Science.gov

Sample records for active normal faulting

  1. Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, central China

    NASA Astrophysics Data System (ADS)

    Rao, Gang; Lin, Aiming; Yan, Bing; Jia, Dong; Wu, Xiaojun

    2014-12-01

    This study examines the tectonic activity and structural features of active normal faults in the Weihe Graben, central China. The Weihe Graben is an area with a high level of historic seismicity, and it is one of the intracontinental systems that developed since Tertiary in the extensional environment around the Ordos Block. Analysis of high-resolution remote-sensing imagery data, field observations, and radiocarbon dating results reveal the following: i) active normal faults are mainly developed within a zone < 500 m wide along the southern border of the eastern part of the Weihe Graben; ii) the active faults that have been identified are characterized by stepwise fault scarps dipping into the graben at angles of 40°-71°; iii) there are numerous discontinuous individual fault traces, ranging in length from a few tens of meters to 450 m (generally < 200 m); iv) fault zone structures, topographic features, and fault striations on the main fault planes indicate almost pure normal-slip; and v) late Pleistocene-Holocene terrace risers, loess, and alluvial deposits have been vertically offset by up to ~ 80 m, with a non-uniform dip-slip rate (throw-rates) ranging from ~ 2.1 to 5.7 mm/yr, mostly 2-3 mm/yr. Our results reveal that active normal faults have been developing in the Weihe Graben under an ongoing extensional environment, probably associated with the pre-existing graben and spreading of the continental crust, and this is in contrast with the Ordos Block and neighboring orogenic regions. These results provide new insights into the nature of extensional tectonic deformation in intracontinental graben systems.

  2. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  3. Lateral propagation of active normal faults throughout pre-existing fault zones: an example from the Southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; Prosser, Giacomo; Ivo Giano, Salvatore

    2013-04-01

    The main active structures in the Southern Apennines are represented by a set of NW-trending normal faults, which are mainly located in the axial sector of the chain. Evidences arising from neotectonics and seismology show activity of a composite seismic source, the Irpinia - Agri Valley, located across the Campania-Basilicata border. This seismic source is made up of two right-stepping, individual seismic sources forming a relay ramp. Each individual seismic source consists of a series of nearly parallel normal fault segments. The relay ramp area, located around the Vietri di Potenza town, is bounded by two seismic segments, the San Gregorio Magno Fault, to the NW, and the Pergola-Melandro Fault, to the SE. The possible interaction between the two right-stepping fault segments has not been proven yet, since the fault system of the area has never been analyzed in detail. This work is aimed at assessing the geometry of such fault system, inferring the relative age of the different fault sets by studying the crosscutting relationships, characterizing the micromechanics of fault rocks associated to the various fault sets, and understanding the modalities of lateral propagation of the two bounding fault segments. Crosscutting relationships are recognized by combining classical geological mapping with morphotectonic methods. This latter approach, which include the analysis of aerial photographs and field inspection of quaternary slope deposits, is used to identify the most recent structures among those cropping out in the field area. In the relay ramp area, normal faults crosscut different tectonic units of the Apennine chain piled up, essentially, during the Middle to Late Miocene. The topmost unit (only few tens of meter-thick) consists of a mélange containing blocks of different lithologies in a clayish matrix. The intermediate thrust sheet consists of 1-1.5 km-thick platform carbonates of late Triassic-Jurassic age, with dolomites at the base and limestones at the

  4. Active low-angle (?) normal faulting along the North Lunggar rift, western Tibet

    NASA Astrophysics Data System (ADS)

    Logan, M. A.; Taylor, M. H.; Styron, R. H.; Gosse, J. C.; Ding, L.; Yang, G.

    2012-12-01

    Here we present surface exposure ages of faulted fluvial terraces using cosmogenic nuclides from the North Lunggar rift. The Lunggar rift is one of seven major north-striking rift basins accommodating east-west directed extension on the Tibetan Plateau. The Lunggar rift in west-central Tibet is divided into two distinct north and south segments based on fault geometry. The North Lunggar range is bounded on its east side by a <40 degree dipping, ~N-striking normal fault. This normal fault is considered inactive as the main detachment is unconformably overlain by unfaulted moraines and alluvial fans. Farther into the hanging wall basin, approximately 6 km eastward, several fault scarps parallel the Lunggar detachment. Locally, active faulting is distributed in the hanging wall with as many as seven normal fault scarps accommodating active east-west directed extension. Recent activity of these smaller faults is apparent from cross-cut fluvial terraces that have been uplifted by as much as 75 m. The geomorphology and fault geometry of the North Lunggar rift are consistent with high-angle normal faults that sole into a single master detachment fault at depth. A high-resolution digital elevation model constructed from real-time kinematic-GPS data has made details of the geomorphology clear and allowed for precise measurements of geomorphic offsets across the fault scarps. We estimate the surface abandonment ages using the depth profiling approach with cosmogenic nuclides. Three cosmogenic depth profiles are being analyzed in this study with each depth profile consisting of five samples at varying depths in order to account for inheritance. Site 1 is the southernmost and is on the highest uplifted fluvial terrace and is being prepared for 10Be analysis. Site 2 comprises two depth profiles on the highest and intermediate uplifted terraces, respectively. Samples at site 2 have low quartz yields and are being prepared for 36Cl analysis. Combining the fault offsets and

  5. Active normal faulting along the Mt. Morrone south-western slopes (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Gori, Stefano; Giaccio, Biagio; Galadini, Fabrizio; Falcucci, Emanuela; Messina, Paolo; Sposato, Andrea; Dramis, Francesco

    2011-01-01

    In the present work we analyse one of the active normal faults affecting the central Apennines, i.e. the Mt. Morrone normal fault system. This tectonic structure, which comprises two parallel, NW-SE trending fault segments, is considered as potentially responsible for earthquakes of magnitude ≥ 6.5 and its last activation probably occurred during the second century AD. Structural observations performed along the fault planes have allowed to define the mainly normal kinematics of the tectonic structure, fitting an approximately N 20° trending extensional deformation. Geological and geomorphological investigations performed along the whole Mt. Morrone south-western slopes permitted us to identify the displacement of alluvial fans, attributed to Middle and Late Pleistocene by means of tephro-stratigraphic analyses and geomorphological correlations with dated lacustrine sequences, along the western fault branch. This allowed to evaluate in 0.4 ± 0.07 mm/year the slip rate of this segment. On the other hand, the lack of synchronous landforms and/or deposits that can be correlated across the eastern fault segment prevented the definition of the slip rate related to this fault branch. Nevertheless, basing on a critical review of the available literature dealing with normal fault systems evolution, we hypothesised a total slip rate of the fault system in the range of 0.4 ± 0.07 to 0.8 ± 0.09 mm/year. Moreover, basing on the length at surface of the Mt. Morrone fault system (i.e. 22-23 km) we estimated the maximum expected magnitude of an earthquake that might originate along this tectonic structure in the order of 6.6-6.7.

  6. Unravelling the competing influence of regional uplift and active normal faulting in SW Calabria, Italy

    NASA Astrophysics Data System (ADS)

    Whittaker, Alex; Roda Boluda, Duna; Boulton, Sarah; Erhardt, Sebastian

    2015-04-01

    The Neogene geological and geomorphological evolution of Southern Italy is complex and is fundamentally controlled by the subduction of the Ionian slab along the Apennine belt from the Calabrian Arc, and back-arc extension driven by trench rollback. In the area of Calabria and the Straits of Messina the presence of (i) uplifted, deformed and dissected basin sediments and marine terraces, ranging in age from the early to mid-Pleistocene and (ii) seismicity associated with NE-SW normal faults that have well-developed footwall topography and triangular facets have led workers to suggest that both significant regional uplift and extensional faulting in SW Calabria have played a role in generating relief in the area since the mid Pleistocene. However, there is considerable uncertainty in the rates of total surface uplift relative to sea level in both time and space, and the relative partitioning of this uplift between a mantle-driven regional signal, potentially related to a slab tear, and the active extensional structures. Additionally, despite the widespread recognition of normal faults in Calabria to which historical earthquakes are often linked, there is much less agreement on (i) which ones are active and for what length of time; (ii) how the faults interact; and (iii) what their throw and throw rates are. In particular, the ability to resolve both regional uplift and normal faulting in SW Calabria is essential in order to fully understand the tectonic history of the region, while an understanding of location and slip rate of active faults, in an area where the population numbers more than two million people, is essential to assess regional seismic hazards. Here we address these important questions using a combination of tectonic geomorphology and structural geology. We critically examine existing constraints on the rates and distribution of active normal faulting and regional uplift in the area, and we derive new constraints on the along-strike variation in throw

  7. Evidence for active creep on the Alto Tiberina low angle normal fault inferred using GPS geodesy

    NASA Astrophysics Data System (ADS)

    Rick, Bennett; Jackson, Lily; Mencin, David; Casale, Gabriele

    2014-05-01

    range ~43.2ºN and 43.5ºN. We also test the regional extent of the fault by extending the fault model to the north and south of the well-imaged portion of the fault, assuming a 20º dip. We estimated fault coupling along-strike and down-dip to assess spatial variations in creep on the model fault. Our modeling suggests that the portion of the model fault in the latitude band ~43.1ºN to ~43.7ºN, encompassing the geophysically imaged ATF fault, creeps at nearly the full fault slip rate of ~2 mm/yr below a depths of 3-5 km. Our model corroborates previous inferences, suggesting active creep at shallow depth on the well-imaged portion of the ATF. However, outside of this range of latitudes, where the existence of a regional low angle normal fault is speculative, the model fault appears to be coupled to greater depths (7-8 km or deeper). Interestingly, the apparent locked zones to the north and south of the creeping zone correlate with the locations of instrumentally recorded large magnitude hanging wall earthquakes. In contrast, there have been no instrumentally recorded large magnitude earthquakes in the hanging wall overlying the creeping portion of the fault.

  8. Numerical simulation of coastal flooding after potential reactivation of an active normal fault in northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Yu-Chang; Kuo, Chih-Yu; Chang, Kuo-Jen; Chen, Rou-Fei; Hsieh, Yu-Chung

    2016-04-01

    Rapid coastal flooding from seawards may be resulted from storm surge, tsunamis, and sudden land subsidence due to fault activities. Many observations and numerical modeling of flooding have been made for cases resulted from storm surge and tsunami events; however, coastal flooding caused by a potential normal faulting event nearby coastal areas is rarely reported. In addition to the earthquake hazards from fault rupturing and ground shaking, the accompanied hazards of earthquake-induced flooding is also important to be investigated. The Jinshan area in northern Taiwan was reported to have been flooded by a tsunami event in the year of 1867 possibly resulted from the reactivation of the Shanchiao normal fault offshore. Historical records have shown that the Shanchiao Fault that extends from Shulin along the western edge of the Taipei Basin to the town of Jinshan may have also ruptured in the year of 1694. The rupturing event has created a depression on the western side of the Taipei Basin that was later filled by sea water called the Taipei Lake. The geological conditions in northern Taiwan provide an opportunity for numerically simulating the dynamic processes of sea water flooding nearby the coastal area immediately after an earthquake-induced normal faulting event. In this study, we focused on the potential active normal faulting that may occur and result in an expected catastrophic flooding in lowland area of Jinshan in northern Taiwan. We applied the continuum shallow water equation to evaluate the unknown inundation processes including location, extent, velocity and water depths after the flooding initiated and the final state of the flooding event. The modeling results were well compared with borehole observations of the extent of previous flooding events possibly due to tsunami events. In addition, the modeling results may provide a future basis for safety evaluation of the two nuclear power plants nearby the region.

  9. Normal fault earthquakes or graviquakes.

    PubMed

    Doglioni, C; Carminati, E; Petricca, P; Riguzzi, F

    2015-07-14

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors.

  10. Normal fault earthquakes or graviquakes.

    PubMed

    Doglioni, C; Carminati, E; Petricca, P; Riguzzi, F

    2015-01-01

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  11. Normal fault earthquakes or graviquakes

    PubMed Central

    Doglioni, C.; Carminati, E.; Petricca, P.; Riguzzi, F.

    2015-01-01

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  12. How do normal faults grow?

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher; Bell, Rebecca; Rotevatn, Atle; Tvedt, Anette

    2016-04-01

    Normal faulting accommodates stretching of the Earth's crust, and it is arguably the most fundamental tectonic process leading to continent rupture and oceanic crust emplacement. Furthermore, the incremental and finite geometries associated with normal faulting dictate landscape evolution, sediment dispersal and hydrocarbon systems development in rifts. Displacement-length scaling relationships compiled from global datasets suggest normal faults grow via a sympathetic increase in these two parameters (the 'isolated fault model'). This model has dominated the structural geology literature for >20 years and underpins the structural and tectono-stratigraphic models developed for active rifts. However, relatively recent analysis of high-quality 3D seismic reflection data suggests faults may grow by rapid establishment of their near-final length prior to significant displacement accumulation (the 'coherent fault model'). The isolated and coherent fault models make very different predictions regarding the tectono-stratigraphic evolution of rift basin, thus assessing their applicability is important. To-date, however, very few studies have explicitly set out to critically test the coherent fault model thus, it may be argued, it has yet to be widely accepted in the structural geology community. Displacement backstripping is a simple graphical technique typically used to determine how faults lengthen and accumulate displacement; this technique should therefore allow us to test the competing fault models. However, in this talk we use several subsurface case studies to show that the most commonly used backstripping methods (the 'original' and 'modified' methods) are, however, of limited value, because application of one over the other requires an a priori assumption of the model most applicable to any given fault; we argue this is illogical given that the style of growth is exactly what the analysis is attempting to determine. We then revisit our case studies and demonstrate

  13. Distribution of deformation on an active normal fault network, NW Corinth Rift

    NASA Astrophysics Data System (ADS)

    Ford, Mary; Meyer, Nicolas; Boiselet, Aurélien; Lambotte, Sophie; Scotti, Oona; Lyon-Caen, Hélène; Briole, Pierre; Caumon, Guillaume; Bernard, Pascal

    2013-04-01

    Over the last 20-25 years, geodetic measurements across the Gulf of Corinth have recorded high extension rates varying from 1.1 cm/a in the east to a maximum of 1.6 cm/a in the west. Geodetic studies also show that current deformation is confined between two relatively rigid blocks defined as Central Greece (to the north) and the Peloponnesus to the south. Active north dipping faults (<1 Ma) define the south coast of the subsiding Gulf, while high seismicity (major earthquakes and micro-seismicity) is concentrated at depth below and to the north of the westernmost Gulf. How is this intense deformation distributed in the upper crust? Our objectives here are (1) to propose two models for the distribution of deformation in the upper crust in the westernmost rift since 1 Ma, and (2) to place the tectonic behaviour of the western Gulf in the context of longer term rift evolution. Over 20 major active normal faults have been identified in the CRL area based specific characteristics (capable of generating earthquakes M> 5.5, active in the last 1 M yrs, slip rate >0.5 mm/a). Because of the uncertainty related to fault geometry at depth two models for 3D fault network geometry in the western rift down to 10 km were constructed using all available geophysical and geological data. The first model assumes planar fault geometries while the second uses listric geometries for major faults. A model for the distribution of geodetically-defined extension on faults is constructed along five NNE-SSW cross sections using a variety of data and timescales. We assume that the role of smaller faults in accommodating deformation is negligible so that extension is fully accommodated on the identified major faults. Uncertainties and implications are discussed. These models provide estimates of slip rate for each fault that can be used in seismic hazard models. A compilation of onshore and offshore data shows that the western Gulf is the youngest part of the Corinth rift having initiated

  14. Along strike variation in fault creep on the active Alto Tiberina low angle normal fault inferred from GPS geodesy

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Jackson, L. J.; Mencin, D.; Casale, G.

    2013-12-01

    The Alto Tiberina fault (ATF) in central Italy is a low angle normal fault (LANF) dipping ~20° to the east-northeast. The fault is inferred from surface geology, deep boreholes, seismic reflection lines, abundant microseismicity, and crustal motion data. Balanced cross sections show that the fault plays a major role in accommodating regional extension in central Italy, having accommodated up to 10 km of extension over the past 3 Ma. However, no large earthquakes have been attributed to the ATF. Instead, large earthquakes in the area occur on high angle west dipping normal faults that cut the ATF hanging wall. Several lines of evidence, including fine grained foliations composed of velocity strengthening phyllosilicate minerals in exhumed fault rocks, high fault fluid over-pressures observed in footwall boreholes (~85% lithostatic pressure at 3.7-4.8 km depth), persistent microseismicity coincident with the ATF fault plane, and pattern of geodetically observed crustal motions suggest that the ATF accommodates slip primarily by aseismic creep up to shallow (~4 km) depth in the crust. Previous studies using a simple fault model consisting of an edge dislocation buried in and elastic halfspace supported the shallow creeping hypothesis. But newer realizations of the crustal motion field, imaged with more precision and higher spatial resolution than previously reported, are not adequately explained by this 1-D creeping-fault model. Moreover, significant variations in the occurrence of large hanging wall earthquakes are observed along the strike of the ATF and may be indicative of along-strike variation in ATF fault mechanics. To test whether the along-strike variation in earthquake occurrence is accompanied by similar variation in the rate of fault creep on the ATF, we analyzed crustal motion data derived from more than a decade of continuous GPS measurements in central Italy. We used the TDEFNODE software to parameterize the ATF using the available high

  15. The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults

    NASA Astrophysics Data System (ADS)

    Kapetanidis, V.; Deschamps, A.; Papadimitriou, P.; Matrullo, E.; Karakonstantis, A.; Bozionelos, G.; Kaviris, G.; Serpetsidaki, A.; Lyon-Caen, H.; Voulgaris, N.; Bernard, P.; Sokos, E.; Makropoulos, K.

    2015-09-01

    The Corinth Rift in Central Greece has been studied extensively during the past decades, as it is one of the most seismically active regions in Europe. It is characterized by normal faulting and extension rates between 6 and 15 mm yr-1 in an approximately N10E° direction. On 2013 May 21, an earthquake swarm was initiated with a series of small events 4 km southeast of Aigion city. In the next days, the seismic activity became more intense, with outbursts of several stronger events of magnitude between 3.3 and 3.7. The seismicity migrated towards the east during June, followed by a sudden activation of the western part of the swarm on July 15th. More than 1500 events have been detected and manually analysed during the period between 2013 May 21 and August 31, using over 15 local stations in epicentral distances up to 30 km and a local velocity model determined by an error minimization method. Waveform similarity-based analysis was performed, revealing several distinct multiplets within the earthquake swarm. High-resolution relocation was applied using the double-difference algorithm HypoDD, incorporating both catalogue and cross-correlation differential traveltime data, which managed to separate the initial seismic cloud into several smaller, densely concentrated spatial clusters of strongly correlated events. Focal mechanism solutions for over 170 events were determined using P-wave first motion polarities, while regional waveform modelling was applied for the calculation of moment tensors for the 18 largest events of the sequence. Selected events belonging to common spatial groups were considered for the calculation of composite mechanisms to characterize different parts of the swarm. The solutions are mainly in agreement with the regional NNE-SSW extension, representing typical normal faulting on 30-50° north-dipping planes, while a few exhibit slip in an NNE-SSW direction, on a roughly subhorizontal plane. Moment magnitudes were calculated by spectral analysis

  16. Fluid involvement in the active Helike normal Fault, Gulf of Corinth, Greece

    NASA Astrophysics Data System (ADS)

    Koukouvelas, Ioannis K.; Papoulis, Dimitris

    2009-03-01

    Rock fabric and mineralogical composition from the fault core and the unaffected protolith have been used to define the role of the segmented Helike Fault to fluid flow. Sixty samples were investigated by XRD, SEM observation and SEM-EDS microanalyses. Detrital smectite, calcite, and quartz represent the mineral assemblage at the crest of the footwall block in Foniskaria sampling site. In this site smectite is enriched at the rims of the fault core. All other sampling sites located at the base of the fault scarp are characterized by detrital and newly formed minerals. Detrital minerals include plagioclase, quartz, calcite and illite in Nikolaiika sampling site, and smectite, illite, kaolinite, quartz, calcite in Selinous sampling site. In the latter sampling site erionite and cerussite are newly formed minerals with erionite considered as the hydrothermal alteration product of fluids at 80-100 °C. At the eastern fault segment illite, quartz and calcite (T13 site) corresponds to detrital minerals. Mineralogy in the fault core reflects its high permeability to down-flowing meteoric water and weak hydrothermal alteration. The rock fabric suggests mineral alignment parallel to the fault plane. Mineralogy indicates that the Aigion, Helike and Pyrgaki Faults in the Gulf of Corinth host hydrothermal activity at shallow levels.

  17. Tectonic Geomorphology of an Active Low-Angle Normal Fault, Sierra El Mayor, Northern Baja California

    NASA Astrophysics Data System (ADS)

    Fletcher, J. M.; Spelz, R.

    2007-05-01

    Low angle normal faults (LANF) are ubiquitously distributed throughout the northern Gulf of California. They commonly bound uplifted mountain ranges and are found in numerous seismic sections in the Altar Desert and Wagner Basin (A. Martin, unpublished data). The Canada David detachment (CDD) is a spectacular example of an active LANF that controls the western mountain front of Sierra El Mayor over a strike length of 60 Km. Like most LANFs, the CDD contains two prominent antiform-synform megamullion pairs that strongly control the tectonic geomorphology of the uplifted footwall block and alluvial terraces along the range flank. Quantitative morphometric analysis along the mountain front shows that drainage basins in antiformal domains have systematically higher outlet elevations, higher gradients, greater relief, and much greater hypsometric integrals. Additionally river valleys are narrower and dominated by bedrock channels that extend nearly to the outlet, which is consistent with the fact that mountain front sinuosity is almost an order of magnitude less in the antiformal domains. A sequence of as many as 8 different regional strath terraces are preserved along the range flank and reconnaissance dating of the deposits by cosmogenic isotopes suggests that they formed during the major interglacial-to-glacial climatic transitions. Strath terraces are generally much older, and relative heights between terraces is significantly lower in synformal domains. All of these geomorphologic characteristics suggest that the synformal domains have experienced much lower rates of uplift and erosion of the footwall and likewise lower rates of sedimentation in the adjacent hanging wall basin. The lack of slip gradients on the master fault between synformal and antiformal domains suggests that the megamullions formed instead by regional buckling perpendicular to the extension direction. A Quaternary scarp array extends along the entire length of the mountain front and also shows

  18. Active tectonic extension across the Alto Tiberina normal fault system from GPS data modeling and InSAR velocity maps: new perspectives within TABOO Near Fault Observatory

    NASA Astrophysics Data System (ADS)

    Vadacca, Luigi; Anderlini, Letizia; Casarotti, Emanuele; Serpelloni, Enrico; Chiaraluce, Lauro; Polcari, Marco; Albano, Matteo; Stramondo, Salvatore

    2014-05-01

    The Alto Tiberina fault (ATF) is a low-angle (east-dipping at 15°) normal fault (LANF) 70 km long placed in the Umbria-Marche Apennines (central Italy), characterized by SW-NE oriented extension occurring at rates of 2-3 mm/yr. These rates were measured by continuous GPS stations belonging to several networks, which are denser in the study area thanks to additional sites recently installed in the framework of the INGV national RING network and of the ATF observatory. In this area historical and instrumental earthquakes mainly occur on west-dipping high-angle normal faults. Within this context the ATF has accumulated 2 km of displacement over the past 2 Ma, but at the same time the deformation processes active along this misoriented fault, as well as its mechanical behavior, are still unknown. We tackle this issue by solving for interseismic deformation models obtained by two different methods. At first, through the 2D and 3D finite element modeling, we define the effects of locking depth, synthetic and antithetic fault activity and lithology on the velocity gradient measured along the ATF system. Subsequently through a block modeling approach, we model the GPS velocities by considering the major fault systems as bounds of rotating blocks, while estimating the corresponding geodetic fault slip-rates and maps of heterogeneous fault coupling. Thanks to the latest imaging of the ATF deep structure obtained from seismic profiles, we improve the proposed models by modeling the fault as a complex rough surface to understand where the stress accumulations are located and the interseismic coupling changes. The preliminary results obtained show firstly that the observed extension is mainly accommodated by interseismic deformation on both the ATF and antithetic faults, highlighting the important role of this LANF inside an active tectonic contest. Secondarily, using the ATF surface "topography", we find an interesting correlation between microseismicty and creeping portions

  19. DEM simulation of growth normal fault slip

    NASA Astrophysics Data System (ADS)

    Chu, Sheng-Shin; Lin, Ming-Lang; Nien, Wie-Tung; Chan, Pei-Chen

    2014-05-01

    Slip of the fault can cause deformation of shallower soil layers and lead to the destruction of infrastructures. Shanchiao fault on the west side of the Taipei basin is categorized. The activities of Shanchiao fault will cause the quaternary sediments underneath the Taipei basin to become deformed. This will cause damage to structures, traffic construction, and utility lines within the area. It is determined from data of geological drilling and dating, Shanchiao fault has growth fault. In experiment, a sand box model was built with non-cohesive sand soil to simulate the existence of growth fault in Shanchiao Fault and forecast the effect on scope of shear band development and ground differential deformation. The results of the experiment showed that when a normal fault containing growth fault, at the offset of base rock the shear band will develop upward along with the weak side of shear band of the original topped soil layer, and this shear band will develop to surface much faster than that of single top layer. The offset ratio (basement slip / lower top soil thickness) required is only about 1/3 of that of single cover soil layer. In this research, it is tried to conduct numerical simulation of sand box experiment with a Discrete Element Method program, PFC2D, to simulate the upper covering sand layer shear band development pace and scope of normal growth fault slip. Results of simulation indicated, it is very close to the outcome of sand box experiment. It can be extended to application in water pipeline project design around fault zone in the future. Keywords: Taipei Basin, Shanchiao fault, growth fault, PFC2D

  20. Active normal fault network of the Apulian Ridge (Eastern Mediterranean Sea) imaged by multibeam bathymetry and seismic data

    NASA Astrophysics Data System (ADS)

    Pellegrini, Claudio; Marchese, Fabio; Savini, Alessandra; Bistacchi, Andrea

    2016-04-01

    The Apulian ridge (North-eastern Ionian margin - Mediterranean Sea) is formed by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a NNW-SSE penetrative normal fault system and is part of the present foreland system of both the Apennine to the west and the Hellenic arc to the east. The geometry, age, architecture and kinematics of the fault network were investigated integrating data of heterogeneous sources, provided by previous studies: regional scale 2D seismics and three wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, very high resolution seismic (VHRS - Sparker and Chirp-sonar data), multi-beam echosounder bathymetry and results from sedimentological and geo-chronological analysis of sediment samples collected on the seabed. Multibeam bathymetric data allowed in particular assessing the 3D continuity of structures imaged in 2D seismics, thanks to the occurrence of continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides), revealing the vertical extent and finite displacement associated to fault scarps. A penetrative network of relatively small faults, always showing a high dip angle, composes the NNW-SSE normal fault system, resulting in frequent relay zones, which are particularly well imaged by seafloor geomorphology. In addition, numerous fault scarps appear to be roughly coeval with quaternary submarine mass-wasting deposits colonised by Cold-Water Corals (CWC). Coral colonies, yielding ages between 11 and 14 kA, develop immediately on top of late Pleistocene mass-wasting deposits. Mutual cross-cutting relationships have been recognized between fault scarps and landslides, indicating that, at least in places, these features may be coeval. We suppose that fault activity lasted at least as far as the Holocene-Pleistocene boundary and that the NNW-SSW normal fault network in the Apulian Plateau can be

  1. Normal faulting along the western side of the Matese Mountains: Implications for active tectonics in the Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Dichiarante, Anna Maria; Auciello, Eugenio; Saroli, Michele; Stoppa, Francesco

    2016-01-01

    We provide new field data from geologic mapping and bedrock structural geology along the western side of the Matese Mts in central Italy, a region of high seismicity, strain rates among the highest of the entire Apennines (4-5 mm/yr GPS-determined extension), and poorly constrained active faults. The existing knowledge on the Aquae Iuliae normal fault (AIF) was implemented with geometric and kinematic data that better constrain its total length (16.5 km), the minimum long-term throw rate (0.3-0.4 mm/yr, post-late glacial maximum, LGM), and the segmentation. For the first time, we provide evidence of post-350 ka and possibly late Quaternary activity of the Ailano - Piedimonte Matese normal fault (APMF). The APMF is 18 km long. It is composed of a main 11 km-long segment striking NW-SE and progressively bending to the E-W in its southern part, and a 7 km-long segment striking E-W to ENE-WSW with very poor evidence of recent activity. The available data suggest a possible post-LGM throw rate of the main segment of ≳0.15 mm/yr. There is no evidence of active linkage in the step-over zone between the AIF and APMF (Prata Sannita step-over). An original tectonic model is proposed by comparing structural and geodetic data. The AIF and APMF belong to two major, nearly parallel fault systems. One system runs at the core of the Matese Mts and is formed by the AIF and the faults of the Gallo-Letino-Matese Lake system. The other system runs along the western side of the Matese Mts and is formed by the APMF, linked to the SE with the Piedimonte Matese - Gioia Sannitica fault. The finite extension of the APMF might be transferred to the NW towards the San Pietro Infine fault. The nearly 2-3 mm/yr GPS-determined extension rate is probably partitioned between the two systems, with a ratio that is difficult to establish due to poor GPS coverage. The proposed model, though incomplete (several faults/transfer zones need further investigations), aids in the seismotectonic

  2. Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.

    2015-05-01

    We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.

  3. Active tectonics in southern Xinjiang, China: Analysis of terrace riser and normal fault scarp degradation along the Hotan-Qira fault system

    NASA Technical Reports Server (NTRS)

    Avouac, Jean-Philippe; Peltzer, Gilles

    1993-01-01

    The northern piedmont of the western Kunlun mountains (Xinjiang, China) is marked at its easternmost extremity, south of the Hotan-Qira oases, by a set of normal faults trending N50E for nearly 70 km. Conspicuous on Landsat and SPOT images, these faults follow the southeastern border of a deep flexural basin and may be related to the subsidence of the Tarim platform loaded by the western Kunlun northward overthrust. The Hotan-Qira normal fault system vertically offsets the piedmont slope by 70 m. Highest fault scarps reach 20 m and often display evidence for recent reactivations about 2 m high. Successive stream entrenchments in uplifted footwallls have formed inset terraces. We have leveled topographic profiles across fault scarps and transverse abandoned terrace risers. The state of degradation of each terrace edge has been characterized by a degradation coefficient tau, derived by comparison with analytical erosion models. Edges of highest abandoned terraces yield a degradation coefficient of 33 +/- 4 sq.m. Profiles of cumulative fault scarps have been analyzed in a similar way using synthetic profiles generated with a simple incremental fault scarp model.

  4. Active tectonics in southern Xinjiang, China: Analysis of terrace riser and normal fault scarp degradation along the Hotan-Qira fault system

    SciTech Connect

    Avouac, J.P.; Peltzer, G. |

    1993-12-01

    The northern piedmont of the western Kunlun mountains (Xinjiang, China) is marked at its easternmost extremity, south of the Hotan-Qira oases, by a set of normal faults trending N50E for nearly 70 km. Conspicuous on Landsat and SPOT images, these faults follow the southeastern border of a deep flexural basin and may be related to the subsidence of the Tarim platform loaded by the western Kunlun northward overthrust. The Hotan-Qira normal fault system vertically offsets the piedmont slope by 70 m. Highest fault scarps reach 20 m and often display evidence for recent reactivations about 2 m high. Successive stream entrenchments in uplifted footwallls have formed inset terraces. We have leveled topographic profiles across fault scarps and transverse abandoned terrace risers. The state of degradation of each terrace edge has been characterized by a degradation coefficient tau, derived by comparison with analytical erosion models. Edges of highest abandoned terraces yield a degradation coefficient of 33 +/- 4 sq.m. Profiles of cumulative fault scarps have been analyzed in a similar way using synthetic profiles generated with a simple incremental fault scarp model.

  5. Frictional Properties of a Low-Angle Normal Fault Under In Situ Conditions: Thermally-Activated Velocity Weakening

    NASA Astrophysics Data System (ADS)

    Niemeijer, André R.; Collettini, Cristiano

    2014-10-01

    The Zuccale fault is a regional, low-angle, normal fault, exposed on the Isle of Elba in central Italy that accommodated a total shear displacement of 6-8 km. The fault zone structure and fault rocks formed at <8 km crustal depth. The present-day fault structure is the final product of several deformation processes superposed during the fault history. In this study, we report results from a series of rotary shear experiments performed on 1-mm thick powdered gouges made from several fault rock types obtained from the Zuccale fault. The tests were done under conditions ranging from room temperature to in situ conditions (i.e., at temperatures up to 300 °C, applied normal stresses up to 150 MPa, and fluid-saturated.) The ratio of fluid pressure to normal stress was held constant at either λ = 0.4 or λ = 0.8 to simulate an overpressurized fault. The samples were sheared at a constant sliding velocity of 10 μm/s for at least 5 mm, after which a velocity-stepping sequence from 1 to 300 μm/s was started to determine the velocity dependence of friction. This can be represented by the rate-and-state parameter ( a-b), which was determined by an inversion of the data to the rate-and-state equations. Friction of the various fault rocks varies between 0.3 and 0.8, similar to values obtained in previous studies, and decreases with increasing phyllosilicate content. Friction decreases mildly with temperature, whereas normal stress and fluid pressure do not affect friction values systematically. All samples exhibited velocity strengthening, conditionally stable behavior under room temperature conditions and ( a- b) increased with increasing sliding velocity. In contrast, velocity weakening, accompanied by stick-slips, was observed for the strongest samples at 300 °C and sliding velocities below 10 μm/s. An increase in fluid pressure under these conditions led to a further reduction in ( a-b) for all samples, so that they exhibited unstable, stick-slip behavior at low

  6. Deformation associated with continental normal faults

    NASA Astrophysics Data System (ADS)

    Resor, Phillip G.

    Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master

  7. Active normal faulting during the 1997 seismic sequence in Colfiorito, Umbria: Did slip propagate to the surface?

    NASA Astrophysics Data System (ADS)

    Mildon, Zoë K.; Roberts, Gerald P.; Faure Walker, Joanna P.; Wedmore, Luke N. J.; McCaffrey, Ken J. W.

    2016-10-01

    In order to determine whether slip during an earthquake on the 26th September 1997 propagated to the surface, structural data have been collected along a bedrock fault scarp in Umbria, Italy. These collected data are used to investigate the relationship between the throw associated with a debated surface rupture (observed as a pale unweathered stripe at the base of the bedrock fault scarp) and the strike, dip and slip-vector. Previous studies have suggested that the surface rupture was produced either by primary surface slip or secondary compaction of hangingwall sediments. Some authors favour the latter because sparse surface fault dip measurements do not match nodal plane dips at depth. It is demonstrated herein that the strike, dip and height of the surface rupture, represented by a pale unweathered stripe at the base of the bedrock scarp, shows a systematic relationship with respect to the geometry and kinematics of faulting in the bedrock. The strike and dip co-vary and the throw is greatest where the strike is oblique to the slip-vector azimuth where the highest dip values are recorded. This implies that the throw values vary to accommodate spatial variation in the strike and dip of the fault across fault plane corrugations, a feature that is predicted by theory describing conservation of strain along faults, but not by compaction. Furthermore, published earthquake locations and reported fault dips are consistent with the analysed surface scarps when natural variation for surface dips and uncertainty for nodal plane dips at depth are taken into account. This implies that the fresh stripe is indeed a primary coseismic surface rupture whose slip is connected to the seismogenic fault at depth. We discuss how this knowledge of the locations and geometry of the active faults can be used as an input for seismic hazard assessment.

  8. Preliminary Results on the Mechanics of the Active Mai'iu Low Angle Normal Fault (Dayman Dome), Woodlark Rift, SE Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Little, T. A.; Boulton, C. J.; Mizera, M.; Webber, S. M.; Oesterle, J.; Ellis, S. M.; Norton, K. P.; Wallace, L. M.; Biemiller, J.

    2015-12-01

    Rapid slip on the Mai'iu low-angle normal fault (LANF) has exhumed a smooth, corrugated fault surface contiguous for >24 km up-dip, rising from near sea level to ~2900 m. The fault emerges from the ground dipping ~21° N and flattens over the crest of the dome to dip south. Geomorphic analysis reveals a progressive back-tilting of the surface during exhumation accompanied by cross-cutting antithetic-sense high-angle faults—features that we attribute to "rolling-hinge" deformation of a once more steeply-dipping fault. Near the scarp base, the footwall exposes mafic mylonites that deformed at ~400-450°C. The younger Mai'iu fault cross-cuts this ductile mylonite zone, with most brittle slip being localized into a ~20 cm-thick, gouge-filled core. Near the range front, active faults bite across both the hangingwall and footwall of the Mai'iu fault and record overprinting across a dying, shallow (<~1 km deep) part of the fault by more optimally oriented, steeper faults. Such depth-dependent locking up of the fault suggests it weakens primarily by friction reduction rather than cohesion loss. Outcrop-scale fractures in the exhumed footwall reflect formation in an Andersonian stress regime. Previous campaign GPS data suggest the fault slips at up to ~1 cm/yr. To improve resolution and test for aseismic creep, we installed 12 GPS sites across the fault trace in 2015. Quantitative XRD indicates the gouges were derived primarily from mafic footwall, containing up to 65% corrensite and saponite. Hydrothermal friction experiments on two gouges from a relict LANF strand were done at varying normal stresses (30-120 MPa), temperatures (50-200oC), and sliding velocities (0.3-100 μm/s). Results reveal very weak frictional strength (μ=0.13-0.15 and 0.20-0.28) and velocity-strengthening behavior conducive to fault creep. At the highest temperatures (T≥150oC) and lowest sliding velocities (<3 μm/s), a transition to velocity-weakening behavior indicates the potential for

  9. The Active Mai'iu Low Angle Normal Fault, Woodlark Rift: Spatial and Temporal Slip Distributions, and Rider Block Abandonment Chronology.

    NASA Astrophysics Data System (ADS)

    Webber, S. M.; Little, T.; Norton, K. P.; Mizera, M.; Oesterle, J.; Ellis, S. M.

    2015-12-01

    Low-angle normal faults (LANFs) have induced debate due to their apparent non-Andersonian behavior and lack of significant seismicity associated with slip. Dipping ~21°, the Mai'iu Fault, Woodlark Rift is an active, rapidly slipping LANF located at the transition between continental extension and seafloor spreading. Based on campaign GPS data [Wallace et al., 2014] the Mai'iu Fault is thought to slip at 7-9 mm/yr, accommodating a large fraction of total basinal extension, although it is uncertain whether slip is seismic or aseismic. Surface geomorphology indicates that the fault scarp is not significantly eroded despite high rainfall and ~3000 m relief. We have obtained 15 rock samples (~5 m spacing) from the lowermost Mai'iu Fault scarp in order to determine Holocene slip rate and style over the last ~10 kyr using cosmogenic 10Be in quartz. This slip direction-parallel profile in exposed bedrock is supported by a suite of soil samples for 10Be analysis, which extend our temporal coverage. We model exposure age data in terms of slip rate and style by identification of discontinuities within the profile. Of particular interest is whether slip is seismic or aseismic. In addition we analyze the structure of conglomeratic strata and abandoned, back-rotated rider blocks in the Mai'iu Fault hanging wall, which record Quaternary splay faulting and tilting in response to sustained LANF slip. 20 quartz pebble samples were obtained from hanging wall conglomerates for the purpose of calculating cosmogenic burial (26Al/10Be) ages. These constrain the chronology of Quaternary hanging wall deformation. High-angle (~50°) faulting competes with LANF slip at <2 km depths, with high-angle faults cutting the main LANF and exposing footwall metabasalt up to 2 km north of the Mai'iu Fault. Past splay faulting is recorded in the progressive back-tilting and folding of the Gwoira rider block in a ~2 km deep depression in the corrugated Mai'iu fault plane. Our results provide new

  10. Evidence for Holocene paleoseismicity along the Basel-Reinach Active Normal Fault (Switzerland): A Seismic Source for the 1356 Earthquake in the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Meghraoui, M.; Delouis, B.; Giardini, D.

    2003-04-01

    We conducted a paleoseismic study with geomorphologic mapping, geophysical prospecting and trenching along an 8-km-long NNE-SSW trending fault scarp south of Basel. The city as well as 40 castles within a 20-km radius were destroyed or heavily damaged by the earthquake of 18th October 1356 (Io = IX-X MKS), the largest historical seismic event in central Europe. Active river incisions as well as late Quaternary alluvial terraces are uplifted along the linear Basel-Reinach fault scarp. The active normal fault shows at least two main branches reaching the surface as attested by resistivity profiles, reflection seismic data, and direct observations in six trenches. In trenches, the normal fault rupture affects three colluvial wedge deposits up to the base of the present day soil. Radiocarbon as well as thermoluminescence age determinations from other trenches helped reconstruct the Holocene events chronology. We identified three seismic events with an average coseismic movement of 0.5 - 0.8 m and a total vertical displacement of 1.8 m in the last 7800 years and five events in the last 13200 years. The most recent event occurred in the interval 610 - 1475 A.D. (2sigma) and may likely correspond to the 1356 earthquake. Furthermore, the morphology suggests both a southern and northern fault extensions that may reach 20 km across the Jura Mountains and across the Rhine Valley. Taking this fault length and a 10 km-thick seismogenic layer suggests a M 6.5 or greater event as a possible scenario for the seismic hazard assessment of the Basel region.

  11. Evidence for Holocene palaeoseismicity along the Basel-Reinach active normal fault (Switzerland): a seismic source for the 1356 earthquake in the Upper Rhine graben

    NASA Astrophysics Data System (ADS)

    Ferry, Matthieu; Meghraoui, Mustapha; Delouis, Bertrand; Giardini, Domenico

    2005-02-01

    We conducted a palaeoseismic study with geomorphologic mapping, geophysical prospecting and trenching along an 8-km-long NNE-SSW trending fault scarp south of Basel. The city as well as 40 castles within a 20-km radius were destroyed or heavily damaged by the earthquake of 1356 October 18 (Io = IX-X), the largest historical seismic event in central Europe. Active river incisions as well as late Quaternary alluvial terraces are uplifted along the linear Basel-Reinach (BR) fault scarp. The active normal fault is comprised of at least two main branches reaching the surface as evident by resistivity profiles, reflection seismic data and direct observations in six trenches. In trenches, the normal fault rupture affects three colluvial wedge deposits up to the base of the modern soil. Radiocarbon as well as thermoluminescence (TL) age determinations from other trenches helped to reconstruct the Holocene event chronology. We identified three seismic events with an average coseismic movement of 0.5-0.8 m and a total vertical displacement of 1.8 m in the last 7800 yr and five events in the last 13 200 yr. The most recent event occurred in the interval AD 500-1450 (2σ) and may correspond to the 1356 earthquake. Furthermore, the morphology suggests both a southern and northern fault extensions that may reach 20 km across the Jura mountains and across the Rhine valley. Taking this fault length and a 10-km-thick seismogenic layer suggests a Mw 6.5 or greater event as a possible scenario for the seismic hazard assessment of the Basel region.

  12. A 'Propagating' Active Across-Arc Normal Fault Shows Rupture Process of the Basement: the Case of the Southwestern Ryukyu Arc

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Shinjo, R.; Nakamura, M.; Kubo, A.; Doi, A.; Tamanaha, S.

    2011-12-01

    Ryukyu Arc is located on the southwestern extension of Japanese Island-arc towards the east of Taiwan Island along the margin of the Asian continent off China. The island-arc forms an arcuate trench-arc-backarc system. A NW-ward subduction of the Philippine Sea Plate (PSP)at a rate of 6-8 cm/y relative to the Eurasian Plate (EP) causes frequent earthquakes. The PSP is subducting almost normally in the north-central area and more obliquely around the southwestern area. Behind the arc-trench system, the Okinawa Trough (OT) was formed by back-arc rifting, where active hydrothermal vent systems have been discovered. Several across-arc submarine faults are located in the central and southern Ryukyu Arc. The East Ishigaki Fault (EIF) is one of the across-arc normal faults located in the southwestern Ryukyu Arc, ranging by 44km and extending from SE to NW. This fault was surveyed by SEABAT8160 multibeam echo sounder and by ROV Hyper-Dolphin in 2005 and 2008. The result shows that the main fault consists of five fault segments. A branched segment from the main fault was also observed. The southernmost segment is most mature (oldest but still active) and the northernmost one is most nascent. This suggests the north-westward propagation of the fault rupture corresponding to the rifting of the southwestern OT and the southward retreat of the arc-trench system. Considering that the fault is segmented and in some part branched, propagation might take place episodically rather than continuously from SE to NW. The ROV survey also revealed the rupture process of the limestone basement along this fault from the nascent stage to the mature stage. Most of the rock samples collected from the basement outcrop were limestone blocks (or calcareous sedimentary rocks). Limestone basement was observed to the west on the hanging wall far away from the main fault scarp. Then fine-grained sand with ripple marks was observed towards the main scarp. Limestone basement was observed on the main

  13. 3D modelling of the active normal fault network in the Apulian Ridge (Eastern Mediterranean Sea): Integration of seismic and bathymetric data with implicit surface methods

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Pellegrini, Caludio; Savini, Alessandra; Marchese, Fabio

    2016-04-01

    The Apulian ridge (North-eastern Ionian Sea, Mediterranean), interposed between the facing Apennines and Hellenides subduction zones (to the west and east respectively), is characterized by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a penetrative network of NNW-SSE normal faults. These are exposed onshore in Puglia, and are well represented offshore in a dataset composed of 2D seismics and wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, recent very high resolution seismics (VHRS - Sparker and Chirp-sonar data), multibeam echosounder bathymetry, and sedimentological and geo-chronological analyses of sediment samples collected on the seabed. Faults are evident in 2D seismics at all scales, and their along-strike geometry and continuity can be characterized with multibeam bathymetric data, which show continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides). Fault scarps also reveal the finite displacement accumulated in the Holocene-Pleistocene. We reconstructed a 3D model of the fault network and suitable geological boundaries (mainly unconformities due to the discontinuous distribution of quaternary and tertiary sediments) with implicit surface methods implemented in SKUA/GOCAD. This approach can be considered very effective and allowed reconstructing in details complex structures, like the frequent relay zones that are particularly well imaged by seafloor geomorphology. Mutual cross-cutting relationships have been recognized between fault scarps and submarine mass-wasting deposits (Holocene-Pleistocene), indicating that, at least in places, these features are coeval, hence the fault network should be considered active. At the regional scale, the 3D model allowed measuring the horizontal WSW-ENE stretching, which can be associated to the bending moment applied to the Apulian Plate by the combined effect

  14. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Tulliani, Valerio; Fierro, Elisa; Sapia, Vincenzo; Civico, Riccardo

    2015-04-01

    The Piano di Pezza fault is the north-westernmost segment of the >20 km long Ovindoli-Pezza active normal fault-system (central Italy). Although existing paleoseismic data document high vertical Holocene slip rates (~1 mm/yr) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time by means of high-resolution seismic and electrical resistivity tomography coupled with time domain electromagnetic (TDEM) measurements the shallow subsurface of a key section of the Piano di Pezza fault. Our surveys cross a ~5 m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing some Late Holocene alluvial fans. We provide 2-D Vp and resistivity images which clearly show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. We can estimate the dip (~50°) and the Holocene vertical displacement of the master fault (~10 m). We also recognize in the hangingwall some low-velocity/low-resistivity regions that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of several paleo-earthquakes older than the Late Holocene events previously recognized by paleoseismic trenching. Conversely, due to the limited investigation depth of seismic and electrical tomography, the estimation of the cumulative amount of Pleistocene throw is hampered. Therefore, to increase the depth of investigation, we performed 7 TDEM measurements along the electrical profile using a 50 m loop size both in central and offset configuration. The recovered 1-D resistivity models show a good match with 2-D resistivity images in the near surface. Moreover, TDEM inversion results indicate that in the hangingwall, ~200 m away from the surface fault trace, the carbonate pre-Quaternary basement may be found at ~90-100 m depth. The combined approach of electrical and

  15. The property of fault zone and fault activity of Shionohira Fault, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Seshimo, K.; Aoki, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Tanaka, Y.

    2015-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (hereafter the 4.11 earthquake) formed co-seismic surface ruptures trending in the NNW-SSE direction in Iwaki City, Fukushima Prefecture, which were newly named as the Shionohira Fault by Ishiyama et al. (2011). This earthquake was characterized by a westward dipping normal slip faulting, with a maximum displacement of about 2 m (e.g., Kurosawa et al., 2012). To the south of the area, the same trending lineaments were recognized to exist even though no surface ruptures occurred by the earthquake. In an attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of observation of fault outcrops along the Shionohira Fault as well as the Coulomb stress calculations. Only a few outcrops have basement rocks of both the hanging-wall and foot-wall of the fault plane. Three of these outcrops (Kyodo-gawa, Shionohira and Betto) were selected for investigation. In addition, a fault outcrop (Nameishi-minami) located about 300 m south of the southern tip of the surface ruptures was investigated. The authors carried out observations of outcrops, polished slabs and thin sections, and performed X-ray diffraction (XRD) to fault materials. As a result, the fault zones originating from schists were investigated at Kyodo-gawa and Betto. A thick fault gouge was cut by a fault plane of the 4.11 earthquake in each outcrop. The fault materials originating from schists were fault bounded with (possibly Neogene) weakly deformed sandstone at Shionohira. A thin fault gouge was found along the fault plane of 4.11 earthquake. A small-scale fault zone with thin fault gouge was observed in Nameishi-minami. According to XRD analysis, smectite was detected in the gouges from Kyodo-gawa, Shionohira and Betto, while not in the gouge from Nameishi-minami.

  16. 3D seismic imaging of an active, normal fault zone in southern Apennines (Italy): Clues on fluid-driven microearthquake fracturing

    NASA Astrophysics Data System (ADS)

    Amoroso, O.; Zollo, A.; Virieux, J.

    2012-12-01

    We have reconstructed a 3D detailed image of the crustal volume embedding the active normal fault system in southern Apennines (Italy). It is obtained by the inversion of P and S first arrival times from microearthquakes recorded in the area. The issues of data quality and the implementation of robust tomographic inversion strategy have been addressed to improve the resolution of the seismic image. The arrival times measurements are enhanced by applying techniques based on polarization filtering and refined re-picking. Data inversion has been performed by using a delay-time 3D tomographic method for the joint determination of source locations and velocity model. The dataset consists of 1311 events with magnitude ranging between [0.1, 3.2], recorded from August 2005 to April 2011 by 42 stations operated by the consortium AMRA scarl and INGV. We used a multi-scale inversion approach, in order to first estimate the large wavelength components of the velocity model and then to progressively introduce smaller scale components. P- and S-wave velocity models show a strong lateral variation along a direction orthogonal to the Apeninic chain, between 0-15 km depth. This variation defines two geological formations which are characterized by relatively low and high P-wave velocities. The sharpest lateral transition occurs in the NE direction: it is well correlated with the location of the NW-SE oriented, primary normal fault associated with the 1980, Ms 6.9 earthquake, which cuts at SW the outcrops of the carbonatic Campanian platform, and separates at NE the older Mesozoic limestone formations from the younger Pliocene-Quaternary basin deposits. The main lithological formations, as identified in the referenced active seismic CROP04 profile, can be recognized in the inferred velocity model. In particular, the structural feature associated with the uplift of the Apulian Platform is well detected by the high P-velocity anomaly ranging between 6.0-6.8 km/s. The thickening of the

  17. Detachment and steep normal faulting in Atlantic oceanic crust west of Africa

    USGS Publications Warehouse

    Reston, T.J.; Ruoff, O.; McBride, J.H.; Ranero, C.R.; White, Robert S.

    1996-01-01

    Improved images of the internal structure of Early Cretaceous North Atlantic crust reveal both probable detachment faults and more steeply dipping normal faults. The detachment faults occur as subhorizontal structures passing ???1.5 km beneath fault blocks without offset; several steeper block-bounding faults appear to detach onto these structures. However, the detachments are bounded to the west (ridgeward) by presumably younger, more steeply west-dipping normal faults. In one possible interpretation, the detachment and the steep faults belong to the same "rolling-hinge" extension system. An intriguing alternative is that a phase of detachment faulting, perhaps related to increased magmatic activity, was succeeded by localized amagmatic extension along steeper and more deeply penetrating faults.

  18. Configuration and Correlation of Fluvial Terrace Deposits In the Lower Rio Salado Valley: A Record of Magmatic Uplift and Active Normal Faulting in the Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Sion, B. D.; Axen, G. J.; Phillips, F. M.; Harrison, B.

    2015-12-01

    The Rio Salado is a western tributary of the Rio Grande whose valley is flanked by six major terrace levels. The Rio crosses several active rift-related normal faults and the active, mid-crustal Socorro Magma Body (SMB; a sill at 19 km depth that is actively doming the land surface), providing an unusual opportunity to explore the effects of deep magma emplacement and active faulting on the terraces. Rio Salado terraces were mapped using a high-resolution DEM and digital color stereophotographs and were projected onto a valley-parallel vertical plane to construct longitudinal profiles. Three new soil pits were described to aid terrace correlation. A net incision rate of 0.41 ± 0.06 m/ka was inferred from the correlation of a major fill-cut terrace to the 122 ± 18 ka Airport surface ~25 km south of the Rio Salado. This incision rate is >1.5 times more rapid than estimated rates nearby or in other parts of New Mexico, but yields age estimates for other terraces that are consistent with soil development. Terrace gradients in the Rio Salado have increased through time, indicating either stream response to Rio Grande incision or footwall tilting from the Quaternary Loma Blanca fault (LBF). Two terraces in the LBF hanging wall are back-tilted relative to their footwall counterparts, suggesting a listric geometry for the LBF. However, two others (Qtf and Qtc) are east-tilted relative to their footwall counterparts. Both Qtf and Qtc merge eastward with the next youngest terrace in the flight, and Qtc is arched, consistent with an earlier episode of surface uplift above the SMB. Future work will involve (a) additional terrace mapping over the SMB, (b) cosmogenic 36Cl depth profile dating of the Rio Salado terraces to determine incision rates, allow regional terrace correlations, and constrain fault-slip slip rates and the record of SMB-related surface uplift, and (c) numerical modeling of SMB inflation constrained by uplift signals.

  19. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time-domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Tulliani, Valerio; Sapia, Vincenzo; Fierro, Elisa; Civico, Riccardo; Pantosti, Daniela

    2015-12-01

    The Piano di Pezza fault is the central section of the 35 km long L'Aquila-Celano active normal fault-system in the central Apennines of Italy. Although palaeoseismic data document high Holocene vertical slip rates (˜1 mm yr-1) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time the shallow subsurface of a key section of the main Piano di Pezza fault splay by means of high-resolution seismic and electrical resistivity tomography coupled with time-domain electromagnetic soundings (TDEM). Our surveys cross a ˜5-m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing Holocene alluvial fans. We provide 2-D Vp and resistivity images, which show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. Our data indicate that the upper fault termination has a sub-vertical attitude, in agreement with palaeoseismological trench evidence, whereas it dips ˜50° to the southwest in the deeper part. We recognize some low-velocity/low-resistivity regions in the fault hangingwall that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of some Holocene palaeo-earthquakes. We estimate a ˜13-15 m throw of this fault splay since the end of the Last Glacial Maximum (˜18 ka), leading to a 0.7-0.8 mm yr-1 throw rate that is quite in accordance with previous palaeoseismic estimation of Holocene vertical slip rates. The 1-D resistivity models from TDEM soundings collected along the trace of the electrical profile significantly match with 2-D resistivity images. Moreover, they indicate that in the fault hangingwall, ˜200 m away from the surface fault trace, the pre-Quaternary carbonate basement is at ˜90-100 m depth. We therefore provide a minimal ˜150-160 m estimate of the cumulative throw of the Piano di Pezza

  20. A three-dimensional mechanical analysis of normal fault evolution and joint development in perturbed stress fields around normal faults

    NASA Astrophysics Data System (ADS)

    Kattenhorn, Simon Allen

    1998-09-01

    This thesis investigates the role of three dimensionality in the evolution of normal fault systems and joint development in perturbed stress fields induced by slipping normal faults. This is accomplished using: (1) 3D numerical models; (2) field observations of fault and joint characteristics; and (3) seismic data interpretations of 3D normal fault geometries. Numerical models that incorporate the contribution of an increasing lithostatic load with increasing depth on fault slip behavior indicate that normal faults are more prone to slip near the top than the bottom. Energy release rates are maximized at the upper tip, suggesting that faults should grow preferentially in an up-dip direction. For the case of laterally segmented faults, mechanical interaction promotes propagation of segments towards each other, which may result in composite fault surfaces that are longer than they are tall, in agreement with documented natural examples. Slipping faults perturb the surrounding stress field. Field relationships in Arches National Park, Utah, suggest that joints grew in the perturbed stress field around the faults. Numerical analyses indicate that joint orientations depend on the location along the fault tipline in 3D, and may range from fault-parallel to fault-perpendicular. In addition, as the ratio of fault-parallel to fault-perpendicular remote stress increases, so too does the distance away from the fault affected by the perturbed field. In relay zones, joints forming at high angles to fault strike are likely to continue propagating away from the fault if the fault-parallel stress approaches, or slightly exceeds, the fault-perpendicular remote stress during fault slip. Multiple slip maxima at the same stratigraphic level on apparently continuous fault surfaces in 3D seismic data attest to initial lateral segmentation. Mechanical interaction and lateral propagation led to linkage of fault segments and the formation of composite faults that are longer than they are

  1. Shallow normal fault slopes on Saturnian icy satellites

    NASA Astrophysics Data System (ADS)

    Beddingfield, Chloe B.; Burr, Devon M.; Dunne, William M.

    2015-12-01

    Fault dips are a function of the coefficient of internal friction, μi, of the lithospheric material. Laboratory deformation experiments of H2O ice at conditions applicable to icy bodies yield 0 ≤ μi ≤ 0.55 such that normal faults dip between 45° and 59°. We tested the hypothesis that normal faults on icy bodies reflect these values by using digital elevation models to examine geometries of large extensional systems on three Saturnian satellites. Analyzed faults within Ithaca Chasma on Tethys and Avaiki Chasmata on Rhea all exhibit shallower-than-predicted topographic slopes across the fault scarp, which we term "fault slopes." A scarp of Padua Chasmata within Dione's Wispy Terrain also has a shallow fault slope, although three others that make up Palatine Chasmata exhibit steeper slopes as predicted. We infer that viscous relaxation is the most viable explanation for these shallow fault slopes, and we model the potential role of viscous relaxation in creating shallow slopes. Our modeling results support formation of these normal faults with steep dips consistent with deformation experiments, followed by their relaxation due to lithospheric heating events related to radionuclide decay. The steepest fault slopes in this terrain yield 0 ≤ μi ≤ 0.73 for Dione's lithospheric ice, which overlaps the dip range predicted from experiments. Results of this work suggest that viscous relaxation substantially affected fault slopes on Tethys, Rhea, and Dione. By implication, these processes may have also affected fault geometries on other icy satellites.

  2. Fault geometries and deformation mechanisms in the evolution of low-angle normal faults (Kea, Greece)

    NASA Astrophysics Data System (ADS)

    Iglseder, C.; Grasemann, B.; Schneider, D.; Rice, A. H. N.; Stöckli, D.; Rockenschaub, M.

    2009-04-01

    The overall tectonic regime in the Cyclades since the Oligocene has been characterized by crustal extension, accommodated by movements on low-angle normal faults (LANFs). On Kea, structural investigations have demonstrated the existence of an island-wide LANF within a large-scale ductile-brittle shear-zone traceable over a distance of 19.5 km parallel to the stretching lineation. The tectonostratigraphy comprises Attic-Cycladic Crystalline lithologies with a shallowly-dipping schist-calcite marble unit overlain by calcitic and dolomitic fault rocks. Notably, the calcitic marbles have been mylonitized, with a mean NNE/NE-SSW/SW trending, pervasive stretching lineation and intense isoclinal folding with fold axes parallel to the stretching lineation. Numerous SC-SCĆ-fabrics and monoclinic clast-geometries show a consistent top-to-SSW shear-sense. Recorded within all lithologies is a consistent WNW/NW-ESE/SE and NNE/NE-SSW/SW striking network of conjugated brittle, brittle-ductile high-angle faults perpendicular and (sub)parallel to the main stretching direction. Field evidence and microstructural investigations indicate high-angle normal faults formed synchronously with movement on LANFs. This interplay of LANFs with high-angle structures, initiated and evolved from brittle-ductile to brittle conditions, indicates initial stages of movement below the calcite brittle-ductile transition but above the dolomite transition. Weakening processes related to syntectonic fluid-rock interactions highlight these observations. In particular, grain-size reduction and strain localisation in fine-grained (ultra)-cataclasites and fine-grained aggregates of phyllosilicate-rich fault-rocks promoted fluid-flow and pressure-solution-accommodated ‘frictional-viscous' creep. These mechanisms show the importance for LANF slip and movement in the progressive development and interaction between contemporaneous active normal faults in the Andersonian-Byerlee frictional mechanics.

  3. Deformation history of the Ballik travertine (Denizli, SW Turkey): a matter of normal faulting and fault reactivation

    NASA Astrophysics Data System (ADS)

    Van Noten, Koen; Topal, Savaş; Oruç Baykara, M.; Özkul, Mehmet; Swennen, Rudy

    2015-04-01

    The Ballık travertine mass is the largest Pleistocene travertine precipitation site in the world. It developed along the basin margin faults of the eastern part of the NW-SE oriented Denizli Graben-Horst System (DGHS), one of the large extensional basins in SW Turkey. Travertine formed from hot basinal carbonate-precipitating fluids that resurfaced along an already existing fault-fracture network affecting the uplifted margin. Analysis of faults affecting a 2 km-long, complex travertine domal structure at the base of this margin revealed that many of the normal faults affecting the travertine are reactivated as sinistral strike-slip faults during the Pleistocene. Remarkably, except for the Ballık area, Quaternary strike-slip faulting has nowhere else been observed in the Denizli Basin and is rather exceptional in extensional basins. With the aim of understanding the consistency of fault reactivation, we present a new tectonic analysis of the NE Denizli margin flank to derive a new reactivation kinematic model. Fault-slip data and paleostress inversion shows that a WNW-ESE oriented, graben-facing fault network was installed during a long-lived phase of NNE-SSW extension in the Pleistocene. Normal faulting was hereby accompanied by blocktilting, backtilting of the hanging walls, fault infill, secondary cement infill and extensional fracturing. Whereas the travertine in the upper part of the margin is only affected by extension, normal faults in the middle and lower parts of the margin show numerous overprinting strike-slip reactivation kinematics. Inversion of fault-slip data suggests that after the initiation of the normal fault network, reactivation was related to NW-SE extension, i.e. an opening direction oriented more or less perpendicular to the opening of this part of the Denizli Basin. This extension is related to the activity of nearby NE-SW-trending basin-bounding margin faults adjacent to the Ballık travertine. The travertine fault network in the middle

  4. Imaging the structural style of an active normal fault through multidisciplinary geophysical investigation: a case study from the Mw 6.1, 2009 L'Aquila earthquake region (central Italy)

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Pucci, Stefano; Civico, Riccardo; De Martini, Paolo Marco; Nicolosi, Iacopo; D'Ajello Caracciolo, Francesca; Carluccio, Roberto; Di Giulio, Giuseppe; Vassallo, Maurizio; Smedile, Alessandra; Pantosti, Daniela

    2015-03-01

    The normal fault-system responsible of the 2009 Mw 6.1 L'Aquila earthquake (Paganica-San Demetrio fault-system) comprises several narrow, fault-parallel valleys of controversial origin. We investigated a key section of the southeastern portion of this fault network along the small Verupola Valley. In order to characterize its nature and possible tectonic activity, we applied multiple-geosciences techniques able to image at depth the structure associated to this peculiar landform. We integrated magnetometry, 2-D P wave and resistivity tomography, surface waves and seismic noise analysis coupled with field mapping, shallow boreholes and trenching. According to our results, the Verupola Valley is a ˜30-40-m-deep graben controlled by a SW-dipping master fault and synthetic splays paired with an antithetic NE-dipping fault. The SW-dipping splays are active and cut very shallow (<2 m deep) Late Pleistocene sediments. The small amount of cumulated vertical offset (˜15 m) across the conjugated system may indicate a young fault inception or very low Quaternary slip-rates. Due to its structural continuity with the adjacent mapped strands of the Paganica-San Demetrio fault network, we relate the Verupola Valley to the recent activity of the southeastern segment of this fault system. We also suggest that other fault-parallel valleys can have the same tectonic origin and setting of the Verupola Valley. This latter represents a scale-independent analogue from metric scale (exposed in the palaeoseismological trenches) to the Middle Aterno Basin scale (seen from seismic profiles and fault mapping). Overall, the imaged structural style is coherent with the regional tectonic setting due to Quaternary crustal extension.

  5. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Demurtas, Matteo; Fondriest, Michele; Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Bistacchi, Andrea; Di Toro, Giulio

    2016-09-01

    The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).

  6. Simulation of growth normal fault sandbox tests using the 2D discrete element method

    NASA Astrophysics Data System (ADS)

    Chu, Sheng-Shin; Lin, Ming-Lang; Huang, Wen-Chao; Nien, Wei-Tung; Liu, Huan-Chi; Chan, Pei-Chen

    2015-01-01

    A fault slip can cause the deformation of shallow soil layers and destroy infrastructures. The Shanchiao Fault on the west side of the Taipei Basin is one such fault. The activities of the Shanchiao Fault have caused the quaternary sediment beneath the Taipei Basin to become deformed, damaging structures, traffic construction, and utility lines in the area. Data on geological drilling and dating have been used to determine that a growth fault exists in the Shanchiao Fault. In an experiment, a sandbox model was built using noncohesive sandy soil to simulate the existence of a growth fault in the Shanchiao Fault and forecast the effect of the growth fault on shear-band development and ground differential deformation. The experimental results indicated that when a normal fault contains a growth fault at the offset of the base rock, the shear band develops upward beside the weak side of the shear band of the original-topped soil layer, and surfaces considerably faster than that of the single-topped layer. The offset ratio required is approximately one-third that of the single-cover soil layer. In this study, a numerical simulation of the sandbox experiment was conducted using a discrete element method program, PFC2D, to simulate the upper-covering sand layer shear-band development pace and the scope of a growth normal fault slip. The simulation results indicated an outcome similar to that of the sandbox experiment, which can be applied to the design of construction projects near fault zones.

  7. Landscape response to normal fault growth and linkage in the Southern Apennines, Italy.

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, Duna; Whittaker, Alex

    2016-04-01

    It is now well-established that landscape can record spatial and temporal variations in tectonic rates. However, decoding this information to extract detailed histories of fault growth is often a complex problem that requires careful integration of tectonic and geomorphic data sets. Here, we present new data addressing both normal fault evolution and coupled landscape response for two normal faults in the Southern Apennines: the Vallo di Diano and East Agri faults. By integrating published constraints with new data, we show that these faults have total throws of up to 2100 m, and Holocene throw rates of up to 1 mm/yr at their maximum. We demonstrate that geomorphology is effectively recording tectonics, with relief, channel and catchment slopes varying along fault strike as normal fault activity does. Therefore, valuable information about fault growth and interaction can be extracted from their geomorphic expression. We use the spatial distribution of knickpoints on the footwall channels to infer two episodes of base level change, which can be associated with distinct fault interaction events. From our detailed fault throw profiles, we reconstruct the amount of throw accumulated after each of these events, and the segments involved in each, and we use slip rate enhancement factors derived from fault interaction theory to estimate the magnitude of the tectonic perturbation in each case. From this approach, we are able to reconstruct pre-linkage throw rates, and we estimate that fault linkage events likely took place 0.7 ± 0.2 Ma and 1.9 ± 0.6 Ma in the Vallo di Diano fault, and 1.1 ± 0.1 and 2.3 ± 0.9 Ma in the East Agri fault. Our study suggests that both faults started their activity at 3.6 ± 0.5 Ma. These fault linkage scenarios are consistent with the knickpoint heights, and may relate to soft-linkage interaction with the Southern Apennines normal fault array, the existence of which has been the subject of considerable debate. Our combined geomorphic and

  8. Frictional heterogeneities on carbonate-bearing normal faults: Insights from the Monte Maggio Fault, Italy

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Scuderi, M. M.; Collettini, C.; Marone, C.

    2014-12-01

    Observations of heterogeneous and complex fault slip are often attributed to the complexity of fault structure and/or spatial heterogeneity of fault frictional behavior. Such complex slip patterns have been observed for earthquakes on normal faults throughout central Italy, where many of the Mw 6 to 7 earthquakes in the Apennines nucleate at depths where the lithology is dominated by carbonate rocks. To explore the relationship between fault structure and heterogeneous frictional properties, we studied the exhumed Monte Maggio Fault, located in the northern Apennines. We collected intact specimens of the fault zone, including the principal slip surface and hanging wall cataclasite, and performed experiments at a normal stress of 10 MPa under saturated conditions. Experiments designed to reactivate slip between the cemented principal slip surface and cataclasite show a 3 MPa stress drop as the fault surface fails, then velocity-neutral frictional behavior and significant frictional healing. Overall, our results suggest that (1) earthquakes may readily nucleate in areas of the fault where the slip surface separates massive limestone and are likely to propagate in areas where fault gouge is in contact with the slip surface; (2) postseismic slip is more likely to occur in areas of the fault where gouge is present; and (3) high rates of frictional healing and low creep relaxation observed between solid fault surfaces could lead to significant aftershocks in areas of low stress drop.

  9. Testing simple models of brittle normal faulting: slip rate, spacing, and segmentation

    NASA Astrophysics Data System (ADS)

    Connolly, J.; Dawers, N. H.

