Science.gov

Sample records for active normal modes

  1. Terra is in NORMAL Mode

    Atmospheric Science Data Center

    2016-02-23

    ... 22, 2016.  TERRA has recovered from Safe Hold and is now in Normal mode. CERES will hold their CAM Wednesday morning and will ... . You can learn more about this mission at the Terra web site. The Flight Operations Team is working on resolving the issue as ...

  2. Normal modes and continuous spectra

    SciTech Connect

    Balmforth, N.J.; Morrison, P.J.

    1994-12-01

    The authors consider stability problems arising in fluids, plasmas and stellar systems that contain singularities resulting from wave-mean flow or wave-particle resonances. Such resonances lead to singularities in the differential equations determining the normal modes at the so-called critical points or layers. The locations of the singularities are determined by the eigenvalue of the problem, and as a result, the spectrum of eigenvalues forms a continuum. They outline a method to construct the singular eigenfunctions comprising the continuum for a variety of problems.

  3. The effective degeneracy of protein normal modes

    NASA Astrophysics Data System (ADS)

    Na, Hyuntae; Song, Guang

    2016-06-01

    Normal modes are frequently computed and used to portray protein dynamics and interpret protein conformational changes. In this work, we investigate the nature of normal modes and find that the normal modes of proteins, especially those at the low frequency range (0–600 cm‑1), are highly susceptible to degeneracy. Two or more modes are degenerate if they have the same frequency and consequently any orthogonal transformation of them also is a valid representation of the mode subspace. Thus, degenerate modes can no longer characterize unique directions of motions as regular modes do. Though the normal modes of proteins are usually of different frequencies, the difference in frequency between neighboring modes is so small that, under even slight structural uncertainty that unavoidably exists in structure determination, it can easily vanish and as a result, a mode becomes effectively degenerate with its neighboring modes. This can be easily observed in that some modes seem to disappear and their matching modes cannot be found when the structure used to compute the modes is modified only slightly. We term this degeneracy the effective degeneracy of normal modes. This work is built upon our recent discovery that the vibrational spectrum of globular proteins is universal. The high density of modes observed in the vibrational frequency spectra of proteins renders their normal modes highly susceptible to degeneracy, under even the smallest structural uncertainty. Indeed, we find the degree of degeneracy of modes is proportional to the density of modes in the vibrational spectrum. This means that for modes at the same frequency, degeneracy is more severe for larger proteins. Degeneracy exists also in the modes of coarse-grained models, but to a much lesser extent than those of all-atom models. In closing, we discuss the implications of the effective degeneracy of normal modes: how it may significantly affect the ways in which normal modes are used in various normal modes

  4. The effective degeneracy of protein normal modes.

    PubMed

    Na, Hyuntae; Song, Guang

    2016-01-01

    Normal modes are frequently computed and used to portray protein dynamics and interpret protein conformational changes. In this work, we investigate the nature of normal modes and find that the normal modes of proteins, especially those at the low frequency range (0-600 cm(-1)), are highly susceptible to degeneracy. Two or more modes are degenerate if they have the same frequency and consequently any orthogonal transformation of them also is a valid representation of the mode subspace. Thus, degenerate modes can no longer characterize unique directions of motions as regular modes do. Though the normal modes of proteins are usually of different frequencies, the difference in frequency between neighboring modes is so small that, under even slight structural uncertainty that unavoidably exists in structure determination, it can easily vanish and as a result, a mode becomes effectively degenerate with its neighboring modes. This can be easily observed in that some modes seem to disappear and their matching modes cannot be found when the structure used to compute the modes is modified only slightly. We term this degeneracy the effective degeneracy of normal modes. This work is built upon our recent discovery that the vibrational spectrum of globular proteins is universal. The high density of modes observed in the vibrational frequency spectra of proteins renders their normal modes highly susceptible to degeneracy, under even the smallest structural uncertainty. Indeed, we find the degree of degeneracy of modes is proportional to the density of modes in the vibrational spectrum. This means that for modes at the same frequency, degeneracy is more severe for larger proteins. Degeneracy exists also in the modes of coarse-grained models, but to a much lesser extent than those of all-atom models. In closing, we discuss the implications of the effective degeneracy of normal modes: how it may significantly affect the ways in which normal modes are used in various normal modes

  5. Local and normal modes: A classical perspective

    NASA Astrophysics Data System (ADS)

    Jaffé, Charles; Brumer, Paul

    1980-12-01

    Normal and local mode behavior in molecular systems and the transition between them is explored using nonlinear mechanics techniques. Significant insight into this behavior and into the structure of phase space results from a generalized definition of local and normal modes and the associated identification of normal modes as a (1:1) resonance between local zeroth order oscillators. In addition to qualitative insight, this approach yields a simple formula [Eq. (28)] for the level of excitation at which local modes become possible. Applications to H2O and to the overtone spectroscopy of the dihalomethanes, benzene, and TMS are provided.

  6. Normal Modes of Black Hole Accretion Disks

    SciTech Connect

    Ortega-Rodriguez, Manuel; Silbergleit, Alexander S.; Wagoner, Robert V.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park

    2006-11-07

    This paper studies the hydrodynamical problem of normal modes of small adiabatic oscillations of relativistic barotropic thin accretion disks around black holes (and compact weakly magnetic neutron stars). Employing WKB techniques, we obtain the eigen frequencies and eigenfunctions of the modes for different values of the mass and angular momentum of the central black hole. We discuss the properties of the various types of modes and examine the role of viscosity, as it appears to render some of the modes unstable to rapid growth.

  7. Normal modes of confined cold ionic systems

    SciTech Connect

    Schiffer, J.P.; Dubin, D.H.

    1995-08-01

    The normal modes of a cloud of confined ions forming a strongly-correlated plasma were investigated. The results of molecular-dynamics simulations were compared to predictions of a cold fluid mode. Mode frequencies are observed to shift slightly compared to the cold fluid predictions, and the modes are also observed to damp in time. Simulations also reveal a set of torsional oscillations which have no counterpart in cold fluid theory. The frequency shift, damping, and torsional effects are compared to a model that treats trapped plasmas as a visco-elastic spheroid. It may be possible to measure high-frequency bulk and shear moduli of a strongly-correlated plasma from mode excitation experiments on trapped non-neutral plasmas. An example of the results of the calculation is presented.

  8. A new method of normal mode calculation

    NASA Astrophysics Data System (ADS)

    Kobayashi, N.

    2004-12-01

    Numerical method of calculating normal modes of the Earth is classical problem in seismology and many methods have been developed, e.g. MINEOS, OBANI (Woodhouse 1989) and DISPER80 (Saito 1989). These methods are based on direct numerical integration of the governing differential equations (Runge-Kutta method). The methods are efficient for search for (real) eigenvalues of non dissipative cases but have some trouble to seek complex eigenvalues of dissipative or leaky oscillations. On the other hand, in solar seismology, the Henyey type relaxation method is used to calculate acoustic and gravity modes of the sun and stars (e.g. Unno et al. 1989). The latter method is generally more stable for eigenvalue problems of a self-gravitating gaseous body where the density and pressure vary exponentially near its surface. The efficiency of the method is, however, depends on initial guess of eigenvalues and eigenfunctions. Here we propose a new method to overcome the deficiency of the above methods. This method is formulated with the aid of the concept of the Henyey type relaxation method but does not needs initial guess of eigenfuctions and solves the problem more directly like the Runge-Hutta method. Some mumerical tests show good convergence of complex eigenvalues in our method. So the proposed method is effective to calculate solid modes, acoustic and gravity modes and ocean modes interfered with the other parts of the earth and planets.

  9. Electrostatic normal modes in nonneutral plasmas

    NASA Astrophysics Data System (ADS)

    Book, David L.

    1995-04-01

    A fluid description is employed to derive the dispersion relation for modes near the cyclotron frequency Ω in a nonuniform cylindrical nonneutral plasma of radius R with finite temperature confined by a uniform magnetic field B=B0ez. In contrast to the theory of Gould and LaPointe, the model includes the diamagnetic drift but omits finite-Larmor-radius effects. The eigenfrequencies for high-frequency electrostatic modes with wavevectors satisfying k ṡ B=0 (Bernstein modes) are found in the form ω=-Ω+Δω. Solutions are obtained and compared with experiment and the theory of Gould and LaPointe. The present theory predicts that at a given temperature modes with m≳1 propagate only when the density is less than a critical value that increases with m, and that Δω normalized by the diocotron frequency depends only on the ratio of the Debye length to the plasma radius and hence is independent of B and the particle mass.

  10. Electrostatic normal modes in nonneutral plasmas

    SciTech Connect

    Book, David L.

    1995-04-15

    A fluid description is employed to derive the dispersion relation for modes near the cyclotron frequency {omega} in a nonuniform cylindrical nonneutral plasma of radius R with finite temperature confined by a uniform magnetic field B=B0ez. In contrast to the theory of Gould and LaPointe, the model includes the diamagnetic drift but omits finite-Larmor-radius effects. The eigenfrequencies for high-frequency electrostatic modes with wavevectors satisfying k {center_dot} B=0 (Bernstein modes) are found in the form {omega}=-{omega}+{delta}{omega}. Solutions are obtained and compared with experiment and the theory of Gould and LaPointe. The present theory predicts that at a given temperature modes with m > or approx.1 propagate only when the density is less than a critical value that increases with m, and that {delta}{omega} normalized by the diocotron frequency depends only on the ratio of the Debye length to the plasma radius and hence is independent of B and the particle mass.

  11. A spectral characterization of nonlinear normal modes

    NASA Astrophysics Data System (ADS)

    Cirillo, G. I.; Mauroy, A.; Renson, L.; Kerschen, G.; Sepulchre, R.

    2016-09-01

    This paper explores the relationship that exists between nonlinear normal modes (NNMs) defined as invariant manifolds in phase space and the spectral expansion of the Koopman operator. Specifically, we demonstrate that NNMs correspond to zero level sets of specific eigenfunctions of the Koopman operator. Thanks to this direct connection, a new, global parametrization of the invariant manifolds is established. Unlike the classical parametrization using a pair of state-space variables, this parametrization remains valid whenever the invariant manifold undergoes folding, which extends the computation of NNMs to regimes of greater energy. The proposed ideas are illustrated using a two-degree-of-freedom system with cubic nonlinearity.

  12. A new method to calculate normal modes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naoki

    2007-01-01

    We developed a new method to calculate normal modes of the Earth and planets. It can treat anelasticity directly as imaginary parts of elastic constants and leaky modes due to the open boundary condition set at the upper atmosphere. The eigenvalue problem is described in complex numbers. It is formulated based on a similar treatment of the global matrix governing the system of oscillations to that in the Henyey-type relaxation method used in solar seismology. In our method, the complex eigenvalue problem of a large system is reduced to an eigenvalue problem of a quite small size matrix. The eigenvalue of the small problem is a correction of an assumed complex eigenfrequency and components of the eigenvector are values of eigenfunctions at the outer boundary. Starting from an arbitrary complex frequency around the eigenfrequency of a target mode, we can arrive there within, at most, a dozen of steps of iterative calculations. We compared the results of our method with those calculated by DISPER80, and found good agreement between them. The rate of convergence of the method depends on the linearity of the correction around the eigenfrequency. A numerical example shows good behaviour of them. Even for a model with an atmosphere in which the fundamental spheroidal mode 0S29 and the fundamental acoustic mode 0P29 nearly degenerate, we can easily reach the eigenfrequency of 0S29 and distinguish it from that of 0P29 without any confusion. And we found that the eigenfrequency of 0P29 calculated for a realistic atmospheric model which varies annually, most approaches the solid mode in August. The behaviour of 0P29 can be interpreted with the aid of an acoustic potential which characterizes vertical propagation of sound waves. In addition to the efficiency in the convergence to the eigenfrequencies, numerical tests show strong numerical stability of the method. It stems from the stability in the relaxation method because of the similarity in algebraic structure. For those

  13. Complexity of spontaneous BOLD activity in default mode network is correlated with cognitive function in normal male elderly: a multiscale entropy analysis.

    PubMed

    Yang, Albert C; Huang, Chu-Chung; Yeh, Heng-Liang; Liu, Mu-En; Hong, Chen-Jee; Tu, Pei-Chi; Chen, Jin-Fan; Huang, Norden E; Peng, Chung-Kang; Lin, Ching-Po; Tsai, Shih-Jen

    2013-02-01

    The nonlinear properties of spontaneous fluctuations in blood oxygen level-dependent (BOLD) signals remain unexplored. We test the hypothesis that complexity of BOLD activity is reduced with aging and is correlated with cognitive performance in the elderly. A total of 99 normal older and 56 younger male subjects were included. Cognitive function was assessed using Cognitive Abilities Screening Instrument and Wechsler Digit Span Task. We employed a complexity measure, multiscale entropy (MSE) analysis, and investigated appropriate parameters for MSE calculation from relatively short BOLD signals. We then compared the complexity of BOLD signals between the younger and older groups, and examined the correlation between cognitive test scores and complexity of BOLD signals in various brain regions. Compared with the younger group, older subjects had the most significant reductions in MSE of BOLD signals in posterior cingulate gyrus and hippocampal cortex. For older subjects, MSE of BOLD signals from default mode network areas, including hippocampal cortex, cingulate cortex, superior and middle frontal gyrus, and middle temporal gyrus, were found to be positively correlated with major cognitive functions, such as attention, orientation, short-term memory, mental manipulation, and language. MSE from subcortical regions, such as amygdala and putamen, were found to be positively correlated with abstract thinking and list-generating fluency, respectively. Our findings confirmed the hypothesis that complexity of BOLD activity was correlated with aging and cognitive performance based on MSE analysis, and may provide insights on how dynamics of spontaneous brain activity relates to aging and cognitive function in specific brain regions. PMID:22683008

  14. Wave Forced Normal Modes on Fringing Reefs

    NASA Astrophysics Data System (ADS)

    Pequignet, A. N.; Becker, J. M.; Merrifield, M. M.; Aucan, J.

    2008-12-01

    In an effort to assess wave-driven coastal inundation at the shoreline of fringing reefs, pressure and current observations were collected at reefs on Guam (Ipan) and Oahu, Hawaii (Mokuleia) as part of the PILOT (Pacific Island Land-Ocean Typhoon) experiment. Similar to dissipative sandy beaches, nearshore surface elevation at both reefs is dominated by energy in the infragravity frequency band. Coherent infragravity oscillations across the reef tend to occur at discrete frequencies and with standing wave cross-shore structures that are consistent with open basin resonant modes. The modes are forced by swell wave groups, similar to a time-dependent setup. The resonant modes are most apparent during energetic wave events, in part because wave setup over the reef increases the low mode resonant frequencies to a range that is conducive to wave group forcing. Evidence of the excitation of resonant modes during tropical storm Man-Yi at Ipan, Guam is presented.

  15. TOPICAL REVIEW: Normal mode analysis and applications in biological physics

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric C.; Sankey, Otto F.

    2010-10-01

    Normal mode analysis has become a popular and often used theoretical tool in the study of functional motions in enzymes, viruses, and large protein assemblies. The use of normal modes in the study of these motions is often extremely fruitful since many of the functional motions of large proteins can be described using just a few normal modes which are intimately related to the overall structure of the protein. In this review, we present a broad overview of several popular methods used in the study of normal modes in biological physics including continuum elastic theory, the elastic network model, and a new all-atom method, recently developed, which is capable of computing a subset of the low frequency vibrational modes exactly. After a review of the various methods, we present several examples of applications of normal modes in the study of functional motions, with an emphasis on viral capsids.

  16. Atmospheric Excitation of Planetary Normal Modes

    NASA Technical Reports Server (NTRS)

    Tanimoto, Toshiro

    2001-01-01

    The objectives of this study were to: (1) understand the phenomenon of continuous free oscillations of the Earth and (2) examine the idea of using this phenomenon for planetary seismology. We first describe the results on (1) and present our evaluations of the idea (2) in the final section. In 1997, after almost forty years since the initial attempt by Benioff et al, continuous free oscillations of the Earth were discovered. Spheroidal fundamental modes between 2 and 7 millihertz are excited continuously with acceleration amplitudes of about 0.3-0.5 nanogals. The signal is now commonly found in virtually all data recorded by STS-1 type broadband seismometers at quiet sites. Seasonal variation in amplitude and the existence of two coupled modes between the atmosphere and the solid Earth support that these oscillations are excited by the atmosphere. Stochastic excitation due to atmospheric turbulence is a favored mechanism, providing a good match between theory and data. The atmosphere has ample energy to support this theory because excitation of these modes require only 500-10000 W whereas the atmosphere contains about 117 W of kinetic energy. An application of this phenomenon includes planetary seismology, because other planets may be oscillating due to atmospheric excitation. The interior structure of planets could be learned by determining the eigenfrequencies in the continuous free oscillations. It is especially attractive to pursue this idea for tectonically quiet planets, since quakes may be too infrequent to be recorded by seismic instruments.

  17. Instantaneous normal modes and the protein glass transition.

    PubMed

    Schulz, Roland; Krishnan, Marimuthu; Daidone, Isabella; Smith, Jeremy C

    2009-01-01

    In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at approximately 220 K. The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition. PMID:19167298

  18. Instantaneous Normal Modes and the Protein Glass Transition

    SciTech Connect

    Schultz, Roland; Krishnan, Marimuthu; Daidone, Isabella; Smith, Jeremy C

    2009-01-01

    In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at 220 K. The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition.

  19. WEBnm@: a web application for normal mode analyses of proteins

    PubMed Central

    Hollup, Siv Midtun; Salensminde, Gisle; Reuter, Nathalie

    2005-01-01

    Background Normal mode analysis (NMA) has become the method of choice to investigate the slowest motions in macromolecular systems. NMA is especially useful for large biomolecular assemblies, such as transmembrane channels or virus capsids. NMA relies on the hypothesis that the vibrational normal modes having the lowest frequencies (also named soft modes) describe the largest movements in a protein and are the ones that are functionally relevant. Results We developed a web-based server to perform normal modes calculations and different types of analyses. Starting from a structure file provided by the user in the PDB format, the server calculates the normal modes and subsequently offers the user a series of automated calculations; normalized squared atomic displacements, vector field representation and animation of the first six vibrational modes. Each analysis is performed independently from the others and results can be visualized using only a web browser. No additional plug-in or software is required. For users who would like to analyze the results with their favorite software, raw results can also be downloaded. The application is available on . We present here the underlying theory, the application architecture and an illustration of its features using a large transmembrane protein as an example. Conclusion We built an efficient and modular web application for normal mode analysis of proteins. Non specialists can easily and rapidly evaluate the degree of flexibility of multi-domain protein assemblies and characterize the large amplitude movements of their domains. PMID:15762993

  20. A Normal Mode Perspective of Intrinsic Ocean-Climate Variability

    NASA Astrophysics Data System (ADS)

    Dijkstra, Henk

    2016-01-01

    Observations of the sea surface temperature field over more than a century indicate that there is pronounced variability in the climate system. Understanding the mechanisms of this variability is crucial to determine the role of variations in ocean heat content in past and future climate changes. When a steady background state in an ocean-climate model is slightly perturbed, the long-time response is determined by the spatial patterns of the normal modes. Here, the type and patterns of normal modes for a range of different equilibrium states in a hierarchy of ocean-climate models are reviewed. The rather elegant organization of these normal modes is demonstrated, and prototype physical mechanisms explaining patterns of sea surface temperature variability based on these normal modes are provided.

  1. High-Frequency Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2009-01-01

    Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.

  2. Universal spectrum of normal modes in low-temperature glasses.

    PubMed

    Franz, Silvio; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, Francesco

    2015-11-24

    We report an analytical study of the vibrational spectrum of the simplest model of jamming, the soft perceptron. We identify two distinct classes of soft modes. The first kind of modes are related to isostaticity and appear only in the close vicinity of the jamming transition. The second kind of modes instead are present everywhere in the glass phase and are related to the hierarchical structure of the potential energy landscape. Our results highlight the universality of the spectrum of normal modes in disordered systems, and open the way toward a detailed analytical understanding of the vibrational spectrum of low-temperature glasses. PMID:26561585

  3. Universal spectrum of normal modes in low-temperature glasses

    PubMed Central

    Franz, Silvio; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, Francesco

    2015-01-01

    We report an analytical study of the vibrational spectrum of the simplest model of jamming, the soft perceptron. We identify two distinct classes of soft modes. The first kind of modes are related to isostaticity and appear only in the close vicinity of the jamming transition. The second kind of modes instead are present everywhere in the glass phase and are related to the hierarchical structure of the potential energy landscape. Our results highlight the universality of the spectrum of normal modes in disordered systems, and open the way toward a detailed analytical understanding of the vibrational spectrum of low-temperature glasses. PMID:26561585

  4. Normal modes of prion proteins: from native to infectious particle.

    PubMed

    Samson, Abraham O; Levitt, Michael

    2011-03-29

    Prion proteins (PrP) are the infectious agent in transmissible spongiform encephalopathies (i.e., mad cow disease). To be infectious, prion proteins must undergo a conformational change involving a decrease in α-helical content along with an increase in β-strand content. This conformational change was evaluated by means of elastic normal modes. Elastic normal modes show a diminution of two α-helices by one and two residues, as well as an extension of two β-strands by three residues each, which could instigate the conformational change. The conformational change occurs in a region that is compatible with immunological studies, and it is observed more frequently in mutant prions that are prone to conversion than in wild-type prions because of differences in their starting structures, which are amplified through normal modes. These findings are valuable for our comprehension of the conversion mechanism associated with the conformational change in prion proteins. PMID:21338080

  5. Refinement of protein dynamic structure: normal mode refinement.

    PubMed Central

    Kidera, A; Go, N

    1990-01-01

    An x-ray crystallographic refinement method, referred to as the normal mode refinement, is proposed. The Debye-Waller factor is expanded in terms of the effective normal modes whose amplitudes and eigenvectors are experimentally determined by the crystallographic refinement. In contrast to the conventional method, the atomic motions are treated generally as anisotropic and concerted. This method is assessed by using the simulated x-ray data given by a Monte Carlo simulation of human lysozyme. In this article, we refine the dynamic structure by fixing the average static structure to exact coordinates. It is found that the normal mode refinement, using a smaller number of variables, gives a better R factor and more information on the dynamics (anisotropy and collectivity in the motion). Images PMID:2339115

  6. Normal Modes of Prion Proteins: From Native to Infectious particle◊

    PubMed Central

    Samson, Abraham O.; Levitt, Michael

    2011-01-01

    Prion proteins (PrP) are the infectious agent in transmissible spongiform encephalopathies (i.e. mad cow disease). To be infectious, prion proteins must undergo a conformational change involving a decrease of α-helical content along with an increase of β-strand structure. This conformational change was evaluated by means of elastic normal modes. Elastic normal modes show a diminution of two α-helices by one and two residues, as well as an extension of two β-strands by three residues each which could instigate the conformational change. The conformational change occurs in a region that is compatible with immunological studies, and it is observed more frequently in mutant prions which are prone to conversion, than in WT prions due to differences in their starting structures, which are amplified through normal modes. These findings are valuable for our comprehension of the conversion mechanism associated with the conformational change of prion proteins. PMID:21338080

  7. Mean flow generation mechanism by inertial waves and normal modes

    NASA Astrophysics Data System (ADS)

    Will, Andreas; Ghasemi, Abouzar

    2016-04-01

    The mean flow generation mechanism by nonlinearity of the inertial normal modes and inertial wave beams in a rotating annular cavity with longitudinally librating walls in stable regime is discussed. Inertial normal modes (standing waves) are excited when libration frequency matches eigenfrequencies of the system. Inertial wave beams are produced by Ekman pumping and suction in a rotating cylinder and form periodic orbits or periodic ray trajectories at selected frequencies. Inertial wave beams emerge as concentrated shear layers in a librating annular cavity, while normal modes appear as global recirculation cells. Both (inertial wave beam and mode) are helical and thus intrinsically non-linear flow structures. No second mode or wave is necessary for non-linearity. We considered the low order normal modes (1,1), (2,1) and (2,2) which are expected to be excited in the planetary objects and investigate the mean flow generation mechanism using two independent solutions: 1) analytical solution (Borcia 2012) and 2) the wave component of the flow (ω0 component) obtained from the direct numerical simulation (DNS). It is well known that a retrograde bulk mean flow is generated by the Ekman boundary layer and E1/4-Stewartson layer close to the outer cylinder side wall due to libration. At and around the normal mode resonant frequencies we found additionally a prograde azimuthal mean flow (Inertial Normal Mode Mean Flow: INMMF) in the bulk of the fluid. The fluid in the bulk is in geostrophic balance in the absence of the inertial normal modes. However, when INMMF is excited, we found that the geostrophic balance does not hold in the region occupied by INMMF. We hypothesize that INMMF is generated by the nonlinearity of the normal modes or by second order effects. Expanding the velocity {V}(u_r,u_θ,u_z) and pressure (p) in a power series in ɛ (libration amplitude), the Navier-Stokes equations are segregated into the linear and nonlinear parts at orders ɛ1 and ɛ^2

  8. Nonlinear normal modes modal interactions and isolated resonance curves

    DOE PAGESBeta

    Kuether, Robert J.; Renson, L.; Detroux, T.; Grappasonni, C.; Kerschen, G.; Allen, M. S.

    2015-05-21

    The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balance technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. Furthermore, the practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweepmore » excitations of increasing amplitudes.« less

  9. Nonlinear normal modes modal interactions and isolated resonance curves

    SciTech Connect

    Kuether, Robert J.; Renson, L.; Detroux, T.; Grappasonni, C.; Kerschen, G.; Allen, M. S.

    2015-05-21

    The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balance technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. Furthermore, the practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweep excitations of increasing amplitudes.

  10. Numerical computation of nonlinear normal modes in mechanical engineering

    NASA Astrophysics Data System (ADS)

    Renson, L.; Kerschen, G.; Cochelin, B.

    2016-03-01

    This paper reviews the recent advances in computational methods for nonlinear normal modes (NNMs). Different algorithms for the computation of undamped and damped NNMs are presented, and their respective advantages and limitations are discussed. The methods are illustrated using various applications ranging from low-dimensional weakly nonlinear systems to strongly nonlinear industrial structures.

  11. Nonlinear normal modes in electrodynamic systems: A nonperturbative approach

    NASA Astrophysics Data System (ADS)

    Kudrin, A. V.; Kudrina, O. A.; Petrov, E. Yu.

    2016-06-01

    We consider electromagnetic nonlinear normal modes in cylindrical cavity resonators filled with a nonlinear nondispersive medium. The key feature of the analysis is that exact analytic solutions of the nonlinear field equations are employed to study the mode properties in detail. Based on such a nonperturbative approach, we rigorously prove that the total energy of free nonlinear oscillations in a distributed conservative system, such as that considered in our work, can exactly coincide with the sum of energies of the normal modes of the system. This fact implies that the energy orthogonality property, which has so far been known to hold only for linear oscillations and fields, can also be observed in a nonlinear oscillatory system.

  12. User's manual for the coupled mode version of the normal modes rotor aeroelastic analysis computer program

    NASA Technical Reports Server (NTRS)

    Bergquist, R. R.; Carlson, R. G.; Landgrebe, A. J.; Egolf, T. A.

    1974-01-01

    This User's Manual was prepared to provide the engineer with the information required to run the coupled mode version of the Normal Modes Rotor Aeroelastic Analysis Computer Program. The manual provides a full set of instructions for running the program, including calculation of blade modes, calculations of variable induced velocity distribution and the calculation of the time history of the response for either a single blade or a complete rotor with an airframe (the latter with constant inflow).

  13. Dispersion correction and identification of ocean acoustic normal modes

    NASA Astrophysics Data System (ADS)

    Poplawski, James Edward

    1998-08-01

    The average temperature of the ocean can be determined by measuring the traveltimes of acoustic signals from a source to a receiver. In the temperate deep ocean, a narrow acoustic pulse transmitted from a source results in a reception at long ranges consisting of many (possibly overlapping) arrivals. One of the mathematical structures used to describe and interpret acoustic propagation in the ocean is normal mode theory. The identification of individual normal mode arrivals in a reception is difficult because modal arrivals are spread in time by geometric dispersion causing them to overlap and interfere with each other. Current signal processing methods aimed at identifying individual normal mode arrivals require the use of vertical arrays of receivers which are rare because they are very expensive to build and deploy. A new signal processing method using phase-only filters to compensate for the geometric dispersion of normal mode arrivals is presented. This compensation increases the peak signal to noise ratio of the individual modal arrivals while simultaneously compressing them in time, helping to isolate them and their arrival times from overlapping neighbors. The properties of the phase-only filters and their ability to help isolate and identify modal arrivals is investigated through the processing of computer simulated receptions. By processing a reception with a bank of phase-only filters characterized by different amounts of dispersion compensation, a plot dubbed the Dispersion Diagnostic (DD) Display is generated. The use of phase-only filters does not require vertical arrays of receivers because modal phase is constant across depth. DD Displays generated for a reception from a receiver at a single depth show compressed modes which are isolated from their neighbors and for which traveltimes can be determined. Thus, the dispersion processing opens up the use of horizontal arrays or single hydrophones in mode identification, broadening the capabilities of

  14. "Good Vibrations": A workshop on oscillations and normal modes

    NASA Astrophysics Data System (ADS)

    Barbieri, Sara; Carpineti, Marina; Giliberti, Marco; Rigon, Enrico; Stellato, Marco; Tamborini, Marina

    2016-05-01

    We describe some theatrical strategies adopted in a two hour workshop in order to show some meaningful experiments and the underlying useful ideas to describe a secondary school path on oscillations, that develops from harmonic motion to normal modes of oscillations, and makes extensive use of video analysis, data logging, slow motions and applet simulations. Theatre is an extremely useful tool to stimulate motivation starting from positive emotions. That is the reason why the theatrical approach to the presentation of physical themes has been explored by the group "Lo spettacolo della Fisica" (http://spettacolo.fisica.unimi.it) of the Physics Department of University of Milano for the last ten years (Carpineti et al., JCOM, 10 (2011) 1; Nuovo Cimento B, 121 (2006) 901) and has been inserted also in the European FP7 Project TEMI (Teaching Enquiry with Mysteries Incorporated, see http://teachingmysteries.eu/en) which involves 13 different partners coming from 11 European countries, among which the Italian (Milan) group. According to the TEMI guidelines, this workshop has a written script based on emotionally engaging activities of presenting mysteries to be solved while participants have been involved in nice experiments following the developed path.

