late Miocene-Pliocene sedimentary rocks along seven scan-lines. The extensional strain determined in five scan-lines ranges from 2.6393 to 5.12% with an average of 3.53145%. The other two scan-lines have anomalous values of 6.2988 and 15.53%. The represented data demonstrate that the extensional strain varies significantly from profile to profile and even along the fault because of several surficial factors. The first factor is a difference in lithology. The second and third factors are the local stress and the difference between perpendicular to the direction of maximum lateral extension of area and strike of faults. The L-D (Length-Displacement) diagrams along twelve selected faults reveal three patterns. These patterns include a cone-shaped (C-type), meso-shaped (M-type), and a zigzag-shaped (Z-type). The remarkable variation of displacement (D) along the fault plane (L) is a result of the difference in lithology, and/or the overlapping fault segments, as well as the local stress along the faults.

  13. The mechanism of post-rift fault activities in Baiyun sag, Pearl River Mouth basin

    NASA Astrophysics Data System (ADS)

    Sun, Zhen; Xu, Ziying; Sun, Longtao; Pang, Xiong; Yan, Chengzhi; Li, Yuanping; Zhao, Zhongxian; Wang, Zhangwen; Zhang, Cuimei

    2014-08-01

    Post-rift fault activities were often observed in deepwater basins, which have great contributions to oil and gas migration and accumulation. The main causes for post-rift fault activities include tectonic events, mud or salt diapirs, and gravitational collapse. In the South China Sea continental margin, post-rift fault activities are widely distributed, especially in Baiyun sag, one of the largest deepwater sag with its main body located beneath present continental slope. During the post-rift stage, large population of faults kept active for a long time from 32 Ma (T70) till 5.5 Ma (T10). Seismic interpretation, fault analysis and analogue modeling experiments indicate that the post-rift fault activities in Baiyun sag between 32 Ma (T70) and 13.8 Ma (T30) was mainly controlled by gravity pointing to the Main Baiyun sag, which caused the faults extensive on the side facing Main Baiyun sag and the back side compressive. Around 32 Ma (T70), the breakup of the continental margin and the spreading of the South China Sea shed a combined effect of weak compression toward Baiyun sag. The gravity during post-rift stage might be caused by discrepant subsidence and sedimentation between strongly thinned sag center and wing areas. This is supported by positive relationship between sedimentation rate and fault growth index. After 13.8 Ma (T30), fault activity shows negative relationship with sedimentation rate. Compressive uplift and erosion in seismic profiles as well as negative tectonic subsiding rates suggest that the fault activity from 13.8 Ma (T30) to 5.5 Ma (T10) might be controlled by the subductive compression from the Philippine plate in the east.

  14. Mapping Active Fault Zones in Southern California Using Master Multispectral Imagery Data

    NASA Astrophysics Data System (ADS)

    Harvey, J. C.; Peltzer, G. F.; Hook, S. J.; Alley, R.; Myers, J.; Coffland, B.; Dominguez, R.; Fitzgerald, M.

    2004-12-01

    Recent studies of active fault zones using the GPS and InSAR techniques have revealed slip rates that often differ from the slip rates determined from geological observations. This discrepancy is principally due to the different time windows over which surface movements are integrated in both approaches. If surface velocities near faults vary over cycles of several hundreds of years, it becomes important to document the slip history along faults over various time scales as it has been recorded in the Quaternary deposits along the fault. To this endeavor, we have acquired sets of images of the major active faults in Southern California using the MODIS/ASTER airborne simulator (MASTER) instrument. The lines are flown at low altitude above the ground to provide 4 to 5 m spatial resolution in the 50 spectral bands (0.5 to 13 microns) of the instrument. A preliminary set of data was acquired in the summer 2003 over the Garlock and the Blackwater faults in the Mojave. A more extensive campaign carried out in September 2004 covered more than 1000 km of fault lines from the central section of the San Andreas fault to the Salton Sea area. The data are being processed to extract reflectance and emissivity information. Preliminary analysis of the 2003 data confirmed the strong potential of the MASTER thermal bands to identify changes in surface emissivity due to subtle variations of the mineral composition of the deposits. Additional information on the near surface structure of the fault zones can be obtained by combining day and night surface temperature maps, as buried sections of faults are revealed by thermal capacity contrasts between the two sides of a given fault. The paper will present the data set acquired during the 2003 and 2004 campaigns and the status of the raw data processing into geo-referenced emissivity and reflectivity maps of the fault zones.

  15. Paleoseismology of latest Pleistocene and Holocene fault activity in central Oregon

    SciTech Connect

    Pezzopane, S.K.; Weldon, R.J. II . Dept. of Geological Sciences)

    1993-04-01

    Latest Pleistocene and Holocene fault activity in Oregon concentrates along four zones that splay northward from seismically active faults along the Central Nevada and Eastern California seismic zones. The Central Oregon fault zone is one of these zones, which splays northward from dextral faults of the Walker Lane, stretching across the flanks of several ranges in south-central Oregon along a N20[degree]W trend, and ultimately merges with the Cascade volcanic arc near Newberry volcano. Aerial-photo interpretations and field investigations reveal fault scarps with, on average about 4 m, but in places as much as [approximately]10 m of vertical expression across latest Pleistocene pluvial lake deposits and geomorphic surfaces. Trenches across three different faults in the Central Oregon zone reveal evidence for multiple episodes of faulting in the form of fault-related colluvial deposits and deformed horizons which have been cut by younger fault movements. Trench exposures reveal faults with relatively steep dips and anastomosing traces, which are interpreted locally as evidence for a small oblique-slip component. Vertical offsets measured in the trenches are [approximately]2 m or more for each event. Radiocarbon analyses and preliminary tephra correlations indicate that the exposed deposits are [approximately]30,000 yr in age and younger, and record the decline of latest Pleistocene pluvial lakes. Commonly, reworked or deformed lacustrine deposits and interlayered and faulted colluvial deposits mark the second and third events back, which probably occurred in the Latest Pleistocene, at a time during low to moderate lake levels. If offsets of the past 18,000 yr are representative of the long-term average, then faults along this zone have slip rates of from 0.2 mm/yr to 0.6 mm/yr and recurrence intervals that range from [approximately]4,000 yr to 11,000 yr.