    2005-05-01

    Fault growth and evolution is a complex process, however any predictable pattern will yield important information for assessing seismic hazard and clues to what controls fault behavior. Models of slip rate variation along strike, spacing of active faults, and scaling of segment length are investigated using data from faults located within the parabola of seismicity around the Yellowstone hotspot. Based on displacement-length relations and segment size, Cowie and Roberts used fault geometry to estimate along-strike slip rate variation in their 2001 paper (JSG,23,1901-1915). Following their model, along-strike slip rate profiles were calculated for three active normal faults: the Beaverhead, Lemhi, and Lost River faults. Though the method yields estimated slip rates, the results roughly mirror along-strike variation in total displacement, because the three faults are similar in size and age. The profiles indicate that the Beaverhead is underdisplaced, i.e. having a low slip rate relative to its length. This suggests that segment linkage occurred later in the development of the Beaverhead than in the others. Cowie and Roberts also proposed a model for fault spacing based on initial fault length and spacing, and maximum length and spacing of fully developed fault systems. Fault spacing is important in determining incidence and magnitude of fault movement. If the distance between faults is too small, strain becomes localized along one while the other exhibits a decrease in seismicity until no activity occurs. In practice it is impossible to know if the distance between the largest faults represents maximum fault spacing, because the fault population is still active and evolving; thus, it is difficult to test or implement the method. A relationship was found among faults within the study area, where spacing of adjacent active faults is proportional to the sums of their lengths. It was also observed that average segment length increases with increasing total fault length

  10. Central Asia Active Fault Database

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah

    2014-05-01

    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  11. The interaction between active normal faulting and large scale gravitational mass movements revealed by paleoseismological techniques: A case study from central Italy

    NASA Astrophysics Data System (ADS)

    Moro, M.; Saroli, M.; Gori, S.; Falcucci, E.; Galadini, F.; Messina, P.

    2012-05-01

    Paleoseismological techniques have been applied to characterize the kinematic behaviour of large-scale gravitational phenomena located in proximity of the seismogenic fault responsible for the Mw 7.0, 1915 Avezzano earthquake and to identify evidence of a possible coseismic reactivation. The above mentioned techniques were applied to the surface expression of the main sliding planes of the Mt. Serrone gravitational deformation, located in the southeastern border of the Fucino basin (central Italy). The approach allows us to detect instantaneous events of deformation along the uphill-facing scarp. These events are testified by the presence of faulted deposits and colluvial wedges. The identified and chronologically-constrained episodes of rapid displacement can be probably correlated with seismic events determined by the activation of the Fucino seismogenic fault, affecting the toe of the gravitationally unstable rock mass. Indeed this fault can produce strong, short-term dynamic stresses able to trigger the release of local gravitational stress accumulated by Mt. Serrone's large-scale gravitational phenomena. The applied methodology could allow us to better understand the geometric and kinematic relationships between active tectonic structures and large-scale gravitational phenomena. It would be more important in seismically active regions, since deep-seated gravitational slope deformations can evolve into a catastrophic collapse and can strongly increase the level of earthquake-induced hazards.

  12. Influence of Transcontinental arch on Cretaceous listric-normal faulting, west flank, Denver basin

    SciTech Connect

    Davis, T.L.

    1983-08-01

    Seismic studies along the west flank of the Denver basin near Boulder and Greeley, Colorado illustrate the interrelationship between shallow listric-normal faulting in the Cretaceous and deeper basement-controlled faulting. Deeper fault systems, primarily associated with the Transcontinental arch, control the styles and causative mechanisms of listric-normal faulting that developed in the Cretaceous. Three major stratigraphic levels of listric-normal faulting occur in the Boulder-Greeley area. These tectonic sensitive intervals are present in the following Cretaceous formations: Laramie-Fox Hills-upper Pierre, middle Pierre Hygiene zone, and the Niobrara-Carlile-Greenhorn. Documentation of the listric-normal fault style reveals a Wattenberg high, a horst block or positive feature of the greater Transcontinental arch, was active in the east Boulder-Greeley area during Cretaceous time. Paleotectonic events associated with the Wattenberg high are traced through analysis of the listric-normal fault systems that occur in the area. These styles are important to recognize because of their stratigraphic and structural influence on Cretaceous petroleum reservoir systems in the Denver basin. Similar styles of listric-normal faulting occur in the Cretaceous in many Rocky Mountain foreland basins.

  13. Tectonic geomorphology of a large normal fault: Akşehir fault, SW Turkey

    NASA Astrophysics Data System (ADS)

    Topal, Savaş; Keller, Edward; Bufe, Aaron; Koçyiğit, Ali

    2016-04-01

    In order to better understand the activity of the Akşehir normal fault in SW Turkey and the associated seismic hazard, we investigated the tectonic geomorphology of a 60-km stretch of the 100-km-long Akşehir fault block. The fault can be separated into seven geomorphic segments (1 to 7 from NW to SE) along the mountain front. Segment length varies from about 9 to 14 km, and relief of the horst block varies from about 0.6 km in the SE to 1.0 km in the NW. Analysis of the tectonic geomorphology of 32 drainage basins and mountain front facets using a combination of geomorphic indices reveals a general pattern of high slip rates in the northern and central segments and low slip rates in the southern, probably older, segments. We show that mountain front sinuosity varies from about 1.1 to 1.4 on segments S1-S6 to 2.4 on segment S7, suggesting that the six northern segments are more active than the southernmost segment. Similarly, χ analysis and slope-area analysis of streams reveal a pattern of steepest channels draining the central and northern segments of the horst. The ratio of valley floor width to valley height varies from 0.2 to 0.6, which are typical values for tectonically active mountain fronts; and alluvial fans along segments S1, S2, and S4 are back-tilted. Finally, we show that (1) shapes of the ~ 100-900m high mountain front facets are mostly triangular (~ 80%) and partly trapezoidal (~ 20%); (2) facet slopes range from 6 to 22°; (3) facets at the NW and SE segment ends are larger than the intervening facets; and (4) steepest facets occur along the central segments. Uplift rates estimated from the slope of mountain front facets range from about 0.06 m/ky on the southernmost fault segment (S7) to 0.23 m/ky on the more central S5 and 0.16 m/ky on the northern segment (S1). The estimated pattern of uplift is consistent with the pattern of geomorphic indices. The vertical relief of the facets suggests that uplift of the mountain front initiated in the late

  14. Creep and locking of a low-angle normal fault: Insights from the Altotiberina fault in the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Anderlini, L.; Serpelloni, E.; Belardinelli, M. E.

    2016-05-01

    While low-angle normal faults have been recognized worldwide from geological studies, whether these structures are active or capable of generating big earthquakes is still debated. We provide new constraints on the role and modes of the Altotiberina fault (ATF) in accommodating extension in the Northern Apennines. We model GPS velocities to study block kinematics, faults slip rates and interseismic coupling of the ATF, which is active and accounts, with its antithetic fault, for a large part of the observed chain normal 3 mm/yr tectonic extension. A wide portion of the ATF creeps at the long-term slip rate (1.7 ± 0.3 mm/yr), but the shallow locked portions are compatible with M > 6.5 earthquakes. We suggest that positive stress accumulation due to ATF creep is most likely released by more favorable oriented splay faults, whose rupture may propagate downdip along low-angle normal fault surface and reduce the probability of occurrence of a seismic rupture of the shallower locked portion.

  15. Porosity variations in and around normal fault zones: implications for fault seal and geomechanics

    NASA Astrophysics Data System (ADS)

    Healy, David; Neilson, Joyce; Farrell, Natalie; Timms, Nick; Wilson, Moyra

    2015-04-01

    Porosity forms the building blocks for permeability, exerts a significant influence on the acoustic response of rocks to elastic waves, and fundamentally influences rock strength. And yet, published studies of porosity around fault zones or in faulted rock are relatively rare, and are hugely dominated by those of fault zone permeability. We present new data from detailed studies of porosity variations around normal faults in sandstone and limestone. We have developed an integrated approach to porosity characterisation in faulted rock exploiting different techniques to understand variations in the data. From systematic samples taken across exposed normal faults in limestone (Malta) and sandstone (Scotland), we combine digital image analysis on thin sections (optical and electron microscopy), core plug analysis (He porosimetry) and mercury injection capillary pressures (MICP). Our sampling includes representative material from undeformed protoliths and fault rocks from the footwall and hanging wall. Fault-related porosity can produce anisotropic permeability with a 'fast' direction parallel to the slip vector in a sandstone-hosted normal fault. Undeformed sandstones in the same unit exhibit maximum permeability in a sub-horizontal direction parallel to lamination in dune-bedded sandstones. Fault-related deformation produces anisotropic pores and pore networks with long axes aligned sub-vertically and this controls the permeability anisotropy, even under confining pressures up to 100 MPa. Fault-related porosity also has interesting consequences for the elastic properties and velocity structure of normal fault zones. Relationships between texture, pore type and acoustic velocity have been well documented in undeformed limestone. We have extended this work to include the effects of faulting on carbonate textures, pore types and P- and S-wave velocities (Vp, Vs) using a suite of normal fault zones in Malta, with displacements ranging from 0.5 to 90 m. Our results show a

  16. Does magmatism influence low-angle normal faulting?

    USGS Publications Warehouse

    Parsons, Thomas E.; Thompson, George A.

    1993-01-01

    Synextensional magmatism has long been recognized as a ubiquitous characteristic of highly extended terranes in the western Cordillera of the United States. Intrusive magmatism can have severe effects on the local stress field of the rocks intruded. Because a lower angle fault undergoes increased normal stress from the weight of the upper plate, it becomes more difficult for such a fault to slide. However, if the principal stress orientations are rotated away from vertical and horizontal, then a low-angle fault plane becomes more favored. We suggest that igneous midcrustal inflation occurring at rates faster than regional extension causes increased horizontal stresses in the crust that alter and rotate the principal stresses. Isostatic forces and continued magmatism can work together to create the antiformal or domed detachment surface commonly observed in the metamorphic core complexes of the western Cordillera. Thermal softening caused by magmatism may allow a more mobile mid-crustal isostatic response to normal faulting.

  17. Packaged Fault Model for Geometric Segmentation of Active Faults Into Earthquake Source Faults

    NASA Astrophysics Data System (ADS)

    Nakata, T.; Kumamoto, T.

    2004-12-01

    In Japan, the empirical formula proposed by Matsuda (1975) mainly based on the length of the historical surface fault ruptures and magnitude, is generally applied to estimate the size of future earthquakes from the extent of existing active faults for seismic hazard assessment. Therefore validity of the active fault length and defining individual segment boundaries where propagating ruptures terminate are essential and crucial to the reliability for the accurate assessments. It is, however, not likely for us to clearly identify the behavioral earthquake segments from observation of surface faulting during the historical period, because most of the active faults have longer recurrence intervals than 1000 years in Japan. Besides uncertainties of the datasets obtained mainly from fault trenching studies are quite large for fault grouping/segmentation. This is why new methods or criteria should be applied for active fault grouping/segmentation, and one of the candidates may be geometric criterion of active faults. Matsuda (1990) used _gfive kilometer_h as a critical distance for grouping and separation of neighboring active faults. On the other hand, Nakata and Goto (1998) proposed the geometric criteria such as (1) branching features of active fault traces and (2) characteristic pattern of vertical-slip distribution along the fault traces as tools to predict rupture length of future earthquakes. The branching during the fault rupture propagation is regarded as an effective energy dissipation process and could result in final rupture termination. With respect to the characteristic pattern of vertical-slip distribution, especially with strike-slip components, the up-thrown sides along the faults are, in general, located on the fault blocks in the direction of relative strike-slip. Applying these new geometric criteria to the high-resolution active fault distribution maps, the fault grouping/segmentation could be more practically conducted. We tested this model

  18. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones

    USGS Publications Warehouse

    Choy, G.L.; Kirby, S.H.

    2004-01-01

    The behavior of apparent stress for normal-fault earthquakes at subduction zones is derived by examining the apparent stress (?? a = ??Es/Mo, where E s is radiated energy and Mo is seismic moment) of all globally distributed shallow (depth, ?? 1 MPa) are also generally intraslab, but occur where the lithosphere has just begun subduction beneath the overriding plate. They usually occur in cold slabs near trenches where the direction of plate motion across the trench is oblique to the trench axis, or where there are local contortions or geometrical complexities of the plate boundary. Lower ??a (< 1 MPa) is associated with events occurring at the outer rise (OR) complex (between the OR and the trench axis), as well as with intracrustal events occurring just landward of the trench. The average apparent stress of intraslab-normal-fault earthquakes is considerably higher than the average apparent stress of interplate-thrust-fault earthquakes. In turn, the average ?? a of strike-slip earthquakes in intraoceanic environments is considerably higher than that of intraslab-normal-fault earthquakes. The variation of average ??a with focal mechanism and tectonic regime suggests that the level of ?? a is related to fault maturity. Lower stress drops are needed to rupture mature faults such as those found at plate interfaces that have been smoothed by large cumulative displacements (from hundreds to thousands of kilometres). In contrast, immature faults, such as those on which intraslab-normal-fault earthquakes generally occur, are found in cold and intact lithosphere in which total fault displacement has been much less (from hundreds of metres to a few kilometres). Also, faults on which high ??a oceanic strike-slip earthquakes occur are predominantly intraplate or at evolving ends of transforms. At subduction zones, earthquakes occurring on immature faults are likely to be more hazardous as they tend to generate higher amounts of radiated energy per unit of moment than

  19. Dating upper plate normal fault slip events in Late Pleistocene and Holocene sediments of northern Chile

    NASA Astrophysics Data System (ADS)

    Robinson, R. A.; Binnie, S.; Gonzalez, G.; Cortés, J.

    2011-12-01

    In order to understand how subduction earthquakes along the Nazca-South America plate boundary affect upper plate faults in the coastal forearc of northern Chile, we are developing the first detailed paleoseismological study to characterize the Late Quaternary activity of the Mejillones and Salar del Carmen faults, located around 40 km north and 15 km east of Antofagasta, respectively. There is currently a lack of basic palaeo-seismological data on these and other upper plate faults, such as long term slip rates, amount of slip per event, palaeo-earthquake magnitude and recurrence intervals. This lack of knowledge impedes understanding of how large subduction earthquakes, occurring at depths of around 50 km in this region, relate to upper plate seismicity and deformation. We have used OSL dating of fault-related sediments, and cosmogenic-ray nuclide dating of terrace surfaces, to constrain slips rates over the last 45 ka. Several trenches were excavated across both faults in order to expose and log the most recent fault-related sediments. In the hanging wall of these normal faults, vertically stacked colluvial wedges and hillslope deposits are the product of discrete slip events and post-slip fault scarp degradation. Multiple trenches along each fault permit the spatial variability in slip amount and fault-related sedimentation to be investigated. Long-term slip rates have been measured using cosmogenic-ray nuclide exposure dating of the alluvial terraces offset by the Mejillones Fault. OSL dating of the fault-related sediments in the trenches has been used to compare the ages of individual slip events on both faults, and the age of events recorded along the trace of each fault. The application of both cosmogenic-ray nuclide and OSL methods in this type of setting (hyper-arid with low erosion rates, yet tectonically active) is non-trivial, due to cosmogenic inheritance accumulated in cobbles on the terrace surfaces, low sensitivity of the quartz for OSL dating, and

  20. Active Fault Characterization in the Urban Area of Vienna

    NASA Astrophysics Data System (ADS)

    Decker, Kurt; Grupe, Sabine; Hintersberger, Esther

    2016-04-01

    The identification of active faults that lie beneath a city is of key importance for seismic hazard assessment. Fault mapping and characterization in built-up areas with strong anthropogenic overprint is, however, a challenging task. Our study of Quaternary faults in the city of Vienna starts from the re-assessment of a borehole database of the municipality containing several tens of thousands of shallow boreholes. Data provide tight constraints on the geometry of Quaternary deposits and highlight several locations with fault-delimited Middle to Late Pleistocene terrace sediments of the Danube River. Additional information is obtained from geological descriptions of historical outcrops which partly date back to about 1900. The latter were found to be particularly valuable by providing unprejudiced descriptions of Quaternary faults, sometimes with stunning detail. The along-strike continuations of some of the identified faults are further imaged by industrial 2D/3D seismic acquired outside the city limits. The interpretation and the assessment of faults identified within the city benefit from a very well constrained tectonic model of the active Vienna Basin fault system which derived from data obtained outside the city limits. This data suggests that the urban faults are part of a system of normal faults compensating fault-normal extension at a releasing bend of the sinistral Vienna Basin Transfer Fault. Slip rates estimated for the faults in the city are in the range of several hundredths of millimetres per year and match the slip rates of normal faults that were trenched outside the city. The lengths/areas of individual faults estimated from maps and seismic reach up to almost 700 km² suggesting that all of the identified faults are capable of producing earthquakes with magnitudes M>6, some with magnitudes up to M~6.7.

  1. The Cordillera Blanca normal fault and its contribution to the Andean topographic evolution (northern Peru)

    NASA Astrophysics Data System (ADS)

    Margirier, Audrey; Robert, Xavier; Schwartz, Stéphane; Audin, Laurence

    2015-04-01

    Nature and localization of Quaternary tectonics remains largely unconstrained in Peruvian Andes as well as the mechanism driving rock uplift. The Cordillera Blanca normal fault accommodates extension in a convergent context. The fault system trends parallel to the subduction zone, just above the Peruvian flat-slab, and separate the Cordilleras Blanca and Negra. The Cordillera Blanca batholith (8-5 Ma) is an elongated pluton, emplaced at ~6 km depth in the Jurassic sedimentary country rocks. The Cordillera Blanca range (6768 m) that comprises the highest Peruvian peak built the footwall of the fault. The ~200 km-long fault has showed ~4500 m of vertical displacement since 5 Ma. This normal fault is described as active despite the lack of historical seismicity and constitutes a striking singularity within the prevailing compressional setting of the Andean orogeny. This region is a perfect target to explore the contribution of large normal fault in relief building. Our goals are to determine if the fault was pre-existing before the Cordillera Blanca batholith emplacement, when it has been reactivated and how does it interact with the batholith exhumation. For that purpose, we focus on brittle deformation analysis from a regional scale (faults trends) to outcrop scale (fault planes, striaes and kinematics). We present here new structural data and focal mechanisms indicating a senestral transtensive component on the Cordillera Blanca normal fault and a regional extensional regime in the Cordillera Negra area. We compare the paleotensors obtained from the inversion of the microstructural data and focal mechanisms with the exhumation history deduced from the thermochronological data to constrain the role of the normal fault in relation with relief building. We propose that the Cordillera Blanca normal fault is an inherited tectonic feature reactivated in transtension after the slab flattening at ~8 Ma. The differential exhumation of the Cordillera Blanca with respect to

  2. Spatiotemporal analysis of Quaternary normal faults in the Northern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.; Reed, P.

    2010-12-01

    The mid-Tertiary Basin-and-Range extensional tectonic event developed most of the normal faults that bound the ranges in the northern Rocky Mountains within Montana, Wyoming, and Idaho. The interaction of the thermally induced stress field of the Yellowstone hot spot with the existing Basin-and-Range fault blocks, during the last 15 my, has produced a new, spatially and temporally variable system of normal faults in these areas. The orientation and spatial distribution of the trace of these hot-spot induced normal faults, relative to earlier Basin-and-Range faults, have significant implications for the effect of the temporally varying and spatially propagating thermal dome on the growth of new hot spot related normal faults and reactivation of existing Basin-and-Range faults. Digitally enhanced LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 4 and 5 Thematic Mapper (TM) bands, with spatial resolution of 30 m, combined with analytical GIS and geological techniques helped in determining and analyzing the lineaments and traces of the Quaternary, thermally-induced normal faults in the study area. Applying the color composite (CC) image enhancement technique, the combination of bands 3, 2 and 1 of the ETM+ and TM images was chosen as the best statistical choice to create a color composite for lineament identification. The spatiotemporal analysis of the Quaternary normal faults produces significant information on the structural style, timing, spatial variation, spatial density, and frequency of the faults. The seismic Quaternary normal faults, in the whole study area, are divided, based on their age, into four specific sets, which from oldest to youngest include: Quaternary (>1.6 Ma), middle and late Quaternary (>750 ka), latest Quaternary (>15 ka), and the last 150 years. A density map for the Quaternary faults reveals that most active faults are near the current Yellowstone National Park area (YNP), where most seismically active faults, in the past 1.6 my

  3. Fault zone structure and inferences on past activities of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.

    2010-12-01

    The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.

  4. Interaction between normal fault slip and erosion on relief evolution: Insights from experimental modelling

    NASA Astrophysics Data System (ADS)

    Strak, V.; Dominguez, S.; Petit, C.; Meyer, B.; Loget, N.

    2011-12-01

    The growth of relief in active tectonic areas is mainly controlled by the interactions between tectonics and surface processes (erosion and sedimentation). The study of long-lived morphologic markers formed by these interactions can help in quantifying the competing effects of tectonics, erosion and sedimentation. In regions experiencing active extension, river-long profiles and faceted spurs (triangular facets) can help in understanding the development of mountainous topography along normal fault scarps. In this study, we developed analogue experiments that simulate the morphologic evolution of a mountain range bounded by a normal fault. This paper focuses on the effect of the fault slip rate on the morphologic evolution of the footwall by performing three analogue experiments with different fault slip rates under a constant rainfall rate. A morphometric analysis of the modelled catchments allows comparing with a natural case (Tunka half-graben, Siberia). After a certain amount of fault slip, the modelled footwall topographies of our models reaches a dynamic equilibrium (i.e., erosion balances tectonic uplift relative to the base level) close to the fault, whereas the topography farther from the fault is still being dissected due to regressive erosion. We show that the rates of vertical erosion in the area where dynamic equilibrium is reached and the rate of regressive erosion are linearly correlated with the fault throw rate. Facet morphology seems to depend on the fault slip rate except for the fastest experiment where faceted spurs are degraded due to mass wasting. A stream-power law is computed for the area wherein rivers reach a topographic equilibrium. We show that the erosional capacity of the system depends on the fault slip rate. Finally, our results demonstrate the possibility of preserving convex river-long profiles on the long-term under steady external (tectonic uplift and rainfall) conditions.

  5. Principal fault zone width and permeability of the active Neodani fault, Nobi fault system, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tsutsumi, A.; Nishino, S.; Mizoguchi, K.; Hirose, T.; Uehara, S.; Sato, K.; Tanikawa, W.; Shimamoto, T.

    2004-02-01

    The internal structure and permeability of the Neodani fault, which was last activated at the time of the 1891 Nobi earthquake (M8.0), were examined through field survey and experiments. A new exposure of the fault at a road construction site reveals a highly localized feature of the past fault deformation within a narrow fault core zone. The fault of the area consists of three zone units towards the fault core: (a) protolith rocks; (b) 15 to 30 m of fault breccia, and (c) 200 mm green to black fault gouge. Within the fault breccia zone, cataclastic foliation oblique to the fault has developed in a fine-grained 2-m-wide zone adjacent to the fault. Foliation is defined by subparallel alignment of intact lozenge shaped clasts, or by elongated aggregates of fine-grained chert fragments. The mean angle of 20°, between the foliation and the fault plane suggests that the foliated breccia accommodated a shear strain of γ<5 assuming simple shear for the rotation of the cataclastic foliation. Previous trench surveys have revealed that the fault has undergone at least 70 m of fault displacement within the last 20,000 years in this locality. The observed fault geometry suggests that past fault displacements have been localized into the 200-mm-wide gouge zone. Gas permeability analysis of the gouges gives low values of the order of 10 -20 m 2. Water permeability as low as 10 -20 m 2 is therefore expected for the fault gouge zone, which is two orders of magnitude lower than the critical permeability suggested for a fault to cause thermal pressurization during a fault slip.

  6. Hanging-wall deformation above a normal fault: sequential limit analyses

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoping; Leroy, Yves M.; Maillot, Bertrand

    2015-04-01

    The deformation in the hanging wall above a segmented normal fault is analysed with the sequential limit analysis (SLA). The method combines some predictions on the dip and position of the active fault and axial surface, with geometrical evolution à la Suppe (Groshong, 1989). Two problems are considered. The first followed the prototype proposed by Patton (2005) with a pre-defined convex, segmented fault. The orientation of the upper segment of the normal fault is an unknown in the second problem. The loading in both problems consists of the retreat of the back wall and the sedimentation. This sedimentation starts from the lowest point of the topography and acts at the rate rs relative to the wall retreat rate. For the first problem, the normal fault either has a zero friction or a friction value set to 25o or 30o to fit the experimental results (Patton, 2005). In the zero friction case, a hanging wall anticline develops much like in the experiments. In the 25o friction case, slip on the upper segment is accompanied by rotation of the axial plane producing a broad shear zone rooted at the fault bend. The same observation is made in the 30o case, but without slip on the upper segment. Experimental outcomes show a behaviour in between these two latter cases. For the second problem, mechanics predicts a concave fault bend with an upper segment dip decreasing during extension. The axial surface rooting at the normal fault bend sees its dips increasing during extension resulting in a curved roll-over. Softening on the normal fault leads to a stepwise rotation responsible for strain partitioning into small blocks in the hanging wall. The rotation is due to the subsidence of the topography above the hanging wall. Sedimentation in the lowest region thus reduces the rotations. Note that these rotations predicted by mechanics are not accounted for in most geometrical approaches (Xiao and Suppe, 1992) and are observed in sand box experiments (Egholm et al., 2007, referring

  7. Uniform pattern of normal faulting at the temporally distributed centers of eruption along the path of the Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Davarpanah, Armita; Babaie, Hassan

    2016-04-01

    The northeasterly migration of the Yellowstone hotspot (YHS) has led both to the successive eruption of lava from a temporally ordered set of calderas, and related thermally-induced normal faulting along the Snake River Plain (SRP) over the past 16.6 Ma. We have applied a series of structural and statistical methods to analyze the spatial distribution and orientation of the normal faults to understand the kinematics of the mid-Tertiary-Quaternary faulting event along the SRP in the northern Rockies. The azimuths of the linear directional mean (LDM) and the directional (autocorrelation) anisotropy ellipses in the semivariograms, applying Ordinary Kriging, for different sets of normal fault traces give an estimate for the horizontal component of extension for normal faulting. The sub-parabolic spatial pattern of the normal fault LDMs, and their sub-parallel alignment with the minor axes of the Standard Deviation Ellipses (SDEs) in and around different caldera, suggest uniform normal faulting during thermally-induced extensions along the SRP. The asymmetric, sub-parabolic distribution of the spatial trajectories (form lines) of the LDMs and the major axes of the directional (anisotropy) ellipses of the traces of normal faults in the youngest three calderas are similar to the reported parabolic distribution of earthquake epicenters along active normal faults around the YHS. The parallelism of the axis of the sub-parabolic pattern with the trajectories of the LDMs, the major axes of the directional anisotropy ellipses, and the deduced extension directions for each caldera, suggest systematic and progressive normal faulting due to the thermal regime of the hotspot as it migrated to the northeast. This implies that the age of normal faulting progressively decreases to the northeast.

  8. Fault stability under conditions of variable normal stress

    USGS Publications Warehouse

    Dieterich, J.H.; Linker, M.F.

    1992-01-01

    The stability of fault slip under conditions of varying normal stress is modelled as a spring and slider system with rate- and state-dependent friction. Coupling of normal stress to shear stress is achieved by inclining the spring at an angle, ??, to the sliding surface. Linear analysis yields two conditions for unstable slip. The first, of a type previously identified for constant normal stress systems, results in instability if stiffness is below a critical value. Critical stiffness depends on normal stress, constitutive parameters, characteristic sliding distance and the spring angle. Instability of the first type is possible only for velocity-weakening friction. The second condition yields instability if spring angle ?? <-cot-1??ss, where ??ss is steady-state sliding friction. The second condition can arise under conditions of velocity strengthening or weakening. Stability fields for finite perturbations are investigated by numerical simulation. -Authors

  9. Architectural and microstructural characterization of a seismogenic normal fault in dolostones (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Demurtas, Matteo; Fondriest, Michele; Clemenzi, Luca; Balsamo, Fabrizio; Storti, Fabrizio; Di Toro, Giulio

    2015-04-01

    Fault zones cutting carbonate sequences represent significant seismogenic sources worldwide (e.g. L'Aquila 2009, MW 6.1). Though seismological and geophysical techniques (double differences method, trapped waves, etc.) allow us to investigate down to the decametric scale the structure of active fault zones, further geological field surveys and microstructural studies of exhumed seismogenic fault zones are required to support interpretation of geophysical data, quantify the geometry of fault zones and identify the fault processes active during the seismic cycle. Here we describe the architecture (i.e. fault geometry and fault rock distribution) of the well-exposed footwall-block of the Campo Imperatore Fault Zone (CIFZ) by means of remote sensed analyses, field surveys, mineralogical (XRD, micro-Raman spectroscopy) and microstructural (FE-SEM, optical microscope cathodoluminescence) investigations. The CIFZ dips 58° towards N210 and its strike mimics that of the arcuate Gran Sasso Thrust Belt (Central Apennines). The CIFZ was exhumed from 2-3 km depth and accommodated a normal throw of ~2 km starting from the Early-Pleistocene. In the studied area, the CIFZ puts in contact the Holocene deposits at the hangingwall with dolomitized Jurassic carbonate platform successions (Calcare Massiccio) at the footwall. From remote sensed analyses, structural lineaments both inside and outside the CIFZ have a typical NW-SE Apenninic strike, which is parallel to the local trend of the Gran Sasso Thrust. Based on the density of the fracture/fault network and the type of fault zone rocks, we distinguished four main structural domains within the ~300 m thick CIFZ footwall-block, which include (i) a well-cemented (white in color) cataclastic zone (up to ~40 m thick) at the contact with the Holocene deposits, (ii) a well-cemented (brown to grey in color) breccia zone (up to ~15 m thick), (iii) an high strain damage zone (fracture spacing < 2-3 cm), and (iv) a low strain damage zone

  10. Holocene Scarp on the Sawtooth Normal Fault, Central Idaho

    NASA Astrophysics Data System (ADS)

    Thackray, G. D.; Rodgers, D. W.; Streutker, D. R.; Kemp, C. D.; Drabick, A. J.

    2006-12-01

    Analysis of LiDAR, air photo, and field data indicates the east-dipping, range-front normal fault of the Sawtooth Mountains has previously unrecognized Holocene offset. A fault scarp is most clearly represented in a bare- earth digital elevation model (DEM) derived from high-resolution LiDAR data. First and last pulse LiDAR data with an average post spacing of 0.5 m were used to compute both bare-earth elevation and local slope values. As the area is forested, vegetation removal was performed using an iterative interpolation method. Holocene fault offset likely extends along at least 23 km of the range front. In the vicinity of Redfish Lake, the scarp can be traced discontinuously for ca. 13 km (the length of LiDAR coverage) along the eastern range-front and cuts glacial, fluvial, and hillslope landforms of Late Pleistocene to Holocene age. Air photo analysis of the range-front north and south of the LiDAR coverage area yields strong evidence, such as topographic offsets, vegetation lineaments, and stream alignments, that late Pleistocene and Holocene faulting likely extends ca. 23 km along the range front, from Decker Creek to Stanley Lake. This zone of clearest postglacial offset corresponds with the highest range front topography in the Sawtooth Range. Weaker evidence suggests that postglacial faulting may extend as much as 10 km further NW of and 17 km further SE of that 23 km section. Scarp geometry and offset vary with location. The fault scarp generally strikes 025 deg. but changes to 040 deg. north of Goat Creek. A single, east-facing scarp is present in some places, such as at Bench Lakes, but more commonly en echelon scarps define a fault zone about 20 m wide. Scarp height, as measured from LiDAR data, ranges from 2.5 to 8 m (typically 3-5 m). Late Pleistocene glacial landforms are offset 4-8 m, while uncommon Holocene fluvial surfaces (e.g., at Fishhook Creek) are offset 2.5 to 3 m. These relationships potentially document two fault ruptures since

  11. Diverse Pseudotachylites Associated with the Whipple Detachment Fault: Implications for Seismogenesis on Low-Angle Normal Faults

    NASA Astrophysics Data System (ADS)

    Gentry, E.; Behr, W. M.; Wafforn, S.

    2014-12-01

    The Whipple detachment fault in E. California is a classic example of a large-displacement (~40 km), low-angle normal fault formed during Miocene Basin and Range extension. The footwall of this fault exhibits a range of mid-crustal rocks deformed near the brittle-ductile transition, including mylonites, cataclasites, and pseudotachylites, which provide insight into mid-crustal rheology from steady-state to seismic strain rates. Here we focus on a diverse array of pseudotachylites discovered in the Whipple footwall that have not been previously described. We examine the structural contexts, morphologies, and compositions of the pseudotachylites and discuss their implications for seismogenesis on continental low-angle normal faults. Veins that we interpret to be pseudotachylites occur as planar, anastomosing, and reservoir-like injections found along the margins of dikes, along mini-detachments kinematically linked to the Whipple fault, and within a few tens of centimeters below the silicified, erosionally resistant "microbreccia ledge" of the main detachment. The orientations of the vein generation surfaces are dominantly shallowly E-dipping, subparallel to the detachment fault itself; some occur on higher angle normal faults that sole into low angle shear zones. Veins were not found cutting the microbreccia ledge itself, suggesting that comminution and silicification post-dates pseudotachylite formation. In thin section, the veins exhibit a range in composition and degree of preservation. Some contain lath-shaped spherulites, others contain opaque, microcrystalline matrices with relict flow banding and embayed, primarily quartz clasts. Some pseudotachylite veins grade into cataclasites at their margins, suggesting cataclasis was precursory to vein formation, whereas others cut pristine mylonites with no evidence of earlier brittle deformation. Those that cut pristine mylonites contain clasts with dynamically recrystallized quartz grains with diameters of 5-7

  12. Detecting Taiwan's Shanchiao Active Fault Using AMT and Gravity Methods

    NASA Astrophysics Data System (ADS)

    Liu, H.-C.; Yang, C.-H.

    2009-04-01

    Taiwan's Shanchiao normal fault runs in a northeast-southwest direction and is located on the western edge of the Taipei Basin in northern Taiwan. The overburden of the fault is late Quaternary sediment with a thickness of approximately a few tenth of a meter to several hundred meters. No detailed studies of the western side of the Shanchiao fault are available. As Taiwan is located on the Neotectonic Belt in the western Pacific, detecting active faults near the Taipei metropolitan area will provide necessary information for further disaster prevention. It is the responsibility of geologists and geophysicists in Taiwan to perform this task. Examination of the resistivity and density contrasts of subsurface layers permits a mapping of the Shanchiao fault and the deformed Tertiary strata of the Taipei Basin. The audio-frequency magnetotelluric (AMT) method and gravity method were chosen for this study. Significant resistivity and gravity anomalies were observed in the suspected fault zone. The interpretation reveals a good correlation between the features of the Shanchiao fault and resistivity and density distribution at depth. In this observation, AMT and gravity methods provides a viable means for mapping the Shanchiao fault position and studying its features associated with the subsidence of the western side of the Taipei Basin. This study indicates the AMT and gravity methods' considerable potential for accurately mapping an active fault.

  13. Earthquake recurrence on the southern San Andreas modulated by fault-normal stress

    NASA Technical Reports Server (NTRS)

    Palmer, Randy; Weldon, Ray; Humphreys, Eugene; Saucier, Francois

    1995-01-01

    Earthquake recurrence data from the Pallett Creek and Wrightwood paleoseismic sites on the San Andreas fault appear to show temporal variations in repeat interval. We investigate the interaction between strike-slip faults and auxiliary reverse and normal faults as a physical mechanism capable of producing such variations. Under the assumption that fault strength is a function of fault-normal stress (e.g. Byerlee's Law), failure of an auxiliary fault modifies the strength of the strike-slip fault, thereby modulating the recurrence interval for earthquakes. In our finite element model, auxiliary faults are driven by stress accumulation near restraining and releasing bends of a strike-slip fault. Earthquakes occur when fault strength is exceeded and are incorporated as a stress drop which is dependent on fault-normal stress. The model is driven by a velocity boundary condition over many earthquake cycles. Resulting synthetic strike-slip earthquake recurrence data display temporal variations similar to observed paleoseismic data within time windows surrounding auxiliary fault failures. Our simple model supports the idea that interaction between a strike-slip fault and auxiliary reverse or normal faults can modulate the recurrence interval of events on the strike-slip fault, possibly producing short term variations in earthquake recurrence interval.

  14. The 2011 Hawthorne, Nevada, Earthquake Sequence; Shallow Normal Faulting

    NASA Astrophysics Data System (ADS)

    Smith, K. D.; Johnson, C.; Davies, J. A.; Agbaje, T.; Knezevic Antonijevic, S.; Kent, G.

    2011-12-01

    Range front fault at this latitude. At least two faults have been imaged within the sequence; these structures are at shallow depth (3-6 km), strike NE, and dip ~NW. Prior to temporary station installation event depths were poorly constrained, with the nearest network station 25 km from the source area. Early sequence moment tensor solutions show depths are on the order of 2-6 km and locations using the near source stations also confirm the shallow depths of the Hawthorne sequence. S-P times of 0.5 sec and less have been observed on a near-source station, illustrating extremely shallow source depths for some events. Along with the 2011 Hawthorne activity, very shallow depths in Nevada have been observed from near source stations in the 2008 west Reno earthquake sequence (primarily strike-slip faulting; main shock Mw 5.0) and the 1993 Rock Valley sequence in southern NNSS (strike-slip faulting; main shock Mw 4.0). These shallow sequences tend to include high rates of low magnitude earthquakes continuing over several months duration.

  15. Mechanical controls on the spatial and temporal variability of faulting mechanisms in sandstone along the Moab normal fault, Utah

    NASA Astrophysics Data System (ADS)

    Davatzes, N. C.; Aydin, A.

    2003-12-01

    Segmentation is a fundamental characteristic of faults. However, the effect of segmentation on the process of fault development, the architecture of the fault zone, and the properties of faults are poorly understood. Along the Moab fault, a basin scale normal fault with ~1 km of throw in SE Utah, segmentation is associated with localized changes in the density and types of structures associated with faulting in sandstone. Changes in the types of structural elements are associated with fault development by two different mechanisms in sandstone: (1) cataclastic shear failure that produces deformation bands and (2) the repeated formation and subsequent shearing of joints that leads to the formation of a brecciated fault zone. Deformation bands are prevalent along the entire length of the fault system and band density is greatest within relays between normal fault segments that are subjected to a component of strike-parallel contraction. The joints and sheared joints only occur at intersections between normal fault segments and relays that are subjected to strike-parallel extension where they overprint deformation bands. We contend that spatial variation of the faulting mechanisms in sandstone is associated with the stress perturbation around the fault. We used the geometry and kinematics of the fault segments and an estimated burial depth of 2 km to simulate the mechanical behavior of the fault system in linear elastic boundary element models using Poly3D. We looked specifically for changes in the stress state that would cause a transition from deformation band formation to joint formation because joints are the youngest structural elements wherever they occur. Joints form normal to the least compressive principal stress when this stress exceeds the tensile strength of the rock. We also note that cataclasis in deformation bands represent a loss of volume, whereas jointing and breccia formation are dilatant processes. Consequently the mean stress can act as an

  16. Paleoseismological analysis on the basis of precise sea bottom topography and sonic prospecting along the normal fault in the Beppu-Haneyama Fault Zone in Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Takemura, K.; Haraguchi, T.; Yamada, K.; Yoshinaga, Y.

    2015-12-01

    The subaqueous topography of bays or lakes along the large active faults are influenced by displacement on fault and strong motion related sediments such as land slide, turbidite etc. We carried out precise topographic survey using multi-beam sonic survey, and seismic reflection survey to about 40m deep sediments in Beppu Bay, which is a pull apart basin with normal faults related to right lateral movements of Median Tectonic Line in southwest Japan. In west central Kyushu, long active fault zone named as Beppu - Haneyama Fault zone runs with E-W direction normal fault zone. The southwest boundary of Beppu Bay is a part of Beppu-Haneyama Fault zone and normal fault of pull apart basin. The multi beam sonic data show the characteristic altitude distribution (topography) of steep inclining slope from shore side to the deepest part with 70m below sea level along the coast, and also submarine slidings occurred at off Beppu and off Oita. Within those areas, several blocks of more than 100m has preserved shape and developed to sliding direction. From the viewpoint of sliding topography, sliding movements are thought sector collapse during short interval, and main cause is thought the movement of directly below active fault and related strong seismic motion. The sonic prospecting data show several reflection horizons indicating volcanic ashes and sand seams. Around two submarine sliding deposit areas, continuation of clear reflections are sparse influenced by event sedimentation and thick coarse sediments. 88 m sediment cores from 7 sites (core length: 8m to 20m long per site) from deepest part and submarine sliding area in late July this year (2015) will make clear that construction age of these topography and construction mechanism from lithological characteristics, and comparison to historical record including large earthquake occurred in 1596.

  17. Active faulting in apparently stable peninsular India: Rift inversion and a Holocene-age great earthquake on the Tapti Fault

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Mitra, Supriyo; Sloan, R. Alastair; Gaonkar, Sharad; Reynolds, Kirsty

    2014-08-01

    We present observations of active faulting within peninsular India, far from the surrounding plate boundaries. Offset alluvial fan surfaces indicate one or more magnitude 7.6-8.4 thrust-faulting earthquakes on the Tapti Fault (Maharashtra, western India) during the Holocene. The high ratio of fault displacement to length on the alluvial fan offsets implies high stress-drop faulting, as has been observed elsewhere in the peninsula. The along-strike extent of the fan offsets is similar to the thickness of the seismogenic layer, suggesting a roughly equidimensional fault rupture. The subsiding footwall of the fault is likely to have been responsible for altering the continental-scale drainage pattern in central India and creating the large west flowing catchment of the Tapti river. A preexisting sedimentary basin in the uplifting hanging wall implies that the Tapti Fault was active as a normal fault during the Mesozoic and has been reactivated as a thrust, highlighting the role of preexisting structures in determining the rheology and deformation of the lithosphere. The slip sense of faults and earthquakes in India suggests that deformation south of the Ganges foreland basin is driven by the compressive force transmitted between India and the Tibetan Plateau. The along-strike continuation of faulting to the east of the Holocene ruptures we have studied represents a significant seismic hazard in central India.

  18. Sediment supply and grain size export from normal fault footwalls in Southern Italy

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, Duna; D'Arcy, Mitch; Whittaker, Alex; Allen, Philip

    2015-04-01

    grain size and locus of sediment export by influencing landslide abundances and input sediment supply. These data imply that hangingwall stratigraphies in areas of active normal faulting fundamentally reflect landscape responses to tectonics. *Syvitski, J. P. and J. D. Milliman (2007). "Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean." The Journal of Geology 115(1): 1-19

  19. Joints at high angles to normal fault strike: an explanation using 3-D numerical models of fault-perturbed stress fields

    NASA Astrophysics Data System (ADS)

    Kattenhorn, Simon A.; Aydin, Atilla; Pollard, David D.

    2000-01-01

    Structural methods based on homogeneous stress states predict that joints growing in an extending crust form with strike orientations identical to normal faults. However, we document a field example where the strikes of genetically related normal faults and joints are almost mutually perpendicular. Field relationships allowed us to constrain the fracture sequence and tectonic environment for fault and joint growth. We hypothesize that fault slip can perturb the surrounding stress field in a manner that controls the orientations of induced secondary structures. Numerical models were used to examine the stress field around normal faults, taking into consideration the effects of 3-D fault shape, geometrical arrangement of overlapping faults, and a range of stress states. The calculated perturbed stress fields around model normal faults indicate that it is possible for joints to form at high angles to fault strike. Such joint growth may occur at the lateral tips of an isolated fault, but is most likely in a relay zone between overlapping faults. However, the angle between joints and faults is also influenced by the remote stress state, and is particularly sensitive to the ratio of fault-parallel to fault-perpendicular stress. As this ratio increases, joints can propagate away from faults at increasingly higher angles to fault strike. We conclude that the combined remote stress state and perturbed local stress field associated with overlapping fault geometries resulted in joint growth at high angles to normal fault strike at a field location in Arches National Park, Utah.

  20. Mechanism for Normal Faulting in the Subducting Plate at the Mariana Trench

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Lin, J.; Behn, M. D.; Olive, J. A. L.

    2014-12-01

    We investigate the characteristics of normal faulting between the trench and outer rise in the subducting Pacific plate through analysis of high-resolution multi-beam bathymetry and geophysical data and geodynamic modeling. Analysis of multi-beam bathymetry data reveals significant variations in normal faulting characteristics along the Mariana trench: (1) The vast majority of the observed surface normal faulting scarps are observed to be sub-parallel to the local strike of the Mariana trench axis, indicating that the orientation of normal faults is predominantly controlled by subduction-related stresses rather than by pre-existing abyssal hill fabrics. (2) Trench-parallel normal fault scarps become apparant as the subducting plate approaches the outer rise of the Mariana trench, indicating that normal faulting initiates in this region. (3) Along the Mariana trench, the Challenger Deep region is associated with the greatest trench depth and largest average values of normal fault throw, while regions with seamounts near the trench axis show the smallest average values of fault throw. To explore the mechanisms that control normal faulting in a subducting plate, we perform numerical simulations of elasto-plastic plate subjected to tectonic loading, bending, and horizontal forces from slab pull. Modeling results suggest that bending-induced extensional stresses in the upper plate reaches maximum values near the outer rise, consistent with the onset of normal faulting in this region. However, bending alone does not predict the continued growth of normal faults toward the trench. We hypothesize that this additional fault growth could be related to (1) tectonic stresses induced by steep topographic slopes; and/or (2) slab pulling forces that are originated in the upper mantle due to the negative buoyancy of a subducted slab but are transmitted to the shallower part of the lithospheric plate prior to its subduction.

  1. Thrust-faulting earthquake induced many normal-faulting aftershocks, in northeastern Chiba Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Kato, A.; Hirata, N.; Nakagawa, S.; Kasahara, K.; Sato, H.; Kurashimo, E.; Nanjo, K.; Panayotopoulos, Y.; Obara, K.; Aketagawa, T.; Kimura, H.

    2010-12-01

    A thrust faulting type earthquake of a local body wave magnitude (MJMA) of 4.9 occurred near the upper interface of the subducting Philippine Sea Plate (PHS) in northeastern Chiba Prefecture on July 22, 2010. We have been developing a dense seismic net work call the MeSO-net in the Tokyo Metropolitan area. So far, 249 stations are available for the study of a large felt earthquakes and small event as low as M=1.5. We also deployed a temporary seismic array 24 of which were used for the analysis of the aftershocks. We locate the July 22 earthquake(MJMA=4.9) and its 19 aftershocks (M>1.5) by the double difference location algorithm. We also determine focal mechanisms for the main- and after-shocks. The locations of the main shock and three aftershocks are closely distributed near the upper interface of PHS, which is consistent with the idea that the event occurred on the plate interface. However, most aftershocks whose focal mechanism is normal-fault type with a T-axis directing NE-SW are located off the upper interface indicating that intra-slab events are also generated by the event. Acknowledgement: The present study is supported by Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

  2. Low-angle normal faults-low differential stress at mid crustal levels

    NASA Technical Reports Server (NTRS)

    Power, W. L.

    1985-01-01

    A simple model for frictional slip on pre-existing faults that considers the local stress state near the fault and the effect of non-hydrostatic fluid pressures predicts that low-angle normal faulting is restricted to areas of the crust characterized by low differential stress and nearly lithostatic fluid pressures. The model considers frictional slip on a cohesionless low-angle normal fault governed by the failure criterion tau = mu sub f (sigma (*) sub n) =mu sub f (sigma sub n - P sub f) where tau and sigma sub n are the shear and normal stresses across the fault plane, mu sub f is the static coefficient of friction, and P sub f is the pore fluid pressure. As a first approximation, the model considers a vertical greatest principal compressive stress, sigma sub 1. It is apparent that if slip on low-angle normal faults is governed by the avove frictional failure criterion, slip on the low-angle normal fault occurs only if the least effective principal stress, sigma (*) sub 3 = sigma sub 3 - P sub f, is tensile, whenever tan superscrip -1(mu sub f d, where d is the dip of the fault. If detachment faulting occurs at any significant depth in the crust, P sub f sigma sub 3 is required. In light of this conclusion I allow P sub f to vary as necessary to allow slip on the low-angle normal fault.

  3. Generic along-strike segmentation of Afar normal faults, East Africa: Implications on fault growth and stress heterogeneity on seismogenic fault planes

    NASA Astrophysics Data System (ADS)

    Manighetti, I.; Caulet, C.; Barros, L.; Perrin, C.; Cappa, F.; Gaudemer, Y.

    2015-02-01

    Understanding how natural faults are segmented along their length can provide useful insights into fault growth processes, stress distribution on fault planes, and earthquake dynamics. We use cumulative displacement profiles to analyze the two largest scales of segmentation of ˜900 normal faults in Afar, East Africa. We build upon a prior study by Manighetti et al. (2009) and develop a new signal processing method aimed at recovering the number, position, displacement, and length of both the major (i.e., longest) and the subordinate, secondary segments within the faults. Regardless of their length, age, geographic location, total displacement, and slip rate, 90% of the faults contain two to five major segments, whereas more than 70% of these major segments are divided into two to four secondary segments. In each hierarchical rank of fault segmentation, most segments have a similar proportional length, whereas the number of segments slightly decreases with fault structural maturity. The along-strike segmentation of the Afar faults is thus generic at its two largest scales. We summarize published fault segment data on 42 normal, reverse, and strike-slip faults worldwide, and find a similar number (two to five) of major and secondary segments across the population. We suggest a fault growth scenario that might account for the generic large-scale segmentation of faults. The observation of a generic segmentation suggests that seismogenic fault planes are punctuated with a deterministic number of large stress concentrations, which are likely to control the initiation, arrest and hence extent and magnitude of earthquake ruptures.

  4. Meteoric water in normal fault systems: Oxygen and hydrogen isotopic measurements on authigenic phases in brittle fault rocks

    NASA Astrophysics Data System (ADS)

    Haines, S. H.; Anderson, R.; Mulch, A.; Solum, J. G.; Valley, J. W.; van der Pluijm, B. A.

    2009-12-01

    The nature of fluid circulation systems in normal fault systems is fundamental to understanding the nature of fluid movement within the upper crust, and has important implications for the on-going controversy about the strength of faults. Authigenic phases in clay gouges and fault breccias record the isotopic signature of the fluids they formed in equilibrium with, and can be used to understand the ‘plumbing system’ of brittle fault environments. We obtained paired oxygen and hydrogen isotopic measurements on authigenic illite and/or smectite in clay gouge from normal faults in two geologic environments, 1.) low-angle normal faults (Ruby Mountains detachment, NV; Badwater Turtleback, CA; Panamint range-front detachment; CA; Amargosa detachment; CA; Waterman Hills detachment, CA), and 2.) An intracratonic high-angle normal fault (Moab Fault, UT). All authigenic phases in these clay gouges are moderately light isotopically with respect to oxygen (illite δ18O -2.0 - + 11.5 ‰ SMOW, smectite δ18O +3.6 and 17.9 ‰) and very light isotopically with respect to hydrogen (illite δD -148 to -98 ‰ SMOW, smectite δD -147 to -92 ‰). Fluid compositions calculated from the authigenic clays at temperatures of 50 - 130 ○C (as indicated by clay mineralogy) indicate that both illite and smectite in normal fault clay gouge formed in the presence of near-pristine to moderately-evolved meteoric fluids and that igneous or metamorphic fluids are not involved in clay gouge formation in these normal fault settings. We also obtained paired oxygen and hydrogen isotopic measurements on chlorites derived from footwall chlorite breccias in 4 low-angle normal fault detachment systems (Badwater and Mormon Point Turtlebacks, CA, the Chemehuevi detachment, CA, and the Buckskin-Rawhide detachment, AZ). All chlorites are isotopically light to moderately light with respect to oxygen (δ18O +0.29 to +8.1 ‰ SMOW) and very light with respect to hydrogen (δD -97 to -113 ‰) and indicate

  5. Tectonic origin for polygonal normal faults in pelagic limestones of the Cingoli anticline hinge (Italy)

    NASA Astrophysics Data System (ADS)

    Petracchini, Lorenzo; Antonellini, Marco; Billi, Andrea; Scrocca, Davide

    2016-04-01

    Polygonal faults are a relatively-recent new class of normal faults which are thought to be formed during early burial and diagenesis as a consequence of heterogeneous lateral volume changes. Polygonal faults are non-systematically oriented and, in map view, they form rhombus-, pentagon-, or hexagon-like pattern, suggesting a non-tectonic origin. Furthermore, polygonal faults are layer bound and they are restricted to particular stratigraphic level. Predicting the pattern of polygonal normal fault results crucial for geofluid exploration and exploitation, but, despite the large number of studies, the origin of these faults remains still largely controversial. One of the main reason for this uncertainty is that they are poorly known in outcrops. Polygonal faults have been identified in few localities within Mesozoic chalk (United Kingdom, France, and Egypt), in Paleogene claystone (Belgium), and in the Cretaceous Khoman Formation (Egypt) where polygonal faults have been observed in an extensive exposure of chalk. In this study, we describe an outcrop in the Cingoli anticline hinge, which is located at external front of the northern Apennines fold-thrust belt (Italy), showing normal faults that we interpreted as syn-tectonically (syn-thrusting) polygonal faults. The outcrop shows three vertical exposures of sub-horizontal fine-grained marly limestones with chert interlayers of Albian-Turonian age. Intraformational short normal faults affect the carbonate and chert beds. These faults are poorly-systematic and they cut through the carbonate beds whereas usually stop against the chert layers. The fault surfaces are often characterized by slickolites, clayey residue, and micro-breccias including clasts of chert and carbonate. Fault displacement is partly or largely accommodated by pressure solution. At the fault tips, the displacement is generally transferred, via a lateral step, to an adjacent similar fault segment. The aim of our study is to understand the nucleation

  6. From accommodation zones to metamorphic core complexes: Tracking the progressive development of major normal fault systems

    SciTech Connect

    Faulds, J.E. . Dept. of Geology)

    1992-01-01

    The along-strike dimension in rifted continental crust is critical to assessing models of continental extension because individual normal faults or fault systems can potentially be traced from their tips in accommodation zones to their culminations in metamorphic core complexes. Accommodation zones and the linkages between the zones and core complexes have not been thoroughly studied or incorporated extensively into models of continental extension. Regionally extensive, gently dipping normal faults (i.e., detachment faults) that surface in metamorphic core complexes terminate and flip polarity in accommodation zones. Diametrical lateral transport of upper-plate rocks in positively dipping detachment terranes should presumably induce strike-slip faulting on segments of accommodation zones paralleling the extension direction. Most accommodation zones correspond, however, to belts of intermeshing conjugate normal faults with little strike-slip faulting. Normal faults simply terminate along-strike in the zones with little, if any, transfer of slip to strike-slip faults. Decreases in cumulative strain within individual normal fault systems toward some accommodation zones cannot alone account for the lack of strike-slip faulting. These findings pose a serious challenge to generally accepted notions of large-magnitude, lateral motion of parts of detachment terranes. Large-scale lateral translations of rifted continental crust may be governed more by discrete axes of extension than by detachment geometries. The dovetail-like interfingering of conjugate normal fault systems and attendant tilt-block domains observed in some accommodation zones (e.g., Colorado River extensional corridor, US) does suggest, however, that at least some major normal faults projecting into the zones from metamorphic core complexes have listric geometries that flatten out at relatively shallow depths.

  7. Northwestern Australian Collision in the Timor Sea: Constraints From Flexurally-Induced Normal Faulting.

    NASA Astrophysics Data System (ADS)

    Londono, J.; Lorenzo, J.; O'Brien, G.

    2001-12-01

    rather than an increase in fault slip within the Pliocene section. Flexure-induced normal faults affecting present day sea floor are distributed in an area within 50 to 150 km of the tectonic wedge front (Banda Arc). Pliocene faults were located at least 100 km further away from the active tectonic wedge (i.e. >250 km). This difference in the spatial distribution of faults indicates a change in the rheologic regime of the lithosphere over time. Heterogeneous elastic thickness of the lithosphere in the area is causing a concentration of stresses on the modern narrow zone of high deformation. Also the fall in the rate of convergence (from 70 km/m.y. during Pliocene to about imperceptible today) reduces the amount of transferable stress into the continental plate

  8. Forced folding and basement-detached normal faulting in the Haltenbanken area, offshore Norway

    SciTech Connect

    Withjack, M.O.; Meisling, K.E.; Russell, L.R.

    1988-01-01

    Triassic evaporites affected the structural development of the Haltenbanken area of offshore Norway during the Late Jurassic and Early Cretaceous by mechanically isolating Triassic and younger strata from older strata and basement. Many folds in the Haltenbanken area are forced folds above basement-involved normal faults. Forced folds formed, at least in part, because Triassic evaporites behaved ductilely, decoupling overlying strata from underlying faulted strata and basement. Seismic data show that these forced folds are asymmetric flexures that affect Lower Cretaceous, Jurassic, and Triassic strata. Strata beneath the Traiassic evaporites are faulted. Some forced folds die out along strike into, and are cut by, basement-involved normal faults. Folding predominated above salt swells where decoupling was enhanced, whereas faulting occurred on the flanks of salt swells where salt thicknesses were reduced and decoupling was less effective. Many normal faults in the Haltenbanken area are basement-detached and flatten within the Triassic evaporites. Seismic data show that rollover anticlines and antithetic normal faults affect Lower Cretaceous, Jurassic, and Triassic strata within the hanging walls of these basement-detached normal faults. Strata beneath the evaporites are not affected by this deformation. Some basement-detached normal faults may be secondary structures associated with forced folding. Others, especially those with large displacements, may have formed in response to gravity sliding.

  9. Forced folding and basement-detached normal faulting in the Haltenbanken area, offshore Norway

    SciTech Connect

    Withjack, M.O.; Meisling, K.E.; Russell, L.R.

    1988-02-01

    Triassic evaporites affected the structural development of the Haltenbanken area of offshore Norway during the Late Jurassic and Early Cretaceous by mechanically isolating Triassic and younger strata from older strata and basement. Many folds in the Haltenbanken area are forced folds above basement-involved normal faults. Forced folds formed, at least in part, because Triassic evaporites behaved ductilely, decoupling overlying strata from underlying faulted strata and basement. Seismic data show that these forced folds are asymmetric flexures that affect Lower Cretaceous, Jurassic, and Triassic strata. Strata beneath the Triassic evaporites are faulted. Some forced folds die out along strike into, and are cut by, basement-involved normal faults. Folding predominated above salt swells where decoupling was enhanced, whereas faulting occurred on the flanks of salt swells where salt thicknesses were reduced and decoupling was less effective. Many normal faults in the Haltenbanken area are basement-detached and flatten within the Triassic evaporites. Seismic data show that rollover anticlines and antithetic normal faults affect Lower Cretaceous, Jurassic, and Triassic strata within the hanging walls of these basement-detached normal faults. Strata beneath the evaporites are not affected by this deformation. Some basement-detached normal faults may be secondary structures associated with forced folding. Others, especially those with large displacements, may have formed in response to gravity sliding.

  10. Topological characteristics of simple and complex normal fault networks

    NASA Astrophysics Data System (ADS)

    Morley, C. K.; Nixon, C. W.

    2016-03-01

    2-D, map-view topological analysis of ten natural and two analogue fault networks was undertaken. The fault arrays range from simple, low-displacement systems, to complex systems arising from multiple stages of deformation, or exhibiting complex local rotation of stresses. Classification of fault arrays was based on fault terminations (I-nodes), splaying and abutting geometries (Y-nodes) and cross-cutting relationships (X-nodes), which permit relatively quick and simple ways of analysing fault terminations and connectivity. Many of the fault networks are predominantly composed of I- and Y-nodes with at most only a minor X-node population, hence discrimination of significant differences between fault networks using just this type of analysis is limited. Subdividing Y-nodes into splaying (Ys), abutting (Ya) and cross-cutting (Yc) types, displaying the data on Ys-Ya-Yc node triangles, as well as generating equivalent networks defined by vertices and edges provides additional information for defining fault networks. Comparison of the Ys-Ya-Yc node triangle and the excess kurtosis of vertice degree distribution identifies seven distinct types of network that show meaningful differences. Such quantitative descriptions are useful for comparing the results of analogue and numerical models with natural examples as well as assessing fault network connectivity, which has implications for the structural interpretation of reservoirs and aquifers. A wide variety of factors contribute to variations in fault networks such as variations in strain, stress rotation with time, fabric inheritance, and stress deflection. While topology cannot be used to identify specific mechanisms, some topological characteristics can help narrow the likely mechanism particularly when used in conjunction with more traditional techniques and observations.

  11. A model for the geomorphic development of normal-fault facets

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Hobley, D. E. J.; McCoy, S. W.

    2014-12-01

    Triangular facets are among the most striking landforms associated with normal faulting. The genesis of facets is of great interest both for the information facets contain about tectonic motion, and because the progressive emergence of facets makes them potential recorders of both geomorphic and tectonic history. In this report, we present observations of triangular facets in the western United States and in the Italian Central Apennines. Facets in these regions typically form quasi-planar surfaces that are aligned in series along and above the trace of an active fault. Some facet surfaces consist mainly of exposed bedrock, with a thin and highly discontinuous cover of loose regolith. Other facets are mantled by a several-decimeter-thick regolith cover. Over the course of its morphologic development, a facet slope segment may evolve from a steep (~60 degree) bedrock fault scarp, well above the angle of repose for soil, to a gentler (~20-40 degree) slope that can potentially sustain a coherent regolith cover. This evolutionary trajectory across the angle of repose renders nonlinear diffusion theory inapplicable. To formulate an alternative process-based theory for facet evolution, we use a particle-based approach that acknowledges the possibility for both short- and long-range sediment-grain motions, depending on the topography. The processes of rock weathering, grain entrainment, and grain motion are represented as stochastic state-pair transitions with specified transition rates. The model predicts that facet behavior can range smoothly along the spectrum from a weathering-limited mode to a transport-limited mode, depending on the ratio of fault-slip rate to bare-bedrock regolith production rate. The model also implies that facets formed along a fault with pinned tips should show systematic variation in slope angle that correlates with along-fault position and slip rate. Preliminary observations from central Italy and the eastern Basin and Range are consistent

  12. First evidences of fast creeping on a long-lasting quiescent earthquake normal-fault in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Sabadini, Roberto; Aoudia, Abdelkrim; Barzaghi, Riccardo; Crippa, Bruno; Marotta, Anna Maria; Borghi, Alessandra; Cannizzaro, Letizia; Calcagni, Laura; Via, Giorgio Dalla; Rossi, Grazia; Splendore, Raffaele; Crosetto, Michele

    2009-11-01

    A key issue in our understanding of the earthquake cycle and seismic hazard is the behaviour of an active fault during the interseismic phase. Locked and creeping faults represent two end-members of mechanical behaviours that are given two extreme rupturing hazard levels, that is, high and low, respectively. Geophysical and space geodetic analyses are carried out over the Pollino Range, an extensional environment within the Africa-Eurasia plate boundary, to disclose the behaviour of the long-lasting quiescent Castrovillari normal fault. Fault trenching evidenced at least four large earthquakes (6.5-7.0 Mw) in the past and an elapsed time of 1200 yr since the last event. Inversion of Differential Interferometric Synthetic Aperture Radar and Global Positioning System over a decade shows fast creeping at all depths of the fault plane. The velocity-strengthening creeping zone reaches maximum rates 20 mm yr-1 against an average rate of about 3-9 mm yr-1. It limits the southern-weakening locked part of the fault. An essential condition for the generation of a large earthquake on the Castrovillari fault, as has occurred in the past, is a rupture through the velocity-strengthening zone. The Castrovillari fault yields the best evidence for being both a strong and weak fault during its earthquake cycle. Creeping at rates faster than its tectonically driven ones, it must thus consist of a mix of unstable and conditionally stable patches ready to sustain a sizeable earthquake. Quantifying and mapping the slip rate over the fault plane is important because they influence fault moment budget estimate and helps to constrain constitutive laws of fault zones. Aseismic slip also redistributes stress in the crust, thereby affecting the locations of future earthquakes.

  13. Active, capable, and potentially active faults - a paleoseismic perspective

    USGS Publications Warehouse

    Machette, M.N.

    2000-01-01

    Maps of faults (geologically defined source zones) may portray seismic hazards in a wide range of completeness depending on which types of faults are shown. Three fault terms - active, capable, and potential - are used in a variety of ways for different reasons or applications. Nevertheless, to be useful for seismic-hazards analysis, fault maps should encompass a time interval that includes several earthquake cycles. For example, if the common recurrence in an area is 20,000-50,000 years, then maps should include faults that are 50,000-100,000 years old (two to five typical earthquake cycles), thus allowing for temporal variability in slip rate and recurrence intervals. Conversely, in more active areas such as plate boundaries, maps showing faults that are <10,000 years old should include those with at least 2 to as many as 20 paleoearthquakes. For the International Lithosphere Programs' Task Group II-2 Project on Major Active Faults of the World our maps and database will show five age categories and four slip rate categories that allow one to select differing time spans and activity rates for seismic-hazard analysis depending on tectonic regime. The maps are accompanied by a database that describes evidence for Quaternary faulting, geomorphic expression, and paleoseismic parameters (slip rate, recurrence interval and time of most recent surface faulting). These maps and databases provide an inventory of faults that would be defined as active, capable, and potentially active for seismic-hazard assessments.

  14. Analysis of the relationships between strain, polarity and population slope for normal fault systems

    NASA Astrophysics Data System (ADS)

    Moriya, Shunji; Childs, Conrad; Manzocchi, Tom; Walsh, John J.

    2005-06-01

    The evolution of normal fault populations and their synthetic and antithetic sub-populations has been studied for a number of fault systems imaged from seismic reflection data. Relationships between fault strain and polarity and the slope of fault throw populations have been investigated by backstripping a fault system in the Inner Moray Firth, North Sea, and by comparison between throw populations for pre-faulting horizons from an additional 11 fault systems with variable extensional strains. Fault population slopes decrease with increasing strain reflecting strain localisation onto progressively fewer and larger faults. Synthetic and antithetic sub-populations also show an inverse relationship between slope and the strain they accommodate, but the slopes of antithetic sub-populations are independent of the total strain on the fault system. The slopes of antithetic sub-populations are higher than those of synthetic sub-populations from the same area and the difference in slope correlates with the polarity of the fault system, i.e. the proportion of the total strain accommodated by the two sub-populations. The data are consistent with progressive decrease in the slopes of sub-populations until the antithetic fault sets become inactive. The absence of a correlation between strain and polarity is attributed to the effects of fault system reactivation.

  15. Was Himalayan normal faulting triggered by initiation of the Ramgarh-Munsiari Thrust?

    USGS Publications Warehouse

    Robinson, Delores M.; Pearson, Ofori N.

    2013-01-01

    The Ramgarh–Munsiari thrust is a major orogen-scale fault that extends for more than 1,500 km along strike in the Himalayan fold-thrust belt. The fault can be traced along the Himalayan arc from Himachal Pradesh, India, in the west to eastern Bhutan. The fault is located within the Lesser Himalayan tectonostratigraphic zone, and it translated Paleoproterozoic Lesser Himalayan rocks more than 100 km toward the foreland. The Ramgarh–Munsiari thrust is always located in the proximal footwall of the Main Central thrust. Northern exposures (toward the hinterland) of the thrust sheet occur in the footwall of the Main Central thrust at the base of the high Himalaya, and southern exposures (toward the foreland) occur between the Main Boundary thrust and Greater Himalayan klippen. Although the metamorphic grade of rocks within the Ramgarh–Munsiari thrust sheet is not significantly different from that of Greater Himalayan rock in the hanging wall of the overlying Main Central thrust sheet, the tectonostratigraphic origin of the two different thrust sheets is markedly different. The Ramgarh–Munsiari thrust became active in early Miocene time and acted as the roof thrust for a duplex system within Lesser Himalayan rocks. The process of slip transfer from the Main Central thrust to the Ramgarh–Munsiari thrust in early Miocene time and subsequent development of the Lesser Himalayan duplex may have played a role in triggering normal faulting along the South Tibetan Detachment system.

  16. Extensional step-over between the Zhongdian and Red River faults: kinematics of the Daju normal fault constrained by cosmogenic dating of the Yangtze terraces (Yulong Shan, Yunnan)

    NASA Astrophysics Data System (ADS)

    van der Woerd, J.; Perrineau, A.; Gaudemer, Y.; Leloup, P.-H.; Liu-Zeng, J.; Barrier, L.; Thuizat, R.

    2012-04-01

    Extension in western Yunnan, southeastern Tibet, is limited by two dextral strike-slip faults, the Zhongdian and Red River faults, to the north and south, respectively, and is characterized by N-S directed normal faults and basins. In the northwestern corner of this large extensional step-over, the Yangtze River crosses the Daju normal fault at the foot of the Yulong Shan. Due to uplift of the Yulong Shan, the Yangtze carved the huge Huxiao Jia (Tiger Leap) Gorges (˜3500 m deep) and abandoned sets of fluvial terraces across the fault zone and in the Daju basin to the north. Cosmogenic dating of blocks sampled on top of the terraces provide ages ranging from 8 to 30 ka. In the hanging wall basin to the north, the terraces may have been abandoned after the breach of a natural dam formed in the river (moraine or landslide) during the last glacial period. The average incision rate of the river in the basin is about 5.9 mm/yr, the vertical slip-rate on the Daju fault is 4.9±1.3 mm/yr, thus implying an incision rate of the river inside the gorge reaching about 11 mm/year. These rates may explain the exceptional size and steepness of the gorge. These results show that active faulting plays a major role in shaping the present relief of this region and that recent strain changes involve movement along the largest strike-slip faults of the region, in accordance with models implying large-scale block extrusion.

  17. Identifying paleoseismic information from limestone normal faults with a handheld XRF

    NASA Astrophysics Data System (ADS)

    Fritzon, Ruben; Stroeven, Arjen P.; Skelton, Alasdair; Goodfellow, Brad W.; Caffee, Marc W.