  15. Antidepressants Normalize the Default Mode Network in Patients With Dysthymia

    PubMed Central

    Posner, Jonathan; Hellerstein, David J.; Gat, Inbal; Mechling, Anna; Klahr, Kristin; Wang, Zhishun; McGrath, Patrick J.; Stewart, Jonathan W.; Peterson, Bradley S.

    2014-01-01

    Importance The default mode network (DMN) is a collection of brain regions that reliably deactivate during goal-directed behaviors and is more active during a baseline, or so-called resting, condition. Coherence of neural activity, or functional connectivity, within the brain’s DMN is increased in major depressive disorder relative to healthy control (HC) subjects; however, whether similar abnormalities are present in persons with dysthymic disorder (DD) is unknown. Moreover, the effect of antidepressant medications on DMN connectivity in patients with DD is also unknown. Objective To use resting-state functional-connectivity magnetic resonance imaging (MRI) to study (1) the functional connectivity of the DMN in subjects with DD vs HC participants and (2) the effects of antidepressant therapy on DMN connectivity. Design After collecting baseline MRI scans from subjects with DD and HC participants, we enrolled the participants with DD into a 10-week prospective, double-blind, placebo-controlled trial of duloxetine and collected MRI scans again at the conclusion of the study. Enrollment occurred between 2007 and 2011. Setting University research institute. Participants Volunteer sample of 41 subjects with DD and 25 HC participants aged 18 to 53 years. Control subjects were group matched to patients with DD by age and sex. Main Outcome Measures We used resting-state functional-connectivity MRI to measure the functional connectivity of the brain’s DMN in persons with DD compared with HC subjects, and we examined the effects of treatment with duloxetine vs placebo on DMN connectivity. Results Of the 41 subjects with DD, 32 completed the clinical trial and MRI scans, along with the 25 HC participants. At baseline, we found that the coherence of neural activity within the brain’s DMN was greater in persons with DD compared with HC subjects. Following a 10-week clinical trial, we found that treatment with duloxetine, but not placebo, normalized DMN connectivity

  16. S-Wave Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2010-01-01

    Large amplitude waveform features have been identified in pulse-transmission shear-wave measurements through cylinders that are long relative to the acoustic wavelength. The arrival times and amplitudes of these features do not follow the predicted behavior of well-known bar waves, but instead they appear to propagate with group velocities that increase as the waveform feature's dominant frequency increases. To identify these anomalous features, the wave equation is solved in a cylindrical coordinate system using an infinitely long cylinder with a free surface boundary condition. The solution indicates that large amplitude normal-mode propagations exist. Using the high-frequency approximation of the Bessel function, an approximate dispersion relation is derived. The predicted amplitude and group velocities using the approximate dispersion relation qualitatively agree with measured values at high frequencies, but the exact dispersion relation should be used to analyze normal modes for full ranges of frequency of interest, particularly at lower frequencies.

  17. Normal-mode splitting with large collective cooperativity

    SciTech Connect

    Tuchman, A. K.; Long, R.; Vrijsen, G.; Boudet, J.; Lee, J.; Kasevich, M. A.

    2006-11-15

    We report the observation of normal-mode splitting of the atom-cavity dressed states in both the fluorescence and transmission spectra for large atom number and observe subnatural linewidths in this regime. We also implement a method of utilizing the normal-mode splitting to observe Rabi oscillations on the {sup 87}Rb ground state hyperfine clock transition. We demonstrate a large collective cooperativity, C=1.2x10{sup 4}, which, in combination with large atom number, N{approx}2x10{sup 5}, offers the potential to realize an absolute phase sensitivity better than that achieved by state-of-the-art atomic fountain clocks or inertial sensors operating near the quantum projection noise limit.

  18. A High Resolution Normal Mode Solution of Japan Sea

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Satake, K.

    2014-12-01

    Normal mode calculation of a semi-closed or completely closed bay or ocean basin helps us to understand the oscillation characteristics including those excited by incoming tsunamis. In addition, tsunami propagation can be synthesized by superposition of normal modes. Japan Sea is an almost closed ocean basin where many large tsunamigenic earthquakes occurred (fig. 1). Satake and Shimazaki (1988) calculated the normal modes using a 20km grid (~10' or about 2,000 ocean grids), compared the observed and calculated normal modes from the 1964 Niigata and 1983 Japan Sea earthquakes, and discussed the their different excitation characteristics . Because of development of computer and numerical computation techniques, it is worthwhile to revisit this problem. Starting from Laplace's tidal equations and ignoring the rotation of the earth, Loomis (1975) discretized the problem into the eigenvalue problem of a symmetric sparse matrix, which was solved by Householder transformations. This method is used by Satake and Shimazaki (1988) for Japan Sea and Aida (1996) for Tokyo Bay. However, this method needs O(n^3) operation in time and O(n^2) in memory (n is the total number of water grid. e.g., for Japan Sea in 30 sec grid, n~10^6), which would require a super computer.To overcome this disadvantage, we first introduce a recent iteration method called Implicitly Restarted Arnoldi Method (Lehoucq et al., 1997), which itself speeds up the calculation a bit. Then after we develop a sparse version of matrix storage and multiplication, the operation count in time and memory reduced dramatically to O(n^1.5) (including about 0.5 for iteration process) and O(n) respectively, utilizing the special property of the matrix and the iteration method. This means any current computer can easily solve a large eigenvalue problem. Earthquakes.png

  19. Symmetry classification of the degenerate vibrational normal modes of ethane

    NASA Astrophysics Data System (ADS)

    Lattanzi, F.; di Lauro, C.; Legay-Sommaire, N.

    1992-11-01

    We determine the G36(EM) (usually called G 36†) symmetry species of all the degenerate vibrational normal modes of ethane unambiguously. We are able to do this as a result of observing the K-dependence of the sign of the energy separation between the torsionally split levels of ν4 + νy combination states, where ν4 is the torsion and νy ⊂ Eg of D3 d, and by observing the lack of any intrinsic torsional splitting or broadening in the νx fundamentals and hot ( ν4 + νx) - ν4 transitions ( νx ⊂ Eu of D3 d). It is found that in C 2H 6 all the Eu normal modes of D3 d correlate with E1 d of G36(EM) (and hence E' of D3 h), and all the Eg normal modes of D3 d correlate with E1 d of G36(EM) (and hence E″ of D3 h). High-resolution Q branches of ν8, ν4 + ν12, and ( ν4 + ν8) - ν4 of C 2H 6 are shown as illustrations.

  20. Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals

    NASA Astrophysics Data System (ADS)

    Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael

    2009-11-01

    The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)

  1. The normal modes of lattice vibrations of ice XI

    PubMed Central

    Zhang, Peng; Wang, Zhe; Lu, Ying-Bo; Ding, Zheng-Wen

    2016-01-01

    The vibrational spectrum of ice XI at thermal wavelengths using the CASTEP code, a first-principles simulation method, is investigated. A dual-track approach is constructed to verify the validity for the computational phonon spectrum: collate the simulated spectrum with inelastic neutron scattering experiments and assign the photon scattering peaks according to the calculated normal vibration frequencies. The 33 optical normal vibrations at the Brillouin center are illustrated definitely from the ab initio outcomes. The depolarizing field effect of the hydrogen bond vibrations at frequencies of 229 cm−1 and 310 cm−1 is found to agree well with the LST relationship. It is a convincing evidence to manifest the LO-TO splitting of hydrogen bonds in ice crystal. We attribute the two hydrogen bond peaks to the depolarization effect and apply this viewpoint to ordinary ice phase, ice Ih, which is difficult to analyse their vibration modes due to proton disorder. PMID:27375199

  2. The normal modes of lattice vibrations of ice XI

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Wang, Zhe; Lu, Ying-Bo; Ding, Zheng-Wen

    2016-07-01

    The vibrational spectrum of ice XI at thermal wavelengths using the CASTEP code, a first-principles simulation method, is investigated. A dual-track approach is constructed to verify the validity for the computational phonon spectrum: collate the simulated spectrum with inelastic neutron scattering experiments and assign the photon scattering peaks according to the calculated normal vibration frequencies. The 33 optical normal vibrations at the Brillouin center are illustrated definitely from the ab initio outcomes. The depolarizing field effect of the hydrogen bond vibrations at frequencies of 229 cm‑1 and 310 cm‑1 is found to agree well with the LST relationship. It is a convincing evidence to manifest the LO-TO splitting of hydrogen bonds in ice crystal. We attribute the two hydrogen bond peaks to the depolarization effect and apply this viewpoint to ordinary ice phase, ice Ih, which is difficult to analyse their vibration modes due to proton disorder.

  3. The normal modes of lattice vibrations of ice XI.

    PubMed

    Zhang, Peng; Wang, Zhe; Lu, Ying-Bo; Ding, Zheng-Wen

    2016-01-01

    The vibrational spectrum of ice XI at thermal wavelengths using the CASTEP code, a first-principles simulation method, is investigated. A dual-track approach is constructed to verify the validity for the computational phonon spectrum: collate the simulated spectrum with inelastic neutron scattering experiments and assign the photon scattering peaks according to the calculated normal vibration frequencies. The 33 optical normal vibrations at the Brillouin center are illustrated definitely from the ab initio outcomes. The depolarizing field effect of the hydrogen bond vibrations at frequencies of 229 cm(-1) and 310 cm(-1) is found to agree well with the LST relationship. It is a convincing evidence to manifest the LO-TO splitting of hydrogen bonds in ice crystal. We attribute the two hydrogen bond peaks to the depolarization effect and apply this viewpoint to ordinary ice phase, ice Ih, which is difficult to analyse their vibration modes due to proton disorder. PMID:27375199

  4. DNA nanotube formation based on normal mode analysis

    NASA Astrophysics Data System (ADS)

    Qian, PengFei; Seo, Sangjae; Kim, Junghoon; Kim, Seungjae; Lim, Byeong Soo; Liu, Wing Kam; Kim, Bum Joon; LaBean, Thomas Henry; Park, Sung Ha; Kim, Moon Ki

    2012-03-01

    Ever since its inception, a popular DNA motif called the cross tile has been recognized to self-assemble into addressable 2D templates consisting of periodic square cavities. Although this may be conceptually correct, in reality certain types of cross tiles can only form planar lattices if adjacent tiles are designed to bind in a corrugated manner, in the absence of which they roll up to form 3D nanotube structures. Here we present a theoretical study on why uncorrugated cross tiles self-assemble into counterintuitive 3D nanotube structures and not planar 2D lattices. Coarse-grained normal mode analysis of single and multiple cross tiles within the elastic network model was carried out to expound the vibration modes of the systems. While both single and multiple cross tile simulations produce results conducive to tube formations, the dominant modes of a unit of four cross tiles (one square cavity), termed a quadruplet, fully reflect the symmetries of the actual nanotubes found in experiments and firmly endorse circularization of an array of cross tiles.

  5. [Raman, FTIR spectra and normal mode analysis of acetanilide].

    PubMed

    Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun

    2012-10-01

    The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained. PMID:23285870

  6. Generalized theory of helicon waves. I. Normal modes

    SciTech Connect

    Chen, F.F.; Arnush, D.

    1997-09-01

    The theory of helicon waves is extended to include finite electron mass. This introduces an additional branch to the dispersion relation that is essentially an electron cyclotron or Trivelpiece{endash}Gould (TG) wave with a short radial wavelength. The effect of the TG wave is expected to be important only for low dc magnetic fields and long parallel wavelengths. The normal modes at low fields are mixtures of the TG wave and the usual helicon wave and depend on the nature of the boundaries. Computations show, however, that since the TG waves are damped near the surface of the plasma, the helicon wave at high fields is almost exactly the same as is found when the electron mass is neglected. {copyright} {ital 1997 American Institute of Physics.}

  7. Instrumental evidence of normal mode rock slope vibration

    NASA Astrophysics Data System (ADS)

    Burjánek, Jan; Moore, Jeffrey R.; Yugsi Molina, Freddy X.; Fäh, Donat

    2012-02-01

    A unique field experiment was performed to constrain the seismic response of a large, potentially unstable rock slope in the southern Swiss Alps. Small-aperture seismic arrays were deployed to record ambient vibrations both inside and outside of the mapped instability boundary. The recordings were analysed by means of the high-resolution f-k method, site-to-reference spectral ratios and time-frequency dependent polarization analysis. All three methods indicated that the wavefield within the potentially unstable rock mass is dominated by normal mode motion (standing waves) rather than horizontal propagation of seismic waves. Both fundamental frequency and relative amplification could be recovered from ambient noise data. The observed amplification is strongly directional, and the maximum amplification is oriented perpendicular to open tension cracks mapped at the ground surface. Our results highlight site response characteristics relevant for analysis of earthquake-triggered rock slope failures.

  8. Vibrational dynamics of vocal folds using nonlinear normal modes.

    PubMed

    Pinheiro, Alan P; Kerschen, Gaëtan

    2013-08-01

    Many previous works involving physical models, excised and in vivo larynges have pointed out nonlinear vibration in vocal folds during voice production. Moreover, theoretical studies involving mechanical modeling of these folds have tried to gain a profound understanding of the observed nonlinear phenomena. In this context, the present work uses the nonlinear normal mode theory to investigate the nonlinear modal behavior of 16 subjects using a two-mass mechanical modeling of the vocal folds. The free response of the conservative system at different energy levels is considered to assess the impact of the structural nonlinearity of the vocal fold tissues. The results show very interesting and complex nonlinear phenomena including frequency-energy dependence, subharmonic regimes and, in some cases, modal interactions, entrainment and bifurcations. PMID:23218815

  9. iMODS: internal coordinates normal mode analysis server

    PubMed Central

    López-Blanco, José Ramón; Aliaga, José I.; Quintana-Ortí, Enrique S.; Chacón, Pablo

    2014-01-01

    Normal mode analysis (NMA) in internal (dihedral) coordinates naturally reproduces the collective functional motions of biological macromolecules. iMODS facilitates the exploration of such modes and generates feasible transition pathways between two homologous structures, even with large macromolecules. The distinctive internal coordinate formulation improves the efficiency of NMA and extends its applicability while implicitly maintaining stereochemistry. Vibrational analysis, motion animations and morphing trajectories can be easily carried out at different resolution scales almost interactively. The server is versatile; non-specialists can rapidly characterize potential conformational changes, whereas advanced users can customize the model resolution with multiple coarse-grained atomic representations and elastic network potentials. iMODS supports advanced visualization capabilities for illustrating collective motions, including an improved affine-model-based arrow representation of domain dynamics. The generated all-heavy-atoms conformations can be used to introduce flexibility for more advanced modeling or sampling strategies. The server is free and open to all users with no login requirement at http://imods.chaconlab.org. PMID:24771341

  10. Revealing short-period normal modes of the atmosphere

    NASA Astrophysics Data System (ADS)

    Shved, G. M.; Ermolenko, S. I.; Hoffmann, P.

    2015-09-01

    Barometer and seismometer measurements at Collm, Germany (51.3° N, 13.0° E) for all of 2002 are used to search for atmospheric normal modes (ANMs) in the frequency range 50-310 µHz. The measurements are spectrally analyzed using a 5-day window sliding along the 1-year series with a 1-day step. The subsequent analysis follows two procedures: (a) revealing features in the frequency distribution of the number of statistically significant spectral peaks in histograms built on the basis of these spectra and (b) calculating the multiplication spectra for the raw spectra. The two procedures yield the same result for the two instruments, i.e., reveal a periodicity in the clustering of atmospheric modes on the frequency axis with a period of ˜6 µHz. The fact that this period is close to 7 μHz, which is predicted by the crude theory of gravity—inertia ANMs [3] for their frequency distribution, suggests that ANMs are generated down to as small a period as ˜1 h.

  11. Using outcrop observations, 3D discrete feature network (DFN) fluid-flow simulations, and subsurface data to constrain the impact of normal faults and opening mode fractures on fluid flow in an active asphalt mine

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Aydin, A.; Durlofsky, L.; Karimi-Fard, M.; Brownlow, D. T.

    2008-12-01

    An active quarry near Uvalde, TX which mines asphaltic limestone from the Anacacho Formation offers an ideal setting to study fluid-flow in fractured and faulted carbonate rocks. Semi-3D exposures of normal faults and fractures in addition to visual evidence of asphalt concentrations in the quarry help constrain relationships between geologic structures and the flow and transport of hydrocarbons. Furthermore, a subsurface dataset which includes thin sections and measured asphalt concentration from the surrounding region provides a basis to estimate asphalt concentrations and constrain the depositional architecture of both the previously mined portions of the quarry and the un-mined surrounding rock volume. We characterized a series of normal faults and opening mode fractures at the quarry and documented a correlation between the intensity and distribution of these structures with increased concentrations of asphalt. The three-dimensional depositional architecture of the Anacacho Formation was characterized using the subsurface thin sections. Then outcrop exposures of faults, fractured beds, and stratigraphic contacts were mapped and their three-dimensional positions were recorded with differential gps devices. These two datasets were assimilated and a quarry-scale, geologically realistic, three-dimensional Discrete Feature Network (DFN) which represents the geometries and material properties of the matrix, normal faults, and fractures within the quarry was constructed. We then performed two-point flux, control-volume finite- difference fluid-flow simulations with the DFN to investigate the 3D flow and transport of fluids. The results were compared and contrasted with available asphalt concentration estimates from the mine and the aforementioned data from the surrounding drill cores.

  12. Photoelectron spectra of dihalomethyl anions: Testing the limits of normal mode analysis

    NASA Astrophysics Data System (ADS)

    Vogelhuber, Kristen M.; Wren, Scott W.; McCoy, Anne B.; Ervin, Kent M.; Lineberger, W. Carl

    2011-05-01

    We report the 364-nm negative ion photoelectron spectra of CHX2- and CDX2-, where X = Cl, Br, and I. The pyramidal dihalomethyl anions undergo a large geometry change upon electron photodetachment to become nearly planar, resulting in multiple extended vibrational progressions in the photoelectron spectra. The normal mode analysis that successfully models photoelectron spectra when geometry changes are modest is unable to reproduce qualitatively the experimental data using physically reasonable parameters. Specifically, the harmonic normal mode analysis using Cartesian displacement coordinates results in much more C-H stretch excitation than is observed, leading to a simulated photoelectron spectrum that is much broader than that which is seen experimentally. A (2 + 1)-dimensional anharmonic coupled-mode analysis much better reproduces the observed vibrational structure. We obtain an estimate of the adiabatic electron affinity of each dihalomethyl radical studied. The electron affinity of CHCl2 and CDCl2 is 1.3(2) eV, of CHBr2 and CDBr2 is 1.9(2) eV, and of CHI2 and CDI2 is 1.9(2) eV. Analysis of the experimental spectra illustrates the limits of the conventional normal mode approach and shows the type of analysis required for substantial geometry changes when multiple modes are active upon photodetachment.

  13. A comparative study of the normal modes of various modern bells

    NASA Astrophysics Data System (ADS)

    Perrin, R.; Charnley, T.

    1987-09-01

    Finite element calculations of the normal modes of church, carillon, hand and fire-alarm bells have been made. Some of the results are presented and comparisons made which shed new light on mode classification.

  14. Confinement-induced differences between dielectric normal modes and segmental modes of an ion-conducting polymer.

    PubMed

    Kojio, K; Jeon, S; Granick, S

    2002-05-01

    Dielectric measurement in the range 0.1 Hz to 1 MHz were used to study the motions of polymers and ions in an ion-conducting polymer, polypropylene oxide containing small quantities (on the order of 1%) of lithium ions (LiClO(4)), confined as a sandwich of uniform thickness between parallel insulating mica surfaces. In the dielectric loss spectrum, we observed three peaks; they originated from the normal mode of the polymer, segmental mode of the polymer, and ion motions. With decreasing film thickness, the peak frequencies corresponding to the normal mode and ion motion shifted to lower frequencies, indicating retardation due to confinement above 30 nm. This was accompanied by diminished intensity of the dielectric normal-mode relaxation, suggesting that confinement diminished the fluctuations of the end-to-end vector of the chain dipole in the direction between the confining surfaces. On the contrary, the segmental mode was not affected at that thickness. Finally, significant retardation of the segmental mode was observed only for the thinnest film (14 nm). The different dynamical modes of the polymer (segmental and slowest normal modes) respond with different thickness and temperature dependence to confinement. PMID:15010966

  15. Comparative Investigation of Normal Modes and Molecular Dynamics of Hepatitis C NS5B Protein

    NASA Astrophysics Data System (ADS)

    Asafi, M. S.; Yildirim, A.; Tekpinar, M.

    2016-04-01

    Understanding dynamics of proteins has many practical implications in terms of finding a cure for many protein related diseases. Normal mode analysis and molecular dynamics methods are widely used physics-based computational methods for investigating dynamics of proteins. In this work, we studied dynamics of Hepatitis C NS5B protein with molecular dynamics and normal mode analysis. Principal components obtained from a 100 nanoseconds molecular dynamics simulation show good overlaps with normal modes calculated with a coarse-grained elastic network model. Coarse-grained normal mode analysis takes at least an order of magnitude shorter time. Encouraged by this good overlaps and short computation times, we analyzed further low frequency normal modes of Hepatitis C NS5B. Motion directions and average spatial fluctuations have been analyzed in detail. Finally, biological implications of these motions in drug design efforts against Hepatitis C infections have been elaborated.

  16. Prufer Transformations for the Normal Modes in Ocean Acoustics

    SciTech Connect

    Baggeroer, Arthur B.

    2010-09-06

    In 1926 Prufer introduced a method of transforming the second order Sturm-Liouville (SL) equation into two nonlinear first order differential equations for the phase oe and ''magnitude'', |oe{sup 2}+oe{sup 2}| for a Poincare phase space representation, (oe,oe). The useful property is the phase equation decouples from the magnitude one which leads to a nonlinear, two point boundary value problem for the eigenvalues, or SL numbers. The transformation has been used both theoretically, e.g. Atkinson, [1960] to prove certain properties of SL equations as well as numerically e.g Bailey [1978]. This paper examines the utility of the Prufer transformation in the context of numerical solutions for modes of the ocean acoustic wave equation. (Its use is certainly not well known in the ocean acoustics community.) Equations for the phase, oe, and natural logarithm of the ''magnitude'', ln(|oe{sup 2}+oe{sup 2}|) lead to same decoupling and a fast and efficient numerical solution with the SL eigenvalues mapping to the horizontal wavenubers. The Prufer transformation has stabilty problems for low order modes at high frequecies, so a numerically stable method of integrating the phase equation is derived. This seems to be the first time the these stability issues have been highlighted to provide a robust algorthim for the modes.

  17. Prufer Transformations for the Normal Modes in Ocean Acoustics

    NASA Astrophysics Data System (ADS)

    Baggeroer, Arthur B.

    2010-09-01

    In 1926 Prufer introduced a method of transforming the second order Sturm-Liouville (SL) equation into two nonlinear first order differential equations for the phase o/ and "magnitude", |o/2+o/2| for a Poincare phase space representation, (o/,o/). The useful property is the phase equation decouples from the magnitude one which leads to a nonlinear, two point boundary value problem for the eigenvalues, or SL numbers. The transformation has been used both theoretically, e.g. Atkinson, [1960] to prove certain properties of SL equations as well as numerically e.g Bailey [1978]. This paper examines the utility of the Prufer transformation in the context of numerical solutions for modes of the ocean acoustic wave equation. (Its use is certainly not well known in the ocean acoustics community.) Equations for the phase, o/, and natural logarithm of the "magnitude", ln(|o/2+o/2|) lead to same decoupling and a fast and efficient numerical solution with the SL eigenvalues mapping to the horizontal wavenubers. The Prufer transformation has stabilty problems for low order modes at high frequecies, so a numerically stable method of integrating the phase equation is derived. This seems to be the first time the these stability issues have been highlighted to provide a robust algorthim for the modes.

  18. Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yu V.; Perepelkin, N. V.; Klimenko, A. A.; Harutyunyan, E.

    2012-08-01

    Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.

  19. Electromagnetic fluctuations and normal modes of a drifting relativistic plasma

    SciTech Connect

    Ruyer, C.; Gremillet, L.; Bénisti, D.; Bonnaud, G.

    2013-11-15

    We present an exact calculation of the power spectrum of the electromagnetic fluctuations in a relativistic equilibrium plasma described by Maxwell-Jüttner distribution functions. We consider the cases of wave vectors parallel or normal to the plasma mean velocity. The relative contributions of the subluminal and supraluminal fluctuations are evaluated. Analytical expressions of the spatial fluctuation spectra are derived in each case. These theoretical results are compared to particle-in-cell simulations, showing a good reproduction of the subluminal fluctuation spectra.

  20. Echoes from anharmonic normal modes in model glasses.

    PubMed

    Burton, Justin C; Nagel, Sidney R

    2016-03-01

    Glasses display a wide array of nonlinear acoustic phenomena at temperatures T ≲ 1 K. This behavior has traditionally been explained by an ensemble of weakly coupled, two-level tunneling states, a theory that is also used to describe the thermodynamic properties of glasses at low temperatures. One of the most striking acoustic signatures in this regime is the existence of phonon echoes, a feature that has been associated with two-level systems with the same formalism as spin echoes in NMR. Here we report the existence of a distinctly different type of acoustic echo in classical models of glassy materials. Our simulations consist of finite-ranged, repulsive spheres and also particles with attractive forces using Lennard-Jones interactions. We show that these echoes are due to anharmonic, weakly coupled vibrational modes and perhaps provide an alternative explanation for the phonon echoes observed in glasses at low temperatures. PMID:27078434

  1. Normal force for static and steady shear mode in magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Liu, Xuhui; Ye, Dun; Gao, Xiaoli; Li, Fang; Sun, Meng; Zhang, Hui; Tu, Tiangang; Yu, Hao

    2016-01-01

    This paper presents the normal force phenomena for static and steady shear mode in magnetorheological (MR) fluid. The results of the study show that, in the static mode, with the magnetic flux density increasing, the normal force will increase until the maximum, and then reduce to a steady value, and during the increasing stage, it can be expressed as FN=4667*B2.48 approximately; however, in the steady shear mode, only when the magnetic flux density achieves a certain value, the normal force phenomena will be observed clearly, and with the increasing of magnetic field, the normal force reaches the maximum, and then also decreases to a steady value. Besides, by defining the time parameters of dynamic response, the dynamic response of normal force is studied. If the shear plate is stationary, from the magnetic field on to a stable normal force produced, the response time is about 25.11 ms.

  2. An efficient and numerically stable procedure for generating sextic force fields in normal mode coordinates.

    PubMed

    Sibaev, M; Crittenden, D L

    2016-06-01

    In this paper, we outline a general, scalable, and black-box approach for calculating high-order strongly coupled force fields in rectilinear normal mode coordinates, based upon constructing low order expansions in curvilinear coordinates with naturally limited mode-mode coupling, and then transforming between coordinate sets analytically. The optimal balance between accuracy and efficiency is achieved by transforming from 3 mode representation quartic force fields in curvilinear normal mode coordinates to 4 mode representation sextic force fields in rectilinear normal modes. Using this reduced mode-representation strategy introduces an error of only 1 cm(-1) in fundamental frequencies, on average, across a sizable test set of molecules. We demonstrate that if it is feasible to generate an initial semi-quartic force field in curvilinear normal mode coordinates from ab initio data, then the subsequent coordinate transformation procedure will be relatively fast with modest memory demands. This procedure facilitates solving the nuclear vibrational problem, as all required integrals can be evaluated analytically. Our coordinate transformation code is implemented within the extensible PyPES library program package, at http://sourceforge.net/projects/pypes-lib-ext/. PMID:27276945

  3. Variability in Diaphragm Motion During Normal Breathing, Assessed With B-Mode Ultrasound

    PubMed Central

    Harper, Caitlin J; Shahgholi, Leili; Cieslak, Kathryn; Hellyer, Nathan J.; Strommen, Jeffrey A.; Boon, Andrea J.

    2014-01-01

    STUDY DESIGN Clinical measurement, cross-sectional. OBJECTIVES To establish a set of normal values for diaphragm thickening with tidal breathing in healthy subjects. BACKGROUND Normal values for diaphragm contractility, as imaged sonographically, have not been described, despite the known role of the diaphragm in contributing to spinal stability. If the normal range of diaphragm contractility can be defined in a reliable manner, ultrasound has the potential to be used clinically and in research as a biofeedback tool to enhance diaphragm activation/contractility. METHODS B-mode ultrasound was performed on 150 healthy subjects to visualize and measure hemi-diaphragm thickness on each side at resting inspiration and expiration. Primary outcome measures were hemi-diaphragm thickness and thickening ratio, stratified for age, gender, and body mass index. Interrater and intrarater reliability were also measured. RESULTS Normal thickness of the diaphragm at rest ranged from 0.12 to 1.18 cm, with slightly greater thickness in men but no effect of age. Average ± SD change in thickness from resting expiration to resting inspiration was 20.0% ± 15.5% on the right and 23.5% ± 24.4% on the left; however, almost one third of healthy subjects had no to minimal diaphragm thickening with tidal breathing. CONCLUSION There is wide variability in the degree of diaphragm contractility during quiet breathing. B-mode ultrasound appears to be a reliable means of determining the contractility of the diaphragm, an important muscle in spinal stability. Further studies are needed to validate this imaging modality as a clinical tool in the neuromuscular re-education of the diaphragm to improve spinal stability in both healthy subjects and in patients with low back pain. PMID:24175600

  4. On the sensitivity of protein data bank normal mode analysis: an application to GH10 xylanases

    NASA Astrophysics Data System (ADS)

    Tirion, Monique M.

    2015-12-01

    Protein data bank entries obtain distinct, reproducible flexibility characteristics determined by normal mode analyses of their three dimensional coordinate files. We study the effectiveness and sensitivity of this technique by analyzing the results on one class of glycosidases: family 10 xylanases. A conserved tryptophan that appears to affect access to the active site can be in one of two conformations according to x-ray crystallographic electron density data. The two alternate orientations of this active site tryptophan lead to distinct flexibility spectra, with one orientation thwarting the oscillations seen in the other. The particular orientation of this sidechain furthermore affects the appearance of the motility of a distant, C terminal region we term the mallet. The mallet region is known to separate members of this family of enzymes into two classes.