  16. Determination of paleoseismic activity over a large time-scale: Fault scarp dating with 36Cl

    NASA Astrophysics Data System (ADS)

    Mozafari Amiri, Nasim; Tikhomirov, Dmitry; Sümer, Ökmen; Özkaymak, Çaǧlar; Uzel, Bora; Ivy-Ochs, Susan; Vockenhuber, Christof; Sözbilir, Hasan; Akçar, Naki

    2016-04-01

    Bedrock fault scarps are the most direct evidence of past earthquakes to reconstruct seismic activity in a large time-scale using cosmogenic 36Cl dating if built in carbonates. For this method, a surface along the fault scarp with a minimum amount of erosion is required to be chosen as an ideal target point. The section of the fault selected for sampling should cover at least two meters of the fault surface from the lower part of the scarp, where intersects with colluvium wedge. Ideally, sampling should be performed on a continuous strip along the direction of the fault slip direction. First, samples of 10 cm high and 15 cm wide are marked on the fault surface. Then, they are collected using cutters, hammer and chisel in a thickness of 3 cm. The main geometrical factors of scarp dip, scarp height, top surface dip and colluvium dip are also measured. Topographic shielding in the sampling spot is important to be estimated as well. Moreover, density of the fault scarp and colluvium are calculated. The physical and chemical preparations are carried in laboratory for AMS and chemical analysis of the samples. A Matlab® code is used for modelling of seismically active periods based on increasing production rate of 36Cl following each rupture, when a buried section of a fault is exposed. Therefore, by measuring the amount of cosmogenic 36Cl versus height, the timing of major ruptures and their offsets are determined. In our study, Manastır, Mugırtepe and Rahmiye faults in Gediz graben, Priene-Sazlı, Kalafat and Yavansu faults in Büyük Menderes graben and Ören fault in Gökava half-graben have been examined in the seismically active region of Western Turkey. Our results reconstruct at least five periods of high seismic activity during the Holocene time, three of which reveal seismic ruptures beyond the historical pre-existing data.

  17. The chi-Chi earthquake sequence: active, out-of-sequence thrust faulting in taiwan

    PubMed

    Kao; Chen

    2000-06-30

    We combined precise focal depths and fault plane solutions of more than 40 events from the 20 September 1999 Chi-Chi earthquake sequence with a synthesis of subsurface geology to show that the dominant structure for generating earthquakes in central Taiwan is a moderately dipping (20 degrees to 30 degrees ) thrust fault away from the deformation front. A second, subparallel seismic zone lies about 15 kilometers below the main thrust. These seismic zones differ from previous models, indicating that both the basal decollement and relic normal faults are aseismic. PMID:10875915

  18. Finding concealed active faults: Extending the southern Whidbey Island fault across the Puget Lowland, Washington

    NASA Astrophysics Data System (ADS)

    Sherrod, Brian L.; Blakely, Richard J.; Weaver, Craig S.; Kelsey, Harvey M.; Barnett, Elizabeth; Liberty, Lee; Meagher, Karen L.; Pape, Kristin

    2008-05-01

    The southern Whidbey Island fault zone (SWIF), as previously mapped using borehole data, potential field anomalies, and marine seismic reflection surveys, consists of three subparallel, northwest trending strands extending ˜100 km from near Vancouver Island to the northern Puget Lowland. East of Puget Sound, the SWIF makes landfall between the cities of Seattle and Everett but is concealed beneath a thick mantle of young glacial deposits and vegetation. A ˜20-km-wide, northwest trending swath of subparallel, low-amplitude aeromagnetic anomalies crosses this region of the Puget Lowland and is on strike with the SWIF. The most prominent aeromagnetic anomaly, the Cottage Lake lineament, extends at least 18 km and lies approximately on strike with the SWIF on Whidbey Island. Subtle scarps and topographic lineaments on Pleistocene surfaces, visible on high-resolution lidar topography at a number of locations along the SWIF, lie on or near these magnetic anomalies. In the field, scarps exhibit northeast-side-up and vertical relief of 1 to 5 m. Excavations across several lidar scarps lying on or near magnetic anomalies show evidence for multiple folding and faulting events since deglaciation, most likely above buried reverse/oblique faults. Excavations in areas away from magnetic anomalies do not show evidence of tectonic deformation. In total, paleoseismological evidence suggests that the SWIF produced at least four earthquakes since deglaciation about 16,400 years ago, the most recent less than 2700 years ago.

  19. Characterization of active fault scarps from medium to high resolution DEM: case studies from Central and Southern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Brunori, C.; Cinti, F. R.; Ventura, G.

    2013-12-01

    We identify geo-morphometric features of active fault scarps in Italy through a semiautomatic processing using GIS. Medium to high resolution DEM was used to characterize the geometry, structural, and erosive elements of two seismogenic normal faults in Central and Southern Apennines. The Pettino fault in L'Aquila area was detected using a 1 m pixel DEM derived from airborne LiDAR survey (Friuli Venezia Giulia Civil Protection). For the Castrovillari fault in northern Calabria region was used a 4 m pixel DEM (Regional Cartography Office of Regione Calabria). Scarp segments are region of planar discontinuities identified by selected values of DEM-derived Terrain Ruggedness Index (TRI) and Vector Ruggedness Measure (VRM). These planar discontinuities corresponds to landscape features such as, river terraces, roads scarps, and other natural or human features. The discrimination between these features have been accomplished overlaying extracted features on aerial photograph, geological and geomorphologic maps and in situ survey. After that, we perform the quantitative and statistical analysis of these areas identified as "fault scarps". The identification of elements relative to the scarps (e.g. base, crest, slope) is then obtained to derive the estimate of parameters describing the fault: altitude, height of the scarp, length, slope and aspect, Terrain Ruggedness Index (TRI) and Vector Ruggedness Measure (VRM). The spatial distribution of the extracted values was obtained through their statistical analysis. We analyze scarp parameters variations along the whole scarp extent, such as strike value from aspect variations, slope and profile curvature differences as indicators of tectonic and/or erosion activity. The combined analysis of the DEM-derived parameters allows us to (a) define aspects of three-dimensional scarp geometry, (b) decipher its geomorphological significance, and (c) estimate the long-term slip rate.