    2014-05-01

    Predicting earthquakes would help immensely in saving human lives and protecting economic interest but a reliable method has not yet been found. When making risk assessments scientists continue to rely on paleoseismic studies. Determining a fast and cheap proxy for paleoseismicity is therefore of much interest. Surface exposure dating is an emergent method for paleoseismic studies of active normal fault scarps in the Mediterranean region. This method gives crucial paleoearthquake information such as timing and vertical slip along the fault but the analysis of cosmogenic nuclides is costly and the sampling is both complicated and time consuming. In our study we employ an Olympus Innov-X DeltaTM handheld XRF to analyse the geochemistry of a scarp surface in order to determine the number and magnitude of slips along the fault. This method requires no drilling and it is possible to analyse the results at the fault scarp. Exposure dating is still required to yield the timeframe of the paleoearthquake record, but the number of sampling points may be significantly reduced since it would be possible to pin-point the sampling locations around suspected former soil horizons. We have analysed 200 sample points with the handheld XRF from a 6.8 m section of the limestone normal fault scarp surface close to Sparta, southern Greece. Our profile is taken next to the Benedetti et al.[Geophysical Research Letters, 29, 8 (2002)] sampling site. Our results show significant variations in Yttrium concentration along the profile with a strong peak just below the present soil cover at the base of the section and then repeated peaks up along the transect on the subaerially exposed scarp surface. These Yttrium concentrations at the surface are correlated with Yttrium concentrations in the rock determined from drill cores taken every 10 cm from the same profile. The preliminary dataset appears to indicate a good correlation between the Yttrium concentrations and the earthquake events

  18. InSAR measurements around active faults: creeping Philippine Fault and un-creeping Alpine Fault

    NASA Astrophysics Data System (ADS)

    Fukushima, Y.

    2013-12-01

    Recently, interferometric synthetic aperture radar (InSAR) time-series analyses have been frequently applied to measure the time-series of small and quasi-steady displacements in wide areas. Large efforts in the methodological developments have been made to pursue higher temporal and spatial resolutions by using frequently acquired SAR images and detecting more pixels that exhibit phase stability. While such a high resolution is indispensable for tracking displacements of man-made and other small-scale structures, it is not necessarily needed and can be unnecessarily computer-intensive for measuring the crustal deformation associated with active faults and volcanic activities. I apply a simple and efficient method to measure the deformation around the Alpine Fault in the South Island of New Zealand, and the Philippine Fault in the Leyte Island. I use a small-baseline subset (SBAS) analysis approach (Berardino, et al., 2002). Generally, the more we average the pixel values, the more coherent the signals are. Considering that, for the deformation around active faults, the spatial resolution can be as coarse as a few hundred meters, we can severely 'multi-look' the interferograms. The two applied cases in this study benefited from this approach; I could obtain the mean velocity maps on practically the entire area without discarding decorrelated areas. The signals could have been only partially obtained by standard persistent scatterer or single-look small-baseline approaches that are much more computer-intensive. In order to further increase the signal detection capability, it is sometimes effective to introduce a processing algorithm adapted to the signal of interest. In an InSAR time-series processing, one usually needs to set the reference point because interferograms are all relative measurements. It is difficult, however, to fix the reference point when one aims to measure long-wavelength deformation signals that span the whole analysis area. This problem can be

  19. Seismic imaging of deformation zones associated with normal fault-related folding

    NASA Astrophysics Data System (ADS)

    Lapadat, Alexandru; Imber, Jonathan; Iacopini, David; Hobbs, Richard

    2016-04-01

    Folds associated with normal faulting, which are mainly the result of fault propagation and linkage of normal fault segments, can exhibit complex deformation patterns, with multiple synthetic splay faults, reverse faults and small antithetic Riedel structures accommodating flexure of the beds. Their identification is critical in evaluating connectivity of potential hydrocarbon reservoirs and sealing capacity of faults. Previous research showed that seismic attributes can be successfully used to image complex structures and deformation distribution in submarine thrust folds. We use seismic trace and coherency attributes, a combination of instantaneous phase, tensor discontinuity and semblance attributes to identify deformation structures at the limit of seismic resolution, which accommodate seismic scale folding associated with normal faulting from Inner Moray Firth Basin, offshore Scotland. We identify synthetic splay faults and reverse faults adjacent to the master normal faults, which are localized in areas with highest fold amplitudes. This zone of small scale faulting is the widest in areas with highest fault throw / fold amplitude, or where a bend is present in the main fault surface. We also explore the possibility that changes in elastic properties of the rocks due to deformation can contribute to amplitude reductions in the fault damage zones. We analyse a pre-stack time-migrated 3D seismic data-set, where seismic reflections corresponding to a regionally-continuous and homogeneous carbonate layer display a positive correlation between strain distribution and amplitude variations adjacent to the faults. Seismic amplitude values are homogeneously distributed within the undeformed area of the footwall, with a minimum deviation from a mean amplitude value calculated for each seismic line. Meanwhile, the amplitude dimming zone is more pronounced (negative deviation increases) and widens within the relay zone, where sub-seismic scale faults, which accommodate

  20. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  1. The northwest trending north Boquerón Bay-Punta Montalva Fault Zone; A through going active fault system in southwestern Puerto Rico

    USGS Publications Warehouse

    Roig‐Silva, Coral Marie; Asencio, Eugenio; Joyce, James

    2013-01-01

    The North Boquerón Bay–Punta Montalva fault zone has been mapped crossing the Lajas Valley in southwest Puerto Rico. Identification of the fault was based upon detailed analysis of geophysical data, satellite images, and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (local magnitude greater than 5.0) with numerous locally felt earthquakes. Focal mechanism solutions suggest strain partitioning with predominantly east–west left-lateral displacements with small normal faults striking mostly toward the northeast. Northeast-trending fractures and normal faults can be found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, an east–west-trending 30-km-long fault-controlled depression. Areas of preferred erosion within the alluvial fan trend toward the west-northwest parallel to the onland projection of the North Boquerón Bay fault. The North Boquerón Bay fault aligns with the Punta Montalva fault southeast of the Lajas Valley. Both faults show strong southward tilting of Miocene strata. On the western end, the Northern Boquerón Bay fault is covered with flat-lying Holocene sediments, whereas at the southern end the Punta Montalva fault shows left-lateral displacement of stream drainage on the order of a few hundred meters.

  2. Active faults in the Kashmir Valley

    NASA Astrophysics Data System (ADS)

    Shah, A.

    2012-04-01

    The risk of earthquake is ever increasing in mountains along with rapid growth of population and urbanization. Over half a million people died in the last decade due to earthquakes. The devastations of Sumatra and Thai coasts in 2004, of Kashmir and New Orleans in 2005, of SW Java in 2006, of Sumatra again in 2007, W Sichuan and Myanmar in 2008, of Haiti in 2010, Japan, New Zealand and Turkey in 2011, brought enormous damage. The primary step in this regard could be to establish an earthquake risk model. The Kashmir valley is a NW-SE trending oval-shaped inter-mountain basin. A number of low magnitude earthquakes have recently been reported from the border and few inside the Kashmir valley. A number of active reverse faults were identified in this valley using remote sensing images and active geomorphic features. NE dipping reverse faults uplifted the young alluvial fan at the SW side. An active tectonic environment has been created by these reverse faults; sediment filled streams at NE, and uplifted quaternary deposits at SW. These resulted in an overall tilting of the entire Kashmir valley towards NE. Dating of displaced deposits is required to estimate the total convergence along these faults. Broadly, these faults are because of the convergence of Indian plate beneath the Eurasian plate.

  3. Laboratory observations of fault strength in response to changes in normal stress

    USGS Publications Warehouse

    Kilgore, Brian D.; Lozos, Julian; Beeler, Nicholas M.; Oglesby, David

    2012-01-01

    Changes in fault normal stress can either inhibit or promote rupture propagation, depending on the fault geometry and on how fault shear strength varies in response to the normal stress change. A better understanding of this dependence will lead to improved earthquake simulation techniques, and ultimately, improved earthquake hazard mitigation efforts. We present the results of new laboratory experiments investigating the effects of step changes in fault normal stress on the fault shear strength during sliding, using bare Westerly granite samples, with roughened sliding surfaces, in a double direct shear apparatus. Previous experimental studies examining the shear strength following a step change in the normal stress produce contradictory results: a set of double direct shear experiments indicates that the shear strength of a fault responds immediately, and then is followed by a prolonged slip-dependent response, while a set of shock loading experiments indicates that there is no immediate component, and the response is purely gradual and slip-dependent. In our new, high-resolution experiments, we observe that the acoustic transmissivity and dilatancy of simulated faults in our tests respond immediately to changes in the normal stress, consistent with the interpretations of previous investigations, and verify an immediate increase in the area of contact between the roughened sliding surfaces as normal stress increases. However, the shear strength of the fault does not immediately increase, indicating that the new area of contact between the rough fault surfaces does not appear preloaded with any shear resistance or strength. Additional slip is required for the fault to achieve a new shear strength appropriate for its new loading conditions, consistent with previous observations made during shock loading.

  4. Late Quaternary Normal Faulting and Hanging Wall Basin Evolution of the Southwestern Rift Margin from Gravity and Geology, B.C.S., MX and Exploring the Influence of Text-Figure Format on Introductory Geology Learning

    ERIC Educational Resources Information Center

    Busch, Melanie M. D.

    2011-01-01

    An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely…

  5. Normal-fault development in two-phase experimental models of shortening followed by extension and comparison to natural examples

    NASA Astrophysics Data System (ADS)

    Warrell, K. F.; Withjack, M. O.; Schlische, R. W.

    2014-12-01

    Field- and seismic-reflection-based studies have documented the influence of pre-existing thrust faults on normal-fault development during subsequent extension. Published experimental (analog) models of shortening followed by extension with dry sand as the modeling medium show limited extensional reactivation of moderate-angle thrust faults (dipping > 40º). These dry sand models provide insight into the influence of pre-existing thrusts on normal-fault development, but these models have not reactivated low-angle (< 35º) thrust faults as seen in nature. New experimental (analog) models, using wet clay over silicone polymer to simulate brittle upper crust over ductile lower crust, suggest that low-angle thrust faults from an older shortening phase can reactivate as normal faults. In two-phase models of shortening followed by extension, normal faults nucleate above pre-existing thrust faults and likely link with thrusts at depth to create listric faults, movement on which produces rollover folds. Faults grow and link more rapidly in two-phase than in single-phase (extension-only) models. Fewer faults with higher displacements form in two-phase models, likely because, for a given displacement magnitude, a low-angle normal fault accommodates more horizontal extension than a high-angle normal fault. The resulting rift basins are wider and shallower than those forming along high-angle normal faults. Features in these models are similar to natural examples. Seismic-reflection profiles from the outer Hebrides, offshore Scotland, show listric faults partially reactivating pre-existing thrust faults with a rollover fold in the hanging wall; in crystalline basement, the thrust is reactivated, and in overlying sedimentary strata, a new, high-angle normal fault forms. Profiles from the Chignecto subbasin of the Fundy basin, offshore Canada, show full reactivation of thrust faults as low-angle normal faults where crystalline basement rocks make up the footwall.

  6. Exhumation history of an active fault to constrain a fault-based seismic hazard scenario: the Pizzalto fault (central Apennines, Italy) example.

    NASA Astrophysics Data System (ADS)

    Tesson, Jim; Pace, Bruno; Benedetti, Lucilla; Visini, Francesco; Delli Rocioli, Mattia; Didier, Bourles; Karim, keddadouche; Gorges, Aumaitre

    2016-04-01

    A prerequisite to constrain fault-based and time-dependent earthquake rupture forecast models is to acquire data on the past large earthquake frequency on an individual seismogenic source and to compare all the recorded occurrences in the active fault-system. We investigated the Holocene seismic history of the Pizzalto normal fault, a 13 km long fault segment belonging to the Pizzalto-Rotella-Aremogna fault system in the Apennines (Italy). We collected 44 samples on the Holocene exhumed Pizzalto fault plane and analyzed their 36Cl and rare earth elements content. Conjointly used, the 36Cl and REE concentrations show that at least 6 events have exhumed 4.4 m of the fault scarp between 3 and 1 ka BP, the slip per event ranging from 0.3 to 1.2 m. No major events have been detected over the last 1 ka. The Rotella-Aremogna-Pizzalto fault system has a clustered earthquake behaviour with a mean recurrence time of 1.2 ka and a low to moderate probability (ranging from 4% to 26%) of earthquake occurrence over the next 50 years. We observed similarities between seismic histories of several faults belonging to two adjacent fault systems. This could again attest that non-random processes occurring in the release of the strain accumulated on faults, commonly referred to as fault interactions and leading to apparent synchronization. If these processes were determined as being the main parameter controlling the occurrence of earthquakes, it would be crucial to take them into account in seismic hazard models.

  7. Quantifying Coseismic Normal Fault Rupture at the Seafloor: The 2004 Les Saintes Earthquake (Mw 6.3) Along the Roseau Fault (French Antilles)

    NASA Astrophysics Data System (ADS)

    Escartin, J.; Leclerc, F.; Cannat, M.; Petersen, S.; Augustin, N.; Bezos, A.; Bonnemains, D.; Chavagnac, V.; Choi, Y.; Godard, M.; Haaga, K.; Hamelin, C.; Ildefonse, B.; Jamieson, J. W.; John, B. E.; Leleu, T.; Massot-Campos, M.; Mevel, C.; Nomikou, P.; Olive, J. A. L.; Paquet, M.; Rommevaux, C.; Rothenbeck, M.; Steinführer, A.; Tominaga, M.; Triebe, L.; Garcia, R.; Gracias, N.; Feuillet, N.; Deplus, C.

    2014-12-01

    Direct observations of coseismic fault displacement and rupture-related features are essential to understand seismic cycles, to quantify seismic hazard, and to constrain rupture dynamics. They are also needed to trace the paleoseismic history of active faults. Such observations in submarine environments are practically absent, but critical to assess associated tsunami hazard. The ODEMAR cruise studied a ~10 km section of the Roseau Fault (RF) off Les Saintes Islands (Guadeloupe, French Lesser Antilles), a normal fault that generated a Mw 6.3 earthquake in 2004 that triggered a tsunami (<3.5 m of run-up). Microbathymetric data and video observations conducted with the autonomous underwater vehicle ABYSS (GEOMAR) and the remotely operated vehicle VICTOR (IFREMER) allow us to document recent fault-related deformation features. First, the RF hangingwall shows an indurated and ubiquitous rippled sediment layer, locally covered by recent, unconsolidated sediments reworked by currents. Seafloor photomosaics show the indurated layer disrupted by extensional cracks (up to few m long, several 10s of cm wide, ~30 cm deep) along >1 km and by the RF scarp base, that are certainly very young as they are not covered by unconsolidated sediments. Second, video imagery reveals well-preserved, subvertical and polished fault planes exposed at the RF scarp base. Videomosacing and video derived 3D terrain models of a fault outcrop (~12 m long, ~5 m high) reveal on the fault plane a thin, continuous line of unconsolidated sediment sub-parallel to and 10s' of cm above the fault/sediment contact. The line represents the paleo-fault/sediment contact prior to a very recent displacement event, as strong currents in the area would otherwise have washed out the sediment. The fault surface above this line is rougher than that below it. Based on the apparent young age of these features, and given the recurrence time of seismic events along the RF (hundreds to a few thousands of years for Mw 6

  8. Does normal fault propagation and linkage depend on climate and surface processes?

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Huismans, Ritske S.; Cowie, Patience

    2015-04-01

    Initiation and linkage of normal fault segments is a fundamental aspect of tectonics in extensional settings. Despite that, the factors controlling the structural and topographic expression of individual normal faults are still not well resolved. Here, we investigate the impact of surface processes, including both erosion and deposition, on both the dynamics of normal faults and the linkage structure between several propagating individual normal fault segments. We use a fully-coupled 3D model which is based on the landscape evolution model CASCADE and the 3D tectonics code FANTOM. We present results of numerical simulations designed to study the response of viscous-plastic crustal materials subjected to extension and to surface processes. The model uses a constant depth frictional-plastic to viscous transition interface, which can be interpreted as a system at the conductive limit for the crust. This model set-up naturally favors the emergence of low-angle normal faults consistent with a rolling hinge behavior. We focus our study on the evolution in time and space of both the tectonic structures and the surface morphology of the normal fault segments for varying surface process efficiency. At first order, we show that the dynamic lateral propagation of a single normal fault is dictated not only by its rheological properties but also by the efficiency of erosion and sedimentation acting on its surface, which in turn depends on the amount of precipitation. In particular, we demonstrate that increasing the efficiency of fluvial erosion, increases the efficiency of strain localisation on only one shear zone, resulting in a halfgraben like structure. Our results also indicate that the linkage type between two separate normal faults is controlled by both fault offset and erosion efficiency. This illustrates the strong coupling between tectonic and surface processes, and demonstrates that surface processes, by enhancing localization of deformation, have a strong control

  9. Identification of recently active faults and folds in Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Marliyani, G. I.; Arrowsmith, R.; Helmi, H.

    2013-12-01

    We analyze the spatial pattern of active deformation in Java, Indonesia with the aim of characterizing the deformation of the upper plate of the subduction zone in this region. The lack of detailed neotectonic studies in Java is mostly because of its relatively low rate of deformation in spite of significant historical seismic activity. In addition, the abundance of young volcanic materials as well as the region's high precipitation rate and vegetation cover obscure structural relationships and prevent reliable estimates of offset along active faults as well as exhumed intra-arc faults. Detailed maps of active faults derived from satellite and field-based neotectonic mapping, paleoseismic data, as well as new data on the fault kinematics and estimates of orientation of principal stresses from volcano morphology characterize recently active faults and folds. The structures in West Java are dominated by strike-slip faulting, while Central and northern part of East Java are dominated by folds and thrusting with minor normal faulting. The structures vary in length from hundreds meters to tens of kilometers and mainly trend N75°E, N8°E with some minor N45°W. Our preliminary mapping indicates that there are no large scale continuous structures in Java, and that instead deformation is distributed over wide areas along small structures. We established several paleoseismic sites along some of the identified structures. We excavated two shallow trenches along the Pasuruan fault, a normal fault striking NW-SE that forms a straight 13 km scarp cutting Pleistocene deltaic deposits of the north shore of East Java. The trenches exposed faulted and folded fluvial, alluvial and colluvial strata that record at least four ground-rupturing earthquakes since the Pleistocene. The Pasuruan site proves its potential to provide a paleoseismic record rarely found in Java. Abundant Quaternary volcanoes are emplaced throughout Java; most of the volcanoes show elongation in N100°E and N20

  10. Normal fault growth above pre-existing structures: insights from discrete element modelling

    NASA Astrophysics Data System (ADS)

    Wrona, Thilo; Finch, Emma; Bell, Rebecca; Jackson, Christopher; Gawthorpe, Robert; Phillips, Thomas

    2016-04-01

    In extensional systems, pre-existing structures such as shear zones may affect the growth, geometry and location of normal faults. Recent seismic reflection-based observations from the North Sea suggest that shear zones not only localise deformation in the host rock, but also in the overlying sedimentary succession. While pre-existing weaknesses are known to localise deformation in the host rock, their effect on deformation in the overlying succession is less well understood. Here, we use 3-D discrete element modelling to determine if and how kilometre-scale shear zones affect normal fault growth in the overlying succession. Discrete element models use a large number of interacting particles to describe the dynamic evolution of complex systems. The technique has therefore been applied to describe fault and fracture growth in a variety of geological settings. We model normal faulting by extending a 60×60×30 km crustal rift-basin model including brittle and ductile interactions and gravitation and isostatic forces by 30%. An inclined plane of weakness which represents a pre-existing shear zone is introduced in the lower section of the upper brittle layer at the start of the experiment. The length, width, orientation and dip of the weak zone are systematically varied between experiments to test how these parameters control the geometric and kinematic development of overlying normal fault systems. Consistent with our seismic reflection-based observations, our results show that strain is indeed localised in and above these weak zones. In the lower brittle layer, normal faults nucleate, as expected, within the zone of weakness and control the initiation and propagation of neighbouring faults. Above this, normal faults nucleate throughout the overlying strata where their orientations are strongly influenced by the underlying zone of weakness. These results challenge the notion that overburden normal faults simply form due to reactivation and upwards propagation of pre

  11. Coexistence of low-angle normal and high-angle strike- to oblique-slip faults during Late Miocene mineralization in eastern Elba Island (Italy)

    NASA Astrophysics Data System (ADS)

    Liotta, Domenico; Brogi, Andrea; Meccheri, Marco; Dini, Andrea; Bianco, Caterina; Ruggieri, Giovanni

    2015-10-01

    In this paper we deal with the kinematic and chronological relationships among low angle normal faults and high angle strike- to oblique-slip faults in an exhumed mineralized area, where shear veins and minor associated structures filled with the same mineral assemblage has been interpreted as indicators of coeval fault activities. The study area is located in the eastern Elba Island, where a mineralized late Miocene-early Pliocene low-angle normal fault (Zuccale fault) and high-angle strike- to oblique-slip faults extensively crop out, the latter giving rise to the Capoliveri-Porto Azzurro shear zone. The field study highlighted that: (a) the damage zones of both fault sets are mineralized by syn-kinematic tourmaline, graphite, Fe-oxides and/or Fe-oxyhydroxides shear veins, thus indicating their coeval activity during the hydrothermal event (5.9-5.4 Ma); (b) the Capoliveri-Porto Azzurro shear zone is constituted by a network of fractures, whose geometry and kinematics display the evolution of a NE-trending left-lateral oblique-slip transtensional shear zone; (c) its internal architecture is defined by tourmaline and Fe-oxides and/or Fe-oxyhydroxides mineralized veins, framed in the same kinematic field characterizing the Zuccale fault evolution; for this reason, the Capoliveri-Porto Azzurro shear zone is interpreted as a transfer zone active during the low-angle fault activity; (d) the Capoliveri-Porto Azzurro shear zone played the role of a significant normal fault during the Late Pliocene-Pleistocene, therefore favouring the deepening of the Tyrrhenian Basin with respect to the uplift and exhumation of the mid-crustal rocks of the Elba Island. It is finally argued that the interaction between the low-angle normal fault and the almost vertical shear zone determined an increase of permeability, favouring the mineralizing fluid flow during the hydrothermal stage and, reasonably, the previous emplacement of the Porto Azzurro magmatic body.

  12. Evolution and dynamics of active faults in southeastern Egyptian Western Desert

    NASA Astrophysics Data System (ADS)

    Abdeen, Mamdouh

    2016-07-01

    Remote sensing data processing and analysis together with interpretation of earthquake data that are followed by extensive field studies on some of the prevailing NS and EW striking faults indicate that these faults have an intimate relationship and were formed synchronously as a conjugate Riedel shears. Parallel to the NS and the EW faults open fractures filled with blown sand dominate the area of study. The Quaternary terraces adjacent to these faults are offset by the faults. Kinematic indicators on the NS striking faults indicate major sinistral (left-lateral) strike slip and minor dip-slip (normal) movement. On the other hand, kinematic indicators on the EW striking faults indicate major dextral (right-lateral) strike slip and minor dip-slip (normal) movement. Paleo-stress analysis of the fault striae measured on the NS and EW faults indicate that these faults were formed under NNE-SSW oriented extension. Instrumental earthquake data analysis shows a comparable extension direction to that derived from field measurements of slickenlineation. These observations indicate that the NS- and EW-striking faults are contemporaneous and are related to the Red Sea rifting that is currently active.

  13. Tectonic geomorphology of large normal faults bounding the Cuzco rift basin within the southern Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Byers, C.; Mann, P.

    2015-12-01

    The Cuzco basin forms a 80-wide, relatively flat valley within the High Andes of southern Peru. This larger basin includes the regional capital of Cuzco and the Urubamba Valley, or "Sacred Valley of the Incas" favored by the Incas for its mild climate and broader expanses of less rugged and arable land. The valley is bounded on its northern edge by a 100-km-long and 10-km-wide zone of down-to-the-south systems of normal faults that separate the lower area of the down-dropped plateau of central Peru and the more elevated area of the Eastern Cordillera foldbelt that overthrusts the Amazon lowlands to the east. Previous workers have shown that the normal faults are dipslip with up to 600 m of measured displacements, reflect north-south extension, and have Holocene displacments with some linked to destructive, historical earthquakes. We have constructed topographic and structural cross sections across the entire area to demonstrate the normal fault on a the plateau peneplain. The footwall of the Eastern Cordillera, capped by snowcapped peaks in excess of 6 km, tilts a peneplain surface northward while the hanging wall of the Cuzco basin is radially arched. Erosion is accelerated along the trend of the normal fault zone. As the normal fault zone changes its strike from east-west to more more northwest-southeast, normal displacement decreases and is replaced by a left-lateral strike-slip component.

  14. Fracture systems in normal fault zones crosscutting sedimentary rocks, Northwest German Basin

    NASA Astrophysics Data System (ADS)

    Reyer, Dorothea; Bauer, Johanna F.; Philipp, Sonja L.

    2012-12-01

    Field studies of fracture systems associated with 58 normal fault zones crosscutting sedimentary rocks were performed in the Northwest German Basin. Fracture orientations, densities, apertures and lengths, as well as fault zone structural indices, were analysed separately for fault damage zones and host rocks. The results show a pronounced difference between carbonate and clastic rocks: mainly in carbonate rocks we found presence of clear damage zones, characterized by higher fracture densities than in the host rocks. While the maximum aperture is similar for both units, the percentage of fractures with large apertures is much higher in the damage zones than in the host rocks. Based on laboratory measurements of Young's moduli and field measurements of fracture densities, we calculate effective stiffnesses Ee, that is the Young's moduli of the in situ rock masses, within the normal fault zones. Compared with carbonate rocks, Ee computed for clastic-rock damage zones decreases significantly less due to lower fracture densities. We conclude that normal fault zones in carbonate rocks have more profound effects on enhancing permeability in fluid reservoirs than those in clastic rocks. The results are of great importance for modelling the hydromechanical behaviour of normal fault zones in subsurface fluid reservoirs.

  15. Active fault segments as potential earthquake sources: Inferences from integrated geophysical mapping of the Magadi fault system, southern Kenya Rift

    NASA Astrophysics Data System (ADS)

    Kuria, Z. N.; Woldai, T.; van der Meer, F. D.; Barongo, J. O.

    2010-06-01

    Southern Kenya Rift has been known as a region of high geodynamic activity expressed by recent volcanism, geothermal activity and high rate of seismicity. The active faults that host these activities have not been investigated to determine their subsurface geometry, faulting intensity and constituents (fluids, sediments) for proper characterization of tectonic rift extension. Two different models of extension direction (E-W to ESE-WNW and NW-SE) have been proposed. However, they were based on limited field data and lacked subsurface investigations. In this research, we delineated active fault zones from ASTER image draped on ASTER DEM, together with relocated earthquakes. Subsequently, we combined field geologic mapping, electrical resistivity, ground magnetic traverses and aeromagnetic data to investigate the subsurface character of the active faults. Our results from structural studies identified four fault sets of different age and deformational styles, namely: normal N-S; dextral NW-SE; strike slip ENE-WSW; and sinistral NE-SW. The previous studies did not recognize the existence of the sinistral oblique slip NE-SW trending faults which were created under an E-W extension to counterbalance the NW-SE faults. The E-W extension has also been confirmed from focal mechanism solutions of the swarm earthquakes, which are located where all the four fault sets intersect. Our findings therefore, bridge the existing gap in opinion on neo-tectonic extension of the rift suggested by the earlier authors. Our results from resistivity survey show that the southern faults are in filled with fluid (0.05 and 0.2 Ωm), whereas fault zones to the north contain high resistivity (55-75 Ωm) material. The ground magnetic survey results have revealed faulting activity within active fault zones that do not contain fluids. In addition, the 2D inversion of the four aero-magnetic profiles (209 km long) revealed: major vertical to sub vertical faults (dipping 75-85° east or west); an

  16. Seismic slip on an upper-plate normal fault during a large subduction megathrust rupture

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen P.; Rietbrock, Andreas

    2016-04-01

    Quantification of stress accumulation and release during subduction zone seismic cycles requires an understanding of the distribution of fault slip during earthquakes. Reconstructions of slip are typically constrained to a single, known fault plane. Yet, slip has been shown to occur on multiple faults within the subducting plate owing to stress triggering, resulting in phenomena such as earthquake doublets. However, rapid stress triggering from the plate interface to faults in the overriding plate has not been documented before. We have analysed seismic data from the magnitude 7.1 Araucania earthquake that occurred in the Chilean subduction zone in January 2011. We find that the earthquake, which was reported as a single event in global moment tensor solutions, was instead composed of two ruptures on two separate faults. We use 3-D full waveform simulations to better constrain the centroid of the second rupture. Within 12 s, a thrust earthquake (Mw 6.8) on the plate interface triggered a second large rupture on a normal fault 30 km away in the overriding plate (Mw 6.7). We define this set of events as a 'closely spaced doublet' (CSD). This configuration of partitioned rupture is consistent with normal-faulting mechanisms in the ensuing aftershock sequence. We conclude that plate interface rupture can trigger almost instantaneous slip in the overriding plate of a subduction zone. This shallow upper-plate rupture may be masked from teleseismic data, posing a challenge for real-time tsunami warning systems.

  17. Fault Segmentation and its Implication to the Evaluation of Future Earthquakes from Active Faults in Japan

    NASA Astrophysics Data System (ADS)

    Awata, Y.; Yoshioka, T.

    2005-12-01

    Segmentation of active faults is essential for the evaluation both of past and future faulting using geologic data from paleoseismological sites. A behavioral segment is defined as the smallest segment of fault having a characteristic history of faulting. More over, we have to estimate the earthquake segments that can be consist of multiple faulting along a system of behavioral segments. Active fault strands in Japan are segmented into behavioral segments based on fault discontinuity of 2-3 km and larger (Active Fault Res. Group, GSJ, 2000), large bend of fault strand and paleoseismicity. 431 behavioral segments, >= 10 km in length and >= 0.1 m/ky in long-term slip-rate, are identified from a database of active faults in Japan, that is constructed at AFRC, GSJ/AIST. The length of the segments is averaged 21 km and approximately 70 km in maximum. Only 8 segments are exceed 45 km in length. These lengths are very similar to those of historical surface ruptures not only in Japan since 1891 Nobi earthquake, but also in other regions having different tectonic setting. According to the scaling law between fault length and amount of displacement of behavioral segment, a maximum length of ca. 70 km can estimate a slip of ca. 14 m. This amount of slip is as large as world largest slip occurred during the 1931 Fuyun earthquake of M 8, 1999 Chichi earthquake of M 7.4 and the 2001 Central Kunlun earthquake of M 7.9 in East Asia. Recent geological and seismological studies on large earthquakes have revealed that multiple-rupturing is very common during large earthquakes. Therefore, evaluation of simultaneous faulting along a system of active faults is indispensable for the estimation of earthquake size. A Matsuda's (1990) idea of "seismogenic faults", that is divided or grouped based on the geometric discontinuity of 5 km, may useful for the best estimation of earthquake segment. The Japanese behavioral segments are grouped into "seismogenic faults", each consists of about 2

  18. Mechanical Effects of Normal Faulting Along the Eastern Escarpment of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Martel, S. J.; Logan, J. M.; Stock, G. M.

    2013-12-01

    Here we test whether the regional near-surface stress field in the Sierra Nevada, California, and the near-surface fracturing that heavily influences the Sierran landscape are a mechanical response to normal faulting along its eastern escarpment. A compilation of existing near-surface stress measurements for the central Sierra Nevada, together with three new measurements, shows the most compressive horizontal stresses are 3-21 MPa, consistent with the widespread distribution of sheeting joints (near-surface fractures subparallel to the ground surface). In contrast, a new stress measurement at Aeolian Buttes in the Mono Basin, east of the range front fault system, reveals a horizontal principal tension of 0.014 MPa, consistent with the abundant vertical joints there. To evaluate mechanical effects of normal faulting, we modeled both normal faults and grabens in three ways: (1) dislocations of specified slip in an elastic half-space, (2) frictionless sliding surfaces in an elastic half-space; and (3) faults in thin elastic beams resting on an inviscid fluid. The different mechanical models predict concave upward flexure and widespread near-surface compressive stresses in the Sierra Nevada that surpass the measurements even for as little as 1 km of normal slip along the eastern escarpment, which exhibits 1-3 km of structural and topographic relief. The models also predict concave downward flexure of the bedrock floors and horizontal near-surface tensile stresses east of the escarpment. The thin-beam models account best for the topographic relief of the eastern escarpment and the measured stresses given current best estimates for the rheology of the Sierran lithosphere. Our findings collectively indicate that the regional near-surface stress field and the widespread near-surface fracturing directly reflect the mechanical response to normal faulting along the eastern escarpment. These results have broad scientific and engineering implications for slope stability

  19. High-resolution imagery of active faulting offshore Al Hoceima, Northern Morocco

    NASA Astrophysics Data System (ADS)

    d'Acremont, E.; Gutscher, M.-A.; Rabaute, A.; Mercier de Lépinay, B.; Lafosse, M.; Poort, J.; Ammar, A.; Tahayt, A.; Le Roy, P.; Smit, J.; Do Couto, D.; Cancouët, R.; Prunier, C.; Ercilla, G.; Gorini, C.

    2014-09-01

    Two recent destructive earthquakes in 1994 and 2004 near Al Hoceima highlight that the northern Moroccan margin is one of the most seismically active regions of the Western Mediterranean area. Despite onshore geodetic, seismological and tectonic field studies, the onshore-offshore location and extent of the main active faults remain poorly constrained. Offshore Al Hoceima, high-resolution seismic reflection and swath-bathymetry have been recently acquired during the Marlboro-2 cruise. These data at shallow water depth, close to the coast, allow us to describe the location, continuity and geometry of three active faults bounding the offshore Nekor basin. The well-expressed normal-left-lateral onshore Trougout fault can be followed offshore during several kilometers with a N171°E ± 3° trend. Westward, the Bousekkour-Aghbal normal-left-lateral onshore fault is expressed offshore with a N020°E ± 4° trending fault. The N030°E ± 2° Bokkoya fault corresponds to the western boundary of the Plio-Quaternary offshore Nekor basin in the Al Hoceima bay and seems to define an en échelon tectonic pattern with the Bousekkour-Aghbal fault. We propose that these three faults are part of the complex transtensional system between the Nekor fault and the Al-Idrissi fault zone. Our characterization of the offshore expression of active faulting in the Al Hoceima region is consistent with the geometry and nature of the active fault planes deduced from onshore geomorphological and morphotectonic analyses, as well as seismological, geodetic and geodynamic data.

  20. Cataclastic Rocks Associated With Extreme Crustal Extension, Southern Basin and Range: Evidence for Paleoseismicity Along Low-Angle Normal Faults?

    NASA Astrophysics Data System (ADS)

    Campbell-Stone, E.; John, B.; Stunitz, H.; Heilbronner, R.; Goyette, J.

    2008-12-01

    The denuded Cenozoic detachment fault system exposed in the Sacramento and Chemehuevi mountains area (SE California) provides evidence for the evolution of a regional, low-angle normal fault system. The Chemehuevi-Sacramento detachment fault accommodated at least 18 km of NE-SW directed extension (up to 100%) within the upper and middle crust, between 24 and 12 Ma. In the Sacramento Mountains the fault system comprises a single detachment fault surrounding a domed footwall of syntectonic and Proterozoic crystalline rocks. In contrast, the Chemehuevi Mountains preserve a stacked sequence of anastomosing, northeast-dipping low-angle normal faults that discordantly cut heterogeneous Proterozoic and Mesozoic quartzofeldspathic basement. Geographic patterns of Ar/Ar and FT cooling ages from the Chemehuevi footwall provide a basis for interpreting the unroofing history of the domed footwall through mineral closure temperatures between ~550-490°C and ~110°C. At the onset of extension ~23 Ma, granitic rocks exposed in the SW and NE areas of the footwall were at ~100°C and >400°C respectively, separated by a distance of ~23 km in the known slip direction. This gradual increase in temperature with depth is attributed to the gentle warping of an originally subhorizontal isothermal surface, and constrains the exposed part of the detachment fault to an initial regional dip of less than 30°. Fault rock type and the mineral deformation mechanisms associated with movement on the Chemehuevi- Sacramento detachment fault suggest that both faults were initiated and moved within the brittle and semi- brittle, seismogenic regime. Fault rocks produced by slip include incoherent gouge, breccia, rocks of the cataclasite series, and rare protomylonite and pseudotachylite. Fault rock thickness varies from less than 1 m to more than 200 m; those associated with small displacement detachments are characterized by microfracturing over broad regions (up to 200 m thick), with evidence for

  1. Numerical reconstruction of Late-Cenosoic evolution of normal-fault scarps in Baikal Rift Zone

    NASA Astrophysics Data System (ADS)

    Byzov, Leonid; San'kov, Vladimir

    2014-05-01

    Numerical landscape development modeling has recently become a popular tool in geo-logic and geomorphic investigations. We employed this technique to reconstruct Late-Cenosoic evolution of Baikal Rift Zone mountains. The objects of research were Barguzin Range and Svyatoy Nos Upland. These structures are formed under conditions of crustal extension and bounded by active normal faults. In our experiments we used instruments, engineered by Greg Tucker (University of Colo-rado) - CHILD (Channel-Hillslope Integrated Landscape Development) and 'Bedrock Fault Scarp'. First program allowed constructing the complex landscape model considering tectonic uplift, fluvial and hillslope processes; second program is used for more accurate simulating of triangular facet evolution. In general, our experiments consisted in testing of tectonic parameters, and climatic char-acteristic, erosion and diffusion properties, hydraulic geometry were practically constant except for some special runs. Numerous experiments, with various scenarios of development, showed that Barguzin range and Svyatoy Nos Upland has many common features. These structures characterized by internal differentiation, which appear in height and shape of slopes. At the same time, individual segments of these objects are very similar - this conclusion refers to most developing parts, with pronounced facets and V-shaped valleys. Accordingly modelling, these landscapes are in a steady state and are undergoing a uplift with rate 0,4 mm/yr since Early Pliocene (this solution accords with AFT-dating). Lower segments of Barguzin Range and Svyatoy Nos Upland also have some general fea-tures, but the reasons of such similarity probably are different. In particular, southern segment of Svyatoy Nos Upland, which characterized by relative high slope with very weak incision, may be formed as result very rapid fault movement or catastrophic landslide. On the other hand, a lower segment of Barguzin Range (Ulun segment, for example

  2. Evaluation of fault-normal/fault-parallel directions rotated ground motions for response history analysis of an instrumented six-story building

    USGS Publications Warehouse

    Kalkan, Erol; Kwong, Neal S.

    2012-01-01

    According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  3. Quaternary Geology and Surface Faulting Hazard: Active and Capable Faults in Central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.

    2015-12-01

    The 2009 L'Aquila earthquake (Mw 6.1), in central Italy, raised the issue of surface faulting hazard in Italy, since large urban areas were affected by surface displacement along the causative structure, the Paganica fault. Since then, guidelines for microzonation were drew up that take into consideration the problem of surface faulting in Italy, and laying the bases for future regulations about related hazard, similarly to other countries (e.g. USA). More specific guidelines on the management of areas affected by active and capable faults (i.e. able to produce surface faulting) are going to be released by National Department of Civil Protection; these would define zonation of areas affected by active and capable faults, with prescriptions for land use planning. As such, the guidelines arise the problem of the time interval and general operational criteria to asses fault capability for the Italian territory. As for the chronology, the review of the international literature and regulatory allowed Galadini et al. (2012) to propose different time intervals depending on the ongoing tectonic regime - compressive or extensional - which encompass the Quaternary. As for the operational criteria, the detailed analysis of the large amount of works dealing with active faulting in Italy shows that investigations exclusively based on surface morphological features (e.g. fault planes exposition) or on indirect investigations (geophysical data), are not sufficient or even unreliable to define the presence of an active and capable fault; instead, more accurate geological information on the Quaternary space-time evolution of the areas affected by such tectonic structures is needed. A test area for which active and capable faults can be first mapped based on such a classical but still effective methodological approach can be the central Apennines. Reference Galadini F., Falcucci E., Galli P., Giaccio B., Gori S., Messina P., Moro M., Saroli M., Scardia G., Sposato A. (2012). Time

  4. Annual Variation of Seismicity due to Surface Loads in Normal Fault Systems in Southern Tibet

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Luo, Y.; Li, Y.; Wang, X.; Zhang, J.

    2014-12-01

    It had been found that there are seasonal variations of seismicity related to surface hydrology at Main Himalaya Thrust (MHT) fault. In this work, we analyzed the historical micro-earthquakes recorded by China Digital Seismograph Network (CSDN) in normal faulting systems in southern Tibet, to test whether such a phenomenon exist here and to figure out the possible modulation mechanism. There are several N-S striking normal fault systems (e.g. Yadong-Gulu, Shenza-Dingjie rifts) across the southern Tibetan plateau, which are supposed to accommodate the crust extension induced by Indo-Eurasia collision. The quake catalog covers the time span of 2008-2014. All quake events are relocated using the double-differencing method. The catalog was then declustered using CLUSTER2000 (http://earthquake.usgs.gov/research/software/). The declustered catalog was then averaged for one-month period. The monthly catalog shows that the number of earthquake is maximum during the winter months (from January to March), although the maximum values do not agree for individual years (Fig. 1). Such a variation is similar to that found at MHT. Contrary to the situation at MHT (thrust fault), we found it might be explained directly by surface mass redistributions. The contemporary continuous GPS observations confirm that Tibetan plateau crust moves up and down periodically and reaches its lowest position in summer under the surface hydrological load. According to the Coulomb failure criterion (S=τ-μ(σn-pf) , where S is Coulomb Stress, σn is normal stress, τ is shear stress), an increase of mass load in summer in Tibet will cause an increase in normal stress at the (gently dipping) fault plane and accordingly a decrease in Coulomb stress, which thus inhibits the occurrence of quakes on those normal fault planes.

  5. Late Quaternary tectonic activity and paleoseismicity of the Eastern Messinia Fault Zone, SW Peloponessus (Messinia, Greece).

    NASA Astrophysics Data System (ADS)

    Valkaniotis, Sotirios; Betzelou, Konstantina; Zygouri, Vassiliki; Koukouvelas, Ioannis; Ganas, Athanassios

    2015-04-01

    The southwestern part of Peloponnesus, Messinia and Laconia, is an area of significant tectonic activity situated near the Hellenic trench. Most of the deformation in this area is accommodated by the Eastern Messinia Fault Zone, bordering the western part of Taygetos Mt range and the west coast of Mani peninsula. The Eastern Messinia Fault Zone (EMFZ) is a complex system of primarily normal faults dipping westwards with a strike of NNW-SSE to N-S direction attaining a total length of more than 100 km from the northern Messinia plain in the north to the southern part of Mani peninsula in the south. The continuity of the EMFZ is disrupted by overlapping faults and relay ramp structures. The central part of the EMFZ, from the town of Oichalia to the city of Kalamata, was investigated by detailed field mapping of fault structures and post-alpine sediment formations together with re-evaluation of historical and modern seismicity. Several fault segments with lengths of 6 to 10 km were mapped, defined and evaluated according to their state of activity and age. Analysis of fault striation measurements along fault planes of the fault zone shows a present regime of WSW-ENE extension, in accordance with focal mechanisms from modern seismicity. Known faults like the Katsareika and Verga faults near the city of Kalamata are interpreted as older-generation faults that are re-activated (e.g. the 1986 Ms 6.0 Kalamata earthquake on Verga Fault) as part of a system of distributed deformation. New fault segments, some of them previously unmapped like the Asprohoma fault to the west of Kalamata, and offshore faults like Kitries and Kourtissa, are being assigned to the EMFZ. Moreover, a paleoseismological trench was excavated in the northern part of Pidima fault segment, one of the most prominent active segments of the central part of the EMFZ, in order to examine the paleoearthquake record of the fault system. A significant number of historical and instrumental earthquakes in the area

  6. The influence of normal fault on initial state of stress in rock mass

    NASA Astrophysics Data System (ADS)

    Tajduś, Antoni; Cała, Marek; Tajduś, Krzysztof

    2016-03-01

    Determination of original state of stress in rock mass is a very difficult task for rock mechanics. Yet, original state of stress in rock mass has fundamental influence on secondary state of stress, which occurs in the vicinity of mining headings. This, in turn, is the cause of the occurrence of a number of mining hazards, i.e., seismic events, rock bursts, gas and rock outbursts, falls of roof. From experience, it is known that original state of stress depends a lot on tectonic disturbances, i.e., faults and folds. In the area of faults, a great number of seismic events occur, often of high energies. These seismic events, in many cases, are the cause of rock bursts and damage to the constructions located inside the rock mass and on the surface of the ground. To estimate the influence of fault existence on the disturbance of original state of stress in rock mass, numerical calculations were done by means of Finite Element Method. In the calculations, it was tried to determine the influence of different factors on state of stress, which occurs in the vicinity of a normal fault, i.e., the influence of normal fault inclination, deformability of rock mass, values of friction coefficient on the fault contact. Critical value of friction coefficient was also determined, when mutual dislocation of rock mass part separated by a fault is impossible. The obtained results enabled formulation of a number of conclusions, which are important in the context of seismic events and rock bursts in the area of faults.

  7. Probable slow slips in the mid-crust of Hsinchu, northwestern Taiwan: Temporal correlation between normal faulting earthquakes and relative uplift

    NASA Astrophysics Data System (ADS)

    Pu, H. C.; Lin, C. H.

    2016-05-01

    To investigate the seismic behavior of crustal deformation, we deployed a dense seismic network at the Hsinchu area of northwestern Taiwan during the period between 2004 and 2006. Based on abundant local micro-earthquakes recorded at this seismic network, we have successfully determined 274 focal mechanisms among ∼1300 seismic events. It is very interesting to see that the dominant energy of both seismic strike-slip and normal faulting mechanisms repeatedly alternated with each other within two years. Also, the strike-slip and normal faulting earthquakes were largely accompanied with the surface slipping along N60°E and uplifting obtained from the continuous GPS data, individually. Those phenomena were probably resulted by the slow uplifts at the mid-crust beneath the northwestern Taiwan area. As the deep slow uplift was active below 10 km in depth along either the boundary fault or blind fault, the push of the uplifting material would simultaneously produce both of the normal faulting earthquakes in the shallow depths (0-10 km) and the slight surface uplifting. As the deep slow uplift was stop, instead, the strike-slip faulting earthquakes would be dominated as usual due to strongly horizontal plate convergence in the Taiwan. Since the normal faulting earthquakes repeatedly dominated in every 6 or 7 months between 2004 and 2006, it may conclude that slow slip events in the mid crust were frequent to release accumulated tectonic stress in the Hsinchu area.

  8. Continuity, segmentation and faulting type of active fault zones of the 2016 Kumamoto earthquake inferred from analyses of a gravity gradient tensor

    NASA Astrophysics Data System (ADS)

    Matsumoto, Nayuta; Yoshihiro, Hiramatsu; Sawada, Akihiro

    2016-10-01

    We analyze Bouguer anomalies in/around the focal region of the 2016 Kumamoto earthquake to examine features, such as continuity, segmentation and faulting type, of the active fault zones related to the earthquake. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features. First horizontal and vertical derivatives, as well as a normalized total horizontal derivative, characterize well the continuous subsurface fault structure along the Futagawa fault zone. On the other hand, the Hinagu fault zone is not clearly detected by these derivatives, especially in the case of the Takano-Shirahata segment, suggesting a difference of cumulative vertical displacement between the two fault zones. The normalized total horizontal derivative and the dimensionality index indicate a discontinuity of the subsurface structure of the Hinagu fault zone, that is, a segment boundary between the Takano-Shirahata and the Hinagu segments. The aftershock distribution does not extend beyond this segment boundary. In other words, this segment boundary controls the southern end of the rupture area of the foreshock. We also recognize normal fault structures dipping to the northwest in some areas of the fault zones from estimations of dip angles.[Figure not available: see fulltext.

  9. Magnetic fabric of Pleistocene continental clays from the hanging-wall of a low-angle normal fault (Alto Tiberina Fault, Italy)

    NASA Astrophysics Data System (ADS)

    Pucci, S.; Maffione, M.; Sagnotti, L.; Speranza, F.

    2010-12-01

    Anisotropy of magnetic susceptibility (AMS) represents a valuable strain proxy able to detect subtle strain effects in very weakly deformed sediments, since the AMS ellipsoid compares to the strain ellipsoid (Hrouda 1982; Borradaile 1988; Tarling & Hrouda 1993; Borradaile & Henry, 1997; Borradaile & Jackson, 2004). During the last decades a large number of AMS studies have documented that in compressive tectonic setting the maximum susceptibility axes (i.e. the magnetic lineations) are parallel to fold axes (and thrust faults) and local bedding strikes, while in extensional regimes (Sagnotti et al., 1994; Mattei et al., 1999; Cifelli et al., 2004) they are perpendicular to the normal faults and, thus, parallel to the strata dip directions. One of the most striking active structures of the northern Apennines is represented by the Alto Tiberina Fault (ATF), a NE-dipping low-angle normal fault bounding the High Tiber Valley. The ATF is largely documented to represent a primary detachment of the Plio-Quaternary extensional tectonics affecting the Apennine belt. The long-lasting activity of the ATF produced 5 km of total displacement and up to 1200-m-thick basin infill of syntectonic, sandy-clayey continental succession. Thus, the AMS analysis of the sediments lying above the ATF represents a unique opportunity to document the strain field affecting the hanging-wall of low-angle normal faults. We collected 133 oriented cores at 13 different localities within the High Tiber Valley, and the AMS was measured in the paleomagnetic laboratory at the INGV (Rome, Italy) with a spinner Multi-Function Kappabridge. The AMS ellipsoids and their parameters resulted well defined at 12 sites. Most of the sites show a predominantly sedimentary fabric, while prolate ellipsoids at two sites are suggestive of a pervasive tectonic deformation. The magnetic lineation is well-developed and has a prevailing NNE direction. At seven sites the magnetic lineations are sub-parallel to local bed

  10. How Faults Shape the Earth.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1992-01-01

    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  11. Height of faceted spurs, a proxy for determining long-term throw rates on normal faults: Evidence from the North Baikal Rift System, Siberia

    NASA Astrophysics Data System (ADS)

    Petit, Carole; Meyer, Bertrand; Gunnell, Yanni; Jolivet, Marc; San'kov, Vladimir; Strak, Vincent; Gonga-Saholiariliva, Nahossio

    2010-05-01

    We present new results on the long-term throw rates of active normal faults in the North Baikal Rift (NBR), eastern Siberia, based on a statistical analysis of triangular faceted scarps. Faceted spurs or triangular facets are morphologic features frequently observed along normal fault scarps, and result from the progressive denudation and incision of the footwall during fault activity. Fault-bounded ridges in the NBR display such typical morphologies with several contiguous facets separated by fault-perpendicular catchments. Over a range of 20 fault segments analyzed, triangular facet heights vary from ~200 to >900 m. As fault scarps have been developing under similar long-term climatic conditions, we infer that the scatter in mean facet height arises from long-term differences in fault throw rate. We compare the morphology of NBR facets with results obtained in a previously published numerical model of facet growth, which predicts that the mean height of triangular facets is proportional to the fault throw rate. Using facet height as an input, model results provide estimates of the long-term fault throw rates in the NBR. These vary between 0.2 and 1.2 mm/yr. The throw rates are then compared with the cumulated throw, which has been constrained by geophysical and stratigraphic data in the basins. This provides an estimate of the age of fault and basin initiation. We show that the modern stage of basin development started circa 3 Myr ago, except for the North Baikal basin (~ 8 Ma). Our results also suggest that a proportion of the observed throw is inherited from an earlier tectonic stage.

  12. Normal faulting in the Simav graben of western Turkey reassessed with calibrated earthquake relocations

    NASA Astrophysics Data System (ADS)

    Karasözen, Ezgi; Nissen, Edwin; Bergman, Eric A.; Johnson, Kendra L.; Walters, Richard J.

    2016-06-01

    Western Turkey has a long history of large earthquakes, but the responsible faults are poorly characterized. Here we reassess the past half century of instrumental earthquakes in the Simav-Gediz region, starting with the 19 May 2011 Simav earthquake (Mw 5.9), which we image using interferometric synthetic aperture radar and regional and teleseismic waveforms. This event ruptured a steep, planar normal fault centered at 7-9 km depth but failed to break the surface. However, relocated main shock and aftershock hypocenters occurred beneath the main slip plane at 10-22 km depth, implying rupture initiation in areas of low coseismic slip. These calibrated modern earthquakes provide the impetus to relocate and reassess older instrumental events in the region. Aftershocks of the 1970 Gediz earthquake (Mw 7.1) form a narrow band, inconsistent with source models that invoke low-angle detachment faulting, and may include events triggered dynamically by the unilateral main shock rupture. Epicenters of the 1969 Demirci earthquakes (Mw 5.9, 6.0) are more consistent with slip on the south dipping Akdağ fault than the larger, north dipping Simav fault. A counterintuitive aspect of recent seismicity across our study area is that the largest event (Mw 7.1) occurred in an area of slower extension and indistinct surface faulting, yet ruptured the surface, while recent earthquakes in the well-defined and more rapidly extending Simav graben are smaller (Mw <6.0) and failed to produce surface breaks. Though our study area bounds a major metamorphic core complex, there is no evidence for involvement of low-angle normal faulting in any of the recent large earthquakes.

  13. Weakness and mechanical anisotropy of phyllosilicate-rich cataclasites developed after mylonites of a low-angle normal fault (Simplon Line, Western Alps)

    NASA Astrophysics Data System (ADS)

    Bolognesi, Francesca; Bistacchi, Andrea

    2016-02-01

    The Simplon Fault Zone is a late-collisional low-angle normal fault (LANF) of the Western Alps. The hanging wall shows evidence of brittle deformation only, while the footwall is characterized by a c. 1 km-thick shear zone (the Simplon Fault Zone), which continuously evolved, during exhumation and cooling, from amphibolite facies conditions to brittle-cataclastic deformations. Due to progressive localization of the active section of the shear zone, the thermal-rheological evolution of the footwall resulted in a layered structure, with higher temperature mylonites preserved at the periphery of the shear zone, and cataclasites occurring at the core (indicated as the Simplon Line). In order to investigate the weakness of the Simplon Line, we studied the evolution of brittle/cataclastic fault rocks, from nucleation to the most mature ones. Cataclasites are superposed on greenschist facies mylonites, and their nucleation can be studied at the periphery of the brittle fault zone. This is characterized by fractures, micro-faults and foliated ultracataclasite seams that develop along the mylonitic SCC‧ fabric, exploiting the weak phases mainly represented by muscovite and chlorite. Approaching the fault core, both the thickness and frequency of cataclasite horizons increase, and, as their thickness increases, they become less and less foliated. The fault core itself is represented by a thicker non-foliated cataclasite horizon. No Andersonian faults or fractures can be found in the footwall damage zone and core zone, whilst they are present in the hanging wall and in the footwall further from the fault. Applying a stress model based on slip tendency, we have been able to calculate that the friction coefficient of the Simplon Line cataclasites was <0.25, hence this fault zone is absolutely weak. In contrast with other fault zones, the weakening effect of fluids was of secondary importance, since they accessed the fault zone only after an interconnected fracture network

  14. Illuminating Northern California’s Active Faults

    USGS Publications Warehouse

    Prentice, Carol S.; Crosby, Christopher J.; Whitehill, Caroline S.; Arrowsmith, J. Ramon; Furlong, Kevin P.; Philips, David A.

    2009-01-01

    Newly acquired light detection and ranging (lidar) topographic data provide a powerful community resource for the study of landforms associated with the plate boundary faults of northern California (Figure 1). In the spring of 2007, GeoEarthScope, a component of the EarthScope Facility construction project funded by the U.S. National Science Foundation, acquired approximately 2000 square kilometers of airborne lidar topographic data along major active fault zones of northern California. These data are now freely available in point cloud (x, y, z coordinate data for every laser return), digital elevation model (DEM), and KMZ (zipped Keyhole Markup Language, for use in Google EarthTM and other similar software) formats through the GEON OpenTopography Portal (http://www.OpenTopography.org/data). Importantly, vegetation can be digitally removed from lidar data, producing high-resolution images (0.5- or 1.0-meter DEMs) of the ground surface beneath forested regions that reveal landforms typically obscured by vegetation canopy (Figure 2)

  15. A review of recently active faults in Taiwan

    USGS Publications Warehouse

    Bonilla, Manuel G.

    1975-01-01

    Six faults associated with five large earthquakes produced surface displacements ranging from 1 to 3 m in the period 1906 through 1951. Four of the ruptures occurred in the western coastal plain and foothills, and two occurred in the Longitudinal Valley of eastern Taiwan. Maps are included showing the locations and dimensions of the displacements. The published geological literature probably would not lead one to infer the existence of a fault along most of the 1906 rupture, except for descriptions of the rupture itself. Over most of its length the 1935 rupture on the Chihhu fault is parallel to but more than 0.5 km from nearby faults shown on geologic maps published in 1969 and 1971; only about 1.5 km of its 15 km length coincides with a mapped fault. The coastal plain part of the Tuntzuchio fault which ruptured in 1935 is apparently not revealed by landforms, and only suggested by other data. Part of the 1946 Hsinhua faulting coincides with a fault identified in the subsurface by seismic work but surface indications of the fault are obscure. The 1951 Meilun faulting occurred along a conspicuous pre-1951 scarp and the 1951 Yuli faulting occurred near or in line with pre-1951 scarps. More than 40 faults which, according to the published literature, have had Pleistocene or later movement are shown on a small-scale map. Most of these faults are in the densely-populated western part of Taiwan. The map and text calls attention to faults that may be active and therefore may be significant in planning important structures. Equivocal evidence suggestive of fault creep was found on the Yuli fault and the Hsinhua fault. Fault creep was not found at several places examined along the 1906 fault trace. Tectonic uplift has occurred in Taiwan in the last 10,000 years and application of eustatic sea level curves to published radiocarbon dates shows that the minimum rate of uplift is considerably different in different parts of the island. Incomplete data indicate that the rate is

  16. Rare normal faulting earthquake induced by subduction megaquake: example from 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Sugito, N.; Echigo, T.; Sato, H.; Suzuki, T.

    2012-04-01

    A month after March 11 gigantic M9.0 Tohoku-oki earthquake, M7.0 intraplate earthquake occurred at a depth of 5 km on April 11 beneath coastal area of near Iwaki city, Fukushima prefecture. Focal mechanism of the mainshock indicates that this earthquake is a normal faulting event. Based on field reconnaissance and LIDAR mapping by Geospatial Information Authority of Japan, we recognized coseismic surface ruptures, presumably associated with the main shock. Coseismic surface ruptures extend NNW for about 11 km in a right-stepping en echelon manner. Geomorphic expressions of these ruptures commonly include WWS-facing normal fault scarps and/or drape fold scarp with open cracks on their crests, on the hanging wall sides of steeply west-dipping normal fault planes subparallel to Cretaceous metamorphic rocks. Highest topographic scarp height is about 2.3 m. In this study we introduce preliminary results of a trenching survey across the coseismic surface ruptures at Shionohira site, to resolve timing of paleoseismic events along the Shionohira fault. Trench excavations were carried out at two sites (Ichinokura and Shionohira sites) in Iwaki, Fukushima. At Shionohira site a 2-m-deep trench was excavated across the coseismic fault scarp emerged on the alluvial plain on the eastern flank of the Abukuma Mountains. On the trench walls we observed pairs of steeply dipping normal faults that deform Neogene to Paleogene conglomerates and unconformably overlying, late Quaternary to Holocene fluvial units. Sense of fault slip observed on the trench walls (large dip-slip with small sinistral component) is consistent with that estimated from coseismic surface ruptures. Fault throw estimated from separation of piercing points on lower Unit I and vertical structural relief on folded upper Unit I is consistent with topographic height of the coseismic fault scarp at the trench site. In contrast, vertical separation of Unit II, unconformably overlain by Unit I, is measured as about 1.5 m

  17. Normal fault thermal regimes and the interpretation of low-temperature thermochronometers

    NASA Astrophysics Data System (ADS)

    Ehlers, Todd A.; Armstrong, Phillip A.; Chapman, David S.

    2001-11-01

    Exhumation rates inferred from thermochronometers are dependent on spatial and temporal variations in temperature. In active extensional mountain belts, the temperature field is complicated by tectonic and surface processes including: (1) lateral heat flow across large, range-bounding normal faults due to the juxtaposition of a cool hanging wall and a relatively warmer footwall, (2) uplift and erosion of the footwall, (3) sedimentation and burial of the hanging wall, (4) lateral heat refraction around low thermal conductivity sediments deposited in the hanging wall basin, and (5) 3D temperature variations due to high-relief topography developed on the footwall. We explore these mechanisms through a series of 2D conductive thermal models designed to investigate the effect of tectonics and topography on apatite fission track (AFT) and (U-Th)/He thermochronometer data. Models were tuned to the geometry and kinematics of the Wasatch Mountains, Utah, USA. The principal parameters in our model are exhumation and burial rates ranging from 0.2 to 5.7 mm per year at the range front and decreasing with distance from the fault, surface morphology taken from USGS digital elevation models, and basin geometries inferred from seismic and gravity surveys. Predicted AFT and (U-Th)/He ages were generated using cooling rate dependent annealing and diffusion kinetic models. Results indicate after 10 million years of exhumation, footwall (U-Th)/He and AFT closure temperature isotherms within 10 km of the fault are advected upward 500 and 1000 m, respectively, from their initial position. The upward advection of isotherms and the 2D nature of the thermal regime can result in erroneous exhumation rates calculated from plots of sample elevation versus age using 1D thermal models. For simulations with a uniform vertical uplift rate and canyon and ridge topography, 1D and 2D exhumation rate differences were 20-70% for (U-Th)/He and ˜10% for AFT data. Samples collected perpendicular to

  18. Active faults of the Baikal depression

    USGS Publications Warehouse

    Levi, K.G.; Miroshnichenko, A.I.; San'kov, V. A.; Babushkin, S.M.; Larkin, G.V.; Badardinov, A.A.; Wong, H.K.; Colman, S.; Delvaux, D.

    1997-01-01

    The Baikal depression occupies a central position in the system of the basins of the Baikal Rift Zone and corresponds to the nucleus from which the continental lithosphere began to open. For different reasons, the internal structure of the Lake Baikal basin remained unknown for a long time. In this article, we present for the first time a synthesis of the data concerning the structure of the sedimentary section beneath Lake Baikal, which were obtained by complex seismic and structural investigations, conducted mainly from 1989 to 1992. We make a brief description of the most interesting seismic profiles which provide a rough idea of a sedimentary unit structure, present a detailed structural interpretation and show the relationship between active faults in the lake, heat flow anomalies and recent hydrothermalism.

  19. Active oblique ramp faulting in the Southern Tunisian Atlas

    NASA Astrophysics Data System (ADS)

    Saïd, Aymen; Chardon, Dominique; Baby, Patrice; Ouali, Jamel

    2011-03-01

    The Gafsa fault is the longest and most active structure of the fold-and-thrust belt achieving southeastward propagation of the Atlas belt of Eastern North Africa onto the Saharan platform. The Gafsa fault is a 75-km long dextral-oblique basement fault ramp that poses a sizable challenge in earthquake hazard assessment because the post-Paleozoic sedimentary cover is decoupled from its basement above the basement fault. In this study, we combine seismic lines interpretation, tectonic geomorphology and paleoseismological investigations to assess the level of seismic hazard of this fault and evaluate its role in the geodynamic framework of the Central Mediterranean. We show that despite a moderate instrumental and historical seismicity, the fault has produced M ≥ 6 earthquakes with a return period of ca. 500-5000 years during the Late Quaternary. The latest large event having produced a surface rupture on the fault occurred around 8000 yr BP, suggesting an M ≥ 6 earthquake is overdue on the fault. The fault has a minimum reverse component of slip rate of 0.21-0.34 mm/yr over the past 50 Ka. The occurrence of M ≥ 7 paleoearthquakes on the fault may be suspected but not established. Such very strong earthquakes would require transient coseismic linkage of the buried basement fault with the overlying listric fault ramping off the décollement layer. The level of seismic hazard may be underestimated on the Gafsa fault. Indeed, given the geometry of the basement-cover fault system, a number of earthquakes generated in the basement would have led to coseismic surface folding instead of to surface rupture. The Gafsa fault is a major structure accommodating eastward extrusion / spreading of the Atlas belt onto the Saharan and Pelagian plateforms above the retreating Ionian lithospheric slab.

  20. Geological Constraints and Numerical Models of Concave-downward Normal Faulting and Metamorphic Core Complex Formation in Eastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Mann, P.; Taylor, F.; Lavier, L.; van Avendonk, H.

    2003-12-01

    The Owen Stanley fault system (OSFS) is a regional, normal to transpressive plate boundary fault zone that traverses the entire 600 km length of the Papuan Peninsula and has controlled the location and Plio-Pleistocene uplift history of metamorphic core complexes (MCC's) in the Dayman-Suckling massif and on the D'Entrecasteaux Islands. Near the eastern end of the peninsula, the Gwoira fault zone of the OSFZ is well exposed as an exhumed, striated, concave-downward normal fault surface across the Dayman-Suckling MCC. The Gwoira fault plane dips north at an angle of 15° ; megastriations on the fault plane indicate dipslip displacement; earthquake focal mechanisms constrain active, north-south dipslip extension; GPS measurements constrain extension rates of 19 mm/yr. Pliocene-age marine sedimentary rocks entrained as a coherent, 170 km2 sheet on the fault plane constrain its post-Pliocene dipslip motion. The 25-32 km length of the exhumed Gwoira fault plane exposed across the Dayman-Suckling MCC provides a minimum estimate for offset along the normal fault. The footwall block is characterized by high topography up to 2-4 km at the crest of the Papuan Peninsula, Holocene coral reefs uplifted at rates of 4.3 mm/yr, and flights of terraces along deeply incised river valleys. The hanging wall block is occupied by a low relief coastal plain and a half-graben structure underlying Goodenough Bay (water depth: 1 km; 1.2 km of Miocene-recent sedimentary fill). In order to understand the relationship between this fault and now subsiding MCC's located 80 km north of the Gwoira fault zone in the D'Entrecasteaux Islands, we present three numerical models that simulate three possible physical processes previously proposed for this area or for analogous areas: 1) extension controlled and focussed by crustal diapirism of a lower density and viscous lower crust; modeling predicts a crustal diapir ascending from a mid-crustal, low density layer; 2) mantle exhumation is controlled by a

  1. Architectural evolution of the Nojima fault and identification of the activated slip layer by Kobe earthquake

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidemi; Omura, Kentaro; Matsuda, Tatsuo; Ikeda, Ryuji; Kobayashi, Kenta; Murakami, Masaki; Shimada, Koji

    2007-07-01

    Evolutionary history of Nojima Fault zone is clarified by comprehensive examinations of petrological, geophysical, and geochemical characterizations on a fault zone in deep-drilled core penetrating the Nojima Fault. On the basis of the results, we reconstruct a whole depth profile of the architecture of the Nojima Fault and identify the primal slip layer activated by 1995 Kobe earthquake. The deepest part (8- to 12-km depth) of the fault zone is composed of thin slip layers of pseudotachylite (5 to 10 mm thick each, 10 cm in total). Middle depth (4- to 8-km depth) of the fault zone is composed of fault core (6 to 10 m thick), surrounded by thick (100 m thick) damage zone, characterized by zeolite precipitation. The shallow part of the fault zone (1- to 4-km depth) is composed of distributed narrow shear zones, which are characterized by combination of thin (0.5 cm thick each, 10 cm in total) ultracataclasite layers at the core of shear zones, surrounded by thicker (1 to 3 m thick) damage zones associated with carbonate precipitation. An extremely thin ultracataclasite layer (7 mm thick), activated by the 1995 Kobe earthquake, is clearly identified from numerous past slip layers, overprinting one of the shear zones, as evidenced by conspicuous geological and geophysical anomalies. The Nojima Fault zone was 10 to 100 times thicker at middle depth than that of shallower and deeper depths. The thickening would be explained as a combination of physical and chemical effects as follows. (1) Thickening of "fault core" at middle depth would be attributed to normal stress dependence on thickness of the shear zone and (2) an extreme thickening of "damage zone" in middle depth of the crust would result from the weakening of the fault zone due to super hydrostatic fluid pressure at middle depths. The high fluid pressure would result from faster sealing with low-temperature carbonate at the shallower fault zone.

  2. Normal faulting origin for the Cordillera and Outer Rook Rings of Orientale Basin, the Moon

    NASA Astrophysics Data System (ADS)

    Nahm, Amanda L.; Öhman, Teemu; Kring, David A.

    2013-02-01

    Orientale Basin is the youngest and best-preserved large impact basin on the Moon with at least four topographic rings contained within the topographic rim marked by the Cordillera Ring (diameter = 930 km). Its well-exposed interior makes this basin a prime location to study basin formation processes. Forward mechanical modeling of basin ring topography shows that the outermost rings, the Cordillera Ring (CR) and Outer Rook Ring (ORR) are large-scale normal faults with displacements (D) of 0.8 to 5.2 km, fault dip angles (δ) of 54° to 80°, and vertical depth of faulting (T) between 19 and 37 km with most faults having T = 30 ± 5 km. These faults and the distribution of maria inside the basin suggest that the transient crater, important for determining many impact-related characteristics such as projectile size, was contained entirely within the ORR and likely had a diameter between 500 and 550 km. The difference in crustal thickness between the western and eastern sides of the basin is not a result of the basin-forming event, which indicates the formation of the hemispheric crustal thickness asymmetry was likely before the formation of Orientale Basin 3.68 to 3.85 Ga.

  3. Supra-salt normal fault growth during the rise and fall of a diapir: Perspectives from 3D seismic reflection data, Norwegian North Sea

    NASA Astrophysics Data System (ADS)

    Tvedt, Anette B. M.; Rotevatn, Atle; Jackson, Christopher A.-L.

    2016-10-01

    Normal faulting and the deep subsurface flow of salt are key processes controlling the structural development of many salt-bearing sedimentary basins. However, our detailed understanding of the spatial and temporal relationship between normal faulting and salt movement is poor due to a lack of natural examples constraining their geometric and kinematic relationship in three-dimensions. To improve our understanding of these processes, we here use 3D seismic reflection and borehole data from the Egersund Basin, offshore Norway, to determine the structure and growth of a normal fault array formed during the birth, growth and decay of an array of salt structures. We show that the fault array and salt structures developed in response to: (i) Late Triassic-to-Middle Jurassic extension, which involved thick-skinned, sub-salt and thin-skinned supra-salt faulting with the latter driving reactive diapirism; (ii) Early Cretaceous extensional collapse of the walls; and (iii) Jurassic-to-Neogene, active and passive diapirism, which was at least partly coeval with and occurred along-strike from areas of reactive diapirism and wall collapse. Our study supports physical model predictions, showcasing a three-dimensional example of how protracted, multiphase salt diapirism can influence the structure and growth of normal fault arrays.