  5. On the sensitivity of protein data bank normal mode analysis: an application to GH10 xylanases.

    PubMed

    Tirion, Monique M

    2015-01-01

    Protein data bank entries obtain distinct, reproducible flexibility characteristics determined by normal mode analyses of their three dimensional coordinate files. We study the effectiveness and sensitivity of this technique by analyzing the results on one class of glycosidases: family 10 xylanases. A conserved tryptophan that appears to affect access to the active site can be in one of two conformations according to x-ray crystallographic electron density data. The two alternate orientations of this active site tryptophan lead to distinct flexibility spectra, with one orientation thwarting the oscillations seen in the other. The particular orientation of this sidechain furthermore affects the appearance of the motility of a distant, C terminal region we term the mallet. The mallet region is known to separate members of this family of enzymes into two classes. PMID:26599799

  6. Coherent reverberation model based on adiabatic normal mode theory in a range dependent shallow water environment

    NASA Astrophysics Data System (ADS)

    Li, Zhenglin; Zhang, Renhe; Li, Fenghua

    2010-09-01

    Ocean reverberation in shallow water is often the predominant background interference in active sonar applications. It is still an open problem in underwater acoustics. In recent years, an oscillation phenomenon of the reverberation intensity, due to the interference of the normal modes, has been observed in many experiments. A coherent reverberation theory has been developed and used to explain this oscillation phenomenon [F. Li et al., Journal of Sound and Vibration, 252(3), 457-468, 2002]. However, the published coherent reverberation theory is for the range independent environment. Following the derivations by F. Li and Ellis [D. D. Ellis, J. Acoust. Soc. Am., 97(5), 2804-2814, 1995], a general reverberation model based on the adiabatic normal mode theory in a range dependent shallow water environment is presented. From this theory the coherent or incoherent reverberation field caused by sediment inhomogeneity and surface roughness can be predicted. Observations of reverberation from the 2001 Asian Sea International Acoustic Experiment (ASIAEX) in the East China Sea are used to test the model. Model/data comparison shows that the coherent reverberation model can predict the experimental oscillation phenomenon of reverberation intensity and the vertical correlation of reverberation very well.

  7. Computational aspects of the nonlinear normal mode initialization of the GLAS 4th order GCM

    NASA Technical Reports Server (NTRS)

    Navon, I. M.; Bloom, S. C.; Takacs, L.

    1984-01-01

    Using the normal modes of the GLAS 4th Order Model, a Machenhauer nonlinear normal mode initialization (NLNMI) was carried out for the external vertical mode using the GLAS 4th Order shallow water equations model for an equivalent depth corresponding to that associated with the external vertical mode. A simple procedure was devised which was directed at identifying computational modes by following the rate of increase of BAL sub M, the partial (with respect to the zonal wavenumber m) sum of squares of the time change of the normal mode coefficients (for fixed vertical mode index) varying over the latitude index L of symmetric or antisymmetric gravity waves. A working algorithm is presented which speeds up the convergence of the iterative Machenhauer NLNMI. A 24 h integration using the NLNMI state was carried out using both Matsuno and leap-frog time-integration schemes; these runs were then compared to a 24 h integration starting from a non-initialized state. The maximal impact of the nonlinear normal mode initialization was found to occur 6-10 hours after the initial time.

  8. Normal modes in an overmoded circular waveguide coated with lossy material

    NASA Technical Reports Server (NTRS)

    Lee, C. S.; Lee, S. W.; Chuang, S. L.

    1985-01-01

    The normal modes in an overmoded waveguide coated with a lossy material are analyzed, particularly for their attenuation properties as a function of coating material, layer thickness, and frequency. When the coating material is not too lossy, the low-order modes are highly attenuated even with a thin layer of coating. This coated guide serves as a mode suppressor of the low-order modes, which can be particularly useful for reducing the radar cross section (RCS) of a cavity structure such as a jet inlet. When the coating material is very lossy, low-order modes fall into two distinct groups: highly and lowly attenuated modes. However, as a/lambda (a = radius of the cylinder; lambda = the free-space wavelength) increases, the separation between these two groups becomes less distinctive. The attenuation constants of most of the low-order modes become small, and decrease as a function of lambda sup 2/a sup 3.

  9. Normal forms for linear mode conversion and Landau-Zener transitions in one dimension

    SciTech Connect

    Flynn, W.G.; Littlejohn, R.G.

    1994-09-01

    Standard eikonal methods for the asymptotic analysis of coupled linear wave equations may fail when two eigenvalues of a matrix (the dispersion matrix) associated with the wave operator are both small in the same region of wave phase space. In this region the two eikonal modes associated with the two small eigenvalues are coupled, leading to a process called linear mode conversion or Landau-Zener coupling. A theory of linear mode conversion is presented in which geometric structure is emphasized. This theory is then used to identify the most generic type of mode conversion which occurs in one dimension. Finally, a general solution for this generic mode conversion problem is derived by transforming an arbitrary equation exhibiting generic mode conversion into an easily solvable normal form. This solution is given as a connection rule, with which one may continue standard eikonal wave solutions through mode conversion regions. 51 refs., 13 figs.

  10. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators

    NASA Astrophysics Data System (ADS)

    Xue, Xiaoxiao; Xuan, Yi; Liu, Yang; Wang, Pei-Hsun; Chen, Steven; Wang, Jian; Leaird, Dan E.; Qi, Minghao; Weiner, Andrew M.

    2015-09-01

    The generation of Kerr frequency combs in a coherently driven nonlinear microresonator is now extensively investigated more generally by the research community as a potentially portable technology for a variety of applications. Here, we report experiments in which dark pulse combs are formed in normal-dispersion microresonators with mode-interaction-assisted excitation, and mode-locking transitions are observed in the normal-dispersion regime. The mode-interaction-aided excitation of dark pulses appears to occur through a deterministic pathway, in sharp contrast to the situation for bright pulses in the anomalous dispersion region. The ability to mode-lock in the normal-dispersion regime increases the freedom in the microresonator design and may make it possible to extend Kerr comb generation into the visible, where material dispersion is likely to dominate.

  11. Normal modes of the world's oceans: A numerical investigation using Proudman functions

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Morrow, Dennis

    1993-01-01

    The numerical modeling of the normal modes of the global oceans is addressed. The results of such modeling could be expected to serve as a guide in the analysis of observations and measurements intended to detect these modes. The numerical computation of normal modes of the global oceans is a field in which several investigations have obtained results during the past 15 years. The results seem to be model-dependent to an unsatisfactory extent. Some modeling areas, such as higher resolution of the bathymetry, inclusion of self-attraction and loading, the role of the Arctic Ocean, and systematic testing by means of diagnostic models are addressed. The results show that the present state of the art is such that a final solution to the normal mode problem still lies in the future. The numerical experiments show where some of the difficulties are and give some insight as to how to proceed in the future.

  12. Vertical normal modes of human ears: Individual variation and frequency estimation from pinna anthropometry.

    PubMed

    Mokhtari, Parham; Takemoto, Hironori; Nishimura, Ryouichi; Kato, Hiroaki

    2016-08-01

    Beyond the first peak of head-related transfer functions or pinna-related transfer functions (PRTFs) human pinnae are known to have two normal modes with "vertical" resonance patterns, involving two or three pressure anti-nodes in cavum, cymba, and fossa. However, little is known about individual variations in these modes, and there is no established model for estimating their center-frequencies from anthropometry. Here, with geometries of 38 pinnae measured, PRTFs were calculated and vertical modes visualized by numerical simulation. Most pinnae were found to have both Cavum-Fossa and Cavum-Cymba modes, with opposite-phase anti-nodes in cavum and either fossa or cymba, respectively. Nevertheless in both modes, fossa involvement varied substantially across pinnae, dependent on scaphoid fossa depth and cymba shallowness. Linear regression models were evaluated in mode frequency estimation, with 3322 measures derived from 31 pinna landmarks. The Cavum-Fossa normal mode frequency was best estimated [correlation coefficient r = 0.89, mean absolute error (MAE) = 257 Hz or 4.4%] by the distance from canal entrance to helix rim, and cymba horizontal depth. The Cavum-Cymba normal mode frequency was best estimated (r = 0.92, MAE = 247 Hz or 3.2%) by the sagittal-plane distance from concha floor to cymba anterior wall, and cavum horizontal depth. PMID:27586714

  13. Rossby normal modes in nonuniform background configurations. I Simple fields. II - Equinox and solstice conditions

    NASA Technical Reports Server (NTRS)

    Salby, M. L.

    1981-01-01

    An investigation is conducted regarding the influence of mean field variations on the realization of planetary normal modes, taking into account the mode response and structure in the presence of simple background nonuniformities. It is found that mean field variations have the combined effect of depressing, shifting, and broadening the characteristic response of Rossby normal modes. While nonuniformities in both the mean wind and temperature fields contribute to the reduction in peak response, the former are primarily responsible for translation and spectral broadening. An investigation is conducted to determine which modes may be realized in actual atmospheric configurations and which may be identified. For both the equinox and solstice configurations, response peaks corresponding to all of the first four modes of wavenumbers 1, 2, and 3 are readily visible above the noise.

  14. Instantaneous normal mode analysis of the vibrational relaxation of the amide I mode of alanine dipeptide in water

    NASA Astrophysics Data System (ADS)

    Farag, Marwa H.; Zúñiga, José; Requena, Alberto; Bastida, Adolfo

    2013-05-01

    Nonequilibrium Molecular Dynamics (MD) simulations coupled to instantaneous normal modes (INMs) analysis are used to study the vibrational relaxation of the acetyl and amino-end amide I modes of the alanine dipeptide (AlaD) molecule dissolved in water (D2O). The INMs are assigned in terms of the equilibrium normal modes using the Effective Atomic Min-Cost algorithm as adapted to make use of the outputs of standard MD packages, a method which is well suited for the description of flexible molecules. The relaxation energy curves of both amide I modes show multiexponential decays, in good agreement with the experimental findings. It is found that ˜85%-90% of the energy relaxes through intramolecular vibrational redistribution. The main relaxation pathways are also identified. The rate at which energy is transferred into the solvent is similar for the acetyl-end and amino-end amide I modes. The conformational changes occurring during relaxation are investigated, showing that the populations of the alpha and beta region conformers are altered by energy transfer in such a way that it takes 15 ps for the equilibrium conformational populations to be recovered after the initial excitation of the AlaD molecule.

  15. Characterizing structure connectivity correlation with the default mode network in Alzheimer's patients and normal controls

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Xu, Peng; Song, Chao; Yao, Li; Zhao, Xiaojie

    2012-03-01

    Magnetic resonance diffusion tensor imaging (DTI) is a kind of effective measure to do non-invasive investigation on brain fiber structure at present. Studies of fiber tracking based on DTI showed that there was structural connection of white matter fiber among the nodes of resting-state functional network, denoting that the connection of white matter was the basis of gray matter regions in functional network. Nevertheless, relationship between these structure connectivity regions and functional network has not been clearly indicated. Moreover, research of fMRI found that activation of default mode network (DMN) in Alzheimer's disease (AD) was significantly descended, especially in hippocampus and posterior cingulated cortex (PCC). The relationship between this change of DMN activity and structural connection among functional networks needs further research. In this study, fast marching tractography (FMT) algorithm was adopted to quantitative calculate fiber connectivity value between regions, and hippocampus and PCC which were two important regions in DMN related with AD were selected to compute white matter connection region between them in elderly normal control (NC) and AD patient. The fiber connectivity value was extracted to do the correlation analysis with activity intensity of DMN. Results showed that, between PCC and hippocampus of NC, there exited region with significant high connectivity value of white matter fiber whose performance has relatively strong correlation with the activity of DMN, while there was no significant white matter connection region between them for AD patient which might be related with reduced network activation in these two regions of AD.

  16. Dynamic and elastic properties of F-actin: a normal-modes analysis.

    PubMed Central

    ben-Avraham, D; Tirion, M M

    1995-01-01

    We examine the dynamic, elastic, and mechanical consequences of the proposed atomic models of F-actin, using a normal mode analysis. This initial analysis is done in vacuo and assumes that all monomers are rigid and equivalent. Our computation proceeds from the atomic level and, relying on a single fitting parameter, reproduces various experimental results, including persistence lengths, elastic moduli, and contact energies. The computations reveal modes of motion characteristic to all polymers, such as longitudinal pressure waves, torsional waves, and bending, as well as motions unique to F-actin. Motions typical to actin include a "groove-swinging" motion of the two long-pitch helices, as well as an axial slipping motion of the two strands. We prepare snapshots of thermally activated filaments and quantify the accumulation of azimuthal angular "disorder," variations in cross-over lengths, and various other fluctuations. We find that the orientation of a small number of select residues has a surprisingly large effect on the filament flexibility and elasticity characteristics. PMID:7787015

  17. Isotope effect in normal-to-local transition of acetylene bending modes

    DOE PAGESBeta

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; Tyng, Vivian; Kellman, Michael E.

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helpsmore » to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.« less

  18. Isotope effect in normal-to-local transition of acetylene bending modes

    SciTech Connect

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; Tyng, Vivian; Kellman, Michael E.

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helps to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.

  19. Normal incidence narrowband transmission filtering capabilities using symmetry-protected modes of a subwavelength, dielectric grating.

    PubMed

    Foley, Justin M; Phillips, Jamie D

    2015-06-01

    We computationally study a normal incidence narrowband transmission filter based on a subwavelength dielectric grating that operates through Fano interference between supported guided leaky modes of the system. We characterize the filtering capabilities as the cross section of the grating is manipulated and suggest techniques for experimental demonstration. Using group theory, we study the plane wave coupling to the supported modes that leads to broadband reflectance and narrowband transmittance responses for rectangular, pentagonal, rhomboidal, and right trapezoidal cross-sectional geometries. PMID:26030577

  20. Evaluation of Geometrically Nonlinear Reduced Order Models with Nonlinear Normal Modes

    DOE PAGESBeta

    Kuether, Robert J.; Deaner, Brandon J.; Hollkamp, Joseph J.; Allen, Matthew S.

    2015-09-15

    Several reduced-order modeling strategies have been developed to create low-order models of geometrically nonlinear structures from detailed finite element models, allowing one to compute the dynamic response of the structure at a dramatically reduced cost. But, the parameters of these reduced-order models are estimated by applying a series of static loads to the finite element model, and the quality of the reduced-order model can be highly sensitive to the amplitudes of the static load cases used and to the type/number of modes used in the basis. Our paper proposes to combine reduced-order modeling and numerical continuation to estimate the nonlinearmore » normal modes of geometrically nonlinear finite element models. Not only does this make it possible to compute the nonlinear normal modes far more quickly than existing approaches, but the nonlinear normal modes are also shown to be an excellent metric by which the quality of the reduced-order model can be assessed. Hence, the second contribution of this work is to demonstrate how nonlinear normal modes can be used as a metric by which nonlinear reduced-order models can be compared. Moreover, various reduced-order models with hardening nonlinearities are compared for two different structures to demonstrate these concepts: a clamped–clamped beam model, and a more complicated finite element model of an exhaust panel cover.« less

  1. Evaluation of Geometrically Nonlinear Reduced Order Models with Nonlinear Normal Modes

    SciTech Connect

    Kuether, Robert J.; Deaner, Brandon J.; Hollkamp, Joseph J.; Allen, Matthew S.

    2015-09-15

    Several reduced-order modeling strategies have been developed to create low-order models of geometrically nonlinear structures from detailed finite element models, allowing one to compute the dynamic response of the structure at a dramatically reduced cost. But, the parameters of these reduced-order models are estimated by applying a series of static loads to the finite element model, and the quality of the reduced-order model can be highly sensitive to the amplitudes of the static load cases used and to the type/number of modes used in the basis. Our paper proposes to combine reduced-order modeling and numerical continuation to estimate the nonlinear normal modes of geometrically nonlinear finite element models. Not only does this make it possible to compute the nonlinear normal modes far more quickly than existing approaches, but the nonlinear normal modes are also shown to be an excellent metric by which the quality of the reduced-order model can be assessed. Hence, the second contribution of this work is to demonstrate how nonlinear normal modes can be used as a metric by which nonlinear reduced-order models can be compared. Moreover, various reduced-order models with hardening nonlinearities are compared for two different structures to demonstrate these concepts: a clamped–clamped beam model, and a more complicated finite element model of an exhaust panel cover.

  2. The barotropic normal modes in certain shear flows and the traveling waves in the atmosphere

    NASA Technical Reports Server (NTRS)

    Chen, Ping

    1993-01-01

    It is shown analytically and numerically that in certain shear flows the linearized nondivergent barotropic vorticity equation has a limited number of neutral normal modes. The latitudinal structures of these shear flows can be expressed as polynomials of the sine of latitude. The first few such shear flows resemble the gross features of the zonal winds in the atmosphere of the earth at different times and altitudes. The spatial structures of the neutral normal modes in these shear flows are spherical harmonics, and, as a consequence, these modes are also the exact solutions of the fully nonlinear equation because the nonlinear interaction term vanishes identically. The spatial structures of the observed 5-, 4-, 2-, and 16-day free traveling waves in the atmosphere are often identified with the spherical harmonics with indices of (m, n) = ( 1, 2), (2, 3), (3, 3), and ( 1, 4), which are known previously as the neutral normal modes of the nondivergent barotropic vorticity equation in a motionless background state. Our results could explain why these free traveling waves can survive the shearing effects of zonal flows that are far different from rest because these spherical harmonics are also normal modes in certain shear flows that resemble the observations of the atmosphere.

  3. Majorana modes and transport across junctions of superconductors and normal metals

    NASA Astrophysics Data System (ADS)

    Sen, Diptiman; Thakurathi, Manisha; Deb, Oindrila

    2015-03-01

    We study Majorana modes and transport in one-dimensional systems with junctions of p-wave superconductors (SCs) and normal metal (NM) leads. For a system with a SC lying between two NM leads, it is known that there is a Majorana mode at the junction between the SC and each NM. If an impurity is present or the p-wave pairing amplitude changes sign at some point in the superconductor, two additional Majorana modes appear near that point. We study the effects of all these modes on the normal and Cooper pair conductances. The main effect is to shift the conductance peaks away from zero bias due to hybridization between the Majoranas; the shift oscillates and also decays exponentially as the length of the SC is increased. Using bosonization and the renormalization group (RG) method, we study the effect of interactions between the electrons on the Majorana modes and the conductances. We then consider a system with a junction of three SC regions connected to NM leads. The junction is parameterized by a scattering matrix. Depending on the relative signs of the pairing amplitudes in the three SCs, there may be one or three Majorana modes at the junction. We study the effect of interactions on these modes using an RG analysis which is valid for weak interactions. We thank DST, India and CSIR, India for financial support.

  4. Actively mode-locked semiconductor lasers

    SciTech Connect

    Bowers, J.E.; Morton, P.A.; Mar, A.; Corzine, S.W.

    1989-06-01

    Measurements of actively mode-locked semiconductor lasers are described and compared to calculations of the mode-locking process using three coupled traveling wave rate equations for the electron and photon densities. The dependence of pulse width on the modulation current and frequency are described. A limitation to minimum achievable pulse widths in mode-locked semiconductor lasers is shown to be dynamic detuning due to gain saturation. Techniques to achieve subpicosecond pulses are described, together with ways to reduce multiple pulse outputs. The amplitude and phase noise of linear and ring cavity semiconductor lasers were measured and found to be tens of dB smaller than YAG and argon lasers and limited by the noise from the microwave oscillator. High-frequency phase noise is only measurable in detuned cavities, and is below -110 dBc (1 Hz) in optimally tuned cavities. The prospects for novel ways to achieve even shorter pulses are discussed.

  5. IMAGING AND CHARACTERIZING THE WASTE MATERIALS INSIDE AN UNDERGROUND STORAGE TANK USING SEISMIC NORMAL MODES

    EPA Science Inventory

    The objective of this study is to develop and test a seismic method to image and characterize waste materials contained in tanks using complete seismic response including the normal modes, or "free oscillations." The method will be developed with the ultimate application to image...

  6. Time-frequency characterization of nonlinear normal modes and challenges in nonlinearity identification of dynamical systems

    NASA Astrophysics Data System (ADS)

    Pai, P. Frank

    2011-10-01

    Presented here is a new time-frequency signal processing methodology based on Hilbert-Huang transform (HHT) and a new conjugate-pair decomposition (CPD) method for characterization of nonlinear normal modes and parametric identification of nonlinear multiple-degree-of-freedom dynamical systems. Different from short-time Fourier transform and wavelet transform, HHT uses the apparent time scales revealed by the signal's local maxima and minima to sequentially sift components of different time scales. Because HHT does not use pre-determined basis functions and function orthogonality for component extraction, it provides more accurate time-varying amplitudes and frequencies of extracted components for accurate estimation of system characteristics and nonlinearities. CPD uses adaptive local harmonics and function orthogonality to extract and track time-localized nonlinearity-distorted harmonics without the end effect that destroys the accuracy of HHT at the two data ends. For parametric identification, the method only needs to process one steady-state response (a free undamped modal vibration or a steady-state response to a harmonic excitation) and uses amplitude-dependent dynamic characteristics derived from perturbation analysis to determine the type and order of nonlinearity and system parameters. A nonlinear two-degree-of-freedom system is used to illustrate the concepts and characterization of nonlinear normal modes, vibration localization, and nonlinear modal coupling. Numerical simulations show that the proposed method can provide accurate time-frequency characterization of nonlinear normal modes and parametric identification of nonlinear dynamical systems. Moreover, results show that nonlinear modal coupling makes it impossible to decompose a general nonlinear response of a highly nonlinear system into nonlinear normal modes even if nonlinear normal modes exist in the system.

  7. The effect of truncating the normal mode coupling equations on synthetic spectra

    NASA Astrophysics Data System (ADS)

    Akbarashrafi, F.; Valentine, A. P.; Al-Attar, D.; Trampert, J.

    2015-12-01

    The free oscillations, or normal modes, of the Earth provide important constraints on the long-wavelength structure of our planet. Calculations using normal modes are also necessary if the effects of gravity are to be fully modeled in seismic waveforms, which becomes important at low frequencies. To implement these calculations, we typically initially compute the normal modes (eigenfunctions) of a spherically-symmetric model such as PREM. These form a complete set of basis functions, which may then be used to describe the seismic response of laterally heterogeneous models. This procedure is known as 'mode coupling'. In order to implement the calculation, it is necessary to select a finite subset of modes (invariably defined by a frequency range) to be considered. This truncation of the infinite-dimensional equations necessarily introduces an error into the results. Here, we consider the fundamental question: if we wish to calculate synthetic spectra in a given frequency range, how many modes must we couple for the resulting spectra to be sufficiently accurate? To investigate this question, we compute spectra in the 3D model S20RTS up to 2mHz, but allowing coupling with all modes up to 5mHz. We then explore how the spectra change as we reduce the upper frequency used in the coupling. We compare this to the effects introduced by altering the 3D density structure of the model. Clearly, if we wish to image Earth's density structure accurately, it is important that the truncation error is small compared to this signal.

  8. Mode-Locked Ultrashort Pulse Generation from On-Chip Normal Dispersion Microresonators

    NASA Astrophysics Data System (ADS)

    Huang, S.-W.; Zhou, H.; Yang, J.; McMillan, J. F.; Matsko, A.; Yu, M.; Kwong, D.-L.; Maleki, L.; Wong, C. W.

    2015-02-01

    We describe generation of stable mode-locked pulse trains from on-chip normal dispersion microresonators. The excitation of hyperparametric oscillation is facilitated by the local dispersion disruptions induced by mode interactions. The system is then driven from hyperparametric oscillation to the mode-locked state with over 200 nm spectral width by controlled pump power and detuning. With the continuous-wave-driven nonlinearity, the pulses sit on a pedestal, akin to a cavity soliton. We identify the importance of pump detuning and wavelength-dependent quality factors in stabilizing and shaping the pulse structure, to achieve a single pulse inside the cavity. We examine the mode-locking dynamics by numerically solving the master equation and provide analytic solutions under appropriate approximations.

  9. Ocean surface maps from blending disparate data through normal mode analysis

    NASA Astrophysics Data System (ADS)

    Schulz, William John, Jr.

    Rapid environmental assessment is conducted using disparate data sources in the northwestern Gulf of Mexico. An overview of significant physical features in the Gulf highlights the complexities of the large and meso-scale circulations. Spectral analysis of high resolution current meter and drifter data reveals the significant forcing features detectable by readily available observing techniques. These observations are combined with boundary data extracted from the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) through Normal Mode Analysis (NMA). The NMA blending process is described, and surface maps of velocity and convergence are produced. Using statistical and qualitative techniques, the NMA generated "nowcasts" are analyzed to determine the significant modes applicable to varying oceanographic situations. Fundamental guidance for choosing the number and type of modes in an REA scenario are noted. The NMA method proves to be a useful tool in constructing analytic surface maps when the component modes are wisely chosen.

  10. Normal and anomalous plasmonic lattice modes of gold nanodisk arrays in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.; Wing, W. J.; Campbell, Q.

    2016-03-01

    We study plasmonic lattice modes in two dimensional arrays of large metallic nanodisks in strongly inhomogeneous environments with controlled dielectric asymmetries. This is done within the two limits of positive (air/substrate) and negative (Si/substrate) asymmetries. In the former, the nanodisks are exposed to air, while in the latter, they are fully embedded in a dielectric material with a refractive index much higher than that of the glass substrate (Si). Our results show that in the air/substrate limit, the arrays can mainly support two distinct visible and infrared peaks associated with the optical coupling of multipolar plasmonic resonances of nanodisks in air and substrate (normal modes). As the nanodisks are gradually embedded in Si, i.e., going from the positive to negative asymmetry limit, the visible peak undergoes more than 200 nm red shift without significant mode degradation. Our results show that as this transition happens, a third peak (anomalous mode) becomes dominant. The amplitude and wavelength of this peak increase quadratically with the thickness of the Si layer, indicating formation of a unique collective mode. We study the impact of this mode on the emission semiconductor quantum dots, demonstrating they become much brighter as the result of the long-reach plasmonic fields of the nanodisks when the arrays are in this mode.

  11. Numerical Modeling of Normal-Mode Oscillations in Planetary Atmospheres: Application to Saturn and Titan

    NASA Astrophysics Data System (ADS)

    Friedson, Andrew James; Ding, Leon

    2015-11-01

    We have developed a numerical model to calculate the frequencies and eigenfunctions of adiabatic, non-radial normal-mode oscillations in the gas giants and Titan. The model solves the linearized momentum, energy, and continuity equations for the perturbation displacement, pressure, and density fields and solves Poisson’s equation for the perturbation gravitational potential. The response to effects associated with planetary rotation, including the Coriolis force, centrifugal force, and deformation of the equilibrium structure, is calculated numerically. This provides the capability to accurately compute the influence of rotation on the modes, even in the limit where mode frequency approaches the rotation rate, when analytical estimates based on functional perturbation analysis become inaccurate. This aspect of the model makes it ideal for studying the potential role of low-frequency modes for driving spiral density waves in the C ring that possess relatively low pattern speeds (Hedman, M.M and P.D. Nicholson, MNRAS 444, 1369-1388). In addition, the model can be used to explore the effect of internal differential rotation on the eigenfrequencies. We will (1) present examples of applying the model to calculate the properties of normal modes in Saturn and their relationship to observed spiral density waves in the C ring, and (2) discuss how the model is used to examine the response of the superrotating atmosphere of Titan to the gravitational tide exerted by Saturn. This research was supported by a grant from the NASA Planetary Atmosphere Program.

  12. Free and forced Rossby normal modes in a rectangular gulf of arbitrary orientation

    NASA Astrophysics Data System (ADS)

    Graef, Federico

    2016-09-01

    A free Rossby normal mode in a rectangular gulf of arbitrary orientation is constructed by considering the reflection of a Rossby mode in a channel at the head of the gulf. Therefore, it is the superposition of four Rossby waves in an otherwise unbounded ocean with the same frequency and wavenumbers perpendicular to the gulf axis whose difference is equal to 2mπ/W, where m is a positive integer and W the gulf's width. The lower (or higher) modes with small m (or large m) are oscillatory (evanescent) in the coordinate along the gulf; these are elucidated geometrically. However for oceanographically realistic parameter values, most of the modes are evanescent. When the gulf is forced at the mouth with a single Fourier component, the response is in general an infinite sum of modes that are needed to match the value of the streamfunction at the gulf's entrance. The dominant mode of the response is the resonant one, which corresponds to forcing with a frequency ω and wavenumber normal to the gulf axis η appropriate to a gulf mode: η =- β sin α/(2ω) ± Mπ/W, where α is the angle between the gulf's axis and the eastern direction (+ve clockwise) and M the resonant's mode number. For zonal gulfs ω drops out of the resonance condition. For the special cases η = 0 in which the free surface goes up and down at the mouth with no flow through it, or a flow with a sinusoidal profile, resonant modes can get excited for very specific frequencies (only for non-zonal gulfs in the η = 0 case). The resonant mode is around the annual frequency for a wide range of gulf orientations α ∈ [40°, 130°] or α ∈ [220°, 310°] and gulf widths between 150 and 200 km; these include the Gulf of California and the Adriatic Sea. If η is imaginary, i.e. a flow with an exponential profile, there is no resonance. In general less modes get excited if the gulf is zonally oriented.

  13. Actively mode-locked Raman fiber laser.

    PubMed

    Yang, Xuezong; Zhang, Lei; Jiang, Huawei; Fan, Tingwei; Feng, Yan

    2015-07-27

    Active mode-locking of Raman fiber laser is experimentally investigated for the first time. An all fiber connected and polarization maintaining loop cavity of ~500 m long is pumped by a linearly polarized 1120 nm Yb fiber laser and modulated by an acousto-optic modulator. Stable 2 ns width pulse train at 1178 nm is obtained with modulator opening time of > 50 ns. At higher power, pulses become longer, and second order Raman Stokes could take place, which however can be suppressed by adjusting the open time and modulation frequency. Transient pulse evolution measurement confirms the absence of relaxation oscillation in Raman fiber laser. Tuning of repetition rate from 392 kHz to 31.37 MHz is obtained with harmonic mode locking. PMID:26367642

  14. New insight into the structure of dispersed titania by combining normal-mode analysis with experiment

    NASA Astrophysics Data System (ADS)

    Nitsche, David; Hess, Christian

    2014-11-01

    Normal-mode analysis has been combined with experiment to gain new insight into the vibrational structure of dispersed titania. For the calculations, double- and tri-grafted hydroxylated titania species have been adapted to a model silica support based on polyhedral oligomeric silsesquioxane (POSS). The choice of hydroxylated models was validated by IR detection of the Osbnd H stretching band of dispersed titania (0.7 Ti/nm2). UV resonance Raman experiments have identified three titania-related vibrational features within the spectral region 900-1100 cm-1 due to Tisbnd Osbnd Si interphase, Tisbnd Osbnd Si in-phase and out-of-phase stretching vibrations. This behaviour is fully consistent with the results obtained by the normal-mode analysis.