  20. High-Resolution Seismic Reflection Studies of Active Faults: a Case Study from Washington State

    NASA Astrophysics Data System (ADS)

    Liberty, L. M.; Pratt, T. L.

    2007-12-01

    In the past five years, new high-resolution seismic surveys have filled in gaps in our understanding of active structures beneath the Puget Lowland region of Washington State. The extensive forests have made recognition of active faults difficult, but new Light Distance and Ranging (LIDAR) detailed topographic data have made a major breakthrough in mapping active faults. Extensive regional and high-resolution marine seismic surveys have been fundamental to understanding the tectonic framework of the area. These marine profiles, however, lack coverage beneath water bodies that large ships cannot navigate and beneath city streets underlain by late Pleistocene glacial deposits that are missing from the waterways. Recent land surveys and profiles in restricted waterways can therefore bridge the gap between paleoseismic and marine geophysical studies, and test elements of models proposed by regional-scale geophysical studies. We have also been venturing into more congested areas to seismically image faults in key urban locations. Results from recent surveys have: 1) documented new faults that had long been suspected in the Olympia area; 2) clarified the relationship between the LIDAR scarps and observed structures across the Tacoma fault zone; 3) provided a window into structures beneath the north and eastern portions of the western Tacoma fault zone; 4) documented deformation along the Seattle fault near a paleoseismic trench; 5) mapped the eastern part the Seattle fault zone beyond its previously mapped limits; and 6) documented multiple fault strands in the Seattle fault zone in the cities of Bellevue and Seattle. The results better constrain interpretations of paleoseismic data collected on these faults, and provide targets for future paleoseismic studies.

  1. Structure and paleoearthquake records of active submarine faults, Cook Strait, New Zealand: Implications for fault interactions, stress loading, and seismic hazard

    NASA Astrophysics Data System (ADS)

    Pondard, Nicolas; Barnes, Philip M.

    2010-12-01

    A new interpretation of active faulting in central Cook Strait, New Zealand, reveals tectonic structures associated with the spatial transition from subduction to continental transform faulting. Marine seismic reflection profiles and multibeam bathymetric data indicate that there are no throughgoing crustal faults connecting the North Island Dextral Fault Belt and the Marlborough Fault System in South Island. The major faults terminate offshore, associated with 5-20 km wide step-overs and a change in regional fault strike. This structure implies that propagation of strike-slip earthquake ruptures across the strait is not probable. Faulted sedimentary sequences in the Wairau Basin (Marlborough shelf), correlated to glacioeustatic sea level cycles, provide a stratigraphic framework for fault analysis. A high-resolution study of the postglacial (<20 ka) vertical displacement history of the Cloudy and Vernon faults reveals up to six and five paleoearthquakes since 18 ka, respectively. These long-timescale records indicate variable recurrence intervals and possibly variable stress drop, thus conforming to the variable slip model of earthquake behavior. Integration of these data with other submarine and terrestrial paleoearthquake records indicates the presence of clustered earthquake sequences involving multiple faults. Different sequences do not always involve the same faults. It appears that earthquake clustering is driven by fault interactions that lead to specific loading conditions favoring the triggering of earthquakes on major faults in relatively short time intervals. Present-day regional Coulomb stress distribution has been calculated in two scenarios considered to represent minimum and maximum loading conditions. The models, incorporating secular tectonic loading and stress changes associated with major crustal earthquakes, indicate high stress loading in a large part of central Cook Strait. These conditions may favor the triggering of future damaging

  2. Active displacements recorded along major fault systems in caves (Eastern Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Mitrovic, Ivanka; Plan, Lukas; Baron, Ivo; Grasemann, Bernhard

    2014-05-01

    Seismic data and GPS observations suggest that several major tectonic fault systems in the Eastern Alps are still active. However, direct geological evidences for recent movements along individual fault systems are rather scarce and limited to local observations in the Vienna Basin. Recently, tectonically damaged speleothems have been described from a cave close to the Salzach Ennstal Mariazeller Puchberger (SEMP) strike-slip fault, which accommodated the lateral extrusion of the Eastern Alps towards the Pannonian Basin. The project SPELEOTECT investigates the Quaternary tectonic activity and recent dynamics of micro-displacements along major fault systems of the Eastern Alps recorded in caves. The work focuses on cave passages, which have been displaced by active faulting and on speleothems, which have been damaged by fault movements. In order to bracket the tectonic events, flowstones, which have grown before and after the tectonic event are dated using the U-series disequilibrium method. For the reconstruction of the local stress field during (re)activation of the faults, the paleostress and the active stress field will be calculated from the fault-slip data of the recent micro-dislocations monitored with high-accuracy 3D crack-gauges. Cataclasites and fault gouges from sheared flowstones are investigated with high-resolution electron beam analytical techniques in order to characterize the microstructures caused by various deformation mechanisms within principal slip surfaces. Cathodoluminescense images are combined with electron backscattered diffraction maps in order to discriminating between fault displacements caused by seismic slip or aseismic creep. The major aim of SPELEOTECT is the record of a solid and broad data base of the paleoseismic record of the Eastern Alps for regional earthquake hazard assessment.

  3. Estimate of the post-Last Glacial Maximum tectonic subsidence and attempt to elucidate the subsurface geometry of the active Shanchiao Fault in the Taipei metropolis, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.; Teng, L. S.