  4. Interactions between active faulting, volcanism, and sedimentary processes at an island arc: Insights from Les Saintes channel, Lesser Antilles arc

    NASA Astrophysics Data System (ADS)

    Leclerc, F.; Feuillet, N.; Deplus, C.

    2016-07-01

    New high-resolution marine geophysical data allow to characterize a large normal fault system in the Lesser Antilles arc, and to investigate the interactions between active faulting, volcanism, sedimentary, and mass-wasting processes. Les Saintes fault system is composed of several normal faults that form a 30 km wide half-graben accommodating NE-SW extension. It is bounded by the Roseau fault, responsible for the destructive Mw 6.3 21 November 2004 earthquake. The Roseau fault has been identified from the island of Basse-Terre to Dominica. It is thus 40 km long, and it could generate Mw 7 earthquakes in the future. Several submarine volcanoes are also recognized. We show that the fault system initiated after the main volcanic construction and subsequently controls the emission of volcanic products. The system propagates southward through damage zones. At the tip of the damage zones, several volcanic cones were recently emplaced probably due to fissures opening in an area of stress increase. A two-way interaction is observed between active faulting and sedimentary processes. The faults control the development of the main turbiditic system made of kilometer-wide canyons, as well as the location of sediment ponding. In turn, erosion and sedimentation prevent scarp growth at the seafloor. Faulting also enhances mass-wasting processes. Since its initiation, the fault system has consequently modified the morphologic evolution of the arc through perturbation of the sedimentary processes and localization of the more recent volcanic activity.

  5. Pseudotachylyte: Reading the Record of Paleoseismicity in Low-Angle Normal Faults

    NASA Astrophysics Data System (ADS)

    Smith, D. M.; Goodwin, L. B.; Feinberg, J. M.; Ellis, A. P.

    2012-12-01

    Whether or not low-angle normal faults (LANFs, dipping <30°) can produce earthquakes is hotly debated. Pseudotachylyte - rapidly quenched frictional melt generated during seismic failure - has been noted in several LANF sites but not extensively studied. We recently documented significant pseudotachylyte exposures in both the South Mountains and Catalina-Rincon metamorphic core complexes of Arizona. In both field areas, pseudotachylyte is located below detachment faults, where it is best exposed in fractured areas beneath chlorite breccia zones. Generation veins dip 7-24°, are locally parallel to host rock foliations, and range from 1 mm to 3 cm thick. Where subvertical exposures are available, generation and injection veins either form networks up to 1 m thick or are stacked, such that multiple veins spaced < 1m apart are exposed in zones 2 to 3 m thick. Outcrops do not permit mapping of pseudotachylytes' full lateral extent, but do allow a minimum length of 50 m oblique to strike to be estimated. The magnitude of pseudotachylyte exposure in these core complexes implies significant seismicity. A key question is whether the generation surfaces were in their present orientations when they failed seismically. To answer this, we are applying a fault paleogeometry test. The cornerstone of this test is a comparison of two paleomagnetic vectors. The first will be determined through standard paleomagnetic analyses of oriented pseudotachylyte samples. The second will represent the vector expected if no LANF rotation has occurred and will be determined through correlation of a sample's 40Ar/39Ar age with its coeval magnetic pole location. Any discrepancy between the vectors will be interpreted to represent rotation of the fault since seismicity. Anderson-Byerlee compatible slip will be supported by discrepancies requiring a seismically active dip >30°. An active dip of <30° suggests that additional factors have reduced effective stress and/or frictional resistance to

  6. Evidence of multi-stage faulting by clay mineral analysis: Example in a normal fault zone affecting arkosic sandstones (Annot sandstones)

    NASA Astrophysics Data System (ADS)

    Buatier, Martine D.; Cavailhes, Thibault; Charpentier, Delphine; Lerat, Jérémy; Sizun, Jean Pierre; Labaume, Pierre; Gout, Claude

    2015-06-01

    Fault affecting silicoclastic sediments are commonly enriched in clay minerals. Clays are sensitive to fluid-rock interactions and deformation mechanisms; in this paper, they are used as proxy for fault activity and behavior. The present study focuses on clay mineral assemblages from the Point Vert normal fault zone located in the Annot sandstones, a Priabonian-Rupelian turbidite succession of the Alpine foredeep in SE France. In this area, the Annot sandstones were buried around 6-8 km below the front of Alpine nappes soon after their deposition and exhumed during the middle-late Miocene. The fault affects arkosic sandstone beds alternating with pelitic layers, and displays throw of about thirty meters. The fault core zone comprises intensely foliated sandstones bounding a corridor of gouge about 20 cm thick. The foliated sandstones display clay concentration along S-C structures characterized by dissolution of K-feldspar and their replacement by mica, associated with quartz pressure solution, intense microfracturation and quartz vein precipitation. The gouge is formed by a clayey matrix containing fragments of foliated sandstones and pelites. However, a detailed petrographical investigation suggests complex polyphase deformation processes. Optical and SEM observations show that the clay minerals fraction of all studied rocks (pelites and sandstones from the damage and core zones of the fault) is dominated by white micas and chlorite. These minerals have two different origins: detrital and newly-formed. Detrital micas are identified by their larger shape and their chemical composition with a lower Fe-Mg content than the newly-formed white micas. In the foliated sandstones, newly-formed white micas are concentrated along S-C structures or replace K-feldspar. Both types of newly formed micas display the same chemical composition confirmed microstructural observations suggesting that they formed in the same conditions. They have the following structural formulas: Na0

  7. Evolution of Ground Deformation Zone on Normal Fault Using Distinct Element Method and Centrifuge Modeling

    NASA Astrophysics Data System (ADS)

    Lyu, Jhen-Yi; Chang, Yu-Yi; Lee, Chung-Jung; Lin, Ming-Lang

    2015-04-01

    The depth and character of the overlying earth deposit contribute to fault rupture path. For cohesive soil, for instance, clay, tension cracks on the ground happen during faulting, limiting the propagation of fracture in soil mass. The cracks propagate downwards while the fracture induced by initial displacement of faulting propagates upwards. The connection of cracks and fracture will form a plane that is related to tri-shear zone. However the mechanism of the connection has not been discussed thoroughly. By obtaining the evolution of ground deformation zone we can understand mechanism of fault propagation and crack-fracture connection. A series of centrifuge tests and numerical modeling are conducted at this study with acceleration conditions of 40g, 50g, 80g and dip angle of 60° on normal faulting. The model is with total overburden thick, H, 0.2m, vertical displacement of moving wall, ∆H. At the beginning, hanging wall and the left-boundary wall moves along the plane of fault. When ∆H/H equals to 25%, both of the walls stop moving. We then can calculate the width of ground deformation in different depth of each model by a logic method. Models of this study consist of two different type overburden material to simulate sand and clay in situ. Different from finite element method, with application of distinct element method the mechanism of fault propagation in soil mass and the development of ground deformation zone can be observed directly in numerical analysis of faulting. The information of force and deformation in the numerical model are also easier to be obtained than centrifuge modeling. Therefore, we take the results of centrifuge modeling as the field outcrop then modify the micro-parameter of numerical analysis to make sure both of them have the same attitude. The results show that in centrifuge modeling narrower ground deformation zone appears in clayey overburden model as that of sandy overburden model is wider on footwall. Increasing the strength

  8. Weakening mechanisms along Low-Angle Normal Faults in pelagic limestones (Southern Apennine, Italy): insights from microstructural analysis

    NASA Astrophysics Data System (ADS)

    Novellino, R.; Prosser, G.; Viti, C.; Spiess, R.; Agosta, F.; Tavarnelli, E.; Bucci, F.

    2013-12-01

    Low-Angle Normal Faults (LANFs) consist of shallowly-dipping extensional tectonic structures, whose origin relates to a mechanical paradox currently debated by a number of researches. The easy slip along these faults suggests a strain-weakening process active during fault nucleation and growth. Weakening mechanisms may include: i) presence of weak minerals; ii) high fluid pressure which, causing a drastic reduction of the effective stress, and iii) dynamic fault weakening during coseismic rupture. In the Basilicata portion of Southern Apennines, LANFs have been extensively studied by geological mapping and field structural analysis. Differently, a detailed microstructural observations are not hitherto available in the geological literature. For this reason, in this note, we summarize the results of microstructural analysis carried out on fault rock samples collected from a well-exposed mesoscopic LANFs. The present work is aimed at analyzing the weakening mechanisms that took place along the study faults. The incipient study LANFs are characterized by a narrow and discontinuous damage zone surrounding a very thin fault core that include a discrete slip-surface. The offset is in the range of tens of centimeters to few meters. At the microscope scale, the sampled rocks reveal the coexistence of different structural features such as: i) pervasive shape preferred orientation defined by elongated grains of calcite, producing a distinct foliation; ii) Crush Microbreccia (CM), formed of angular clasts locally in contact with each other; iii) several Ultracataclastic Veins (UV), departing from the slip-surfaces and cutting across the slip-zone. TEM investigation reveal the presence of ultrafine to calcite-nanoparticles (<200 nm) aggregate within UV, and iv) decarbonation features, where calcite grains exhibit irregular boundaries, vacuum and vesicles, most likely related to degassing processes. Thermal decomposition results in formation of a calcite aggregate made of

  9. Stress Triggering of Conjugate Normal Faulting: Late Aftershocks of the 1983 M 7.3 Borah Peak, Idaho Earthquake

    SciTech Connect

    Suzette J. Payne; James Zollweg; David Rodgers

    2004-06-01

    The 1984 Devil Canyon sequence was a late aftershock sequence of the 28 October 1983 Ms 7.3 Borah Peak, Idaho, earthquake. The sequence began on 22 August 1984 with the ML 5.8 Devil Canyon earthquake, which nucleated at a depth of 12.8 ± 0.7 km between the surface traces of two normal faults, the Challis segment of the Lost River fault and the Lone Pine fault. Two hundred thirty-seven aftershocks were recorded by a temporary array during a 3-week period. Their focal mechanisms and hypocenter distribution define a cross-sectional "V" pattern whose base corresponds to the ML 5.8 event, whose tips correspond to the exposed fault traces, and whose sides define two planar fault zones oriented N25°W, 75°SW (Challis fault segment) and N39°W, 58°NE (Lone Pine fault). This pattern describes a graben bounded by conjugate normal faults. Temporal aspects of the Devil Canyon sequence provide strong evidence that slip on conjugate normal faults occurs sequentially. Aftershocks occurred primarily along the Challis segment until the occurrence of the 8 September 1984 ML 5.0 earthquake along the Lone Pine fault, after which aftershocks primarily occurred along this fault. These observations are consistent with worldwide seismologic and geologic observations and with physical and numerical models of conjugate normal faulting. Aftershocks of the Devil Canyon sequence occurred immediately northwest of the ML 5.8 Devils Canyon earthquake, which itself was immediately northwest of the Thousand Springs segment of the Lost River fault (the fault that slipped in association with the Ms 7.3 Borah Peak earthquake). Coulomb failure stress analysis indicates that stress increases resulting from both the Borah Peak mainshock and Devil Canyon ML 5.8 earthquake were sufficient to induce failure on the Lone Pine fault. These space–time patterns suggest that conjugate normal faults may transfer stress or accommodate stress changes at the terminations of major normal faults in the Basin and

  10. Syn-orogenic extensional pulses within the contractional history of thrust wedges. The Val di Lima low-angle normal fault case study, Northern Apennines, Italy.

    NASA Astrophysics Data System (ADS)

    Clemenzi, Luca; Molli, Giancarlo; Storti, Fabrizio; Muchez, Philippe; Swennen, Rudy; Torelli, Luigi

    2014-05-01

    overpressures locally influenced active deformation processes and favored shear localization. We propose that the folded low-angle extensional fault system indicates the occurrence of an extensional pulse that affected this sector of the thrust wedge during the orogenic contractional history. In particular, the fault system is considered to be the flat portion of a stair-case extensional fault system developed in the shallower portion of the thrust wedge to compensate for its supercritical taper produced by uplift of the internal zone due to deep-rooted thrusting. Important pulses of wedge extension, similar to the one described here, are likely to occur during the geological history of most thrust wedges, because their long-term evolution is characterized by complex interactions among tectonics, gravitational body forces, and (sub)surface processes. The systems of brittle extensional fault zones, resulting from such extensional pulses, affect fluid circulation through the upper crust by producing articulated networks of hydraulic conduits, barriers, or mixed conduit-barrier systems. In particular, as demonstrated by our results, the effects of extensional fault zones on fluid circulation is twofold: i) they provide effective fluid pathways allowing deep infiltration of surface-derived marine or meteoric water; ii) they can trigger fluid overpressuring, especially in the footwall of shallow-dipping fault segments. Eventually, fluid circulation can exert a strong influence on the mechanical behavior of thrust wedges either by reducing the effective normal stress at depth or triggering the formation of hydrous clay minerals lowering the frictional properties of fault zones.

  11. Results From NICLAKES Survey of Active Faulting Beneath Lake Nicaragua, Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Funk, J.; Mann, P.; McIntosh, K.; Wulf, S.; Dull, R.; Perez, P.; Strauch, W.

    2006-12-01

    In May of 2006 we used a chartered ferry boat to collect 520 km of seismic data, 886 km of 3.5 kHz subbottom profiler data, and 35 cores from Lake Nicaragua. The lake covers an area of 7700 km2 within the active Central American volcanic arc, forms the largest lake in Central America, ranks as the twentieth largest freshwater lake in the world, and has never been previously surveyed or cored in a systematic manner. Two large stratovolcanoes occupy the central part of the lake: Concepcion is presently active, Maderas was last active less than 2000 years ago. Four zones of active faulting and doming of the lake floor were mapped with seismic and 3.5 kHz subbottom profiling. Two of the zones consist of 3-5-km-wide, 20-30-km-long asymmetric rift structures that trend towards the inactive cone of Maderas Volcano in a radial manner. The northeastern rift forms a 20-27-m deep depression on the lake bottom that is controlled by a north-dipping normal fault. The southwestern rift forms a 25-35-m deep depression controlled by a northeast-dipping normal fault. Both depressions contain mound-like features inferred to be hydrothermal deposits. Two zones of active faulting are associated with the active Concepcion stratovolcano. A 600-m-wide and 6-km-long fault bounded horst block extends westward beneath the lake from a promontory on the west side of the volcano. Like the two radial rift features of Maderas, the horst points roughly towards the active caldera of Concepcion. A second north-south zone of active faulting, which also forms a high, extends off the north coast of Concepcion and corresponds to a localized zone of folding and faulting mapped by previous workers and inferred by them to have formed by gravitational spreading of the flank of the volcano. The close spatial relation of these faults to the two volcanic cones in the lake suggests that the mechanism for faulting is a result of either crustal movements related to magma intrusion or gravitational sliding and is

  12. The influence of imposed normal vibrations on the frictional sliding along the fault

    NASA Astrophysics Data System (ADS)

    Karachevtseva, Iuliia; Dyskin, Arcady; Pasternak, Elena

    2016-04-01

    Sliding over discontinuities (faults, fractures) in the stable state is prevented by friction. However, the faults are continuously subjected to variations in normal stress and can produce sliding over initially stable fractures/interfaces. In the Earth's crust the normal oscillations can be produced by tidal stresses or by the seismic waves generated by other seismic events. This is associated with the earthquake triggering and leading to a stick-slip sliding. It is conventionally assumed that the mechanism of stick-slip over geomaterials lies in intermittent change between static and kinetic friction and the rate dependence of the friction coefficient. The formulation of the friction law on geological faults is the key element in the modelling of earthquakes. We investigate the effects of imposed normal vibrations on steady sliding and stick-slip regimes and analyse the dynamics of system with different friction modelling. For this purpose we consider a simple spring-block model introduced by Burridge and Knopoff. The results show that a model exhibits different behaviour in the frictional sliding with constant and nonlinear friction. It is important to note, that a block-spring model can produce oscillations in the velocity of sliding that is the stick-slip like behaviour even when the friction coefficient is constant. The effect of force reduction is observed under the influence of harmonic vertical vibrations. The rate-dependent friction creates more complex pattern of oscillations.

  13. Reconstructing normal fault systems with synextensional lacustrine sediments: Examples from northeast Nevada

    SciTech Connect

    Mueller, K.J. . Dept. of Geology)

    1993-04-01

    The Tertiary history of the Windermere Hills, NE Nevada includes the development of five overprinted extensional fault systems which range from late Eocene to middle Miocene in age. Definition of the age, stratigraphic architecture and sedimentary facies in synextensional half-grabens permits reconstruction of the complex extensional chronology of this area. The earliest Tertiary strata exposed in the region consist of late Eocene calc-alkaline volcanic deposits whose thickness does not change significantly within the study area. This, and recognition that these strata are tilted similar amounts as younger synextensional sediments suggest they are not directly associated with normal faulting. Conglomerate interbedded in the calc-alkaline volcanic sequence is associated with steep-sided volcanic landforms suggesting that late Eocene (39-41 Ma) relief was produced by volcanic processes and not extensional faulting. Early Oligocene and middle Miocene synextensional deposits are differentiated by their wedge-shaped stratigraphic architecture, fault bounded margins, and abrupt thickness and facies variations. Sedimentary facies in these basins are dominated by aggraded lacustrine fan delta deposits which fine abruptly basinward. Age dating of these strata suggest that 1-3 kilometers of sediment were deposited in 2-4 Ma in rapidly subsiding half-grabens. Synextensional sediments are also associated with similarly aged unconformities and paleovalleys in adjacent uplifted blocks. Definition of the timing of basin margin faults hinges on their correct correlation with coarse-grained marginal facies associated with a particular episode of extension. Problems are illustrated in fault bounded half-grabens which contain fine-grained lacustrine sediments in marginal settings.

  14. 3D seismic analysis of gravity-driven and basement influenced normal fault growth in the deepwater Otway Basin, Australia

    NASA Astrophysics Data System (ADS)

    Robson, A. G.; King, R. C.; Holford, S. P.

    2016-08-01

    We use three-dimensional (3D) seismic reflection data to analyse the structural style and growth of a normal fault array located at the present-day shelf-edge break and into the deepwater province of the Otway Basin, southern Australia. The Otway Basin is a Late Jurassic to Cenozoic, rift-to-passive margin basin. The seismic reflection data images a NW-SE (128-308) striking, normal fault array, located within Upper Cretaceous clastic sediments and which consists of ten fault segments. The fault array contains two hard-linked fault assemblages, separated by only 2 km in the dip direction. The gravity-driven, down-dip fault assemblage is entirely contained within the 3D seismic survey, is located over a basement plateau and displays growth commencing and terminating during the Campanian-Maastrichtian, with up to 1.45 km of accumulated throw (vertical displacement). The up-dip normal fault assemblage penetrates deeper than the base of the seismic survey, but is interpreted to be partially linked along strike at depth to major basement-involved normal faults that can be observed on regional 2D seismic lines. This fault assemblage displays growth initiating in the Turonian-Santonian and has accumulated up to 1.74 km of throw. Our detailed analysis of the 3D seismic data constraints post-Cenomanian fault growth of both fault assemblages into four evolutionary stages: [1] Turonian-Santonian basement reactivation during crustal extension between Australia and Antarctica. This either caused the upward propagation of basement-involved normal faults or the nucleation of a vertically isolated normal fault array in shallow cover sediments directly above the reactivated basement-involved faults; [2] continued Campanian-Maastrichtian crustal extension and sediment loading eventually created gravitational instability on the basement plateau, nucleating a second, vertically isolated normal fault array in the cover sediments; [3] eventual hard-linkage of fault segments in both fault

  15. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada

    USGS Publications Warehouse

    Caine, J.S.; Bruhn, R.L.; Forster, C.B.

    2010-01-01

    Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.

  16. Gently dipping normal faults identified with Space Shuttle radar topography data in central Sulawesi, Indonesia, and some implications for fault mechanics

    USGS Publications Warehouse

    Spencer, J.E.

    2011-01-01

    Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.

  17. Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples

    SciTech Connect

    Janssen, C.; Wirth, R.; Wenk, H. -R.; Morales, L.; Naumann, R.; Kienast, M.; Song, S. -R.; Dresen, G.

    2014-08-20

    The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has been observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.

  18. Active faulting and neotectonics in the Baelo Claudia area, Campo de Gibraltar (southern Spain)

    NASA Astrophysics Data System (ADS)

    Grützner, Christoph; Reicherter, Klaus; Hübscher, Christian; Silva, Pablo G.

    2012-07-01

    The Strait of Gibraltar area is part of the western Eurasian-African convergence zone characterized by a complex pattern of deformation, including thrusting and folding and active normal faulting. Generally, the area is of low-seismicity; only some minor earthquakes have been recorded in the last hundred years. Archaeoseismological data evidences earthquake destruction occurring twice during Roman times. A better neotectonic framework and knowledge on the paleostress evolution of the Strait of Gibraltar area is necessary to find the local sources for those events and to establish an understanding of the recent deformation. Paleoseismic evidence for one moderate earthquake event around 6000-5000 BP along the normal Carrizales Fault is described in this paper. Off-shore high-resolution seismic investigations, structural and paleostress data, high-resolution GPR and geoelectrical resistivity measurements, outcrop investigations and trenching studies are discussed. The data reveal that active faulting takes place along N-S trending normal faults. Hence, N-S directed normal faults in the area are claimed as local candidates for moderate earthquake activity. Return periods of moderate earthquakes in the order of at least 2000-2500 years in the study area may have to be taken into account. Structural data, such a paleostress data and joints are presented and a deformation history for the Strait of Gibraltar area in southern Spain is developed in this study.

  19. Analysis of a conjugate normal fault system caused by subsidence and bulge development within the alpine foreland basin in Bavaria

    NASA Astrophysics Data System (ADS)

    von Hartmann, Hartwig; Schumacher, Sandra; Tanner, David C.

    2014-05-01

    The Upper Jurassic carbonate platform of the Bavarian Molasse Basin is one of the main targets for the exploration of hydrogeothermal reservoirs in Germany. A 120 sq km large seismic survey was interpreted to map the fault system that is fundamental for the characterization and evaluation of the reservoir. The carbonate platform shows a complex pattern of faults that strike southwest - northeast and west - east, the latter approximately parallel to the Alps front. Faults within the Tertiary infill are more sparsely distributed and form a series of conjugate normal faults with alternating polarity that run across the whole survey. Within the western part of this fault system the main basement fault and the conjugate faults meet near the top of the carbonate platform, thus forming rotated blocks above the crossing. The analysis of fault juxtapostion diagrams show that throw diminishes up- and downwards on the fault planes of the conjugate normal fault. The basal fault tips are offset by more than hundred meters from the corresponding faults within the carbonate platform. Two tectonic phases can be distinguished: The breakup of the platform due to basement subsidence and the formation of the large conjugate normal faults afterwards. The latter maybe the result of intracontinental plate bending that formed a foreland bulge during the collision of the European and the African plate. Such bulge formation is also known i.e. from the collision of the Indian and the Asian plate. The fault pattern of the Upper Jurassic carbonate platform probably triggered the formation of later faults, but their geometry was caused by a different stress field and different rheologies of the Molasse Basin (compared to the carbonate platform). Consequently the fault members of both systems are offset to each other. The interpretation shows a detailed insight into the formation of a fault system within a foreland molasse basin. The decoupling of the covering Molasse sediments and the basement

  20. Preliminary models of normal fault development in subduction zones: lithospheric strength and outer rise deformation

    NASA Astrophysics Data System (ADS)

    Naliboff, J. B.; Billen, M. I.

    2010-12-01

    A characteristic feature of global subduction zones is normal faulting in the outer rise region, which reflects flexure of the downgoing plate in response to the slab pull force. Variations in the patterns of outer rise normal faulting between different subduction zones likely reflects both the magnitude of flexural induced topography and the strength of the downgoing plate. In particular, the rheology of the uppermost oceanic lithosphere is likely to strongly control the faulting patterns, which have been well documented recently in both the Middle and South American trenches. These recent observations of outer rise faulting provide a unique opportunity to test different rheological models of the oceanic lithosphere using geodynamic numerical experiments. Here, we develop a new approach for modeling deformation in the outer rise and trench regions of downgoing slabs, and discuss preliminary 2-D numerical models examining the relationship between faulting patterns and the rheology of the oceanic lithosphere. To model viscous and brittle deformation within the oceanic lithosphere we use the CIG (Computational Infrastructure for Geodynamics) finite element code Gale, which is designed to solve long-term tectonic problems. In order to resolve deformation features on geologically realistic scales (< 1 km), we model only the portion of the subduction system seaward of the trench. Horizontal and vertical stress boundary conditions on the side walls drive subduction and reflect, respectively, the ridge-push and slab-pull plate-driving forces. The initial viscosity structure of the oceanic lithosphere and underlying asthenosphere follow a composite viscosity law that takes into account both Newtonian and non-Newtonian deformation. The viscosity structure is consequently governed primarily by the strain rate and thermal structure, which follows a half-space cooling model. Modification of the viscosity structure and development of discrete shear zones occurs during yielding

  1. Structural Evidence for Fault Reactivation: the Active Priene-Sazli Fault Zone, Söke-Milet Basin, Western Anatolia

    NASA Astrophysics Data System (ADS)

    Sümer, Ö.; Inci, U.; Sözbilir, H.; Uzel, B.

    2009-04-01

    observations, we suggest different episodes of fault evolution for the PSFZ; (i) first the fault formed as a dextral strike-slip faulting, (ii) then, sense of the direction was sinistral oblique-slip (iii) and finally PSFZ was reactivated during the Quaternary as an approximately pure dip-slip normal fault. Key words: Reactivation, strike-slip fault, active fault, western Anatolia This study is supported by Dokuz Eylül University Research Projects "AFS- 0908.01.06.02" and "BAP-03 KB FEN 047", "BAP- 04 KB FEN 042", "BAP- 07 KB FEN 047".

  2. Post 4 Ma initiation of normal faulting in southern Tibet. Constraints from the Kung Co half graben

    NASA Astrophysics Data System (ADS)

    Mahéo, G.; Leloup, P. H.; Valli, F.; Lacassin, R.; Arnaud, N.; Paquette, J.-L.; Fernandez, A.; Haibing, L.; Farley, K. A.; Tapponnier, P.

    2007-04-01

    The timing of E-W extension of the Tibetan plateau provides a test of mechanical models of the geodynamic evolution of the India-Asia convergence zone. In this work we focus on the Kung Co half graben (Southern Tibet, China), bounded by an active N-S normal fault with a minimum vertical offset of 1600 m. To estimate the onset of normal faulting we combined high and medium temperature (U-Pb, Ar/Ar) and low temperature ((U-Th)/He) thermochronometry of the Kung Co pluton, a two-mica granite of the northern Himalayan granitic belt that outcrop in the footwall of the fault. Biotite and muscovite Ar/Ar ages , are close from each other [˜ 16 Ma ± 0.2 (Ms) and ˜ 15 ± 0.4 Ma (Bt)], which is typical of fast cooling. The zircon and apatite (U-Th)/He ages range from 11.3 to 9.6 Ma and 9.9 to 3.7 Ma respectively. These He ages are indicative of (1) fast initial cooling, from 11.3 to ˜ 9 Ma, gradually decreasing with time and (2) a high geothermal gradient (˜ 400 °C/km), close to the surface at ˜ 10 Ma. The Kung Co pluton was emplaced at about 22 Ma (U-Pb on zircon) at less than 10 km depth and 520-545 °C. Subsequent to its shallow emplacement, the pluton underwent fast thermal re-equilibration ending around 7.5 Ma, followed by a period of slow cooling caused either by the end of the thermal re-equilibration or by very slow exhumation (0.02-0.03 mm/yr) from ˜ 7.5 Ma to at least 4 Ma. In either case the data suggest that the exhumation rate increased after 4 Ma. We infer this increase to be related to the initiation of the Kung Co normal fault. A critical examination of previously published data show that most ˜ N-S Tibetan normal faults may have formed less than 5 Ma ago rather than in the Miocene as assumed by several authors. Such a young age implies that E-W extension is not related to the Neogene South Tibetan magmatism (25 to 8 Ma). Consequently, models relating E-W extension to magmatism, such as convective removal of the lower lithosphere, may be inappropriate

  3. Geochemistry, mineralization, structure, and permeability of a normal-fault zone, Casino mine, Alligator Ridge district, north central Nevada

    NASA Astrophysics Data System (ADS)

    Hammond, K. Jill; Evans, James P.

    2003-05-01

    We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as

  4. A 665 year record of Coulomb stress changes on active faults in the central Apennines, Italy.

    NASA Astrophysics Data System (ADS)

    Wedmore, L. N. J.; Faure Walker, J.; Roberts, G.; McCaffrey, K. J. W.; Sammonds, P. R.

    2014-12-01

    Active extension in the central Apennines is accommodated on numerous 20-30km long normal faults. Over multiple earthquake cycles fault slip is controlled by viscous flow in narrow shear zones, which are below the brittle seismogenic crust and are driven by upwelling mantle beneath the central Apennines. However, on short timescales, there is evidence for clustering along strike on the north eastern set of faults in the region, with the south western faults comparatively quiet during the period of reliable historical earthquake records (since 1349 AD). In contrast, 15±3ka strain rates show no evidence of skewness towards the north eastern faults. This suggests that on short timescales, elastic loading and fault interaction may be controlling the location of earthquakes and the seismic hazard, as opposed to the view that fault activity has permanently migrated from the south west flank of the central Apennines to the north east flank. We used Coulomb stress modelling to test whether the sequence of historical earthquakes can be explained by stress triggering and elastic loading. Palaeoseismic and historical records were used to reconstruct the co-seismic static Coulomb stress changes for 27 earthquakes in central Italy from 1349-2009. 15±3ka throws measured across faults in the area were used as an analogue for the slip distributions, with the slip direction constrained by field measurements of frictional wear striae on exposed bedrock fault scarps. Interseismic loading was modelled using a shear zone rheology below the seismogenic zone of each fault; slip rates measured at the surface were used to control the rate of loading. The sensitivity of the model was explored by iterating varying slip distributions, fault kinematics and earthquake locations. We show that for sequences of clustered earthquakes that occurred on timescales of days to weeks, co-seismic static Coulomb stress transfer can explain the pattern of faulting with stress changes of 0.001-0.1 MPa

  5. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    NASA Astrophysics Data System (ADS)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a

  6. Kinking of the subducting slab by escalator normal faulting beneath the North Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Henrys, Stuart; Reyners, Martin; Pecher, Ingo; Bannister, Stephen; Nishimura, Yuichi; Maslen, Guy

    2006-09-01

    Seismic reflection imaging shows a marked shallow kink at ˜12 km depth in the Pacific plate beneath the central North Island, New Zealand, that coincides with (1) a decrease in the amplitude of the plate boundary reflection, (2) the locus of prominent landward-dipping splay thrust faults in the overlying plate, and (3) the onset of seismogenesis on the subduction interface and within the subducted plate. We propose that the sharp change in the dip of the plate interface is indicative of the downdip transition from stable to unstable slip regimes. Earthquake focal mechanisms suggest the kinking is accomplished through simple shear on reactivated normal faults in the crust of the subducted plate, akin to the down-stepping motion of an escalator. The geological record of uplift in the overlying plate indicates the escalator has been operating for the last 7 m.y.

  7. How the differential load induced by normal fault scarps controls the distribution of monogenic volcanism

    NASA Astrophysics Data System (ADS)

    Maccaferri, F.; Acocella, V.; Rivalta, E.

    2015-09-01

    Understanding shallow magma transfer and the related vent distribution is crucial for volcanic hazard. Here we investigate how the stress induced by topographic scarps linked to normal faults affects the distribution of monogenic volcanoes at divergent plate boundaries. Our numerical models of dyke propagation below a fault scarp show that the dykes tend to propagate toward and erupt on the footwall side. This effect, increasing with the scarp height, is stronger for dykes propagating underneath the hanging wall side and decreases with the distance from the scarp. A comparison to the East African Rift System, Afar and Iceland shows that (1) the inner rift structure, which shapes the topography, controls shallow dyke propagation; (2) differential loading due to mass redistribution affects magma propagation over a broad scale range (100-105 m). Our results find application to any volcanic field with tectonics- or erosion-induced topographic variations and should be considered in any volcanic hazard assessment.

  8. Project DAFNE - Drilling Active Faults in Northern Europe

    NASA Astrophysics Data System (ADS)

    Kukkonen, I. T.; Ask, M. S. V.; Olesen, O.

    2012-04-01

    We are currently developing a new ICDP project 'Drillling Active Faults in Northern Europe' (DAFNE) which aims at investigating, via scientific drilling, the tectonic and structural characteristics of postglacial (PG) faults in northern Fennoscandia, including their hydrogeology and associated deep biosphere [1, 2]. During the last stages of the Weichselian glaciation (ca. 9,000 - 15,000 years B.P.), reduced ice load and glacially affected stress field resulted in active faulting in Fennoscandia with fault scarps up to 160 km long and 30 m high. These postglacial (PG) faults are usually SE dipping, SW-NE oriented thrusts, and represent reactivated, pre-existing crustal discontinuities. Postglacial faulting indicates that the glacio-isostatic compensation is not only a gradual viscoelastic phenomenon, but includes also unexpected violent earthquakes, suggestively larger than other known earthquakes in stable continental regions. The research is anticipated to advance science in neotectonics, hydrogeology and deep biosphere studies, and provide important information for nuclear waste and CO2 disposal, petroleum exploration on the Norwegian continental shelf and studies of mineral resources in PG fault areas. We expect that multidisciplinary research applying shallow and deep drilling of postglacial faults would provide significant scientific results through generating new data and models, namely: (1) Understanding PG fault genesis and controls of their locations; (2) Deep structure and depth extent of PG faults; (3) Textural, mineralogical and physical alteration of rocks in the PG faults; (4) State of stress and estimates of paleostress of PG faults; (5) Hydrogeology, hydrochemistry and hydraulic properties of PG faults; (6) Dating of tectonic reactivation(s) and temporal evolution of tectonic systems hosting PG faults; (7) Existence/non-existence of deep biosphere in PG faults; (8) Data useful for planning radioactive waste disposal in crystalline bedrock; (9) Data

  9. The precipitation of silica gels along seismogenic faults due to sudden fluid pressure drops: an example from the Zuccale low angle normal fault, Italy

    NASA Astrophysics Data System (ADS)

    Holdsworth, R. E.; Smith, S.; Lloyd, G. E.

    2012-04-01

    Based on experimental and some field-based studies several authors have proposed that silica gel (hydrated amorphous silica) layers are generated by frictional slip along seismogenic faults. The precise mechanism(s) of formation have remained somewhat enigmatic, but most studies invoke a mixture of frictional and chemical processes simultaneous with seismogenic slip. In this presentation we describe a new occurrence of ultrafine grained silica fault rocks that are hosted along a number of detachment faults developed within the Zuccale low angle normal fault on the island of Elba, Italy. Based on the geological and microstructural observations, including very detailed EBSD measurements, we propose an alternative mechanism of formation in which the gels precipitate rapidly from supersaturated pore fluids formed due to sudden drops in fluid pressure along faults during or immediately following episodes of seismogenic slip. This mechanism may have widespread application to other examples of fault-hosted silica gels. Furthermore, given the field appearance of these layers (see figure) and the recognition of ultrafine quartz crystallites in thin section, it is possible that similar examples in other natural fault zones may have been mistakenly identified as pseudotachylytes. The implications for fault weakening will also be discussed.

  10. Recognition of an episode of post-collisional normal faulting in North West Pakistan: Constraints from fission-track analysis

    NASA Astrophysics Data System (ADS)

    Khattak, N. U.; Ali, N.; Khan, M. Asif

    2013-03-01

    The Sillai Patti carbonatite has been intruded along a NNE-SSW striking, southward dipping Sillai Patti Fault at the contact of the metasediments with the granitic gneiss. Both, time of emplacement and the sense of movement of the blocks on either side of this fault are under considerable dispute. Fission-track analysis on apatite from five carbonatite samples yielded an emplacement age of 29.3 ± 1.2 Ma. Comparison of the textures and cooling rates indicates that the granitic gneiss on the southern side of the fault has been uplifted at a faster rate than the carbonatite itself located on the northern side. The abrupt jump from lower fission-track ages in the south to higher fission-track ages in the north across the fault has also been noticed. Moreover, a faster total exhumation of 6.67 km during the past 24.4 ± 2.9 Ma for the southern hanging wall of the fault has been noticed based on fission-track analysis of zircon as compared to the slower maximum possible total exhumation of ≤ 1.67 km derived from the fission-track analysis of apatite during the past 29.3 ± 1.2 Ma for the northern footwall. These facts reveal that the Sillai Patti Fault, a southward extension of the Main Mantle Thrust (MMT), showing an apparently thrust sense of movement on local scale at Sillai Patti, has behaved as a normal fault on regional scale further to the north at the contact of the Indian Plate with the Kohistan Island Arc. During this episode of normal faulting the Kohistan Island Arc slid down and to the north along the MMT relative to the Indian Plate. Recognition of an episode of normal faulting during Oligocene on the basis of this study clearly demonstrates that carbonatitic magmatism took place in the region in a post collisional extensional environment along normal fault(s).

  11. First direct observation of coseismic slip and seafloor rupture along a submarine normal fault and implications for fault slip history

    NASA Astrophysics Data System (ADS)

    Escartín, Javier; Leclerc, Frédérique; Olive, Jean-Arthur; Mevel, Catherine; Cannat, Mathilde; Petersen, Sven; Augustin, Nico; Feuillet, Nathalie; Deplus, Christine; Bezos, Antoine; Bonnemains, Diane; Chavagnac, Valérie; Choi, Yujin; Godard, Marguerite; Haaga, Kristian A.; Hamelin, Cédric; Ildefonse, Benoit; Jamieson, John W.; John, Barbara E.; Leleu, Thomas; MacLeod, Christopher J.; Massot-Campos, Miquel; Nomikou, Paraskevi; Paquet, Marine; Rommevaux-Jestin, Céline; Rothenbeck, Marcel; Steinführer, Anja; Tominaga, Masako; Triebe, Lars; Campos, Ricard; Gracias, Nuno; Garcia, Rafael; Andreani, Muriel; Vilaseca, Géraud

    2016-09-01

    Properly assessing the extent and magnitude of fault ruptures associated with large earthquakes is critical for understanding fault behavior and associated hazard. Submarine faults can trigger tsunamis, whose characteristics are defined by the geometry of seafloor displacement, studied primarily through indirect observations (e.g., seismic event parameters, seismic profiles, shipboard bathymetry, coring) rather than direct ones. Using deep-sea vehicles, we identify for the first time a marker of coseismic slip on a submarine fault plane along the Roseau Fault (Lesser Antilles), and measure its vertical displacement of ∼ 0.9 m in situ. We also map recent fissuring and faulting of sediments on the hangingwall, along ∼3 km of rupture in close proximity to the fault's base, and document the reactivation of erosion and sedimentation within and downslope of the scarp. These deformation structures were caused by the 2004 Mw 6.3 Les Saintes earthquake, which triggered a subsequent tsunami. Their characterization informs estimates of earthquake recurrence on this fault and provides new constraints on the geometry of fault rupture, which is both shorter and displays locally larger coseismic displacements than available model predictions that lack field constraints. This methodology of detailed field observations coupled with near-bottom geophysical surveying can be readily applied to numerous submarine fault systems, and should prove useful in evaluating seismic and tsunamigenic hazard in all geodynamic contexts.

  12. Research of Earthquake Potential from Active Fault Observation in Taiwan

    NASA Astrophysics Data System (ADS)

    Chien-Liang, C.; Hu, J. C.; Liu, C. C.; En, C. K.; Cheng, T. C. T.

    2015-12-01

    We utilize GAMIT/GLOBK software to estimate the precise coordinates for continuous GPS (CGPS) data of Central Geological Survey (CGS, MOEA) in Taiwan. To promote the software estimation efficiency, 250 stations are divided by 8 subnets which have been considered by station numbers, network geometry and fault distributions. Each of subnets include around 50 CGPS and 10 international GNSS service (IGS) stations. After long period of data collection and estimation, a time series variation can be build up to study the effect of earthquakes and estimate the velocity of stations. After comparing the coordinates from campaign-mode GPS sites and precise leveling benchmarks with the time series from continuous GPS stations, the velocity field is consistent with previous measurement which show the reliability of observation. We evaluate the slip rate and slip deficit rate of active faults in Taiwan by 3D block model DEFNODE. First, to get the surface fault traces and the subsurface fault geometry parameters, and then establish the block boundary model of study area. By employing the DEFNODE technique, we invert the GPS velocities for the best-fit block rotate rates, long term slip rates and slip deficit rates. Finally, the probability analysis of active faults is to establish the flow chart of 33 active faults in Taiwan. In the past two years, 16 active faults in central and northern Taiwan have been assessed to get the recurrence interval and the probabilities for the characteristic earthquake occurred in 30, 50 and 100 years.

  13. Low Angle Normal Fault System Controls the Structure Evolution of Baiyun Deepwater Basin and Its Lithosphere Thinning, Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Ren, J.; Yang, L.

    2015-12-01

    The discovery of the transition area from ~30 km to weakly thinned continental crust (<12 km) in Baiyun deepwater basin, Northern South China Sea leads to two questions: What controls extreme crustal thinning and what is the nature of Baiyun basin. The 3D seismic data newly acquired show that Baiyun basin is an asymmetric half graben mainly controlled by a set of north-dipping normal faults converging in deep. By employing the principle of back-stripping, we estimate the fault dips and slip amount would be in the absence of post-rift sediments and seawater loading. Results show these Middle Eocene faults were extremely active, with a high accumulation horizontal displacement (> 10 km) and an initial very low angle (<7°), followed by a rotated into sub-horizontal. A general scenario for extension of the uppermost continental crust probably includes simultaneous operation of low angle normal fault (F1) as well as parallel arrays of step-faults (domino-faults, f2-f9). Under such a scenario, it shows no obvious extension discrepancy in Baiyun basin. Our results indicate that Baiyun sag preserves information recording the continent thinning before the seafloor spreading, and it could be an abandoned inner rifted basin.

  14. Is the central Piedmont suture a low-angle normal fault

    SciTech Connect

    Dennis, A.J. )

    1991-11-01

    In the crystalline southern Appalachians, the Carolina arc terrane is in fault contact with the Piedmont terrace along a seismically reflective surface dipping toward the hinterland and called the central Piedmont suture. The central Piedmont suture may be interpreted as a thrust, but existing data also support a Silurian-Devonian, normal-slip origin: (1) There are lower grade rocks in the hanging wall than in the footwall. (2) A normal-fault solution allows simultaneous metamorphism of the Piedmont terrane and Carolina terrane, prior to their juxtaposition along the central Piedmont suture. (3) Mineral ages in the Piedmont terrane are older in the west than in the east, consistent with an eastward-progressive unroofing. (4) Along the western edge of the Carolina terrane, a linear belt of Devonian subalkalic to alkalic granitoids and gabbro-norites with low initial {sup 87}Sr/{sup 86}Sr ratios may represent mantle-derived magmas along the axis of rifting that are contemporary with major crustal extension. The westernmost Piedmont terrane includes the Chauga belt. The Chauga belt comprises metavolcanic and metaplutonic units similar in rock type and age to those of the western Carolina terrane. Chauga belt rocks are interpreted to be the westernmost exposures of the Carolina terrane, translated west on the lower plate by extension. The Piedmont and Carolina terranes may thus compose a single lithotectonic element. The Piedmont terrane would represent the basement on which the arc was constructed; the terrane was uplifted during extension along a major low-angle normal fault, recognized today as the central Piedmont suture.

  15. Geodynamics of the Dead Sea Fault: Do active faulting and past earthquakes determine the seismic gaps?

    NASA Astrophysics Data System (ADS)

    Meghraoui, Mustapha

    2014-05-01

    The ~1000-km-long North-South trending Dead Sea transform fault (DSF) presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short term slip rates along the DSF. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. However, recent GPS results showing ~2.5 mm/yr velocity rate of the northern DSF appears to be quite different than the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern where the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this paper, we discuss the role of the DSF in the regional geodynamics and its implication on the identification of seismic gaps.

  16. Ductile deformation, boudinage and low angle normal faults. An overview of the structural variability at present-day rifted margins

    NASA Astrophysics Data System (ADS)

    Clerc, Camille; Jolivet, Laurent; Ringenbach, Jean-Claude; Ballard, Jean-François

    2016-04-01

    High quality industrial seismic profiles acquired along most of the world's passive margins present stunningly increased resolution that leads to unravel an unexpected variety of structures. An important benefit of the increased resolution of recent seismic profiles is that they provide an unprecedented access to the processes occurring in the middle and lower continental crust. We present a series of so far unreleased profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear and low angle detachment faulting. The lower crust in passive margins appears much more intensely deformed than usually represented. At the foot of both magma-rich and magma-poor margins, we observe clear indications of ductile deformation of the deep continental crust along large-scale shallow dipping shear zones. These shear zones generally show a top-to-the-continent sense of shear consistent with the activity of overlying continentward dipping normal faults observed in the upper crust. This pattern is responsible for a migration of the deformation and associated sedimentation and/or volcanic activity toward the ocean. In some cases, low angle shear zones define an anastomosed pattern that delineates boudin-like structures. The interboudins areas seem to localize the maximum of deformation. The lower crust is intensely boudinaged and the geometry of those boudins seems to control the position and dip of upper crustal normal faults. We present some of the most striking examples (Uruguay, West Africa, Barents sea…) and discuss their implications for the time-temperature-subsidence history of the margins.

  17. Tsunamigenic potential of Mediterranean fault systems and active subduction zones

    NASA Astrophysics Data System (ADS)

    Petricca, Patrizio; Babeyko, Andrey

    2016-04-01

    Since the North East Atlantic and Mediterranean Tsunami Warning System (NEAMTWS) is under development by the European scientific community, it becomes necessary to define guidelines for the characterization of the numerous parameters must be taken into account in a fair assessment of the risk. Definition of possible tectonic sources and evaluation of their potential is one of the principal issues. In this study we systematically evaluate tsunamigenic potential of up-to-now known real fault systems and active subduction interfaces in the NEAMTWS region. The task is accomplished by means of numerical modeling of tsunami generation and propagation. We have simulated all possible uniform-slip ruptures populating fault and subduction interfaces with magnitudes ranging from 6.5 up to expected Mmax. A total of 15810 individual ruptures were processed. For each rupture, a tsunami propagation scenario was computed in linear shallow-water approximation on 1-arc minute bathymetric grid (Gebco_08) implying normal reflection boundary conditions. Maximum wave heights at coastal positions (totally - 23236 points of interest) were recorded for four hours of simulation and then classified according to currently adopted warning level thresholds. The resulting dataset allowed us to classify the sources in terms of their tsunamigenic potential as well as to estimate their minimum tsunamigenic magnitude. Our analysis shows that almost every source in the Mediterranean Sea is capable to produce local tsunami at the advisory level (i.e., wave height > 20 cm) starting from magnitude values of Mw=6.6. In respect to the watch level (wave height > 50 cm), the picture is less homogeneous: crustal sources in south-west Mediterranean as well as East-Hellenic arc need larger magnitudes (around Mw=7.0) to trigger watch levels even at the nearby coasts. In the context of the regional warning (i.e., source-to-coast distance > 100 km) faults also behave more heterogeneously in respect to the minimum

  18. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir

    2016-10-01

    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  19. Eocene activity on the Western Sierra Fault System and its role incising Kings Canyon, California

    NASA Astrophysics Data System (ADS)

    Sousa, Francis J.; Farley, Kenneth A.; Saleeby, Jason; Clark, Marin

    2016-04-01

    Combining new and published apatite (U-Th)/He and apatite 4He/3He data from along the Kings River canyon, California we rediscover a west-down normal fault on the western slope of the southern Sierra Nevada, one of a series of scarps initially described by Hake (1928) which we call the Western Sierra Fault System. Integrating field observations with apatite (U-Th)/He data, we infer a single fault trace 30 km long, and constrain the vertical offset across this fault to be roughly a kilometer. Thermal modeling of apatite 4He/3He data documents a pulse of footwall cooling near the fault and upstream in the footwall at circa 45-40 Ma, which we infer to be the timing of a kilometer-scale incision pulse resulting from the fault activity. In the context of published data from the subsurface of the Sacramento and San Joaquin Valleys, our data from the Western Sierra Fault System suggests an Eocene tectonic regime dominated by low-to-moderate magnitude extension, surface uplift, and internal structural deformation of the southern Sierra Nevada and proximal Great Valley forearc.

  20. Challenges and perspectives in the geological study of active faults.

    NASA Astrophysics Data System (ADS)

    Rizza, M.

    2011-12-01

    Identification of active faults is important for understanding regional seismicity and seismic hazard. A large part of the world's population lives in areas where destructive earthquakes or tsunamis were recorded in the past. Most of the difficulties in estimating seismic hazard and anticipating earthquakes are due to a lack of knowledge about the location of active faults and their seismic history. Even where active faults are known the characteristics of past earthquakes and the seismic cycle are uncertain and subject to discussion. Investigations carried out on active faults during the past decade, however, have provided new high-quality data and powerful tools to better understand crustal deformation and the recurrence of earthquakes. In morphotectonic studies, the ever-improving resolution of satellites images allows geologists to identify with more certainty the traces of active faults and even earthquake surface ruptures of the past. The advantage of satellite imagery for identifying neotectonic features is it gives access to large areas, sometimes difficult to reach in the field and provides synoptic views. Using the potential of high-resolution imagery and digital elevation models, geologists can produce detailed 3D reconstructions of fault morphology and geometry, including the kinematics of repeated slip. The development of new dating techniques, coupled with paleoseismology and quantitative geomorphology, now allows bracketing the occurrence of paleoearthquakes back to several thousand years, as well as analyzing long time sequences of events. Despite such wealth of new data, however, the work remaining to do is huge. Earthquake forecast (location, timing, magnitude) remains an unsolved problem for the earthquake community at large (seismologists, geodesists, paleoseismologists and modelers). The most important challenges in the next decade will be to increase the efficiency of neotectonic studies to create more complete active fault databases and

  1. Analysis of Landsat TM data for active tectonics: the case of the Big Chino Fault, Arizona

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano

    1994-12-01

    The Big Chino Valley is a 50 km-long tectonic depression of the Basin and Range province of the South- western United States. It is bordered on the NE side by an important normal fault, the Big Chino Fault. The activity of the latter has been hypothesised on the basis of the presence of a 20 m-high fault scarp and on local geomorphological studies. Moreover, a magnitude 4.9 earthquake occurred in southern Arizona in 1976 has been attributed to this fault. The climate in the Big Chino Valley is semi-arid with average rainfall of about 400 mm per year; a very sparse vegetation cover is present, yielding a good possibility for the geo-lithologic application of remote sensing data. The analysis of the TM spectral bands shows, in the short wave infrared, a clear variation in the reflected radiance across the fault scarp. Also the available radar (SLAR) images show a marked difference in response between the two sides of the fault. An explanation of this phenomena has been found in the interaction between the geomorphic evolution, the pedological composition, and the periodic occurrence of coseismic deformation along the fault. Other effects of the latter process have been investigated on colour D- stretched images whose interpretation allowed to detect two paleoseismic events of the Big Chino Fault. This work demonstrates that important information on the seismological parameters of active faults in arid and semiarid climates can be extracted from the analysis of satellite spectral data in the visible and near -infrared.

  2. Erosion influences the seismicity of active thrust faults.

    PubMed

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J Bruce H

    2014-11-21

    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface.

  3. Active faulting in northern Chile: ramp stacking and lateral decoupling along a subduction plate boundary?

    NASA Astrophysics Data System (ADS)

    Armijo, Rolando; Thiele, Ricardo

    1990-04-01

    Two large features parallel to the coastline of northern Chile have long been suspected to be the sites of young or active deformation: (1) The 700-km long Coastal Scarp, with average height (above sea level) of about 1000 m; (2) The Atacama Fault zone, that stretches linearly for about 1100 km at an average distance of 30-50 km from the coastline. New field observations combined with extensive analysis of aerial photographs demonstrate that both the Coastal Scarp and the Atacama Fault are zones of Quaternary and current fault activity. Little-degraded surface breaks observed in the field indicate that these fault zones have recently generated large earthquakes ( M = 7-8). Normal fault offsets observed in marine terraces in the Coastal Scarp (at Mejillones Peninsula) require tectonic extension roughly orthogonal to the compressional plate boundary. Strike-slip offsets of drainage observed along the Salar del Carmen and Cerro Moreno faults (Atacama Fault system) imply left-lateral displacements nearly parallel to the plate boundary. The left-lateral movement observed along the Atacama Fault zone may be a local consequence of E-W extension along the Coastal Scarp. But if also found everywhere along strike, left-lateral decoupling along the Atacama Fault zone would be in contradiction with the right lateral component of Nazca-South America motion predicted by models of present plate kinematics. Clockwise rotation with left-lateral slicing of the Andean orogen south of the Arica bend is one way to resolve this contradiction. The Coastal Scarp and the Atacama Fault zone are the most prominent features with clear traces of activity within the leading edge of continental South America. The great length and parallelism of these features with the subduction zone suggest that they may interact with the subduction interface at depth. We interpret the Coastal Scarp to be a west-dipping normal fault or flexure and propose that it is located over an east-dipping ramp stack at

  4. Initiation and development of normal faults within the German alpine foreland basin: The inconspicuous role of basement structures

    NASA Astrophysics Data System (ADS)

    Hartmann, Hartwig; Tanner, David C.; Schumacher, Sandra

    2016-06-01

    In a large seismic cube within the German Alpine Molasse Basin, we recognize large normal faults with lateral alternating dips that displace the Molasse sediments. They are disconnected but strike parallel to fault lineaments of the underlying carbonate platform. This raises the question how such faults could independently develop. Structural analysis suggests that the faults grew both upward and downward from the middle of the Molasse package, i.e., they newly initiated within the Molasse sediments and were not caused by reactivation of the faults in the carbonate platform and/or crystalline basement. Numerical modeling of the basin proves that temporarily and spatially confined extensional stresses existed within the Molasse sediments but not in the carbonate platform and basement during lithospheric bending. The workflow shown here gives a new and as yet undocumented insight in the tectonic and structural processes within a foreland basin that was affected by buckling and bending in front of the orogen.

  5. Evolution of fault activity reflecting the crustal deformation: Insights from crustal stress and fault orientations in the northeast-southwest Japan

    NASA Astrophysics Data System (ADS)

    Miyakawa, A.; Otsubo, M.

    2015-12-01

    We evaluated fault activity in northeast- southwest Japan based on the regional stress and the fault orientation field for both active faults and inactive faults (here, an inactive fault is a fault which activity has not been identified in Quaternary). The regional stress field was calculated using the stress inversion method [Hardebeck and Michael, 2006] applied to earthquake focal mechanisms in the northeast-southwest Japan. The locations and orientations (i.e., strike and dip, assuming a planar fault geometry) of active faults in the study area were obtained from the Active Fault Database of Japan and inactive faults from a database compiled by Kosaka et al. [2011]. We employed slip tendency analysis [Morris et al., 1996] to evaluate the likelihood of fault slip. The values of the slip tendency is generally higher along active faults than along inactive faults. The difference between the slip tendencies of active and inactive faults reflects the difference in their activities. Furthermore the high slip tendency observed for some inactive faults suggests their high activity. These high slip tendencies imply that they have potential to be active. We propose the temporal evolution from inactive to active faulting during long-term crustal deformation to explain the potential for fault activity along inactive faults. When a region undergoes the transition from inactive to active faulting, potential active faults are observed as inactive faults with a high Part of this findig have been submitted to Tectonics (AGU Journal) (2015-07-27). We will presentate some new findings.slip tendency. The average slip tendency of inactive faults gradually increases from northeast to southwest Japan, because a relatively large number of inactive faults in southwest Japan have a high slip tendency. The representative deformation zones in Japan shows a relationship with the observed spatial variations in the evolution from inactive to active faulting. This study was supported by MEXT

  6. Seismic Source Parameters of Normal-Faulting Inslab Earthquakes in Central Mexico

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pérez, Quetzalcoatl; Singh, Shri Krishna

    2016-08-01

    We studied 62 normal-faulting inslab earthquakes in the Mexican subduction zone with magnitudes in the range of 3.6 ≤ M w ≤ 7.3 and hypocentral depths of 30 ≤ Z ≤ 108 km. We used different methods to estimate source parameters to observe differences in stress drop, corner frequencies, source dimensions, source duration, energy-to-moment ratio, radiated efficiency, and radiated seismic energy. The behavior of these parameters is derived. We found that normal-faulting inslab events have higher radiated seismic energy, energy-to-moment ratio, and stress drop than interplate earthquakes as expected. This may be explained by the mechanism dependence of radiated seismic energy and apparent stress reported in previous source parameter studies. The energy-to-moment ratio data showed large scatter and no trend with seismic moment. The stress drop showed no trend with seismic moment, but an increment with depth. The radiated seismic efficiencies showed similar values to those obtained from interplate events, but higher than near-trench events. We found that the source duration is independent of the depth. We also derived source scaling relationships for the mentioned parameters. The low level of uncertainties for the seismic source parameters and scaling relationships showed that the obtained parameters are robust. Therefore, reliable source parameter estimation can be carried out using the obtained scaling relationships. We also studied regional stress field of normal-faulting inslab events. Heterogeneity exists in the regional stress field, as indicated by individual stress tensor inversions conducted for two different depth intervals ( Z < 40 km and Z > 40 km, respectively). While the maximum stress axis ( σ 1) appears to be consistent and stable, the orientations of the intermediate and minimum stresses ( σ 2 and σ 3) vary over the depth intervals. The stress inversion results showed that the tensional axes are parallel to the dip direction of the subducted

  7. Active fault database of Japan: Its construction and search system

    NASA Astrophysics Data System (ADS)

    Yoshioka, T.; Miyamoto, F.

    2011-12-01

    The Active fault database of Japan was constructed by the Active Fault and Earthquake Research Center, GSJ/AIST and opened to the public on the Internet from 2005 to make a probabilistic evaluation of the future faulting event and earthquake occurrence on major active faults in Japan. The database consists of three sub-database, 1) sub-database on individual site, which includes long-term slip data and paleoseismicity data with error range and reliability, 2) sub-database on details of paleoseismicity, which includes the excavated geological units and faulting event horizons with age-control, 3) sub-database on characteristics of behavioral segments, which includes the fault-length, long-term slip-rate, recurrence intervals, most-recent-event, slip per event and best-estimate of cascade earthquake. Major seismogenic faults, those are approximately the best-estimate segments of cascade earthquake, each has a length of 20 km or longer and slip-rate of 0.1m/ky or larger and is composed from about two behavioral segments in average, are included in the database. This database contains information of active faults in Japan, sorted by the concept of "behavioral segments" (McCalpin, 1996). Each fault is subdivided into 550 behavioral segments based on surface trace geometry and rupture history revealed by paleoseismic studies. Behavioral segments can be searched on the Google Maps. You can select one behavioral segment directly or search segments in a rectangle area on the map. The result of search is shown on a fixed map or the Google Maps with information of geologic and paleoseismic parameters including slip rate, slip per event, recurrence interval, and calculated rupture probability in the future. Behavioral segments can be searched also by name or combination of fault parameters. All those data are compiled from journal articles, theses, and other documents. We are currently developing a revised edition, which is based on an improved database system. More than ten

  8. How the differential load induced by normal fault scarps controls the distribution of monogenic volcanism

    NASA Astrophysics Data System (ADS)

    Maccaferri, Francesco; Acocella, Valerio; Rivalta, Eleonora

    2016-04-01

    Understanding shallow magma transfer and the related vent distribution is crucial for volcanic hazard. In the present study we investigate the link between the stress induced by topographic scarps and the distribution of monogenic volcanoes at divergent plate boundaries. With a numerical model of dyke propagation we show that vertical dykes beneath a normal fault scarp tend to deflect towards the footwall side of the scarp. This effect increases with the scarp height, is stronger for dykes propagating underneath the hanging wall side, and decreases with the distance from the scarp. A comparison to the East African Rift System, Afar and Iceland shows that: 1) the inner rift structure, which shapes the topography, controls shallow dyke propagation; 2) differential loading due to mass redistribution affects magma propagation over a broad scale range (100 - 105 m). Our results find application to any volcanic field with tectonics- or erosion-induced topographic variations.

  9. Evaluation of feasibility of mapping seismically active faults in Alaska

    NASA Technical Reports Server (NTRS)

    Gedney, L. D.; Vanwormer, J. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The sharp bend in the Alaska Range near 65 deg N, 150 deg W in now thought to enclose a corner of the northwesterly migrating north Pacific lithospheric plate. Subduction of the plate beneath the continent is believed, on the basis of hypocentral distribution, to occur along Cook Inlet and the eastern flanks of the Aleutian and Alaska Ranges as far northward as Mt. McKinley. The nature of tectonic deformation here, particularly in the area of the bend in the Alaska Range, is understandably complex. The Denali fault is thought to be a transform character in the vicinity of Mt. McKinley (i.e., it is thought to be the surface along which the oceanic plate separates from the continental plate). On the ERTS-1 imagery, however, it appears that there are a number of sub-parallel faults which branch off of the Denali fault in a southwesterly direction. Slippage along these would tend to squeeze material around the inside of the band rather than the plate being directly underthrust. All of these sub-parallel faults are seismically active. The right-lateral fault-plane solution obtained for this event is consistent with the concept of slippage around the bend on a set of sub-parallel faults in the manner postulated. The best images to show these features are 1066-20444 and 1266-20572.

  10. Active tectonics west of New Zealand's Alpine Fault: South Westland Fault Zone activity shows Australian Plate instability

    NASA Astrophysics Data System (ADS)

    De Pascale, Gregory P.; Chandler-Yates, Nicholas; Dela Pena, Federico; Wilson, Pam; May, Elijah; Twiss, Amber; Cheng, Che

    2016-04-01

    The 300 km long South Westland Fault Zone (SWFZ) is within the footwall of the Central Alpine Fault (<20 km away) and has 3500 m of dip-slip displacement, but it has been unknown if the fault is active. Here the first evidence for SWFZ thrust faulting in the "stable" Australian Plate is shown with cumulative dip-slip displacements up to 5.9 m (with 3 m throw) on Pleistocene and Holocene sediments and gentle hanging wall anticlinal folding. Cone penetration test (CPT) stratigraphy shows repeated sequences within the fault scarp (consistent with thrusting). Optically stimulated luminescence (OSL) dating constrains the most recent rupture post-12.1 ± 1.7 ka with evidence for three to four events during earthquakes of at least Mw 6.8. This study shows significant deformation is accommodated on poorly characterized Australian Plate structures northwest of the Alpine Fault and demonstrates that major active and seismogenic structures remain uncharacterized in densely forested regions on Earth.

  11. Faults paragenesis and paleostress state in the zone of actively propagating continental strike-slip on the example of North Khangai fault (Northern Mongolia)

    NASA Astrophysics Data System (ADS)

    Sankov, Vladimir; Parfeevets, Anna

    2014-05-01

    Sublatitudinal North Khangai fault extends from Ubsunuur basin to the eastern part of the Selenga corridor trough 800 km. It is the northern boundary of the massive Mongolian block and limits of the Baikal rift system structures propagation in the south (Logatchev, 2003). Late Cenozoic and present-day fault activity are expressed in the left-lateral displacements of a different order of river valleys and high seismicity. We have carried out studies of the kinematics of active faults and palaeostresses reconstruction in the zone of the dynamic influence of North Khangai fault, the width of which varies along the strike and can exceeds 100 km. The result shows that the fault zone has a longitudinal and a transverse zoning. Longitudinal zonation presented gradual change from west to east regions of compression and transpression regimes (Khan-Khukhey ridge) to strike-slip regime (Bolnay ridge) and strike-slip and transtensive regimes (west of Selenga corridor). Strike-slip zones are represented by linearly concentrated rupture deformations. In contrast, near the termination of the fault the cluster fault deformation formed. Here, from north to south, there are radical changes in the palaeostress state. In the north-western sector (east of Selenga corridor) strike-slip faults, strike-slip faults with normal components and normal faults are dominated. For this sector the stress tensors of extensive, transtension and strike-slip regimes are typical. South-western sector is separated from the north-eastern one by massive Buren Nuruu ridge within which the active faults are not identified. In the south-western sector between the Orkhon and Tola rivers the cluster of NW thrusts and N-S strike-slip faults with reverse component are discovered. The faults are perfectly expressed by NW and N-S scarps in the relief. The most structures dip to the east and north-east. Holocene fault activity is demonstrated by the hanging river valleys and horizontal displacements with amplitudes

  12. Neogene exhumation in the eastern Alaska Range and its relationship to splay fault activity in the Denali fault system

    NASA Astrophysics Data System (ADS)

    Waldien, T.; Roeske, S.; Benowitz, J.; Allen, W. K.; Ridgway, K.

    2015-12-01

    Dextral oblique convergence in the Denali fault system results from subduction zone strain in the Alaska syntaxis that is partitioned into the upper plate. This convergence is accommodated by dextral-reverse oblique slip on segments of the main strand of the Denali fault in the center of the Alaska Range and by splay faults north and south of the Denali fault at the margins of the Alaska Range. Low-temp. thermochronometry applied to basement rocks bounded by faults within the Denali fault system aids stratigraphic data to determine the timing and locations of exhumation in the Alaska Range, which augment regional seismicity studies aimed at resolving modern fault activity in the Denali fault system. The McCallum Creek and Broxson Gulch faults are north-dipping faults that splay southward from the Denali fault near the Delta River and mark the southern margin of the eastern Alaska Range. Apatite fission track thermochronometry on rocks north of the McCallum Creek fault shows rapid cooling in the hanging wall coeval with basin development in the footwall initiating at the Miocene-Pliocene boundary. Apatite fission track and apatite (U-Th)/He ages from plutonic rocks in the hanging wall of the Broxson Gulch fault, west of the McCallum Creek fault, show final cooling in the Miocene, slightly younger than hanging wall cooling associated with the Susitna Glacier thrust further to the west. Neogene low-temp. cooling ages in the hanging walls of the Susitna Glacier thrust, Broxson Gulch, and McCallum Creek faults suggest that these structures have been accommodating convergence in the Denali fault system throughout the Neogene. More recent cooling in the hanging wall of the McCallum Creek compared to the Susitna Glacier thrust suggests that this fault-related exhumation has migrated eastward throughout the Neogene. Convergence on these splay faults south of the Denali fault results in internal contraction of the crust south of the Denali fault, implying that the Southern

  13. Variation in aseismic slip and fault normal strain along the creeping section of the San Andreas fault from GPS, InSAR and trilateration data

    NASA Astrophysics Data System (ADS)

    Rolandone, F.; Johanson, I.; Bürgmann, R.; Agnew, D.

    2004-12-01

    In central California most of the relative motion between the Pacific and North American plates is accommodated by strike slip along the San Andreas fault system. However, a small amount of convergence is accommodated by compressional structures in the California Coast Ranges on both sides of the fault. Recent examples of such activity are the Coalinga and the 2003 San Simeon earthquakes. Along the central San Andreas fault (CSAF), from San Juan Bautista to Parkfield, almost all the slip along the CSAF in the brittle upper crust is accommodated aseismically. We use GPS, InSAR and trilateration data to resolve both the distribution of aseismic slip along the CSAF, and the deformation across adjacent, secondary fault structures. In 2003 and 2004, we conducted several GPS surveys along the CSAF. We resurveyed 15 stations of the San Benito triangulation and trilateration network, which extends 40 km to the northeast of the creeping segment. We combine these measurements with old EDM measurements and data from a GPS campaign in 1998. We also occupied 13 sites along the creeping segment, for which previous data exist in the SCEC archive. These dense GPS measurements, along with data from permanent GPS stations in the area, allow us to constrain the regional strain distribution and contributions from adjacent faults. With the addition of InSAR data, we can also better resolve active strain accumulation and aseismic slip along the CSAF. We use a stack of about 10 interferograms from ERS-1 and ERS-2 satellites spanning 8 years. InSAR is well suited to monitoring details of the shallow slip along the CSAF and, in concert with the broadly spaced GPS velocities, to resolving the distribution of deformation along and across the plate boundary. The results are the basis for determining the kinematics of spatially variable fault slip on the CSAF, and help to better constrain the fault's constitutive properties, and fault interaction processes.

  14. Extensional deformation structures within a convergent orogen: The Val di Lima low-angle normal fault system (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Clemenzi, Luca; Molli, Giancarlo; Storti, Fabrizio; Muchez, Philippe; Swennen, Rudy; Torelli, Luigi

    2014-09-01

    A low-angle extensional fault system affecting the non metamorphic rocks of the carbonate dominated Tuscan succession is exposed in the Lima valley (Northern Apennines, Italy). This fault system affects the right-side-up limb of a kilometric-scale recumbent isoclinal anticline and is, in turn, affected by superimposed folding and late-tectonic high-angle extensional faulting. The architecture of the low-angle fault system has been investigated through detailed structural mapping and damage zone characterization. Pressure-depth conditions and paleofluid evolution of the fault system have been studied through microstructural, mineralogical, petrographic, fluid inclusion and stable isotope analyses. Our results show that the low-angle fault system was active during exhumation of the Tuscan succession at about 180°C and 5 km depth, with the involvement of low-salinity fluids. Within this temperature - depth framework, the fault zone architecture shows important differences related to the different lithologies involved in the fault system and to the role played by the fluids during deformation. In places, footwall overpressuring influenced active deformation mechanisms and favored shear strain localization. Our observations indicate that extensional structures affected the central sector of the Northern Apennines thrust wedge during the orogenic contractional history, modifying the fluid circulation through the upper crust and influencing its mechanical behavior.

  15. Active faulting on the Wallula fault within the Olympic-Wallowa Lineament (OWL), eastern Washington State

    NASA Astrophysics Data System (ADS)

    Sherrod, B. L.; Lasher, J. P.; Barnett, E. A.