  15. High-frequency Born synthetic seismograms based on coupled normal modes

    USGS Publications Warehouse

    Pollitz, Fred F.

    2011-01-01

    High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ∼4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD).

  16. Charge transfer mobility of naphthodithiophenediimide derivative: Normal-mode and bond length relaxation analysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Liu, Yujuan; Zheng, Yujun

    2016-02-01

    In this letter, the charge transfer mobility of naphthalenediimide (NDTI) derivative is investigated. By employing the normal-mode analysis and bond length relaxation analysis, the influences of chemical elements on reorganization energies and intermolecular electronic couplings are investigated in NDTI derivative. The results show that the introduction of atom O would decrease reorganization energy in hole-hopping process and increase electronic coupling. This analysis encourages the molecular and material design in organic semiconductors.

  17. A brief study of quasi-normal modes in relativistic stars using algebraic computation

    SciTech Connect

    Campos, M. de

    2010-11-12

    The damped oscillations in relativistic stars generate gravitational waves that in the literature appear under the general denomination of quasi-normal modes. In this brief note we want offer some information about the use of algebraic computation to obtain the field equations and the perturbed version of them, in the context of general relativity theory, that is the framework to study gravitational waves in this work.

  18. Normal modes and time evolution of a holographic superconductor after a quantum quench

    NASA Astrophysics Data System (ADS)

    Gao, Xin; García-García, Antonio M.; Zeng, Hua Bi; Zhang, Hai-Qing

    2014-06-01

    We employ holographic techniques to investigate the dynamics of the order parameter of a strongly coupled superconductor after a perturbation that drives the system out of equilibrium. The gravity dual that we employ is the AdS5 Soliton background at zero temperature. We first analyze the normal modes associated to the superconducting order parameter which are purely real since the background has no horizon. We then study the full time evolution of the order parameter after a quench. For sufficiently a weak and slow perturbation we show that the order parameter undergoes simple undamped oscillations in time with a frequency that agrees with the lowest normal model computed previously. This is expected as the soliton background has no horizon and therefore, at least in the probe and large N limits considered, the system will never return to equilibrium. For stronger and more abrupt perturbations higher normal modes are excited and the pattern of oscillations becomes increasingly intricate. We identify a range of parameters for which the time evolution of the order parameter become quasi chaotic. The details of the chaotic evolution depend on the type of perturbation used. Therefore it is plausible to expect that it is possible to engineer a perturbation that leads to the almost complete destruction of the oscillating pattern and consequently to quasi equilibration induced by superposition of modes with different frequencies.

  19. Finite-time normal mode disturbances and error growth during Southern Hemisphere blocking

    NASA Astrophysics Data System (ADS)

    Wei, Mozheng; Frederiksen, Jorgen S.

    2005-01-01

    The structural organization of initially random errors evolving in a barotropic tangent linear model, with time-dependent basic states taken from analyses, is examined for cases of block development, maturation and decay in the Southern Hemisphere atmosphere during April, November, and December 1989. The statistics of 100 evolved errors are studied for six-day periods and compared with the growth and structures of fast growing normal modes and finite-time normal modes (FTNMs). The amplification factors of most initially random errors are slightly less than those of the fastest growing FTNM for the same time interval. During their evolution, the standard deviations of the error fields become concentrated in the regions of rapid dynamical development, particularly associated with developing and decaying blocks. We have calculated probability distributions and the mean and standard deviations of pattern correlations between each of the 100 evolved error fields and the five fastest growing FTNMs for the same time interval. The mean of the largest pattern correlation, taken over the five fastest growing FTNMs, increases with increasing time interval to a value close to 0.6 or larger after six days. FTNM 1 generally, but not always, gives the largest mean pattern correlation with error fields. Corresponding pattern correlations with the fast growing normal modes of the instantaneous basic state flow are significant but lower than with FTNMs. Mean pattern correlations with fast growing FTNMs increase further when the time interval is increased beyond six days.

  20. Skin pigmentation and texture changes after hair removal with the normal-mode ruby laser.

    PubMed

    Haedersdal, M; Egekvist, H; Efsen, J; Bjerring, P

    1999-11-01

    Promising clinical results have been obtained with the normal mode ruby laser for removal of unwanted hair. Melanin within the hair follicles is thought to act as target for the ruby laser pulses, whereas epidermal melanin is thought to be a competitive chromophore, responsible for potential side effects. This study aimed (i) to objectify postoperative changes in skin pigmentation and texture and (ii) to evaluate the importance of variations in preoperative skin pigmentation for the development of side effects 12 weeks after 1 treatment with the normal-mode ruby laser. A total of 17 volunteers (skin types I-IV) were laser-treated in the hairy pubic region (n = 51 test areas). A shaved test area served as control. Skin reflectance spectroscopical measurements, 3-dimensional surface contour analysis and ultrasonography objectified postoperative changes in skin pigmentation and texture. Blinded clinical assessments revealed postoperative hyperpigmentation (2% of test areas) and hypopigmentation (10%), whereas no textural changes were seen. Reflectance spectroscopically-determined pigmentary changes depended on the degree of preoperative skin pigmentation, fairly pigmented skin types experiencing subclinical hyperpigmentation and darkly pigmented skin types experiencing subclinical hypopigmentation. Three-dimensional surface profilometry documented similar pre- and postoperative surface contour parameters, indicating that the skin surface texture is preserved after laser exposure. Ultrasonography revealed similar skin thicknesses in laser-exposed and untreated control areas. It is concluded that normal-mode ruby laser treatment is safe for hair removal in skin types I-IV. PMID:10598763

  1. Simulation of Two-Dimensional Infrared Spectroscopy of Peptides Using Localized Normal Modes.

    PubMed

    Hanson-Heine, Magnus W D; Husseini, Fouad S; Hirst, Jonathan D; Besley, Nicholas A

    2016-04-12

    Nonlinear two-dimensional infrared spectroscopy (2DIR) is most commonly simulated within the framework of the exciton method. The key parameters for these calculations include the frequency of the oscillators within their molecular environments and coupling constants that describe the strength of coupling between the oscillators. It is shown that these quantities can be obtained directly from harmonic frequency calculations by exploiting a procedure that localizes the normal modes. This approach is demonstrated using the amide I modes of polypeptides. For linear and cyclic diamides and hexapeptide Z-Aib-L-Leu-(Aib)2-Gly-Aib-OtBu, the computed parameters are compared with those from existing schemes, and the resulting 2DIR spectra are consistent with experimental observations. The incorporation of conformational averaging of structures from molecular dynamics simulations is discussed, and a hybrid scheme wherein the Hamiltonian matrix from the quantum chemical local-mode approach is combined with fluctuations from empirical schemes is shown to be consistent with experiment. The work demonstrates that localized vibrational modes can provide a foundation for the calculation of 2DIR spectra that does not rely on extensive parametrization and can be applied to a wide range of systems. For systems that are too large for quantum chemical harmonic frequency calculations, the local-mode approach provides a convenient platform for the development of site frequency and coupling maps. PMID:26913672

  2. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    NASA Astrophysics Data System (ADS)

    Yao, Xingan; Liu, Chuanwen; Liang, Huang; Qin, Huafeng; Yu, Qibing; Li, Chuan

    2016-04-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates.

  3. Normal mode calculation for triple helical DNA, stability and hydration effects

    NASA Astrophysics Data System (ADS)

    Dadarlat, Voichita Maria

    The effective field model for the dynamics of the triple helix d(T)n - d(A)n - d(T)n DNA polymer in solution has been applied to determine the vibrational normal modes of the system for both A and B conformation. The effect of site-bound counterions as compared to the area-bound counterions has been considered specifically by explicitly introducing degrees of freedom for the three counterions associated with a unit cell and coupling these to the DNA degrees of freedom via appropriate interactions. Stability of the system for all vibrational modes (positive eigenvalues for the solution of the dynamics problem) was used as a criterion to find possible equilibrium positions of the site-bound counterions in specific conditions of weak covalent bonding between the counterions and the phosphate free oxygens and distance dependent dielectric constants. Normal mode calculation for the A conformation shows that this type of triple helix is not stable in aqueous solutions unless the counterions are site-bound in certain positions close to the phosphate groups. The equilibrium domains for the positions of the counterions in both conformations have been determined. Free energy calculations for the two triple helices show that the B conformation is more stable than the A conformation. Our calculated normal modes match reasonably well with the experimental IR spectra. The effect of adding structural waters to the triplex DNA in the B conformation have been studied. The results clearly show that there is an inverse proportional relationship between the degree of boundness of the water molecules to the atoms in the triple helix and the relative humidity (RH) of the samples.

  4. Accretion onto magnetized neutron stars - Normal mode analysis of the interchange instability at the magnetopause

    NASA Technical Reports Server (NTRS)

    Arons, J.; Lea, S. M.

    1976-01-01

    Results are reported for a linearized hydromagnetic stability analysis of the magnetopause of an accreting neutron star. The magnetosphere is assumed to be slowly rotating, and the plasma just outside the magnetopause is assumed to be weakly magnetized. The plasma layer is assumed to be bounded above by a shock wave and to be thin compared with the radius of the magnetosphere. Under these circumstances, the growing modes are shown to be localized in the direction parallel to the zero-order magnetic field, but the structure of the modes is still similar to the flute mode. An expression for the growth rate at each magnetic latitude is obtained in terms of the magnitude of the gravitational acceleration normal to the surface, the azimuthal mode number, the radius of the magnetosphere, the height of the shock above the magnetopause, and the effective Atwood number which embodies the stabilizing effects of favorable curvature and magnetic tension. The effective Atwood number is calculated, and the stabilizing effects of viscosity and aligned flow parallel to the magnetopause are discussed.

  5. Polymorphic Ab protofilaments exhibit distinct conformational dynamics as calculated by normal mode analysis

    NASA Astrophysics Data System (ADS)

    Armbruster, Matthew; Soto, Patricia

    2012-02-01

    This project proposes to test the hypothesis that the physicochemical milieu modulates the conformational dynamics of synthetic Alzheimer's Ab protofilament structures, the main component of Alzheimer's senile plaques. To this end, 3D solid-state NMR structures of Ab protofilaments were used as initial structures for molecular dynamics simulations in explicit water and a water/hexane environment. The initial structures of the simulations and representative structures from the simulation-generated trajectories were taken to perform computational normal mode analysis. We developed a code in python with a graphical user-friendly interface. The program incorporated the ProDy (0.7.1) package. With the application, we examined cross-correlation plots of Ca positions of the 2-fold Ab protofilaments along the most collective mode and the slowest mode. The protofilament structures were highly correlated in the water environment. We hypothesized the protofilament would move as one in water because of the viscosity. The square fluctuation of Ca positions was calculated for the slowest mode for the hexane model and the MD generated ensemble. The two plots match up until midway through the structure. At the midway point a phase shift emerged between the two structures most likely where the surrounding changes. The in-house developed code made it easy to perform analysis and will be used by other students in the research group.

  6. On Quasi-Normal Modes, Area Quantization and Bohr Correspondence Principle

    NASA Astrophysics Data System (ADS)

    Corda, Christian

    2015-10-01

    In (Int. Journ. Mod. Phys. D 14, 181 2005), the author Khriplovich verbatim claims that "the correspondence principle does not dictate any relation between the asymptotics of quasinormal modes and the spectrum of quantized black holes" and that "this belief is in conflict with simple physical arguments". In this paper we analyze Khriplovich's criticisms and realize that they work only for the original proposal by Hod, while they do not work for the improvements suggested by Maggiore and recently finalized by the author and collaborators through a connection between Hawking radiation and black hole (BH) quasi-normal modes (QNMs). This is a model of quantum BH somewhat similar to the historical semi-classical model of the structure of a hydrogen atom introduced by Bohr in 1913. Thus, QNMs can be really interpreted as BH quantum levels (the "electrons" of the "Bohr-like BH model").Our results have also important implications on the BH information puzzle.

  7. Cavity quantum optomechanics of ultracold atoms in an optical lattice: Normal-mode splitting

    SciTech Connect

    Bhattacherjee, Aranya B.

    2009-10-15

    We consider the dynamics of a movable mirror (cantilever) of a cavity coupled through radiation pressure to the light scattered from ultracold atoms in an optical lattice. Scattering from different atomic quantum states creates different quantum states of the scattered light, which can be distinguished by measurements of the displacement spectrum of the cantilever. We show that for large pump intensities the steady-state displacement of the cantilever shows bistable behavior. Due to atomic back action, the displacement spectrum of the cantilever is modified and depends on the position of the condensate in the Brillouin zone. We further analyze the occurrence of splitting of the normal mode into three modes due to mixing of the mechanical motion with the fluctuations of the cavity field and the fluctuations of the condensate with finite atomic two-body interaction.

  8. Parameter identification of structural systems possessing one or two nonlinear normal modes

    NASA Astrophysics Data System (ADS)

    Fahey, Sean O'flaherty

    2000-09-01

    In this Dissertation, we develop, and provide proof of principle for, parameter identification techniques for structural systems that can be described in terms of one or two nonlinear normal modes. We model the dynamics of these modes by second-order ordinary-differential equations based on the principles of mechanics, past experience, and engineering judgment. We perform a number of separate experiments on a two-mass structure using several different types of excitation. For the linear tests, the theoretical system response is known in closed-form. For the nonlinear test, we use the method of multiple scales to determine second-order uniform expansions of the model equations and hence determine the approximations to responses of the structure. Then, we estimate the linear and nonlinear parameters by regressive fits between the theoretically and experimentally obtained response relations. We report deviations and agreements between model and experiment.

  9. An instrument for direct observations of seismic and normal-mode rotational oscillations of the Earth

    PubMed Central

    Cowsik, R.

    2007-01-01

    The rotations around the vertical axis associated with the normal mode oscillations of the Earth and those induced by the seismic and other disturbances have been very difficult to observe directly. Such observations will provide additional information for 3D modeling of the Earth and for understanding earthquakes and other underground explosions. In this paper, we describe the design of an instrument capable of measuring the rotational motions associated with the seismic oscillations of the Earth, including the lowest frequency normal mode at ν ≈ 3.7 × 10−4 Hz. The instrument consists of a torsion balance with a natural frequency of ν0 ≈ 1.6 × 10−4 Hz, which is observed by an autocollimating optical lever of high angular resolution and dynamic range. Thermal noise limits the sensitivity of the apparatus to amplitudes of ≈ 1.5 × 10−9 rad at the lowest frequency normal mode and the sensitivity improves as ν−3/2 with increasing frequency. Further improvements in sensitivity by about two orders of magnitude may be achieved by operating the balance at cryogenic temperatures. Alternatively, the instrument can be made more robust with a reduced sensitivity by increasing ν0 to ≈10−2 Hz. This instrument thus complements the ongoing effort by Igel and others to study rotational motions using ring laser gyroscopes and constitutes a positive response to the clarion call for developments in rotation seismology by Igel, Lee, and Todorovska [H. Igel, W.H.K. Lee and M.I. Todorovska, AGU Fall Meeting 2006, Rotational Seismology Sessions: S22A,S23B, Inauguration of the International Working Group on Rotational Seismology (IWGoRS)]. PMID:17438268

  10. Twist-radial normal mode analysis in double-stranded DNA chains

    NASA Astrophysics Data System (ADS)

    Torrellas, Germán; Maciá, Enrique

    2012-10-01

    We study the normal modes of a duplex DNA chain at low temperatures. We consider the coupling between the hydrogen-bond radial oscillations and the twisting motion of each base pair within the Peyrard-Bishop-Dauxois model. The coupling is mediated by the stacking interaction between adjacent base pairs along the helix. We explicitly consider different mass values for different nucleotides, extending previous works. We disclose several resonance conditions of interest, determined by the fine-tuning of certain model parameters. The role of these dynamical effects on the DNA chain charge transport properties is discussed.

  11. Normal mode solutions for seismo-acoustic propagation resulting from shear and combined wave point sources.

    PubMed

    Nealy, Jennifer L; Collis, Jon M; Frank, Scott D

    2016-04-01

    Normal mode solutions to range-independent seismo-acoustic problems are benchmarked against elastic parabolic equation solutions and then used to benchmark the shear elastic parabolic equation self-starter [Frank, Odom, and Collis, J. Acoust. Soc. Am. 133, 1358-1367 (2013)]. The Pekeris waveguide with an elastic seafloor is considered for a point source located in the ocean emitting compressional waves, or in the seafloor, emitting both compressional and shear waves. Accurate solutions are obtained when the source is in the seafloor, and when the source is at the interface between the fluid and elastic layers. PMID:27106346

  12. Identification of nonlinear normal modes of engineering structures under broadband forcing

    NASA Astrophysics Data System (ADS)

    Noël, Jean-Philippe; Renson, L.; Grappasonni, C.; Kerschen, G.

    2016-06-01

    The objective of the present paper is to develop a two-step methodology integrating system identification and numerical continuation for the experimental extraction of nonlinear normal modes (NNMs) under broadband forcing. The first step processes acquired input and output data to derive an experimental state-space model of the structure. The second step converts this state-space model into a model in modal space from which NNMs are computed using shooting and pseudo-arclength continuation. The method is demonstrated using noisy synthetic data simulated on a cantilever beam with a hardening-softening nonlinearity at its free end.

  13. Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers.

    PubMed

    Zaytsev, Alexey; Lin, Chih-Hsuan; You, Yi-Jing; Chung, Chia-Chun; Wang, Chi-Luen; Pan, Ci-Ling

    2013-07-01

    We report generation of broadband supercontinuum (SC) by noise-like pulses (NLPs) with a central wavelength of 1070 nm propagating through a long piece of standard single-mode fibers (~100 meters) in normal dispersion region far from the zero-dispersion point. Theoretical simulations indicate that the physical mechanism of SC generation is due to nonlinear effects in fibers. The cascaded Raman scattering is responsible for significant spectral broadening in the longer wavelength regions whereas the Kerr effect results in smoothing of SC generated spectrum. The SC exhibits low threshold (43 nJ) and a flat spectrum over 1050-1250 nm. PMID:23842392

  14. Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion.

    PubMed

    Zhang, Lei; El-Damak, A R; Feng, Yan; Gu, Xijia

    2013-05-20

    An ytterbium-doped mode-locked fiber laser was demonstrated with a chirped fiber Bragg grating for dispersion management. The cavity net dispersion could be changed from large normal dispersion (2.4 ps(2)) to large anomalous dispersion (-2.0 ps(2)), depending on the direction of the chirped Bragg grating in laser cavity. The proposed fiber lasers with large normal dispersion generated stable pulses with a pulse width of <1.1 ns and a pulse energy of 1.5 nJ. The laser with large anomalous dispersion generated wavelength-tunable soliton with a pulse width of 2.7 ps and pulse energy of 0.13 nJ. A theoretical model was established and used to verify the experimental observations. PMID:23736423

  15. Numerical investigations with a hybrid isentropic-sigma model. I - Normal-mode characteristics. II - The inclusion of moist processes

    NASA Technical Reports Server (NTRS)

    Pierce, R. B.; Johnson, Donald R.; Reames, Fred M.; Zapotocny, Tom H.; Wolf, Bart J.

    1991-01-01

    The normal-mode characteristics of baroclinically amplifying disturbances were numerically investigated in a series of adiabatic simulations by a hybrid isentropic-sigma model, demonstrating the effect of coupling an isentropic-coordinate free atmospheric domain with a sigma-coordinate PBL on the normal-mode characteristics. Next, the normal-mode model was modified by including a transport equation for water vapor and adiabatic heating by condensation. Simulations with and without a hydrological component showed that the overall effect of latent heat release is to markedly enhance cyclogenesis and frontogenesis.

  16. A new general normal mode approach to dynamic tides in rotating stars with realistic structure and its applications

    NASA Astrophysics Data System (ADS)

    Ivanov, P. B.; Papaloizou, J. C. B.; Chernov, S. V.

    We review our recent results on a unified normal model approach to dynamic tides proposed recently in Ivanov, Papaloizou & Chernov (2013) and Chernov, Papaloizou & Ivanov (2013). Our formalism can be used whenever the tidal interactions are mainly determined by normal modes of a star with identifiable regular spectrum of low frequency modes. We provide in the text basic expressions for tidal energy and angular momentum transfer valid both for periodic and parabolic orbits, and different assumptions about effciency of normal mode damping due to viscosity and/or non- linear effects and discuss applications to binary stars and close orbiting extrasolar planets.

  17. Classification of ground states and normal modes for phase-frustrated multicomponent superconductors

    NASA Astrophysics Data System (ADS)

    Weston, Daniel; Babaev, Egor

    2013-12-01

    We classify ground states and normal modes for n-component superconductors with frustrated intercomponent Josephson couplings, focusing on n=4. The results should be relevant not only to multiband superconductors, but also to Josephson-coupled multilayers and Josephson-junction arrays. It was recently discussed that three-component superconductors can break time-reversal symmetry as a consequence of phase frustration. We discuss how to classify frustrated superconductors with an arbitrary number of components. Although already for the four-component case there are a large number of different combinations of phase-locking and phase-antilocking Josephson couplings, we establish that there are a much smaller number of equivalence classes where properties of frustrated multicomponent superconductors can be mapped to each other. This classification is related to the graph-theoretical concept of Seidel switching. Numerically, we calculate ground states, normal modes, and characteristic length scales for the four-component case. We report conditions of appearance of new accidental continuous ground-state degeneracies.

  18. DNA-triplex conformation from normal mode and hydrogen bond stability calculations.

    NASA Astrophysics Data System (ADS)

    Chen, Y. Z.; Prohofsky, E. W.; Powell, J. W.; White, A. P.

    1996-03-01

    Triple-stranded DNAs are of potential applications in genome mapping and in the treatment of genetic disorders with little side-effect. Despite significant interests, structural information of DNA triplexes is limited and sometimes conflicting. For instance, two structural models with different conformation have been proposed for a DNA-triplex Poly(dA)\\cdot2Poly(dT). We propose that the sensitivity of normal modes and hydrogen-bond stability on conformation can be used to determine the structure of biomolecules difficult to access by other methods. The structural model representative of the true conformation should have normal modes in agreement with observations, and have most stable hydrogen bonds which melt at observed temperatures. We carried out calculations on the two models of Poly(dA)\\cdot2Poly(dT) and found that one model is consistent with observations at high humidity and thus most likely a good approximation to the true conformation in that environment. Our method has potential application in structural prediction for other biomolecules.

  19. Application of Normal Mode Expansion to AE Waves in Finite Plates

    NASA Technical Reports Server (NTRS)

    Gorman, M. R.; Prosser, W. H.

    1997-01-01

    Breckenridge et al. (1975), Hsu (1985) and Pao (1978) adapted approaches from seismology to calculate the response at the surface of an infinite half-space and an infinite plate. These approaches have found use in calibrating acoustic emission (AE) transducers. However, it is difficult to extend this theoretical approach to AE testing of practical structures. Weaver and Pao (1982) considered a normal mode solution to the Lamb equations. Hutchinson (1983) pointed out the potential relevance of Mindlin's plate theory (1951) to AE. Pao (1982) reviewed Medick s (1961) classical plate theory for a point source, but rejected it as useful for AE and no one seems to have investigated its relevance to AE any further. Herein, a normal mode solution to the classical plate bending equation was investigated for its applicability to AE. The same source-time function chosen by Weaver and Pao is considered. However, arbitrary source and receiver positions are chosen relative to the boundaries of the plate. This is another advantage of the plate theory treatment in addition to its simplicity. The source does not have to be at the center of the plate as in the axisymmetric treatment. The plate is allowed to remain finite and reflections are predicted. The importance of this theory to AE is that it can handle finite plates, realistic boundary conditions, and can be extended to composite materials.

  20. An approach to detect afterslips in giant earthquakes in the normal-mode frequency band

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro; Ji, Chen; Igarashi, Mitsutsugu

    2012-08-01

    An approach to detect afterslips in the source process of giant earthquakes is presented in the normal-mode frequency band (0.3-2.0 mHz). The method is designed to avoid a potential systematic bias problem in the determination of earthquake moment by a typical normal-mode approach. The source of bias is the uncertainties in Q (modal attenuation parameter) which varies by up to about ±10 per cent among published studies. A choice of Q values within this range affects amplitudes in synthetic seismograms significantly if a long time-series of about 5-7 d is used for analysis. We present an alternative time-domain approach that can reduce this problem by focusing on a shorter time span with a length of about 1 d. Application of this technique to four recent giant earthquakes is presented: (1) the Tohoku, Japan, earthquake of 2011 March 11, (2) the 2010 Maule, Chile earthquake, (3) the 2004 Sumatra-Andaman earthquake and (4) the Solomon earthquake of 2007 April 1. The Global Centroid Moment Tensor (GCMT) solution for the Tohoku earthquake explains the normal-mode frequency band quite well. The analysis for the 2010 Chile earthquake indicates that the moment is about 7-10 per cent higher than the moment determined by its GCMT solution but further analysis shows that there is little evidence of afterslip; the deviation in moment can be explained by an increase of the dip angle from 18° in the GCMT solution to 19°. This may be a simple trade-off problem between the moment and dip angle but it may also be due to a deeper centroid in the normal-mode frequency band data, as a deeper source could have steeper dip angle due to changes in geometry of the Benioff zone. For the 2004 Sumatra-Andaman earthquake, the five point-source solution by Tsai et al. explains most of the signals but a sixth point-source with long duration improves the fit to the normal-mode frequency band data. The 2007 Solomon earthquake shows that the high-frequency part of our analysis (above 1 mHz) is

  1. Estimation of splitting functions from Earth's normal mode spectra using the neighbourhood algorithm

    NASA Astrophysics Data System (ADS)

    Pachhai, Surya; Tkalčić, Hrvoje; Masters, Guy

    2016-01-01

    The inverse problem for Earth structure from normal mode data is strongly non-linear and can be inherently non-unique. Traditionally, the inversion is linearized by taking partial derivatives of the complex spectra with respect to the model parameters (i.e. structure coefficients), and solved in an iterative fashion. This method requires that the earthquake source model is known. However, the release of energy in large earthquakes used for the analysis of Earth's normal modes is not simple. A point source approximation is often inadequate, and a more complete account of energy release at the source is required. In addition, many earthquakes are required for the solution to be insensitive to the initial constraints and regularization. In contrast to an iterative approach, the autoregressive linear inversion technique conveniently avoids the need for earthquake source parameters, but it also requires a number of events to achieve full convergence when a single event does not excite all singlets well. To build on previous improvements, we develop a technique to estimate structure coefficients (and consequently, the splitting functions) using a derivative-free parameter search, known as neighbourhood algorithm (NA). We implement an efficient forward method derived using the autoregresssion of receiver strips, and this allows us to search over a multiplicity of structure coefficients in a relatively short time. After demonstrating feasibility of the use of NA in synthetic cases, we apply it to observations of the inner core sensitive mode 13S2. The splitting function of this mode is dominated by spherical harmonic degree 2 axisymmetric structure and is consistent with the results obtained from the autoregressive linear inversion. The sensitivity analysis of multiple events confirms the importance of the Bolivia, 1994 earthquake. When this event is used in the analysis, as little as two events are sufficient to constrain the splitting functions of 13S2 mode. Apart from

  2. Ultrasensitive detection of mode splitting in active optical microcavities

    SciTech Connect

    He, Lina; Oezdemir, Sahin Kaya; Zhu Jiangang; Yang Lan

    2010-11-15

    Scattering-induced mode splitting in active microcavities is demonstrated. Below the lasing threshold, quality factor enhancement by optical gain allows resolving, in the wavelength-scanning transmission spectrum, of resonance dips of the split modes which otherwise would not be detected in a passive resonator. In the lasing regime, mode splitting manifests itself as two lasing modes with extremely narrow linewidths. Mixing these lasing modes in a detector leads to a heterodyne beat signal whose frequency corresponds to the mode-splitting amount. Lasing regime not only allows ultra-high sensitivity for mode-splitting measurements but also provides an easily accessible scheme by eliminating the need for wavelength scanning around resonant modes. Mode splitting in active microcavities has an immediate impact in enhancing the sensitivity of subwavelength scatterer detection and in studying light-matter interactions in a strong-coupling regime.

  3. Source models of great earthquakes from ultra low-frequency normal mode data

    NASA Astrophysics Data System (ADS)

    Lentas, Konstantinos; Ferreira, Ana; Clévédé, Eric

    2014-05-01

    We present a new earthquake source inversion technique based on normal mode data for the simultaneous determination of the rupture duration, length and moment tensor of large earthquakes with unilateral rupture. We use ultra low-frequency (f < 1 mHz) normal mode spheroidal multiplets and the phases of split free oscillations, which are modelled using Higher Order Perturbation Theory (HOPT), taking into account the Earth's rotation, ellipticity and lateral heterogeneities. A Monte Carlo exploration of the model space is carried out, enabling the assessment of source parameter tradeoffs and uncertainties. We carry out synthetic tests for four different realistic artificial earthquakes with different faulting mechanisms and magnitudes (Mw 8.1-9.3) to investigate errors in the source inversions due to: (i) unmodelled 3-D Earth structure; (ii) noise in the data; (iii) uncertainties in spatio-temporal earthquake location; and, (iv) neglecting the source finiteness in point source moment tensor inversions. We find that unmodelled 3-D structure is the most serious source of errors for rupture duration and length determinations especially for the lowest magnitude artificial events. The errors in moment magnitude and fault mechanism are generally small, with the rake angle showing systematically larger errors (up to 20 degrees). We then carry out source inversions of five giant thrust earthquakes (Mw ≥ 8.5): (i) the 26 December 2004 Sumatra-Andaman earthquake; (ii) the 28 March 2005 Nias, Sumatra earthquake; (iii) the 12 September 2007 Bengkulu earthquake; (iv) the Tohoku, Japan earthquake of 11 March 2011; (v) the Maule, Chile earthquake of 27 February 2010; and (vi) the recent 24 May 2013 Mw 8.3 Okhotsk Sea, Russia, deep (607 km) earthquake. While finite source inversions for rupture length, duration, magnitude and fault mechanism are possible for the Sumatra-Andaman and Tohoku events, for all the other events their lower magnitudes do not allow stable inversions of mode

  4. Optogenetic activation of normalization in alert macaque visual cortex

    PubMed Central

    Nassi, Jonathan J.; Avery, Michael C.; Cetin, Ali H.; Roe, Anna W.; Reynolds, John H.