    2011-12-01

    The Taipei Metropolis, home to some 10 million people, is subject to seismic hazard originated from not only ground shaking in thick alluvial deposits due to distant faults or sources scattered throughout the Taiwan region, but also active faulting directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Plio-Pleistocene arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for the areal extent and magnitude of its recent activity. Based on the growth faulting analysis in the Wuku profile in the central portion of the fault, one key horizon - the top of the Jingmei Conglomerate which was an alluvial fan formed rapidly when a major drainage reorganization occurred during the Last Glacial Maximum - serves to be the marker of tectonic subsidence since its inception around 23 ka. A determination and compilation of the depths of the Jingmei Conglomerate top horizon from nearly 500 borehole records within the Taipei Basin demonstrates that the hanging-wall deforms in a roll-over fashion and the offset is largest in the Wuku-Luzhou area in the central portion of the fault and decreases toward the southern tip of the fault. A geologic profile across the fault zone in the Luzhou area reveals the similar main-branch fault half-negative flower structural pattern observed in the Wuku profile, a phenomenon we interpreted to be originated from the geometry of the basin basement and the strong rheological contrast between unconsolidated basin sediments and basement rocks. We also attempt to resolve the poorly-known subsurface geometry of the Shanchiao Fault by simple elastic dislocation models. The surface deformation recorded by the above compilation is representative of the latest Quaternary period as it spans probably more than 10 earthquake

  4. Novel neural networks-based fault tolerant control scheme with fault alarm.

    PubMed

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques. PMID:25014982

  5. Should ground-motion records be rotated to fault-normal/parallel or maximum direction for response history analysis of buildings?

    USGS Publications Warehouse

    Reyes, Juan C.; Kalkan, Erol

    2012-01-01

    In the United States, regulatory seismic codes (for example, California Building Code) require at least two sets of horizontal ground-motion components for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 kilometers (3.1 miles) of an active fault, these records should be rotated to fault-normal and fault-parallel (FN/FP) directions, and two RHAs should be performed separately—when FN and then FP direction are aligned with transverse direction of the building axes. This approach is assumed to lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. The validity of this assumption is examined here using 3D computer models of single-story structures having symmetric (torsionally stiff) and asymmetric (torsionally flexible) layouts subjected to an ensemble of near-fault ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period is varied from 0.2 to 5 seconds, and yield-strength reduction factors, R, are varied from a value that leads to linear-elastic design to 3 and 5. Further validations are performed using 3D computer models of 9-story structures having symmetric and asymmetric layouts subjected to the same ground-motion set. The influence of the ground-motion rotation angle on several engineering demand parameters (EDPs) is examined in both linear-elastic and nonlinear-inelastic domains to form benchmarks for evaluating the use of the FN/FP directions and also the maximum direction (MD). The MD ground motion is a new definition for horizontal ground motions for use in site-specific ground-motion procedures for seismic design according to provisions of the American Society of Civil Engineers/Seismic Engineering Institute (ASCE/SEI) 7-10. The results of this study have important implications for current practice, suggesting that ground motions rotated to MD or FN/FP directions do not necessarily provide

  6. Active fault tolerant control of a flexible beam

    NASA Astrophysics Data System (ADS)

    Bai, Yuanqiang; Grigoriadis, Karolos M.; Song, Gangbing

    2007-04-01

    This paper presents the development and application of an H∞ fault detection and isolation (FDI) filter and fault tolerant controller (FTC) for smart structures. A linear matrix inequality (LMI) formulation is obtained to design the full order robust H∞ filter to estimate the faulty input signals. A fault tolerant H∞ controller is designed for the combined system of plant and filter which minimizes the control objective selected in the presence of disturbances and faults. A cantilevered flexible beam bonded with piezoceramic smart materials, in particular the PZT (Lead Zirconate Titanate), in the form of a patch is used in the validation of the FDI filter and FTC controller design. These PZT patches are surface-bonded on the beam and perform as actuators and sensors. A real-time data acquisition and control system is used to record the experimental data and to implement the designed FDI filter and FTC. To assist the control system design, system identification is conducted for the first mode of the smart structural system. The state space model from system identification is used for the H∞ FDI filter design. The controller was designed based on minimization of the control effort and displacement of the beam. The residuals obtained from the filter through experiments clearly identify the fault signals. The experimental results of the proposed FTC controller show its e effectiveness for the vibration suppression of the beam for the faulty system when the piezoceramic actuator has a partial failure.

  7. Geomorphic features of active faults around the Kathmandu Valley, Nepal, and no evidence of surface rupture associated with the 2015 Gorkha earthquake along the faults

    NASA Astrophysics Data System (ADS)

    Kumahara, Yasuhiro; Chamlagain, Deepak; Upreti, Bishal Nath

    2016-04-01

    The M7.8 April 25, 2015, Gorkha earthquake in Nepal was produced by a slip on the low-angle Main Himalayan Thrust, a décollement below the Himalaya that emerges at the surface in the south as the Himalayan Frontal Thrust (HFT). The analysis of the SAR interferograms led to the interpretations that the event was a blind thrust and did not produce surface ruptures associated with the seismogenic fault. We conducted a quick field survey along four active faults near the epicentral area around the Kathmandu Valley (the Jhiku Khola fault, Chitlang fault, Kulekhani fault, Malagiri fault and Kolphu Khola fault) from July 18-22, 2015. Those faults are located in the Lesser Himalaya on the hanging side of the HFT. Based on our field survey carried out in the area where most typical tectonic landforms are developed, we confirmed with local inhabitants the lack of any new surface ruptures along these faults. Our observations along the Jhiku Khola fault showed that the fault had some definite activities during the Holocene times. Though in the past it was recognized as a low-activity thrust fault, our present survey has revealed that it has been active with a predominantly right-lateral strike-slip with thrust component. A stream dissecting a talus surface shows approximately 7-m right-lateral offset, and a charcoal sample collected from the upper part of the talus deposit yielded an age of 870 ± 30 y.B.P, implying that the talus surface formed close to 870 y.B.P. Accordingly, a single or multiple events of the fault must have occurred during the last 900 years, and the slip rate we estimate roughly is around 8 mm/year. The fault may play a role to recent right-lateral strike-slip tectonic zone across the Himalayan range. Since none of the above faults showed any relationship corresponding to the April 25 Gorkha earthquake, it is possibility that a potential risk of occurrence of large earthquakes does exist close to the Kathmandu Valley due to movements of these active

  8. Granite emplacement during contemporary shortening and normal faulting: structural and magnetic study of the Veiga Massif (NW Spain)

    NASA Astrophysics Data System (ADS)

    Roman-Berdiel, T.; Pueyo-Morer, E. L.; Casas-Sainz, A. M.