    2013-12-01

    Several studies over the last 40 years focused on a segment of the Wallula fault exposed in a quarry at Finley, Washington. The Wallula fault is important because it is part of the Olympic-Wallowa lineament (OWL), a ~500-km-long topographic and structural lineament extending from Vancouver Island, British Columbia to Walla Walla, Washington that accommodates Basin and Range extension. The origin and nature of the OWL is of interest because it contains potentially active faults that are within 50 km of high-level nuclear waste facilities at the Hanford Site. Mapping in the 1970's and 1980's suggested the Wallula fault did not offset Holocene and late Pleistocene deposits and is therefore inactive. New exposures of the Finley quarry wall studied here suggest otherwise. We map three main packages of rocks and sediments in a ~10 m high quarry exposure. The oldest rocks are very fine grained basalts of the Columbia River Basalt Group (~13.5 Ma). The next youngest deposits include a thin layer of vesicular basalt, white volcaniclastic deposits, colluvium containing clasts of vesicular basalt, and indurated paleosols. A distinct angular unconformity separates these vesicular basalt-bearing units from overlying late Pleistocene flood deposits, two colluvium layers containing angular clasts of basalt, and Holocene tephra-bearing loess. A tephra within the loess likely correlates to nearby outcrops of Mazama ash. We recognize three styles of faults: 1) a near vertical master reverse or oblique fault juxtaposing very fine grained basalt against late Tertiary-Holocene deposits, and marked by a thick (~40 cm) vertical seam of carbonate cemented breccia; 2) subvertical faults that flatten upwards and displace late Tertiary(?) to Quaternary(?) soils, colluvium, and volcaniclastic deposits; and 3) flexural slip faults along bedding planes in folded deposits in the footwall. We infer at least two Holocene earthquakes from the quarry exposure. The first Holocene earthquake deformed

  16. Brittle extension of the continental crust along a rooted system of low-angle normal faults: Colorado River extensional corridor

    NASA Technical Reports Server (NTRS)

    John, B. E.; Howard, K. A.

    1985-01-01

    A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona.

  17. Active faulting and devastating earthquakes in continental China

    NASA Astrophysics Data System (ADS)

    Zhang, P.

    2003-04-01

    The primary pattern of active tectonics in continental China is characterized by relative movements and interactions of tectonic blocks bounded by major active faults. Earthquakes are results of abrupt releases of accumulated strain energy that excesses the threshold of strength of brittle part of the earth’s crust. Boundaries of tectonic blocks are the locations of most discontinuous deformation and highest gradient of stress accumulation, thus are the most likely places for strain energy accumulation and releases, and in turn, devastating earthquakes. Almost all earthquakes of magnitude larger than 8 and 80~90% of earthquakes of magnitude over 7 occur along boundaries of active tectonic blocks. This fact indicates that differential movements and interactions of active tectonic blocks are the primary mechanism for the occurrences of devastating earthquakes. Northeastern margin of Tibetan Plateau consists of two active fault zones, the Haiyuan and the Xiangshan fault zones. Each of the zones can be further divided into several segments. Historical earthquakes during the past 800 years ruptured all of them except one segment, the so-called Tianzhu seismic gap. We have conducted paleoseismological studies on each of the segments of the fault zones. Preliminary results reveal temporal clustering features of long-term paleoearthquake activity along these two fault zones. The 1920 Haiyuan earthquake of magnitude 8.5, for example, ruptured three segments of the fault zone. We dug 19 trenches along different segments of the surface ruptures. There were 3 events along the eastern segment during the past 14000 years, 7 events along the middle segment during the past 9000 years, and 6 events along the western segment during the past 10000 years. These events clearly depict two temporal clusters. The first cluster occurs from 4600 to 6400 years, and the second occurs from 1000 to 2800 years, approximately. Each cluster lasts about 2000 years. Time period between these two

  18. 40Ar/ 39Ar dating constraints on the high-angle normal faulting along the southern segment of the Tan-Lu fault system: An implication for the onset of eastern China rift-systems

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zhou, Su

    2009-01-01

    High-angle normal faulting in eastern China was an important tectonic process responsible for the rifting of the eastern Asian continental margin. Along the southern segment of the Tan-Lu fault system, part of the eastern China rift-system, 55-70° east-dipping normal faults are the oldest structures within this rift-system. Chlorite, pseudotachylite, and fault breccia are found in fault zones, which are characterized by microstructures and syn-deformation chlorite minerals aligned parallel to a down-dip stretching lineation. 40Ar/ 39Ar dating of syn-deformation chlorite and K-feldspar from the fault gouge zone yields cooling ages of ˜75-70 Ma, interpreted as the timing of slip along the normal faults. This age is older than that of opening of the Japanese sea and back-arc extension in the west Pacific, but similar to the onset of the Indo-Asian (soft?) collision.

  19. Normal and reverse faulting driven by the subduction zone earthquake cycle in the northern Chilean fore arc

    NASA Astrophysics Data System (ADS)

    Loveless, John P.; Allmendinger, Richard W.; Pritchard, Matthew E.; GonzáLez, Gabriel

    2010-04-01

    Despite its location in a convergent tectonic setting, the Coastal Cordillera of northern Chile between 21°S and 25°S is dominated by structures demonstrating extension in the direction of plate convergence. In some locations, however, normal faults have been reactivated as reverse faults, complicating the interpretation of long-term strain. In order to place these new observations in a tectonic context, we model stress changes induced on these faults by the subduction earthquake cycle. Our simulations predict that interseismic locking on the plate boundary encourages normal slip on fore-arc faults, which may result from elastic rebound due to interplate earthquakes or from seismic or aseismic motion that takes place within the interseismic period. Conversely, stress generated by strong subduction zone earthquakes, such as the 1995 Mw = 8.1 Antofagasta event, provides a mechanism for the reverse reactivation we document here. Upper plate fault slip in response to the low-magnitude stress changes induced by the subduction earthquake cycle suggests that the absolute level of stress on these faults is very low. Furthermore, seismic hazard analysis for northern Chile requires consideration of not only the plate boundary earthquake cycle but also the cycle on fore-arc faults that may or may not coincide with the interplate pattern. Though the relationships between permanent strain and deformation calculated using elastic models remain unclear, the compatibility of modeled stress fields with the distribution of fore-arc faulting suggests that interseismic strain accumulation and coseismic deformation on the subduction megathrust both play significant roles in shaping structural behavior in the upper plate.

  20. Constraining fault activity by investigating tectonically-deformed Quaternary palaeoshorelines using a synchronous correlation method: the Capo D'Orlando Fault as a case study (NE Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Meschis, Marco; Roberts, Gerald P.; Robertson, Jennifer

    2016-04-01

    Long-term curstal extension rates, accommodated by active normal faults, can be constrained by investigating Late Quaternary vertical movements. Sequences of marine terraces tectonically deformed by active faults mark the interaction between tectonic activity, sea-level changes and active faulting throughout the Quaternary (e.g. Armijo et al., 1996, Giunta et al, 2011, Roberts et al., 2013). Crustal deformation can be calculated over multiple seismic cycles by mapping Quaternary tectonically-deformed palaeoshorelines, both in the hangingwall and footwall of active normal faults (Roberts et al., 2013). Here we use a synchronous correlation method between palaeoshorelines elevations and the ages of sea-level highstands (see Roberts et al., 2013 for further details) which takes advantage of the facts that (i) sea-level highstands are not evenly-spaced in time, yet must correlate with palaeoshorelines that are commonly not evenly-spaced in elevation, and (ii) that older terraces may be destroyed and/or overprinted by younger highstands, so that the next higher or lower paleoshoreline does not necessarily correlate with the next older or younger sea-level highstand. We investigated a flight of Late Quaternary marine terraces deformed by normal faulting as a result of the Capo D'Orlando Fault in NE Sicily (e.g. Giunta et al., 2011). This fault lies within the Calabrian Arc which has experienced damaging seismic events such as the 1908 Messina Straits earthquake ~ Mw 7. Our mapping and previous mapping (Giunta et al. (2011) demonstrate that the elevations of marine terraces inner edges change along the strike the NE - SW oriented normal fault. This confirms active deformation on the Capo D'Orlando Fault, strongly suggesting that it should be added into the Database of Individual Seismogenic Sources (DISS, Basili et al., 2008). Giunta et al. (2011) suggested that uplift rates and hence faults lip-rates vary through time for this examples. We update the ages assigned to

  1. Mechanisms of clay smear formation in unconsolidated sediments - insights from 3-D observations of excavated normal faults

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; Thronberens, Sebastian; Juarez, Oscar; Lajos Urai, Janos; Ziegler, Martin; Asmus, Sven; Kruger, Ulrich

    2016-05-01

    Clay smears in normal faults can form seals for hydrocarbons and groundwater, and their prediction in the subsurface is an important problem in applied and basic geoscience. However, neither their complex 3-D structure, nor their processes of formation or destruction are well understood, and outcrop studies to date are mainly 2-D. We present a 3-D study of an excavated normal fault with clay smear, together with both source layers, in unlithified sand and clay of the Hambach open-cast lignite mine in Germany. The faults formed at a depth of 150 m, and have shale gouge ratios between 0.1 and 0.3. The fault zones are layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. The thickness of clay smears in two excavated fault zones of 1.8 and 3.8 m2 is approximately log-normal, with values between 5 mm and 5 cm, without holes. The 3-D thickness distribution is heterogeneous. We show that clay smears are strongly affected by R and R' shears, mostly at the footwall side. These shears can locally cross and offset clay smears, forming holes in the clay smear, while thinning of the clay smear by shearing in the fault core is less important. The thinnest parts of the clay smears are often located close to source layer cut-offs. Locally, the clay smear consists of overlapping patches of sheared clay, separated by sheared sand. More commonly, it is one amalgamated zone of sheared sand and clay. A microscopic study of fault-zone samples shows that grain-scale mixing can lead to thickening of the low permeability smears, which may lead to resealing of holes.

  2. Microstructural Character and Strain Localization at Initiation of a Low-Angle Normal Fault in Crystalline Basement (Chemehuevi Mountains, SE California)

    NASA Astrophysics Data System (ADS)

    LaForge, J.; John, B. E.; Grimes, C. B.; MacDonald, C.

    2014-12-01

    Exposures of the Miocene Chemehuevi detachment (CDF) system provide a natural laboratory to study the initiation of low-angle normal faults (LANF) active near the base of the seismogenic zone (5-15 km paleodepth). The regional fault system formed at ≤20° dip in heterogeneous gneissic and granitoid rocks, with ambient footwall temperatures from <200 to >400°C. The fault system is characterized by three stacked low-angle normal faults; the CDF preferentially localized ≥ 18 km of NE directed slip rendering the deepest fault, the Mohave Wash Fault (MWF), inactive after 1-2 km of slip. At outcrop scale, damage zones to each fault are planar, but at map scale both the MWF and CDF are corrugated parallel to slip. Detailed macro- and microstructural studies of the MWF, sampled over 15 km down dip, provide insight into strain localization at initiation. At outcrop scale, the MWF is defined by a damage zone 10s of meters thick of fractured host rock cut by anastomosing principal slip zones of cohesive cataclasite (≤2 m thick), locally hosting chlorite, epidote and quartz. At structurally shallow levels (T 200-250° C; 6-8 km paleodepth at initiation), the MWF cuts isotropic granitic rocks, and exhibits dominantly cataclastic deformation overprinting localized crystal plasticity. Five km down dip (T 300-350° C), cataclasis remains the primary deformation mechanism; syntectonic dikes show plastic deformation with no brittle overprint. Rare pseudotachylite is present within meters of the principle slip zone. At the structurally deepest exposures of the MWF (T ≥ 400°C; 12-15 km paleodepth), gneissic basement cut by syntectonic dikes host a well-developed mylonitic lineation parallel to the extension direction, both reworked by cataclasis. Oxygen isotope data collected from fault rocks hosting quartz-epidote pairs indicate early infiltration of surface-derived fluids. Calculated oxygen isotope temperatures from the fault rocks and footwall are consistently 50-200° C

  3. Aseismic slip and fault-normal strain along the central creeping section of the San Andreas fault

    USGS Publications Warehouse

    Rolandone, F.; Burgmann, R.; Agnew, D.C.; Johanson, I.A.; Templeton, D.C.; d'Alessio, M. A.; Titus, S.J.; DeMets, C.; Tikoff, B.

    2008-01-01

    We use GPS data to measure the aseismic slip along the central San Andreas fault (CSAF) and the deformation across adjacent faults. Comparison of EDM and GPS data sets implies that, except for small-scale transients, the fault motion has been steady over the last 40 years. We add 42 new GPS, velocities along the CSAF to constrain the regional strain distribution. Shear strain rates are less than 0.083 ?? 0.010 ??strain/yr adjacent to the creeping SAF, with 1-4.5 mm/yr of contraction across the Coast Ranges. Dislocation modeling of the data gives a deep, long-term slip rate of 31-35 mm/yr and a shallow (0-12 km) creep rate of 28 mm/yr along the central portion of the CSAF, consistent with surface creep measurements. The lower shallow slip rate may be due to the effect of partial locking along the CSAF or reflect reduced creep rates late in the earthquake cycle of the adjoining SAF rupture zones. Copyright 2008 by the American Geophysical Union.

  4. Aseismic slip and fault-normal strain along the central creeping section of the San Andreas fault

    NASA Astrophysics Data System (ADS)

    Rolandone, F.; Bürgmann, R.; Agnew, D. C.; Johanson, I. A.; Templeton, D. C.; d'Alessio, M. A.; Titus, S. J.; DeMets, C.; Tikoff, B.

    2008-07-01

    We use GPS data to measure the aseismic slip along the central San Andreas fault (CSAF) and the deformation across adjacent faults. Comparison of EDM and GPS data sets implies that, except for small-scale transients, the fault motion has been steady over the last 40 years. We add 42 new GPS velocities along the CSAF to constrain the regional strain distribution. Shear strain rates are less than 0.083 +/- 0.010 μstrain/yr adjacent to the creeping SAF, with 1-4.5 mm/yr of contraction across the Coast Ranges. Dislocation modeling of the data gives a deep, long-term slip rate of 31-35 mm/yr and a shallow (0-12 km) creep rate of 28 mm/yr along the central portion of the CSAF, consistent with surface creep measurements. The lower shallow slip rate may be due to the effect of partial locking along the CSAF or reflect reduced creep rates late in the earthquake cycle of the adjoining SAF rupture zones.

  5. Evaluation of feasibility of mapping seismically active faults in Alaska

    NASA Technical Reports Server (NTRS)

    Gedney, L. D. (Principal Investigator); Vanwormer, J. D.

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery is proving to be exceptionally useful in delineating structural features in Alaska which have never been recognized on the ground. Previously unmapped features such as seismically active faults and major structural lineaments are especially evident. Among the more significant results of this investigation is the discovery of an active strand of the Denali fault. The new fault has a history of scattered activity and was the scene of a magnitude 4.8 earthquake on October 1, 1972. Of greater significance is the disclosure of a large scale conjugate fracture system north of the Alaska Range. This fracture system appears to result from compressive stress radiating outward from around Mt. McKinley. One member of the system was the scene of a magnitude 6.5 earthquake in 1968. The potential value of ERTS-1 imagery to land use planning is reflected in the fact that this earthquake occurred within 10 km of the site which was proposed for the Rampart Dam, and the fault on which it occurred passes very near the proposed site for the bridge and oil pipeline crossing of the Yukon River.

  6. Active faulting induced by the slip partitioning in the Lesser Antilles arc

    NASA Astrophysics Data System (ADS)

    Leclerc, Frédérique; Feuillet, Nathalie

    2010-05-01

    AGUADOMAR marine cruise data acquired 11 years ago allowed us to identified and map two main sets of active faults within the Lesser Antilles arc (Feuillet et al., 2002; 2004). The faults belonging to the first set, such as Morne-Piton in Guadeloupe, bound up to 100km-long and 50km-wide arc-perpendicular graben or half graben that disrupt the fore-arc reef platforms. The faults of the second set form right-stepping en echelon arrays, accommodating left-lateral slip along the inner, volcanic islands. The two fault systems form a sinistral horsetail east of the tip of the left-lateral Puerto Rico fault zone that takes up the trench-parallel component of convergence between the North-American and Caribbean plates west of the Anegada passage. In other words, they together accommodate large-scale slip partitioning along the northeastern arc, consistent with recent GPS measurements (Lopez et al., 2006). These intraplate faults are responsible for a part of the shallow seismicity in the arc and have produce damaging historical earthquakes. Two magnitude 6.3 events occurred in the last 25 years along the inner en echelon faults, the last one on November 21 2004 in Les Saintes in the Guadeloupe archipelago. To better constrain the seismic hazard related to the inner arc faults and image the ruptures and effects on the seafloor of Les Saintes 2004 earthquake, we acquired new marine data between 23 February and 25 March 2009 aboard the French R/V le Suroît during the GWADASEIS cruise. We present here the data (high-resolution 72 channel and very high-resolution chirp 3.5 khz seismic reflection profiles, EM300 multibeam bathymetry, Küllenberg coring and SAR imagery) and the first results. We identified, mapped and characterized in detail several normal to oblique fault systems between Martinique and Saba. They offset the seafloor by several hundred meters and crosscut all active volcanoes, among them Nevis Peak, Soufriere Hills, Soufriere de Guadeloupe and Montagne Pel

  7. Formation of basins and mountain ranges in Attica (Greece): The role of Miocene to Recent low-angle normal detachment faults

    NASA Astrophysics Data System (ADS)

    Krohe, Alexander; Mposkos, Evripidis; Diamantopoulos, Anastasios; Kaouras, Georgios

    2010-01-01

    In seismically active regions, active low-angle detachment faults are probably more frequent as is commonly thought and may play an important but still underestimated role in the evolution of landforms and basins. We investigate the tectonically active region of Attica (Greece) in the Aegean back arc as a model region to show how basins and mountain ranges commonly thought to be formed by movements on high-angle normal faults in fact reflect the surface expression of displacements on yet undetected, deep-seated, active low-angle normal detachment faults. Inferences are made based on an integrated study of Attica linking the petrology of clastic sediments with geomorphology and structures, and including few new palynological data. From the Miocene to Recent, three sets of normal detachment fault systems were successively active. Shear zones of the 1st (Early Miocene) stage emplaced rocks of the Attic Cycladic high- P metamorphic belt (AC-HP-belt) from depth corresponding to greeschist facies conditions in the brittle, upper crust. In the 2nd stage the WNW dipping Attica low-angle normal detachment fault system between the AC-HP-belt and the un- or weakly metamorphosed rocks of the sub-Pelagonian Zone (SPZ) was active. Clastic sedimentation started in the Late Miocene, during the 2nd stage. Late Miocene and Early Pliocene clastic sediments reveal that during the 2nd stage many areas that presently expose the AC-HP-belt were still covered by the overlying SPZ. Also, now uplifted areas such as the Parnitha mountain range that currently undergo strong erosion were then the sites of sedimentary sinks. The 3rd stage (Late Pliocene through Recent) is associated with dramatic changes in the morphology and recurring steepening of the relief. Reversal of the Parnitha area from the site of deposition into the site of erosion is associated with deposition of coarse conglomerates to the SE of the Parnitha Mt. and S of the Penteli Mt. Sediments of the 3rd stage reflect activity

  8. A numerical modelling approach to investigate the surface processes response to normal fault growth in multi-rift settings

    NASA Astrophysics Data System (ADS)

    Pechlivanidou, Sofia; Cowie, Patience; Finch, Emma; Gawthorpe, Robert; Attal, Mikael

    2016-04-01

    This study uses a numerical modelling approach to explore structural controls on erosional/depositional systems within rifts that are characterized by complex multiphase extensional histories. Multiphase-rift related topography is generated by a 3D discrete element model (Finch et al., Basin Res., 2004) of normal fault growth and is used to drive the landscape evolution model CHILD (Tucker et al., Comput. Geosci., 2001). Fault populations develop spontaneously in the discrete element model and grow by both tip propagation and segment linkage. We conduct a series of experiments to simulate the evolution of the landscape (55x40 km) produced by two extensional phases that differ in the direction and in the amount of extension. In order to isolate the effects of fault propagation on the drainage network development, we conduct experiments where uplift/subsidence rates vary both in space and time as the fault array evolves and compare these results with experiments using a fixed fault array geometry with uplift rate/subsidence rates that vary only spatially. In many cases, areas of sediment deposition become uplifted and vise-versa due to complex elevation changes with respect to sea level as the fault array develops. These changes from subaerial (erosional) to submarine (depositional) processes have implications for sediment volumes and sediment caliber as well as for the sediment routing systems across the rift. We also explore the consequences of changing the angle between the two phases of extension on the depositional systems and we make a comparison with single-phase rift systems. Finally, we discuss the controls of different erodibilities on sediment supply and detachment-limited versus transport-limited end-member models for river erosion. Our results provide insights into the nature and distribution of sediment source areas and the sediment routing in rift systems where pre-existing rift topography and normal fault growth exert a fundamental control on

  9. Characterization of Appalachian faults

    SciTech Connect

    Hatcher, R.D. Jr.; Odom, A.L.; Engelder, T.; Dunn, D.E.; Wise, D.U.; Geiser, P.A.; Schamel, S.; Kish, S.A.

    1988-02-01

    This study presents a classification/characterization of Appalachian faults. Characterization factors include timing of movement relative to folding, metamorphism, and plutonism; tectonic position in the orogen; relations to existing anisotropies in the rock masses; involvement of particular rock units and their ages, as well as the standard Andersonian distinctions. Categories include faults with demonstrable Cenozoic activity, wildflysch-associated thrusts, foreland bedding-plane thrusts, premetamorphic to synmetamorphic thrusts in medium- to high-grade terranes, postmetamorphic thrusts in medium- to high-grade terranes, thrusts rooted in Precambrian basement, reverse faults, strike-slip faults, normal (block) faults, compound faults, structural lineaments, faults associated with local centers of disturbance, and geomorphic (nontectonic) faults.

  10. Fault Activity Investigations in the Lower Tagus Valley (Portugal) With Seismic and Geoelectric Methods

    NASA Astrophysics Data System (ADS)

    Carvalho, J. G.; Gonçalves, R.; Torres, L. M.; Cabral, J.; Mendes-Victor, L. A.

    2004-05-01

    The Lower Tagus River Valley is located in Central Portugal, and includes a large portion of the densely populated area of Lisbon. It is sited in the Lower Tagus Cenozoic Basin, a tectonic depression where up to 2,000 m of Cenozoic sediments are preserved, which was developed in the Neogene as a compressive foredeep basin related to tectonic inversion of former Mesozoic extensional structures. It is only a few hundred kilometers distant from the Eurasia-Africa plate boundary, and is characterized by a moderate seismicity presenting a diffuse pattern, with historical earthquakes having caused serious damage, loss of lives and economical problems. It has therefore been the target of several seismic hazard studies in which extensive geological and geophysical research was carried out on several geological structures. This work focuses on the application of seismic and geoelectric methods to investigate an important NW-SE trending normal fault detected on deep oil-industry seismic reflection profiles in the Tagus Cenozoic Basin. In these seismic sections this fault clearly offsets horizons that are ascribed to the Upper Miocene. However, due to the poor near surface resolution of the seismic data and the fact that the fault is hidden under the recent alluvial cover of the Tagus River, it was not clear whether it displaced the upper sediments of Holocene age. In order to constrain the fault geometry and kinematics and to evaluate its recent tectonic activity, a few high-resolution seismic reflection profiles were acquired and refraction interpretation of the reflection data was performed. Some vertical electrical soundings were also carried out. A complex fault system was detected, apparently with normal and reverse faulting. The collected data strongly supports the possibility that one of the detected faults affects the uppermost Neogene sediments and very probably the Holocene alluvial sediments of the Tagus River. The evidence of recent activity on this fault, its

  11. Miocene south directed low-angle normal fault evolution on Kea Island (West Cycladic Detachment System, Greece)

    NASA Astrophysics Data System (ADS)

    Iglseder, Christoph; Grasemann, Bernhard; Rice, A. Hugh N.; Petrakakis, Konstantin; Schneider, David A.

    2011-08-01

    New structural, petrologic, and thermochronologic data from Kea, West Cyclades, define a crustal-scale ductile shear zone and ductile/brittle low-angle normal fault (LANF) system. Both the greenschist-facies shear zone forming the footwall and the overlying LANF zone formed during constrictional strains, with a consistent top-to-SW-S shear sense, with increasing finite strains toward higher structural levels but decreasing temperatures from footwall to hanging wall. The tectonostratigraphy comprises a ˜450 m thick footwall of shallowly dipping schists and calcite marbles representing the Intermediate Unit of the Attic-Cycladic Crystalline (ACC). Above the footwall is a ˜60 m thick highly strained LANF zone, consisting of phyllonites, cataclastic schists, ultramylonitic calcite marbles, (proto) mylonitic calcite marbles, and cohesive cataclasites that arch over the whole island. These fault rocks exhibit multistage LANFs, evolving from ductile to brittle conditions. An up to ˜50 m thick brecciated limestone and dolostone sequence forms the unmetamorphosed hanging wall which is most probably part of the Upper Unit of the ACC. Multiequilibrium P-T estimates on chlorite-white mica pairs in the footwall yield 7-5.5 kbar/360°C-450°C for inclusions in albite and epidote, 5.5-3 kbar/400°C-350°C for the main foliation, and 3-2 kbar/350°C-280°C in localized shear bands (C and C' foliations). The 40Ar/39Ar white mica footwall cooling ages demonstrate that greenschist-facies retrogression occurred between ˜21 and 17 Ma. Localized, late decimeter thick shear zones were active and dynamically recrystallized before ˜15 to 13 Ma. The LANF on Kea, together with similar structures in South Attica and the West Cyclades define the West Cycladic Detachment System, characterized by ductile to brittle top-SW-S shear sense.

  12. Dilatant normal faulting in jointed cohesive rocks: insights from physical modeling

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; von Hagke, Christoph; Urai, Janos

    2016-04-01

    Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights on geometry of fault zones in brittle rocks and eventually allows for predicting their subsurface appearance. We assess the evolution of dilatant faults in fractured rocks using analogue models with cohesive powder. The upper layer contains pre-formed joint sets, and we vary the angle between joints and a rigid basement fault in our experiments. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. We tested the influence of different angles between the strike of the basement fault and the joint set (joint fault (JF) angles of 0°, 4°, 8°, 12°, 16°, 20°, and 25°). During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. Results show robust structural features in models: damage zone width increases by about 50 % and the number of secondary fractures within this zone by more than 100 % with increasing JF-angle. Interestingly, the map-view area fraction of open gaps increases by only 3%. Secondary joints and fault step-overs are oriented at a high angle to the primary joint orientation. Due to the length of the pre-existing open joints, areas far beyond the fractured regions are connected to the system. In contrast

  13. Palaeoseismology of the L'Aquila faults (central Italy, 2009, Mw 6.3 earthquake): implications for active fault linkage

    NASA Astrophysics Data System (ADS)

    Galli, Paolo A. C.; Giaccio, Biagio; Messina, Paolo; Peronace, Edoardo; Zuppi, Giovanni Maria

    2011-12-01

    Urgent urban-planning problems related to the 2009 April, Mw 6.3, L'Aquila earthquake prompted immediate excavation of palaeoseismological trenches across the active faults bordering the Aterno river valley; namely, the Mt. Marine, Mt. Pettino and Paganica faults. Cross-cutting correlations amongst existing and new trenches that were strengthened by radiocarbon ages and archaeological constraints show unambiguously that these three investigated structures have been active since the Last Glacial Maximum period, as seen by the metric offset that affected the whole slope/alluvial sedimentary succession up to the historical deposits. Moreover, in agreement with both 18th century accounts and previous palaeoseismological data, we can affirm now that these faults were responsible for the catastrophic 1703 February 2, earthquake (Mw 6.7). The data indicate that the Paganica-San Demetrio fault system has ruptured in the past both together with the conterminous Mt. Pettino-Mt. Marine fault system, along more than 30 km and causing an Mw 6.7 earthquake, and on its own, along ca. 19 km, as in the recent 2009 event and in the similar 1461 AD event. This behaviour of the L'Aquila faults has important implications in terms of seismic hazard assessment, while it also casts new light on the ongoing fault linkage processes amongst these L'Aquila faults.

  14. Lithofacies analysis of colluvial sediments - an aid in interpreting the recent history of Quaternary normal faults in the Basin and Range Province, western United States

    USGS Publications Warehouse

    Nelson, A.R.

    1992-01-01

    Inferring the frequency and magnitude of past earthquakes from the stratigraphy in exposures of normal-faulted sediments is difficult because colluvial lithofacies assemblages adjacent to faults are complex. A lithofacies code scheme, similar to those used in the analysis of fluvial and glacial lithofacies sequences, provides a concise way of illustrating lithofacies relations in fault exposures. The architecture of lithofacies assemblages near fault scarps in semiarid areas is explained by a model of colluvial sedimentation in response to a single surface faulting event. Analysis of lithofacies assemblages exposed in three trenches across normal faults in the eastern Basin and Range shows how the model can be used to interpret fault histories. -from Author

  15. First-order Leveling and Campaign GPS Reveal Anomalous, Interseismic, Contractile, Transient Strain Across Teton Normal Fault, 1988-2001, Grand Teton National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Sylvester, A. G.; Smith, R. B.; Chang, W.; Hitchcock, C. S.; Byrd, J. O.

    2001-12-01

    As part of a comprehensive neotectonic study of interseismic behavior of active faults, we have done six first order leveling surveys of 50 permanent bench marks in a 22 km-long base line across the Teton fault to characterize its interseismic behavior between 1988 and 2001. This 55 km-long normal fault extends along the eastern base of the Teton Range, exhibits up to 30 m of post-glacial offset, and has one the highest rates of Holocene slip of any fault in the Basin-Range. It is seismically dormant at the M2+ level, however, and presently lies in the center of a 50 km-long seismic gap. Results of five of the six levelings are remarkably similar and suggest that the alluvium-filled valley of northern Jackson Hole (hanging wall) subsided 6-8 mm relative to bedrock of the Teton Range (footwall) relative to the 1989 survey. In 1997, however, a 2 km-wide zone adjacent to the fault rose 12 mm relative to the 1993 survey, and then dropped 16 mm by the 2001 leveling. This zone coincides with an area of low topography characterized by lakes ponded along the fault and south-flowing streams parallel to the range front, rather than eastward away from the range. This subsidence zone records hanging wall subsidence related to long term faulting. The 1997 uplift of the valley floor and subsidence zone may reflect an unexpected, reverse loading and local crustal shortening between 1993 and 2001. Campaign GPS surveys (1987 to 2000) support this hypothesis, indicating that the principal horizontal strain axis is locally E-W perpendicular to the fault, and suggesting crustal shortening occurred in the period 1995-2000. Regionally during 1987-1995, subsidence and contraction characterized deformation of the Yellowstone caldera only 30 km to the north, when GPS recorded uplift and extension across the Teton fault. During 1995-2000, subsidence slowed or ceased for much of the caldera, whereas the overall GPS vectors across Jackson Hole were directed west with almost 2 mm/yr of E

  16. Growth and linkage of the quaternary Ubrique Normal Fault Zone, Western Gibraltar Arc: role on the along-strike relief segmentation

    NASA Astrophysics Data System (ADS)

    Jiménez-Bonilla, Alejandro; Balanya, Juan Carlos; Exposito, Inmaculada; Diaz-Azpiroz, Manuel; Barcos, Leticia

    2015-04-01

    Strain partitioning modes within migrating orogenic arcs may result in arc-parallel stretching that produces along-strike structural and topographic discontinuities. In the Western Gibraltar Arc, arc-parallel stretching has operated from the Lower Miocene up to recent times. In this study, we have reviewed the Colmenar Fault, located at the SW end of the Subbetic ranges, previously interpreted as a Middle Miocene low-angle normal fault. Our results allow to identify younger normal fault segments, to analyse their kinematics, growth and segment linkage, and to discuss its role on the structural and relief drop at regional scale. The Colmenar Fault is folded by post-Serravallian NE-SW buckle folds. Both the SW-dipping fault surfaces and the SW-plunging fold axes contribute to the structural relief drop toward the SW. Nevertheless, at the NW tip of the Colmenar Fault, we have identified unfolded normal faults cutting quaternary soils. They are grouped into a N110˚E striking brittle deformation band 15km long and until 3km wide (hereafter Ubrique Normal Fault Zone; UNFZ). The UNFZ is divided into three sectors: (a) The western tip zone is formed by normal faults which usually dip to the SW and whose slip directions vary between N205˚E and N225˚E. These segments are linked to each other by left-lateral oblique faults interpreted as transfer faults. (b) The central part of the UNFZ is composed of a single N115˚E striking fault segment 2,4km long. Slip directions are around N190˚E and the estimated throw is 1,25km. The fault scarp is well-conserved reaching up to 400m in its central part and diminishing to 200m at both segment terminations. This fault segment is linked to the western tip by an overlap zone characterized by tilted blocks limited by high-angle NNE-SSW and WNW-ESE striking faults interpreted as "box faults" [1]. (c) The eastern tip zone is formed by fault segments with oblique slip which also contribute to the downthrown of the SW block. This kinematic

  17. Spatial Evolution of Neogene Normal Faults, Northern Owens Valley: Constraints on Oblique-slip Partioning Within the Eastern California Shear Zone.

    NASA Astrophysics Data System (ADS)

    Sheehan, T. P.; Dawers, N.

    2005-05-01

    Simple geometric constraints can be used to predict fault interaction at depth. Such interaction within crustal scale fault populations plays an important role in the tectonic evolution of extensional tectonic settings. Here we use a theoretical relationship between fault dip, horizontal fault spacing, and depth to the base of the seismogenic zone to explain the late Cenozoic temporal and spatial evolution of faulting within the Eastern California shear zone, including the northern extent of Owens Valley, California. Our results show that during its evolution, the east-dipping Sierra Nevada frontal fault in northern Owens Valley became inactive due to intersection with the larger west-dipping range-bounding fault of the White Mountains. The horizontal spacing of 10 km between these two conjugate faults is such that they intersect within the brittle seismic layer resulting in the locking of this segment of Sierra Nevada frontal fault. Continued accumulation of normal displacement along the White Mountains fault zone has since resulted in the present-day half-graben basement structure of northern Owens Valley. This down-dropping along the eastern margin of the valley imposes a flexural tension across the surface of the Coyote Warp, which can be considered a large relay zone between the Sierra Nevada frontal fault and the Round Valley fault further west. It is suggested that this tension is responsible for the formation of west-dipping antithetic normal faults that are distributed locally around the Coyote Warp. This extensional fault geometry has imposed a kinematic restraint on the development and distribution of right-lateral shear within this part of the Eastern California shear zone, including northeastward transfer of right-lateral slip from the Owens Valley fault to the White Mountains fault.

  18. Geodetic and seismologic evidence for slip variability along a blind normal fault in the Umbria-Marche 1997-1998 earthquakes (central Italy)

    NASA Astrophysics Data System (ADS)

    Marco De Martini, Paolo; Alessandro Pino, Nicola; Valensise, Gianluca; Mazza, Salvatore

    2003-12-01

    We analysed elevation changes induced by the 1997-1998 Umbria-Marche, central Apennines (Italy) earthquakes. We employed data from a first-order geodetic levelling line measured in 1951, 1992 and 1998. The line bears a record of pre-seismic and coseismic strains associated with the causative fault of the 1997 September 26, 09:40 mainshock (Mw= 6.0). A first level analysis performed under the assumption of slip homogeneity of coseismic slip shows misfits that cannot be reduced simply by altering the fault size and geometry. A more detailed analysis based on a distribution of coseismic slip obtained from broad-band seismograms provides a better fit and is in agreement with 1951-1992 elevation changes interpreted as precursory slip by previous investigators. The levelling data sets new constraints on the location, extent, dip and depth of the fault, in full agreement with seismological evidence and images from SAR interferometry. The data show no evidence for slip in the uppermost 3 km of the crust, suggesting that a major and widely recognized normal fault that exists in the area is no longer active and showing a tendency of present tectonic strains to revert the current topographic setting.

  19. Diachronous Growth of Normal Fault Systems in Multiphase Rift Basins: Structural Evolution of the East Shetland Basin, Northern North Sea

    NASA Astrophysics Data System (ADS)

    Claringbould, Johan S.; Bell, Rebecca E.; A-L. Jackson, Christopher; Gawthorpe, Robert L.; Odinsen, Tore

    2015-04-01

    Our ability to determine the structural evolution and interaction of fault systems (kinematically linked group of faults that are in the km to 10s of km scale) within a rift basin is typically limited by the spatial extent and temporal resolution of the available data and methods used. Physical and numerical models provide predictions on how fault systems nucleate, grow and interact, but these models need to be tested with natural examples. Although field studies and individual 3D seismic surveys can provide a detailed structural evolution of individual fault systems, they are often spatially limited and cannot be used examine the interaction of fault systems throughout the entire basin. In contrast, regional subsurface studies, commonly conducted on widely spaced 2D seismic surveys, are able to capture the general structural evolution of a rift basin, but lack the spatial and temporal detail. Moreover, these studies typically describe the structural evolution of rifts as comprising multiple discrete tectonic stages (i.e. pre-, syn- and post-rift). This simplified approach does not, however, consider that the timing of activity can be strongly diachronous along and between faults that form part of a kinematically linked system within a rift basin. This study focuses on the East Shetland Basin (ESB), a multiphase rift basin located on the western margin of the North Viking Graben, northern North Sea. Most previous studies suggest the basin evolved in response to two discrete phases of extension in the Permian-Triassic and Middle-Late Jurassic, with the overall geometry of the latter rift to be the result of selective reactivation of faults associated with the former rift. Gradually eastwards thickening intra-rift strata (deposited between two rift phases) that form wedges between and within fault blocks have led to two strongly contrasting tectonic interpretations: (i) Early-Middle Jurassic differential thermal subsidence after Permian-Triassic rifting; or (ii

  20. Late Quaternary reef growth history of Les Saintes submarine plateau: a key to constrain active faulting kinematics in Guadeloupe (FWI)

    NASA Astrophysics Data System (ADS)

    Leclerc, F.; Feuillet, N.; Deplus, C.; Cabioch, G.; Tapponnier, P.; LeBrun, J.; Bazin, S.; Beauducel, F.; Boudon, G.; Le Friant, A.; De Min, L.; Melezan, D.

    2012-12-01

    The damaging November 21 2004 earthquake (Mw 6.3) occurred on a large normal fault system offshore Les Saintes archipelago in Guadeloupe. To better constrain the seismic hazard related to this fault system, new data were acquired in 2009 and 2010 during the GWADASEIS and BATHYSAINTES cruises. Digital Elevation Models (DEM), with a horizontal resolution of 2.5 m, were calculated with the bathymetric data acquired at shallow depth on Les Saintes insular shelf. Together with seismic reflection profiles, this data makes it possible to identify and map the fault system and to understand its kinematics with respect to the plateau formation. The 15km wide, -45m deep drowned plateau of Les Saintes is composed of four coral terraces, down to 110 m bsl, piled-up on the Upper Pliocene to Quaternary Les Saintes volcanic centres. The shallowest terrace corresponds to a drowned Holocene reef system. Reef typical features, as double barriers, pinnacles, spurs and grooves, are well identified in the bathymetry. Seismic reflection profiles indicate that the Holocene terrace overlays Pleistocene ones. Geophysical data and reef growth modeling tend to show that the reef plateau has formed under subsidence conditions (~0.35 mm/yr) since Ionian ages, recording the main sea level highstands, before being drowned during the last sea level rise, around 11ka BP. The four terraces are crosscut by several NW-SE striking normal faults, which have scarps up to 8m. They offset them, the older, the more, inducing syntectonic sedimentation. The fault system extends from the northern plateau's edge to Les Saintes channel, toward Dominica, constituting the eastern side of Les Saintes graben. In the channel, the Roseau Fault, responsible for the 2004 earthquake, bounds the graben western side. The new data confirms its extent to the north, as the fault offsets the plateau's western cliff by several tens of meter, counter-slope like, dipping under Les Saintes islands and inducing a high seismic

  1. Seismic sources and stress transfer interaction among axial normal faults and external thrust fronts in the Northern Apennines (Italy): A working hypothesis based on the 1916-1920 time-space cluster of earthquakes

    NASA Astrophysics Data System (ADS)

    Bonini, Marco; Corti, Giacomo; Donne, Dario Delle; Sani, Federico; Piccardi, Luigi; Vannucci, Gianfranco; Genco, Riccardo; Martelli, Luca; Ripepe, Maurizio

    2016-06-01

    In this study we analyse the main potential seismic sources in some axial and frontal sectors of the Northern Apennines, in Italy. This region was hit by a peculiar series of earthquakes that started in 1916 on the external thrust fronts near Rimini. Later, in 1917-1921, seismicity (up to Mw ≈ 6.5) shifted into the axial zone and clearly migrated north-westward, along the belt of active normal faults. The collection of fault-slip data focused on the active normal faults potentially involved in this earthquake series. The acquired data allowed us to better characterize the geometry and kinematics of the faults. In a few instances, the installation of local seismic networks during recent seismic sequences allowed the identification of the causative faults that are hinted to be also responsible for past earthquakes, particularly in the Romagna region and north-eastern Mugello. The Coulomb stress changes produced by the historical earthquakes generally brought closer to failure all the faults that supposedly caused the main seismic events of 1916-1921. However, the stress change magnitude is generally small and thus the static stress interaction among the main seismic sources is not supported by a significant seismic correlation. Significant stress change loading may be instead inferred for the triggering of a number of seismic events on neighbouring normal faults by the Garfagnana 1920 earthquake. In addition, the computation of the seismic stress changes suggests that seismic events with magnitude ≥ 6 may transmit stresses from the axial normal faults to specific external thrusts and vice versa. It is possible that a correlation may be made between loading applied by the major 1917-1920 extensional ruptures and the increased seismicity on the distal external thrusts.

  2. Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L'Aquila (central Italy) case study

    NASA Astrophysics Data System (ADS)

    Valoroso, L.; Chiaraluce, L.; Piccinini, D.; di Stefano, R.; Schaff, D.; Waldhauser, F.

    2013-03-01

    studied the anatomy of the fault system where the 2009 L'Aquila earthquake (MW 6.1) nucleated by means of ~64 k high-precision earthquake locations spanning 1 year. Data were analyzed by combining an automatic picking procedure for P and S waves, together with cross-correlation and double-difference location methods reaching a completeness magnitude for the catalogue equal to 0.7 including 425 clusters of similar earthquakes. The fault system is composed by two major faults: the high-angle L'Aquila fault and the listric Campotosto fault, both located in the first 10 km of the upper crust. We detect an extraordinary degree of detail in the anatomy of the single fault segments resembling the degree of complexity observed by field geologists on fault outcrops. We observe multiple antithetic and synthetic fault segments tens of meters long in both the hanging wall and footwall along with bends and cross fault intersections along the main fault and fault splays. The width of the L'Aquila fault zone varies along strike from 0.3 km where the fault exhibits the simplest geometry and experienced peaks in the slip distribution, up to 1.5 km at the fault tips with an increase in the geometrical complexity. These characteristics, similar to damage zone properties of natural faults, underline the key role of aftershocks in fault growth and co-seismic rupture propagation processes. Additionally, we interpret the persistent nucleation of similar events at the seismicity cutoff depth as the presence of a rheological (i.e., creeping) discontinuity explaining how normal faults detach at depth.

  3. Active faulting and tectonics of the Ningxia-Hui Autonomous Region, China

    NASA Astrophysics Data System (ADS)

    Qidong, Deng; Sung, Fengmin; Zhu, Shilong; Li, Mengluan; Wang, Tielin; Zhang, Weiqi; Burchfiel, B. C.; Molnar, Peter; Zhang, Peizhen

    1984-06-01

    Strike-slip, thrust, and normal faulting all seem to play an active role in the tectonics of Ningxia. In the southernmost part of the region a major left-lateral strike-slip fault enters the region from the neighboring Gansu province to the west and trends about S65°E. This fault is very clear on Landsat imagery and on aerial photos, and the portion in eastern Gansu and Ningxia broke in the Haiyuan earthquake of December 16, 1920. Displacements of 5-10 m caused by that earthquake are clear in numerous localities and accord with a revised value of the seismic moment of 1.2×1021N m. The eastern end of the Haiyuan fault terminates in a narrow south trending fold and thrust zone. Several other similar, north to northwest trending fold and thrust belts are present in the area about 50-200 km northeast of the Haiyuan fault and divide it into small, apparently relatively undeformed blocks 10-40 km in dimensions. The geometry of the structures in the fold and thrust zones and the apparently shallow depths at the time of deformation suggest that current deformation is similar to that that occurred in the fold and thrust belt of the Idaho-Wyoming Rocky Mountains. North of this area, both the Helan Shan (a horst) and the Yinchuan graben are bounded by clear, active northerly trending normal faults, in some cases with right-lateral strike-slip components. The overall deformation, hence, seems to include dominant components of east-west left-lateral strike-slip movement, northeast-southwest crustal shortening, and northwest-southeast extension. We interpret the extension as a response to a northeast directed force applied to the Ordos block and both this northeast directed force and the left-lateral slip on the Haiyuan fault to the eastward displacement of material on the northeast edge of the Tibetan plateau with respect to Eurasia north of it.

  4. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  5. Determining the Through-Going Active Fault Geometry of the Western North Anatolian Fault Through Stress Modeling

    NASA Astrophysics Data System (ADS)

    Karimi, B.; McQuarrie, N.

    2015-12-01

    The North Anatolian Fault (NAF) is a seismically active 1200 km long dextral strike-slip fault part of an east-west trending dextral shear zone (NAF system) between the Anatolian and Eurasian plates. This shear zone widens to the west, complicating potential earthquake rupture paths and highlighting the importance of understanding the geometry of active fault systems. West of the town of Bolu - the NAF bifurcates into the northern and southern strands, which converge and are linked through the Mudurnu Valley, then diverge to border the Marmara Sea. The westward continuation of these two fault traces is marked by further complexities in potential active fault geometry, particularly in the Marmara Sea (northern strand), and the Biga Peninsula (southern strand). We evaluate potential active fault geometries for both strands by comparing stress models of various fault geometries in these regions to a record of focal mechanisms and inferred paleostress from a lineament analysis. For the Marmara region, two of the three possible geometries matched the maximum horizontal stress (σH) orientations determined from a record of focal mechanisms; however, only one represented the northern and southern sidewalls associated with the principal zone of deformation of the developing Marmara basin. This suggests that it is the most likely representation of the active through-going fault geometry in the region. In the Biga Peninsula region, the active geometry of the southern strand has the southern component approaching and intersecting the northern component through a linking feature in a narrow topographic valley. This geometry was selected over two others as it overlaps the σH orientation determined from focal mechanism data and a lineament analysis. Additionally, this geometry does not develop a prominent mis-oriented NE-SW stress feature observed in the model results of the other two geometries, otherwise absent in the focal mechanism data or inferred from a lineament analysis.

  6. Mapping of active faults based on the analysis of high-resolution seismic reflection profiles in offshore Montenegro

    NASA Astrophysics Data System (ADS)

    Vucic, Ljiljana; Glavatovic, Branislav

    2014-05-01

    High-resolution seismic-reflection data analysis is considered as important tool for mapping of active tectonic faults, since seismic exploration methods on varied scales can image subsurface structures of different depth ranges. Mapping of active faults for the offshore area of Montenegro is performed in Petrel software, using reflection database consist of 2D profiles in length of about 3.500 kilometers and 311 square kilometers of 3D seismics, acquired from 1979 to 2003. Montenegro offshore area is influenced by recent tectonic activity with numerous faults, folded faults and over trusts. Based on reflection profiles analysis, the trust fault system offshore Montenegro is reveled, parallel to the coast and extending up to 15 kilometers from the offshore line. Then, the system of normal top carbonate fault planes is mapped and characterized on the southern Adriatic, with NE trending. The tectonic interpretation of the seismic reflection profiles in Montenegro point toward the existence of principally reverse tectonic forms in the carbonate sediments, covered by young Quaternary sandy sediments of thickness 1-3 kilometers. Also, reflective seismic data indicate the active uplifting of evaporite dome on about 10 kilometers of coastline.

  7. Normal faulting of the Daiichi-Kashima Seamount in the Japan Trench revealed by the Kaiko I cruise, Leg 3

    USGS Publications Warehouse

    Kobayashi, K.; Cadet, J.-P.; Aubouin, J.; Boulegue, J.; Dubois, J.; von, Huene R.; Jolivet, L.; Kanazawa, T.; Kasahara, J.; Koizumi, K.-i.; Lallemand, S.; Nakamura, Y.; Pautot, G.; Suyehiro, K.; Tani, S.; Tokuyama, H.; Yamazaki, T.

    1987-01-01

    A detailed topographic and geophysical survey of the Daiichi-Kashima Seamount area in the southern Japan Trench, northwestern Pacific margin, clearly defines a high-angle normal fault which splits the seamount into two halves. A fan-shaped zone was investigated along 2-4 km spaced, 100 km long subparallel tracks using narrow multi-beam (Seabeam) echo-sounder with simultaneous measurements of gravity, magnetic total field and single-channel seismic reflection records. Vertical displacement of the inboard half was clearly mapped and its normal fault origin was supported. The northern and southern extensions of the normal fault beyond the flank of the seamount were delineated. Materials on the landward trench slope are displaced upward and to sideways away from the colliding seamount. Canyons observed in the upper landward slope terminate at the mid-slope terrace which has been uplifted since start of subduction of the seamount. Most of the landward slope except for the landward walls aside the seamount comprises only a landslide topography in a manner similar to the northern Japan Trench wall. This survey was conducted on R/V "Jean Charcot" as a part of the Kaiko I cruise, Leg 3, in July-August 1984 under the auspices of the French-Japanese scientific cooperative program. ?? 1987.

  8. Numerical modelling of syntectonic subaqueous sedimentation: The effect of normal faulting and a relay ramp on sediment dispersal

    NASA Astrophysics Data System (ADS)

    Carmona, Ana; Gratacós, Oscar; Clavera-Gispert, Roger; Muñoz, Josep Anton; Hardy, Stuart

    2016-08-01

    Relay ramps are common in extensional settings and play a significant role in sediment dispersal as they control sedimentary pathways. Unlike for subaerial settings, the impact of subaqueous relay ramps on sediment dispersal and clastic sedimentation is less studied. In these subaqueous cases, numerical approximations could be a good approach to understand syntectonic sedimentation. Considering this, a numerical model is used to study the sedimentary infill in an extensional basin, specifically related to a relay ramp system. The study is carried out using a novel program that merges a discrete element code for tectonic deformation, and a stratigraphic modelling code for sedimentation. To perform a test study two configurations are designed: with one normal fault, and with two overlapping normal faults linked by a relay ramp. To these initial configurations, three different deformation velocities, 10, 5 and 2 cm/y, are applied in dip-slip direction. These scenarios are considered as initially submerged. The same incoming amount of three different terrigenous sediments is considered in all the experiments. These sediments are transported basinward in suspension, by processes of advection, dispersion and diffusion. Finally, these examples also include four different boundary conditions for the sedimentary model, which define the source area location for the incoming water and sediment. Results show that the source area location in relation to the available accommodation space plays the major role in the distribution of different sediment types into the basin. Nonetheless, when the source area for water and sediment is defined as regional and parallel to the fault, the grain size distribution obtained by the two overlapping faults configuration has clear asymmetries when compared with the ones obtained by one-fault configurations. Therefore, the different extensional experiments allow concluding that the relay ramp configuration can play an important role in the

  9. Safety enhancement of oil trunk pipeline crossing active faults on Sakhalin Island

    NASA Astrophysics Data System (ADS)

    Tishkina, E.; Antropova, N.; Korotchenko, T.

    2015-11-01

    The article explores the issues concerning safety enhancement of pipeline active fault crossing on Sakhalin Island. Based on the complexity and analysis results, all the faults crossed by pipeline system are classified into five categories - from very simple faults to extremely complex ones. The pipeline fault crossing design is developed in accordance with the fault category. To enhance pipeline safety at fault crossing, a set of methods should be applied: use of pipes of different safety classes and special trench design in accordance with soil permeability characteristics.

  10. The West Salton Detachment Fault, Salton Trough, California: a Primary Low-Angle Normal Fault in an Evolving Dextral Wrench Zone

    NASA Astrophysics Data System (ADS)

    Axen, G. J.; Janecke, S.; Steely, A.; Shirvell, C.; Fluette, A.; Kairouz, M.; Housen, B.; Stockli, D.; Dorsey, R.; Grove, M.

    2006-12-01

    The west Salton detachment fault (WSDF), bounded the W rift flank, and was largely coeval with the southern San Andreas fault (SSAF). The WSDF is exposed in ~E-trending folds: broad, apparently primary corrugations S. Santa Rosa Mts., Borrego Valley-Pinyon Mts., Whale Peak, Vallecito Valley, and Tiera Blanca Mts) and narrow, post-WSDF folds (e.g., adjacent to San Felipe and Earthquake Valley faults). WSDF slip may have begun at ~12+, ~8.1, 5.5 or 4.6 Ma and was probably rapid from ~5 to 2 Ma. Two (U-Th)/He vertical transects from the WSDF footwall show rapid cooling since 12 Ma, and very rapid cooling between ~5.5-4.5 and ~2 Ma. Subsidence curves from the Fish Creek Vallecito basin (FCVB; Dorsey et al., this session) show increased rates at ~8.1 Ma, 5.5, and 4.6 Ma. Syntectonic conglomerate (base ~8.1 Ma) there records earliest extension, but may have been only local. Widespread marine deposits (~6.3 to 4.25 Ma) locally contain syndetachment fault-scarp facies; eustatic sea level rise may have controlled initial marine flooding. Subsidence was most rapid from ~4.6 to 3 Ma. Upper-plate normal faults are rare but folds formed locally. At Borrego Mtn. a WNW-trending anticline formed by ~6 Ma and persisted until after 4 Ma, coeval with WSDF slip. Folding at Split Mtn may have begun earlier. The WSDF has at least 5 km of E or NE slip, from offset basement but higher WSDF strands carry syntectonic conglomerates some additional distance. (U-Th)/He apatite ages from the upper and lower plates suggest ~2.4 km of footwall exhumation, yielding 5-15 km of slip, depending upon dip assumed. WSDF striae scatter widely, but concentrate at 090-110, probably the main or most recent slip direction. CW vertical- axis rotations have occurred (Housen et al., this session): ~3-4 m.y. old FCVB strata are rotated 19° ± 12°, and footwall La Posta pluton at Whale Peak rotated perhaps 36° (relative to the Peninsular Range La Posta). Similar rotations were common in N Baja CA in latest

  11. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    NASA Astrophysics Data System (ADS)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  12. Searching for Seismically Active Faults in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Antunes, V.; Arroucau, P.

    2015-12-01

    The repeated occurrence of large magnitude earthquakes in southwest Iberia in historical and instrumental times suggests the presence of active fault segments in the region. However, due to an apparently diffuse seismicity pattern defining a broad region of distributed deformation west of Gibraltar Strait, the question of the location, dimension and geometry of such structures is still open to debate. We recently developed a new algorithm for earthquake location in 3D complex media with laterally varying interface depths, which allowed us to relocate 2363 events having occurred from 2007 to 2013, using P- and S-wave catalog arrival times obtained from the Portuguese Meteorological Institute (IPMA, Instituto Portugues do Mar e da Atmosfera), for a study area lying between 8.5˚W and 5˚W in longitude and 36˚ and 37.5˚ in latitude. The most remarkable change in the seismicity pattern after relocation is an apparent concentration of events, in the North of the Gulf of Cadiz, along a low angle northward-dipping plane rooted at the base of the crust, which could indicate the presence of a major fault. If confirmed, this would be the first structure clearly illuminated by seismicity in a region that has unleashed large magnitude earthquakes. Here, we present results from the joint analysis of focal mechanism solutions and waveform similarity between neighboring events from waveform cross-correlation in order to assess whether those earthquakes occur on the same fault plane.

  13. Channel Incision in the Inyo Mountains, CA: Transient response to non-steady slip on a Basin and Range normal fault

    NASA Astrophysics Data System (ADS)

    Goldstein, E.; Kirby, E.

    2005-12-01

    Deciphering the landscape record of tectonic forcing requires understanding the rates and processes by which changes in base level are communicated throughout the fluvial network. Progress toward this goal has been hampered in part by a lack of field sites where we can observe a transient response to a known change in boundary conditions. Here we present preliminary observations of channel profile form in the Inyo Mountains, CA. This range is bound on its eastern side by an active normal fault in Saline Valley, which links strike-slip displacement on the Hunter Mountain fault to extension in northern Saline and Eureka Valleys. Channels draining across the fault system exhibit strongly convex, non-equilibrium profiles, characterized by steep lower reaches and low-gradient upper reaches. In contrast, channels developed in similar lithology north and south of the fault tips exhibit smoothly concave profiles. Channels are developed in relatively uniform granitic bedrock and under similar climatic regimes. Upstream reaches of all channels display uniform steepness indices, consistent with a previous quasi-equilibrium form. Knickpoints separating upper and lower reaches, however, show systematic variations in elevation and upstream drainage area along strike of the range, suggesting non-uniform propagation rates. Overall, we conclude that the channels are responding to an increase in slip rate on the bounding fault. Previous structural mapping in the region suggests an increase in extension rate at ca. 1.4 Ma (Sternlof, 1988). We are undertaking a preliminary test of fluvial incision models to assess to what degree the observed differences in knickpoint position can be explained as a consequence of along-strike variations in slip rate.

  14. The effects of pre-existing discontinuities on the surface expression of normal faults: Insights from wet-clay analog modeling

    NASA Astrophysics Data System (ADS)

    Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Burrato, Pierfrancesco; Seno, Silvio; Valensise, Gianluca

    2016-08-01

    We use wet-clay analog models to investigate how pre-existing discontinuities (i.e. structures inherited from previous tectonic phases) affect the evolution of a normal fault at the Earth's surface. To this end we first perform a series of three reference experiments driven by a 45° dipping master fault unaffected by pre-existing discontinuities to generate a mechanically isotropic learning set of models. We then replicate the experiment six times introducing a 60°-dipping precut in the clay cake, each time with a different attitude and orientation with respect to an initially-blind, 45°-dipping, master normal fault. In all experiments the precut intersects the vertical projection of the master fault halfway between the center and the right-hand lateral tip. All other conditions are identical for all seven models. By comparing the results obtained from the mechanically isotropic experiments with results from experiments with precuts we find that the surface evolution of the normal fault varies depending on the precut orientation. In most cases the parameters of newly-forming faults are strongly influenced. The largest influence is exerted by synthetic and antithetic discontinuities trending respectively at 30° and 45° from the strike of the master fault, whereas a synthetic discontinuity at 60° and an antithetic discontinuity at 30° show moderate influence. Little influence is exerted by a synthetic discontinuity at 45° and an antithetic discontinuity at 60° from the strike of the master fault. We provide a ranking chart to assess fault-to-discontinuity interactions with respect to essential surface fault descriptors, such as segmentation, vertical-displacement profile, maximum displacement, and length, often used as proxies to infer fault properties at depth. Considering a single descriptor, the amount of deviation induced by different precuts varies from case to case in a rather unpredictable fashion. Multiple observables should be taken into

  15. Active faulting at Delphi, Greece: Seismotectonic remarks and a hypothesis for the geologic environment of a myth

    NASA Astrophysics Data System (ADS)

    Piccardi, Luigi

    2000-07-01

    Historical data are fundamental to the understanding of the seismic history of an area. At the same time, knowledge of the active tectonic processes allows us to understand how earthquakes have been perceived by past cultures. Delphi is one of the principal archaeological sites of Greece, the main oracle of Apollo. It was by far the most venerated oracle of the Greek ancient world. According to tradition, the mantic proprieties of the oracle were obtained from an open chasm in the earth. Delphi is directly above one of the main antithetic active faults of the Gulf of Corinth Rift, which bounds Mount Parnassus to the south. The geometry of the fault and slip-parallel lineations on the main fault plane indicate normal movement, with minor right-lateral slip component. Combining tectonic data, archaeological evidence, historical sources, and a reexamination of myths, it appears that the Helice earthquake of 373 B.C. ruptured not only the master fault of the Gulf of Corinth Rift at Helice, but also the antithetic fault at Delphi, similarly to the Corinth earthquake of 1981. Moreover, the presence of an active fault directly below the temples of the oldest sanctuary suggests that the mythological oracular chasm might well have been an ancient tectonic surface rupture.

  16. Postseismic deformation following the 1997 Umbria-Marche (Italy) moderate normal faulting earthquakes

    NASA Astrophysics Data System (ADS)

    Aoudia, A.; Borghi, A.; Riva, R.; Barzaghi, R.; Ambrosius, B. A. C.; Sabadini, R.; Vermeersen, L. L. A.; Panza, G. F.

    2003-04-01

    We combine aftershock strain mapping, GPS measurements and leveling profiles with forward modeling of viscoelastic relaxation to study the postseismic deformation of the 1997 Umbria-Marche (Central Apennines) earthquake sequence. We explore the feasibility of GPS monitoring of postseismic transients, for the first time in Italy, generated by shallow and moderate sources. Our data allow us to distinguish a preferred coseismic faulting model as well as insight into the rheology of the Central Apennines Earth's crust. The faulting model requires a listric geometry with most of the energy released in the lower half part of the elastic crust. The rheological model consists of an elastic thin upper crust, a transition zone of about 1018 Pa s underlain by a low-viscosity lower crust, ranging from 1017 to 1018 Pa s. The postseismic deformation is, both distributed in the transition zone - lower crust and confined to the fault zone.

  17. Detached strata in a Tertiary low-angle normal fault terrane, southeastern California: a sedimentary record of unroofing, breaching, and continued slip

    SciTech Connect

    Miller, J.M.G.; John, B.E.

    1988-07-01

    Miocene sedimentary strata exposed in the eastern Chemehuevi Mountains, southeastern California, record development of an evolving low-angle normal fault system. The sequence includes more than 1 km of conglomerate and sandstone with rare interbedded monolithologic breccia and volcanic flows. Clasts of Peach Springs Tuff in basal units indicate that this succession is younger than 18 Ma. These rocks have been displaced by a regionally extensive low-angle normal fault, the Chemehuevi detachment, and are folded and faulted. Structural reconstructions and the character of associated fault rocks indicate that the Chemeheuvi fault was initiated at a low angle and that the footwall was progressively unloaded through thinning and displacement of its cover during extensional deformation. The syntectonic sedimentary rocks described here provide evidence that movement continued on the gently dipping (< 15/sup 0/) fault even after part of the fault was breached and the footwall eroded. The Conglomerates and sandstones were deposited by stream flow and debris flow on alluvial fans. Synsedimentary faulting is suggested by angular discordance below one monolithologic breccia bed and by local coarsening-upward sequences. Clast types reveal progressive unroofing of hanging-wall rocks to exposer the Chemehuevi fault zone, from which chloritic, brecciated granite clasts were derived. Clasts were then derived from both the hanging wall and the footwall, footwall debris being dominant high in the section. Distinctive clasts show that late displacement on this evolving fault system was on the order of 1 to 5 km.

  18. Characterization of gear faults in variable rotating speed using Hilbert-Huang Transform and instantaneous dimensionless frequency normalization

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Chen, J. C.; Wang, C. C.

    2012-07-01

    The objective of this research is to investigate the feasibility of utilizing the instantaneous dimensionless frequency (DLF) normalization and Hilbert-Huang Transform (HHT) to characterize the different gear faults in case of variable rotating speed. The normalized DLF of the vibration signals are calculated based on the rotating speed of shaft and the instantaneous frequencies of Intrinsic Mode Functions (IMFs) which are decomposed by Empirical Mode Decomposition (EMD) process. The faulty gear features on DLF-energy distribution of vibration signal can be extracted without the presence of shaft rotating speed, so that the proposed approach can be applied for characterizing the malfunctions of gearbox system under variable shaft rotating speed. A test rig of gear transmission system is performed to illustrate the gear faults, including worn tooth, broken tooth and gear unbalance. Different methods to determine the instantaneous frequency are employed to verify the consistence of characterization results. The DLF-energy distributions of vibration signals are investigated in different faulty gear conditions. The analysis results demonstrate the capability and effectiveness of the proposed approach for characterizing the gear malfunctions at the DLFs corresponding to the meshing frequency as well as the shaft rotating frequency. The support vector machine (SVM) is then employed to classify the vibration patterns of gear transmission system at different malfunctions. Using the energy distribution at the characteristic DLFs as the features, the different fault types of gear can be identified by SVM with high accuracy.

  19. Experimental Validation of a Numerical Model for the Dip-Slip Normal Fault Rupture Propagation through Sand Deposits

    NASA Astrophysics Data System (ADS)

    Rokonuzzaman, Md.; Sakai, Toshinori; El Nahas, Ala'a.; Hossain, Md. Zakaria

    An improved numerical model for the accurate prediction of the fault rupture mechanism through the overlying soil gives confidence to the engineers in sitting the structures near or above faults. In this work, a sophisticated numerical model incorporating a hardening-softening constitutive model with shear band effect is calibrated from the direct shear model test results and validated for the prediction of the behavior of medium dense Fontainebleau sand bed due to quasi-static normal movement of the bed rock of fault with dip angle equals to 60°. The numerical results show satisfactory agreement with the experimental data from centrifuge (115g) and 1g model tests in terms of normalized vertical displacements profile of the ground surface, minimum relative vertical base displacement for the rupture to reach the ground, the average dip angle propagated into the soil as well as the horizontal extent of the deformed surface ground. The effect of the very low stress fields in the 1g tests (scale effect) is discussed.

  20. Moment magnitude, local magnitude and corner frequency of small earthquakes nucleating along a low angle normal fault in the Upper Tiber valley (Italy)

    NASA Astrophysics Data System (ADS)

    Munafo, I.; Malagnini, L.; Chiaraluce, L.; Valoroso, L.

    2015-12-01

    The relation between moment magnitude (MW) and local magnitude (ML) is still a debated issue (Bath, 1966, 1981; Ristau et al., 2003, 2005). Theoretical considerations and empirical observations show that, in the magnitude range between 3 and 5, MW and ML scale 1∶1. Whilst for smaller magnitudes this 1∶1 scaling breaks down (Bethmann et al. 2011). For accomplishing this task we analyzed the source parameters of about 1500 (30.000 waveforms) well-located small earthquakes occurred in the Upper Tiber Valley (Northern Apennines) in the range of -1.5≤ML≤3.8. In between these earthquakes there are 300 events repeatedly rupturing the same fault patch generally twice within a short time interval (less than 24 hours; Chiaraluce et al., 2007). We use high-resolution short period and broadband recordings acquired between 2010 and 2014 by 50 permanent seismic stations deployed to monitor the activity of a regional low angle normal fault (named Alto Tiberina fault, ATF) in the framework of The Alto Tiberina Near Fault Observatory project (TABOO; Chiaraluce et al., 2014). For this study the direct determination of MW for small earthquakes is essential but unfortunately the computation of MW for small earthquakes (MW < 3) is not a routine procedure in seismology. We apply the contributions of source, site, and crustal attenuation computed for this area in order to obtain precise spectral corrections to be used in the calculation of small earthquakes spectral plateaus. The aim of this analysis is to achieve moment magnitudes of small events through a procedure that uses our previously calibrated crustal attenuation parameters (geometrical spreading g(r), quality factor Q(f), and the residual parameter k) to correct for path effects. We determine the MW-ML relationships in two selected fault zones (on-fault and fault-hanging-wall) of the ATF by an orthogonal regression analysis providing a semi-automatic and robust procedure for moment magnitude determination within a

  1. Aftershocks illuninate the 2011 Mineral, Virginia, earthquake causative fault zone and nearby active faults

    USGS Publications Warehouse

    Horton, Jr., J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M

    2015-01-01

    Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.

  2. Fault localization controlled by fluid infiltration into mylonites: Formation and strength of low-angle normal faults in the midcrustal brittle-plastic transition

    NASA Astrophysics Data System (ADS)

    Selverstone, Jane; Axen, Gary J.; Luther, Amy

    2012-06-01

    Minidetachments (MDs) found in the uppermost footwall of the Whipple low-angle normal fault record physical and chemical conditions of LANF formation and early history. MDs are subparallel to the Whipple LANF and mimic features of that fault on a small scale. Principal slip surfaces and R1 Riedel shear fractures parallel C and C' planes, respectively, in adjacent mylonites. Thus, MDs likely formed subparallel to planes of maximum shear stress and were not severely misoriented during initial rupture of intact rock. Damage zones contain secondary epidote, titanite, chlorite, calcite, and felspars. Breccias record volume gains via enrichment in all elements relative to immobile Fe-Ti-Zr-P, and ultracataclasites record volume losses. Epidote and titanite are locally porphyroclastic in mylonites; cataclasites contain both old shattered fragments and new euhedral grains of these minerals. Pseudosections constrain alteration, the end of mylonitization, and cataclasis to T = 380-420°C. Fluid inclusions with 17-20 wt% CaCl2 were entrapped at 270-290, 170-200, and 80-130 MPa, consistent with a drop from lithostatic toward hydrostatic Pfluid at ˜9.5 km depth. MDs thus record (1) infiltration of reactive fluids into a mid-crustal shear zone; (2) reaction strengthening at the locus of maximum infiltration and sealing; (3) brittle fault slip triggered by fluid overpressure; and (4) permanent embrittlement following reduction of Pfluid. The brittle-plastic transition and crustal strength maximum were strongly modified by fluid- and reaction-driven mineralogical changes. At any given point in space or time, this "transition" may thus be very thin, corresponding to the thickness of the altered zones surrounding nascent LANFs.

  3. Elastic-wave propagation and site amplification in the Salt Lake Valley, Utah, from simulated normal faulting earthquakes

    USGS Publications Warehouse

    Benz, H.M.; Smith, R.B.