    2015-01-01

    Summary Normalization has been proposed as a canonical computation that accounts for a variety of nonlinear neuronal response properties associated with sensory processing and higher cognitive functions. A key premise of normalization is that the excitability of a neuron is inversely proportional to the overall activity level of the network. We tested this by optogenetically activating excitatory neurons in alert macaque primary visual cortex and measuring changes in neuronal activity as a function of stimulation intensity, with or without variable-contrast visual stimulation. Optogenetic depolarization of excitatory neurons either facilitated or suppressed baseline activity, consistent with indirect recruitment of inhibitory networks. As predicted by the normalization model, neurons exhibited sub-additive responses to optogenetic and visual stimulation, which depended lawfully on stimulation intensity and luminance contrast. We conclude that the normalization computation persists even under the artificial conditions of optogenetic stimulation, underscoring the canonical nature of this form of neural computation. PMID:26087167

  5. Protein Normal Modes: Calculations of Amide Band Positions and Infrared Intensities for Helical Polypeptides and Proteins

    NASA Astrophysics Data System (ADS)

    Reisdorf, William Charles, Jr.

    To understand protein function requires input from a wide variety of techniques. The ability of diffraction and magnetic resonance studies to provide structural models with high atomic resolution are particularly crucial. Increasingly, information on protein dynamics is also sought. Vibrational spectroscopy can contribute information on the conformations of peptides and proteins, but the complexity of proteins makes interpretation of their spectra difficult. For this reason, computational models of protein vibrational modes are expected to play a major role in aiding our comprehension of protein dynamics. A set of FORTRAN programs referred to as 'POLYPEP' has been designed for computing the frequencies (eigenvalues) and normal modes (eigenvectors) of polypeptides of any structure. Model structures can be generated by specifying the backbone dihedral angles and using standard peptide group geometry. Alternatively one can use cartesian coordinates from experimental structures as input. The side chains are modeled as point masses, except for cysteine residues which may participate in disulfide linkages. Hydrogen bonding interactions between backbone groups are also included. The force fields adopted have been developed and refined to accurately reproduce the vibrational modes of alpha-helical and beta -sheet conformations of poly-L-alanine. Preliminary attempts have also been made for modifying selected force constants according to variations in hydrogen bond strength. Dipole derivatives for the peptide group are taken from an ab initio study of hydrogen-bonded N-methylacetamide. Those values, in combination with the calculated eigenvectors and frequencies, allow determination of infrared intensities for selected spectral regions, and the use of transition dipole coupling theory to obtain better frequencies. The present work involves application of this model to studies of model helical polypeptides and proteins. For the model structures (alpha-helix, 3 _{10}-helix

  6. Source models of great earthquakes from ultra low-frequency normal mode data

    NASA Astrophysics Data System (ADS)

    Lentas, K.; Ferreira, A. M. G.; Clévédé, E.; Roch, J.

    2014-08-01

    We present a new earthquake source inversion technique based on normal mode data for the simultaneous determination of the rupture duration, length and moment tensor of large earthquakes with unilateral rupture. We use ultra low-frequency (f <1 mHz) mode singlets and multiplets which are modelled using Higher Order Perturbation Theory (HOPT), taking into account the Earth’s rotation, ellipticity and lateral heterogeneities. A Monte Carlo exploration of the model space is carried out, enabling the assessment of source parameter tradeoffs and uncertainties. We carry out synthetic tests to investigate errors in the source inversions due to: (i) unmodelled 3-D Earth structure; (ii) noise in the data; (iii) uncertainties in spatio-temporal earthquake location; and, (iv) neglecting the source finiteness in point source inversions. We find that unmodelled 3-D structure is the most serious source of errors for rupture duration and length determinations especially for the lowest magnitude events. The errors in moment magnitude and fault mechanism are generally small, with the rake angle showing systematically larger errors (up to 20°). We then investigate five real thrust earthquakes (Mw⩾8.5): (i) Sumatra-Andaman (26th December 2004); (ii) Nias, Sumatra (28th March 2005); (iii) Bengkulu (12th September 2007); (iv) Tohoku, Japan (11th March 2011); (v) Maule, Chile (27th February 2010); and, (vi) the 24 May 2013 Mw 8.3 Okhotsk Sea, Russia, deep (607 km) event. While finite source inversions for rupture length, duration, magnitude and fault mechanism are possible for the Sumatra-Andaman and Tohoku events, for all the other events their lower magnitudes only allow stable point source inversions of mode multiplets. We obtain the first normal mode finite source model for the 2011 Tohoku earthquake, which yields a fault length of 461 km, a rupture duration of 151 s, and hence an average rupture velocity of 3.05 km/s, giving an independent confirmation of the compact nature of

  7. Possibility of observation of polaron normal modes at the far-infrared spectrum of acetanilide and related organics

    NASA Astrophysics Data System (ADS)

    Kalosakas, G.; Aubry, S.; Tsironis, G. P.

    1998-10-01

    We use a stationary and normal mode analysis of the semiclassical Holstein model in order to connect the low-frequency linear polaron modes to low-lying far-infrared lines of the acetanilide spectrum and through parameter fitting we comment on the validity of the polaron results in this system.

  8. Computational modes and the Machenauer N.L.N.M.I. of the GLAS 4th order model. [NonLinear Normal Mode Initialization in numerical weather forecasting

    NASA Technical Reports Server (NTRS)

    Navon, I. M.; Bloom, S.; Takacs, L. L.

    1985-01-01

    An attempt was made to use the GLAS global 4th order shallow water equations to perform a Machenhauer nonlinear normal mode initialization (NLNMI) for the external vertical mode. A new algorithm was defined for identifying and filtering out computational modes which affect the convergence of the Machenhauer iterative procedure. The computational modes and zonal waves were linearly initialized and gravitational modes were nonlinearly initialized. The Machenhauer NLNMI was insensitive to the absence of high zonal wave numbers. The effects of the Machenhauer scheme were evaluated by performing 24 hr integrations with nondissipative and dissipative explicit time integration models. The NLNMI was found to be inferior to the Rasch (1984) pseudo-secant technique for obtaining convergence when the time scales of nonlinear forcing were much smaller than the time scales expected from the natural frequency of the mode.

  9. Rotational normal modes of triaxial two-layered anelastic Earth model

    NASA Astrophysics Data System (ADS)

    Yang, Zhuo; Shen, WenBin

    2016-04-01

    This study focuses on providing rotational normal modes of a triaxial two-layered anelastic Earth model with considering the electromagnetic coupling. We formulate the rotation equation of the triaxial two-layered anelastic Earth model and then provide solution of that equation. We obtain four mathematically possible solutions which might exist in reality. Based on present choice of the conventional reference systems, only two of these four solutions correspond to the real existing prograde Chandler wobble (CW) and the retrograde free core nutation (FCN). We provide the periods of CW and FCN as well as their quality factors based on various experiments and observations. This study is supported by National 973 Project China (grant No. 2013CB733305) and NSFC (grant Nos. 41174011, 41210006, 41429401).

  10. Streaky noise in seismic normal mode band observed at Syowa Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Hayakawa, H.; Shibuya, K.; Doi, K.; Aoyama, Y.

    2010-12-01

    Background free oscillations are known as continuous and global signals on noise level in seismic normal mode band. These were found from record of superconducting gravimeter (SG) at Syowa Station, Antarctica in 1998 [Nawa et al. 1998], and then were confirmed at various sites. Other unknown slightly broad spectrum peaks were also found as streak on spectrogram of Syowa SG data in seismic normal mode band. But the feature is not found in gravimeter and seismometer records from any other sites, including IDA gravimeter record at SPA station, Antarctica. New SG (SG058), that is the third generation at Syowa Station, has started to observe since January 2010. The second generation SG (CT43, 2004-2009) had strong drift. The auxiliary barometer was less resolution (0.1 hPa) and its pressure record had a lot of steps and spikes occurring frequently by housing problem. To study in seismic normal mode band, high quality pressure data is needed to remove atmospheric pressure effect to gravity from SG data because a nominal admittance factor for its effect is -3 nm/s^2/hPa. The new barometer of SG058 system has a resolution of 0.001 hPa, and the housing problem has been fixed. In this study, we investigated the unknown streaky noise in seismic normal mode band using spectrograms of the new SG and other data observed at Syowa Station. The slightly broad spectrum peaks are clearly found at 2.5, 3.5, 7.6, 8.2 13.2, 16.7 mHz from the SG data during January - May 2010. Strength of these peaks shows time variation and it is not necessarily for phase to agree with each others. These unknown peaks are not intrinsic noise of the first generation SG (TT70, 1993 - 2003) but are local or regional signal (noise) around Syowa Station. The atmospheric pressure doesn’t have this steaky feature. The sea level variation causes noise level of Syowa SG data to be high by the effect of attraction and loading [Nawa et al. 2003]. Because the noise spectral peaks less than 3 mHz are removed by

  11. Regional variation of inner core anisotropy from seismic normal mode observations.

    PubMed

    Deuss, Arwen; Irving, Jessica C E; Woodhouse, John H

    2010-05-21

    Earth's solid inner core is surrounded by a convecting liquid outer core, creating the geodynamo driving the planet's magnetic field. Seismic studies using compressional body waves suggest hemispherical variation in the anisotropic structure of the inner core, but are poorly constrained because of limited earthquake and receiver distribution. Here, using normal mode splitting function measurements from large earthquakes, based on extended cross-coupling theory, we observe both regional variations and eastern versus western hemispherical anisotropy in the inner core. The similarity of this pattern with Earth's magnetic field suggests freezing-in of crystal alignment during solidification or texturing by Maxwell stress as origins of the anisotropy. These observations limit the amount of inner core super rotation, but would be consistent with oscillation. PMID:20395476

  12. Normal mode analysis of single bunch, charge density dependent behavior in electron/positron beams

    NASA Astrophysics Data System (ADS)

    Ehrlichman, Michael

    Accelerator science in coming years will be increasingly dependent upon high single-bunch charges and/or small emittances. Under these conditions, single-particle dynamics are not a sufficient description of beam behavior and interactions between the beam particles must be taken into account. One such interaction is when collisions between the particles that compose a bunch perturb the motion of the colliding particles significantly and frequently enough to impact the beam dynamics. Multiple, small-angle, collisions blow up the emittance of the bunch and are referred to as intrabeam scattering (IBS). Here are documented the theoretical and experimental studies of IBS in storage rings undertaken as part of the CesrTA program. Under the conditions where IBS becomes dominant, other multi-particle effects can also appear. The additional effects we investigate include potential well distortion, coherent current-dependent tune shift, and direct space charge. CesrTA design and analysis is conducted in a normal mode coordinates environment which allows for natural handling of coupling. To that end, we develop a 6D normal modes decomposition of the linear beam optics. Multi-particle effects are also important for Energy Recovery Linear Accelerators (ERLs). Because the beam circulates for only a short period of time in an ERL, the beam lifetime imposed by Touschek scattering is not significant. However, the particles scattered out of the bunch can generate a radiation hazard where they collide with the beam pipe. We re-derive Piwinski's original Touschek scattering equation to check its validity when applied to ERL beams, then repurpose the formula to generate a profile of where scattered particles are generated and where they are lost. The results presented here advance our understanding of charge-dependent behavior in the sorts of high charge-density accelerators that will be implemented in coming years.

  13. Anharmonicity and necessity of phonon eigenvectors in the phonon normal mode analysis

    SciTech Connect

    Feng, Tianli; Qiu, Bo; Ruan, Xiulin

    2015-05-21

    It is well known that phonon frequencies can shift from their harmonic values when elevated to a finite temperature due to the anharmonicity of interatomic potential. Here, we show that phonon eigenvectors also have shifts, but only for compound materials in which each atom has at least two types of anharmonic interactions with other atoms. Using PbTe as the model material, we show that the shifts in some phonon modes may reach as much as 50% at 800 K. Phonon eigenvectors are used in normal mode analysis (NMA) to predict phonon relaxation times and thermal conductivity. We show, from both analytical derivations and numerical simulations, that the eigenvectors are unnecessary in frequency-domain NMA, which gives a critical revision of previous knowledge. This simplification makes the calculation in frequency-domain NMA more convenient since no separate lattice dynamics calculations are needed. On the other hand, we expect our finding of anharmonic eigenvectors may make difference in time-domain NMA and other areas, like wave-packet analysis.

  14. Constructing the frequency and wave normal distribution of whistler-mode wave power

    NASA Astrophysics Data System (ADS)

    Watt, C. E. J.; Degeling, A. W.; Rankin, R.

    2013-05-01

    We introduce a new methodology that allows the construction of wave frequency distributions due to growing incoherent whistler-mode waves in the magnetosphere. The technique combines the equations of geometric optics (i.e., raytracing) with the equation of transfer of radiation in an anisotropic lossy medium to obtain spectral energy density as a function of frequency and wavenormal angle. We describe the method in detail and then demonstrate how it could be used in an idealized magnetosphere during quiet geomagnetic conditions. For a specific set of plasma conditions, we predict that the wave power peaks off the equator at ˜15° magnetic latitude. The new calculations predict that wave power as a function of frequency can be adequately described using a Gaussian function, but as a function of wavenormal angle, it more closely resembles a skew normal distribution. The technique described in this paper is the first known estimate of the parallel and oblique incoherent wave spectrum as a result of growing whistler-mode waves and provides a means to incorporate self-consistent wave-particle interactions in a kinetic model of the magnetosphere over a large volume.

  15. Instantaneous normal mode prediction for cation and anion diffusion in ionic melts

    NASA Astrophysics Data System (ADS)

    Ribeiro, M. C. C.; Madden, P. A.

    1997-05-01

    Instantaneous normal mode (INM) analysis was undertaken for several ionic melts: NaCl at six distinct thermodynamic states, and for a particular state of liquid LiCl, LiF, KF, KI, NaI, ZnCl2, and CuCl. In this Communication, we show that, in most cases, the ratio between the diffusion constants for cations (Dca) and anions (Dan) is predicted from the average frequency of the real ("stable" <ωs>) and imaginary ("unstable" <ωu>) frequency modes of the projection of the total density of states on cations and anions, respectively. The proposed relationship, Dca/Dan=(mca-1<ωu>ca<ωs>ca-2)ṡ(man-1<ωu>an<ωs>an-2)-1, where mi is the mass of a particular species, is suggested by Keyes' INM theory for diffusion [J. Chem. Phys. 101, 5081 (1994)], with the further assumption that the parameters which are related to the topology of the multidimensional potential surface are equal for cations and anions. The above equation is shown to be valid for the simple melts NaCl, LiCl, LiF, KF, KI, and NaI, but to fail for the network forming melt ZnCl2 and for CuCl, which shows fast ionic diffusion characteristics.

  16. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture

    PubMed Central

    Lei, Xianqi; Li, Congling; Shi, Xinghua; Xu, Xianghong; Wei, Yujie

    2015-01-01

    It is generally observed that the existence of geometrical discontinuity like notches in materials will lead to strength weakening, as a resultant of local stress concentration. By comparing the influence of notches to the strength of three typical materials, aluminum alloys with intermediate tensile ductility, metallic glasses with no tensile ductility, and brittle ceramics, we observed strengthening in aluminum alloys and metallic glasses: Tensile strength of the net section in circumferentially notched cylinders increases with the constraint quantified by the ratio of notch depth over notch root radius; in contrast, the ceramic exhibit notch weakening. The strengthening in the former two is due to resultant deformation transition: Shear failure occurs in intact samples while samples with deep notches break in normal mode fracture. No such deformation transition was observed in the ceramic, and stress concentration leads to its notch weakening. The experimental results are confirmed by theoretical analyses and numerical simulation. The results reported here suggest that the conventional criterion to use brittleness and/or ductility to differentiate notch strengthening or weakening is not physically sound. Notch strengthening or weakening relies on the existence of failure mode transition and materials exhibiting shear failure while subjected to tension will notch strengthen. PMID:26022892

  17. Deciphering conformational transitions of proteins by small angle X-ray scattering and normal mode analysis.

    PubMed

    Panjkovich, Alejandro; Svergun, Dmitri I

    2016-02-17

    Structural flexibility and conformational rearrangements are often related to important functions of biological macromolecules, but the experimental characterization of such transitions with high-resolution techniques is challenging. At a lower resolution, small angle X-ray scattering (SAXS) can be used to obtain information on biomolecular shapes and transitions in solution. Here, we present SREFLEX, a hybrid modeling approach that uses normal mode analysis (NMA) to explore the conformational space of high-resolution models and refine the structure guided by the agreement with the experimental SAXS data. The method starts from a given conformation of the protein (which does not agree with the SAXS data). The structure is partitioned into pseudo-domains either using structural classification databases or automatically from the protein dynamics as predicted by the NMA. The algorithm proceeds hierarchically employing NMA to first probe large rearrangements and progresses into smaller and more localized movements. At the large rearrangements stage the pseudo-domains stay as rigid bodies allowing one to avoid structural disruptions inherent to the earlier NMA-based algorithms. To validate the approach, we compiled a representative benchmark set of 88 conformational states known experimentally at high resolution. The performance of the algorithm is demonstrated in the simulated data on the benchmark set and also in a number of experimental examples. SREFLEX is included into the ATSAS program package freely available to the academic users, both for download and in the on-line mode. PMID:26611321

  18. A theory for protein dynamics: Global anisotropy and a normal mode approach to local complexity

    NASA Astrophysics Data System (ADS)

    Copperman, Jeremy; Romano, Pablo; Guenza, Marina

    2014-03-01

    We propose a novel Langevin equation description for the dynamics of biological macromolecules by projecting the solvent and all atomic degrees of freedom onto a set of coarse-grained sites at the single residue level. We utilize a multi-scale approach where molecular dynamic simulations are performed to obtain equilibrium structural correlations input to a modified Rouse-Zimm description which can be solved analytically. The normal mode solution provides a minimal basis set to account for important properties of biological polymers such as the anisotropic global structure, and internal motion on a complex free-energy surface. This multi-scale modeling method predicts the dynamics of both global rotational diffusion and constrained internal motion from the picosecond to the nanosecond regime, and is quantitative when compared to both simulation trajectory and NMR relaxation times. Utilizing non-equilibrium sampling techniques and an explicit treatment of the free-energy barriers in the mode coordinates, the model is extended to include biologically important fluctuations in the microsecond regime, such as bubble and fork formation in nucleic acids, and protein domain motion. This work supported by the NSF under the Graduate STEM Fellows in K-12 Education (GK-12) program, grant DGE-0742540 and NSF grant DMR-0804145, computational support from XSEDE and ACISS.

  19. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture.

    PubMed

    Lei, Xianqi; Li, Congling; Shi, Xinghua; Xu, Xianghong; Wei, Yujie

    2015-01-01

    It is generally observed that the existence of geometrical discontinuity like notches in materials will lead to strength weakening, as a resultant of local stress concentration. By comparing the influence of notches to the strength of three typical materials, aluminum alloys with intermediate tensile ductility, metallic glasses with no tensile ductility, and brittle ceramics, we observed strengthening in aluminum alloys and metallic glasses: Tensile strength of the net section in circumferentially notched cylinders increases with the constraint quantified by the ratio of notch depth over notch root radius; in contrast, the ceramic exhibit notch weakening. The strengthening in the former two is due to resultant deformation transition: Shear failure occurs in intact samples while samples with deep notches break in normal mode fracture. No such deformation transition was observed in the ceramic, and stress concentration leads to its notch weakening. The experimental results are confirmed by theoretical analyses and numerical simulation. The results reported here suggest that the conventional criterion to use brittleness and/or ductility to differentiate notch strengthening or weakening is not physically sound. Notch strengthening or weakening relies on the existence of failure mode transition and materials exhibiting shear failure while subjected to tension will notch strengthen. PMID:26022892

  20. Normal Mode Analysis in Zeolites: Toward an Efficient Calculation of Adsorption Entropies.

    PubMed

    De Moor, Bart A; Ghysels, An; Reyniers, Marie-Françoise; Van Speybroeck, Veronique; Waroquier, Michel; Marin, Guy B

    2011-04-12

    An efficient procedure for normal-mode analysis of extended systems, such as zeolites, is developed and illustrated for the physisorption and chemisorption of n-octane and isobutene in H-ZSM-22 and H-FAU using periodic DFT calculations employing the Vienna Ab Initio Simulation Package. Physisorption and chemisorption entropies resulting from partial Hessian vibrational analysis (PHVA) differ at most 10 J mol(-1) K(-1) from those resulting from full Hessian vibrational analysis, even for PHVA schemes in which only a very limited number of atoms are considered free. To acquire a well-conditioned Hessian, much tighter optimization criteria than commonly used for electronic energy calculations in zeolites are required, i.e., at least an energy cutoff of 400 eV, maximum force of 0.02 eV/Å, and self-consistent field loop convergence criteria of 10(-8) eV. For loosely bonded complexes the mobile adsorbate method is applied, in which frequency contributions originating from translational or rotational motions of the adsorbate are removed from the total partition function and replaced by free translational and/or rotational contributions. The frequencies corresponding with these translational and rotational modes can be selected unambiguously based on a mobile block Hessian-PHVA calculation, allowing the prediction of physisorption entropies within an accuracy of 10-15 J mol(-1) K(-1) as compared to experimental values. The approach presented in this study is useful for studies on other extended catalytic systems. PMID:26606357

  1. Measurement of nonlinear normal modes using multi-harmonic stepped force appropriation and free decay

    NASA Astrophysics Data System (ADS)

    Ehrhardt, David A.; Allen, Matthew S.

    2016-08-01

    Nonlinear Normal Modes (NNMs) offer tremendous insight into the dynamic behavior of a nonlinear system, extending many concepts that are familiar in linear modal analysis. Hence there is interest in developing methods to experimentally and numerically determine a system's NNMs for model updating or simply to characterize its dynamic response. Previous experimental work has shown that a mono-harmonic excitation can be used to isolate a system's dynamic response in the neighborhood of a NNM along the main backbones of a system. This work shows that a multi-harmonic excitation is needed to isolate a NNM when well separated linear modes of a structure couple to produce an internal resonance. It is shown that one can tune the multiple harmonics of the input excitation using a plot of the input force versus the response velocity until the area enclosed by the force-velocity curve is minimized. Once an appropriated NNM is measured, one can increase the force level and retune the frequency to obtain a NNM at a higher amplitude or remove the excitation and measure the structure's decay down a NNM backbone. This work explores both methods using simulations and measurements of a nominally-flat clamped-clamped beam excited at a single point with a magnetic force. Numerical simulations are used to validate the method in a well defined environment and to provide comparison with the experimentally measured NNMs. The experimental results seem to produce a good estimate of two NNMs along their backbone and part of an internal resonance branch. Full-field measurements are then used to further explore the couplings between the underlying linear modes along the identified NNMs.

  2. Nonlinear acoustic experiments for landmine detection: the significance of the top-plate normal modes

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Alberts, W. C. K., II; Sabatier, James M.

    2004-09-01

    In nonlinear acoustic detection experiments involving a buried inert VS 2.2 anti-tank landmine, airborne sound at two closely spaced primary frequencies f1 and f2 couple into the ground and interact nonlinearly with the soil-top pressure plate interface. Scattering generates soil vibration at the surface at the combination frequencies | m f1 +- n f2 | , where m and n are integers. The normal component of the particle velocity at the soil surface has been measured with a laser Doppler velocimeter (LDV) and with a geophone by Sabatier et. al. [SPIE Proceedings Vol. 4742, (695-700), 2002; Vol. 5089, (476-486), 2003] at the gravel lane test site. Spatial profiles of the particle velocity measured for both primary components and for various combination frequencies indicate that the modal structure of the mine is playing an important role. Here, an experimental modal analysis is performed on a VS 1.6 inert anti-tank mine that is resting on sand but is not buried. Five top-plate mode shapes are described. The mine is then buried in dry finely sifted natural loess soil and excited at f1 = 120 Hz and f2 = 130 Hz. Spatial profiles at the primary components and the nonlinearly generated f1 - (f2 - f1) component are characterized by a single peak. For the 2f1+f2 and 2f2 + f1 components, the doubly peaked profiles can be attributed to the familiar mode shape of a timpani drum (that is shifted lower in frequency due to soil mass loading). Other nonlinear profiles appear to be due to a mixture of modes. This material is based upon work supported by the U. S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate under Contract DAAB15-02-C-0024.

  3. Active control for stabilization of neoclassical tearing modes

    SciTech Connect

    Humphreys, D.A.; Ferron, J.R.; La Haye, R.J.; Luce, T.C.; Petty, C.C.; Prater, R.; Welander, A.S.

    2006-05-15

    This work describes active control algorithms used by DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] to stabilize and maintain suppression of 3/2 or 2/1 neoclassical tearing modes (NTMs) by application of electron cyclotron current drive (ECCD) at the rational q surface. The DIII-D NTM control system can determine the correct q-surface/ECCD alignment and stabilize existing modes within 100-500 ms of activation, or prevent mode growth with preemptive application of ECCD, in both cases enabling stable operation at normalized beta values above 3.5. Because NTMs can limit performance or cause plasma-terminating disruptions in tokamaks, their stabilization is essential to the high performance operation of ITER [R. Aymar et al., ITER Joint Central Team, ITER Home Teams, Nucl. Fusion 41, 1301 (2001)]. The DIII-D NTM control system has demonstrated many elements of an eventual ITER solution, including general algorithms for robust detection of q-surface/ECCD alignment and for real-time maintenance of alignment following the disappearance of the mode. This latter capability, unique to DIII-D, is based on real-time reconstruction of q-surface geometry by a Grad-Shafranov solver using external magnetics and internal motional Stark effect measurements. Alignment is achieved by varying either the plasma major radius (and the rational q surface) or the toroidal field (and the deposition location). The requirement to achieve and maintain q-surface/ECCD alignment with accuracy on the order of 1 cm is routinely met by the DIII-D Plasma Control System and these algorithms. We discuss the integrated plasma control design process used for developing these and other general control algorithms, which includes physics-based modeling and testing of the algorithm implementation against simulations of actuator and plasma responses. This systematic design/test method and modeling environment enabled successful mode suppression by the NTM control system upon first-time use in an

  4. High-energy square pulses and burst-mode pulses in an all-normal dispersion double-clad mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Qiao, Zhi; Wang, Xiaochao; Wang, Chao; Jing, Yuanyuan; Fan, Wei; Lin, Zunqi

    2016-05-01

    A double-clad Yb-doped mode-locked fiber laser that can operate in burst-mode and square-pulse states is experimentally investigated. In the burst-mode state, a burst train with 55 pulses of 500 ps duration is obtained. In the square-pulse state, which is similar to noiselike pulses, the maximum pulse energy is 820 nJ and the duration can be tuned from 15.8 to 546 ns. The square pulses have a narrow and multipeak spectrum, which is quite different from that of normal noiselike pulses. The fiber laser promises an alternative formation mechanism for burst-mode and square-pulse mode-locked fiber lasers.

  5. A New Non-linear Technique for Measurement of Splitting Functions of Normal Modes of the Earth

    NASA Astrophysics Data System (ADS)

    Pachhai, S.; Masters, G.; Tkalcic, H.

    2014-12-01

    Normal modes are the vibrating patterns of the Earth in response to the large earthquakes. Normal mode spectra are split due to Earth's rotation, ellipticity, and heterogeneity. The normal mode splitting is visualized through splitting functions, which represent the local radial average of Earth's structure seen by a mode of vibration. The analysis of the splitting of normal modes can provide unique information about the lateral variation of the Earth's elastic properties that cannot be directly imaged in body wave tomographic images. The non-linear iterative spectral fitting of the observed complex spectra and autoregressive linear inversion have been widely utilized to compute the Earth's 3-D structure. However, the non-linear inversion requires a model of the earthquake source and the retrieved 3-D structure is sensitive to the initial constraints. In contrast, the autoregressive linear inversion does not require the source model. However, this method requires many events to achieve full convergence. In addition, significant disagreement exists between different studies because of the non-uniqueness of the problem and limitations of different methods. We thus apply the neighbourhood algorithm (NA) to measure splitting functions. The NA is an efficient model space search technique and works in two steps: In the first step, the algorithm finds all the models compatible with given data while the posterior probability density of the model parameters are obtained in the second step. The NA can address the problem of non-uniqueness by taking advantage of random sampling of the full model space. The parameter trade-offs are conveniently visualized using joint marginal distributions. In addition, structure coefficients uncertainties can be extracted from the posterior probability distribution. After demonstrating the feasibility of NA with synthetic examples, we compute the splitting functions for the mode 13S2 (sensitive to the inner core) from several large

  6. Dynamical instabilities and quasi-normal modes, a spectral analysis with applications to black-hole physics

    NASA Astrophysics Data System (ADS)

    Coutant, Antonin; Michel, Florent; Parentani, Renaud

    2016-06-01

    Black hole dynamical instabilities have been mostly studied in specific models. We here study the general properties of the complex-frequency modes responsible for such instabilities, guided by the example of a charged scalar field in an electrostatic potential. We show that these modes are square integrable, have a vanishing conserved norm, and appear in mode doublets or quartets. We also study how they appear in the spectrum and how their complex frequencies subsequently evolve when varying some external parameter. When working on an infinite domain, they appear from the reservoir of quasi-normal modes obeying outgoing boundary conditions. This is illustrated by generalizing, in a non-positive definite Krein space, a solvable model (Friedrichs model) which originally describes the appearance of a resonance when coupling an isolated system to a mode continuum. In a finite spatial domain instead, they arise from the fusion of two real frequency modes with opposite norms, through a process that closely resembles avoided crossing.

  7. On the normal modes of Laplace's tidal equations for zonal wavenumber zero

    NASA Technical Reports Server (NTRS)

    Tanaka, H. L.; Kasahara, Akira

    1992-01-01

    The characteristic differences between two different rotational modes of Laplace's tidal equations for wavenumber m = 0, called the K- and the S-modes, are compared in their energy ratio and structures. It is shown that the K-mode representation captures most of the observed zonal energy with a few terms, whereas the S-mode representation requires many terms. For small vertical scale components, the K-mode series converges faster than the S-mode series. Attention is also given to the differences between the energy spectra projected upon the K- and S-modes and the merits of each set as expansion functions for the zonal atmospheric motions.