    1995-12-01

    The Veiga Massif belongs to the calc-alkaline series of Hercynian granitic rocks of the Ibero-Armorican arc The Veiga granodiorite intruded during the Upper Carboniferous into the core of the WNW-ESE N-verging 'Ollo de Sapo' antiform, formed by Precambrian and Palaeozoic metasediments. Internal fabrics show that magma intrusion was contemporary with shortening. Measurements of feldspars orientations and anisotropy of magnetic susceptibility (AMS) throughout the granite are consistent and indicate a foliation striking WNW-ESE (parallel-to-folding), with a constant dip of 75-85 °N. The zonation of bulk low-field susceptibility is related to mineral content and indicates a more basic composition at the southern and western borders. The difference in elevation between outcrops (more than 600 m) allows us to infer the three-dimensional attitude of granite fabrics throughout the Massif. Syn-magmatic fabric folds are preserved in the inner part of the igneous body. The highest degree of magnetic anisotropy is observed in areas located near the bottom and top of the intrusion. At the scale of the Massif, foliation is convergent toward the bottom of the intrusion, along a line located at its northern border, where the magma source is interpreted to be located. In the western border of the Massif, the presence of C and S structures indicates that magma cooling was coeval with movement of the Chandoiro fault, a N-S striking normal fault with a N290E hanging wall displacement direction. These results indicate that emplacement of the Veiga granite is coeval with NNE-SSW shortening and with an WNW-ESE extension direction, parallel to the trend of the late folds.

  9. Late Cenozoic deformation of the Da'an-Dedu Fault Zone and its implications for the earthquake activities in the Songliao basin, NE China

    NASA Astrophysics Data System (ADS)

    Zhongyuan, Yu; Peizhen, Zhang; Wei, Min; Qinghai, Wei; Limei, Wang; Bin, Zhao; Shuang, Liu; Jian, Kang

    2015-08-01

    The Da'an-Dedu Fault Zone is a major tectonic feature cutting through the Songliao Basin from south to north in NE China. Five earthquakes with magnitudes over 5 that occurred during the past 30 years suggest the fault zone is a seismogenic structure with future seismic potential. The structural pattern, tectonic history, Quaternary activity and seismic potential have previously been unknown due to the Quaternary sedimentary coverage and lack of large historic earthquakes (M > 7). In this paper, we use seismic reflection profiles and drilling from petroleum explorations and shallow-depth seismic reflections to study those problems. The total length of the Da'an-Dedu Fault Zone is more than 400 km; modern seismicity delineates it into 4 segments each with a length of 90-100 km. In cross-section view, the folds and associated faults form a complex structural belt with a width of more than 10 km. Shallow-level seismic reflection across the Da'an-Dedu Fault Zone reveals that the Late Quaternary sediments were folded and faulted, indicating its present tectonic activity. The Da'an-Dedu Fault Zone and Songliao Basin have been subjected to three stages of tectonic evolution: a rifting stage characterized by normal faulting and extension (∼145-112 Ma), a prolonged stage of thermal subsidence (∼112-65 Ma), and a tectonic reversal that has been taking place since ∼65 Ma. Our shallow-level reflection profiles show that the folding and reverse faulting have influenced the Late Quaternary sediments. The seismicity and moderate earthquakes suggest that the tectonic activity persists today. The deformation rate across the Da'an-Dedu Fault Zone, however, is measured to be very slow. In conjunction with the inference that most deformation in NE China may be taken up by the Yilan-Yitong Fault Zone bounding the Songliao Basin to the east, we suggest moderate earthquake potential and thus moderate seismic hazards along the Da'an-Dedu Fault Zone. The geological structures, which

  10. Mapping Active Faults and Tectonic Geomorphology offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hart, P. E.; Sliter, R. W.; Wong, F. L.

    2009-12-01

    In June 2008, and July 2009, the USGS conducted two high-resolution, marine, seismic-reflection surveys across the continental shelf and upper slope between Piedras Blancas and Point Sal, central California, in order to better characterize regional earthquake sources. More than 1,300 km of single-channel seismic data were acquired aboard the USGS R/V Parke Snavely using a 500-joule mini-sparker source fired at a 0.5-second shot interval and recorded with a 15-meter streamer. Most tracklines were run perpendicular to the coast at 800-meter spacing, extending from the nearshore (~ 10-15 m water depth) to as far as 20 km offshore. Sub-bottom imaging varies with substrate, ranging from outstanding (100 to 150 m of penetration) in inferred Quaternary shallow marine, shelf and upper slope deposits to poor (0 to 10 m) in the Mesozoic basement rocks. Marine magnetic data were collected simultaneously on this survey, and both data sets are being integrated with new aeromagnetic data, publicly available industry seismic-reflection data, onshore geology, seismicity, and high-resolution bathymetry. Goals of the study are to map geology, structure, and sediment distribution; to document fault location, length, segmentation, shallow geometry and structure; and to identify possible sampling targets for constraining fault slip rates, earthquake recurrence, and tsunami hazard potential. The structure and tectonic geomorphology of the >100-km-long, right-lateral, Hosgri fault zone and its connections to the Los Osos, Pecho, Oceano and other northwest-trending inboard faults are the focus of this ongoing work. The Hosgri fault forms the eastern margin of the offshore Santa Maria basin and coincides in places with the outer edge of the narrow (5- to 15-km-wide), structurally complex continental shelf. The Hosgri is imaged as a relatively continuous, vertical fault zone that extends upward to the seafloor; varies significantly and rapidly along strike; and incorporates numerous

  11. Distribution of fault activity in the early stages of continental breakup: an analysis of faults and volcanic products of the Natron Basin, East African Rift, Tanzania

    NASA Astrophysics Data System (ADS)

    Muirhead, J. D.; Kattenhorn, S. A.