    1988-01-01

    The two-dimensional seismic response of the Salt Lake valley to near- and far-field earthquakes has been investigated from simulations of vertically incident plane waves and from normal-faulting earthquakes generated on the basin-bounding Wasatch fault. The plane-wave simulations were compared with observed site amplifications in the Salt Lake valley, based on seismic recordings from nuclear explosions in southern Nevada, that show 10 times greater amplification with the basin than measured values on hard-rock sites. Synthetic seismograms suggest that in the frequency band 0.3 to 1.5 Hz at least one-half the site amplitication can be attributed to the impedance contrast between the basin sediments and higher velocity basement rocks. -from Authors

  4. A study to constrain the geometry of an active fault in southern Italy through borehole breakouts and downhole logs

    NASA Astrophysics Data System (ADS)

    Pierdominici, Simona; Mariucci, Maria Teresa; Montone, Paola

    2011-10-01

    Identification of an active fault and the local versus regional present-day stress field in the Irpinia region (southern Apennines) have been performed along a 5900 m deep well (San Gregorio Magno 1) by a detailed breakout and geophysical log analysis. The selected area is characterized by diffuse low magnitude seismicity, although in historical times moderate to large earthquakes have repeatedly struck it. On 23rd November 1980 a strong earthquake ( M = 6.9) nucleated on a 38-km long normal fault, named Irpinia fault, producing the first unequivocal historical surface faulting ever documented in Italy. The analysis of stress-induced wellbore breakouts shows a direction of minimum horizontal stress N18°±24°, fairly consistent with the regional stress trend (N44°±20°). The small discrepancy between our result and the regional stress orientation might be related to the influence of local stress sources such as variations of the Irpinia fault plane orientation and the presence of differently oriented active shear zones. This paper shows for the first time a detailed analysis on the present-day stress along a well to identify the Irpinia fault at depth and constrain its geometry.

  5. Aftershocks of the 2010 Mw 7.4 Bonin Islands normal-faulting earthquake: Implication for deformation of the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Obana, K.; Takahashi, T.; No, T.; Kaiho, Y.; Kodaira, S.; Yamashita, M.; Sato, T.; Noguchi, N.; Nakamura, T.

    2011-12-01

    distribution before the OBS deployment using three seismic stations on Chichi-jima and Haha-jima Islands operated by JMA and National Research Institute for Earth Science and Disaster Prevention (NIED), Japan. We used a matched filter technique [e.g., Shelly et al., 2007] with the aftershocks determined by the OBSs as templates. The aftershocks immediately after the mainshock occurred only in a 80 km long area near the central part of the aftershock area. The aftershock area expanded over hours or days in an ESE direction away from the trench. Faults oriented from NW-SE to E-W directions have been identified around the aftershock area including a region far away from the trench [e.g., Okamura, et al., 1992]. The aftershock distribution and its expansion suggest that the mainshock occurred beneath the outer trench-slope near the trench. Then, the aftershock activity expanded along the pre-existing faults within the Pacific plate. Consideration of both normal faults formed near the trench and pre-existing fractures formed far away from the trench is required to understand the deformation and hydration of the oceanic plate prior to the subduction.

  6. The Eidsfjord shear zone, Lofoten-Vesterålen, north Norway: An Early Devonian, paleoseismogenic low-angle normal fault

    NASA Astrophysics Data System (ADS)

    Steltenpohl, Mark G.; Moecher, David; Andresen, Arild; Ball, Jacob; Mager, Stephanie; Hames, Willis E.

    2011-05-01

    We report structural and 40Ar/39Ar isotopic information on the Eidsfjord shear zone that document it to be a seismogenic, tops-west (hinterland directed), Devonian ductile low angle (25-30° dip, shallowing locally) normal detachment fault. Anorthosite/migmatitic gneiss in the detachment's upper plate, mangerite in the lower plate, and detachment mylonites are all cut by generations of abundant pseudotachylyte occurring over approximately 150 km2. The mean of four laser 40Ar/39Ar plateau ages for single crystals of recrystallized muscovite from mylonites defining the Eidsfjord shear zone indicates an age of 403.6 ± 1.1 Ma (2σ) for deformation and recrystallization. 40Ar/39Ar step-heating analyses are reported for muscovite from mylonitized rocks of the Fiskefjord shear zone, a nearby tops-east Caledonian thrust that was reactivated as a tops-west normal fault, documenting cooling of the upper plate through the ˜350 °C isotherm at ˜457 Ma. Together with Middle-Ordovician tectonothermal relics found farther west in Lofoten, tops-down-to-the-west normal-slip movement on these extensional shear zones explains maintenance of high-crustal levels throughout the Siluro-Devonian Scandian event. Potassium feldspar 40Ar/39Ar results document a pulse, or multiple pulses, of uplift and cooling between ca. 235 Ma and 185 Ma, consistent with formation of Triassic-Jurassic rift basins flanking the Lofoten Ridge. The Eidsfjord detachment appears to mark the northern terminus of the Early Devonian detachment system traceable 800 km southward to the Nordfjord-Sogn detachment and westward across the North Atlantic to detachments of roughly the same age on the conjugate side of the orogen in East Greenland. The timing, geometry, kinematics, and rheological development of Eidsfjord detachment are grossly similar to the Nordfjord-Sogn detachment but the former contrasts in that it presently lacks exposed deposits of Devonian sedimentary rocks, has smaller magnitudes of displacement

  7. Structural styles of the High Atlas mountains, Morocco: Potential hydrocarbon traps in the footwall of thrusts developed from the reactivation of syn-rift normal faults

    SciTech Connect

    Beauchamp, W.; Allmendinger, R.W.; Barazangi, M. )

    1996-01-01

    Large asymmetrical folds and box folds created by fault bend and fault propagation folding characterize the style of deformation in the High Atlas mountains. Several compressional phases of faulting and folding from the Lower Jurassic through Cenozoic indicate a long and varied tectonic origin for the High Atlas intracontinental mountain belt. Footwall shortcut faults are formed with the inversion of syn-rift listric: normal faults, and progress into low angle thrust faults with fault bend fold geometries. This style of deformation is illustrated on reprocessed seismic reflection data and confirmed by field mapping. Geological field mapping, air photographs, and Thematic Mapper imagery provide important constraints for the interpretation of seismic reflection profiles along the margins of the High Atlas mountains. Balanced cross sections across the High Atlas suggest large horizontal displacements along low angle thrust faults. These thrusts place massive Lower Jurassic carbonates above post-rift Upper Cretaceous and Tertiary rocks. Refolding of thrusts and large scale regional folds indicate oblique slip deformation during and after the inversion of syn-rift normal faults. Low angle thrusts propagate along detachments in shales and marts of the Lower Jurassic. Lower Jurassic shales provide an excellent seal for potential sandstone reservoirs in the Middle Jurassic and Triassic sandstones in the footwall of thrusts.

  8. Structural styles of the High Atlas mountains, Morocco: Potential hydrocarbon traps in the footwall of thrusts developed from the reactivation of syn-rift normal faults

    SciTech Connect

    Beauchamp, W.; Allmendinger, R.W.; Barazangi, M.

    1996-12-31

    Large asymmetrical folds and box folds created by fault bend and fault propagation folding characterize the style of deformation in the High Atlas mountains. Several compressional phases of faulting and folding from the Lower Jurassic through Cenozoic indicate a long and varied tectonic origin for the High Atlas intracontinental mountain belt. Footwall shortcut faults are formed with the inversion of syn-rift listric: normal faults, and progress into low angle thrust faults with fault bend fold geometries. This style of deformation is illustrated on reprocessed seismic reflection data and confirmed by field mapping. Geological field mapping, air photographs, and Thematic Mapper imagery provide important constraints for the interpretation of seismic reflection profiles along the margins of the High Atlas mountains. Balanced cross sections across the High Atlas suggest large horizontal displacements along low angle thrust faults. These thrusts place massive Lower Jurassic carbonates above post-rift Upper Cretaceous and Tertiary rocks. Refolding of thrusts and large scale regional folds indicate oblique slip deformation during and after the inversion of syn-rift normal faults. Low angle thrusts propagate along detachments in shales and marts of the Lower Jurassic. Lower Jurassic shales provide an excellent seal for potential sandstone reservoirs in the Middle Jurassic and Triassic sandstones in the footwall of thrusts.

  9. High-resolution relocation of aftershocks of the Mw 7.1 Darfield, New Zealand, earthquake and implications for fault activity

    NASA Astrophysics Data System (ADS)

    Syracuse, E. M.; Thurber, C. H.; Rawles, C. J.; Savage, M. K.; Bannister, S.

    2013-08-01

    Low-slip-rate regions often represent under-recognized hazards, and understanding the progression of seismicity when faults in such areas rupture will help us to better understand earthquake rupture patterns. The 3 September 2010 (UTC) Mw 7.1 Darfield earthquake revealed a formerly unrecognized set of faults in the Canterbury region of New Zealand, an area that had previously been mapped as one of the lower-hazard areas in the country. In this study, we analyze the first four months of its aftershock sequence to identify active faults and temporal changes in seismicity along them. We jointly invert for three-dimensional P wave and S wave velocities and hypocentral locations, using data for 2840 aftershocks recorded at 36 temporary and permanent seismic stations within 70 km of the main shock epicenter. These relocations delineate eight individual faults active prior to the 22 February 2011 Mw 6.3 Christchurch earthquake, the largest aftershock of the Darfield earthquake. Two of these faults are in the Christchurch region, one of which corresponds to geodetically determined rupture planes of the Christchurch earthquake. Using focal mechanisms calculated from first-motion polarities, we find mainly strike-slip faulting events, with some reverse and normal faulting events as well. We compare the orientations of these faults to the prevailing regional stress directions to identify which faults may have been active prior to the Darfield earthquake and which may be newly developed.

  10. Distribution and migration of aftershocks of the 2010 Mw 7.4 Ogasawara Islands intraplate normal-faulting earthquake related to a fracture zone in the Pacific plate

    NASA Astrophysics Data System (ADS)

    Obana, Koichiro; Takahashi, Tsutomu; No, Tetsuo; Kaiho, Yuka; Kodaira, Shuichi; Yamashita, Mikiya; Sato, Takeshi; Nakamura, Takeshi

    2014-04-01

    describe the aftershocks of a Mw 7.4 intraplate normal-faulting earthquake that occurred 150 km east Ogasawara (Bonin) Islands, Japan, on 21 December 2010. It occurred beneath the outer trench slope of the Izu-Ogasawara trench, where the Pacific plate subducts beneath the Philippine Sea plate. Aftershock observations using ocean bottom seismographs (OBSs) began soon after the earthquake and multichannel seismic reflection surveys were conducted across the aftershock area. Aftershocks were distributed in a NW-SE belt 140 km long, oblique to the N-S trench axis. They formed three subparallel lineations along a fracture zone in the Pacific plate. The OBS observations combined with data from stations on Chichi-jima and Haha-jima Islands revealed a migration of the aftershock activity. The first hour, which likely outlines the main shock rupture, was limited to an 80 km long area in the central part of the subsequent aftershock area. The first hour activity occurred mainly around, and appears to have been influenced by, nearby large seamounts and oceanic plateau, such as the Ogasawara Plateau and the Uyeda Ridge. Over the following days, the aftershocks expanded beyond or into these seamounts and plateau. The aftershock distribution and migration suggest that crustal heterogeneities related to a fracture zone and large seamounts and oceanic plateau in the incoming Pacific plate affected the rupture of the main shock. Such preexisting structures may influence intraplate normal-faulting earthquakes in other regions of plate flexure prior to subduction.

  11. Structural inheritance during normal fault growth in multi-phase rifts; a case study from the Northern North Sea

    NASA Astrophysics Data System (ADS)

    Fazli Khani, Hamed; Bell, Rebecca E.; Fossen, Haakon; A-L. Jackson, Christopher; Rotevatn, Atle; Gawthorpe, Robert L.

    2015-04-01

    In multi-phase rift systems such as the northern North Sea rift, pre-existing basement structures influence the nucleation, growth and linkage of rift-related normal faults. However, our understanding of the degree of physical and kinematic linkage between basement and cover structures is limited, since deep structures are generally poorly imaged on seismic reflection data. In the North Sea Rift, two main phases of rifting are recognized in the Permian-Triassic and Middle Jurassic-to-Early Cretaceous. Moreover, prior to rifting, the area underwent multiple episodes of deformation during the Ordovician-Devonian Caledonian orogeny and Devonian extension. In this study we investigate the influence of pre-existing structures on the i) evolution of Permian-Triassic and Middle Jurassic-Early Cretaceous normal fault systems and ii) distribution of strain during reactivation of older structures in the northern North Sea rift. For this purpose we utilize 2D (-9 s TWT) and 3D seismic reflection and borehole data from the North Viking Graben, covering the Horda Platform in the east and the East Shetland Basin in the west. We show that low-angle (< 30°) intrabasement reflections extend, in some areas, upward into the Triassic section. West-dipping and east-dipping intrabasement structures are identified in the Horda Platform and East Shetland Basin respectively, while in the Northern Viking Graben area both west and east-dipping structures are mapped. At depth, some of intrabasement structures terminate against high-amplitude reflections in the lower-crust. This study documents dissimilar development of Intrabasement structures in the Horda Platform, Viking Graben and East Shetland Basin. In the Viking Graben and Horda Platform these structures are more developed and in some places cross-cut each other, while in the East Shetland Basin, only two sets of structures have been mapped. We also show that intrabasement structures in the Horda Platform are generally lower angle than

  12. Structural and Lithologic Characteristics of the Wenchuan Earthquake Fault Zone and its Relationship with Seismic Activity

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, H.; Pei, J.; Li, T.; Huang, Y.; Zhao, Z.

    2010-12-01

    the older earthquake, but rather along the edge of the gouge. According to the gouge statistics of the whole fault zone, seismic events have the obvious tendency towards the foot wall, and the thickness of gouge is proportional to the activity of the fault, indicating that the width of fault zone is directly related to the number and evolution history of earthquakes . Repeated earthquakes maybe the main cause for the formation of the Longmenshan Moutains

  13. The January 2010 Efpalion earthquakes (Gulf of Corinth, Central Greece): earthquake interactions and blind normal faulting

    NASA Astrophysics Data System (ADS)

    Ganas, Athanassios; Chousianitis, Kostas; Batsi, Evaggelia; Kolligri, Maria; Agalos, Apostolos; Chouliaras, Gerassimos; Makropoulos, Kostas

    2013-04-01

    On 18 January 2010, 15:56 UTC, a M w = 5.1 (National Observatory of Athens; NOA) earthquake occurred near the town of Efpalion (western Gulf of Corinth, Greece), about 10 km to the east of Nafpaktos, along the north coast of the Gulf. Another strong event occurred on 22 January 2010, 00:46 UTC with M w = 5.1 (NOA) approximately 3 km to the NE of the first event. We processed the seismological and geodetic data to examine fault plane geometry, dip direction, and earthquake interactions at the western tip of the Corinth rift. Our data include relocated epicenters of 1,760 events for the period January-June 2010 and daily global positioning system observations from the Efpalio station for the period 1 December 2009-1 March 2010. We suggest that the first event ruptured a blind, north-dipping fault, accommodating north-south extension of the Western Gulf of Corinth. The dip direction of the second event is rather unclear, although a south dip plane is weakly imaged in the post-22 January 2010 aftershock distribution. A Coulomb stress model based on homogeneous slip distribution of the first event showed static stress triggering of the second event of the order of 22-34 KPa that was transferred along the plane of failure. We also point out the existence of north dipping, high-angle faults at 10-15 km depths, which were reactivated because of Coulomb stress transfer, to the west and south of Efpalion. The January 2010 earthquakes ended a 15-year-old quiescence in that area of the Gulf. The crustal volume near Efpalion was also characterized by b values in the range 0.6-0.8 (1970-2010 period).

  14. Viscous roots of active seismogenic faults revealed by geologic slip rate variations

    NASA Astrophysics Data System (ADS)

    Cowie, P. A.; Scholz, C. H.; Roberts, G.; Faure Walker, J.; Steer, P.

    2013-12-01

    Viscous flow at depth contributes to elastic strain accumulation along seismogenic faults during both post-seismic and inter-seismic phases of the earthquake cycle. Evaluating the importance of this contribution is hampered by uncertainties regarding (i) the extent to which viscous deformation occurs in shear zones or by distributed flow within the crust and/or upper mantle, and (ii) the value of the exponent, n, in the flow law that relates strain rate to applied stress. Geodetic data, rock deformation experiments, and field observations of exhumed (inactive) faults provide strong evidence for non-linear viscous flow but may not fully capture the long term, in situ behaviour of active fault zones. Here we demonstrate that strain rates derived from Holocene offsets on seismogenic normal faults in the actively uplifting and extending central and southern Italian Apennines may be used to address this issue. The measured strain rates, averaged over a time scale of 104 years, exhibit a well-defined power-law dependence on topographic elevation with a power-law exponent ≈ 3.0 (2.7 - 3.4 at 95% CI; 2.3 - 4.0 at 99% CI). Contemporary seismicity indicates that the upper crust in this area is at the threshold for frictional failure within an extensional stress field and therefore differential stress is directly proportional to elevation. Our data thus imply a relationship between strain rate and stress that is consistent with non-linear viscous flow, with n ≈ 3, but because the measurements are derived from slip along major crustal faults they do not represent deformation of a continuum. We know that, down-dip of the seismogenic part of active faults, cataclasis, hydrous alteration, and shear heating all contribute to grain size reduction and material weakening. These processes initiate localisation at the frictional-viscous transition and the development of mylonitic shear zones within the viscous regime. Furthermore, in quartzo-feldspathic crust, mylonites form a

  15. Using optical dating to assess the recent activity of active faults in Hsinchu Area, northwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Watanuki, T.; Chen, Y.

    2003-12-01

    The aim of this study is to evaluate the recent activity of active fault systems mapped in Hsinchu area, northwestern Taiwan. Since it is the largest site of industrial park and highly populated, it is essential to assess potential of earthquake hazards. As a result of previous work, two active fault systems (Hsinchu and Hsincheng) were identified as active. However, they have not been included in dangerous active faults on published map because Holocene offset has not been confirmed yet. Relationship between five river terraces and faults were discussed by mapping on geomorphic features; both of these thrust faults contain active anticlines in their hanging walls based on folded terraces that are composed of young alluvial deposits. Neither long-term nor short-term slip rate has been reported due to lack of age control on development timing of the terraces mentioned above. We collected samples from these terraces and open-pit trench on the highest terrace, where intercalated sandy layers are found within cobbles. As literatures optically stimulated luminescence (OSL) dating method can directly measure the burial ages of sedimentary deposits that underwent a short period of sunlight bleaching. Therefore, OSL dating is applied via single aliquot regeneration method on sand size quartz extract from our study terraces. OSL ages about 46ka and 68-75ka are obtained from 4 fluvial deposits at trenching site. We tentatively suggest that the terrace was abandoned by the main channel after 68ka and then upper strata were subsequently deposited by local small creeks. The vertical displacements cross these Hsinchu and Hsincheng active faults are ca. 90m and 70m, respectively since 68ka. Consequently, the derived long-term rates of vertical slip are 1.3 and 1.0 m/ka respectively for both of them. The details of the other age results and discussion on recent structural behavior will be presented.

  16. Late Quaternary Normal Faulting and Hanging Wall Basin Evolution of the Southwestern Rift Margin From Gravity and Geology, B.C.S., MX and Exploring the Influence of Text-Figure Format on Introductory Geology Learning

    NASA Astrophysics Data System (ADS)

    Busch, Melanie M. D.

    2011-12-01

    An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely rifted plate margin, gravity surveys were conducted across the normal-fault-bounded basins within the gulf-margin array and, along with optically stimulated luminescence dating of offset surfaces, fault-slip rates were estimated and fault patterns across basins were assessed, providing insight into sedimentary basin evolution. Additionally, detailed geologic and geomorphic maps were constructed along two faults within the system, leading to a more complete understanding of the role of individual normal faults within a larger array. These faults slip at a low rate (0.1--1 mm/yr) and have relatively shallow hanging wall basins (˜500--3000 m). Overall, the gulf-margin faults accommodate protracted, distributed deformation at a low rate and provide a minor contribution to overall rifting. Integrating figures with text can lead to greater science learning than when either medium is presented alone. Textbooks, composed of text and graphics, are a primary source of content in most geology classes. It is essential to understand how students approach learning from text and figures in textbook-style learning materials and how the arrangement of the text and figures influences their learning approach. Introductory geology students were eye tracked while learning from textbook-style materials composed of text and graphics. Eye fixation data showed that students spent less time examining the figure than the text, but the students who more frequently examined the figure tended to improve more from the pretest to the posttest. In general, students tended to examine the figure at natural breaks in the reading. Textbook-style materials

  17. Relative tectonic activity assessment along the East Anatolian strike-slip fault, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Khalifa, Abdelrahman

    2016-04-01

    The East Anatolian transform fault is a morphologically distinct and seismically active left-lateral strike-slip fault that extends for ~ 500 km from Karlıova to the Maraş defining the boundary between the Anatolian Block and Syrian Foreland. Deformed landforms along the East Anatolian fault provide important insights into the nature of landscape development within an intra-continental strike-slip fault system. Geomorphic analysis of the East Anatolian fault using geomorphic indices including mountain front sinuosity, stream length-gradient index, drainage density, hypsometric integral, and the valley-width to valley height ratio helped differentiate the faulting into segments of differing degrees of the tectonic and geomorphic activity. Watershed maps for the East Anatolian fault showing the relative relief, incision, and maturity of basins along the fault zone help define segments of the higher seismic risk and help evaluate the regional seismic hazard. The results of the geomorphic indices show a high degree of activity, reveal each segment along the fault is active and represent a higher seismic hazard along the entire fault.

  18. The 2014 Mw6.2 Eketahuna earthquake, Hikurangi subduction zone - normal faulting in the subducted Pacific Plate crust

    NASA Astrophysics Data System (ADS)

    Abercrombie, R. E.; Bannister, S. C.; Francois-Holden, C.; Hamling, I. J.; Ristau, J. P.

    2014-12-01

    The 2014 January 20th M6.2 Eketahuna earthquake occurred in the subducted crust of the Pacific plate at the Hikurangi subduction zone, beneath North Island, New Zealand. Moment tensor analysis together with aftershock relocations show that this event was an oblique-normal faulting intraplate event, with hypocentre depth ca.30 km, and with rupture on a northwest-dipping fault extending through the subducted crust up to the subduction megathrust at ca.18-20 km depth. More than 3500 aftershocks were subsequently recorded by the New Zealand GeoNet network, with only minor migration of the aftershocks away from the inferred mainshock rupture, and with very few aftershocks within +/- 1 km of the subduction megathrust. The megathrust in this particular region is inferred to be interseismically locked with no seismic or aseismic slip, although slow slip is occurring ca.15-30 km down-dip (Wallace et al, 2013). Similar oblique-normal faulting events have previously occurred along the Hikurangi subduction margin, including in 1985 (ML5.7) and 1990 (Mw6.2). Earlier earthquakes in 1942 (Mw6.8) and 1921 (Mw6.8) are also inferred to have occurred at a similar depth within the subducted crust. The 1990 earthquake sequence occurred ~40 km along-strike from the 2014 Eketahuna event, and involved a Mw6.2 oblique-normal faulting event in the subducted crust, which was quickly followed by a Mw6.4 event in the overlying crust, with both thrust and dextral strike-slip components, possibly responding to deeper aseismic slip. Deeper earthquakes of similar type at other subduction margins are thought to be high stress drop. We calculate the stress drops of the mainshock and larger aftershocks, using a direct wave, empirical Green's function (EGF) approach that includes measurement uncertainties and objective criteria for assessing the quality of each spectral ratio (Abercrombie, 2013). We compare the results to those for earthquakes in other tectonic regions of New Zealand, calculated using

  19. Identifying buried segments of active faults in the northern Rio Grande Rift using aeromagnetic, LiDAR,and gravity data, south-central Colorado, USA

    USGS Publications Warehouse

    Ruleman, Cal; Grauch, V. J.

    2013-01-01

    Combined interpretation of aeromagnetic and LiDAR data builds on the strength of the aeromagnetic method to locate normal faults with significant offset under cover and the strength of LiDAR interpretation to identify the age and sense of motion of faults. Each data set helps resolve ambiguities in interpreting the other. In addition, gravity data can be used to infer the sense of motion for totally buried faults inferred solely from aeromagnetic data. Combined interpretation to identify active faults at the northern end of the San Luis Basin of the northern Rio Grande rift has confirmed general aspects of previous geologic mapping but has also provided significant improvements. The interpretation revises and extends mapped fault traces, confirms tectonic versus fluvial origins of steep stream banks, and gains additional information on the nature of active and potentially active partially and totally buried faults. Detailed morphology of surfaces mapped from the LiDAR data helps constrain ages of the faults that displace the deposits. The aeromagnetic data provide additional information about their extents in between discontinuous scarps and suggest that several totally buried, potentially active faults are present on both sides of the valley.

  20. Delineation of Urban Active Faults Using Multi-scale Gravity Analysis in Shenzhen, South China

    NASA Astrophysics Data System (ADS)

    Xu, C.; Liu, X.

    2015-12-01

    In fact, many cities in the world are established on the active faults. As the rapid urban development, thousands of large facilities, such as ultrahigh buildings, supersized bridges, railway, and so on, are built near or on the faults, which may change the balance of faults and induce urban earthquake. Therefore, it is significant to delineate effectively the faults for urban planning construction and social sustainable development. Due to dense buildings in urban area, the ordinary approaches to identify active faults, like geological survey, artificial seismic exploration and electromagnetic exploration, are not convenient to be carried out. Gravity, reflecting the mass distribution of the Earth's interior, provides a more efficient and convenient method to delineate urban faults. The present study is an attempt to propose a novel gravity method, multi-scale gravity analysis, for identifying urban active faults and determining their stability. Firstly, the gravity anomalies are decomposed by wavelet multi-scale analysis. Secondly, based on the decomposed gravity anomalies, the crust is layered and the multilayer horizontal tectonic stress is inverted. Lastly, the decomposed anomalies and the inverted horizontal tectonic stress are used to infer the distribution and stability of main active faults. For validating our method, a case study on active faults in Shenzhen City is processed. The results show that the distribution of decomposed gravity anomalies and multilayer horizontal tectonic stress are controlled significantly by the strike of the main faults and can be used to infer depths of the faults. The main faults in Shenzhen may range from 4km to 20km in the depth. Each layer of the crust is nearly equipressure since the horizontal tectonic stress has small amplitude. It indicates that the main faults in Shenzhen are relatively stable and have no serious impact on planning and construction of the city.

  1. Surface evidence of active tectonics along the Pergola-Melandro fault: A critical issue for the seismogenic potential of the southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Moro, Marco; Amicucci, Laura; Cinti, Francesca R.; Doumaz, Fawzi; Montone, Paola; Pierdominici, Simona; Saroli, Michele; Stramondo, Salvatore; Di Fiore, Boris

    2007-08-01

    The Pergola-Melandro basin (southern Apennines) is characterized by a below-average release of seismic energy within a wider earthquake-prone region. In fact, it is placed between the maximum intensity areas of two of the most destructive earthquakes reported in the Italian seismic catalogue: the M ≥ 7.0 Agri Valley earthquake in 1857 and the Ms = 6.9 Irpinia earthquake in 1980. In this work, we present geomorphologic analysis, electrical resistivity surveys and field data, including paleoseismologic evidence, that provided the first direct constraints on the presence of a ˜20 km long, seismogenic fault at the western border of the Pergola-Melandro basin. We also obtained geological information on the recent deformation history of the Pergola-Melandro fault that indicates the occurrence of at least four surface faulting earthquakes since Late Pleistocene age. The empirical relationships linking fault length and magnitude would assign to the Pergola-Melandro fault an event of M ≥ 6.5. These new data have important implication on the seismic hazard assessment of this sector of the Apennines, that also includes large cities such as Potenza, about 20 km far from the recognized Pergola-Melandro fault, and highlight the relevance of the geological approach in areas where the seismological records are poor. Finally, we discuss the Pergola-Melandro fault within the regional seismotectonic context. In particular, this fault belongs to the system of normal faults with an apenninic orientation, both NE and SW dipping, accommodating the NE-crustal extension taking place in the area. Nearby faults, similarly oriented but with opposite dip, may coexist whether linked by secondary faults that act as slip transfer structures. This complex system of active faults would be more realistic than a narrow band of faults running along the belt axis with an homogenous geometry, and moreover, it is more consistent with the high extension rate measured by historical earthquakes and

  2. Recent, slow normal and strike-slip faulting in the Pasto Ventura region of the southern Puna Plateau, NW Argentina

    USGS Publications Warehouse

    Zhou, Renjie; Schoenbohm, Lindsay M.; Cosca, Michael

    2013-01-01

    Recent normal and strike-slip faulting on the Puna Plateau of NW Argentina has been linked to lithospheric foundering, gravitational spreading, plate boundary forces and a decrease in crustal shortening from north to south. However, the timing, kinematics and rate of extension remain poorly constrained. We focus on the Pasto Ventura region (NW Argentina) located on the southern Puna Plateau and recent deformation (<1 Ma). Field mapping and kinematic analysis across offset volcanic cinder cones show that the overall extension direction is subhorizontal, is oriented NE-SW to NNE-SSW, and occurs at a slow, time-integrated rate of 0.02 to 0.08 mm/yr since at least 0.8–0.5 Ma. A regional compilation from this study and existing data shows that recent extension across the Puna Plateau is subhorizontal but varies in azimuthal orientation dramatically. Data from the Pasto Ventura region are consistent with a number of models to explain normal and strike-slip faulting on the Puna Plateau, all of which likely influence the region. Some role for lower lithospheric foundering through dripping appears to be seen based on the regional extension directions and ages of mafic volcanism in the southern Puna Plateau.

  3. Active faults crossing trunk pipeline routes: some important steps to avoid the disaster

    NASA Astrophysics Data System (ADS)

    Besstrashnov, Vladimir; Strom, Alexander

    2010-05-01

    Trunk pipelines that pass through tectonically active areas connecting oil and gas reservoirs with terminals and refineries cross active faults that can produce large earthquakes. Besides strong motion affecting vast areas, these earthquakes are often associated with surface faulting that provides additional hazard to pipelines. To avoid significant economic losses and environmental pollution, pipelines should be designed to sustain both effects (shaking and direct rupturing) without pipe damage and spill. Special studies aimed to provide necessary input data for the designers should be performed in the course of engineering survey. However, our experience on conducting and review of such studies for several oil and gas trunk pipelines in Russia show urgent need of more strict definition of basic conceptions and approaches used for identification and localization of these potentially hazardous tectonic features. Identification of active faults (fault zones) considered as causative faults - sources of strong motion caused by seismic waves that affect dozens kilometers of pipeline route can be done by use of both direct and indirect evidence of Late Pleistocene - Holocene activity of faults and fault zones. Since strong motion parameters can be considered as constant within the near-field zone, which width in case of large earthquake is up to dozens kilometers, accuracy of active fault location is not so critical and ±1-2 km precision provided by use of indirect evidence is acceptable. In contrast, if one have to identify and characterize zones of potential surface rupturing that require special design of the endangered pipeline section, only direct evidence of such activity can provide reliable input data for crossing design with relevant accuracy of fault location, amount and direction of displacement. Only traces of surface faults displacing Late Pleistocene - Holocene sediments and/or geomorphic features are considered as direct evidence of fault activity. Just

  4. A test of the longevity of impact-induced faults as preferred sites for later tectonic activity

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Duxbury, Elizabeth D.

    1987-01-01

    The hypothesis that impact-induced faults have been preferred sites for later deformation in response to lithospheric stresses has been suggested for several planets and satellites. This hypothesis is investigated on earth by examining whether terrestrial impact structures show higher rates of nearby earthquake activity than do surrounding intraplate regions. For 28 of 30 probable impact structures having an original crater 20 km or more in diameter, the rates of nearby seismicity have been no higher than the regional background rates. For two large probable impact structures, Vredefort and Charlevoix, with higher than normal rates of nearby seismicity, factors other than slip on impact-induced faults appear to control the occurrence of earthquakes. It is concluded that impact-induced faults, at least on earth, do not persist as lithospheric 'weak zones' for periods in excess of several million years after the impact event.

  5. Advanced InSAR and GPS measurements for the detection of surface movements along the Alto Tiberina (Italy) normal fault system: data modeling and future perspectives

    NASA Astrophysics Data System (ADS)

    Anderlini, L.; Polcari, M.; Bignami, C.; Pepe, A.; Solaro, G.; Serpelloni, E.; Moro, M.; Albano, M.; Chiaraluce, L.; Stramondo, S.

    2014-12-01

    The Alto Tiberina fault (ATF) is a low-angle (east-dipping at 15°), 70 km long normal fault (LANF) located in the Umbria-Marche Apennines (central Italy), an area characterized by a SW-NE oriented extension occurring at rates of ~2 mm/yr. Active extension is precisely measured by a dense distribution of GPS stations belonging to several networks, thanks also to additional sites recently installed in the framework of the INGV national RING network and of the ATF observatory. Advanced Interferometry SAR (A-InSAR) techniques play today a key role in Earth Sciences thanks to their capability to detect and monitor slow surface movements over wide areas. A-InSAR techniques, along with in-situ ground measurements, can provide suitable information on the causes of interseismic (seismic, creep) movements. Large datasets of SAR images of European (ERS 1-2 and ENVISAT) and Italian (COSMO-SKyMed) satellites have been used to retrieve surface velocity maps and relevant time series from 1992 to 2014, along both ascending and descending orbits. A network of artificial Corner Reflectors has also been deployed in the proximity of some GPS sites in order to calibrate the processing results of the COSMO-SkyMed SAR data-set and to derive velocity maps. We use an elastic Block Modeling (BM) approach in order to model GPS data by considering the major fault systems as bounds of rotating blocks, while estimating geodetic fault slip-rates.,Thanks to the latest imaging of its deep structure obtained from seismic profiles, the ATF is represented as a complex rough surface with the goal of evaluating the distribution of interseismic fault coupling. The preliminary results obtained show firstly that the observed extension is partially accommodated by interseismic deformation on the ATF, highlighting the important role of this LANF inside an active tectonic contest. Secondarily, using the ATF surface "topography", we found for the resolved areas an interesting correlation between

  6. Transition from collision to subduction in Western Greece: the Katouna-Stamna active fault system and regional kinematics

    NASA Astrophysics Data System (ADS)

    Pérouse, E.; Sébrier, M.; Braucher, R.; Chamot-Rooke, N.; Bourlès, D.; Briole, P.; Sorel, D.; Dimitrov, D.; Arsenikos, S.

    2016-06-01

    Transition from subduction to collision occurs in Western Greece and is accommodated along the downgoing plate by the Kefalonia right-lateral fault that transfers the Hellenic subduction front to the Apulian collision front. Here we present an active tectonic study of Aitolo-Akarnania (Western Greece) that highlights how such a transition is accommodated in the overriding plate. Based on new multi-scale geomorphic and tectonic observations, we performed an accurate active fault trace mapping in the region, and provide evidence for active normal and left-lateral faulting along the Katouna-Stamna Fault (KSF), a 65-km-long NNW-striking fault system connecting the Amvrakikos Gulf to the Patras Gulf. We further show that the Cenozoic Hellenide thrusts located west of the KSF are no longer active, either in field observation or in GPS data, leading us to propose that the KSF forms the northeastern boundary of a rigid Ionian Islands-Akarnania Block (IAB). Cosmic ray exposure measurements of 10Be and 36Cl were performed on a Quaternary alluvial fan offset along the KSF (~50 m left-lateral offset). A maximum abandonment age of ~12-14 ka for the alluvial fan surface can be determined, giving an estimated KSF minimum geological left-lateral slip rate of ~4 mm year-1, in agreement with high GPS slip rates (~10 mm year-1). Despite this high slip rate, the KSF is characterized by subdued morphological evidence of tectonic activity, a gypsum-breccia bedrock and a low level of seismicity, suggesting a dominantly creeping behavior for this fault. Finally, we discuss how the IAB appears to have been progressively individualized during the Pleistocene (younger than ~1.5 Ma).

  7. Recently active traces of the Bartlett Springs Fault, California: a digital database

    USGS Publications Warehouse

    Lienkaemper, James J.

    2010-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Bartlett Springs Fault Zone, California. The location and recency of the mapped traces is primarily based on geomorphic expression of the fault as interpreted from large-scale aerial photography. In a few places, evidence of fault creep and offset Holocene strata in trenches and natural exposures have confirmed the activity of some of these traces. This publication is formatted both as a digital database for use within a geographic information system (GIS) and for broader public access as map images that may be browsed on-line or download a summary map. The report text describes the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map.

  8. Active tectonics of the Ganzi-Yushu fault in the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shi, Feng; He, Honglin; Densmore, Alexander L.; Li, An; Yang, Xiaoping; Xu, Xiwei

    2016-04-01

    The ongoing convergence between India and Eurasia apparently is accommodated not merely by crustal shortening in Tibet, instead also by motions along strike slip faults which are usually boundaries between tectonic blocks, especially in the Tibetan Plateau. Quantification of this strike slip faulting is fundamental for understanding the collision between India and Eurasia. Here, we use a variety of geomorphic observations to place constraints on the late Quaternary kinematics and slip rates of the Ganzi-Yushu fault, one of the significant strike-slip faults in eastern Tibet. The Ganzi-Yushu fault is an active, dominantly left-lateral strike-slip structure that can be traced continuously for up to 500 km along the northern boundary of the clockwise-rotating southeastern block of the Tibetan Plateau. We analyse geomorphic evidence for deformation, and calculate the late Quaternary slip rates at four sites along the eastern portion of the fault trace. The latest Quaternary apparent throw rates are variable along strike but are typically ~ 1 mm/a. Rates of strike-slip displacement are likely to be an order of magnitude higher, 8-11 mm/a. Trenching at two locations suggests that the active fault behaviour is dominated by strike-slip faulting and reveals several earthquake events with refined information of timing. The 2010 Mw 6.9 Yushu earthquake, which occurred on the northwestern segment of the Ganzi-Yushu fault zone, provides additional evidence for fault activity. These observations agree with GPS-derived estimates, and show that late Quaternary slip rates on the Ganzi-Yushu fault are comparable to those on other major active strike-slip faults in the eastern Tibetan Plateau.

  9. SURFACE RUPTURE OF THE NORMAL SEISMIC FAULTS AND SLOPE FAILURES APPEARED IN APRIL 11th, 2011 FUKUSHIMA-PREFECTURE HAMADOORI EARTHQUAKE

    NASA Astrophysics Data System (ADS)

    Kazmi, Zaheer Abbas; Konagai, Kazuo; Kyokawa, Hiroyuki; Tetik, Cigdem

    On April 11th, 2011, Iwaki region of Fukushima prefecture was jolted by Fukushima-Prefecture Hamadoori Earthquake. Surface ruptures were observed along causative Idosawa and Yunotake normal faults. In addition to numerous small slope failures, a coherent landslide and building structures of Tabito Junior High School, bisected by Idosawa Fault, were found along the causative faults. A precise digital elevation model of the coherent landslide was obtained through the ground and air-born LiDAR surveys. The measurements of perimeters of the gymnasium building and the swimming pool of Tabito Junior High School have shown that ground undergoes a slow and steady/continual deformation.

  10. Faults and associated landslides on the Torrey Pines mesa, an expression of the active Rose Canyon fault zone, La Jolla, California

    SciTech Connect

    Rindell, A.K. )

    1993-04-01

    The Rose Canyon fault zone (RCFZ), San Diego's active NW striking right-lateral wrench, bends to the left at La Jolla, creating a poorly understood zone of transpression. North of La Jolla, continuing investigations along seacliffs and road-cuts have exposed a number of en echelon, NE striking antithetic faults previously interpreted as either E-W striking faults, landslides, and/or Eocene soft-sediment deformations. However, thrust faulting and left-lateral movement, in addition to antithetic strikes, indicates that at least one of these, the Marine Fisheries fault, is associated with the RCFZ. A graben formed by a left-step along this fault has led to land subsidence and engineering problems for the National Marine Fisheries building. In addition, progressive seacliff retreat here and at other locations is partly controlled by fault associated fractures. A cliff-face exposure of the Salk fault reveals diverging fault splays flattening to the near horizontal with movement occurring along bedding planes within the sedimentary section, creating the appearance of landsliding. Classic flower structures have also been found up to 5 km inland, along NE strikes to the shoreline exposures of the Salk and Scripps faults. Faults traces are generally obscured by urbanization and numerous ancient and/or presently active coherent landslides. Although these faults are classified as only potentially active, timing and risk of seismic movement are not well constrained. In addition, record rainfalls in San Diego County have dramatically increased landsliding potential. A well exposed dike, dated at 11 Ma (older than the Pliocene age of the RCFZ), is exposed from the seacliffs offshore towards the RCFZ. It has a significant magnetic anomaly ranging up to 450 gammas and appears to be offset by the Marine Fisheries and Scripps faults. Measuring offsets of this and other reported and suspected offshore dikes may better define total offset from both the RCFZ and antithetic faulting.

  11. 3-D palinspastic restoration of normal faults in the Inner Moray Firth: implications for extensional basin development

    NASA Astrophysics Data System (ADS)

    Barr, David

    1985-10-01

    Balanced cross-section techniques, and the construction of a restored section, permit 2-dimensional palinspastic restorations to be made in both compressional and extensional terraines. In 3 dimensions, an equivalent restoration can be made by assuming conservation of bedding-plane area and considering the volume of a stratigraphic interval rather than its cross-sectional area. Extensional basins displaying upper crustal listric normal faulting are particularly amenable to this approach. Computerised 3-D restorations have been made of the Inner Moray Firth basin, offshore Scotland. This basin is not isostatically compensated, and was produced by 7-8% post-Triassic extension, of which 2.5-3% is post-Jurassic, above a detachment surface at 20-25 km depth, close to the base of the crust. Limited lower crustal thinning (and lithospheric stretching) has affected the eastern part of the basin, but this can account for no more than half of the measured upper crustal extension. Some of this shallow extension is probably coupled by low-angle faults or shear zones into major zones of lithospheric stretching such as the North Sea grabens, where it may help account for discrepancies between estimates of lithospheric thinning and upper crustal extension.

  12. Upper Pleistocene - Holocene activity of the Carrascoy Fault (Murcia, SE Spain): preliminary results from paleoseismological research.

    NASA Astrophysics Data System (ADS)

    Martin-Banda, Raquel; Garcia-Mayordomo, Julian; Insua-Arevalo, Juan M.; Salazar, Angel; Rodriguez-Escudero, Emilio; Alvarez-Gomez, Jose A.; Martinez-Diaz, Jose J.; Herrero, Maria J.; Medialdea, Alicia

    2014-05-01

    The Carrascoy Fault is located in the Internal Zones of the Betic Cordillera (Southern Spain). In particular, the Carrascoy Fault is one of the major faults forming the Eastern Betic Shear Zone, the main structure accommodating the convergence between Nubian and Eurasian plates in the westernmost Mediterranean. So far, the Carrascoy Fault has been defined as a left-lateral strike-slip fault. It extends for at least 31 km in a NE-SW trend from the village of Zeneta (Murcia) at its northeastern tip, to the Cañaricos village, controlling the northern edge of the Carrascoy Range and its linkage to the Guadalentin Depression towards the southwest. This is an area of moderate seismic activity, but densely populated, the capital of the region, Murcia, being settled very close to the fault. Hence, the knowledge of the structure and kinematics of the Carrascoy Fault is essential for assessing reliably the seismic hazard of the region. We present a detailed-scale geological and geomorphological map along the fault zone created from a LIDAR DEM combined with fieldwork, and geological and geophysical information. Furthermore, a number of trenches have been dug across the fault at different locations providing insights in the fault most recent activity as well as paleoseismic data. Preliminary results suggest that the Cararscoy Fault has recently changed its kinematic showing a near pure reverse motion. According to this, the fault can be divided into two distinct segments, the eastern one: Zeneta - Fuensanta, and the western one: Fuensanta - Cañaricos, each one having its own characteristic style and geodynamics. Some new active strands of the fault locate at the foot of the very first relief towards the North of the older strand, forming the current southern border of the Guadalentin Depression. These new faults show an increasingly reverse component westwards, so that the Fuensanta - Cañaricos segment is constituted by thrusts, which are blind at its western end

  13. Geometry and kinematics of non-colinear normal fault populations: The role of deep-seated crustal lineaments throughout multiphase rifting

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.

    2016-04-01

    Non-colinear fault populations may form in rift basins subject to multiple phases of non-coaxial extension, producing a wide array of fault interactions and therefore more complex rift geometries than typically observed in single-phase rifts. However, the mechanism of formation for non-coaxial fault populations; e.g. a change in the regional extensional direction, the presence of crustal heterogeneities, or local stress perturbations; and their subsequent interactions during later tectonic events remain poorly understood. This study uses borehole-constrained 2D and 3D seismic reflection data to examine the structural style and evolution of N-S and E-W striking non-colinear fault populations within the Farsund Basin, located offshore southern Norway. The basin is situated at the proposed western extent of the Sorgenfrei-Tornquist Zone, a deep-seated, weak crustal lineament. This lineament has experienced repeated phases of reactivation throughout its history and has exerted a strong influence over the evolution of the overlying rift system. Using isochron and quantitative fault analysis, including throw-distance (T-x) and throw-depth (T-z) plots, we examine the interactions between the non-colinear E-W and N-S fault populations throughout the multiphase evolution of the Farsund Basin. From our analyses, we observe primarily cross-cutting and abutting fault intersections with some isolated faults. E-W striking faults predominately formed during Permo-Carboniferous extension. N-S striking faults formed during Triassic E-W extension, along with localised reactivation of E-W striking fault segments. E-W faults were then further reactivated during the Early Cretaceous, cross-cutting pre-existing structures. The underlying Sorgenfrei-Tornquist Zone controls the orientation of the E-W striking fault population. In addition, the oblique nature of the lineament to the regional tectonic regime acts to locally perturb the stress field. As a result, synchronous fault activity

  14. Velocity weakening along a frictional-viscous, low-angle normal fault (N-Kea, Western Cyclades)

    NASA Astrophysics Data System (ADS)

    Müller, M.; Grasemann, B.; Iglseder, C.

    2009-04-01

    We examined the northwestern edge of the island of Kea, which is dominated by high- and low-angle extensional faults. Recent studies demonstrated that the Miocene extensional event with consistent and pervasive SW-directed shear is observed throughout the whole island and has also been documented on Kythnos and Serifos (Western Cyclades). In NW Kea the major low-angle normal fault is called the Otzias Bay Detachment which we focus of this study. Typical microstructures from rock analogue experiments using halite-muscovite mixture deformed with different sliding velocities (Niemeijer and Spiers, 2007) suggest two major different deformation mechanisms: In the velocity strengthening regime (i.e. low sliding velocities), the samples record a mylonitic fabric with a continuous, anastomosing foliation resembling SCC' type foliation formed by slip along the mica flakes and diffusive mass transfer processes. In contrast, the microstructures in the velocity-weakening regime (high sliding velocities) resemble a cataclasite with no foliation and a large variation in grain size and a chaotic fabric. The deformation mechanism involves pervasive granular flow with grinding and rounding of grains associated with dilation and compaction solution transfer processes. Samples collected along a profile across the Otzias Bay Detachment record strikingly similar structures with a variety of transitions between the mylonitic and cataclastic end-members. Interestingly, both transitions from mylonitic to cataclastic fabrics but also cataclastic fabrics overprinted by mylonitic SCC' foliations can be observed. All deformation mechanisms are associated with the formation of different generations of extension gashes suggesting the general presence of diffusive mass transfer mechanisms. Some veins generations are ductily rotated and folded with fold axes perpendicular to the stretching lineation. Other vein generations are cataclastically deformed together with its host rocks. Cross cutting

  15. Digital Database of Recently Active Traces of the Hayward Fault, California

    USGS Publications Warehouse

    Lienkaemper, James J.

    2006-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Hayward Fault Zone, California. The mapped traces represent the integration of the following three different types of data: (1) geomorphic expression, (2) creep (aseismic fault slip),and (3) trench exposures. This publication is a major revision of an earlier map (Lienkaemper, 1992), which both brings up to date the evidence for faulting and makes it available formatted both as a digital database for use within a geographic information system (GIS) and for broader public access interactively using widely available viewing software. The pamphlet describes in detail the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map. [Last revised Nov. 2008, a minor update for 2007 LiDAR and recent trench investigations; see version history below.

  16. Palaeoseismological evidence for Holocene activity on the Manisa Fault Zone,Western Anatolia

    NASA Astrophysics Data System (ADS)

    Özkaymak, Ç.; Sözbilir, H.; Uzel, B.; Akyüz, H. S.

    2009-04-01

    Manisa Fault Zone (MFZ) is an active structural discontinuity that is geomorphologically expressed as a trace of north-facing Quaternary fault scarps bounding the southern margin of the Manisa basin which is subsidiary to the Gediz Graben. We note that the present-day fault trace is over 50 km long from Manisa city in the northwest to the Turgutlu town in the southeast. The MFZ consists of two major sections: (i) eastern section that strikes NW-SE direction in the south and bends into an approximately E-W direction around Manisa to the northwest, (ii) an approximately 10-km-long western section that strikes approximately WNW-ESE direction from Manisa city in the east to the Akgedik town in the west. In this study, we present the geologic, geomorphologic, and palaeoseismologic observations indicating Holocene activity on the western section of the fault zone. We identify that the MFZ, at its western end, consists of three fault segments which are en échelon arranged in left step; the fault segments show evidence for linkage and breaching at the relay ramps. One of them is named as the Manastir Fault. In front of this fault, two Holocene colluvial fans older of which is uncorformity bounded are cut and displaced by the syntethic faults. Palaeoseismologic data show that the syntethic fault segments correspond to the surface ruptures of the historical earthquakes. As a result of detailed stratigraphic, sedimentologic and structural observations on the trench walls, some evidences for at least two earthquakes are recorded which are supported by radio-carbon dating. Besides this, an archaic aqueduct that were used to transport water from Emlakdere town, located on the hanging wall of the Manastir Fault, to the basin is cut and displaced by the syntethic fault egments. It is known that this archaic architecture were in use after 11. century by the Ottomans. On the basis of the mentioned data, fault segments which are belong to the western part of the Manisa Fault Zone

  17. Transient shortening strain across an active extensional fault, Basin and Range Province, north-central Nevada, USA, based on geodetic and paleoseismologic data.

    NASA Astrophysics Data System (ADS)

    Friedrich, A.; Wernicke, B.; Lee, J.; Sieh, K.

    2003-04-01

    The northern Basin and Range province is one of the largest continental extensional regions on earth. At 40 degrees N latitude, the province is 800 km wide and consists of 15 and 20 N-S striking normal faults. These faults accommodated mainly east-west directed extension of tens of kilometers since Mid-Miocene time and recent geodetic surveys show that extension is still active today at a rate of ~1.5 cm/yr across the province (e.g., Bennett et al. 2000; Thatcher et al. 1999). The distribution of this geodetically measurable strain accumulation within the province, however, contradicts geologic observations across some of the active normal faults. For example, coordinated geologic and geodetic measurements across the Crescent Valley fault (CVF), north-central Nevada, reveal a profound mismatch in deformation rates. Since 1996, the two ranges on either side of the CVF have been moving toward each other at ca. 2 mm/yr, indicating shortening. In contrast, new reconnaissance mapping and paleoseismological analyses along the CVF also indicate that this fault is one of the more active normal faults of the Basin and Range province. The 50 km long Cortez Mountains range front is characterized by relief of up to 1.3 km, steep (up to 36 degrees) triangular facets, and young (late Pleistocene to late Holocene) alluvial fans cut by normal fault scarps. Vertical displacement across the CVF is ca. 3 km; since 15 Ma the average long-term vertical displacement rate is ca. 0.2 mm/yr. Topographic profiling shows that fault scarps, 2-7 m high, are the result of a single rupture event and cut late Holocene alluvial fans. A trench across a faulted alluvial fan at Fourmile Canyon reveals a vertical displacement of 4.5 m distributed across two normal faults. 14C analyses on charcoal from a buried offset surface in the hanging wall of the trench and from the base of the overlying colluvial wedge tightly bracket the age of the most recent earthquake to between 2.8 +- 0.1 and 2.7 +- 0.1 ka

  18. Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines

    NASA Astrophysics Data System (ADS)

    Wu, Weiliang; Lin, Tian Ran; Tan, Andy C. C.

    2015-12-01

    A signal processing technique is presented in this paper to normalize and separate the source of non-linear acoustic emission (AE) signals of a multi-cylinder diesel engine for condition monitoring applications and fault detection. The normalization technique presented in the paper overcomes the long-existing non-linearity problem of AE sensors so that responses measured by different AE sensors can be quantitatively analysed and compared. A source separation algorithm is also developed in the paper to separate the mixture of the normalized AE signals produced by a multi-cylinder diesel engine by utilising the system parameters (i.e., wave attenuation constant and the arrival time delay) of AE wave propagation determined by a standard pencil lead break test on the engine cylinder head. It is shown that the source separation algorithm is able to separate the signal interference of adjacent cylinders from the monitored cylinder once the wave attenuation constant and the arrival time delay along the propagation path are known. The algorithm is particularly useful in the application of AE technique for condition monitoring of small-size diesel engines where signal interference from the neighbouring cylinders is strong.

  19. Normal zone propagation in superconducting thin-film fault current limiting elements with Au-Ag alloy shunt layers

    NASA Astrophysics Data System (ADS)

    Arai, K.; Yamasaki, H.; Kaiho, K.; Furuse, M.; Nakagawa, Y.; Sohma, M.; Yamaguchi, I.

    2008-02-01

    We have been developing a superconducting fault current limiter (FCL), in which YBCO superconducting thin films with Au-Ag alloy shunt layers are used. We have already achieved high electric fields (>40 Vpeak/cm), which enable the total length of FCL elements to be reduced drastically, thus greatly reducing the cost of FCLs. In this paper, we report the normal zone propagation velocity in our films when over-current was applied to the films at 50 Hz for 100 ms. The velocity plotted against the root-mean square values of the normalized film current showed a common curve or curves. The data were also discussed using the adiabatic theory. As the normal zone propagation velocity was not so fast, we divided one unit film of 120 mm length into two portions, to each of which an external resistance was attached. The test result showed that a high electric field of 45 Vpeak/cm and total voltage of 450 Vpeak were achieved in the first cycle after quenching, and the film withstood the voltage for five cycles. The temperature distribution along the length of the film was also shown.

  20. Physico-Chemical Processes Associated with Low-Angle Normal Fault Initiation at the Brittle-Plastic Transition

    NASA Astrophysics Data System (ADS)

    Selverstone, J.; Axen, G. J.; Luther, A. L.

    2011-12-01

    Minidetachments (MDs) found in the uppermost footwall of the Whipple low-angle normal fault (LANF) shed light on the physical and chemical conditions of fault formation and early slip history. MDs are small-scale analogs to the main Whipple fault: they are subparallel to the main fault and comprise breccias that pass upwards into ultracataclasites containing a sharp slip surface. Strike length ranges from a few m to 0.5 km, with corresponding cm-m thick damage zones. MD principal slip surfaces are parallel to C-planes of adjacent mylonites, and R1 Reidel shear fractures parallel C' planes. These observations constrain σ1 to have been at ~45° to C planes and to MDs during both mylonitization and MD slip. Bulk chemical data show depletion in Si, Al, and Na towards each MD, accompanied by increases in Fe, Ca, Ti, K, Rb, Sr, Ba, Zr, and Cl. In all cases, the sharp slip surface is coincident with the locus of maximum chemical alteration. The chemical changes correspond to increasing amounts of secondary epid+titanite+kspar+hematite±chlorite±calcite and decreases in biotite-hornblende-qtz-plag with proximity to MD zones. Epidote and titanite are porphyroclastic and aligned within C and C' planes. Ultracataclasites comprise angular, shattered fragments of all alteration minerals, with localized clots of euhedral alteration minerals. These features unambiguously show that fluid infiltration and mylonite alteration began prior to the end of crystal-plastic deformation and onset of MD slip, but that minor alteration outlasted cataclasis. Pseudosection calculations constrain alteration, the end of mylonitization, and the entire cataclastic slip history to T=380-420°C. Fluid inclusions are abundant in altered zones and rare within unaltered mylonites. Densities of brines with 17-20 wt% CaCl2 indicate entrapment at discrete pressures of 270-290, 170-200, and 80-130 MPa. This range for fluids of constant composition is consistent with entrapment at ~9.5 km depth during P

  1. An elastic wedge model for the development of coeval normal and thrust faulting in the Mauna Loa-Kilauea rift system in Hawaii

    NASA Astrophysics Data System (ADS)

    Yin, An; Kelty, T. K.

    2000-11-01

    A long-standing enigma of the Mauna Loa-Kilauea rift system in Hawaii is the coeval development of normal and thrust faults that are vertically partitioned. To address this question, we developed a simple elastic wedge model that explores plausible boundary conditions in terms of tractions for generating such a fault pattern. Analytical solutions that best simulate the observed faulting style and geodetically determined strain at the surface require that (1) the pore fluid pressure ratio within the wedge (λ) and along the basal decollement (λb,) must be exceedingly high (i.e., λ = λb= 0.90-0.95) and (2) a tensile stress of the order of 10-30 MPa must have existed in the very top part of the rift zone at the back side of the wedge-shaped rift flank. The high pore fluid pressure within the rift flank may be induced by pumping of fluids during emplacement of magma, whereas the high pore fluid pressure along the basal decollement may be caused by compaction of water-saturated sediments between the volcanic pile above and the oceanic floor below. Although the predicted tensile stress in the rift zone could be related to the presence of a relatively steep topographic slope, our results show that this is not a prerequisite. Therefore we attribute occurrence of tensile stress to either upward bending of the Hawaiian volcanic pile due to emplacement of magma, or inflation of a shallow magma chamber several kilometers beneath the surface. In any case, the results of our model indicate that magma emplacement in the shallow part of the rift zone may be a passive process, while the deep rift zone experiences forceful emplacement (i.e., active rifting via magma push).

  2. Extensional strain and displacement distribution due to mesoscale normal faults in Late Miocene-Pliocene sedimentary rocks along the northwestern side of the Red Sea, Egypt

    NASA Astrophysics Data System (ADS)

    Zaky, Kh. S.

    2015-09-01

    Field observations are presented on the NW-SE mesoscale, dip-slip, normal faults in the Late Miocene-Pliocene sedimentary rocks, along the northwestern part of the SW side of the Red Sea, Egypt. These faults were initiated parallel to the Red Sea, and were originated by the NE-SW extension associated with the Red Sea opening in the Late Oligocene-Early Miocene time. About 100 mesoscale normal faults were measured in the Late Miocene-Pliocene sedimentary rocks along seven scan-lines. The extensional strain determined in five scan-lines ranges from 2.6393 to 5.12% with an average of 3.53145%. The other two scan-lines have anomalous values of 6.2988 and 15.53%. The represented data demonstrate that the extensional strain varies significantly from profile to profile and even along the fault because of several surficial factors. The first factor is a difference in lithology. The second and third factors are the local stress and the difference between perpendicular to the direction of maximum lateral extension of area and strike of faults. The L-D (Length-Displacement) diagrams along twelve selected faults reveal three patterns. These patterns include a cone-shaped (C-type), meso-shaped (M-type), and a zigzag-shaped (Z-type). The remarkable variation of displacement (D) along the fault plane (L) is a result of the difference in lithology, and/or the overlapping fault segments, as well as the local stress along the faults.

  3. Significance of active growth faulting on marsh accretion processes in the lower Pearl River, Louisiana

    NASA Astrophysics Data System (ADS)

    Yeager, Kevin M.; Brunner, Charlotte A.; Kulp, Mark A.; Fischer, Dane; Feagin, Rusty A.; Schindler, Kimberly J.; Prouhet, Jeremiah; Bera, Gopal

    2012-06-01

    Neotectonic processes influence marsh accretion in the lower Pearl River valley. Active growth faults are suggested by groupings of ponded river channel sections, transverse and linear river channel sections, and down- and across-valley contrasts in channel sinuosity. Seismic profiles identified several likely, fault-induced structural anomalies, two of which parallel the axes of surface distributary networks. Lithostratigraphy and biostratigraphy of six cores from across a suspected fault in the West Middle River, combined with 14C-based age control, yielded evidence of vertical offsets, indicating that this river section is on the plane of a growth fault. These data were used to estimate fault slip rates over two time intervals, 1.2 mm/y over the last 1300 yr, and 0.2 mm yr- 1 over the last 3700 yr, and delineated a sinusoidal pattern of deformation moving distally from the fault, which we interpret as resulting from fault-propagation folding. Higher rates of sediment accumulation (of the order of cm yr- 1 from 210Pbxs and 137Cs activity data) on the down-thrown side are consistent with sedimentary response to increased accommodation space, and mass-based sediment accumulation rates (g cm- 2 yr- 1) exhibit a pattern inverse of that shown by fault-driven sinusoidal deformation. We contend that near-surface growth faults are critically important to driving accretion rates and marsh response to sea-level rise.

  4. Paleoseismology of latest Pleistocene and Holocene fault activity in central Oregon

    SciTech Connect

    Pezzopane, S.K.; Weldon, R.J. II . Dept. of Geological Sciences)

    1993-04-01

    Latest Pleistocene and Holocene fault activity in Oregon concentrates along four zones that splay northward from seismically active faults along the Central Nevada and Eastern California seismic zones. The Central Oregon fault zone is one of these zones, which splays northward from dextral faults of the Walker Lane, stretching across the flanks of several ranges in south-central Oregon along a N20[degree]W trend, and ultimately merges with the Cascade volcanic arc near Newberry volcano. Aerial-photo interpretations and field investigations reveal fault scarps with, on average about 4 m, but in places as much as [approximately]10 m of vertical expression across latest Pleistocene pluvial lake deposits and geomorphic surfaces. Trenches across three different faults in the Central Oregon zone reveal evidence for multiple episodes of faulting in the form of fault-related colluvial deposits and deformed horizons which have been cut by younger fault movements. Trench exposures reveal faults with relatively steep dips and anastomosing traces, which are interpreted locally as evidence for a small oblique-slip component. Vertical offsets measured in the trenches are [approximately]2 m or more for each event. Radiocarbon analyses and preliminary tephra correlations indicate that the exposed deposits are [approximately]30,000 yr in age and younger, and record the decline of latest Pleistocene pluvial lakes. Commonly, reworked or deformed lacustrine deposits and interlayered and faulted colluvial deposits mark the second and third events back, which probably occurred in the Latest Pleistocene, at a time during low to moderate lake levels. If offsets of the past 18,000 yr are representative of the long-term average, then faults along this zone have slip rates of from 0.2 mm/yr to 0.6 mm/yr and recurrence intervals that range from [approximately]4,000 yr to 11,000 yr.

  5. Determination of paleoseismic activity over a large time-scale: Fault scarp dating with 36Cl

    NASA Astrophysics Data System (ADS)

    Mozafari Amiri, Nasim; Tikhomirov, Dmitry; Sümer, Ökmen; Özkaymak, Çaǧlar; Uzel, Bora; Ivy-Ochs, Susan; Vockenhuber, Christof; Sözbilir, Hasan; Akçar, Naki

    2016-04-01

    Bedrock fault scarps are the most direct evidence of past earthquakes to reconstruct seismic activity in a large time-scale using cosmogenic 36Cl dating if built in carbonates. For this method, a surface along the fault scarp with a minimum amount of erosion is required to be chosen as an ideal target point. The section of the fault selected for sampling should cover at least two meters of the fault surface from the lower part of the scarp, where intersects with colluvium wedge. Ideally, sampling should be performed on a continuous strip along the direction of the fault slip direction. First, samples of 10 cm high and 15 cm wide are marked on the fault surface. Then, they are collected using cutters, hammer and chisel in a thickness of 3 cm. The main geometrical factors of scarp dip, scarp height, top surface dip and colluvium dip are also measured. Topographic shielding in the sampling spot is important to be estimated as well. Moreover, density of the fault scarp and colluvium are calculated. The physical and chemical preparations are carried in laboratory for AMS and chemical analysis of the samples. A Matlab® code is used for modelling of seismically active periods based on increasing production rate of 36Cl following each rupture, when a buried section of a fault is exposed. Therefore, by measuring the amount of cosmogenic 36Cl versus height, the timing of major ruptures and their offsets are determined. In our study, Manastır, Mugırtepe and Rahmiye faults in Gediz graben, Priene-Sazlı, Kalafat and Yavansu faults in Büyük Menderes graben and Ören fault in Gökava half-graben have been examined in the seismically active region of Western Turkey. Our results reconstruct at least five periods of high seismic activity during the Holocene time, three of which reveal seismic ruptures beyond the historical pre-existing data.

  6. Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Sato, Tamao; Hiratsuka, Shinya; Mori, Jim

    2012-12-01

    Coulomb stress triggering is examined using well-determined aftershock focal mechanisms and source models of the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake. We tested several slip distributions obtained by inverting onshore GPS-derived coseismic displacements under different a priori constraints on the initial fault parameters. The aftershock focal mechanisms are most consistent with the Coulomb stress change calculated for a slip distribution having a center of slip close to the trench. This demonstrates the capability of the Coulomb stress change to help constrain the slip distribution that is otherwise difficult to determine. Coulomb stress changes for normal-fault aftershocks near the Japan Trench are found to be strongly dependent on the slip on the shallow portion of the fault. This fact suggests the possibility that the slip on the shallow portion of the fault can be better constrained by combining information of the Coulomb stress change with other available data. The case of normal-fault aftershocks near some trench segment which are calculated to be negatively stressed shows such an example, suggesting that the actual slip on the shallow portion of the fault is larger than that inverted from GPS-derived coseismic displacements.

  7. Active fault, fault growth and segment linkage along the Janauri anticline (frontal foreland fold), NW Himalaya, India

    NASA Astrophysics Data System (ADS)

    Malik, Javed N.; Shah, Afroz A.; Sahoo, Ajit K.; Puhan, B.; Banerjee, Chiranjib; Shinde, Dattatraya P.; Juyal, Navin; Singhvi, Ashok K.; Rath, Shishir K.

    2010-03-01

    The 100 km long frontal foreland fold — the Janauri anticline in NW Himalayan foothills represents a single segment formed due to inter-linking of the southern (JS1) and the northern (JS2) Janauri segments. This anticline is a product of the fault related fold growth that facilitated lateral propagation by acquiring more length and linkage of smaller segments giving rise to a single large segment. The linked portion marked by flat-uplifted surface in the central portion represents the paleo-water gap of the Sutlej River. This area is comparatively more active in terms of tectonic activity, well justified by the occurrence of fault scarps along the forelimb and backlimb of the anticline. Occurrence of active fault scarps on either side of the anticline suggests that the slip accommodated in the frontal part is partitioned between the main frontal thrust i.e. the Himalayan Frontal Thrust (HFT) and associated back-thrust. The uplift in the piedmont zone along southern portion of Janauri anticline marked by dissected younger hill range suggests fore-landward propagation of tectonic activity along newly developed Frontal Piedmont Thrust (FPT), an imbricated emergent thrust branching out from the HFT system. We suggests that this happened because the southern segment JS1 does not linked-up with the northwestern end of Chandigarh anticline segment (CS). In the northwestern end of the Janauri anticline, due to no structural asperity the tectonic activity on HFT was taken-up by two (HF1 — in the frontal part and HF2 — towards the hinterland side) newly developed parallel active faults ( Hajipur Fault) branched from the main JS2 segment. The lateral propagation and movements along HF1 and HF2 resulted in uplift of the floodplain as well as responsible for the northward shift of the Beas River. GPR and trench investigations suggest that earthquakes during the recent past were accompanied with surface rupture. OSL (optical stimulated luminescence) dates from the trench

  8. Estimate of the post-Last Glacial Maximum tectonic subsidence and attempt to elucidate the subsurface geometry of the active Shanchiao Fault in the Taipei metropolis, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.; Teng, L. S.

    2011-12-01

    The Taipei Metropolis, home to some 10 million people, is subject to seismic hazard originated from not only ground shaking in thick alluvial deposits due to distant faults or sources scattered throughout the Taiwan region, but also active faulting directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Plio-Pleistocene arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for the areal extent and magnitude of its recent activity. Based on the growth faulting analysis in the Wuku profile in the central portion of the fault, one key horizon - the top of the Jingmei Conglomerate which was an alluvial fan formed rapidly when a major drainage reorganization occurred during the Last Glacial Maximum - serves to be the marker of tectonic subsidence since its inception around 23 ka. A determination and compilation of the depths of the Jingmei Conglomerate top horizon from nearly 500 borehole records within the Taipei Basin demonstrates that the hanging-wall deforms in a roll-over fashion and the offset is largest in the Wuku-Luzhou area in the central portion of the fault and decreases toward the southern tip of the fault. A geologic profile across the fault zone in the Luzhou area reveals the similar main-branch fault half-negative flower structural pattern observed in the Wuku profile, a phenomenon we interpreted to be originated from the geometry of the basin basement and the strong rheological contrast between unconsolidated basin sediments and basement rocks. We also attempt to resolve the poorly-known subsurface geometry of the Shanchiao Fault by simple elastic dislocation models. The surface deformation recorded by the above compilation is representative of the latest Quaternary period as it spans probably more than 10 earthquake

  9. Novel neural networks-based fault tolerant control scheme with fault alarm.

    PubMed

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques.

  10. Geomorphic features of active faults around the Kathmandu Valley, Nepal, and no evidence of surface rupture associated with the 2015 Gorkha earthquake along the faults

    NASA Astrophysics Data System (ADS)

    Kumahara, Yasuhiro; Chamlagain, Deepak; Upreti, Bishal Nath

    2016-04-01

    The M7.8 April 25, 2015, Gorkha earthquake in Nepal was produced by a slip on the low-angle Main Himalayan Thrust, a décollement below the Himalaya that emerges at the surface in the south as the Himalayan Frontal Thrust (HFT). The analysis of the SAR interferograms led to the interpretations that the event was a blind thrust and did not produce surface ruptures associated with the seismogenic fault. We conducted a quick field survey along four active faults near the epicentral area around the Kathmandu Valley (the Jhiku Khola fault, Chitlang fault, Kulekhani fault, Malagiri fault and Kolphu Khola fault) from July 18-22, 2015. Those faults are located in the Lesser Himalaya on the hanging side of the HFT. Based on our field survey carried out in the area where most typical tectonic landforms are developed, we confirmed with local inhabitants the lack of any new surface ruptures along these faults. Our observations along the Jhiku Khola fault showed that the fault had some definite activities during the Holocene times. Though in the past it was recognized as a low-activity thrust fault, our present survey has revealed that it has been active with a predominantly right-lateral strike-slip with thrust component. A stream dissecting a talus surface shows approximately 7-m right-lateral offset, and a charcoal sample collected from the upper part of the talus deposit yielded an age of 870 ± 30 y.B.P, implying that the talus surface formed close to 870 y.B.P. Accordingly, a single or multiple events of the fault must have occurred during the last 900 years, and the slip rate we estimate roughly is around 8 mm/year. The fault may play a role to recent right-lateral strike-slip tectonic zone across the Himalayan range. Since none of the above faults showed any relationship corresponding to the April 25 Gorkha earthquake, it is possibility that a potential risk of occurrence of large earthquakes does exist close to the Kathmandu Valley due to movements of these active

  11. Should ground-motion records be rotated to fault-normal/parallel or maximum direction for response history analysis of buildings?