  8. Wave normal angles of whistler mode chorus rising and falling tones

    NASA Astrophysics Data System (ADS)

    Taubenschuss, Ulrich; Khotyaintsev, Yuri V.; Santolík, Ondrej; Vaivads, Andris; Cully, Christopher M.; Contel, Olivier Le; Angelopoulos, Vassilis

    2014-12-01

    We present a study of wave normal angles (θk) of whistler mode chorus emission as observed by Time History of Events and Macroscale Interactions during Substorms (THEMIS) during the year 2008. The three inner THEMIS satellites THA, THD, and THE usually orbit Earth close to the dipole magnetic equator (±20°), covering a large range of L shells from the plasmasphere out to the magnetopause. Waveform measurements of electric and magnetic fields enable a detailed polarization analysis of chorus below 4 kHz. When displayed in a frequency-θk histogram, four characteristic regions of occurrence are evident. They are separated by gaps at f/fc,e≈0.5 (f is the chorus frequency, fc,e is the local electron cyclotron frequency) and at θk˜40°. Below θk˜40°, the average value for θk is predominantly field aligned, but slightly increasing with frequency toward half of fc,e (θk up to 20°). Above half of fc,e, the average θk is again decreasing with frequency. Above θk˜40°, wave normal angles are usually close to the resonance cone angle. Furthermore, we present a detailed comparison of electric and magnetic fields of chorus rising and falling tones. Falling tones exhibit peaks in occurrence solely for θk>40° and are propagating close to the resonance cone angle. Nevertheless, when comparing rising tones to falling tones at θk>40°, the ratio of magnetic to electric field shows no significant differences. Thus, we conclude that falling tones are generated under similar conditions as rising tones, with common source regions close to the magnetic equatorial plane.

  9. Analysis of functional motions in Brownian molecular machines with an efficient block normal mode approach: myosin-II and Ca2+ -ATPase.

    PubMed

    Li, Guohui; Cui, Qiang

    2004-02-01

    The structural flexibilities of two molecular machines, myosin and Ca(2+)-ATPase, have been analyzed with normal mode analysis and discussed in the context of their energy conversion functions. The normal mode analysis with physical intermolecular interactions was made possible by an improved implementation of the block normal mode (BNM) approach. The BNM results clearly illustrated that the large-scale conformational transitions implicated in the functional cycles of the two motor systems can be largely captured with a small number of low-frequency normal modes. Therefore, the results support the idea that structural flexibility is an essential part of the construction principle of molecular motors through evolution. Such a feature is expected to be more prevalent in motor proteins than in simpler systems (e.g., signal transduction proteins) because in the former, large-scale conformational transitions often have to occur before the chemical events (e.g., ATP hydrolysis in myosin and ATP binding/phosphorylation in Ca(2+)-ATPase). This highlights the importance of Brownian motions associated with the protein domains that are involved in the functional transitions; in this sense, Brownian molecular machines is an appropriate description of molecular motors, although the normal mode results do not address the origin of the ratchet effect. The results also suggest that it might be more appropriate to describe functional transitions in some molecular motors as intrinsic elastic motions modulating local structural changes in the active site, which in turn gets stabilized by the subsequent chemical events, in contrast with the conventional idea of local changes somehow getting amplified into larger-scale motions. In the case of myosin, for example, we favor the idea that Brownian motions associated with the flexible converter propagates to the Switch I/II region, where the salt-bridge formation gets stabilized by ATP hydrolysis, in contrast with the textbook notion that

  10. Sialyltransferase activity in normal and atherosclerotic human aorta intima.

    PubMed

    Gracheva, E V; Samovilova, N N; Golovanova, N K; Il'inskaya, O P; Tararak, E M; Prokazova, N V

    2001-04-01

    Sialyltransferase activity has been determined in Golgi membrane fractions isolated from atherosclerotic and normal intima of human aorta by measuring the transfer of N-acetylneuraminic acid (NeuAc) from CMP-NeuAc to asialofetuin. The asialofetuin-sialyltransferase activity was found to be twofold higher in the atherosclerotic intima than in the normal intima. The mean value of the apparent Michaelis constant (Km) for the sialylating enzyme in both tissues did not differ and was 57 microM. In contrast, the maximal velocity (Vmax) was 2-fold higher for the atherosclerotic intima than for the normal intima. These results suggest that expression of asialofetuin-sialyltransferases of the aortal intima may be increased in atherosclerosis. PMID:11403646

  11. Alkaline phosphatase activity in normal and inflamed dental pulps.

    PubMed

    Spoto, G; Fioroni, M; Rubini, C; Tripodi, D; Di Stilio, M; Piattelli, A

    2001-03-01

    Alkaline phosphatase (ALP) seems to be important in the formation of mineralized tissues. High levels of ALP have been demonstrated in dental pulp cells. In the present study ALP activity was analyzed in normal healthy human dental pulps, in reversible pulpitis, and in irreversible pulpitis. Enzymatic ALP control values for the normal healthy pulps were 110.96+/-20.93. In the reversible pulpitis specimens the ALP activity increased almost eight times to 853.6+/-148.27. In the irreversible pulpitis specimens the values decreased sharply to 137.15+/-21.28 and were roughly equivalent to those seen in normal healthy pulps. The differences between the groups (control vs. reversible pulpitis and reversible pulpitis vs. irreversible pulpitis) were statistically significant. These results could point to a role of ALP in the initial pulp response after injury. PMID:11487147

  12. Search for solar normal modes in low-frequency seismic spectra

    NASA Astrophysics Data System (ADS)

    Caton, Ross C.

    We use seismic array processing methods to attempt to enhance very low frequency harmonic signals (0-400 microhertz, also ?Hz or uHz) recorded on broadband seismic arrays. Since the discovery of this phenomenon in the 1990s, harmonic signals at these very low frequencies have come to be known as the Earth's "hum." A number of hypotheses have been suggested for the Earth's hum, including forcing by atmospheric turbulence, ocean waves, and, most recently, the Sun. We test the solar hypothesis by searching for statistically significant harmonic lines that correlate with independently observed solar free oscillations. The solar model assumes that free oscillations of the sun modulate the solar wind, producing pure harmonic components of Earth's magnetic field that are postulated to couple to the ground by electromagnetic induction. In this thesis we search the multitaper spectrum of stacks of seismic instruments for solar normal frequencies. We use a median stack instead of the more conventional mean because a more robust estimate of center is required for these low signal-to-noise data with occasional transients. A key advantage of a stack is that data gaps are easily ignored when computing the beam. Results from a stack of 18 Transportable Array stations show multiple possible g-mode detections at the 95-99% confidence level. We are presently applying this method to data from the Homestake Mine array, and may also do so with data from a broadband borehole array currently operating at Pinon Flats, California.

  13. Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding

    SciTech Connect

    Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C

    2009-12-01

    The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure while gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.

  14. Instantaneous normal mode analysis for intermolecular and intramolecular vibrations of water from atomic point of view

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chun; Tang, Ping-Han; Wu, Ten-Ming

    2013-11-01

    By exploiting the instantaneous normal mode (INM) analysis for models of flexible molecules, we investigate intermolecular and intramolecular vibrations of water from the atomic point of view. With two flexible SPC/E models, our investigations include three aspects about their INM spectra, which are separated into the unstable, intermolecular, bending, and stretching bands. First, the O- and H-atom contributions in the four INM bands are calculated and their stable INM spectra are compared with the power spectra of the atomic velocity autocorrelation functions. The unstable and intermolecular bands of the flexible models are also compared with those of the SPC/E model of rigid molecules. Second, we formulate the inverse participation ratio (IPR) of the INMs, respectively, for the O- and H-atom and molecule. With the IPRs, the numbers of the three species participated in the INMs are estimated so that the localization characters of the INMs in each band are studied. Further, by the ratio of the IPR of the H atom to that of the O atom, we explore the number of involved OH bond per molecule participated in the INMs. Third, by classifying simulated molecules into subensembles according to the geometry of their local environments or their H-bond configurations, we examine the local-structure effects on the bending and stretching INM bands. All of our results are verified to be insensible to the definition of H-bond. Our conclusions about the intermolecular and intramolecular vibrations in water are given.

  15. Instantaneous normal mode analysis for intermolecular and intramolecular vibrations of water from atomic point of view

    SciTech Connect

    Chen, Yu-Chun; Tang, Ping-Han; Wu, Ten-Ming

    2013-11-28

    By exploiting the instantaneous normal mode (INM) analysis for models of flexible molecules, we investigate intermolecular and intramolecular vibrations of water from the atomic point of view. With two flexible SPC/E models, our investigations include three aspects about their INM spectra, which are separated into the unstable, intermolecular, bending, and stretching bands. First, the O- and H-atom contributions in the four INM bands are calculated and their stable INM spectra are compared with the power spectra of the atomic velocity autocorrelation functions. The unstable and intermolecular bands of the flexible models are also compared with those of the SPC/E model of rigid molecules. Second, we formulate the inverse participation ratio (IPR) of the INMs, respectively, for the O- and H-atom and molecule. With the IPRs, the numbers of the three species participated in the INMs are estimated so that the localization characters of the INMs in each band are studied. Further, by the ratio of the IPR of the H atom to that of the O atom, we explore the number of involved OH bond per molecule participated in the INMs. Third, by classifying simulated molecules into subensembles according to the geometry of their local environments or their H-bond configurations, we examine the local-structure effects on the bending and stretching INM bands. All of our results are verified to be insensible to the definition of H-bond. Our conclusions about the intermolecular and intramolecular vibrations in water are given.

  16. Time reversal imaging and cross-correlations techniques by normal mode theory

    NASA Astrophysics Data System (ADS)

    Montagner, J.; Fink, M.; Capdeville, Y.; Phung, H.; Larmat, C.

    2007-12-01

    Time-reversal methods were successfully applied in the past to acoustic waves in many fields such as medical imaging, underwater acoustics, non destructive testing and recently to seismic waves in seismology for earthquake imaging. The increasing power of computers and numerical methods (such as spectral element methods) enables one to simulate more and more accurately the propagation of seismic waves in heterogeneous media and to develop new applications, in particular time reversal in the three-dimensional Earth. Generalizing the scalar approach of Draeger and Fink (1999), the theoretical understanding of time-reversal method can be addressed for the 3D- elastic Earth by using normal mode theory. It is shown how to relate time- reversal methods on one hand, with auto-correlation of seismograms for source imaging and on the other hand, with cross-correlation between receivers for structural imaging and retrieving Green function. The loss of information will be discussed. In the case of source imaging, automatic location in time and space of earthquakes and unknown sources is obtained by time reversal technique. In the case of big earthquakes such as the Sumatra-Andaman earthquake of december 2004, we were able to reconstruct the spatio-temporal history of the rupture. We present here some new applications at the global scale of these techniques on synthetic tests and on real data.

  17. A normal mode treatment of semi-diurnal body tides on an aspherical, rotating and anelastic Earth

    NASA Astrophysics Data System (ADS)

    Lau, Harriet C. P.; Yang, Hsin-Ying; Tromp, Jeroen; Mitrovica, Jerry X.; Latychev, Konstantin; Al-Attar, David

    2015-08-01

    Normal mode treatments of the Earth's body tide response were developed in the 1980s to account for the effects of Earth rotation, ellipticity, anelasticity and resonant excitation within the diurnal band. Recent space-geodetic measurements of the Earth's crustal displacement in response to luni-solar tidal forcings have revealed geographical variations that are indicative of aspherical deep mantle structure, thus providing a novel data set for constraining deep mantle elastic and density structure. In light of this, we make use of advances in seismic free oscillation literature to develop a new, generalized normal mode theory for the tidal response within the semi-diurnal and long-period tidal band. Our theory involves a perturbation method that permits an efficient calculation of the impact of aspherical structure on the tidal response. In addition, we introduce a normal mode treatment of anelasticity that is distinct from both earlier work in body tides and the approach adopted in free oscillation seismology. We present several simple numerical applications of the new theory. First, we compute the tidal response of a spherically symmetric, non-rotating, elastic and isotropic Earth model and demonstrate that our predictions match those based on standard Love number theory. Second, we compute perturbations to this response associated with mantle anelasticity and demonstrate that the usual set of seismic modes adopted for this purpose must be augmented by a family of relaxation modes to accurately capture the full effect of anelasticity on the body tide response. Finally, we explore aspherical effects including rotation and we benchmark results from several illustrative case studies of aspherical Earth structure against independent finite-volume numerical calculations of the semi-diurnal body tide response. These tests confirm the accuracy of the normal mode methodology to at least the level of numerical error in the finite-volume predictions. They also demonstrate

  18. Possible mechanisms of normal amylase activity in hyperlipemic pancreatitis.

    PubMed Central

    Mishkin, S.; Bates, J.; O'Hashi, J.; Schneider, P.; Sniderman, A. D.; Wolf, R. O.

    1976-01-01

    Lipemic serum from three patients with acute pancreatitis and type IV hyperlipemia was fractionated into very-low-density lipoproteins and clear serum. Amylase activity (determined by the Phadebas method) in the component fractions did not exceed that in the original lipemic serum. Addition of these fractions or VLDL and chylomicrons from asymptomatic patients with hyperlipemia to nonlipemic serum from patients with "routine acute pancreatitis" did not inhibit amylase activity or alter the electrophoretic mobility of amylase isoenzymes. Therefore the normal amylase activity often observed in hyperlipemic pancreatitis does not result from an inhibition of amylase activity by serum lipoproteins. Images FIG. 4 FIG. 5 PMID:206333

  19. An Experiential Learning Activity Demonstrating Normal and Phobic Anxiety

    ERIC Educational Resources Information Center

    Canu, Will H.

    2008-01-01

    This article describes an activity for an undergraduate abnormal psychology course that used student-generated data to illustrate normal versus clinically significant anxiety responses related to specific phobias. Students (N = 37) viewed 14 images of low- or high-anxiety valence and rated their subjective response to each. Discussion in a…

  20. Travel Mode and Physical Activity at Sydney University

    PubMed Central

    Rissel, Chris; Mulley, Corinne; Ding, Ding

    2013-01-01

    How staff and students travel to university can impact their physical activity level. An online survey of physical activity and travel behaviour was conducted in early November 2012 to inform planning of physical activity and active travel promotion programs at the University of Sydney, Australia as part of the “Sit Less, Move More” sub-committee of the Healthy University Initiative, and as baseline data for evaluation. There were 3,737 useable responses, 60% of which were from students. Four out of five respondents travelled to the University on the day of interest (Tuesday, November 30, 2012). The most frequently used travel modes were train (32%), car as driver (22%), bus (17%), walking (17%) and cycling (6%). Staff were twice as likely to drive as students, and also slightly more likely to use active transport, defined as walking and cycling (26% versus 22%). Overall, 41% of respondents were sufficiently active (defined by meeting physical activity recommendations of 150 min per week). Participants were more likely to meet physical activity recommendations if they travelled actively to the University. With a high proportion of respondents using active travel modes or public transport already, increasing the physical activity levels and increasing the use of sustainable travel modes would mean a mode shift from public transport to walking and cycling for students is needed and a mode shift from driving to public transport or active travel for University staff. Strategies to achieve this are discussed. PMID:23939390

  1. Normal modes of oscillation of the Asinelli and Garisenda towers in Bologna (Italy)

    NASA Astrophysics Data System (ADS)

    Morelli, A.; Azzara, R. M.; Cavaliere, A.; Zaccarelli, L.

    2013-12-01

    The Asinelli and Garisenda medieval towers represent the best-know city landmark in Bologna. Asinelli is also known to physics historians for early experiments on free fall of bodies for the first measurements of g (Giovanni Battista Riccioli, ca. 1650) and proof of Earth rotation (Giovanni Battista Guglielmini, 1791). The Two Towers (as they are commonly known) are essentially tall, square cross-section hollow masonry cuboids. Taller Asinelli, built between 1109 and 1119, is 97 m high, with an overhang of 2.2 m, while more seriously leaning Garisenda has an overhang of 3.2 m with a heigth of 48 m. During the summer of 2012 -- in the aftermath of two M≈6 earthquakes occurred in the proximity of the city -- the permanent engineering monitoring system of the towers has been temporarily supplemented by 6 seismometric stations installed at different levels inside the masonry buildings, to study their dynamical response to induced vibrations. We have thus been able to observe and measure the oscillation of the two towers excited by ambient noise, mostly due to city traffic. The two towers show similar behaviour, more clear in taller Asinelli. The first three flexural normal modes of oscillation, and the first torsional mode, can easily be detected. Their frequencies are split because of the asymmetry due to leaning of the tower. This asymmetry produces slightly different frequencies of oscillation in two orthogonal directions, quite consistent with preliminary dynamical modeling. Horizontal particle-motion polarization plots clearly show the cyclic energy transfer between these two degrees of freedom of the system. Oscillations of taller Asinelli influence its close sister, such that the Asinelli spectral signature can also be easily recognized in the motion recorded at the base of Garisenda, overimposed over Garisenda own free oscillations. Horizontal component polarization analysis done simultaneously at the two ground-level stations often point to a nearby common

  2. Thickness mode EMIS of constrained proof-mass piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin

    2015-11-01

    This paper addresses theoretical and experimental work on thickness-mode electromechanical (E/M) impedance spectroscopy (EMIS) of proof-mass piezoelectric wafer active sensors (PMPWAS). The proof-mass (PM) concept was used to develop a new method for tuning the ultrasonic wave modes and for relatively high frequency local modal sensing by the PM affixed on PWAS. In order to develop the theoretical basis of the PMPWAS tuning concept, analytical analyses were conducted by applying the resonator theory to derive the EMIS of a PWAS constrained on one and both surfaces by isotropic elastic materials. The normalized thickness-mode shapes were obtained for the normal mode expansion (NME) method to eventually predict the thickness-mode EMIS using the correlation between PMPWAS and the structural dynamic properties of the substrate. Proof-masses of different sizes and materials were used to tune the system resonance towards an optimal frequency point. The results were verified by coupled-field finite element analyses (CF-FEA) and experimental results. An application of the tuning effect of PM on the standing wave modes was discussed as the increase in PM thickness shifts the excitation frequency of the wave mode toward the surface acoustic wave (SAW) mode.

  3. Epsilon-near-zero mode for active optoelectronic devices.

    PubMed

    Vassant, S; Archambault, A; Marquier, F; Pardo, F; Gennser, U; Cavanna, A; Pelouard, J L; Greffet, J J

    2012-12-01

    The electromagnetic modes of a GaAs quantum well between two AlGaAs barriers are studied. At the longitudinal optical phonon frequency, the system supports a phonon polariton mode confined in the thickness of the quantum well that we call epsilon-near-zero mode. This epsilon-near-zero mode can be resonantly excited through a grating resulting in a very large absorption localized in the single quantum well. We show that the reflectivity can be modulated by applying a voltage. This paves the way to a new class of active optoelectronic devices working in the midinfrared and far infrared at ambient temperature. PMID:23368264

  4. Normal modes of the atmosphere as estimated by principal oscillation patterns and derived from quasigeostrophic theory

    SciTech Connect

    Schnur, R.; Storch, H. von ); Schmitz, G.; Grieger, N. )

    1993-08-01

    The principal oscillation pattern (POP) analysis is a technique to empirically identify time-dependent spatial patterns in a multivariate time series of geophysical or other data. In order to investigate medium-scale and synoptic waves in the atmosphere it has been applied to tropospheric geopotential height fields of ECMWF analyses from 1984 to 1987. The data have been subjected to zonal Fourier decomposition and to time filtering so that variations with periods between 3 and 25 days were retained. Analyses have been performed separately for each zonal wavenumber 5-9 on the Northern Hemisphere in winter and on the Southern Hemisphere in summer (DJF). POPs can be seen as normal modes of a linear approximation to a more complex dynamical system. The system matrix is estimated from observations of nature. This concept is compared with conventional stability analysis where the system matrix of the linear system is derived from theoretical, in this case quasigeostrophic, reasoning. Only the mean basic flow depends on time- and space-averaged fields of observed wind and temperature from the ECMWF data. It turns out that the most significant POPs are very similar in time and spatial structure to the most unstable waves in the stability analysis. They describe the linear growth phase of baroclinic, unstable waves that propagate eastward with periods of 3-7 days. Since the POPs are purely derived from observations, the results indicate the appropriateness of the assumptions usually made in linear stability analysis of zonally symmetric flows to explain high-frequency atmospheric fluctuations. Moreover, the POP analysis reveals patterns that are not found in the linear stability analysis. These can possibly be attributed to the nonlinear decay phase of baroclinic waves. Eliassen-Palm cross sections help clarify the interpretation of the POPs in terms of the life cycle of nonlinear baroclinic waves. 24 refs., 14 figs.

  5. Normal mode analysis of macromolecular systems with the mobile block Hessian method

    SciTech Connect

    Ghysels, An; Van Speybroeck, Veronique; Van Neck, Dimitri; Waroquier, Michel; Brooks, Bernard R.

    2015-01-22

    Until recently, normal mode analysis (NMA) was limited to small proteins, not only because the required energy minimization is a computationally exhausting task, but also because NMA requires the expensive diagonalization of a 3N{sub a}×3N{sub a} matrix with N{sub a} the number of atoms. A series of simplified models has been proposed, in particular the Rotation-Translation Blocks (RTB) method by Tama et al. for the simulation of proteins. It makes use of the concept that a peptide chain or protein can be seen as a subsequent set of rigid components, i.e. the peptide units. A peptide chain is thus divided into rigid blocks with six degrees of freedom each. Recently we developed the Mobile Block Hessian (MBH) method, which in a sense has similar features as the RTB method. The main difference is that MBH was developed to deal with partially optimized systems. The position/orientation of each block is optimized while the internal geometry is kept fixed at a plausible - but not necessarily optimized - geometry. This reduces the computational cost of the energy minimization. Applying the standard NMA on a partially optimized structure however results in spurious imaginary frequencies and unwanted coordinate dependence. The MBH avoids these unphysical effects by taking into account energy gradient corrections. Moreover the number of variables is reduced, which facilitates the diagonalization of the Hessian. In the original implementation of MBH, atoms could only be part of one rigid block. The MBH is now extended to the case where atoms can be part of two or more blocks. Two basic linkages can be realized: (1) blocks connected by one link atom, or (2) by two link atoms, where the latter is referred to as the hinge type connection. In this work we present the MBH concept and illustrate its performance with the crambin protein as an example.

  6. Normal mode analysis of macromolecular systems with the mobile block Hessian method

    NASA Astrophysics Data System (ADS)

    Ghysels, An; Van Speybroeck, Veronique; Van Neck, Dimitri; Brooks, Bernard R.; Waroquier, Michel

    2015-01-01

    Until recently, normal mode analysis (NMA) was limited to small proteins, not only because the required energy minimization is a computationally exhausting task, but also because NMA requires the expensive diagonalization of a 3Na×3Na matrix with Na the number of atoms. A series of simplified models has been proposed, in particular the Rotation-Translation Blocks (RTB) method by Tama et al. for the simulation of proteins. It makes use of the concept that a peptide chain or protein can be seen as a subsequent set of rigid components, i.e. the peptide units. A peptide chain is thus divided into rigid blocks with six degrees of freedom each. Recently we developed the Mobile Block Hessian (MBH) method, which in a sense has similar features as the RTB method. The main difference is that MBH was developed to deal with partially optimized systems. The position/orientation of each block is optimized while the internal geometry is kept fixed at a plausible - but not necessarily optimized - geometry. This reduces the computational cost of the energy minimization. Applying the standard NMA on a partially optimized structure however results in spurious imaginary frequencies and unwanted coordinate dependence. The MBH avoids these unphysical effects by taking into account energy gradient corrections. Moreover the number of variables is reduced, which facilitates the diagonalization of the Hessian. In the original implementation of MBH, atoms could only be part of one rigid block. The MBH is now extended to the case where atoms can be part of two or more blocks. Two basic linkages can be realized: (1) blocks connected by one link atom, or (2) by two link atoms, where the latter is referred to as the hinge type connection. In this work we present the MBH concept and illustrate its performance with the crambin protein as an example.

  7. Comparison of sympathetic nerve activity normalization procedures in conscious rabbits.

    PubMed

    Burke, Sandra L; Lim, Kyungjoon; Moretti, John-Luis; Head, Geoffrey A

    2016-05-01

    One of the main constraints associated with recording sympathetic nerve activity (SNA) in both humans and experimental animals is that microvolt values reflect characteristics of the recording conditions and limit comparisons between different experimental groups. The nasopharyngeal response has been validated for normalizing renal SNA (RSNA) in conscious rabbits, and in humans muscle SNA is normalized to the maximum burst in the resting period. We compared these two methods of normalization to determine whether either could detect elevated RSNA in hypertensive rabbits compared with normotensive controls. We also tested whether either method eliminated differences based only on different recording conditions by separating RSNA of control (sham) rabbits into two groups with low or high microvolts. Hypertension was induced by 5 wk of renal clipping (2K1C), 3 wk of high-fat diet (HFD), or 3 mo infusion of a low dose of angiotensin (ANG II). Normalization to the nasopharyngeal response revealed RSNA that was 88, 51, and 34% greater in 2K1C, HFD, and ANG II rabbits, respectively, than shams (P < 0.05), but normalization to the maximum burst showed no differences. The RSNA baroreflex followed a similar pattern whether RSNA was expressed in microvolts or normalized. Both methods abolished the difference between low and high microvolt RSNA. These results suggest that maximum burst amplitude is a useful technique for minimizing differences between recording conditions but is unable to detect real differences between groups. We conclude that the nasopharyngeal reflex is the superior method for normalizing sympathetic recordings in conscious rabbits. PMID:26921439

  8. Efficient forward and adjoint calculations of normal mode spectra in laterally heterogeneous earth models using an iterative direct solution method

    NASA Astrophysics Data System (ADS)

    Al-Attar, D.; Woodhouse, J. H.

    2011-12-01

    Normal mode spectra provide a valuable data set for global seismic tomography, and, notably, are amongst the few geophysical observables that are sensitive to lateral variations in density structure within the Earth. Nonetheless, the effects of lateral density variations on mode spectra are rather subtle. In order, therefore, to reliably determine density variations with in the earth, it is necessary to make use of sufficiently accurate methods for calculating synthetic mode spectra. In particular, recent work has highlighted the need to perform 'full-coupling calculations' that take into account the interaction of large numbers of spherical earth multiplets. However, present methods for performing such full-coupling calculations require diagonalization of large coupling matrices, and so become computationally inefficient as the number of coupled modes is increased. In order to perform full-coupling calculations more efficiently, we describe a new implementation of the direct solution method for calculating synthetic spectra in laterally heterogeneous earth models. This approach is based on the solution of the inhomogeneous mode coupling equations in the frequency domain, and does not require the diagonalization of large matrices. Early implementations of the direct solution method used LU-decomposition to solve the mode coupling equations. However, as the number of coupled modes is increased, this method becomes impractically slow. To circumvent this problem, we solve the mode coupling equations iteratively using the preconditioned biconjugate gradient algorithm. We present a number of numerical tests to display the accuracy and efficiency of this method for performing large full-coupling calculations. In addition, we describe a frequency-domain formulation of the adjoint method for the calculation of Frechet kernels that show the sensitivity of normal mode observations to variations in earth structure. The calculation of such Frechet kernels involves one solution

  9. Effects of Surface Water on Protein Dynamics Studied by a Novel Coarse-Grained Normal Mode Approach

    PubMed Central

    Zhou, Lei; Siegelbaum, Steven A.

    2008-01-01

    Normal mode analysis (NMA) has received much attention as a direct approach to extract the collective motions of macromolecules. However, the stringent requirement of computational resources by classical all-atom NMA limits the size of the macromolecules to which the method is normally applied. We implemented a novel coarse-grained normal mode approach based on partitioning the all-atom Hessian matrix into relevant and nonrelevant parts. It is interesting to note that, using classical all-atom NMA results as a reference, we found that this method generates more accurate results than do other coarse-grained approaches, including elastic network model and block normal mode approaches. Moreover, this new method is effective in incorporating the energetic contributions from the nonrelevant atoms, including surface water molecules, into the coarse-grained protein motions. The importance of such improvements is demonstrated by the effect of surface water to shift vibrational modes to higher frequencies and by an increase in overlap of the coarse-grained eigenvector space (the motion directions) with that obtained from molecular dynamics simulations of solvated protein in a water box. These results not only confirm the quality of our method but also point out the importance of incorporating surface structural water in studying protein dynamics. PMID:18212016

  10. Subpicosecond solitons in an actively mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Jones, D. J.; Haus, H. A.; Ippen, E. P.

    1996-11-01

    Experimental results are presented for a study of the stability regime of an actively mode-locked polarization-maintaining fiber ring laser used as a memory. Observations indicate that the pulse widths in the memory can be reduced (by soliton effects) by a factor of approximately 4.4 below the pulse widths predicted by standard active mode-locking theory. Stability regions for the solitons are mapped and compared with theoretical predictions.

  11. The quasi-normal modes of charged scalar fields in Kerr-Newman black hole and its geometric interpretation

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Tian, Yu; Wu, Xiaoning; Sun, Zhao-Yong

    2015-11-01

    It is well-known that there is a geometric correspondence between high-frequency quasi-normal modes (QNMs) and null geodesics (spherical photon orbits). In this paper, we generalize such correspondence to charged scalar field in Kerr-Newman space-time. In our case, the particle and black hole are all charged, so one should consider non-geodesic orbits. Using the WKB approximation, we find that the real part of quasi-normal frequency corresponds to the orbits frequency, the imaginary part of the frequency corresponds to the Lyapunov exponent of these orbits and the eigenvalue of angular equation corresponds to carter constant. From the properties of the imaginary part of quasi-normal frequency of charged massless scalar field, we can still find that the QNMs of charged massless scalar field possess the zero damping modes in extreme Kerr-Newman spacetime under certain condition which has been fixed in this paper.

  12. Default mode network connectivity in patients with idiopathic normal pressure hydrocephalus.

    PubMed

    Khoo, Hui Ming; Kishima, Haruhiko; Tani, Naoki; Oshino, Satoru; Maruo, Tomoyuki; Hosomi, Koichi; Yanagisawa, Takufumi; Kazui, Hiroaki; Watanabe, Yoshiyuki; Shimokawa, Toshio; Aso, Toshihiko; Kawaguchi, Atsushi; Yamashita, Fumio; Saitoh, Youichi; Yoshimine, Toshiki

    2016-02-01

    OBJECT Idiopathic normal pressure hydrocephalus (iNPH) is a neurological disorder characterized by gait disturbance, cognitive impairment, and incontinence. It is unclear whether the pathophysiology of iNPH is associated with alterations in the default mode network (DMN). The authors investigated alterations in the DMN of patients with iNPH and sought to determine whether a relationship exists between the resting-state functional connectivity of the DMN and a patient's clinical symptoms. METHODS Resting-state functional MRI (rs-fMRI) was performed in 16 preoperative patients with iNPH and 15 neurologically healthy control subjects of a similar age. Independent component and dual-regression analyses were used to quantify DMN connectivity. The patients' clinical symptoms were rated according to the iNPH grading scale (iNPHGS). Each of their specific clinical symptoms were rated according to the cognitive, gait, and urinary continence domains of iNPHGS, and neurocognitive status was assessed using the Mini-Mental State Examination, Frontal Assessment Battery (FAB), and Trail Making Test Part A. The strength of DMN connectivity was compared between patients and controls, and the correlation between DMN connectivity and iNPHGS was examined using both region of interest (ROI)-based analysis and voxel-based analysis. The correlation between DMN connectivity and each of the specific clinical symptoms, as well as neurocognitive status, was examined using voxel-based analysis. RESULTS Both ROI-based and voxel-based analyses revealed reduced DMN connectivity in patients with iNPH. ROI-based analysis showed increased DMN connectivity with worsening clinical symptoms of iNPH. Consistently, voxel-based analyses revealed that DMN connectivity correlated positively with the iNPHGS score, as well as the cognitive and urinary continence domain scores, and negatively with the FAB score. The significant peak in correlation in each case was localized to the precuneus. CONCLUSIONS This

  13. Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence.