    2012-12-01

    Recent magmatic-tectonic crises in Ethiopia (e.g. 2005 Dabbahu rifting episode, Afar) have informed our understanding of the spatial and temporal distribution of strain in magmatic rifts transitioning to sea-floor spreading. However, the evolving contributions of magmatic and tectonic processes during the initial stages of rifting, is a subject of ongoing debate. The <5 Ma northern Tanzania and southern Kenya sectors of the East Africa Rift provide ideal locations to address this problem. We present preliminary findings from an investigation of fault structures utilizing aerial photography and satellite imagery of the ~35 km wide Natron rift-basin in northern Tanzania. Broad-scale structural mapping will be supplemented by field observations and 40Ar-39Ar dating of lava flows cut by faults to address three major aspects of magma-assisted rifting: (1) the relative timing of activity between the border fault and smaller faults distributed across the width of the rift; (2) time-averaged slip rates along rift-zone faults; and (3) the spatial distribution of faults and volcanic products, and their relative contributions to strain accommodation. Preliminary field observations suggest that the ~500 m high border fault system along the western edge of the Natron basin is either inactive or has experienced a reduced slip rate and higher recurrence interval between surface-breaking events, as evidence by a lack of recent surface-rupture along the main fault escarpments. An exception is an isolated, ~2 km-long segment of the Natron border fault, which is located in close proximity (< 5km) to the active Oldoinyo Lengai volcano. Here, ~10 m of seemingly recent throw is observed in volcaniclastic deposits. The proximity of the fault segment to Oldoinyo Lengai volcano and the localized distribution of fault-slip are consistent with magma-assisted faulting. Faults observed within the Natron basin and on the flanks of Gelai volcano, located on the eastern side of the rift, have

  12. Earthquake mechanism studies by active-fault drilling: Chi-Chi Taiwan to Wenchuan earthquakes

    NASA Astrophysics Data System (ADS)

    Togo, T.; Shimamoto, T.; Ma, S.; Noda, H.; Hirose, T.; Tanikawa, W.

    2010-12-01

    Why drill into active faults? How can such big projects be justified to society? We believe that a very important task for such projects is to understand earthquake mechanisms, i.e., to reproduce big earthquakes just occurred based on measured fault-zone properties. Post-earthquake fault-zone drilling provides rare opportunities for seeing and analyzing fault zones with minimum changes as “RAPID” group summarized its merits. Shallow and deep drilling into Chelungpu fault, that caused the 1999 Chi-Chi Taiwan earthquake, has demonstrated that reproducing an earthquake based on measured properties is becoming possible (Tanikawa and Shimamoto, 2009, JGR; Noda and Lapusta, 2009, JpGU). Another important outcome from Chelungpu drilling is finding of numerous changes in a fault zone during seismic fault motion (e.g., decomposition due to frictional heating), as highlighted by “black gouge” (many papers). Those changes can be reproduced now by high-velocity friction experiments. No so long ago, a renown geologist expressed his feeling that faults will not preserve a record of seismic slip, except for pseudotachylite (Cowan, 1999, JSG). In other words, seismic slip is of such a short duration that important changes, other than shearing deformation, will not occur in fault zones. Nojima and Chelungpu drilling has shown that this is not the case. On the other hand, seismic fault motion has been reproduced in laboratory for the last twenty years, demonstrating dramatic weakening of many natural fault gouges. We report here a set of data using fault gouge from Hongkou outcrop of Longmenshan fault system, very close to the first drilling site, under a constant slip rate and variable slip histories. Slip and velocity weakening behavior depends on slip history and can be described by an empirical equation. Importance of such experiments can be justified only by confirmation that the same processes indeed occur in natural fault zones. Integrated field and laboratory studies

  13. Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah

    NASA Astrophysics Data System (ADS)

    Berg, Silje S.; Skar, Tore

    2005-10-01

    Outcrop data has been used to examine the spatial arrangement of fractures in the damage zones of a segment of the large-scale Moab Fault (45 km in length), SE Utah. The characteristics of the footwall and hanging wall damage zones show pronounced differences in the deformation pattern: (1) there is a well-developed syncline in the hanging wall, as opposed to sub-horizontal bedding of the footwall; (2) the footwall damage zone is sub-divided into an inner zone (0-5 m from fault core) and an outer zone (>5 m) based on differences in deformation band frequency, whereas no clear sub-division can be made in the hanging wall; (3) the hanging wall damage zone is more than three times wider than the footwall damage zone; (4) there is a higher abundance of antithetic fractures and deformation bands in the hanging wall than in the footwall; and (5) the antithetic structures generally have more gentle dips in the hanging wall than in the footwall. The main conclusion is that the structural pattern across the fault zone is strongly asymmetric. The deformation pattern is partly influenced by lithology and/or partly by processes associated with the development of the fault core. We suggest, however, that the most important cause for the asymmetric strain distribution is the development of the hanging wall syncline and the resulting asymmetric stress pattern expected to exist during fault propagation.

  14. Recent high-resolution seismic reflection studies of active faults in the Puget Lowland

    NASA Astrophysics Data System (ADS)

    Liberty, L. M.; Pratt, T. L.

    2005-12-01

    In the past four years, new high-resolution seismic surveys have filled in key gaps in our understanding of active structures beneath the Puget Lowland, western Washington State. Although extensive regional and high-resolution marine seismic surveys have been fundamental to understanding the tectonic framework of the area, these marine profiles lack coverage on land and in shallow or restricted waterways. The recent high-resolution seismic surveys have targeted key structures beneath water bodies that large ships cannot navigate, and beneath city streets underlain by late Pleistocene glacial deposits that are missing from the waterways. The surveys can therefore bridge the gap between paleoseismic and marine geophysical studies, and test key elements of models proposed by regional-scale geophysical studies. Results from these surveys have: 1) documented several meters of vertical displacement on at least two separate faults in the Olympia area; 2) clarified the relationship between the Catfish Lake scarp and the underlying kink band in the Tacoma fault zone; 3) provided a first look at the structures beneath the north portion of the western Tacoma fault zone, north of previous marine profiles; 4) documented that deformation along the Seattle fault extends well east of Lake Sammamish; 5) imaged the Seattle fault beneath the Vasa Park trench; and 6) documented multiple fault strands in and south of the Seattle fault zone south of Bellevue. The results better constrain interpretations of paleoseismic investigations of past earthquakes on these faults, and provide targets for future paleoseismic studies.

  15. Quantitative constraints on the formation of post-glacial normal-fault scarps in Greece determined by chlore 36 cosmogenic dating.