    USGS Publications Warehouse

    Reyes, Juan C.; Kalkan, Erol

    2012-01-01

    In the United States, regulatory seismic codes (for example, California Building Code) require at least two sets of horizontal ground-motion components for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 kilometers (3.1 miles) of an active fault, these records should be rotated to fault-normal and fault-parallel (FN/FP) directions, and two RHAs should be performed separately—when FN and then FP direction are aligned with transverse direction of the building axes. This approach is assumed to lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. The validity of this assumption is examined here using 3D computer models of single-story structures having symmetric (torsionally stiff) and asymmetric (torsionally flexible) layouts subjected to an ensemble of near-fault ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period is varied from 0.2 to 5 seconds, and yield-strength reduction factors, R, are varied from a value that leads to linear-elastic design to 3 and 5. Further validations are performed using 3D computer models of 9-story structures having symmetric and asymmetric layouts subjected to the same ground-motion set. The influence of the ground-motion rotation angle on several engineering demand parameters (EDPs) is examined in both linear-elastic and nonlinear-inelastic domains to form benchmarks for evaluating the use of the FN/FP directions and also the maximum direction (MD). The MD ground motion is a new definition for horizontal ground motions for use in site-specific ground-motion procedures for seismic design according to provisions of the American Society of Civil Engineers/Seismic Engineering Institute (ASCE/SEI) 7-10. The results of this study have important implications for current practice, suggesting that ground motions rotated to MD or FN/FP directions do not necessarily provide

  12. Active fault tolerant control of a flexible beam

    NASA Astrophysics Data System (ADS)

    Bai, Yuanqiang; Grigoriadis, Karolos M.; Song, Gangbing

    2007-04-01

    This paper presents the development and application of an H∞ fault detection and isolation (FDI) filter and fault tolerant controller (FTC) for smart structures. A linear matrix inequality (LMI) formulation is obtained to design the full order robust H∞ filter to estimate the faulty input signals. A fault tolerant H∞ controller is designed for the combined system of plant and filter which minimizes the control objective selected in the presence of disturbances and faults. A cantilevered flexible beam bonded with piezoceramic smart materials, in particular the PZT (Lead Zirconate Titanate), in the form of a patch is used in the validation of the FDI filter and FTC controller design. These PZT patches are surface-bonded on the beam and perform as actuators and sensors. A real-time data acquisition and control system is used to record the experimental data and to implement the designed FDI filter and FTC. To assist the control system design, system identification is conducted for the first mode of the smart structural system. The state space model from system identification is used for the H∞ FDI filter design. The controller was designed based on minimization of the control effort and displacement of the beam. The residuals obtained from the filter through experiments clearly identify the fault signals. The experimental results of the proposed FTC controller show its e effectiveness for the vibration suppression of the beam for the faulty system when the piezoceramic actuator has a partial failure.

  13. Active fault systems and tectono-topographic configuration of the central Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Szynkaruk, Ewa; Graduño-Monroy, Víctor Hugo; Bocco, Gerardo

    2004-07-01

    The central Trans-Mexican Volcanic Belt (TMVB) reflects the interplay between three regional fault systems: the NNW-SSE to NW-SE striking Taxco-Querétaro fault system, the NE-SW striking system, and the E-W striking Morelia-Acambay fault system. The latter is the youngest and consists of fault scarps up to 500 m high, whose formation caused structural and morphological reorganization of the region. In this paper, we investigate possible activity of the three systems within the central TMVB, and assess the role that they play in controlling the tectono-topographic configuration of the area. Our study is based on DEM-derived morphometric maps, longitudinal river profiles, geomorphologic mapping, and structural field data concerning recent faulting. We find that all three regional fault systems are active within the central TMVB, possibly with different displacement rates and/or type of motion; and that NNW-SSE and NE-SW striking faults control the major tectono-topographic elements that build up the region, which are being re-shaped by E-W striking faults. We also find that tectonic information can be deciphered from the topography of the youthful volcanic arc in question, regardless its complexity.

  14. Late Cenozoic deformation of the Da'an-Dedu Fault Zone and its implications for the earthquake activities in the Songliao basin, NE China

    NASA Astrophysics Data System (ADS)

    Zhongyuan, Yu; Peizhen, Zhang; Wei, Min; Qinghai, Wei; Limei, Wang; Bin, Zhao; Shuang, Liu; Jian, Kang

    2015-08-01

    The Da'an-Dedu Fault Zone is a major tectonic feature cutting through the Songliao Basin from south to north in NE China. Five earthquakes with magnitudes over 5 that occurred during the past 30 years suggest the fault zone is a seismogenic structure with future seismic potential. The structural pattern, tectonic history, Quaternary activity and seismic potential have previously been unknown due to the Quaternary sedimentary coverage and lack of large historic earthquakes (M > 7). In this paper, we use seismic reflection profiles and drilling from petroleum explorations and shallow-depth seismic reflections to study those problems. The total length of the Da'an-Dedu Fault Zone is more than 400 km; modern seismicity delineates it into 4 segments each with a length of 90-100 km. In cross-section view, the folds and associated faults form a complex structural belt with a width of more than 10 km. Shallow-level seismic reflection across the Da'an-Dedu Fault Zone reveals that the Late Quaternary sediments were folded and faulted, indicating its present tectonic activity. The Da'an-Dedu Fault Zone and Songliao Basin have been subjected to three stages of tectonic evolution: a rifting stage characterized by normal faulting and extension (∼145-112 Ma), a prolonged stage of thermal subsidence (∼112-65 Ma), and a tectonic reversal that has been taking place since ∼65 Ma. Our shallow-level reflection profiles show that the folding and reverse faulting have influenced the Late Quaternary sediments. The seismicity and moderate earthquakes suggest that the tectonic activity persists today. The deformation rate across the Da'an-Dedu Fault Zone, however, is measured to be very slow. In conjunction with the inference that most deformation in NE China may be taken up by the Yilan-Yitong Fault Zone bounding the Songliao Basin to the east, we suggest moderate earthquake potential and thus moderate seismic hazards along the Da'an-Dedu Fault Zone. The geological structures, which

  15. Normalization.

    ERIC Educational Resources Information Center

    Cuevas, Eduardo J.

    1997-01-01

    Discusses cornerstone of Montessori theory, normalization, which asserts that if a child is placed in an optimum prepared environment where inner impulses match external opportunities, the undeviated self emerges, a being totally in harmony with its surroundings. Makes distinctions regarding normalization, normalized, and normality, indicating how…

  16. Active faulting in the frontal Rif Cordillera (Fes region, Morocco): Constraints from GPS data

    NASA Astrophysics Data System (ADS)

    Chalouan, Ahmed; Gil, Antonio J.; Galindo-Zaldívar, Jesús; Ahmamou, M.'Fedal; Ruano, Patricia; de Lacy, Maria Clara; Ruiz-Armenteros, Antonio Miguel; Benmakhlouf, Mohamed; Riguzzi, Federica

    2014-07-01

    The southern Rif cordillera front, between Fes and Meknes, is formed by the Prerif Ridges, which constitute a thrust and fold belt, in contact with the Saïss foreland basin. Geological evidence and regional GPS network data support recent and active tectonics of this Alpine cordillera, with a top-to-the-S-SW motion with respect to stable Africa. A local non-permanent GPS network was installed in 2007 around Fes to constrain the present-day activity of the mountain front. Six GPS sites are located in the Prerif mountain front (jbel Thratt and jbel Zalarh), the Saïss basin and the foreland constituted by the tabular Middle Atlas. Measurements of the GPS network in 2007, 2009 and 2012, over a five year span, seem to indicate that this region is tectonically active and is subjected to significant horizontal motions: (i) a regional displacement toward the SW with respect to stable Africa, showing an average rate of 2 mm/yr; (ii) a southwestward convergent motion between the jbel Thratt with respect to the Saïss basin and the eastern Zalarh ridge, with an average rate of about 4 mm/yr; and (iii) moderate NNE-SSW divergent dextral motion between the Saïss basin and the northern front of the tabular Middle Atlas with an average rate of about 1-2 mm/yr. The regional southwestward motion is related to the activity of the NE-SW sinistral North Middle Atlas-Kert fault zone, which follows the Moroccan Hot Line. Convergence between the Prerif ridges, located at the southern edge of the Rif, and the Saïss basin is accommodated by ENE-WSW striking northward dipping reverse sinistral faults and south vergent folds. In addition, increasing deformation toward the western ridges is in agreement with the stepped mountain front and the development of the arched structures of the Prerif ridges. Normal faults located south of the Saïss basin are responsible for local extension. Whereas the most active deformation occurs in the southern front of the jbel Thratt near Fes, the Sa

  17. Mapping Active Faults and Tectonic Geomorphology offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hart, P. E.; Sliter, R. W.; Wong, F. L.

    2009-12-01

    In June 2008, and July 2009, the USGS conducted two high-resolution, marine, seismic-reflection surveys across the continental shelf and upper slope between Piedras Blancas and Point Sal, central California, in order to better characterize regional earthquake sources. More than 1,300 km of single-channel seismic data were acquired aboard the USGS R/V Parke Snavely using a 500-joule mini-sparker source fired at a 0.5-second shot interval and recorded with a 15-meter streamer. Most tracklines were run perpendicular to the coast at 800-meter spacing, extending from the nearshore (~ 10-15 m water depth) to as far as 20 km offshore. Sub-bottom imaging varies with substrate, ranging from outstanding (100 to 150 m of penetration) in inferred Quaternary shallow marine, shelf and upper slope deposits to poor (0 to 10 m) in the Mesozoic basement rocks. Marine magnetic data were collected simultaneously on this survey, and both data sets are being integrated with new aeromagnetic data, publicly available industry seismic-reflection data, onshore geology, seismicity, and high-resolution bathymetry. Goals of the study are to map geology, structure, and sediment distribution; to document fault location, length, segmentation, shallow geometry and structure; and to identify possible sampling targets for constraining fault slip rates, earthquake recurrence, and tsunami hazard potential. The structure and tectonic geomorphology of the >100-km-long, right-lateral, Hosgri fault zone and its connections to the Los Osos, Pecho, Oceano and other northwest-trending inboard faults are the focus of this ongoing work. The Hosgri fault forms the eastern margin of the offshore Santa Maria basin and coincides in places with the outer edge of the narrow (5- to 15-km-wide), structurally complex continental shelf. The Hosgri is imaged as a relatively continuous, vertical fault zone that extends upward to the seafloor; varies significantly and rapidly along strike; and incorporates numerous

  18. Distribution of fault activity in the early stages of continental breakup: an analysis of faults and volcanic products of the Natron Basin, East African Rift, Tanzania

    NASA Astrophysics Data System (ADS)

    Muirhead, J. D.; Kattenhorn, S. A.

    2012-12-01

    Recent magmatic-tectonic crises in Ethiopia (e.g. 2005 Dabbahu rifting episode, Afar) have informed our understanding of the spatial and temporal distribution of strain in magmatic rifts transitioning to sea-floor spreading. However, the evolving contributions of magmatic and tectonic processes during the initial stages of rifting, is a subject of ongoing debate. The <5 Ma northern Tanzania and southern Kenya sectors of the East Africa Rift provide ideal locations to address this problem. We present preliminary findings from an investigation of fault structures utilizing aerial photography and satellite imagery of the ~35 km wide Natron rift-basin in northern Tanzania. Broad-scale structural mapping will be supplemented by field observations and 40Ar-39Ar dating of lava flows cut by faults to address three major aspects of magma-assisted rifting: (1) the relative timing of activity between the border fault and smaller faults distributed across the width of the rift; (2) time-averaged slip rates along rift-zone faults; and (3) the spatial distribution of faults and volcanic products, and their relative contributions to strain accommodation. Preliminary field observations suggest that the ~500 m high border fault system along the western edge of the Natron basin is either inactive or has experienced a reduced slip rate and higher recurrence interval between surface-breaking events, as evidence by a lack of recent surface-rupture along the main fault escarpments. An exception is an isolated, ~2 km-long segment of the Natron border fault, which is located in close proximity (< 5km) to the active Oldoinyo Lengai volcano. Here, ~10 m of seemingly recent throw is observed in volcaniclastic deposits. The proximity of the fault segment to Oldoinyo Lengai volcano and the localized distribution of fault-slip are consistent with magma-assisted faulting. Faults observed within the Natron basin and on the flanks of Gelai volcano, located on the eastern side of the rift, have

  19. The growth of non-colinear normal fault systems; What can we learn from 3D seismic reflection data?

    NASA Astrophysics Data System (ADS)

    Reeve, Matthew T.; Bell, Rebecca E.; Duffy, Oliver B.; Jackson, Christopher A.-L.; Sansom, Eleanor

    2015-01-01

    Many rift zones exhibit a range of fault orientations, rather than simple colinear faults that strike orthogonal to the inferred least principal stress. The formation of non-colinear fault sets has implications for assessing rift-zone kinematics, as well as determining palaeo-stress state in extensional basins. Using 3D seismic reflection data, we deduce the likely mechanisms responsible for the formation of a population of non-colinear faults in the Måløy Slope area of the northern North Sea. Three basement-displacing fault populations exist on the Måløy Slope; (i) large (>1 km throw), N-S-striking faults, (ii) smaller (<250 m throw) N-S-striking faults and (iii) small (<250 m throw) NE-SW-striking faults. All were initiated in the Middle Jurassic. Coeval growth of these fault populations, and the apparent correlation between the NE-SW faults and a NE-SW-trending gravity and magnetic anomaly high lead us to suggest that the NE-SW faults are the result of deflection of the otherwise E-W-orientated least principal stress by NE-trending intrabasement weaknesses. Our study's results have implications for the large-scale kinematic evolution of the North Sea, arguing that major rotations in extension direction are not required to generate multiple fault sets locally or across the rift. This study also highlights the importance of using borehole-constrained 3D seismic data as a tool in understanding non-colinear fault growth, and its broader implications for regional tectonic history.

  20. Earthquake mechanism studies by active-fault drilling: Chi-Chi Taiwan to Wenchuan earthquakes

    NASA Astrophysics Data System (ADS)

    Togo, T.; Shimamoto, T.; Ma, S.; Noda, H.; Hirose, T.; Tanikawa, W.

    2010-12-01

    Why drill into active faults? How can such big projects be justified to society? We believe that a very important task for such projects is to understand earthquake mechanisms, i.e., to reproduce big earthquakes just occurred based on measured fault-zone properties. Post-earthquake fault-zone drilling provides rare opportunities for seeing and analyzing fault zones with minimum changes as “RAPID” group summarized its merits. Shallow and deep drilling into Chelungpu fault, that caused the 1999 Chi-Chi Taiwan earthquake, has demonstrated that reproducing an earthquake based on measured properties is becoming possible (Tanikawa and Shimamoto, 2009, JGR; Noda and Lapusta, 2009, JpGU). Another important outcome from Chelungpu drilling is finding of numerous changes in a fault zone during seismic fault motion (e.g., decomposition due to frictional heating), as highlighted by “black gouge” (many papers). Those changes can be reproduced now by high-velocity friction experiments. No so long ago, a renown geologist expressed his feeling that faults will not preserve a record of seismic slip, except for pseudotachylite (Cowan, 1999, JSG). In other words, seismic slip is of such a short duration that important changes, other than shearing deformation, will not occur in fault zones. Nojima and Chelungpu drilling has shown that this is not the case. On the other hand, seismic fault motion has been reproduced in laboratory for the last twenty years, demonstrating dramatic weakening of many natural fault gouges. We report here a set of data using fault gouge from Hongkou outcrop of Longmenshan fault system, very close to the first drilling site, under a constant slip rate and variable slip histories. Slip and velocity weakening behavior depends on slip history and can be described by an empirical equation. Importance of such experiments can be justified only by confirmation that the same processes indeed occur in natural fault zones. Integrated field and laboratory studies

  1. Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah

    NASA Astrophysics Data System (ADS)

    Berg, Silje S.; Skar, Tore

    2005-10-01

    Outcrop data has been used to examine the spatial arrangement of fractures in the damage zones of a segment of the large-scale Moab Fault (45 km in length), SE Utah. The characteristics of the footwall and hanging wall damage zones show pronounced differences in the deformation pattern: (1) there is a well-developed syncline in the hanging wall, as opposed to sub-horizontal bedding of the footwall; (2) the footwall damage zone is sub-divided into an inner zone (0-5 m from fault core) and an outer zone (>5 m) based on differences in deformation band frequency, whereas no clear sub-division can be made in the hanging wall; (3) the hanging wall damage zone is more than three times wider than the footwall damage zone; (4) there is a higher abundance of antithetic fractures and deformation bands in the hanging wall than in the footwall; and (5) the antithetic structures generally have more gentle dips in the hanging wall than in the footwall. The main conclusion is that the structural pattern across the fault zone is strongly asymmetric. The deformation pattern is partly influenced by lithology and/or partly by processes associated with the development of the fault core. We suggest, however, that the most important cause for the asymmetric strain distribution is the development of the hanging wall syncline and the resulting asymmetric stress pattern expected to exist during fault propagation.

  2. Late Pleistocene-Holocene Faulting History Along the Northern El Carrizal Fault, Baja California Sur, Mexico: Earthquake Recurrence at a Persistently Active Rifted Margin

    NASA Astrophysics Data System (ADS)

    Maloney, S. J.; Umhoefer, P. J.; Arrowsmith, J. R.; Gutiérrez, G. M.; Santillanez, A. U.; Rittenour, T. R.

    2007-12-01

    The El Carrizal fault is a NW striking, east dipping normal fault located 25 km west of the city of La Paz, Baja California Sur, Mexico and is the westernmost bounding fault of the gulf-margin system at this latitude. The fault is ~70 km long onshore and ~50 km long offshore to the north in La Paz Bay. As many as three Quaternary geomorphic surfaces formed on the footwall and were identified on the basis of mapping and topographic profiling. In the north, the El Carrizal fault splays into multiple strands and exhibits a pattern of alternating N-S and NW-trending segments. Results from geologic mapping, paleoseismic investigations, and preliminary optically stimulated luminescence (OSL) geochronology provide some of the first numerical constraints on late Pleistocene-Holocene faulting along the El Carrizal fault. A 20 m long, 2-3 m deep trench (Trench 28) was excavated across the fault 23 km south of La Paz Bay. The trench was photographed, hand logged, and sampled for OSL dating. The trench revealed a succession of fluvial and channel deposits of sands, gravels, and cobbles. The main fault zone is manifested by a 0.5 m thick wedge-shaped deposit that consists of silty-sand and also contains rotated blocks of caliche- cemented gravels. Preliminary OSL ages from a silty-sand unit offset 2 m by the fault average latest Pleistocene. A trench 4 km south of Trench 28 (Cuadradito Trench) was also documented and sampled for OSL analysis. Preliminary OSL ages from a fluvial sand unit deposited against faulted bedrock range from mid to late Holocene. Sedimentary comparisons and surficial mapping suggest that the Holocene unit at Cuadradito Trench may be correlative to sediment that overlies faulted units from Trench 28. Such a correlation would constrain the timing of the 2 m offset at Trench 28 to be between latest Pleistocene and mid Holocene. A quarry 10 km north of Trench 28 exposes Quaternary sand and gravels buttressed against a 5-10 m wide bedrock shear zone. Here

  3. Paleoseismic investigations along a key active fault within the Gulf of Corinth, Greece

    NASA Astrophysics Data System (ADS)

    Koukouvelas, I. K.; Kokkalas, S.; Xypolias, P.

    2008-07-01

    The study of paleoseismological and archaeological excavations provide clues for the evolution of Helike Fault, located along the westernmost end of the Gulf of Corinth, that displays high activity and exerts control on the landscape. In this study we present evidence from paleoseismic trenches which revealed well defined fault strands and clear colluvial stratigraphy. We focus on the two main segments of the Helike Fault and their implications on strong earthquake activity. The Helike Fault is a major tectonic structure that influenced the evolution of ancient settlements on the Helike Delta, from the Early Bronze Age through the Byzantine period, till present times. The eastern fault segment appears to control the southern Gulf morphology, while the western segment is controlling the large Aigion basin. Interbedded organic-rich soils and gravels dominate in all trenches. Fault strands that control successive scarp-derived colluvial deposits were identified within the trenches and indicate the continuous seismic activity along the fault trace. Co-seismic offsets, open cracks filled with debris and liquefaction related deformation was also recognized. At least seven seismic events were identified inside the excavated trenches, during the last 10 ka. The estimated vertical throw along the fault segments, observed within the trenches, is on the order of 1 meter per event. Based on dating of colluvial wedges we estimated the Holocene slip rate on the Helike Fault, which shows an increase from ~0.3 mm/yr to 2 mm/yr in the last 2 ka. We consider the derived slip rates to be minimum values due to the implication of erosional effects and sediment accumulation from the upthrown block. The Helike fault appears to play a crucial role both in subsidence of the Helike delta plain and in shifting Kerynites river course that runs between the two Helike fault segments. The Helike Fault activity and the clustering of surface rupturing events on the Helike fault seems to fit well

  4. Geomorphic Indicators and Tectonic Implications of the Active Chaochou Fault, Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Hung, J.; Liao, H.

    2003-12-01

    The Chaochou Fault, lying on the easternmost edge of the Pingtung plain, is the major geologic boundary between the Slate Belt to the east and the Western Foothills to the west. According to previous studies, the Chaochou fault is a high-angle reverse fault dipping 75-80 degrees to the east. Along strike, several transverse rivers cut across the fault and form alluvial fans in the foothills, which provide unique morphotectonic features to study the activity of the Chaochou Fault. Digitized data from topographic maps of 1/5,000 to 1/25,000 scales and digital elevation data of 40m resolution were input into GIS software and analyzed to quantitatively evaluate geomorphic indicators such as hypsometric integral, stream length-gradient index and drainage basin asymmetry etc. Anomalies of these indices are further checked in the field on bedrocks, man-made structures and fold and faults, to clarify spatial variations of indicators. These, coupled with GPS data, field survey in the slate belt and uplifted terraces and subsurface seismic profiles, can further constrain spatial and temporal kinematics of the Chaochou fault and the relationship between topographic evolution and subsurface structures. Our preliminary results show that river landforms are highly related to the Chaochou Fault. Drainages were tilted to the west in response to uplifting in the east of the Chaochou Fault. Geomorphic indices indicate that the uplift rate is higher in the north and decreases progressively toward the south. The peak tectonic activity occurs in the area between the Chaochou and the Chishan Fault.

  5. Assessing fault activity in intracontinental settings: paleoseismology and geomorphology in SE Kazakhstan

    NASA Astrophysics Data System (ADS)

    Grützner, Christoph; Carson, Emily; Mackenzie, David; Elliott, Austin; Campbell, Grace; Walker, Richard; Abdrakhmatov, Kanatbek

    2016-04-01

    Earthquake recurrence intervals of active faults often exceed the time span covered by instrumental, historical, and archaeological earthquake records in continental interiors. The identification of active faults then often relies on finding the geomorphological expression of surface faulting preserved in the landscape. In rather arid areas, single earthquake scarps can be preserved for thousands of years, but erosional and depositional processes will eventually obliterate features such as fault scarps and offset geological markers. Active faults with very long intervals between surface ruptures might therefore remain undetected, which constitutes a major problem for tectonic studies and seismic hazard assessment. Here we present data from the 50 km-long 'Charyn Canyon' thrust fault in the northern Tien Shan (SE Kazakhstan). Remote sensing, Structure-from-Motion (SfM), differential GPS, field mapping, and paleoseismic trenching were used to reveal the earthquake history of this fault. Radiocarbon dating, infra-red stimulated luminescence (IRSL), and scarp diffusion modelling were used for bracketing the occurrence of paleo-earthquakes. In the paleoseismological trenches we identified two surface rupturing events within the last ~37 ka BP. The most recent earthquake took place between 3.5 - 7.3 ka BP, the penultimate event occurred between ~17-37 ka BP. We estimate magnitudes of ~MW6.5-7.3. Only the younger event has a morphological expression as a 25 km-long fault scarp of ~2 m height. This implicates that a major landscape reset occurred between these two earthquakes, most likely related to the significant climatic change that marked the end of the last glacial maximum. Similar observations from other paleoseismic investigation sites in this area support this interpretation. Our study shows that faults in the northern Tien Shan tend to break in strong earthquakes with very long recurrence intervals. As a consequence, morphological evidence for the most recent

  6. Block-like motion of Tibetan Plateau: Evidences from active faults , GPS velocities and recent earthquake slips

    NASA Astrophysics Data System (ADS)

    Xu, X.; Cheng, J.

    2012-12-01

    Collision of India with Eurasia during the past ~ 55 million years has created the high Tibetan Plateau with a flat interior at an average altitude of ~ 5000 m (Matte et al., 1996; Tapponnier et al., 1986, 2001). Two alternative end-member models of how the Tibetan Plateau formed have been proposed: (1) continuous thickening and widespread viscous channel flow of the crust and mantle of the entire plateau (e. g. Bai et al., 2011; Beaumont et al., 2001; Bendick and Flesch, 2007; Clark and Royden, 2000; Houseman and England, 1996; Royden et al., 1997; Shen F. et al., 2001; Zhang et al., 2004; Bai et al., 2010), and (2) time-dependent, localized shear between coherent lithospheric blocks (e. g. Avouac and Tapponnier, 1993; Peltzer and Saucier, 1996; Replumaz and Tapponnier, 2003; Ryerson et al., 2006; Tapponnier et al., 2001; Thatcher, 2007). A new 3-D mechanical model, in which the underthrust India and Tibet are strongly coupled, seems to explain spatial variation in faulting style, and to be inconsistent with channel-flow model for the southern Tibet (Copley et al., 2011). This 3-D model has placed important new constraints on mechanical behavior of the Tibetan lithosphere in its most extreme environment and forced a critical evaluation of the Tibetan channel flow models (Freymueller, 2011), but does not match details of the GPS velocity field, and underestimates the EW extension rate across the southern Tibet. More important is that the model approximates Tibet as a continuous medium, and cannot include localized slip on the mega-strike-slip fault systems, and thus cannot further discuss relationship among the eastward block-like motion, mega-strike-slip faults, normal faults and thrust faults in and around the Tibetan Plateau. It has been recognized for many years that GPS data are likely to be ultimately decisive in distinguishing between block-like and continuous models, at least for describing present-day deformation. Nonetheless, both block-like models and

  7. Research program on Indonesian active faults to support the national earthquake hazard assesments

    NASA Astrophysics Data System (ADS)

    Natawidjaja, D. H.

    2012-12-01

    In mid 2010 an Indonesian team of earthquake scientists published the new Indonesian probabilistic seismic hazard analysis (PSHA) map. The new PSHA map replaced the previous version that is published in 2002. One of the major challenges in developing the new map is that data for many active fault zones in Indonesia is sparse and mapped only at regional scale, thus the input fault parameters for the PSHA introduce unavoidably large uncertainties. Despite the fact that most Indonesian islands are torn by active faults, only Sumatra has been mapped and studied in sufficient details. In other areas, such as Java and Bali, the most populated regions as well as in the east Indonesian region, where tectonic plate configurations are far more complex and relative plate motions are generally higher, many major active faults and plate boundaries are not well mapped and studied. In early 2011, we have initiated a research program to study major active faults in Indonesia together with starting a new graduate study program, GREAT (Graduate Research for Earthquake and Active Tectonics), hosted by ITB (Institute of Technology bandung) and LIPI (Indonesian Institute of Sciences) in partnership with the Australia-Indonesia Facility for Disaster Reduction (AIFDR). The program include acquisition of high-resolution topography and images required for detailed fault mapping, measuring geological slip rates and locating good sites for paleoseismological studies. It is also coupled by seismological study and GPS surveys to measure geodetic slip rates. To study submarine active faults, we collect and incorporate bathymetry and marine geophysical data. The research will be carried out, in part, through masters and Ph.D student theses. in the first four year of program we select several sites for active fault studies, particulary the ones that pose greater risks to society.

  8. A large normal-fault earthquake at the junction of the Tonga trench and the Louisville ridge

    NASA Technical Reports Server (NTRS)

    Eissler, H.; Kanamori, H.

    1982-01-01

    Long-period vertical-component Rayleigh waves are inverted in order to determine the source mechanism of the October 10, 1977 earthquake that occurred in the oceanic plate at the junction of the Tonga-Kermadec trench systems with the aseismic Louisville ridge. The cause was predominantly normal faulting on a plane striking roughly parallel to the trench, with a seismic moment of 1.7 x 10 to the 27th dyn cm. A focal depth of 20 km is determined by waveform modeling, but the actual rupture may have extended to 30 or 40 km. Two sources separated by 16 s comprised the event, which experienced an inferred rupture velocity of 3.5 km/sec. The interpretation that the earthquake was caused by gravitational pull due to the sinking slab implies that the Louisville ridge causes some degree of local decoupling between the plates. This event may be associated with the breakup of the Osbourn seamount. Alternatively, the earthquake may have resulted from tensional plate bending stress, as implied by its relatively shallow depth.

  9. Paleoseismologic and geomorphic constraints to the deformation style and activity of the Cittanova Fault (southern Calabria, Italy)

    NASA Astrophysics Data System (ADS)

    Peronace, Edoardo; Della Seta, Marta; Fredi, Paola; Galli, Paolo; Giaccio, Biagio; Messina, Paolo; Troiani, Francesco

    2016-04-01

    The western side of Southern Calabria is the epicentral region of the strongest earthquakes of Italy. These are mainly generated by extensional faults which are still poorly investigated and/or parameterized. In this study, we explore the potential of the combined analysis of geomorphic markers, stream network morphometry and paleosimological investigations, aimed at identifying and time-constraining the surface effects of the Calabrian seismogenic faults. In this perspective, we presents results from i) plano-altimetric analysis of geomorphic markers related to active tectonics (such as marine and fluvial terraces), ii) paleoseismological investigations, and iii) time-dependent river basin and long-profile metrics of the Cittanova Fault (CF). The CF, responsible for the catastrophic Mw 7.0 earthquake of 5 February 1783, is a N220° striking, 30 km-long normal fault that downthrows the crystalline-metamorphic basement of the Aspromonte massif (~1000 m asl) below the Gioia Tauro Plain, to elevations of ~500-800 m bsl. Radiocarbon dating allowed us to ascribe the depostion of a major terraced alluvial fan (Cittanova-Taurianova terrace, TAC) to the early Last Glacial Maximum (LGM) and to date the avulsion of the depositional top surface of TAC to 28 ka. As we have found remnants of the TAC also in the CF footwall offset by 12-17 m, we estimate a vertical slip rate of 0.6 ± 0.1 mm/yr for the past 28 ka. Paleoseismological data across the fault scarp evidenced at least three surface ruptures associated to ~Mw 7.0 paleoearthquakes prior to the 1783 event. The recurrence time (~3.2 kyr) is rather longer than other Apennine normal faults (0.3-2.4 kyr), whereas it is consistent with the low slip rate of CF for the late Upper Pleistocene (0.6 mm/yr). On a longer time scale, the spatial configuration of river basin morphometry evidenced the morphodynamic rensponse to the higher slip in the central sector of CF. Furthermore, long-profile metrics, and in particular the spatial

  10. U-series Dating of Syntectonic Calcite Veins Constrains the Time Scales of the Elements of the Seismic Cycle in an Intraplate Normal Fault

    NASA Astrophysics Data System (ADS)

    Goodwin, L. B.; Williams, R. T.; Mozley, P.; Sharp, W. D.

    2015-12-01

    The link between fluid overpressure and the earthquake cycle has been documented through previous studies of vein arrays associated with faults and carefully designed experimental work. In the interseismic period, elevated pore fluid pressure (overpressure) will reduce the effective fault-normal stress, weakening the fault and promoting seismic rupture. Fractures produced during faulting will serve as fluid migration pathways until they are sealed by either collapse or precipitation of cement. Following sealing, pore fluid pressure is inferred to progressively increase until it reaches a level sufficient to start the cycle again. Though the rock record of this overpressure-driven seismic cycle is clear, the timescales of the different elements of the cycle have not been quantified. We have addressed this problem by dating calcite veins in the hanging wall damage zone of the Loma Blanca fault zone of the Socorro Basin, Rio Grande rift, New Mexico. These veins exhibit crack-seal microstructures that record repeated episodes of fracture opening, fluid migration, and fracture sealing, suggesting a prolonged history of recurrent seismicity and post-failure fluid migration. Stable isotope analyses of these veins reveal distinct fluid chemistries associated with individual fluid migration events. Carbon isotope values as high as +6.00‰ suggest depressurization and degassing of CO2 charged fluids, supporting the interpretation that fracturing was associated with fault slip. Preliminary U-series dating of calcite veins show a well-defined periodicity of fault slip and fracture formation, with a slip recurrence interval of approximately 73 ± 17 ka, consistent with previous studies of other faults in the Rio Grande rift. Analyses of cements deposited during single crack-seal events record sealing times of approximately 16 ± 4 ka. These results suggest that the time required to re-establish sufficient pore fluid pressure for failure following sealing of damage zone

  11. Optogenetic Activation of Normalization in Alert Macaque Visual Cortex.

    PubMed

    Nassi, Jonathan J; Avery, Michael C; Cetin, Ali H; Roe, Anna W; Reynolds, John H

    2015-06-17

    Normalization has been proposed as a canonical computation that accounts for a variety of nonlinear neuronal response properties associated with sensory processing and higher cognitive functions. A key premise of normalization is that the excitability of a neuron is inversely proportional to the overall activity level of the network. We tested this by optogenetically activating excitatory neurons in alert macaque primary visual cortex and measuring changes in neuronal activity as a function of stimulation intensity, with or without variable-contrast visual stimulation. Optogenetic depolarization of excitatory neurons either facilitated or suppressed baseline activity, consistent with indirect recruitment of inhibitory networks. As predicted by the normalization model, neurons exhibited sub-additive responses to optogenetic and visual stimulation, which depended lawfully on stimulation intensity and luminance contrast. We conclude that the normalization computation persists even under the artificial conditions of optogenetic stimulation, underscoring the canonical nature of this form of neural computation.

  12. Optogenetic Activation of Normalization in Alert Macaque Visual Cortex.

    PubMed

    Nassi, Jonathan J; Avery, Michael C; Cetin, Ali H; Roe, Anna W; Reynolds, John H

    2015-06-17

    Normalization has been proposed as a canonical computation that accounts for a variety of nonlinear neuronal response properties associated with sensory processing and higher cognitive functions. A key premise of normalization is that the excitability of a neuron is inversely proportional to the overall activity level of the network. We tested this by optogenetically activating excitatory neurons in alert macaque primary visual cortex and measuring changes in neuronal activity as a function of stimulation intensity, with or without variable-contrast visual stimulation. Optogenetic depolarization of excitatory neurons either facilitated or suppressed baseline activity, consistent with indirect recruitment of inhibitory networks. As predicted by the normalization model, neurons exhibited sub-additive responses to optogenetic and visual stimulation, which depended lawfully on stimulation intensity and luminance contrast. We conclude that the normalization computation persists even under the artificial conditions of optogenetic stimulation, underscoring the canonical nature of this form of neural computation. PMID:26087167

  13. Model-based fault detection and isolation for intermittently active faults with application to motion-based thruster fault detection and isolation for spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2008-01-01

    The present invention is a method for detecting and isolating fault modes in a system having a model describing its behavior and regularly sampled measurements. The models are used to calculate past and present deviations from measurements that would result with no faults present, as well as with one or more potential fault modes present. Algorithms that calculate and store these deviations, along with memory of when said faults, if present, would have an effect on the said actual measurements, are used to detect when a fault is present. Related algorithms are used to exonerate false fault modes and finally to isolate the true fault mode. This invention is presented with application to detection and isolation of thruster faults for a thruster-controlled spacecraft. As a supporting aspect of the invention, a novel, effective, and efficient filtering method for estimating the derivative of a noisy signal is presented.

  14. The Eastern Lower Tagus Valley Fault Zone in central Portugal: Active faulting in a low-deformation region within a major river environment

    NASA Astrophysics Data System (ADS)

    Canora, Carolina; Vilanova, Susana P.; Besana-Ostman, Glenda M.; Carvalho, João; Heleno, Sandra; Fonseca, Joao

    2015-10-01

    Active faulting in the Lower Tagus Valley, Central Portugal, poses a significant seismic hazard that is not well understood. Although the area has been affected by damaging earthquakes during historical times, only recently has definitive evidence of Quaternary surface faulting been found along the western side of the Tagus River. The location, geometry and kinematics of active faults along the eastern side of the Tagus valley have not been previously studied. We present the first results of mapping and paleoseismic analysis of the eastern strand of the Lower Tagus Valley Fault Zone (LTVFZ). Geomorphological, paleoseismological, and seismic reflection studies indicate that the Eastern LTVFZ is a left-lateral strike-slip fault. The detailed mapping of geomorphic features and studies in two paleoseismic trenches show that surface fault rupture has occurred at least six times during the past 10 ka. The river offsets indicate a minimum slip rate on the order of 0.14-0.24 mm/yr for the fault zone. Fault trace mapping, geomorphic analysis, and paleoseismic studies suggest a maximum magnitude for the Eastern LTVFZ of Mw ~ 7.3 with a recurrence interval for surface ruptures ~ 1.7 ka. At least two events occurred after 1175 ± 95 cal yr BP. Single-event displacements are unlikely to be resolved in the paleoseismic trenches, thus our observations most probably represent the minimum number of events identified in the trenches.

  15. Multi-component Magnetization Of The Late Pliocene Pyroclastic Flow Deposit In Central Japan, Indicating Early Early Pleistocene Fault Activity

    NASA Astrophysics Data System (ADS)

    Ueki, T.; Yamazaki, T.; Funaki, M.; Hoshi, H.

    2003-12-01

    The Late Pliocene Ichiuda Welded Tuff Bed in central Japan acquired three magnetization components. All of primary reverse intermediate temperature component, and secondary normal low and high temperature components show positive fold tests, indicating that fault-related folding structure postdated the Olduvai normal subchron. The northern segment of Itoigawa-Shizuoka Tectonic Line that bounds the North American and Eurasian Plates in central Japan, comprises the geological Otari-Nakayama and active Kamishiro faults. The Ichiuda Welded Tuff Bed intruded by the 2.1 Ma Taro-yama Andesite is subjected to the NE-SW trending folding structure adjacent to the Otari-Nakayama fault. PAFD and PThD were performed to the drilled samples of Taro-yama Andesite and the Ichiuda Welded Tuff Bed at three and five sites on both limbs of the syncline, respectively. Positive fold test for the tilt-corrected site-mean directions of the andesite indicates prefolding magnetization. The fresh welded tuff bed at one site yields similar reverse direction. Whereas the greenly altered beds at four sites shows normal tilt-corrected site-mean directions by PAFD, and following three temperature-dependent directional components by PThD: normal below 350 degree, reverse from 350 to 530 degree, and normal above 530 degree, all which show positive fold test. IRM acquisition, thermal demagnetization of three orthogonal IRM, thermomagnetic analysis with VSM, and low temperature magnetization measurements with MPMS indicate that the Ichiuda Welded Tuff Bed with single and three magnetization components contains titanomagnetites, and both titanomagnetites and magnetite, respectively. Magnetization of the Taro-yama Andesite is dominated by titanomagnetites under high temperature oxidation state and minor proportion of titanomaghemites. The Taro-yama Andesite and the Ichiuda Welded Tuff Bed exhibit primary reverse magnetism corresponding to the Matsuyama Chron. The Ichiuda Welded Tuff Bed additionally

  16. Active Fault Near-Source Zones Within and Bordering the State of California for the 1997 Uniform Building Code

    USGS Publications Warehouse

    Petersen, M.D.; Toppozada, Tousson R.; Cao, T.; Cramer, C.H.; Reichle, M.S.; Bryant, W.A.

    2000-01-01

    The fault sources in the Project 97 probabilistic seismic hazard maps for the state of California were used to construct maps for defining near-source seismic coefficients, Na and Nv, incorporated in the 1997 Uniform Building Code (ICBO 1997). The near-source factors are based on the distance from a known active fault that is classified as either Type A or Type B. To determine the near-source factor, four pieces of geologic information are required: (1) recognizing a fault and determining whether or not the fault has been active during the Holocene, (2) identifying the location of the fault at or beneath the ground surface, (3) estimating the slip rate of the fault, and (4) estimating the maximum earthquake magnitude for each fault segment. This paper describes the information used to produce the fault classifications and distances.

  17. Connecting the Yakima fold and thrust belt to active faults in the Puget Lowland, Washington

    USGS Publications Warehouse

    Blakely, R.J.; Sherrod, B.L.; Weaver, C.S.; Wells, R.E.; Rohay, A.C.; Barnett, E.A.; Knepprath, N.E.

    2011-01-01

    High-resolution aeromagnetic surveys of the Cascade Range and Yakima fold and thrust belt (YFTB), Washington, provide insights on tectonic connections between forearc and back-arc regions of the Cascadia convergent margin. Magnetic surveys were measured at a nominal altitude of 250 m above terrain and along flight lines spaced 400 m apart. Upper crustal rocks in this region have diverse magnetic properties, ranging from highly magnetic rocks of the Miocene Columbia River Basalt Group to weakly magnetic sedimentary rocks of various ages. These distinctive magnetic properties permit mapping of important faults and folds from exposures to covered areas. Magnetic lineaments correspond with mapped Quaternary faults and with scarps identified in lidar (light detection and ranging) topographic data and aerial photography. A two-dimensional model of the northwest striking Umtanum Ridge fault zone, based on magnetic and gravity data and constrained by geologic mapping and three deep wells, suggests that thrust faults extend through the Tertiary section and into underlying pre-Tertiary basement. Excavation of two trenches across a prominent scarp at the base of Umtanum Ridge uncovered evidence for bending moment faulting possibly caused by a blind thrust. Using aeromagnetic, gravity, and paleoseismic evidence, we postulate possible tectonic connections between the YFTB in eastern Washington and active faults of the Puget Lowland. We suggest that faults and folds of Umtanum Ridge extend northwestward through the Cascade Range and merge with the Southern Whidbey Island and Seattle faults near Snoqualmie Pass 35 km east of Seattle. Recent earthquakes (MW ≤ 5.3) suggest that this confluence of faults may be seismically active today.

  18. UAV's for active tectonics : case example from the Longitudinal Valley and the Chishan Faults (Southern Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Chan, Yu-Chang; Chen, Rou-Fei; Hsieh, Yu-Chung

    2015-04-01

    Taiwan is a case example to study active tectonics due to the active NW-SE collision of the Philippine and Eurasian Sea Plates as the whole convergence reaches 10cm/y. In order to decipher the structural active tectonics geometry, we used herein UAV's to get high resolution Digital Terrain Model (DTM) in local active tectonics key areas. Classical photo-interpretation where then developped in order to structurally interprete these data, confirmed by field studies. Two location had first been choosen in order to highlight the contribution of such high resolution DTM in SW Taiwan on the Longitudinal Valley Fault (SE Taiwan) on its southern branch from Pinting to Luyeh terraces (Pinanshan) where UAV's lead to better interprete the location of the outcropping active deformations. Combined with available GPS data and PALSAR interferometry (Deffontaines et Champenois et al., submitted) it is then possible to reconstruct the way of the present deformation in this local area. In the Pinting terraces, If the western branch of the fault correspond to an outcroping thrust fault, the eastern branch act as a a growing active anticline that may be characterized and quantified independantly. The interpretation of the UAV's high resolution DTM data on the Chishan Fault (SW Taiwan) reveals also the geometry of the outcropping active faults complex structural behaviour. If the Chishan Fault act as a thrusting in its northern tip (close to Chishan city), it acts as a right lateral strike-slip fault north of Chaoshan (Kaohsiung city) as described by Deffontaines et al. 2014. Therefore UAV's are a so useful tool to get very high resolution topographic data in Taiwan that are of great help to get the geometry of the active neotectonic structures in Taiwan.

  19. Architecture of small-scale fault zones in the context of the Leinetalgraben Fault System

    NASA Astrophysics Data System (ADS)

    Reyer, Dorothea; Philipp, Sonja L.

    2010-05-01

    local stress field so that it stops many joints. Well developed fracture networks are therefore in most cases limited to single layers. From the data we finally determined the structural indices of the fault zones, that is, the ratios of damage zone and fault zone widths. By their nature structural indices can obtain values from 0 to 1; the values having implications for fault zone permeability. An ideal value of 0 would mean that a fault damage zone is absent. Such fault zones generally have low permeabilities as long as the faults are not active (slipping). A structural index of 1, however, would imply that there is practically no fault core and the fault zone permeability is entirely controlled by the fractures within the damage zone. Our measurements show that the damage zones of normal faults in the Muschelkalk limestone are relatively thick so that their structural indices are relatively high. In contrast to normal faults, reverse and strike-slip faults have smaller indices because of well developed brecciated fault cores. In addition we found that small-scale fault zones with parallel orientations to the major Leinetalgraben fault zones are more likely to have well developed damage zones than those with conjugate or perpendicular orientation. Our field data lead to the hypothesis that fault systems in the North German Basin may generally be surrounded by small-scale fault zones which have high permeabilities if orientated parallel to the major fault and lower permeabilities if conjugate or perpendicularly orientated. However, further studies of fault systems in different geological settings are needed to support or reject this hypothesis. Such studies help to improve the general understanding of fault zones and fault systems and thereby minimise the risk in matters of the exploitation of fault-related geothermal reservoirs.

  20. Geometry, kinematics and slip rate along the Mosha active fault, Central Alborz, Iran

    NASA Astrophysics Data System (ADS)

    Ritz, J.-F.; Pics Geological Team

    2003-04-01

    The Mosha fault is one of the major active fault in Central Alborz as shown by its strong historical seismicity and its clear morphological signature. Situated at the vicinity of Tehran city, this ~150 km long ~N100°E trending fault represents an important potential seismic source that threatens the Iranian metropolis. In the framework of an Iranian-French joint research program (PICS) devoted to seismic hazard assessment in the Tehran region, we undertook a morphotectonic (determination of the cumulative displacements and the ages of offset morphologic markers) and paleoseismic (determination of the ages and magnitudes of ancient events) study along the Mosha fault. Our objectives are the estimation of the long-term slip rate (Upper Pleistocene-Holocene) and the mean recurrence interval of earthquakes along the different segments of the fault. Our investigations within the Tar Lake valley, along the eastern part of the fault potentially the site of the 1665 (VII, 6.5) historical earthquake - allows us to calculate a preliminary 2 ± 0.1 mm/yr minimum left lateral slip rate. If we assume a characteristic coseismic average displacement comprised between 0.35 m (Mw 6.5) and 1.2 m (Mw 7.1) calculated from Wells &Coppersmith’s functions (1994) and taking the moment magnitudes attributed to the 1665 and 1830 earthquakes (e.g. Berberian &Yeats, 2001) the mean maximum recurrence intervals along this segment of the Mosha fault are comprised between 160 and 620 yrs.

  1. Southern San Andreas Fault evaluation field activity: approaches to measuring small geomorphic offsets--challenges and recommendations for active fault studies

    USGS Publications Warehouse

    Scharer, Katherine M.; Salisbury, J. Barrett; Arrowsmith, J. Ramon; Rockwell, Thomas K.

    2014-01-01

    In southern California, where fast slip rates and sparse vegetation contribute to crisp expression of faults and microtopography, field and high‐resolution topographic data (<1  m/pixel) increasingly are used to investigate the mark left by large earthquakes on the landscape (e.g., Zielke et al., 2010; Zielke et al., 2012; Salisbury, Rockwell, et al., 2012, Madden et al., 2013). These studies measure offset streams or other geomorphic features along a stretch of a fault, analyze the offset values for concentrations or trends along strike, and infer that the common magnitudes reflect successive surface‐rupturing earthquakes along that fault section. Wallace (1968) introduced the use of such offsets, and the challenges in interpreting their “unique complex history” with offsets on the Carrizo section of the San Andreas fault; these were more fully mapped by Sieh (1978) and followed by similar field studies along other faults (e.g., Lindvall et al., 1989; McGill and Sieh, 1991). Results from such compilations spurred the development of classic fault behavior models, notably the characteristic earthquake and slip‐patch models, and thus constitute an important component of the long‐standing contrast between magnitude–frequency models (Schwartz and Coppersmith, 1984; Sieh, 1996; Hecker et al., 2013). The proliferation of offset datasets has led earthquake geologists to examine the methods and approaches for measuring these offsets, uncertainties associated with measurement of such features, and quality ranking schemes (Arrowsmith and Rockwell, 2012; Salisbury, Arrowsmith, et al., 2012; Gold et al., 2013; Madden et al., 2013). In light of this, the Southern San Andreas Fault Evaluation (SoSAFE) project at the Southern California Earthquake Center (SCEC) organized a combined field activity and workshop (the “Fieldshop”) to measure offsets, compare techniques, and explore differences in interpretation. A thorough analysis of the measurements from the

  2. Active faults, stress field and plate motion along the Indo-Eurasian plate boundary

    NASA Astrophysics Data System (ADS)

    Nakata, Takashi; Otsuki, Kenshiro; Khan, S. H.

    1990-09-01

    The active faults of the Himalayas and neighboring areas are direct indicators of Recent and sub-Recent crustal movements due to continental collision between the Indian and Eurasian plates. The direction of the maximum horizontal shortening or horizontal compressive stress axes deduced from the strike and type of active faulting reveals a characteristic regional stress field along the colliding boundary. The trajectories of the stress axes along the transcurrent faults and the Eastern Himalayan Front, are approximately N-S, parallel to the relative motion of the two plates. However, along the southern margin of the Eurasian plate, they are NE-SW in the Western Himalayan Front and NW-SE to E-W in the Kirthar-Sulaiman Front, which is not consistent with the direction of relative plate motion. A simple model is proposed in order to explain the regional stress pattern. In this model, the tectonic sliver between the transcurrent faults and the plate margin, is dragged northward by the oblique convergence of the Indian plate. Thus, the direction of relative motion between the tectonic sliver and the Indian plate changes regionally, causing local compressive stress fields. Judging from the long-term slip rates along the active faults, the relative motion between the Indian and Eurasian plates absorbed in the colliding zone is about one fourth of its total amount; the rest may be consumed along the extensive strike-slip faults in Tibet and China.

  3. Detachment vs. normal faulting: Diachronous Cenozoic extension and rift basin formation in the Southern Balkans (Pirin Mts. and Sandanski basin, SW Bulgaria)

    NASA Astrophysics Data System (ADS)

    Stübner, Konstanze; Böhme, Madelaine; Ehlers, Todd

    2016-04-01

    The Southern Balkans are a landscape of basins and ranges formed by more than 40 Ma of extension in thickened post-collisional crust and above the retreating Hellenic trench. One of the best-studied extensional systems in the Southern Balkans is the South Rhodope core complex in northern Greece and southern Bulgaria, which records multiple stages of detachment faulting, including the Miocene Strymon detachment. Paleogene, Neogene and Quaternary basins are associated with stages of extension. We present new (U-Th)/He thermochronology ages from bedrock samples of the Pirin mountains and detrital samples of the adjacent Sandanski basin, SW Bulgaria. In combination with sediment paleomagnetic ages, structural data, and geomorphic analyses, our results document two episodes of Eocene/Oligocene and early to middle Miocene detachment faulting that were probably not associated with significant relief or basin development. In contrast, the Sandanski basin formed in the late Miocene (10-6 Ma) above the West Pirin and Melnik normal faults. Late Miocene E-W extension resulted in uplift of the Pirin Mts. and the development of a mountain landscape similar to the modern topography. In the Quaternary, the stress field switched to N-S extension reflected in E-W trending faults and Quaternary basins and recorded by river profiles. Our results advance our understanding of extension processes in the Southern Balkans in general and yield first constraints on the Neogene evolution of topography in the Southern Balkans with important implications on the evolution of regional climate and on Neogene paleoecology. Our study also documents a dichotomy between low-relief detachment faulting and steeply dipping normal faulting associated with relief and basin development.

  4. Recurrent late Quaternary surface faulting along the southern Mohawk Valley fault zone, NE California

    SciTech Connect

    Sawyer, T.L.; Hemphill-Haley, M.A. ); Page, W.D. )

    1993-04-01

    The Mohawk Valley fault zone comprises NW- to NNW-striking, normal and strike-slip( ) faults that form the western edge of the Plumas province, a diffuse transitional zone between the Basin and Range and the northern Sierra Nevada. The authors detailed evaluation of the southern part of the fault zone reveals evidence for recurrent late Pleistocene to possibly Holocene, moderate to large surface-faulting events. The southern Mohawk fault zone is a complex, 6-km-wide zone of faults and related features that extends from near the crest of the Sierra Nevada to the middle of southern Sierra Valley. The fault zone has two distinct and generally parallel subzones, 3 km apart, that are delineated by markedly different geomorphic characteristics and apparently different styles of faulting. Paleoseismic activity of the western subzone was evaluated in two trenches: one across a fault antithetic to the main range-bounding fault, and the other across a splay fault delineated by a 3.7-m-high scarp in alluvium. Stratigraphic relations, soil development, and radiocarbon dates indicate that at least four mid- to late-Pleistocene surface-faulting events, having single-event displacements in excess of 1.6 to 2.6 m, occurred along the splay fault prior to 12 ka. The antithetic fault has evidence of three late Pleistocene events that may correspond to event documented on the splay fault, and a Holocene event that is inferred from youthful scarplets and small closed depressions.

  5. Late Quaternary Deformation along the North Wuitaishan Fault of the Shanxi Graben System: Active Intracontinental Rifting in North China

    NASA Astrophysics Data System (ADS)

    Corley, J.; Cochran, W. J.; Hinrichs, N.; Ding, R.; Zhang, S.; Gomez, F.

    2012-12-01

    The Shanxi rift system in north China is an intracontinental rift zone which has been active since the late Tertiary. and has produced many destructive earthquakes in recorded history. This area is of particular interest for earthquake research because of the high seismicity levels in an intraplate setting. The Shanxi rift system is composed of NNE-oriented en-echelon half-graben basins controlled by normal faults. This study focuses on the north Wutaishan fault, which bounds the Wutai Mountains and the Xingding basin, located in the northern part of the Shanxi rift system. Quaternary tectonism is investigated using remotely-sensed imagery for mapping of large tectonically-influenced landforms, field investigations for ground truth, and structural analyses. Initial neotectonic mapping utilized stereoscopic Corona satellite imagery to differentiate between fluvial and agricultural terraces; Cartosat-based DEMs were used to correct altitude measurements of terrace heights and to analyze streams and other landforms for morphometric analysis. Fluvial terraces are used to reconstruct paleo-stream profiles of the Yangyan River and nearby tributaries to determine mountain uplift rates inferred from fluvial incision, basin extension rates, and possible warping of the footwall basin block. Field work provided ground truth for fluvial terrace altitude, type of terrace, and thicknesses of alluvial and loess deposits. Another aspect of the study involves development of structural cross-section to relate fault slip to regional tectonic strain. Fault kinematic analysis of micro-fault features found in bedrock were used to assess the Quaternary stress field. Results of this study have implications in the understanding of earthquake recurrence intervals and basin evolution in the Shanxi rift system and more generally, can improve the understanding of spatial and temporal variations of seismic events in intraplate settings.

  6. Contradicting Estimates of Location, Geometry, and Rupture History of Highly Active Faults in Central Japan

    NASA Astrophysics Data System (ADS)

    Okumura, K.

    2011-12-01

    Accurate location and geometry of seismic sources are critical to estimate strong ground motion. Complete and precise rupture history is also critical to estimate the probability of the future events. In order to better forecast future earthquakes and to reduce seismic hazards, we should consider over all options and choose the most likely parameter. Multiple options for logic trees are acceptable only after thorough examination of contradicting estimates and should not be a result from easy compromise or epoche. In the process of preparation and revisions of Japanese probabilistic and deterministic earthquake hazard maps by Headquarters for Earthquake Research Promotion since 1996, many decisions were made to select plausible parameters, but many contradicting estimates have been left without thorough examinations. There are several highly-active faults in central Japan such as Itoigawa-Shizuoka Tectonic Line active fault system (ISTL), West Nagano Basin fault system (WNBF), Inadani fault system (INFS), and Atera fault system (ATFS). The highest slip rate and the shortest recurrence interval are respectively ~1 cm/yr and 500 to 800 years, and estimated maximum magnitude is 7.5 to 8.5. Those faults are very hazardous because almost entire population and industries are located above the fault within tectonic depressions. As to the fault location, most uncertainties arises from interpretation of geomorphic features. Geomorphological interpretation without geological and structural insight often leads to wrong mapping. Though non-existent longer fault may be a safer estimate, incorrectness harm reliability of the forecast. Also this does not greatly affect strong motion estimates, but misleading to surface displacement issues. Fault geometry, on the other hand, is very important to estimate intensity distribution. For the middle portion of the ISTL, fast-moving left-lateral strike-slip up to 1 cm/yr is obvious. Recent seismicity possibly induced by 2011 Tohoku

  7. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE PAGES

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  8. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    SciTech Connect

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismic moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.

  9. Delineation of Active Basement Faults in the Eastern Tennessee and Charlevoix Intraplate Seismic Zones

    NASA Astrophysics Data System (ADS)

    Powell, C. A.; Langston, C. A.; Cooley, M.

    2013-12-01

    Recognition of distinct, seismogenic basement faults within the eastern Tennessee seismic zone (ETSZ) and the Charlevoix seismic zone (CSZ) is now possible using local earthquake tomography and datasets containing a sufficiently large number of earthquakes. Unlike the New Madrid seismic zone where seismicity clearly defines active fault segments, earthquake activity in the ETSZ and CSZ appears diffuse. New arrival time inversions for hypocenter relocations and 3-D velocity variations using datasets in excess of 1000 earthquakes suggest the presence of distinct basement faults in both seismic zones. In the ETSZ, relocated hypocenters align in near-vertical segments trending NE-SW, parallel to the long dimension of the seismic zone. Earthquakes in the most seismogenic portion of the ETSZ delineate another set of near-vertical faults trending roughly E-ESE. These apparent trends and steep dips are compatible with ETSZ focal mechanism solutions. The solutions are remarkably consistent and indicate strike-slip motion along the entire length of the seismic zone. Relocated hypocenter clusters in the CSZ define planes that trend and dip in directions that are compatible with known Iapitan rift faults. Seismicity defining the planes becomes disrupted where the rift faults encounter a major zone of deformation produced by a Devonian meteor impact. We will perform a joint statistical analysis of hypocenter alignments and focal mechanism nodal plane orientations in the ETSZ and the CSZ to determine the spatial orientations of dominant seismogenic basement faults. Quantifying the locations and dimensions of active basement faults will be important for seismic hazard assessment and for models addressing the driving mechanisms for these intraplate zones.

  10. Definition and Paleoseismology of the Active, Left-Lateral Enriquillo-Plantain Garden Fault Zone Based on High-Resolution Chirp Profiles: Lakes Azuey and Mirogoane, Haiti

    NASA Astrophysics Data System (ADS)

    Wang, J.; Mann, P.; von Lignau, A. V.

    2014-12-01

    In July 2014, we obtained a total of 94 km of high-resolution Chirp profiles from the 129 km2, brackish Lake Azuey and 37 km of profiles from the 14 km2, fresh water Lake Mirogoane that both straddle the active trace of the Enriquillo-Plantain Garden fault zone (EPGFZ) of Haiti. 80% of the grid on Azuey and 85% on Mirogoane was dedicated to north-south profiles of the EPGFZ. In Azuey we defined the linear and east-west-striking fault trace in deformed Holocene sediments along with its landfalls west of Lake Azuey in Haiti and east of Lake Azuey in the Dominican Republic. All profiles showed the fault to be a sub-vertical flower structure whose active traces could be traced on Chirp data to a depth of 30 m below the lake floor. Previous workers have suggested that this fault ruptured during a large November, 1751, earthquake with a parallel and elongate felt zone. We hypothesize the most recent break of the fault several meters below the lake floor to have formed during the 1751 event but plan a coring program to precisely constrain the timing of historical and prehistorical events based on syn-faulting colluvial wedges observed on Chirp profiles. Our survey of Mirogoane confirmed its rhomboidal pull-apart structure with the basin center at a depth of 42-8 m making this basin the deepest lake in the Caribbean region. Deformational features include active folds at the lake bottom, large oblique-slip normal faults at an angle to the bounding east-west faults, and 30 m of recognizable stratigraphy. The 7 m of Holocene cored in the basin center in 1988 is observed to be highly deformed and locally folded and overlies with angular unconformity a well stratified and more folded lower basinal unit. Historical events are proposed to have ruptured on or near this segment of the EPGFZ in 1701 and 1770.

  11. Paper 58714 - Exploring activated faults hydromechanical processes from semi-controled field injection experiments

    NASA Astrophysics Data System (ADS)

    Guglielmi, Y.; Cappa, F.; Nussbaum, C.

    2015-12-01

    The appreciation of the sensitivity of fractures and fault zones to fluid-induced-deformations in the subsurface is a key question in predicting the reservoir/caprock system integrity around fluid manipulations with applications to reservoir leakage and induced seismicity. It is also a question of interest in understanding earthquakes source, and recently the hydraulic behavior of clay faults under a potential reactivation around nuclear underground depository sites. Fault and fractures dynamics studies face two key problems (1) the up-scaling of laboratory determined properties and constitutive laws to the reservoir scale which is not straightforward when considering faults and fractures heterogeneities, (2) the difficulties to control both the induced seismicity and the stimulated zone geometry when a fault is reactivated. Using instruments dedicated to measuring coupled pore pressures and deformations downhole, we conducted field academic experiments to characterize fractures and fault zones hydromechanical properties as a function of their multi-scale architecture, and to monitor their dynamic behavior during the earthquake nucleation process. We show experiments on reservoir or cover rocks analogues in underground research laboratories where experimental conditions can be optimized. Key result of these experiments is to highlight how important the aseismic fault activation is compared to the induced seismicity. We show that about 80% of the fault kinematic moment is aseismic and discuss the complex associated fault friction coefficient variations. We identify that the slip stability and the slip velocity are mainly controlled by the rate of the permeability/porosity increase, and discuss the conditions for slip nucleation leading to seismic instability.

  12. GPR measurements to assess the Emeelt active fault's characteristics in a highly smooth topographic context, Mongolia

    NASA Astrophysics Data System (ADS)

    Dujardin, Jean-Rémi; Bano, Maksim; Schlupp, Antoine; Ferry, Matthieu; Munkhuu, Ulziibat; Tsend-Ayush, Nyambayar; Enkhee, Bayarsaikhan

    2014-07-01

    To estimate the seismic hazard, the geometry (dip, length and orientation) and the dynamics (type of displacements and amplitude) of the faults in the area of interest need to be understood. In this paper, in addition to geomorphologic observations, we present the results of two ground penetrating radar (GPR) campaigns conducted in 2010 and 2011 along the Emeelt fault in the vicinity of Ulaanbaatar, capital of Mongolia, located in an intracontinental region with low deformation rate that induces long recurrence time between large earthquakes. As the geomorphology induced by the fault activity has been highly smoothed by erosion processes since the last event, the fault location and geometry is difficult to determine precisely. However, by using GPR first, a non-destructive and fast investigation, the fault and the sedimentary deposits near the surface can be characterized and the results can be used for the choice of trench location. GPR was performed with a 50 MHz antenna over 2-D lines and with a 500 MHz antenna for pseudo-3-D surveys. The 500 MHz GPR profiles show a good consistency with the trench observations, dug next to the pseudo-3-D surveys. The 3-D 500 MHz GPR imaging of a palaeochannel crossed by the fault allowed us to estimate its lateral displacement to be about 2 m. This is consistent with a right lateral strike-slip displacement induced by an earthquake around magnitude 7 or several around magnitude 6. The 2-D 50 MHz profiles, recorded perpendicular to the fault, show a strong reflection dipping to the NE, which corresponds to the fault plane. Those profiles provided complementary information on the fault such as its location at shallow depth, its dip angle (from 23° to 35°) and define its lateral extension.

  13. Lake Clark fault, assessment of tectonic activity based on reconnaissance mapping of glacial deposits, northwestern Cook Inlet Alaska

    NASA Astrophysics Data System (ADS)

    Reger, R. D.; Koehler, R. D.

    2009-12-01

    The Lake Clark fault extends ~247 km from the vicinity of Lake Clark in the Alaska-Aleutian Range batholith northeastward to the Castle Mountain fault along the northern margin of Cook Inlet. Documented Tertiary deformation along the fault includes dextral offsets (5-26 km) and north-side-up reverse displacements (500-1,000 m). The fault is along strike with the Holocene-active Castle Mountain fault and adjacent to the active northern Cook Inlet fold belt. As part of the STATEMAP program, the State of Alaska has begun a 2-year geologic mapping project in the vicinity of the Lake Clark fault, including assessment of Quaternary fault activity and its role in accommodating deformation in the Aleutian forearc. Here we present preliminary Quaternary mapping and tectonic geomorphic observations aimed at assessing the fault activity. Between the Beluga and Chakachatna rivers, large lateral moraines of the late Wisconsinan Naptowne glaciation cross the fault and are not displaced. In the vicinity of Lone Ridge, the fault is expressed as a ~25-m southeast-facing scarp in bedrock associated with springs and vertically offset Stage 4 or 6 moraines. In the Chuitna River drainage basin beyond the Naptowne ice limit, the fault extends across a fairly flat plateau with drumlins and ice-stagnation deposits related to Stage 4 or 6 glaciation. There the fault is expressed by subtle vegetation and tonal lineaments on air photos; however, scarps and lateral offsets were not observed. Stream profiles perpendicular to the fault along the Chuitna River and Chuitna Creek have convex profiles that could be related to tectonic folding. Our observations indicate that this part of the Lake Clark fault may be Quaternary active, but has been relatively quiescent in the late Pleistocene. Thus, blind thrust faults associated with the northern Cook Inlet fold belt may accommodate the majority of the tectonic deformation in this part of the Aleutian forearc. This information is applicable to

  14. Probabilistic seismic hazard study based on active fault and finite element geodynamic models

    NASA Astrophysics Data System (ADS)

    Kastelic, Vanja; Carafa, Michele M. C.; Visini, Francesco

    2016-04-01

    We present a probabilistic seismic hazard analysis (PSHA) that is exclusively based on active faults and geodynamic finite element input models whereas seismic catalogues were used only in a posterior comparison. We applied the developed model in the External Dinarides, a slow deforming thrust-and-fold belt at the contact between Adria and Eurasia.. is the Our method consists of establishing s two earthquake rupture forecast models: (i) a geological active fault input (GEO) model and, (ii) a finite element (FEM) model. The GEO model is based on active fault database that provides information on fault location and its geometric and kinematic parameters together with estimations on its slip rate. By default in this model all deformation is set to be released along the active faults. The FEM model is based on a numerical geodynamic model developed for the region of study. In this model the deformation is, besides along the active faults, released also in the volumetric continuum elements. From both models we calculated their corresponding activity rates, its earthquake rates and their final expected peak ground accelerations. We investigated both the source model and the earthquake model uncertainties by varying the main active fault and earthquake rate calculation parameters through constructing corresponding branches of the seismic hazard logic tree. Hazard maps and UHS curves have been produced for horizontal ground motion on bedrock conditions VS 30 ≥ 800 m/s), thereby not considering local site amplification effects. The hazard was computed over a 0.2° spaced grid considering 648 branches of the logic tree and the mean value of 10% probability of exceedance in 50 years hazard level, while the 5th and 95th percentiles were also computed to investigate the model limits. We conducted a sensitivity analysis to control which of the input parameters influence the final hazard results in which measure. The results of such comparison evidence the deformation model and

  15. Active faults and seismogenic models for the Urumqi city, Xinjiang Autonomous Region, China

    NASA Astrophysics Data System (ADS)

    Li, Yingzhen; Yu, Yang; Shen, Jun; Shao, Bo; Qi, Gao; Deng, Mei

    2016-06-01

    We have studied the characteristics of the active faults and seismicity in the vicinity of Urumqi city, the capital of Xinjiang Autonomous Region, China, and have proposed a seismogenic model for the assessment of earthquake hazard in this area. Our work is based on an integrated analysis of data from investigations of active faults at the surface, deep seismic reflection soundings, seismic profiles from petroleum exploration, observations of temporal seismic stations, and the precise location of small earthquakes. We have made a comparative study of typical seismogenic structures in the frontal area of the North Tianshan Mountains, where Urumqi city is situated, and have revealed the primary features of the thrust-fold-nappe structure there. We suggest that Urumqi city is comprised two zones of seismotectonics which are interpreted as thrust-nappe structures. The first is the thrust nappe of the North Tianshan Mountains in the west, consisting of the lower (root) thrust fault, middle detachment, and upper fold-uplift at the front. Faults active in the Pleistocene are present in the lower and upper parts of this structure, and the detachment in the middle spreads toward the north. In the future, M7 earthquakes may occur at the root thrust fault, while the seismic risk of frontal fold-uplift at the front will not exceed M6.5. The second structure is the western flank of the arc-like Bogda nappe in the east, which is also comprised a root thrust fault, middle detachment, and upper fold-uplift at the front, of which the nappe stretches toward the north; several active faults are also developed in it. The fault active in the Holocene is called the South Fukang fault. It is not in the urban area of Urumqi city. The other three faults are located in the urban area and were active in the late Pleistocene. In these cases, this section of the nappe structure near the city has an earthquake risk of M6.5-7. An earthquake M S6.6, 60 km east to Urumqi city occurred along the

  16. The role of mechanical heterogeneities in evaporite sequence during deformation initiated by basement fault activity

    NASA Astrophysics Data System (ADS)

    Adamuszek, Marta; Dabrowski, Marcin; Burliga, Stanisław

    2016-04-01

    Kłodawa Salt Structure (KSS) situated in the centre of the Polish Zechstein Basin started to rise above a basement fault in the Early Triassic. Geological studies of the KSS revealed significant differences in the deformation patterns between the PZ1-PZ2 (intensely deformed) and PZ3-PZ4 (less deformed) cycle evaporites. These two older and two younger cycle evaporite complexes are separated by the thick Main Anhydrite (A3) bed. We use numerical simulations to assess the impact of a thick anhydrite bed on intrasalt deformation. In our models, the overburden consists of clastic sediments. A normal fault located in the rigid basement beneath the salt is activated due to model extension. At the same time, the sedimentation process takes place. The evaporites consist of a salt bed intercalated with a thick anhydrite layer of varying position and geometry. To understand the role of anhydrite layer, we run comparative simulations, in which no anhydrite layer is present. In the study, we use our own numerical codes implemented in MATLAB combined with the MILAMIN and MUTILS numerical packages. Our investigations revealed a significant influence of the anhydrite on deformation style in the evaporate series. The supra-anhydrite domain is characterized by weaker deformation and lower rates of salt flow in comparison to the sub-anhydrite domain. The highest contrast in the rate of salt flow between the two domains is observed in the case of the anhydrite layer situated close to the bottom of the salt complex. The thick anhydrite layer additionally diminishes the deformation rate in the supra-anhydrite domain and can lead to detachment of the basement deformation from its overlay. Our numerical simulations showed that the presence of the A3 Main Anhydrite bed could be the dominant factor responsible for the decoupling of deformation in the KSS salt complex.