    PubMed

    Ding, P; Liang, E J; Zhang, L; Zhou, Q; Yuan, Y X

    2009-01-01

    Compared to metallic composite metamaterials of double split-ring resonators with wires, double-ring resonators without additional wires are simple to engineer. In this paper, we have numerically studied the transmittance of double split- and closed-ring resonators at normal-to-plane incidence and identified their fundamental resonance modes. It is found that the antisymmetric and symmetric resonance modes originate from the out-of-phase and in-phase oscillations of surface charges in the neighboring legs of the double-ring resonators, respectively. The coupling of the antiparallel induced currents in the neighboring legs gives rise to magnetic resonance and consequently negative permeability of the antisymmetric mode. The negative refraction transmission of the double-ring resonators at normal-to-plane incidence is verified by dispersion curve and wedge-shaped model simulations. Our study provides a route to negative refraction metamaterial design by using the antisymmetric resonance mode of the simple double-ring structure at normal-to-plane incidence which is of particular importance for the terahertz and infrared domain. PMID:19257157

  14. The influence of phase-locking on internal resonance from a nonlinear normal mode perspective

    NASA Astrophysics Data System (ADS)

    Hill, T. L.; Neild, S. A.; Cammarano, A.; Wagg, D. J.

    2016-09-01

    When a nonlinear system is expressed in terms of the modes of the equivalent linear system, the nonlinearity often leads to modal coupling terms between the linear modes. In this paper it is shown that, for a system to exhibit an internal resonance between modes, a particular type of nonlinear coupling term is required. Such terms impose a phase condition between linear modes, and hence are denoted phase-locking terms. The effect of additional modes that are not coupled via phase-locking terms is then investigated by considering the backbone curves of the system. Using the example of a two-mode model of a taut horizontal cable, the backbone curves are derived for both the case where phase-locked coupling terms exist, and where there are no phase-locked coupling terms. Following this, an analytical method for determining stability is used to show that phase-locking terms are required for internal resonance to occur. Finally, the effect of non-phase-locked modes is investigated and it is shown that they lead to a stiffening of the system. Using the cable example, a physical interpretation of this is provided.

  15. Brain cholinesterase activity of apparently normal wild birds

    USGS Publications Warehouse

    Hill, E.F.

    1988-01-01

    Organophosphorus and carbamate pesticides are potent anticholinesterase substances that have killed large numbers of wild birds of various species. Cause of death is diagnosed by demonstration of depressed brain cholinesterase (ChE) activity in combination with chemical detection of anticholinesterase residue in the affected specimen. ChE depression is determined by comparison of the affected specimen to normal ChE activity for a sample of control specimens of the same species, but timely procurement of controls is not always possible. Therefore, a reference file of normal whole brain ChE activity is provided for 48 species of wild birds from North America representing 11 orders and 23 families for use as emergency substitutes in diagnosis of anticholinesterase poisoning. The ChE values, based on 83 sets of wild control specimens from across the United States, are reproducible provided the described procedures are duplicated. Overall, whole brain ChE activity varied nearly three-fold among the 48 species represented, but it was usually similar for closely related species. However, some species were statistically separable in most families and some species of the same genus differed as much as 50%.

  16. The Coupled Spectral Element/Normal Mode Method: Application to the Testing of Several Approximations Based on Normal Mode Theory for the Computation of Seismograms in a Realistic 3D Earth.

    NASA Astrophysics Data System (ADS)

    Capdeville, Y.; Gung, Y.; Romanowicz, B.

    2002-12-01

    The spectral element method (SEM) has recently been adapted successfully for global spherical earth wave propagation applications. Its advantage is that it provides a way to compute exact seismograms in a 3D earth, without restrictions on the size or wavelength of lateral heterogeneity at any depth, and can handle diffraction and other interactions with major structural boundaries. Its disadvantage is that it is computationally heavy. In order to partly address this drawback, a coupled SEM/normal mode method was developed (Capdeville et al., 2000). This enables us to more efficiently compute bodywave seismograms to realistically short periods (10s or less). In particular, the coupled SEM/normal mode method is a powerful tool to test the validity of some analytical approximations that are currently used in global waveform tomography, and that are considerably faster computationally. Here, we focus on several approximations based on normal mode perturbation theory: the classical "path-average approximation" (PAVA) introduced by Woodhouse and Dziewonski (1984) and well suited for fundamental mode surface waves (1D sensitivity kernels); the non-linear asymptotic coupling theory (NACT), which introduces coupling between mode branches and 2D kernels in the vertical plane containing the source and the receiver (Li and Tanimoto, 1993; Li and Romanowicz, 1995); an extension of NACT which includes out of plane focusing terms computed asymptotically (e.g. Romanowicz, 1987) and introduces 3D kernels; we also consider first order perturbation theory without asymptotic approximations, such as developed for example by Dahlen et al. (2000). We present the results of comparisons of realistic seismograms for different models of heterogeneity, varying the strength and sharpness of the heterogeneity and its location in depth in the mantle. We discuss the consequences of different levels of approximations on our ability to resolve 3D heterogeneity in the earth's mantle.

  17. Joint inversion of normal-mode and finite-frequency S-wave data using an irregular tomographic grid

    NASA Astrophysics Data System (ADS)

    Zaroli, Christophe; Lambotte, Sophie; Lévêque, Jean-Jacques

    2015-12-01

    Global-scale tomographic models should aim at satisfying the full seismic spectrum. For this purpose, and to better constrain isotropic 3-D variations of shear velocities in the mantle, we tackle a joint inversion of spheroidal normal-mode structure coefficients and multiple-frequency S-wave delay times. In all previous studies for which normal modes were jointly inverted for, with body and/or surface waves, the mantle was laterally parametrized with uniform basis functions, such as spherical harmonics, equal-area blocks and evenly spaced spherical splines. In particular, spherical harmonics naturally appear when considering the Earth's free oscillations. However, progress towards higher resolution joint tomography requires a movement away from such uniform parametrization to overcome its computational inefficiency to adapt to local variations in resolution. The main goal of this study is to include normal modes into a joint inversion based upon a non-uniform parametrization that is adapted to the spatially varying smallest resolving length of the data. Thus, we perform the first joint inversion of normal-mode and body-wave data using an irregular tomographic grid, optimized according to ray density. We show how to compute the projection of 3-D sensitivity kernels for both data sets onto our parametrization made up of spherical layers spanned with irregular Delaunay triangulations. This approach, computationally efficient, allows us to map into the joint model multiscale structural informations from data including periods in the 10-51 s range for body waves and 332-2134 s for normal modes. Tomographic results are focused on the 400-2110 km depth range, where our data coverage is the most relevant. We discuss the potential of a better resolution where the grid is fine, compared to spherical harmonics up to degree 40, as the number of model parameters is similar. Our joint model seems to contain coherent structural components beyond degree 40, such as those related

  18. Active Suppression of the Transonic Flutter Using Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Degaki, Takanori; Suzuki, Shinji

    This paper describes two-dimensional active flutter suppression to cope with the transonic dip using the sliding mode control. The airfoil model has plunge and pitch degrees of freedom with leading and trailing edge control surfaces. The aerodynamic forces acting on the airfoil, lift and pitching moment, are calculated by solving Euler's equations using computational fluid dynamics. At a specific altitude, flutter occurs between Mach number of 0.7 and 0.88, which corresponds to the transonic dip. The sliding mode control makes the airfoil to be stable all through the Mach number including the transonic dip. The sliding mode controller gives wider flutter margin than a linear quadratic regulator. These characteristics indicate that the sliding mode control is useful for active flutter suppression in the transonic flight.

  19. Stable, accurate and efficient computation of normal modes for horizontal stratified models

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Chen, Xiaofei

    2016-08-01

    We propose an adaptive root-determining strategy that is very useful when dealing with trapped modes or Stoneley modes whose energies become very insignificant on the free surface in the presence of low-velocity layers or fluid layers in the model. Loss of modes in these cases or inaccuracy in the calculation of these modes may then be easily avoided. Built upon the generalized reflection/transmission coefficients, the concept of `family of secular functions' that we herein call `adaptive mode observers' is thus naturally introduced to implement this strategy, the underlying idea of which has been distinctly noted for the first time and may be generalized to other applications such as free oscillations or applied to other methods in use when these cases are encountered. Additionally, we have made further improvements upon the generalized reflection/transmission coefficient method; mode observers associated with only the free surface and low-velocity layers (and the fluid/solid interface if the model contains fluid layers) are adequate to guarantee no loss and high precision at the same time of any physically existent modes without excessive calculations. Finally, the conventional definition of the fundamental mode is reconsidered, which is entailed in the cases under study. Some computational aspects are remarked on. With the additional help afforded by our superior root-searching scheme and the possibility of speeding calculation using a less number of layers aided by the concept of `turning point', our algorithm is remarkably efficient as well as stable and accurate and can be used as a powerful tool for widely related applications.

  20. Stable, accurate and efficient computation of normal modes for horizontal stratified models

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Chen, Xiaofei

    2016-06-01

    We propose an adaptive root-determining strategy that is very useful when dealing with trapped modes or Stoneley modes whose energies become very insignificant on the free surface in the presence of low-velocity layers or fluid layers in the model. Loss of modes in these cases or inaccuracy in the calculation of these modes may then be easily avoided. Built upon the generalized reflection/transmission coefficients, the concept of "family of secular functions" that we herein call "adaptive mode observers", is thus naturally introduced to implement this strategy, the underlying idea of which has been distinctly noted for the first time and may be generalized to other applications such as free oscillations or applied to other methods in use when these cases are encountered. Additionally, we have made further improvements upon the generalized reflection/transmission coefficient method; mode observers associated with only the free surface and low-velocity layers (and the fluid/solid interface if the model contains fluid layers) are adequate to guarantee no loss and high precision at the same time of any physically existent modes without excessive calculations. Finally, the conventional definition of the fundamental mode is reconsidered, which is entailed in the cases under study. Some computational aspects are remarked on. With the additional help afforded by our superior root-searching scheme and the possibility of speeding calculation using a less number of layers aided by the concept of "turning point", our algorithm is remarkably efficient as well as stable and accurate and can be used as a powerful tool for widely related applications.

  1. Instantaneous normal mode theory of diffusion and the potential energy landscape: Application to supercooled liquid CS2

    NASA Astrophysics Data System (ADS)

    Li, Wu-Xiong; Keyes, T.

    1999-09-01

    The pure translation (TR) imaginary-frequency (or unstable) instantaneous normal modes (INM), which we have proposed as representative of barrier crossing and diffusion, are obtained for seven densities and eight temperatures of supercooled and near-melting liquid CS2 via computer simulation. The self-diffusion constant D, with a range of over two decades, has been determined previously for these 56 states [Li and Keyes, J. Chem. Phys. 111, 328 (1999)], allowing a comprehensive test of the relation of INM to diffusion. INM theory is reviewed and extended. At each density Arrhenius T-dependence is found for the fraction fu of unstable modes, for the product <ω>ufu of the fraction times the averaged unstable frequency, and for D. The T-dependence of D is captured very accurately by fu at higher densities and by <ω>ufu at lower densities. Since the T-dependence of <ω>u is weak at high density, the formula D∝<ω>ufu provides a good representation at all densities; it is derived for the case of low-friction barrier crossing. Density-dependent activation energies determined by Arrhenius fits to <ω>ufu are in excellent agreement with those found from D. Thus, activation energies may be obtained with INM, requiring far less computational effort than an accurate simulation of D in supercooled liquids. Im-ω densities of states, <ρuTR(ω,T)>, are fit to the function a(T)ω exp[-(a2(T)ω/√T )a3(T)]. The strong T-dependence of D, absent in Lennard-Jones (LJ) liquids, arises from the multiplicative factor a(T); its activation energy is determined by the inflection-point energy on barriers to diffusion. Values of the exponent a3(T) somewhat greater than 2.0 suggest that liquid CS2 is nonfragile in the extended Angell-Kivelson scheme for the available states. A striking contrast is revealed between CS2 and LJ; a3→2 at low-T in CS2 and at high-T in LJ. The INM interpretation is that barrier height fluctuations in CS2 are negligible at low-T but grow with increasing T

  2. Field evolution of the magnetic normal modes in elongated permalloy nanometric rings.

    PubMed

    Gubbiotti, G; Madami, M; Tacchi, S; Carlotti, G; Pasquale, M; Singh, N; Goolaup, S; Adeyeye, A O

    2007-10-10

    The eigenmode spectrum of elongated permalloy rings with relatively wide arms is investigated by combined Brillouin light scattering and ferromagnetic resonance measurements as a function of the applied field intensity, encompassing both vortex and onion ground states. To reproduce the frequencies and the spatial profiles of the measured modes we performed micromagnetic simulations which solve the discretized Landau-Lifshitz-Gilbert equation in the time domain and calculate locally the Fourier transform. This allowed us to correlate the field dependence of different modes to their localization inside different portions of the rings. With the rings in the vortex ground state, in addition to radial, fundamental, and azimuthal modes, a localized mode, existing in the element portions where the internal field assumes its minima, has been measured and identified. This latter mode, whose frequency decreases for increasing field intensity, becomes soft near the transition from vortex to onion state and determines the change in symmetry of the magnetic ground state. After the transition, it is replaced by two edge modes, localized on the internal and external boundary of the rings, respectively. PMID:22049127

  3. Field evolution of the magnetic normal modes in elongated permalloy nanometric rings

    NASA Astrophysics Data System (ADS)

    Gubbiotti, G.; Madami, M.; Tacchi, S.; Carlotti, G.; Pasquale, M.; Singh, N.; Goolaup, S.; Adeyeye, A. O.

    2007-10-01

    The eigenmode spectrum of elongated permalloy rings with relatively wide arms is investigated by combined Brillouin light scattering and ferromagnetic resonance measurements as a function of the applied field intensity, encompassing both vortex and onion ground states. To reproduce the frequencies and the spatial profiles of the measured modes we performed micromagnetic simulations which solve the discretized Landau-Lifshitz-Gilbert equation in the time domain and calculate locally the Fourier transform. This allowed us to correlate the field dependence of different modes to their localization inside different portions of the rings. With the rings in the vortex ground state, in addition to radial, fundamental, and azimuthal modes, a localized mode, existing in the element portions where the internal field assumes its minima, has been measured and identified. This latter mode, whose frequency decreases for increasing field intensity, becomes soft near the transition from vortex to onion state and determines the change in symmetry of the magnetic ground state. After the transition, it is replaced by two edge modes, localized on the internal and external boundary of the rings, respectively.

  4. The Thermal Activity of Normal and Malignant Tissues

    PubMed Central

    Cheng, Li-Yao

    1998-01-01

    The usefulness of metabolic heat measurements in quantifying the response of a solid tumour to anticancer treatment was evaluated. The heat production characteristic of malignant tissues, as measured from human stomach, breast and liver cancer samples, was observed to be inconsistent, and its value could be higher or lower than that of its normal tissue of origin. The various thermal activity responses of an experimental rat hepatoma to hepatic artery ligation, cryotherapy, intra-arterial (i.a) Adriamycin (2.4 mg/ kg), i.a. Norcantharidin (0.5 mg/kg) were next studied. The tumour/liver (T/L) ratio of untreated tumour-bearing rats was 0.83 but this fell to a minimum at 24 h in both the hepatic artery ligation and the cryosurgery groups. In these two groups marked fluctuations in the heat production of normal liver occurred with poor recovery of the T/ L ratio even at 2--3 weeks. In the Adriamycin group, the T/L ratio dropped to a minimum at 5 days, and in the Norcantharidin group, at 3 days. Minimal disturbances in the thermal activity of liver tissue occured in these two chemotherapy groups and the T/L ratio recovered by 3 weeks. Norcantharidin appeared as efficacious as Adriamycin in the treatment of hepatoma when evaluated in terms of thermal activity. PMID:9893237

  5. Infrared spectrum and normal-mode assignment in methyl-ammonium lead halide perovskite CH3NH3PbI3

    NASA Astrophysics Data System (ADS)

    Perez Osorio, Miguel Angel; Filip, Marina; Docherty, Callum; Herz, Laura; Johnston, Michael; Giustino, Feliciano

    2015-03-01

    Solar cells based on MAPbI3 (MA=CH3NH3) have attracted enormous attention during the past two years owing to their high energy-conversion efficiency, reaching up to 19.3 % in record devices. A detailed understanding of the structure/property relations of this compound may help us explain its extraordinary performance. Here, we investigate the vibrational modes and infrared (IR) absorption spectrum of MAPbI3 by combining first-principles calculations and experiment. Our calculations indicate that the normal modes at high frequency, 400-3100 cm-1, correspond to internal vibrations of the MA cations, whereas those at low frequency, up to 180 cm-1, can be assigned either to vibrations of the PbI nework or to the libration and spinning of the cations. Using a factor group analysis we establish the symmetry of the normal modes and predict which mode will be IR or Raman active. In order to confirm these assignments we explicitly calculate the IR spectrum of the MAPbI3. The calculated spectrum is in good agreement with experiment, therefore we now have a complete characterization of the vibrational properties of MAPbI3. This work will serve as a solid reference for future structural and characterization studies of hybrid organic-inorganic perovskites.

  6. Simultaneous chiral discrimination of multiple profens by cyclodextrin-modified capillary electrophoresis in normal and reversed polarity modes.

    PubMed

    La, Sookie; Kim, Jiyung; Kim, Jung-Han; Goto, Junichi; Kim, Kyoung-Rae

    2003-08-01

    Simultaneous enantioseparations of nine profens for their accurate chiral discrimination were achieved by capillary electrophoresis (CE) in the normal polarity (NP) mode with a single cyclodextrin (CD) system and in the reversed polarity (RP) mode with a dual CD system. The single CD system in the NP mode employed heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMbetaCD) added at 75 mM-100 mM 2-(N-morpholino)ethanesulfonic acid buffer (pH 6.0) as the optimum run buffer. The dual CD system operated in the RP mode used 30 mM TMbetaCD and 1.0% anionic carboxymethyl-beta-cyclodextrin dissolved in pH 3.0, 100 mM phosphoric acid-triethanolamine buffer containing 0.01% hexadimethrine bromide added to reverse the electroosmotic flow. Fairly good enantiomeric resolutions and the opposite enantiomer migration orders were achieved in the two modes. Relative migration times to internal standard under respective optimum conditions were characteristic of each enantiomer with good precision (< 2% relative standard deviation, RSD), thereby enabling to crosscheck the chemical identification of profens and also their accurate chiralities. The method linearity in the two modes was found to be adequate (r > or = 0.9991) for the chiral assay of the profens investigated. Simultaneous enantiomeric purity test of ibuprofen, ketoprofen and flurbiprofen in a mixture was feasible in a single analysis by the present method. PMID:12900877

  7. High-power Kerr-lens mode-locked thin-disk oscillator in the anomalous and normal dispersion regimes

    NASA Astrophysics Data System (ADS)

    Pronin, Oleg; Brons, Jonathan; Seidel, Marcus; Lücking, Fabian; Grasse, Christian; Boehm, Gerhard; Amann, Marcus C.; Pervak, Vladimir; Apolonski, Alexander; Kalashnikov, Vladimir L.; Krausz, Ferenc

    2013-03-01

    A femtosecond thin-disk Yb:YAG oscillator in both the anomalous and the normal dispersion regime is demonstrated. Both regimes are realized with practically the same resonator configuration. The power scaling potential of the anomalous and normal dispersion regimes is analyzed both theoretically and experimentally. The recipe to obtain Kerr-lens mode-locking (KLM) in the thin-disk configuration is presented here and oscillator characteristics as well as start-up difficulties are described. The oscillator stability in terms of output power, beam pointing and sensitivity to back reflections is measured and corresponds to the level of commercial systems.

  8. Calculation, normalization, and perturbation of quasinormal modes in coupled cavity-waveguide systems.

    PubMed

    Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2014-11-15

    We show how one can use a nonlocal boundary condition, which is compatible with standard frequency domain methods, for numerical calculation of quasinormal modes in optical cavities coupled to waveguides. In addition, we extend the definition of the quasinormal mode norm by use of the theory of divergent series to provide a framework for modeling of optical phenomena in such coupled cavity-waveguide systems. As example applications, we calculate the Purcell factor and study perturbative changes in the complex resonance frequency of a photonic crystal cavity coupled to a defect waveguide. PMID:25490468

  9. Drive Train Normal Modes Analysis for the ERDA/NASA 100-Kilowatt Wind Turbine Generator

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.; Miller, D. R.; Spera, D. A.

    1977-01-01

    Natural frequencies, as a function of power were determined using a finite element model. Operating conditions investigated were operation with a resistive electrical load and operation synchronized to an electrical utility grid. The influence of certain drive train components on frequencies and mode shapes is shown. An approximate method for obtaining drive train natural frequencies is presented.

  10. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  11. A Pictorial Visualization of Normal Mode Vibrations of the Fullerene (C[subscript 60]) Molecule in Terms of Vibrations of a Hollow Sphere

    ERIC Educational Resources Information Center

    Dunn, Janette L.

    2010-01-01

    Understanding the normal mode vibrations of a molecule is important in the analysis of vibrational spectra. However, the complicated 3D motion of large molecules can be difficult to interpret. We show how images of normal modes of the fullerene molecule C[subscript 60] can be made easier to understand by superimposing them on images of the normal…

  12. Characterization of mode-locking in an all-fiber, all normal dispersion ytterbium based fiber oscillator

    NASA Astrophysics Data System (ADS)

    Cserteg, András.; Sági, Veronika; Drozdy, András.; Varallyay, Zoltán.; Gajdátsy, Gábor

    2015-03-01

    An ytterbium based all fiber, all normal dispersion fiber oscillator with integrated SESAM can have several operation modes like mode-locked, Q-switched and noise-like. To know and to control the quality of the mode-locking is essential for the application of such laser oscillators, otherwise the whole laser setup can be damaged or the expected operation characteristics of the oscillator driven systems cannot be achieved. Usually the two-photon signal generated by the short pulses is used to indicate the mode locked operation, however such detection can be misleading in certain cases and not always able to predict the forthcoming degradation or vanishing of mode locking. The characterization method that we propose uses only the radio frequency spectrum of the oscillator output and can identify the different operation regimes of our laser setup. The optical spectra measured simultaneously with the RF signals proves the reliability of our method. With this kind of characterization stable mode locking can be initiated and maintained during the laser operation. The method combined with the ability to align the polarization states automatically in the laser cavity leads to the possibility to record a polarization map where the stability domains can be identified and classified. With such map the region where the mode locking is self starting and maintainable with minimal polarization alignment can be selected. The developed oscillator reported here with its compact setup and self alignment ability can be a reliable source with long term error free operation without the need of expensive monitoring tools.

  13. A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca(2+)-ATPase.

    PubMed Central

    Li, Guohui; Cui, Qiang

    2002-01-01

    A block normal mode (BNM) algorithm, originally proposed by Tama et al., (Proteins Struct. Func. Genet. 41:1-7, 2000) was implemented into the simulation program CHARMM. The BNM approach projects the hessian matrix into local translation/rotation basis vectors and, therefore, dramatically reduces the size of the matrix involved in diagonalization. In the current work, by constructing the atomic hessian elements required in the projection operation on the fly, the memory requirement for the BNM approach has been significantly reduced from that of standard normal mode analysis and previous implementation of BNM. As a result, low frequency modes, which are of interest in large-scale conformational changes of large proteins or protein-nucleic acid complexes, can be readily obtained. Comparison of the BNM results with standard normal mode analysis for a number of small proteins and nucleic acids indicates that many properties dominated by low frequency motions are well reproduced by BNM; these include atomic fluctuations, the displacement covariance matrix, vibrational entropies, and involvement coefficients for conformational transitions. Preliminary application to a fairly large system, Ca(2+)-ATPase (994 residues), is described as an example. The structural flexibility of the cytoplasmic domains (especially domain N), correlated motions among residues on domain interfaces and displacement patterns for the transmembrane helices observed in the BNM results are discussed in relation to the function of Ca(2+)-ATPase. The current implementation of the BNM approach has paved the way for developing efficient sampling algorithms with molecular dynamics or Monte Carlo for studying long-time scale dynamics of macromolecules. PMID:12414680

  14. Normal-Mode Splitting in the Coupled System of Hybridized Nuclear Magnons and Microwave Photons.

    PubMed

    Abdurakhimov, L V; Bunkov, Yu M; Konstantinov, D

    2015-06-01

    In the weak ferromagnetic MnCO_{3} system, a low-frequency collective spin excitation (magnon) is the hybridized oscillation of nuclear and electron spins coupled through the hyperfine interaction. By using a split-ring resonator, we performed transmission spectroscopy measurements of the MnCO_{3} system and observed avoided crossing between the hybridized nuclear magnon mode and the resonator mode in the NMR-frequency range. The splitting strength is quite large due to the large spin density of ^{55}Mn, and the cooperativity value C=0.2 (the magnon-photon coupling parameter) is close to the conditions of strong coupling. The results reveal a new class of spin systems, in which the coupling between nuclear spins and photons is mediated by electron spins via the hyperfine interaction. PMID:26196633

  15. QUANTUM MODE-COUPLING THEORY: Formulation and Applications to Normal and Supercooled Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Rabani, Eran; Reichman, David R.

    2005-05-01

    We review our recent efforts to formulate and study a mode-coupling approach to real-time dynamic fluctuations in quantum liquids. Comparison is made between the theory and recent neutron scattering experiments performed on liquid ortho-deuterium and para-hydrogen. We discuss extensions of the theory to supercooled and glassy states where quantum fluctuations compete with thermal fluctuations. Experimental scenarios for quantum glassy liquids are briefly discussed.

  16. [Intravesical active prostate bleeding diagnosed in B-mode ultrasound].

    PubMed

    Kirchgesner, T; Danse, E; Tombal, B

    2013-09-01

    Hematuria is one of the most frequent minor complications after prostatic biopsy. We would like to report the case of a 68-year-old patient with massive hematuria after prostatic biopsy and intravesical active prostate bleeding diagnosed in B-mode ultrasonography. PMID:24034804

  17. A Simple Reduction Process for the Normal Vibrational Modes Occurring in Linear Molecules

    ERIC Educational Resources Information Center

    McInerny, William

    2005-01-01

    The students in molecular spectroscopy courses are often required to determine the permitted normal vibrations for linear molecules that belong to particular groups. The reducible group representations generated by the use of Cartesian coordinates can be reduced by the use of a simple algebraic process applied to the group representations. The…

  18. Engaging in activities involving information technology: dimensions, modes, and flow.

    PubMed

    Montgomery, Henry; Sharafi, Parvaneh; Hedman, Leif R

    2004-01-01

    An engagement mode involves a subject (e.g., a user of information technology, or IT) who is engaged in an activity with an object in a certain manner (the mode). The purpose of this study is to develop a general model of engagement modes that may be used for understanding how IT-related activities are shaped by properties of the user and the IT object. A questionnaire involving items on IT engagement and the experience of flow was administered to 300 participants. The results supported an engagement mode (EM) model involving 5 different engagement modes (enjoying/acceptance, ambition/curiosity, avoidance/hesitation, frustration/ anxiety, and efficiency/productivity) characterized on 3 dimensions (evaluation of object, locus of control between subject and object, and intrinsic or extrinsic focus of motivation). The flow experience follows from a balance between enjoying/ acceptance and efficiency/productivity propelled by ambition/curiosity. The EM model could provide a platform for considering how IT users, IT applications, and IT environments should work together to yield both enjoyment and efficiency. Actual or potential applications of this research include designing IT training programs on different levels of specificity. PMID:15359681

  19. Normal-mode spectrum of finite-sized granular systems: The effects of fluid viscosity at the grain contacts

    NASA Astrophysics Data System (ADS)

    Valenza, John; Johnson, David Linton

    2012-04-01

    We investigate the effects of adsorbed films on the attenuative properties of loose granular media occupying a finite-sized rigid container that is open at the top. We measure the effective mass, M˜(ω), of loose tungsten particles prepared under two different sets of conditions: (i) We lightly coat tungsten grains with a fixed volume fraction of silicone oil (polydimethylsiloxane, PDMS), where the liquid viscosity is varied for individual realizations, and (ii) in the other set of experiments we vary the humidity. On a theoretical level, we are able to decompose the effective mass into a sum over the contributions from each of the normal modes of the granular medium. Our results indicate that increasing either the PDMS viscosity or the humidity, as the case may be, markedly increases the damping rate of each normal mode relevant to our measurements. However, there is appreciable damping even in the absence of any macroscopic film. With a notable exception in the case of the highest humidity in the humidity-controlled experiments, all the relevant modes are weakly damped in the sense of a microscopic theory based on damped contact forces between rigid particles.

  20. Flexibly controllable multi-pulse mode-locked MOPA Yb-doped fiber laser in all normal dispersion regime

    NASA Astrophysics Data System (ADS)

    Bu, Chenxi; Wang, Chinhua

    2013-09-01

    A Controllable, high energy, all normal dispersion (ANDi), passively mode-locked Yb-doped fiber laser is demonstrated with a Master Oscillator Power-Amplifier (MOPA) structure. The mode-locking is achieved by nonlinear polarization evolution (NPE). different types of laser pulse are achieved from fundamental mode-locked (FML) single pulse to twin pulse and then to harmonically mode-locked (HML) pulses (the maximum order is 7 times) by adjusting quarter-wave plates (QWPS) and a half-wave plate (HWP) in our system. Using a cascaded long-period fiber grating as the spectral filter, the center wavelength of our laser is fixed at 1034nm.The repetition frequency rate of the FML pulse is 1.53MHz with a pulse width of 817ps. The maximum average energy is 450 mW and the maximum pulse energy of FML single pulse is 294 nJ. Besides, the 517nm green laser output is also achieved by using a LiB3O5 (LBO) crystal as the frequency doubling crystal. The maximum average of the green pulse is 4.71mW.