    NASA Astrophysics Data System (ADS)

    Benedetti, L.; King, G.; Finkel, R.; Papanastassiou, D.; Armijo, R.; Ryerson, F.; Farber, D.; Flerit, F.

    2003-04-01

    Recent activity of normal faults in Greece has produced steep limestone fault scarps at the base of the mountain fronts. For example, on the Sparta fault located in the Peloponnese, and responsible for the 464 B.C. M˜7 earthquake, a continuous fresh scarp cuts limestone bedrock and indurated conglomerates. The scarp is nearly continuous dipping at 65-68o with well-preserved slickensides. The maximum height of the scarp is 10-12 metres, progressively decreasing towards the ends. The few local variations are associated with active streams where hangingwall erosion causes the scarp to be locally higher. The regularity of the scarp is powerful evidence that the footwall and hangingwall surfaces were originally continuous and the scarp surface represents fault slip alone. It also suggests that there was no significant erosion or deposition on the hanging-wall (except near active gullies) since the scarp began to form. Such observations have led to the suggestion that numerous well-preserved limestone escarpments around the eastern Mediterranean, similar to those in Sparta, are post-glacial in age. Using 36Cl cosmogenic dating we tested the foregoing ideas. Limestones (largely calcite) contain an abundance of calcium, which is a major target element for cosmogenic 36Cl production. Samples were collected from the limestone scarp surface to recover the continuous exposure history of the scarp and also from the footwall and hanging wall surfaces as well as a depth profile in the hanging wall wedge. The concentration of 36Cl and of stable chlorine has been measured by accelerator mass spectrometry (AMS) at the LLNL-CAMS for each of the samples (about 150). The result confirm: 1- that the fault scarp was formed between about 2000 B.P. and 13 ka B.P. as the result of 5 earthquakes (including the known event in 464 B.C.) with similar slip amplitudes of about 2m and with time intervals ranging from 500yr to 4500yr (Benedetti et al., GRL, 2002), 2- that both hanging wall and

  16. Optogenetic activation of normalization in alert macaque visual cortex

    PubMed Central

    Nassi, Jonathan J.; Avery, Michael C.; Cetin, Ali H.; Roe, Anna W.; Reynolds, John H.

    2015-01-01

    Summary Normalization has been proposed as a canonical computation that accounts for a variety of nonlinear neuronal response properties associated with sensory processing and higher cognitive functions. A key premise of normalization is that the excitability of a neuron is inversely proportional to the overall activity level of the network. We tested this by optogenetically activating excitatory neurons in alert macaque primary visual cortex and measuring changes in neuronal activity as a function of stimulation intensity, with or without variable-contrast visual stimulation. Optogenetic depolarization of excitatory neurons either facilitated or suppressed baseline activity, consistent with indirect recruitment of inhibitory networks. As predicted by the normalization model, neurons exhibited sub-additive responses to optogenetic and visual stimulation, which depended lawfully on stimulation intensity and luminance contrast. We conclude that the normalization computation persists even under the artificial conditions of optogenetic stimulation, underscoring the canonical nature of this form of neural computation. PMID:26087167

  17. Geomorphological observations of active faults in the epicentral region of the Huaxian large earthquake in 1556 in Shaanxi Province, China

    NASA Astrophysics Data System (ADS)

    Hou, Jian-Jun; Han, Mu-Kang; Chai, Bao-Long; Han, Heng-Yue

    1998-05-01

    The Huaxian magnitude 8 great earthquake of January 23, 1556, is the largest one recorded in the Weihe basin, Shaanxi Province, China and caused 830,000 people either injury or death. The epicenter is located in the southeastern part of the Weihe basin, around Huaxian City. Earthquakes are closely related to active faults and active faults are well developed in the epicentral area of the Huaxian large earthquake. Thus we will discuss the activity of the major faults in the epicentral area by geomorphological observations. There are three major fault sets in the study area: striking approximately east-west, northeast and northwest. These are inhomogeneous in spatial distribution, rates and manners of faulting, as shown by geomorphological observations such as faulted fluvial terraces and alluvial fans. The ages of the second and first terraces are around 20,000 and 5,000 years B.P. by thermoluminescent dating, Carbon-14 dating and archeology. The terraces were faulted by the North Huashan fault (F 1), the main boundary fault of Weihe basin and the Piedmont fault (F 2) after the second and the first terraces formed. The distribution of the displacement shows that the intersections of the North Huashan fault and the Chishui fault (F 4) striking northwest, and the western margin fault (F 5) of Tongguan loess tableland, have the largest in offsets in the area. Perhaps the Huanxian great earthquake in 1556 A.D. had a close relation to the North Huashan fault. The Weihe fault (F 3) striking east-west is also an active fault by analysis of the flood plain structure. Thus we should pay attention to the activities of the faults to take precautions against another possible large earthquake in this region.

  18. Assessing fault activity in intracontinental settings: paleoseismology and geomorphology in SE Kazakhstan

    NASA Astrophysics Data System (ADS)

    Grützner, Christoph; Carson, Emily; Mackenzie, David; Elliott, Austin; Campbell, Grace; Walker, Richard; Abdrakhmatov, Kanatbek

    2016-04-01

    Earthquake recurrence intervals of active faults often exceed the time span covered by instrumental, historical, and archaeological earthquake records in continental interiors. The identification of active faults then often relies on finding the geomorphological expression of surface faulting preserved in the landscape. In rather arid areas, single earthquake scarps can be preserved for thousands of years, but erosional and depositional processes will eventually obliterate features such as fault scarps and offset geological markers. Active faults with very long intervals between surface ruptures might therefore remain undetected, which constitutes a major problem for tectonic studies and seismic hazard assessment. Here we present data from the 50 km-long 'Charyn Canyon' thrust fault in the northern Tien Shan (SE Kazakhstan). Remote sensing, Structure-from-Motion (SfM), differential GPS, field mapping, and paleoseismic trenching were used to reveal the earthquake history of this fault. Radiocarbon dating, infra-red stimulated luminescence (IRSL), and scarp diffusion modelling were used for bracketing the occurrence of paleo-earthquakes. In the paleoseismological trenches we identified two surface rupturing events within the last ~37 ka BP. The most recent earthquake took place between 3.5 - 7.3 ka BP, the penultimate event occurred between ~17-37 ka BP. We estimate magnitudes of ~MW6.5-7.3. Only the younger event has a morphological expression as a 25 km-long fault scarp of ~2 m height. This implicates that a major landscape reset occurred between these two earthquakes, most likely related to the significant climatic change that marked the end of the last glacial maximum. Similar observations from other paleoseismic investigation sites in this area support this interpretation. Our study shows that faults in the northern Tien Shan tend to break in strong earthquakes with very long recurrence intervals. As a consequence, morphological evidence for the most recent

  19. Block-like motion of Tibetan Plateau: Evidences from active faults , GPS velocities and recent earthquake slips

    NASA Astrophysics Data System (ADS)

    Xu, X.; Cheng, J.