  17. Holocene activity of the Rose Canyon fault zone in San Diego, California

    NASA Astrophysics Data System (ADS)

    Lindvall, Scott C.; Rockwell, Thomas K.

    1995-12-01

    The Rose Canyon fault zone in San Diego, California, has many well-expressed geomorphic characteristics of an active strike-slip fault, including scarps, offset and deflected drainages and channel walls, pressure ridges, a closed depression, and vegetation lineaments. Geomorphic expression of the fault zone from Mount Soledad south to Mission Bay indicates that the Mount Soledad strand is the most active. A network of trenches excavated across the Mount Soledad strand in Rose Creek demonstrate a minimum of 8.7 m of dextral slip in a distinctive early to middle Holocene gravel-filled channel that crosses the fault zone. The gravel-filled channel was preserved within and east of the fault but was removed west of the fault zone by erosion or possibly grading during development. Consequently, the actual displacement of the channel could be greater than 8.7 m. Radiocarbon dates on detrital charcoal recovered from the sediments beneath the channel yield a maximum calibrated age of about 8.1±0.2 kyr. The minimum amount of slip along with the maximum age yield a minimum slip rate of 1.07±0.03 mm/yr on this strand of the Rose Canyon fault zone for much of Holocene time. Other strands of the Rose Canyon fault zone, which are east and west of our site, may also have Holocene activity. Based on an analysis of the geomorphology of fault traces within the Rose Canyon fault zone, along with the results of our trenching study, we estimate the maximum likely slip rate at about 2 mm/yr and a best estimate of about 1.5 mm/yr. Stratigraphie evidence of at least three events is present during the past 8.1 kyr. The most recent surface rupture displaces the modern A horizon (topsoil), suggesting that this event probably occurred within the past 500 years. Stratigraphie and structural relationships also indicate the occurrence of a scarp-forming event at about 8.1 kyr, prior to deposition of the gravel-filled channel that was used as a piercing line. A third event is indicated by the

  18. Recently Active Traces of the Berryessa Fault, California: A Digital Database

    USGS Publications Warehouse

    Lienkaemper, James J.

    2012-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Berryessa section and parts of adjacent sections of the Green Valley Fault Zone, California. The location and recency of the mapped traces is primarily based on geomorphic expression of the fault as interpreted from large-scale 2010 aerial photography and from 2007 and 2011 0.5 and 1.0 meter bare-earth LiDAR imagery (that is, high-resolution topographic data). In a few places, evidence of fault creep and offset Holocene strata in trenches and natural exposures have confirmed the activity of some of these traces. This publication is formatted both as a digital database for use within a geographic information system (GIS) and for broader public access as map images that may be browsed on-line or download a summary map. The report text describes the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map.

  19. Exhumed analogues of seismically active carbonate-bearing thrusts: fault architecture and deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Tesei, T.; Collettini, C.; Viti, C.; Barchi, M. R.

    2012-12-01

    In May 2012 a M = 5.9 earthquake followed by a long aftershock sequence struck the Northern Italy. The sequence occurred at 4-10 km depth within the active front of Northern Apennines Prism and the major events nucleate within, or propagate through, a thick sequence of carbonates. In an inner sector of the Northern Apennines, ancient carbonate-bearing thrusts exposed at the surface, represent exhumed analogues of structures generating seismicity in the active front. Here we document fault architecture and deformation mechanisms of three regional carbonate bearing thrusts with displacement of several kilometers and exhumation in the range of 1-4 km. Fault zone structure and deformation mechanisms are controlled by the lithology of the faulted rocks. In layered limestones and marly-limestones the fault zone is up to 200 m thick and is characterized by intense pressure solution. In massive limestones the deformation generally occurs along thin and sharp slip planes that are in contact with fault portions affected by either cataclasis or pressure solution. SEM and TEM observations show that pressure solution surfaces, made of smectite lamellae, with time tend to form an interconnected network affected by frictional sliding. Sharp slipping planes along massive limestones show localization along Y shear planes that separate an extremely comminuted cataclasites from an almost undeformed protolith. The comparison of the three shear zones depicts a fault zone structure extremely heterogeneous as the result of protolith lithology, geometrical complexities and the presence of inherited structures. We observe the competition between brittle (cataclasis, distributed frictional sliding along phyllosilicates and extremely localized slip within carbonates) and pressure solution processes, that suggest a multi-mode of slip behaviour. Extreme localization along carbonate-bearing Y shear planes is our favorite fault zone feature representing past seismic ruptures along the studied

  20. Serum gamma-glutamyl transpeptidase activity in normal children.

    PubMed

    Shore, G M; Hoberman, L; Dowdey, B C; Combes, B

    1975-02-01

    Serum gamma-glutamyl transpeptidase (GGT) activities of 82 healthy neonates (aged 9 hours to 11 days) and 106 healthy children (aged 2 months to 15 years) were determined. Serum GGT activity of 47 neonates (51%) was higher than the accepted upper limit of normal for adults. By three months of age, all of the children had serum GGT activities that were within the accepted normal range for adults. Thereafter there was only minimal variation in serum GGT activities of older children. Although mean serum GGT activity was higher in male children than in female children, there was no significant difference between the values for male and female neonates. That after the neonatal period serum GGT activity is constant in the adult range and is not affected by bone growth as is alkaline phosphatase suggests that GGT may be of value in the evaluation of hepatobiliary disease in children.

  1. Slip Rates of Main Active Fault Zones Through Turkey Inferred From GPS Observations

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Aktug, B.; Dogru, A.; Tasci, L.; Acar, M.; Emre, O.; Yilmaz, O.; Turgut, B.; Halicioglu, K.; Sabuncu, A.; Bal, O.; Eraslan, A.

    2015-12-01

    Active Fault Map of Turkey was revised and published by General Directorate of Mineral Research and Exploration in 2012. This map reveals that there are about 500 faults can generate earthquakes.In order to understand the earthquake potential of these faults, it is needed to determine the slip rates. Although many regional and local studies were performed in the past, the slip rates of the active faults in Turkey have not been determined. In this study, the block modelling, which is the most common method to produce slip rates, will be done. GPS velocities required for block modeling is being compiled from the published studies and the raw data provided then velocity field is combined. To form a homogeneous velocity field, different stochastic models will be used and the optimal velocity field will be achieved. In literature, GPS site velocities, which are computed for different purposes and published, are combined globally and this combined velocity field are used in the analysis of strain accumulation. It is also aimed to develop optimal stochastic models to combine the velocity data. Real time, survey mode and published GPS observations is being combined in this study. We also perform new GPS observations. Furthermore, micro blocks and main fault zones from Active Fault Map Turkey will be determined and homogeneous velocity field will be used to infer slip rates of these active faults. Here, we present the result of first year of the study. This study is being supported by THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKEY (TUBITAK)-CAYDAG with grant no. 113Y430.

  2. Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran

    NASA Astrophysics Data System (ADS)

    Karakhanian, Arkady S.; Trifonov, Vladimir G.; Philip, Herve; Avagyan, Ara; Hessami, Khaled; Jamali, Farshad; Salih Bayraktutan, M.; Bagdassarian, H.; Arakelian, S.; Davtian, V.; Adilkhanyan, A.

    2004-03-01

    Active fault zones of Armenia, SE Turkey and NW Iran present a diverse set of interrelated natural hazards. Three regional case studies in this cross-border zone are examined to show how earthquakes interact with other hazards to increase the risk of natural disaster. In northern Armenia, a combination of several natural and man-made phenomena (earthquakes, landslides and unstable dams with toxic wastes) along the Pambak-Sevan-Sunik fault (PSSF) zone lowers from 0.4 to 0.2-0.3 g the maximum permissible level (MPL) of seismic hazard that may induce disastrous destruction and loss of life in the adjacent Vanadzor depression. In the Ararat depression, a large active fault-bounded pull-apart basin at the junction of borders of Armenia, Turkey, Iran and Azerbaijan, an earthquake in 1840 was accompanied by an eruption of Ararat Volcano, lahars, landslides, floods, soil subsidence and liquefaction. The case study demonstrates that natural hazards that are secondary with respect to earthquakes may considerably increase the damage and the casualties and increase the risk associated with the seismic impact. The North Tabriz-Gailatu fault system poses a high seismic hazard to the border areas of NW Iran, eastern Turkey, Nakhichevan (Azerbaijan) and southern Armenia. Right-lateral strike-slip motions along the North Tabriz fault have given rise to strong earthquakes, which threaten the city of Tabriz with its population of 1.2 million. The examples illustrate how the concentration of natural hazards in active fault zones increases the risk associated with strong earthquakes in Armenia, eastern Turkey and NW Iran. This generally occurs across the junctions of international borders. Hence, the transboundary character of active faults requires transboundary cooperation in the study and mitigation of the natural risk.

  3. The effect of effective normal stress on particle breakage, porosity and permeability of sand: Evaluation of faults around methane hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Kimura, Sho; Kaneko, Hiroaki; Ito, Takuma; Minagawa, Hideki

    2014-09-01

    To provide evaluation of faults around methane hydrate reservoirs, we used a ring-shear apparatus to examine the perpendicular permeability of silica sand. The effects of effective normal stress and artificial overconsolidation ratios on the permeability were investigated. We obtained measurements under constant effective normal stress ranging from 0.5 MPa to 8.0 MPa and under two overconsolidation ratios (OCR 1.6 and 16.0). Permeability and porosity after ring-shearing substantially decreased with increasing effective normal stress up to an effective normal stress of 2.0 MPa, and became constant for effective normal stress values greater than 2.0 MPa. Stress dependency of both permeability and porosity after large-displacement shearing was clearly observed. Significant changes in permeability after ring-shearing related to the artificial overconsolidation ratio were not observed. To observe the shear zone microstructure and grain crushing, we conducted analyses using field emission scanning electron microscopy and laser diffraction. The stress dependency of permeability reduction after ring-shearing was reflected by the porosity and grain size reduction due to grain crushing in a finite shear zone. The results indicate that fault (shear zone) formed at the moderate effective normal stress may act as a sealing structure in gas production areas.

  4. Multilayer stress from gravity and its tectonic implications in urban active fault zone: A case study in Shenzhen, South China

    NASA Astrophysics Data System (ADS)

    Xu, Chuang; Wang, Hai-hong; Luo, Zhi-cai; Ning, Jin-sheng; Liu, Hua-liang

    2015-03-01

    It is significant to identify urban active faults for human life and social sustainable development. The ordinary methods to detect active faults, such as geological survey, artificial seismic exploration, and electromagnetic exploration, are not convenient to be carried out in urban area with dense buildings. It is also difficult to supply information about vertical extension of the deeper faults by these methods. Gravity, reflecting the mass distribution of the Earth's interior, provides an alternative way to detect faults, which is more efficient and convenient for urban active fault detection than the aforementioned techniques. Based on the multi-scale decomposition of gravity anomalies, a novel method to invert multilayer horizontal tectonic stresses is proposed. The inverted multilayer stress fields are further used to infer the distribution and stability of the main faults. In order to validate our method, the multilayer stress fields in the Shenzhen fault zone are calculated as a case study. The calculated stress fields show that their distribution is controlled significantly by the strike of the main faults and can be used to derive depths of the faults. The main faults in Shenzhen may range from 4 km to 20 km in the depth. Each layer of the crust is nearly equipressure since the horizontal tectonic stress has small amplitude. It indicates that the main faults in Shenzhen are relatively stable and have no serious impact on planning and construction of the city.

  5. Seismic Risk Assessment of Active Faults in Japan in Terms of Population Exposure to Seismic Intensity

    NASA Astrophysics Data System (ADS)

    Nojima, Nobuoto; Fujiwara, Hiroyuki; Morikawa, Nobuyuki; Ishikawa, Yutaka; Okumura, Toshihiko; Miyakoshi, Junichi

    This study evaluates and compares seismic risks associated with inland crustal earthquakes in Japan on the basis of published data available on the Japan Seismic Hazard Information Station (J-SHIS). First, taking account of prediction uncertainty of the attenuation law of seismic intensity, the evaluation method for population exposure (PEX) to seismic intensity is presented. The method is applied to 333 seismic events potentially caused by main active faults (154 cases) and other active faults (179 cases). The relationship between population exposure and the probability of occurrence of seismic events ("P-PEX relation") and the resultant seismic risk curves are obtained. Generalized risk index which incorporates the effects of focusing on urgency (probability) or significance (PEX) is defined, producing various risk rankings of active faults.

  6. Soil Moisture Active Passive Mission: Fault Management Design Analyses

    NASA Technical Reports Server (NTRS)

    Meakin, Peter; Weitl, Raquel

    2013-01-01

    As a general trend, the complexities of modern spacecraft are increasing to include more ambitious mission goals with tighter timing requirements and on-board autonomy. As a byproduct, the protective features that monitor the performance of these systems have also increased in scope and complexity. Given cost and schedule pressures, there is an increasing emphasis on understanding the behavior of the system at design time. Formal test-driven verification and validation (V&V) is rarely able to test the significant combinatorics of states, and often finds problems late in the development cycle forcing design changes that can be costly. This paper describes the approach the SMAP Fault Protection team has taken to address some of the above-mentioned issues.

  7. Active fault detection and isolation of discrete-time linear time-varying systems: a set-membership approach

    NASA Astrophysics Data System (ADS)

    Mojtaba Tabatabaeipour, Seyed

    2015-08-01

    Active fault detection and isolation (AFDI) is used for detection and isolation of faults that are hidden in the normal operation because of a low excitation signal or due to the regulatory actions of the controller. In this paper, a new AFDI method based on set-membership approaches is proposed. In set-membership approaches, instead of a point-wise estimation of the states, a set-valued estimation of them is computed. If this set becomes empty the given model of the system is not consistent with the measurements. Therefore, the model is falsified. When more than one model of the system remains un-falsified, the AFDI method is used to generate an auxiliary signal that is injected into the system for detection and isolation of faults that remain otherwise hidden or non-isolated using passive FDI (PFDI) methods. Having the set-valued estimation of the states for each model, the proposed AFDI method finds an optimal input signal that guarantees FDI in a finite time horizon. The input signal is updated at each iteration in a decreasing receding horizon manner based on the set-valued estimation of the current states and un-falsified models at the current sample time. The problem is solved by a number of linear and quadratic programming problems, which result in a computationally efficient algorithm. The method is tested on a numerical example as well as on the pitch actuator of a benchmark wind turbine.

  8. Late Cenozoic transtensional fault belt discovered on the boundary of the Awati Sag in the northwestern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Li, Yue-Jun; Zhang, Qiang; Zhang, Guang-Ya; Yang, Hai-Jun; Yang, Xian-Zhang; Shi, Jun; Neng, Yuan; Chen, Yan-Gui; Wen, Lei

    2015-07-01

    Late Cenozoic transtensional fault belt was discovered on Shajingzi fault belt, NW boundary of the Awati Sag in the northwestern Tarim Basin. And numerous Quaternary normal faults were discovered on Aqia and Tumuxiuke fault belts, SW boundary of Awati. This discovery reveals Quaternary normal fault activity in the Tarim Basin for the first time. It is also a new discovery in the southern flank of Tianshan Mountains. Shajingzi transtensional fault belt is made up of numerous, small normal faults. Horizontally, the normal faults are arranged in right-step, en echelon patterns along the preexisting Shajingzi basement fault, forming a sinistral transtensional normal fault belt. In profile, they cut through the Paleozoic to the mid-Quaternary and combine to form negative flower structures. The Late Cenozoic normal faults on the SW boundary of Awati Sag were distributed mainly in the uplift side of the preexisting Aqia and Tumuxiuke basement-involved faults, and combined to form small horst and graben structures in profile. Based on the intensive seismic interpretation, careful fault mapping, and growth index analysis, we conclude that the normal fault activity of Shajingzi transtensional fault belt began from Late Pliocene and ceased in Late Pleistocene (mid-Quaternary). And the normal faulting on the SW boundary of Awati Sag began from the very beginning of Quaternary and ceased in Pleistocene. The normal faulting on Awati's SW boundary began a little later than those on the NW boundary. The origin of Shajingzi transtensional normal fault belt was due to the left-lateral strike-slip occurred in the southern flank of Tianshan, and then, due to the eastward escape of the Awati block, a tensional stress developed the normal faults on its SW boundary.

  9. Assessment of Morphotectonic Influences on Hydrological Environment in Vicinity of an Active Fault

    NASA Astrophysics Data System (ADS)

    Singh, A.; Mukherjee, S.

    2011-12-01

    Studying effects of faulted zones in shaping the hydrological environment of any landscape in a long run is difficult, though these can play a crucial role in regulating the flow and accumulation of water. While aquifer recharge is directly influenced by the structural changes associated with tectonic activity, surface flow may also be influenced depending upon the topography. While planning for water resource management, groundwater remediation or hydrological restoration it is imperative to understand and suitably include these influences to derive maximum benefit. This study aimed at characterization of surface as well as subsurface hydrological conditions in a hard-rock terrain, morphed under the influence of neotectonic activity, associated with tensional type of faulting. The area selected lies approximately between 28.20 - 28.60 N and 77.00 - 77.40 E, in vicinity of an active fault, with quartzitic rocks showing signs of multiple folding. Associated tear faults in adjoining areas have also been observed. To initially identify sites suitable for geophysical surveys, a spatial analysis involving seismic data and 3D visualization was done to identify the lineaments. The information thus obtained was correlated with geological information derived from hyperspectral satellite imagery. Geochemical analysis was also performed to verify the same. Influence of faulting activity on regulating water flow on surface as well as groundwater was studied. For surface water bodies hydrological analysis on elevation data (DEM) was performed whereas for subsurface recharge, margins of geological units were targeted. This was confirmed by actual field geophysical (resistivity) surveys at suitable strategic locations. The relative influences of structural lineaments on regulating subsurface water storage were also determined. The resulting database in GIS platform can also be used for flow modeling and aquifer potential / vulnerability studies. Also, the role of faulting

  10. A Normal-faulting Paleostress in the Vicinity of Up-dip Limit of Seismogenic Zone Detected by Meso-scale Fault Analysis in a Tectonic Mélange

    NASA Astrophysics Data System (ADS)

    Sato, K.; Ikesawa, E.; Kimura, G.

    2003-12-01

    The Mugi mélange in the Shimanto Belt, SW Japan, is a mixture of terrigenous and oceanic materials of late Cretaceous to Paleocene. Intermittent bedding planes trend ENE-WSW to E-W (subparallel to the Nankai trough axis) and dip steeply northward. The Mugi mélange consists of several duplex units accompanied by shear zones of basalt layers at their boundaries. Systematic shear fabrics and P-T conditions estimated from analyses of vitrinite reflectance and fluid inclusions indicate that the Mugi mélange had once been subducted to a significant depth (6-7 km below sea floor, which appears to coincide with the up-dip limit of the seismogenic zone), then underplated to the Shimanto accretionary prism, and is now exhumed on ground surface. In this study, for the purpose of determining paleostress fields related to the processes in which subducted materials were deformed, underplated and uplifted to surface, orientations of meso-scale faults and striations were analyzed. Stress inversion techniques including Angelier's Inversion, Multiple Inversion and Ginkgo Method were applied to fault-slip data obtained in each duplex unit of the Mugi mélange, and the results were almost consistent with each other. Most of the resultant σ 1 axes trend N-S horizontally, and are parallel to poles of shale cleavages, which are roughly parallel to bedding planes. Although the cleavages slightly vary their orientations according to later rotation, σ 1 axis changes together with them. This cleavage-controlled paleostress has a low Bishop's stress ratio (i.e. low magnitude of σ 2), therefore is an axial compressional stress normal to cleavages. The restored paleostress was probably exerted just before or at the same time of the formation of duplex structure and the rotation of bedding planes. The meso-scale faults appear to have been formed as normal ones due to overburden. P-T conditions estimated by analysis of fluid inclusions, which occur in the mineral veins sealing measured

  11. Geodetic Network Design and Optimization on the Active Tuzla Fault (Izmir, Turkey) for Disaster Management

    PubMed Central

    Halicioglu, Kerem; Ozener, Haluk

    2008-01-01

    Both seismological and geodynamic research emphasize that the Aegean Region, which comprises the Hellenic Arc, the Greek mainland and Western Turkey is the most seismically active region in Western Eurasia. The convergence of the Eurasian and African lithospheric plates forces a westward motion on the Anatolian plate relative to the Eurasian one. Western Anatolia is a valuable laboratory for Earth Science research because of its complex geological structure. Izmir is a large city in Turkey with a population of about 2.5 million that is at great risk from big earthquakes. Unfortunately, previous geodynamics studies performed in this region are insufficient or cover large areas instead of specific faults. The Tuzla Fault, which is aligned trending NE–SW between the town of Menderes and Cape Doganbey, is an important fault in terms of seismic activity and its proximity to the city of Izmir. This study aims to perform a large scale investigation focusing on the Tuzla Fault and its vicinity for better understanding of the region's tectonics. In order to investigate the crustal deformation along the Tuzla Fault and Izmir Bay, a geodetic network has been designed and optimizations were performed. This paper suggests a schedule for a crustal deformation monitoring study which includes research on the tectonics of the region, network design and optimization strategies, theory and practice of processing. The study is also open for extension in terms of monitoring different types of fault characteristics. A one-dimensional fault model with two parameters – standard strike-slip model of dislocation theory in an elastic half-space – is formulated in order to determine which sites are suitable for the campaign based geodetic GPS measurements. Geodetic results can be used as a background data for disaster management systems.

  12. Comparative study of two active faults in different stages of the earthquake cycle in central Japan -The Atera fault (with 1586 Tensho earthquake) and the Nojima fault (with 1995 Kobe earthquake)-

    NASA Astrophysics Data System (ADS)

    Matsuda, T.; Omura, K.; Ikeda, R.

    2003-12-01

    National Research Institute for Earth Science and Disaster Prevention (NIED) has been conducting _gFault zone drilling_h. Fault zone drilling is especially important in understanding the structure, composition, and physical properties of an active fault. In the Chubu district of central Japan, large active faults such as the Atotsugawa (with 1858 Hietsu earthquake) and the Atera (with 1586 Tensho earthquake) faults exist. After the occurrence of the 1995 Kobe earthquake, it has been widely recognized that direct measurements in fault zones by drilling. This time, we describe about the Atera fault and the Nojima fault. Because, these two faults are similar in geological situation (mostly composed of granitic rocks), so it is easy to do comparative study of drilling investigation. The features of the Atera fault, which have been dislocated by the 1586 Tensho earthquake, are as follows. Total length is about 70 km. That general trend is NW45 degree with a left-lateral strike slip. Slip rate is estimated as 3-5 m / 1000 years. Seismicity is very low at present and lithologies around the fault are basically granitic rocks and rhyolite. Six boreholes have been drilled from the depth of 400 m to 630 m. Four of these boreholes (Hatajiri, Fukuoka, Ueno and Kawaue) are located on a line crossing in a direction perpendicular to the Atera fault. In the Kawaue well, mostly fractured and alternating granitic rock continued from the surface to the bottom at 630 m. X-ray fluorescence analysis (XRF) is conducted to estimate the amount of major chemical elements using the glass bead method for core samples. The amounts of H20+ are about from 0.5 to 2.5 weight percent. This fractured zone is also characterized by the logging data such as low resistivity, low P-wave velocity, low density and high neutron porosity. The 1995 Kobe (Hyogo-ken Nanbu) earthquake occurred along the NE-SW-trending Rokko-Awaji fault system, and the Nojima fault appeared on the surface on Awaji Island when this

  13. An Experiential Learning Activity Demonstrating Normal and Phobic Anxiety

    ERIC Educational Resources Information Center

    Canu, Will H.

    2008-01-01

    This article describes an activity for an undergraduate abnormal psychology course that used student-generated data to illustrate normal versus clinically significant anxiety responses related to specific phobias. Students (N = 37) viewed 14 images of low- or high-anxiety valence and rated their subjective response to each. Discussion in a…

  14. U-series dating of co-seismic gypsum and submarine paleoseismology of active faults in Northern Chile (23°S)

    NASA Astrophysics Data System (ADS)

    Vargas, Gabriel; Palacios, Carlos; Reich, Martin; Luo, Shangde; Shen, Chuan-Chou; González, Gabriel; Wu, Yi-Chen

    2011-01-01

    The convergence of the Nazca and South American plates along the subduction margin of the central Andes results in large subduction earthquakes and tectonic activity along major fault systems. Despite its relevance, the paleoseismic record of this region is scarce, hampering our understanding about the relationship between the Andes building and earthquake occurrence. In this study, we used the U-series disequilibrium method to obtain absolute ages of paleoearthquake events associated with normal displacements along the active Mejillones and Salar del Carmen faults in the Coastal Range of the Atacama Desert of northern Chile. The 230Th- 234U disequilibrium ages in co-seismic gypsum salts sampled along the fault traces together with marine evidences indicate that earthquakes occurred at ca. 29.7 ± 1.7 ka, 11 ± 4 ka and 2.4 ± 0.8 ka. When coupled with paleoseismic marine and radiocarbon ( 14C) records in the nearby Mejillones Bay evidencing large dislocations along the Mejillones Fault, the geochronological dataset presented here is consistent with the notion that gypsum salts formed during large earthquakes as a result of co-seismic dilatancy pumping of saline waters along the major faults. Based on maximum observed cumulative vertical offsets in the studied faults, this phenomena could have occurred episodically at a rate in the order of 1:40 to 1:50 with respect to the very large subduction earthquakes during the latest Pleistocene-Holocene period. The results presented here reveal that the U-series disequilibrium method can be successfully applied to date the gypsum salts deposited along faults during seismic events, and therefore directly constrain the age of large paleoearthquakes in hyperarid and seismically active zones.

  15. Analysis of microseismic activity detected by the WIZARD array, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Feenstra, J. P.; Roecker, S. W.; Thurber, C. H.; Lord, N.; O'Brien, G.; Pesicek, J. D.; Townend, J.; Bannister, S. C.

    2012-12-01

    A primary goal for the UW-Madison-RPI WIZARD array is the characterization of background seismicity around the Deep Fault Drilling Project (DFDP) site on the Alpine Fault, South Island, New Zealand. The WIZARD array consists of 20 stations, half broadband, deployed for a planned 2-year period around the Whataroa Valley DFDP-2 drill site. Two neighboring arrays, SAMBA (Victoria University of Wellington) to the southwest and ALFA'12 (GNS Science) to the northeast, along with several GeoNet permanent stations, provide broad coverage of the region. The earthquakes that are detected will (1) help to define the geometry of the Alpine Fault and other active faults at depth, (2) provide data for seismic imaging, focal mechanisms, and shear-wave splitting analysis, and (3) enable the assessment of possible changes in seismic activity induced by future fault zone drilling. We are currently analyzing data from the first 2 months of the deployment. Dozens of nearby earthquakes (S-P time of up to a few seconds) have been detected, far more than are in the New Zealand GeoNET catalog. This is expected because the magnitude completion level of the GeoNet seismometer network is around 2.5 in the Whataroa region, due to a relatively sparse station coverage. In this presentation, we report on earthquake location results for 8 months of WIZARD data, along with focal mechanisms for selected larger events.

  16. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Analysis Methodology and Basic Design

    SciTech Connect

    Vitali, Luigino; Mattiozzi, Pierpaolo

    2008-07-08

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE)--the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. This Paper describes the steps followed to formulate the concept of the special trenches and the analytical characteristics of the Model.

  17. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis

    SciTech Connect

    Mattiozzi, Pierpaolo; Strom, Alexander

    2008-07-08

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

  18. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Analysis Methodology and Basic Design

    NASA Astrophysics Data System (ADS)

    Vitali, Luigino; Mattiozzi, Pierpaolo

    2008-07-01

    Twin oil (20 & 24 inch) and gas (20 & 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE)—the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. This Paper describes the steps followed to formulate the concept of the special trenches and the analytical characteristics of the Model.

  19. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis

    NASA Astrophysics Data System (ADS)

    Mattiozzi, Pierpaolo; Strom, Alexander

    2008-07-01

    Twin oil (20 & 24 inch) and gas (20 & 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE)—the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

  20. Paleoseismic and geomorphologic evidence of recent tectonic activity of the Pozohondo Fault (Betic Cordillera, SE Spain)

    USGS Publications Warehouse

    Rodríguez-Pascua, M.A.; Pérez-López, R.; Garduño-Monroy, V.H.; Giner-Robles, J.L.; Silva, P.G.; Perucha-Atienza, M.A.; Hernández-Madrigal, V.M.; Bischoff, J.

    2012-01-01

    Instrumental and historical seismicity in the Albacete province (External Prebetic Zone) has been scarcely recorded. However, major strike-slip faults showing NW-SE trending provide geomorphologic and paleoseismic evidence of recent tectonic activity (Late Pleistocene to Present). Moreover, these faults are consistently well oriented under the present stress tensor and therefore, they can trigger earthquakes of magnitude greater than M6, according to the lengths of surface ruptures and active segments recognized in fieldwork. Present landscape nearby the village of Hellin (SE of Albacete) is determined by the recent activity of the Pozohondo Fault (FPH), a NW-SE right-lateral fault with 90 km in length. In this study, we have calculated the Late Quaternary tectonic sliprate of the FPH from geomorphological, sedimentological, archaeoseimological, and paleoseismological approaches. All of these data suggest that the FPH runs with a minimum slip-rate of 0.1 mm/yr during the last 100 kyrs (Upper Pleistocene-Holocene). In addition, we have recognized the last two major paleoearthquakes associated to this fault. Magnitudes of these paleoearthquakes were gretarer than M6 and their recurrence intervals ranged from 6600 to 8600 yrs for the seismic cycle of FPH. The last earthquake was dated between the 1st and 6th centuries, though two earthquakes could be interpreted in this wide time interval, one at the FPH and other from a far field source. Results obtained here, suggest an increasing of the tectonic activity of the Pozohondo Fault during the last 10,000 yrs.

  1. Distribution of active faulting along orogenic wedges: Minimum-work models and natural analogue

    NASA Astrophysics Data System (ADS)

    Yagupsky, Daniel L.; Brooks, Benjamin A.; Whipple, Kelin X.; Duncan, Christopher C.; Bevis, Michael

    2014-09-01

    Numerical 2-D models based on the principle of minimum work were used to examine the space-time distribution of active faulting during the evolution of orogenic wedges. A series of models focused on thin-skinned thrusting illustrates the effects of arid conditions (no erosion), unsteady state conditions (accretionary influx greater than erosional efflux) and steady state conditions (accretionary influx balances erosional efflux), on the distribution of fault activity. For arid settings, a general forward accretion sequence prevails, although a significant amount of internal deformation is registered: the resulting fault pattern is a rather uniform spread along the profile. Under fixed erosional efficiency settings, the frontal advance of the wedge-front is inhibited, reaching a steady state after a given forward propagation. Then, the applied shortening is consumed by surface ruptures over a narrow frontal zone. Under a temporal increase in erosional efficiency (i.e., transient non-steady state mass balance conditions), a narrowing of the synthetic wedge results; a rather diffuse fault activity distribution is observed during the deformation front retreat. Once steady balanced conditions are reached, a single long-lived deformation front prevails. Fault activity distribution produced during the deformation front retreat of the latter scenario, compares well with the structural evolution and hinterlandward deformation migration identified in southern Bolivian Subandes (SSA) from late Miocene to present. This analogy supports the notion that the SSA is not in steady state, but is rather responding to an erosional efficiency increase since late Miocene. The results shed light on the impact of different mass balance conditions on the vastly different kinematics found in mountain ranges, suggesting that those affected by growing erosion under a transient unbalanced mass flux condition tend to distribute deformation along both frontal and internal faults, while others

  2. The Trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault

    NASA Astrophysics Data System (ADS)

    Humphris, Susan E.; Tivey, Margaret K.; Tivey, Maurice A.

    2015-11-01

    Over the last ten years, geophysical studies have revealed that the Trans-Atlantic Geotraverse (TAG) hydrothermal field (26°08‧N on the Mid-Atlantic Ridge) is located on the hanging wall of an active detachment fault. This is particularly important in light of the recognition that detachment faulting accounts for crustal accretion/extension along a significant portion of the Mid-Atlantic Ridge, and that the majority of confirmed vent sites on this slow-spreading ridge are hosted on detachment faults. The TAG hydrothermal field is one of the largest sites of high-temperature hydrothermal activity and mineralization found to date on the seafloor, and is comprised of active and relict deposits in different stages of evolution. The episodic nature of hydrothermal activity over the last 140 ka provides strong evidence that the complex shape and geological structure of the active detachment fault system exerts first order, but poorly understood, influences on the hydrothermal circulation patterns, fluid chemistry, and mineral deposition. While hydrothermal circulation extracts heat from a deep source region, the location of the source region at TAG is unknown. Hydrothermal upflow is likely focused along the relatively permeable detachment fault interface at depth, and then the high temperature fluids leave the low-angle portion of the detachment fault and rise vertically through the highly fissured hanging wall to the seafloor. The presence of abundant anhydrite in the cone on the summit of the TAG active mound and in veins in the crust beneath provides evidence for a fluid circulation system that entrains significant amounts of seawater into the shallow parts of the mound and stockwork. Given the importance of detachment faulting for crustal extension at slow spreading ridges, the fundamental question that still needs to be addressed is: How do detachment fault systems, and the structure at depth associated with these systems (e.g., presence of plutons and/or high

  3. Active Faults of the Northwest Himalaya: Pattern, Rate, and Timing of Surface Rupturing Earthquakes

    NASA Astrophysics Data System (ADS)

    Yule, J.; Madden, C.; Gavillot, Y.; Hebeler, A.; Meigs, A.; Hussein, A.; Malik, M.; Bhat, M.; Kausar, A.; Ramzan, S.; Sayab, M.; Yeats, R. S.

    2012-12-01

    The 2005 Kashmir earthquake (Mw 7.6) is the only Himalayan earthquake to rupture the surface since the 15th to 16th century A.D. when >Mw 8.5 earthquakes ruptured the Himalayan Frontal thrust (HFT) in the central Himalaya. Megathrust-type earthquakes like these seem to relieve a majority of the accumulated interseismic strain and concentrate permanent strain across a narrow width at the deformation front (faults within the orogen appear to accommodate little strain). The 2005 within-plate rupture in Kashmir may be a clue that a different seismotectonic model applies to the northwest Himalaya where active deformation occurs on faults distributed more than 120 km across the orogen. An asymmetric anticline marks the deformation front in Kashmir where the HFT is inferred to be blind, though ~20 m-high escarpments suggest that unrecognized thrust fault(s) may reach the surface locally. Folded river terraces and dip data also suggest that this frontal fold contains a SW-dipping back thrust. In Pakistan the Salt Range thrust system (SRT) defines the thrust front. New mapping and preliminary OSL dates from deformed Holocene sediments exposed along the westernmost SRT reveal that the fault slips at 1-7 mm/yr and last ruptured within the last several thousand years. Within the orogenic wedge to the north of the deformation front, active shortening occurs along a system of surface-rupturing reverse faults, extending from the Balakot-Bagh fault (source of the 2005 Kashmir earthquake) to the Reasi fault (RF) in Indian Kashmir to the southeast. One strand of the RF displaces a 350 m-high, 80 ± 6 ka (preliminary OSL age) fluvial terrace, yielding a minimum shortening rate of 3-5 mm/yr. Trenches excavated across the RF nearby reveal a distinct angular unconformity that likely formed during a surface rupture ~4500 yrs BP. Farther north, three northeast-dipping reverse faults cut Quaternary terraces on the southwest side of the Kashmir Valley. Trenches expose evidence for at least

  4. Faults Activities And Crustal Deformation near Hualien City, eastern Taiwan Analysed By Persistent Scatterer InSAR

    NASA Astrophysics Data System (ADS)

    Lu, C.; Lin, M.; Yen, J.; Chang, C.

    2008-12-01

    Hualien is located in eastern part of Taiwan, and is the collision boundary in the northern of Huatung Longitudinal Valley between the Philippine Sea tectonic plate and Eurasian tectonic plate(Biq, 1981; Barrier and Angelier, 1986). There are several active faults, such as Milun fault, Beipu fault and Minyi fault, pass through the Hualien city, and create many crustal deformation. According to previous researches (Hsu, 1956; Lin, 1962; Yu, 1997) we know Milun fault is a thrust and left lateral fault, and the fault plane incline to east. Minyi fault also is a left lateral and a slight reverse fault, but it's fault plane incline to west. (Chang, 1994; Yu, 1997) We applied the Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR, Hooper, 2007) to observe temporally-variable processes of Hualien city between 2004 to 2008. At the same time, precise leveling and GPS data were taken for the auxiliary data to verify the deformation rate and pattern in this area. In the Hualien city area, our observation showed that the active faults separate this area into several distinct blocks. Most of the blocks moved slowly, but the hanging wall of the Milun fault decreases 5- 8mm in line of sight (LOS) direction between 15 May 2004 to 24 Feb 2007, then increases 3-6mm in LOS between 1 Dec 2007 to 5 Jan 2008. The deformation reversed its direction in 2007. The western surface of Hualien City displays continuous deformation about 1.5-2mm/yr , which spread along the Beipu fault. Our preliminary investigation indicated that between late 2004 and middle 2005 there had been an abrupt increase in seismicity, which coincided with PSInSAR observation of a large displacement. The distribution of shallow source earthquakes correlate with the area with large deformation. Our following works include continuing observation of the Hualien City, and decipher the relationship between earthquakes and surface deformation, and model the fault action in Hualien City with time series.

  5. Hidden faults in the Gobi Desert (Inner Mongolia, China) - evidence for fault activity in a previously tectonically stable zone

    NASA Astrophysics Data System (ADS)

    Rudersdorf, Andreas; Haedke, Hanna; Reicherter, Klaus

    2013-04-01

    The Gaxun Nur Basin (GNB, also Ejina Basin, Hei River Basin, Ruoshui Basin) north of the Tibetan Plateau and the Hexi Corridor is an endorheic basin bounded by the Bei Shan ranges in the west, the Gobi Altai mountains in the north and the Badain Jaran sand desert in the east. The basin is fed from the south by the braided drainage system of the Hei He (Hei River) and its tributaries, which originate in the Qilian Shan; terminal lakes like the dried Gaxun Nur and Sogo Nur are and have been temporal. The sedimentary succession of up to 300 m comprises intercalations of not only alluvial deposits but also lake sediments and playa evaporites. The basin has been regarded as tectonically inactive by earlier authors; however, the dating of sediments from an earlier drill core in the basin center provided some implications for tectonic activity. Subsequent remote sensing efforts revealed large lineaments throughout the basin which are now considered as possible fault line fingerprints. We investigated well preserved Yardangs (clay terraces) in the northeastern part of the GNB, in the vicinity of the Juyanze (paleo) lake, and found evidence for Holocene active tectonics (seismites). We present a lithological analysis of the relevant sequences and conclusions on the recent tectonic activity within the study area.

  6. Evolution of near-surface ramp-flat-ramp normal faults and implication during intramontane basin formation in the eastern Betic Cordillera (the Huércal-Overa Basin, SE Spain)

    NASA Astrophysics Data System (ADS)

    Pedrera, Antonio; Galindo-ZaldíVar, Jesús; Lamas, Francisco; Ruiz-ConstáN, Ana

    2012-08-01

    The nucleation, propagation, and associated folding of ramp-flat-ramp normal faults were analyzed from field examples developed in a brittle/ductile multilayer sequence of the Huércal-Overa Basin (SE Spain). Gently dipping sandy silt layers, which display a low cohesive strength (C0 = 7 kPa, μ= 34°), favor the development of extensional detachments. A tectonic origin instead of a possible gravitational origin is supported by the perpendicularity between the paleoslope direction of the fluvial-deltaic environment inferred from imbricated pebbles, and the senses of movement deduced from fault slicken-lines. The link between high-angle normal faults (HANFs) —formed at different levels in the layered sequence— with horizontal fault segments comes to develop ramp-flat-ramp normal faults with associated roll-over in the hanging wall. Observed extensional duplexes are formed by parallel detachments connected through synthetic Riedel faults. These Riedel faults would produce the back-rotation of the individual blocks (horses), i.e., extensional folding of the originally subhorizontal layers. There is no correlation between the analyzed ramp-flat-ramp normal faults, accommodating south-southeastward extension during Serravallian-lower Tortonian, and either the regional Alpujarride/Nevado-Filabride west-directed extensional shear zone or the top-to-the-north detachments within Alpujarride units, which are clearly sealed by Serravallian-lower Tortonian sediments. Therefore, the studied normal faults are restricted to the brittle/ductile multilayer fluvio/deltaic sequence and accommodate moderate late extension instead of belonging to a large crustal extensional system connected with a regional detachment at depth. Therefore, the basin formed in a moderate crustal thickness context where small and medium-scale extensional systems were subordinate structures. These natural examples support the development of low-angle normal faults at very shallow crustal levels in

  7. Cenozoic Tectonic Activity of the "Passive" North America Margin: Evidence for Cenozoic Activity on Mesozoic or Paleozoic Faults

    NASA Astrophysics Data System (ADS)

    Nedorub, O. I.; Knapp, C. C.

    2012-12-01

    The tectonic history of the Eastern North American Margin (ENAM) incorporates two cycles of continental assembly, multiple pulses of orogeny, rifting, and post-rift geodynamic evolution. This is reflected in the heterogeneous lithosphere of the ENAM which contains fault structures originated in Paleozoic to Mesozoic eras. The South Georgia Rift basin is probably the largest Mesozoic graben within its boundaries that is associated with the breakup of Pangea. It is composed of smaller sub-basins which appear to be bounded by high-angle normal faults, some of which may have been inverted in late Cretaceous and Cenozoic eras. Paleozoic structures may have been reactivated in Cenozoic time as well. The ENAM is characterized by N-NE maximum horizontal compressive stress direction. This maximum compressional stress field is sub-parallel to the strike of the Atlantic Coast province fault systems. Camden, Augusta, Allendale, and Pen Branch faults are four of the many such reactivated faults along the southern part of ENAM. These faults are now buried under the 0-400 m of loosely consolidated Cretaceous and Cenozoic age sediments and thus are either only partially mapped or currently not recognized. Some of the objectives of this study are to map the subsurface expression and geometry of these faults and to investigate the post Cretaceous deformation and possible causes of fault reactivation on a passive margin. This study employs an integrated geophysical approach to investigate the upper 200 m of identified locations of the above mentioned faults. 2-D high-resolution shallow seismic reflection and refraction methods, gravity surveys, GPR, 2-D electrical resistivity and well data are used for analyses and interpretation. Preliminary results suggest that Camden fault shows signs of Cenozoic reactivation through an approximately 30 m offset NW side up mainly along a steeply dipping fault zone in the basal contact of Coastal Plain sediments with the Carolina Piedmont. Drill

  8. Active Tectonics along the Carboneras Fault (SE Iberian Margin): Onshore-Offshore Paleoseismological Approach

    NASA Astrophysics Data System (ADS)

    Moreno, X.; Masana, E.; Gràcia, E.; Pallàs, R.; Santanach, P.; Dañobeitia, J. J.; Party, I.

    2006-12-01

    The southern margin of the Iberian Peninsula hosts the convergent boundary between the European and African Plates. At the eastern Betic Cordillera, the Neogene and Quaternary shortening has mainly been absorbed by left-lateral strike-slip faults, which in the Iberian Peninsula is represented by the Eastern Betics Shear Zone (EBSZ). One of the longest structures in the EBSZ is the Carboneras Fault, with almost 50 km onshore and more than 100 km offshore. The low record seismicity along its trace, suggest either non seismic behaviour or long recurrence intervals (104 years). The aim of this work is an integrated onshore-offshore neotectonic and paleoseismological study of the Carboneras Fault Zone to characterize its seismic potential. The onshore study was made through regional geological and geomorphological analysis, geophysical prospecting, microtopography, trenching, and dating (14 C, U/Th, TL). Onshore macro and microstructures as beheaded and offset alluvial fans and S-C microstructures in the fault zone reveals a Quaternary left-lateral strike-slip motion combined with a vertical component along the fault. Trenching reveals this fault is seismogenic, with at least four late Quaternary events. The oldest occurred between 54.9 and 32.2 ka BP, the second one between 40.9 and 27.1 ka BP, and the two most recent events occurred between 30.8 and 0.875 ka BP. The thickness of the colluvial wedges suggest a Mw=7 for the first and Mw=6.6 for the second event. The mean recurrence rate is 14 ka, and the minimum elapsed time is 875 years. The offshore portion, studied by high-resolution marine geophysical methods, shows very similar strike-slip structures. The marine paleoseismic data will be integrated with the onland results in order to accurately determine the recent activity and seismic parameters of the entire Carboneras Fault.

  9. Fault mechanics

    SciTech Connect

    Segall, P. )

    1991-01-01

    Recent observational, experimental, and theoretical modeling studies of fault mechanics are discussed in a critical review of U.S. research from the period 1987-1990. Topics examined include interseismic strain accumulation, coseismic deformation, postseismic deformation, and the earthquake cycle; long-term deformation; fault friction and the instability mechanism; pore pressure and normal stress effects; instability models; strain measurements prior to earthquakes; stochastic modeling of earthquakes; and deep-focus earthquakes. Maps, graphs, and a comprehensive bibliography are provided. 220 refs.

  10. Comparative study of two tsunamigenic earthquakes in the Solomon Islands: 2015 Mw 7.0 normal-fault and 2013 Santa Cruz Mw 8.0 megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Mohammad; Harada, Tomoya; Satake, Kenji; Ishibe, Takeo; Gusman, Aditya Riadi

    2016-05-01

    The July 2015 Mw 7.0 Solomon Islands tsunamigenic earthquake occurred ~40 km north of the February 2013 Mw 8.0 Santa Cruz earthquake. The proximity of the two epicenters provided unique opportunities for a comparative study of their source mechanisms and tsunami generation. The 2013 earthquake was an interplate event having a thrust focal mechanism at a depth of 30 km while the 2015 event was a normal-fault earthquake occurring at a shallow depth of 10 km in the overriding Pacific Plate. A combined use of tsunami and teleseismic data from the 2015 event revealed the north dipping fault plane and a rupture velocity of 3.6 km/s. Stress transfer analysis revealed that the 2015 earthquake occurred in a region with increased Coulomb stress following the 2013 earthquake. Spectral deconvolution, assuming the 2015 tsunami as empirical Green's function, indicated the source periods of the 2013 Santa Cruz tsunami as 10 and 22 min.

  11. Duration of activity on lobate-scarp thrust faults on Mercury

    NASA Astrophysics Data System (ADS)

    Banks, Maria E.; Xiao, Zhiyong; Watters, Thomas R.; Strom, Robert G.; Braden, Sarah E.; Chapman, Clark R.; Solomon, Sean C.; Klimczak, Christian; Byrne, Paul K.

    2015-11-01

    Lobate scarps, landforms interpreted as the surface manifestation of thrust faults, are widely distributed across Mercury and preserve a record of its history of crustal deformation. Their formation is primarily attributed to the accommodation of horizontal shortening of Mercury's lithosphere in response to cooling and contraction of the planet's interior. Analyses of images acquired by the Mariner 10 and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft during flybys of Mercury showed that thrust faults were active at least as far back in time as near the end of emplacement of the largest expanses of smooth plains. However, the full temporal extent of thrust fault activity on Mercury, particularly the duration of this activity following smooth plains emplacement, remained poorly constrained. Orbital images from the MESSENGER spacecraft reveal previously unrecognized stratigraphic relations between lobate scarps and impact craters of differing ages and degradation states. Analysis of these stratigraphic relations indicates that contraction has been a widespread and long-lived process on the surface of Mercury. Thrust fault activity had initiated by a time near the end of the late heavy bombardment of the inner solar system and continued through much or all of Mercury's subsequent history. Such deformation likely resulted from the continuing secular cooling of Mercury's interior.

  12. Patterns of plasminogen activator production in cultured normal embryonic cells

    PubMed Central

    1977-01-01

    Cultured normal low-passage embryo fibroblasts, from a number of species, and two untransformed clones of a Balb/3T3 line elaborate increasing amounts of plasminogen activator (PA) as they approach confluence; the low-passage cells then lose this PA activity after reaching confluence, while the 3T3 cells retain it indefinitely. Even at their peaks, however, the PA activities of the low-passage cells remain well below those of the corresponding virally or spontaneously transformed cells. The PA increases in normal cells are probably a result of PA production rather than of adsorption of secreted PA to the cell surface, or of changes in cell-associated protease inhibitors. The elaboration of PA by normal cells is dependent upon their metabolic activity, such that the level of serum supplementation and the growth phase of the culture directly influence the level of cell-associated PA observed. In addition, there may be a component of serum which exerts a negative control on PA production and which is not an acid-labile protease inhibitor. PMID:21193

  13. Velocity-dependent frictional behavior and slip magnitude of a fault affected by fluid injection activities

    NASA Astrophysics Data System (ADS)

    Urpi, L.; Rinaldi, A. P.; Spiers, C. J.

    2014-12-01

    Fluid injection is performed or planned for various activities, such as CO2 sequestration, gas storage, waste water disposal, and engineered geothermal system. Static stress and pressure perturbation due to the fluid injection may cause different scale earthquake phenomena, from instrumental recorded micro-seismicity to triggering of human-felt events. With this study we present a sensitivity analysis of the slip magnitude for the fluid injection in a reservoir-like structure. The reservoir, confined within impervious rock units, is composed by a porous rock mass laterally bounded by a fault. The fault is hydraulically connected to the fluid hosting unit. The numerical analysis is based on fully explicit sequential coupling between a multiphase fluid flow and a hydromechanical finite element calculation code. When the system conditions approaches failure, the simulation is performed in a fully dynamic mode. The coupling allows simulating change in permeability due to stress/strain change, as well as the slip on the fault due to overpressure and associated stress changes. Interface elements have been used to include the constitutive law characterizing the frictional behaviour of the fault. The change in friction with different slip velocities has been derived from laboratory results. Velocity- and strain-dependent frictional behavior of different patches of the fault influence the system evolution, resulting in larger or smaller slip length for the same injected volume.

  14. Dolomitization and over-dolomitization in the Vajont limestone (Dolomiti Bellunesi, Italy) controlled by Mesozoic normal faults: a microstructural and diagenesis study

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Swennen, Rudy; Bistacchi, Andrea

    2015-04-01

    The Vajont Gorge (Dolomiti Bellunesi, Italy) provides spectacular outcrops of Jurassic limestones (Vajont Limestone Formation) in which Mesozoic faults and fracture corridors are continuously exposed. Some of these faults acted as conduits for Mg-enriched hydrothermal fluids resulting in structurally-controlled dolomitization of the limestone. The dolomitization resulted in several dolomite bodies (100-200 m thick and several hundreds of meters along fault strike) that are particularly interesting as reservoir analogues for hydrocarbon, CO2, or water-bearing systems. The dolomitization process occurred after deposition and compaction of the oolitic limestone (dolomitization post-dates a dissolution event that affected the internal parts of the oolites), but before the Alpine contractional deformation. In fact, the meso-structural data collected in the Vajont Gorge allowed the reconstruction of a 3D model showing that the circulation of the dolomitizing fluids into the limestone host rock, but also the late stage of porosity reduction (strong pore filling due to over-dolomitization) were controlled by normal faults and fracture corridors interpreted as Pre-Alpine (Jurassic or Cretaceous). Later on, the influence of Alpine (Tertiary) deformation have been very limited in the studied volume. For instance dolomite veins are sometimes overprinted by bed-inclined stylolites consistent with Alpine shortening axes, but no large Alpine fault is present in the studied outcrops. Cathodoluminescence microscopy allowed recognizing different growth stages saddle dolomite crystals, which point to varying precipitation conditions during three main stages of dolomitization. Dolomite and calcite crystal twinning suggests deformation under increasing temperature conditions, consistent with intracrystalline plasticity deformation mechanisms. The presence of cataclasites composed of hydrothermal dolostone clasts, in turn cemented by dolomite, or of dolomite veins and compaction

  15. Evidence of sub Kilometer-scale Variability in Stress Directions near Active Faults: An Example from the Newport-Inglewood Fault, Southern California

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Stock, J. M.; Smith, D.

    2015-12-01

    The active Newport-Inglewood Fault (NIF) zone is a series of right-lateral, left-stepping en echelon segments and associated anticlines that produced the 1933 Long Beach Mw 6.4 earthquake. Seismic hazard estimates, dynamic earthquake rupture models, and earthquake simulations for Southern California rely on information on the stress field obtained from the Community Stress Model (CSM), though the latter still lacks observational constraints. This study provides much needed observational constraints on in-situ stress, which are useful for validating the CSM. Our results highlight the possibility of variations in stress directions near active faults at length-scales less than 1 km. We determined the orientation of stress-induced compressive failures or borehole breakouts, which are reliable indicators of the orientation of the maximum horizontal stress (SH) in over 40 wellbores in the Los Angeles basin near the NIF. The compressional jogs along the fault have long been drilled for oil in this major metropolitan area, and so provide the dataset of oriented caliper logs. This allowed us to investigate the variation of SH direction in three oil fields. In the Inglewood oil field, a dense dataset of 24 wells in ~2 km2, SH varies from N9°E to N32°E over a depth range of 1-3 km and within 400 m of the fault in the western fault block, with more variability occurring in wells father away. At depths below 2 km, SH takes on a more northerly orientation. In contrast, SH is oriented E-W in the eastern fault block, based on constraints from two wells. In the Wilmington oil field located between the Thums-Huntington Beach Fault and the NIF, data from 11 deviated wells yields a pattern of elongation directions, which differs from the more complex pattern obtained for the Huntington Beach wells located ~12 km to the southeast. The short-length-scale variations in SH direction are attributed to the proximity to faults or fault segmentation, and indicate the likely complexity that

  16. Earthquake Model of the Middle East (EMME) Project: Active Fault Database for the Middle East Region

    NASA Astrophysics Data System (ADS)

    Gülen, L.; Wp2 Team

    2010-12-01

    The Earthquake Model of the Middle East (EMME) Project is a regional project of the umbrella GEM (Global Earthquake Model) project (http://www.emme-gem.org/). EMME project region includes Turkey, Georgia, Armenia, Azerbaijan, Syria, Lebanon, Jordan, Iran, Pakistan, and Afghanistan. Both EMME and SHARE projects overlap and Turkey becomes a bridge connecting the two projects. The Middle East region is tectonically and seismically very active part of the Alpine-Himalayan orogenic belt. Many major earthquakes have occurred in this region over the years causing casualties in the millions. The EMME project will use PSHA approach and the existing source models will be revised or modified by the incorporation of newly acquired data. More importantly the most distinguishing aspect of the EMME project from the previous ones will be its dynamic character. This very important characteristic is accomplished by the design of a flexible and scalable database that will permit continuous update, refinement, and analysis. A digital active fault map of the Middle East region is under construction in ArcGIS format. We are developing a database of fault parameters for active faults that are capable of generating earthquakes above a threshold magnitude of Mw≥5.5. Similar to the WGCEP-2007 and UCERF-2 projects, the EMME project database includes information on the geometry and rates of movement of faults in a “Fault Section Database”. The “Fault Section” concept has a physical significance, in that if one or more fault parameters change, a new fault section is defined along a fault zone. So far over 3,000 Fault Sections have been defined and parameterized for the Middle East region. A separate “Paleo-Sites Database” includes information on the timing and amounts of fault displacement for major fault zones. A digital reference library that includes the pdf files of the relevant papers, reports is also being prepared. Another task of the WP-2 of the EMME project is to prepare

  17. Robust fault-tolerant H∞ control of active suspension systems with finite-frequency constraint

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Jing, Hui; Karimi, Hamid Reza; Chen, Nan

    2015-10-01

    In this paper, the robust fault-tolerant (FT) H∞ control problem of active suspension systems with finite-frequency constraint is investigated. A full-car model is employed in the controller design such that the heave, pitch and roll motions can be simultaneously controlled. Both the actuator faults and external disturbances are considered in the controller synthesis. As the human body is more sensitive to the vertical vibration in 4-8 Hz, robust H∞ control with this finite-frequency constraint is designed. Other performances such as suspension deflection and actuator saturation are also considered. As some of the states such as the sprung mass pitch and roll angles are hard to measure, a robust H∞ dynamic output-feedback controller with fault tolerant ability is proposed. Simulation results show the performance of the proposed controller.

  18. Low shear velocity in a normal fault system imaged by ambient noise cross correlation: The case of the Irpinia fault zone, Southern Italy

    NASA Astrophysics Data System (ADS)

    Vassallo, Maurizio; Festa, Gaetano; Bobbio, Antonella; Serra, Marcello

    2016-06-01

    We extracted the Green's functions from cross correlation of ambient noise recorded at broadband stations located across the Apennine belt, Southern Italy. Continuous records at 26 seismic stations acquired for 3 years were analyzed. We found the emergence of surface waves in the whole range of the investigated distances (10-140 km) with energy confined in the frequency band 0.04-0.09 Hz. This phase reproduces Rayleigh waves generated by earthquakes in the same frequency range. Arrival time of Rayleigh waves was picked at all the couples of stations to obtain the average group velocity along the path connecting the two stations. The picks were inverted in separated frequency bands to get group velocity maps then used to obtain an S wave velocity model. Penetration depth of the model ranges between 12 and 25 km, depending on the velocity values and on the depth of the interfaces, here associated to strong velocity gradients. We found a low-velocity anomaly in the region bounded by the two main faults that generated the 1980, M 6.9 Irpinia earthquake. A second anomaly was retrieved in the southeast part of the region and can be ascribed to a reminiscence of the Adria slab under the Apennine Chain.

  19. Assessing low-activity faults for the seismic safety of dams

    SciTech Connect

    Page, W.D.; Savage, W.U.; McLaren, M.K.

    1995-12-31

    Dams have been a familiar construct in the northern Sierra Nevada range in California (north of the San Joaquin River) since the forty-niners and farmers diverted water to their gold mines and farms in the mid 19th century. Today, more than 370 dams dot the region from the Central Valley to the eastern escarpment. Fifty-five more dam streams on the eastern slope. The dams are of all types: 240 earth fill; 56 concrete gravity; 45 rock and earth fills; 35 rock fill; 14 concrete arch; 9 hydraulic fill; and 29 various other types. We use the northern Sierra Nevada to illustrate the assessment of low-activity faults for the seismic safety of dams. The approach, techniques, and methods of evaluation are applicable to other regions characterized by low seismicity and low-activity faults having long recurrence intervals. Even though several moderate earthquakes had shaken the Sierra Nevada since 1849 (for example, the 1875 magnitude 5.8 Honey Lake and the 1909 magnitudes 5 and 5.5 Downieville earthquakes), seismic analyses for dams in the area generally were not performed prior to the middle of this century. Following the 1971 magnitude 6.7 San Fernando earthquake, when the hydraulic-fill Lower Van Norman Dam in southern California narrowly escaped catastrophic failure, the California Division of Safety of Dams and the Federal Energy Regulatory Commission required seismic safety to be addressed with increasing rigor. In 1975, the magnitude 5.7 Oroville earthquake on the Cleveland Hill fault near Oroville Dam in the Sierra Nevada foothills, showed convincingly that earthquakes and surface faulting could occur within the range. Following this event, faults along the ancient Foothills fault system have been extensively investigated at dam sites.

  20. On the seismic activity of the Malibu Coast Fault Zone, and other ethical problems in engineering geoscience

    SciTech Connect

    Cronin, V.S. . Geosciences Dept.)

    1992-01-01

    The Malibu Coast Fault Zone (MCFZ) merges eastward with the active Santa Monica, Hollywood, Raymond Hill, Sierra Madre, and Cucamonga Faults of the central Transverse Ranges. West of Point Dume, the MCFZ extends offshore to join the active Santa Cruz Island Fault. Active microearthquake seismicity along the MCFZ trend indicates that it is seismogenic. Focal mechanism solutions for several of these earthquakes indicate thrusting along faults with the same orientation as the MCFZ. The geomorphology of the MCFZ is consistent with the interpretation that the MCFZ is active. Scarps in unconsolidated sands along the continental shelf just south of Malibu indicate recent offset. In the Santa Monica Mountains, late Tertiary and Quaternary marine sedimentary strata are exposed on the hanging-wall side of the MCFZ, indicating active uplift of the Santa Monica Mountains. Given the other indicators of fault activity, the trench studies that must still be undertaken across the MCFZ are more likely to establish the chronology of recent displacement along the MCFZ than to indicate that the fault is not active. It has been suggested that the MCFZ has not yet been formally recognized as an active, seismogenic fault zone because of the expected loss of property value should the MCFZ be designated an active fault. Geoscientists fear being held liable for loss of property value, even though their assessment of fault activity may be scientifically valid. What are the ethical responsibilities of geoscientists involved in seismic risk assessment along the MCFZ Are political or financial considerations valid criteria to use in assessing the activity of a fault These are not abstract questions of geoethics, because the lives and properties of countless people are potentially at risk.

  1. InSAR Evidence for the Spokane Fault, an Active Shallow Thrust Fault Beneath the City of Spokane Washington, USA

    NASA Astrophysics Data System (ADS)

    Wicks, C.; Weaver, C. S.; Bodin, P.; Sherrod, B. L.

    2012-12-01

    In 2001 a nearly five month long sequence of shallow, mostly small magnitude earthquakes occurred beneath Spokane, a city with a population of about 200,000, in the state of Washington. The Spokane area, an area of low background seismicity, is on the northeastern edge of the Columbia Basin, a physiographic province largely covered with Miocene flood basalts of the Columbia River Basalt Group. The earthquake sequence appears to have begun with an isolated magnitude 2 earthquake on May 24, 2001, but began in earnest with a magnitude 3.9 earthquake on June 25, 2001 and ended on November 23, 2001, with a total of 105 earthquakes recorded up to a magnitude 4. During most of the sequence, the earthquakes were not well located because seismic instrumentation was sparse. Despite poor-quality locations, the earthquake hypocenters were likely very shallow, because residents in small areas of Spokane reported feeling many of the earthquakes in the sequence and hearing explosion-like noises associated with some of the earthquakes. Using interferometric synthetic aperture radar (InSAR) data from the European Space Agency ERS2 and ENVISAT satellites and the Canadian Space Agency RADARSAT-1 satellite we are able to show that slip on a shallow previously unknown thrust fault, that we name the Spokane Fault, is the source of the earthquake sequence. The fault strikes northeast, dips ~30 degrees to the northwest, and the maximum slip was ~45 mm. The part of the Spokane Fault that slipped during the 2001 earthquake sequence underlies the north part of the city, and slip on the fault was concentrated between ~0.3 and 2 km depth. Projecting the buried fault plane to the surface gives a possible surface trace for the Spokane Fault; it strikes northeast from the city center into north Spokane. An accurate assessment of the hazard potential of the Spokane Fault requires additional studies to delineate the fault and map the subsurface geology.

  2. Active tectonic deformation along rejuvenated faults in tropical Borneo: Inferences obtained from tectono-geomorphic evaluation

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Kumar, Shashi Gaurav; Authemayou, Christine

    2016-08-01

    The island of Borneo is enveloped by tropical rainforests and hostile terrain characterized by high denudation rates. Owing to such conditions, studies pertaining to neotectonics and consequent geomorphic expressions with regard to surface processes and landscape evolution are inadequately constrained. Here we demonstrate the first systematic tectono-geomorphic evaluation of north Borneo through quantitative and qualitative morphotectonic analysis at sub-catchment scale, for two large drainage basins located in Sarawak: the Rajang and Baram basins. The extraction of morphometric parameters utilizing digital elevation models arranged within a GIS environment focuses on hypsometric curve analysis, distribution of hypsometric integrals through spatial autocorrelation statistics, relative uplift values, the asymmetry factor and the normalized channel steepness index. Hypsometric analysis suggests a young topography adjusting to changes in tectonic boundary conditions. Autocorrelation statistics show clusters of high values of hypsometric integrals as prominent hotspots that are associated with less eroded, young topography situated in the fold and thrust belts of the Interior Highlands of Borneo. High channel steepness and gradients (> 200 m0.9) are observed in zones corresponding to the hotspots. Relative uplift values reveal the presence of tectonically uplifted blocks together with relatively subsided or lesser uplifted zones along known faults. Sub-catchments of both basins display asymmetry indicating tectonic tilting. Stream longitudinal profiles demonstrate the presence of anomalies in the form of knickzones without apparent lithological controls along their channel reaches. Surfaces represented by cold spots of low HI values and low channel gradients observed in the high elevation headwaters of both basins are linked to isolated erosional planation surfaces that could be remnants of piracy processes. The implication of our results is that Borneo experiences

  3. Fault orientations in extensional and conjugate strike-slip environments and their implications

    USGS Publications Warehouse

    Thatcher, W.; Hill, D.P.

    1991-01-01

    Seismically active conjugate strike-slip faults in California and Japan typically have mutually orthogonal right- and left-lateral fault planes. Normal-fault dips at earthquake nucleation depths are concentrated between 40?? and 50??. The observed orientations and their strong clustering are surprising, because conventional faulting theory suggests fault initiation with conjugate 60?? and 120?? intersecting planes and 60?? normal-fault dip or fault reactivation with a broad range of permitted orientations. The observations place new constraints on the mechanics of fault initiation, rotation, and evolutionary development. We speculate that the data could be explained by fault rotation into the observed orientations and deactivation for greater rotation or by formation of localized shear zones beneath the brittle-ductile transition in Earth's crust. Initiation as weak frictional faults seems unlikely. -Authors

  4. Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1987-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  5. Transform fault earthquakes in the North Atlantic - Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1988-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  6. Late Pleistocene to Historical Activity of the Hovd Fault (Mongolian Altay) from Tectonic Geomorphology and Paleoseismology

    NASA Astrophysics Data System (ADS)

    Ferry, M. A.; Battogtokh, D.; Ritz, J. F.; Kurtz, R.; Braucher, R.; Klinger, Y.; Ulzibat, M.; Chimed, O.; Demberel, S.

    2015-12-01

    Active tectonics of western Mongolia is dominated by large strike-slip fault systems that produced great historical earthquakes: the Bulnay fault (Mw 8.1 and 8.4 in 1905), the Fu-Yun fault (Mw 8.0 in 1931) and the Bogd fault (Mw 8.1 in 1957). Central to these faults is the Altay Range that accommodates ~4 mm/yr of right-lateral motion. An earthquake of similar magnitude occurred in 1761 and has been attributed to the Hovd fault were seemingly fresh surface rupture was reported in 1985. Here, we study the Ar-Hötöl section of the Hovd fault where surface rupture was described over a length of ~200 km. Detailed mapping of stream gullies from high-resolution Pleiades satellite images show a consistent pattern of right-lateral offsets from a few meters to ~500 m. At Climbing Rock, we surveyed a gully offset by 75 ± 5 m. The associated surface was sampled for 10Be profile which yields an exposure age of 154 ± 20 ka. The resulting minimal right-lateral slip rate ranges 0.4-0.6 mm/yr. However, drainage reconstruction suggests this surface may have recorded as much as 400 ± 20 m of cumulative offset. This implies the Hovd fault may accommodate as much as 2.6 ± 0.4 mm/yr, which would make it the main active fault of the Altay. At a smaller scale, TLS topography documents offsets in the order of 2.5-5 m that likely correspond to the most recent surface-rupturing event with Mw ~8. A value of 2.8-3.0 m is reconstructed from a Uiger grave dated AD 750-840. At Marmot Creek and Small Creek, short drainages flow across the fault and form ponds against the main scarp. Two paleoseimic trenches reveal similar stratigraphy with numerous peat layers that developed over alluvial sands. The fault exhibits near vertical strands affecting pre-ponding units as well as a well-developed peat unit radiocarbon-dated AD 1465-1635. This unit likely corresponds to the ground surface at the time of the last rupture. It is overlain with a sandy pond unit on top of which a second continuous peat

  7. Correlation Between Radon Outgassing and Seismic Activity Along the Hayward Fault Near Berkeley, California

    NASA Astrophysics Data System (ADS)

    Holtmann-Rice, D.; Cuff, K.

    2003-12-01

    Results from previous studies indicate that radon concentration values are significantly higher over selected sections of the Hayward fault than adjacent areas. This phenomenon is believed to be attributed to the presence of abundant fractures in rock associated with the fault, which act as pathways for radon as it migrates from depth towards the earth?s surface. In an attempt to determine whether or not a relationship exists between seismicity along the fault, the production of microfractures, and emanation of radon, a radon outgassing monitoring study was conducted along an active section of the Hayward fault in Berkeley, California. The study was carried out by using an alphaMETER 611, which is a device capable of accurately measuring radon concentrations every 15 minutes. The alphaMETER was placed at the bottom of a sealed one meter deep well, in close proximity to a section of the Hayward fault located along the northwestern face of the Berkeley Hills. Once per week for several months data collected by the alphaMETER was downloaded into a laptop computer. Data from the alphaMETER was