    2012-12-01

    Collision of India with Eurasia during the past ~ 55 million years has created the high Tibetan Plateau with a flat interior at an average altitude of ~ 5000 m (Matte et al., 1996; Tapponnier et al., 1986, 2001). Two alternative end-member models of how the Tibetan Plateau formed have been proposed: (1) continuous thickening and widespread viscous channel flow of the crust and mantle of the entire plateau (e. g. Bai et al., 2011; Beaumont et al., 2001; Bendick and Flesch, 2007; Clark and Royden, 2000; Houseman and England, 1996; Royden et al., 1997; Shen F. et al., 2001; Zhang et al., 2004; Bai et al., 2010), and (2) time-dependent, localized shear between coherent lithospheric blocks (e. g. Avouac and Tapponnier, 1993; Peltzer and Saucier, 1996; Replumaz and Tapponnier, 2003; Ryerson et al., 2006; Tapponnier et al., 2001; Thatcher, 2007). A new 3-D mechanical model, in which the underthrust India and Tibet are strongly coupled, seems to explain spatial variation in faulting style, and to be inconsistent with channel-flow model for the southern Tibet (Copley et al., 2011). This 3-D model has placed important new constraints on mechanical behavior of the Tibetan lithosphere in its most extreme environment and forced a critical evaluation of the Tibetan channel flow models (Freymueller, 2011), but does not match details of the GPS velocity field, and underestimates the EW extension rate across the southern Tibet. More important is that the model approximates Tibet as a continuous medium, and cannot include localized slip on the mega-strike-slip fault systems, and thus cannot further discuss relationship among the eastward block-like motion, mega-strike-slip faults, normal faults and thrust faults in and around the Tibetan Plateau. It has been recognized for many years that GPS data are likely to be ultimately decisive in distinguishing between block-like and continuous models, at least for describing present-day deformation. Nonetheless, both block-like models and

  20. Research program on Indonesian active faults to support the national earthquake hazard assesments

    NASA Astrophysics Data System (ADS)

    Natawidjaja, D. H.

    2012-12-01

    In mid 2010 an Indonesian team of earthquake scientists published the new Indonesian probabilistic seismic hazard analysis (PSHA) map. The new PSHA map replaced the previous version that is published in 2002. One of the major challenges in developing the new map is that data for many active fault zones in Indonesia is sparse and mapped only at regional scale, thus the input fault parameters for the PSHA introduce unavoidably large uncertainties. Despite the fact that most Indonesian islands are torn by active faults, only Sumatra has been mapped and studied in sufficient details. In other areas, such as Java and Bali, the most populated regions as well as in the east Indonesian region, where tectonic plate configurations are far more complex and relative plate motions are generally higher, many major active faults and plate boundaries are not well mapped and studied. In early 2011, we have initiated a research program to study major active faults in Indonesia together with starting a new graduate study program, GREAT (Graduate Research for Earthquake and Active Tectonics), hosted by ITB (Institute of Technology bandung) and LIPI (Indonesian Institute of Sciences) in partnership with the Australia-Indonesia Facility for Disaster Reduction (AIFDR). The program include acquisition of high-resolution topography and images required for detailed fault mapping, measuring geological slip rates and locating good sites for paleoseismological studies. It is also coupled by seismological study and GPS surveys to measure geodetic slip rates. To study submarine active faults, we collect and incorporate bathymetry and marine geophysical data. The research will be carried out, in part, through masters and Ph.D student theses. in the first four year of program we select several sites for active fault studies, particulary the ones that pose greater risks to society.

  1. A large normal-fault earthquake at the junction of the Tonga trench and the Louisville ridge

    NASA Technical Reports Server (NTRS)

    Eissler, H.; Kanamori, H.

    1982-01-01

    Long-period vertical-component Rayleigh waves are inverted in order to determine the source mechanism of the October 10, 1977 earthquake that occurred in the oceanic plate at the junction of the Tonga-Kermadec trench systems with the aseismic Louisville ridge. The cause was predominantly normal faulting on a plane striking roughly parallel to the trench, with a seismic moment of 1.7 x 10 to the 27th dyn cm. A focal depth of 20 km is determined by waveform modeling, but the actual rupture may have extended to 30 or 40 km. Two sources separated by 16 s comprised the event, which experienced an inferred rupture velocity of 3.5 km/sec. The interpretation that the earthquake was caused by gravitational pull due to the sinking slab implies that the Louisville ridge causes some degree of local decoupling between the plates. This event may be associated with the breakup of the Osbourn seamount. Alternatively, the earthquake may have resulted from tensional plate bending stress, as implied by its relatively shallow depth.

  2. Predicting strain using forward modelling of restored cross-sections: Application to rollover anticlines over listric normal faults

    NASA Astrophysics Data System (ADS)

    Poblet, Josep; Bulnes, Mayte

    2007-12-01

    A strategy to predict strain across geological structures, based on previous techniques, is modified and evaluated, and a practical application is shown. The technique, which employs cross-section restoration combined with kinematic forward modelling, consists of restoring a section, placing circular strain markers on different domains of the restoration, and forward modelling the restored section with strain markers until the present-day stage is reached. The restoration algorithm employed must be also used to forward model the structure. The ellipses in the forward modelled section allow determining the strain state of the structure and may indirectly predict orientatio