  1. A comparison of the bounded derivative and the normal mode initialization methods using real data. [in numerical weather forecasting

    NASA Technical Reports Server (NTRS)

    Semazzi, F. H. M.; Navon, I. M.

    1985-01-01

    A bounded derivative initialization method (BDI) formerly used only in theoretical studies to balance gravitational wave influences is extended to a real world data set and the results are compared with those from a normal mode initialization (NMI). BDI proceeds by defining the characteristic scales of motion of interest and then constraining the time derivatives to match motions on a slow scale. A global barotropic model which considers orographic forcing is initialized by the scaled balance equations of the BDI scheme, which uses vorticity alone to achieve an initial balanced state. An external mode projector is employed to realize the NMI scheme, and five Machenhauer iterations reduce the total balance by four orders of magnitude. The initial states generated with both schemes are essentially equivalent, including the time evolution of a height field and divergence behavior being centered around regions of high orographic elevation.

  2. Oscillating activity of a calcium-activated K+ channel in normal and cancerous mammary cells in culture.

    PubMed

    Enomoto, K; Furuya, K; Maeno, T; Edwards, C; Oka, T

    1991-01-01

    Calcium-activated potassium channels were the channels most frequently observed in primary cultured normal mammary cell and in the established mammary tumor cell, MMT060562. In both cells, single-channel and whole-cell clamp recordings sometimes showed slow oscillations of the Ca2(+)-gated K+ current. The characteristics of the Ca2(+)-activated K+ channels in normal and cancerous mammary cells were quite similar. The slope conductances changed from 8 to 70 pS depending on the mode of recording and the ionic composition in the patch electrode. The open probability of this channel increased between 0.1 to 1 microM of the intracellular Ca2+, but it was independent of the membrane potential. Charybdotoxin reduced the activity of the Ca2(+)-activated K+ channel and the oscillation of the membrane current, but apamin had no apparent effect. The application of tetraethylammonium (TEA) from outside and BaCl2 from inside of the cell diminished the activity of the channel. The properties of this channel were different from those of both the large conductance (BK or MAXI K) and small conductance (SK) type Ca2(+)-activated K+ channels. PMID:1710671

  3. Waveform Modeling of 3D Structure of D" Region Using A Coupled SEM/Normal Mode Approach

    NASA Astrophysics Data System (ADS)

    To, A.; Gung, Y.; Capadeville, Y.; Romanowicz, B.

    2003-12-01

    The presence of strong lateral heterogeneity in D" is now well documented and presents challenges for seismic modeling. The main challenges are the limited global sampling of D" and the theoretical limits of validity of the present modeling tools, such as standard ray theory and mode approaches. We use coupled normal mode/Spectral Element Method (SEM) to compute synthetic seismograms of Sdiff in the D" part of a tomographic model(SAW24b16, Mégnin and Romanowicz, 2000) down to corner frequency 1/12s. SEM allows to take into account strong heterogeneity in a rigorous manner. The coupled method is much faster than standard SEM, when the numerical part of the computation is restricted to the D" region. In the rest of the mantle, the wave field is computed using efficient normal mode summation. As a first step, we consider a radially symmetric model outside of the D" region, and compare Sdiff synthetics with observed waveforms for a collection of deep earthquakes, for which the effect of strong heterogeneity in the crust and upper mantle is avoided. Observed and synthetic travel time trends are very consistent and in many cases the observed residuals are significantly larger. This indicates that the tomographic model only represents the smooth features of the real structure. Observed waveform amplitudes and SEM synthetics are somewhat less consistent. We compare the predictions for 800 Sdiff phases using SEM with those obtained by more approximate methods : ray theory and NACT (Non-linear asymptotic coupling theory, a normal mode perturbation approach). We discuss systematic trends in the travel times predicted by the different methods, compared to observations. Starting with the tomographic model, and correcting for mantle structure outside of D" using approximate NACT predictions, we next invert for perturbations to the tomographic model, using the coupled SEM/mode computation for the forward part of the modeling, in several regions of D" under the Pacific, which are

  4. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser at 1060 nm

    NASA Astrophysics Data System (ADS)

    Bowen, Patrick; Singh, Harman; Runge, Antoine; Provo, Richard; Broderick, Neil G. R.

    2016-04-01

    We report an all-normal-dispersion, all-fibre, all-PM, laser operating at a central wavelength of 1060 nm. The laser is mode-locked using a nonlinear amplifying loop mirror and generates linearly polarised pulses that can be compressed to 360 fs. The laser is based on our earlier scheme operating at 1030 nm [1] and we discuss the similarities and differences between the two configurations. We also present amplification up to an output power of 1 W using a commercially built amplifier and show through numerical methods that this pulse may be recompressible to 1.65 ps.

  5. Three-dimensional volume-rendered imaging of normal and abnormal fetal fluid-filled structures using inversion mode.

    PubMed

    Hata, Toshiyuki; Mori, Nobuhiro; Tenkumo, Chiaki; Hanaoka, Uiko; Kanenishi, Kenji; Tanaka, Hirokazu

    2011-11-01

    A total of six normal and eight abnormal fetuses at 16-38 weeks of gestation were studied using transabdominal three-dimensional sonography with an inversion mode. In normal fetuses, the stomach, gallbladder and bladder could be depicted. In particular, peristalsis of the stomach was noted. In the case of holoprosencephaly, fused hemispheres were evident. In the case of hydrocephalus, the enlargement of ventricular cavities was noted. In the case of bilateral pleural effusion, the spatial relationship and size of the effusions were depicted. In the case of meconium peritonitis, the spatial relationship between the dilated intestines and ascites was depicted. In two cases of hydronephrosis, the dilated renal pelvis and calyces were clearly shown. In the case of multicystic dysplastic kidney, the number and size of cysts were clearly identified. In the case of left ovarian cyst, the anatomical relationships among the ovarian cyst, kidney, stomach and bladder could be easily understood. PMID:21790889

  6. Quasi-normal modes of a massless scalar field around the 5D Ricci-flat black string

    NASA Astrophysics Data System (ADS)

    Liu, Molin; Liu, Hongya; Gui, Yuanxing

    2008-05-01

    As one candidate of the higher dimensional black holes, the 5D Ricci-flat black string is considered in this paper. By means of a non-trivial potential Vn, the quasi-normal modes of a massless scalar field around this black string space are studied. By using the classical third-order WKB approximation, we carefully analyze the evolution of frequencies in two aspects, one is the induced cosmological constant Λ and the other is the quantum number n. The massless scalar field decays more slowly because of the existence of the fifth dimension and the induced cosmological constant. If an extra dimension has in fact existed near the black hole, the quasi-normal frequencies may have some indication of it.

  7. Meditation leads to reduced default mode network activity beyond an active task.

    PubMed

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  8. Meditation leads to reduced default mode network activity beyond an active task

    PubMed Central

    Garrison, Kathleen A.; Zeffiro, Thomas A.; Scheinost, Dustin; Constable, R. Todd; Brewer, Judson A.

    2015-01-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest despite other studies reporting differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, this study compared meditation to another active cognitive task, both to replicate findings that meditation is associated with relatively reduced default mode network activity, and to extend these findings by testing whether default mode activity was reduced during meditation beyond the typical reductions observed during effortful tasks. In addition, prior studies have used small groups, whereas the current study tested these hypotheses in a larger group. Results indicate that meditation is associated with reduced activations in the default mode network relative to an active task in meditators compared to controls. Regions of the default mode showing a group by task interaction include the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that suppression of default mode processing may represent a central neural process in long-term meditation, and suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  9. Consistent porphyrin force field. 1. Normal-mode analysis for nickel porphine and nickel tetraphenylporphine from resonance Raman and infrared spectra and isotope shifts

    SciTech Connect

    Li, Xiaoyuan; Czernuszewicz, R.S.; Su, Y.O.; Spiro, T.G. ); Kincaid, J.R. )

    1990-01-11

    Resonance Raman spectra with variable-wavelength excitation are reported for Ni{sup II} porphine (NiP) and for the pyrrole-d{sub 8}, meso-d{sub 4}, and (pyrrole + meso)-d{sub 12} isotopomers, as well as for Ni{sup II} meso-tetraphenylporphine (NiTPP) and its pyrrole-{sup 15}N{sub 4}, pyrrole-d{sub 8}, {sup 13}C{sub 4}-meso, and phenyl-d{sub 20} isotopomers. All the Raman-active in-plane modes have been identified and are assigned to local coordinates which take into account the phasing of adjacent bond stretches within the pyrrole rings and at the methine bridges. The IR spectra of NiP and its isotopomers are also assigned. For most of the local coordinates good frequency agreement is seen for the different symmetry blocks, showing that longer range phasings have minor effects. These in-plane mode assignments are supported by normal-coordinate calculations with a physically reasonable valence force field, which is nearly the same for NiP and NiTPP. The principal force constants are in good accord with bond length relationships selected on the basis of scaled ab initio calculations. The phenyl substituents of NiTPP lower the frequencies of the asymmetric methine bridge stretching modes {nu}{sub 10}(B{sub 1g}) and {nu}{sub 19}(A{sub 2g}) by {approximately}60 cm{sup {minus}1}; this shift is attributable partly to the loss of coupling with the C{sub m}H bending modes in NiP and partly to an electronic effect of the phenyl group. There are also near-resonant interactions in NiTPP between porphyrin and phenyl modes near 740 and 200 cm{sup {minus}1} resulting in strongly displaced modes. Otherwise the phenyl groups have little influence on the porphyrin skeletal mode frequencies. Several phenyl modes are subject to moderate RR enhancement, probably via intensity borrowing from nearby porphyrin modes.

  10. Cytoskeleton Influence on Normal and Tangent Fluctuation Modes in the Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Rochal, S. B.; Lorman, V. L.

    2006-06-01

    We argue that the paradoxal softness of the red blood cells (RBC) in fluctuation experiments is apparent. We show that the effective surface shear modulus μs of the RBC obtained from fluctuation data and that measured in static deformation experiments have the same order of magnitude. In the RBC model developed for this purpose the spectrin network cytoskeleton with the bulk shear modulus estimated as μ≈105 165Pa contributes to both normal and tangent fluctuations of the system and confines the membrane fluctuations. The calculated ratio of the mean-square amplitudes ⟨Xn2⟩/⟨Xt2⟩ is 2 3 orders of magnitude smaller than it is in the free membrane with the same bending and shear moduli.

  11. Fourier transform infrared spectra and normal mode analysis of drug molecules: Zidovudine

    NASA Astrophysics Data System (ADS)

    Jain, Nivedita; Prabhakar, Santosh; Singh, R. A.

    2013-03-01

    The FTIR spectra of zidovudine molecule have been recorded in the range 4000-400 cm-1. The title compound is used as a drug against AIDS or HIV. The molecular structure, fundamental vibrational frequencies and intensities of vibrational bands are evaluated using density functional theory (DFT) using BLYP, B3LYP, B3PW91 and MPW1PW91 methods with 6-31+G(d,p) standard basis set. Comparison of simulated spectra with the experimental spectrum provides important informations and the ability of the computational method to describe the vibrational modes. These calculations have allowed finding most stable conformational structure of AZT. Calculated results of the title compound indicate that the drug molecule has syn orientation. The glycosidic bond in AZT and a minimum-energy structure in which the glycosy torsion angle χ and torsion angle γ values are consistent with those in the conformation of AZT in the AZT5-triphosphate bound to HIV RT is determined.

  12. Multiple-Component Crystal Fabric Measurements from Acoustically-Generated Normal Modes in Borehole

    NASA Astrophysics Data System (ADS)

    Kluskiewicz, D. J.; Waddington, E. D.; McCarthy, M.; Anandakrishnan, S.; Voigt, D.; Matsuoka, K.

    2014-12-01

    Sound wave velocities in ice are a proxy of crystal orientation fabric. Because p- and s-waves respectively travel faster and slower in the direction of an ice crystal c-axis, the velocities of these waves in a fabric are related to the clustering of ice crystal c-axes in the direction of wave propagation. Previous sonic logs at Dome C, NGRIP, WAIS, and NEEM have inferred a single component fabric description from the velocities of vertically-propagating p-waves around each ice core borehole. These records supplement thin-section measurements of crystal fabric by sampling larger numbers of crystals in a depth-continuous log. Observations of azimuthally anisotropic vertical-girdle fabrics at ice-core sites such as WAIS, NGRIP, and EDML underly a benefit for logging methods that are sensitive to such fabrics. We present a theoretical framework for using borehole flexural modes to measure azimuthal crystal-fabric anisotropy, and describe ongoing efforts to develop a sonic logging tool for this purpose. We also present data from p-wave logs and thin section measurements at the WAIS Divide, and describe how a flexural wave log could supplement the existing measurements.

  13. Normal-mode function representation of global 3-D data sets: open-access software for the atmospheric research community

    NASA Astrophysics Data System (ADS)

    Žagar, N.; Kasahara, A.; Terasaki, K.; Tribbia, J.; Tanaka, H.

    2015-04-01

    This article presents new software for the analysis of global dynamical fields in (re)analyses, weather forecasts and climate models. A new diagnostic tool, developed within the MODES project, allows one to diagnose properties of balanced and inertio-gravity (IG) circulations across many scales. In particular, the IG spectrum, which has only recently become observable, can be studied simultaneously in the mass and wind fields while considering the whole model depth in contrast to the majority of studies. The paper includes the theory of normal-mode function (NMF) expansion, technical details of the Fortran 90 code, examples of namelists which control the software execution and outputs of the software application on the ERA Interim reanalysis data set. The applied libraries and default compiler are from the open-source domain. A limited understanding of Fortran suffices for the successful implementation of the software. The presented application of the software to the ERA Interim data set reveals several aspects of the large-scale circulation after it has been partitioned into the linearly balanced and IG components. The global energy distribution is dominated by the balanced energy while the IG modes contribute around 10% of the total wave energy. However, on sub-synoptic scales, IG energy dominates and it is associated with the main features of tropical variability on all scales. The presented energy distribution and features of the zonally averaged and equatorial circulation provide a reference for the validation of climate models.

  14. Normal-mode function representation of global 3-D datasets: an open-access software for atmospheric research community

    NASA Astrophysics Data System (ADS)

    Žagar, N.; Kasahara, A.; Terasaki, K.; Tribbia, J.; Tanaka, H.

    2014-12-01

    The paper presents new software for the analysis of global dynamical fields in (re)analyses, weather forecasts and climate models. A new diagnostic tool, developed within the MODES project, allows one to diagnose properties of balanced and inertio-gravity (IG) circulation across many scales. In particular, the IG spectrum, which has only recently become observable, can be studied simultaneously in the mass field and wind field and considering the whole model depth in contrary to majority of studies. The paper presentation includes the theory of normal-mode function expansion, technical details of the Fortran 90 code, examples of namelists which control the software execution and outputs of the software application on the reanalysis dataset ERA Interim. The applied libraries and default compiler are from the open-source domain. A limited understanding of Fortran suffices for the successful implementation of the software. The presented application of the software to the ERA Interim dataset show some features of the large-scale circulation after it has been split into the balanced and IG components. The global energy distribution is dominated by the balanced energy with IG modes making less than 10% of the total wave energy. However, on subsynoptic scales IG energy dominates and it is associated with the main features of tropical variability on all scales. The presented energy distribution and features of the zonally-averaged and equatorial circulation provide a reference for the validation of climate models.

  15. Ab Initio and Model-Hamiltonian Study of the Torsional Variation of the Three CH Stretching Normal Modes in Methanol

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Lees, Ronald M.; Hougen, Jon T.

    2013-06-01

    The ν_{2}, ν_{3} and ν_{9} CH stretching modes of methanol in the 3μm region exhibit a significant amount of torsion-vibration interaction, as illustrated for ν_{9} by the facts that: (i) the three hydrogen atoms each pass through a plane of symmetry of the molecule twice during the course of one full internal rotation motion, once at a minimum and once at a maximum in the three-fold potential energy curve, (ii) the H atom in the plane of symmetry is nearly motionless for the ν_{9} mode, and therefore (iii) the property of remaining motionless must be transferred from one H to another six times during one full internal rotation motion. In this talk we examine quantitatively the general phenomenon of torsion-vibration interaction in the methyl top stretching modes in two ways. First, we present plots of normal modes produced in Gaussian projected frequency calculations that are expressed either in terms of several sets of internal coordinates, or in terms of Cartesian displacement vectors for the methyl hydrogen atoms. Some of these plots display a nearly three-fold sine or cosine behavior, where the sine or cosine behavior is dictated by group-theoretical symmetry arguments. Other plots display stunning features ranging from loss of simple three-fold oscillatory pattern to cusp-like peaks or dips. Somewhat surprisingly, none of our ab initio plots for methanol exhibit a sign change after a 2π internal rotation of the methyl top. Second, we present a relatively simple model for the three CH stretching motions, characterized by three parameters associated with: (i) a vibrational A/E energy difference, (ii) a Jahn-Teller-like torsion-vibration interaction term within the vibrational E state, and (iii) a Renner-Teller-like torsion-vibration interaction term within the E state. This model gives nearly quantitative agreement with both the regular and irregular features of the ab initio plots. The good agreement suggests that various aspects of the physics of the

  16. Hemodynamic importance of preserving the normal sequence of ventricular activation in permanent cardiac pacing.

    PubMed

    Leclercq, C; Gras, D; Le Helloco, A; Nicol, L; Mabo, P; Daubert, C

    1995-06-01

    Pacing the right ventricle in the apex profoundly modifies the sequence of activation and thus the sequence of contraction and relaxation of the left ventricle. To evaluate the relative importance of preserving normal ventricular activation sequence and optimal atrioventricular (AV) synchrony in permanent pacing, we compared the effects of three pacing modes: AAI, preserving both normal AV synchrony and normal activation sequence; DDD, with complete ventricular capture that preserves only AV synchrony; and VVI, disrupting both, at rest and during exercise. Hemodynamic and radionuclide studies were performed in 11 patients who had normal intrinsic conduction and who were implanted on a long-term basis with a DDDR pacemaker for isolated sinus node dysfunction. AAI versus DDD and VVI significantly increased cardiac output at rest (6.6 +/- 1.3 L/min vs 6 +/- 0.9 L/min vs 5 +/- 1 L/min; p < 0.01) and during exercise (13.5 +/- 2 L/min vs 12.1 +/- 2.2 L/min vs 14.4 +/- 2.1 L/min; p < 0.01). Pulmonary capillary wedge pressure was lowest with AAI (15.4 +/- 4.5 mm Hg), with an average reduction of 17% compared with DDD (19.6 +/- 5 mm Hg; p < 0.01) and of 30% compared with VVI (25.8 +/- 7 mm Hg; p < 0.01) during exercise. Identical benefits were observed for all other hemodynamic parameters: right atrial pressure, pulmonary artery pressure, left ventricular (LV) stroke work index, and systemic vascular resistances. LV ejection fraction was significantly higher in AAI than in DDD at rest (61% vs 58%, respectively; p < 0.05) and during exercise (65% vs 60%, respectively; p < 0.05). This improvement in LV systolic function resulted principally from the increase in septal ejection fraction. LV filling also was improved in AAI as demonstrated by a significant increase in peak filling rate at rest and during exercise. These data show the importance of preserving, whenever possible, not only normal AV synchrony but also normal ventricular activation sequence in permanent cardiac

  17. Resistive wall mode active control physics design for KSTAR

    SciTech Connect

    Park, Y. S. Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.; Bak, J. G.; Lee, S. G.; Oh, Y. K.

    2014-01-15

    As KSTAR H-mode operation approaches the region where the resistive wall mode (RWM) can be unstable, an important issue for future long pulse, high beta plasma operation is to evaluate RWM active feedback control performance using a planned active/passive RWM stabilization system on the device. In particular, an optimal design of feedback sensors allows mode stabilization up to the highest achievable β{sub N} close to the ideal with-wall limit, β{sub N}{sup wall}, with reduced control power requirements. The computed ideal n = 1 mode structure from the DCON code has been input to the VALEN-3D code to calculate the projected performance of an active RWM control system in the KSTAR three-dimensional conducting structure device geometry. Control performance with the midplane locked mode detection sensors, off-midplane saddle loops, and magnetic pickup coils is examined. The midplane sensors measuring the radial component of the mode perturbation is found to be strongly affected by the wall eddy current. The off-axis saddle loops with proper compensation of the prompt applied field are computed to provide stabilization at β{sub N} up to 86% of β{sub N}{sup wall} but the low RWM amplitude computed in the off-axis regions near the sensors can produce a low signal-to-noise ratio. The required control power and bandwidth are also estimated with varied noise levels in the feedback sensors. Further improvements have been explored by examining a new RWM sensor design motivated by the off-midplane poloidal magnetic field sensors in NSTX. The new sensors mounted off of the copper passive stabilizer plates near the device midplane show a clear advantage in control performance corresponding to achieving 99% of β{sub N}{sup wall} without the need of compensation of the prompt field. The result shows a significant improvement of RWM feedback stabilization using the new sensor set which motivates a future feedback sensor upgrade.

  18. HBT-EP Program: Active MHD Mode Dynamics and Control

    NASA Astrophysics Data System (ADS)

    Navratil, G. A.; Bialek, J.; Boozer, A. H.; Byrne, P. J.; Donald, G. V.; Hughes, P. E.; Levesque, J. P.; Mauel, M. E.; Peng, Q.; Rhodes, D. J.; Stoafer, C. C.; Hansen, C. J.

    2015-11-01

    The HBT-EP active mode control research program aims to: (i) quantify external kink dynamics and multimode response to magnetic perturbations, (ii) understand the relationship between control coil configuration, conducting and ferritic wall effects, and active feedback control, and (iii) explore advanced feedback algorithms. Biorthogonal decomposition is used to observe multiple simultaneous resistive wall modes (RWM). A 512 core GPU-based low latency (14 μs) MIMO control system uses 96 inputs and 64 outputs for Adaptive Control of RWMs. An in-vessel adjustable ferritic wall is used to study ferritic RWMs with increased growth rates, RMP response, and disruptivity. A biased electrode in the plasma is used to control the rotation of external kinks and evaluate error fields. A Thomson scattering diagnostic measures Te and ne at 3 spatial points, soon to be extended to 10 points. A quasi-linear sharp-boundary model of the plasma's multimode response to error fields is developed to determine harmful error field structures and associated NTV and resonant torques. Upcoming machine upgrades will allow measurements and control of scrape-off-layer currents, and control of kink modes using optical diagnostics. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  19. Active/passive mode-locked laser oscillator

    DOEpatents

    Fountain, William D.; Johnson, Bertram C.

    1977-01-01

    A Q-switched/mode-locked Nd:YAG laser oscillator employing simultaneous active (electro-optic) and passive (saturable absorber) loss modulation within the optical cavity is described. This "dual modulation" oscillator can produce transform-limited pulses of duration ranging from about 30 psec to about 5 nsec with greatly improved stability compared to other mode-locked systems. The pulses produced by this system lack intrapulse frequency or amplitude modulation, and hence are idealy suited for amplification to high energies and for other applications where well-defined pulses are required. Also, the pulses of this system have excellent interpulse characteristics, wherein the optical noise between the individual pulses of the pulse train has a power level well below the power of the peak pulse of the train.

  20. Study on actuating mode shapes of electro-active paper

    NASA Astrophysics Data System (ADS)

    Sundaresan, Mannur; Park, Yongkun; Craft, William J.; Sankar, Jag; Kim, Jaehwan

    2006-03-01

    This paper focuses on actuating mode shapes of cellulose-based electro-active paper (EAPap) in order to investigate its suitability as actuators. Firstly, actuating mechanism of EAPap is addressed based on intrinsic characteristics of cellulose structures under electric fields. EAPap actuator is then fabricated by embedding gold as electrodes into both sides of cellophane sheets. Actuating mode shapes under electric fields are phenomenological measured via laser scanning vibrometer at different exciting frequencies as well as relative humidity. Various actuating performances with large deformations are obtained by applying low electric fields, which can produce a suitable deformation capability with light weight, low power consumption and simple fabrication. Experimental results provide that EAPap can be used as a potential actuating candidate for shape control of smart structures, along with bio-inspired actuator materials.

  1. Protein dynamics from structural ensembles: Diffusive and activated contributions in a linear mode description

    NASA Astrophysics Data System (ADS)

    Copperman, Jeremy; Guenza, Marina

    2015-03-01

    We have developed a coarse-grained linear Langevin equation for protein dynamics, which describes proteins as semiflexible objects collapsed into the free energy well representing the folded state of the protein. Fundamental to this approach is the inclusion of internal dissipation, absent in any rigid-body hydrodynamical modeling scheme. The normal mode analytical solution naturally separates into global modes describing the anisotropic tumbling of the object, and internal modes which contain both diffusive and activated glass-like contributions. We show how cooperativity in the dynamical modes is related to the energy barriers to mode diffusion. While molecular dynamic simulations generate the most accurate structural ensembles, we show how sets of NMR conformers can be used to generate the structural ensemble needed as input to the theory, making the approach truly predictive in nature. Results are in good agreement when compared with both nuclear magnetic resonance relaxation, and time correlation functions calculated from molecular dynamic simulations. This material is based upon work partially supported by the National Science Foundation under Grant CHE-1362500.

  2. Depth classification of underwater targets based on complex acoustic intensity of normal modes

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Yin, Jingwei; Yu, Yun; Shi, Zhenhua

    2016-04-01

    In order to solve the problem of depth classification of the underwater target in a very low frequency acoustic field, the active component of cross spectra of particle pressure and horizontal velocity (ACCSPPHV) is adopted to distinguish the surface vessel and the underwater target. According to the effective depth of a Pekeris waveguide, the placing depth forecasting equations of passive vertical double vector hydrophones are proposed. Numerical examples show that when the sum of depths of two hydrophones is the effective depth, the sign distribution of ACCSPPHV has nothing to do with horizontal distance; in addition, the sum of the first critical surface and the second critical surface is equal to the effective depth. By setting the first critical surface less than the difference between the effective water depth and the actual water depth, that is, the second critical surface is greater than the actual depth, the three positive and negative regions of the whole ocean volume are equivalent to two positive and negative regions and therefore the depth classification of the underwater target is obtained. Besides, when the 20 m water depth is taken as the first critical surface in the simulation of underwater targets (40 Hz, 50 Hz, and 60 Hz respectively), the effectiveness of the algorithm and the correctness of relevant conclusions are verified, and the analysis of the corresponding forecasting performance is conducted.

  3. Mars global atmospheric oscillations - Annually synchronized, transient normal-mode oscillations and the triggering of global dust storms

    NASA Technical Reports Server (NTRS)

    Tillman, James E.

    1988-01-01

    Transient events of an unusual character have been discovered in the daily pressure variations of the Mars atmosphere's pressure at the planetary surface which last only a few Martian days, appear to repeat on an annual basis, cover a large part of the given day's hemisphere, occur in pairs separated by 20-days in some cases, and coincide with the annual pressure minimum. They also consist of spectral components nearly identical in frequency with diurnal and semidiurnal harmonics. It is presently suggested that these events are Kelvin, normal-mode, transient, global oscillations. An almost-diurnal and an almost-semidiurnal high-frequency global oscillation distinct from solar-driven tides may be common on Mars.

  4. Antiport Mechanism for Cl−/H+ in ClC-ec1 from Normal-Mode Analysis

    PubMed Central

    Miloshevsky, Gennady V.; Hassanein, Ahmed; Jordan, Peter C.

    2010-01-01

    ClC chloride channels and transporters play major roles in cellular excitability, epithelial salt transport, volume, pH, and blood pressure regulation. One family member, ClC-ec1 from Escherichia coli, has been structurally resolved crystallographically and subjected to intensive mutagenetic, crystallographic, and electrophysiological studies. It functions as a Cl−/H+ antiporter, not a Cl− channel; however, the molecular mechanism for Cl−/H+ exchange is largely unknown. Using all-atom normal-mode analysis to explore possible mechanisms for this antiport, we propose that Cl−/H+ exchange involves a conformational cycle of alternating exposure of Cl− and H+ binding sites of both ClC pores to the two sides of the membrane. Both pores switch simultaneously from facing outward to facing inward, reminiscent of the standard alternating-access mechanism, which may have direct implications for eukaryotic Cl−/H+ transporters and Cl− channels. PMID:20303857

  5. Mechanisms for multiple activity modes of VTA dopamine neurons

    PubMed Central

    Oster, Andrew; Faure, Philippe; Gutkin, Boris S.

    2015-01-01

    Midbrain ventral segmental area (VTA) dopaminergic neurons send numerous projections to cortical and sub-cortical areas, and diffusely release dopamine (DA) to their targets. DA neurons display a range of activity modes that vary in frequency and degree of burst firing. Importantly, DA neuronal bursting is associated with a significantly greater degree of DA release than an equivalent tonic activity pattern. Here, we introduce a single compartmental, conductance-based computational model for DA cell activity that captures the behavior of DA neuronal dynamics and examine the multiple factors that underlie DA firing modes: the strength of the SK conductance, the amount of drive, and GABA inhibition. Our results suggest that neurons with low SK conductance fire in a fast firing mode, are correlated with burst firing, and require higher levels of applied current before undergoing depolarization block. We go on to consider the role of GABAergic inhibition on an ensemble of dynamical classes of DA neurons and find that strong GABA inhibition suppresses burst firing. Our studies suggest differences in the distribution of the SK conductance and GABA inhibition levels may indicate subclasses of DA neurons within the VTA. We further identify, that by considering alternate potassium dynamics, the dynamics display burst patterns that terminate via depolarization block, akin to those observed in vivo in VTA DA neurons and in substantia nigra pars compacta (SNc) DA cell preparations under apamin application. In addition, we consider the generation of transient burst firing events that are NMDA-initiated or elicited by a sudden decrease of GABA inhibition, that is, disinhibition. PMID:26283955

  6. Modeling protein conformational transitions by a combination of coarse-grained normal mode analysis and robotics-inspired methods

    PubMed Central

    2013-01-01

    Background Obtaining atomic-scale information about large-amplitude conformational transitions in proteins is a challenging problem for both experimental and computational methods. Such information is, however, important for understanding the mechanisms of interaction of many proteins. Methods This paper presents a computationally efficient approach, combining methods originating from robotics and computational biophysics, to model protein conformational transitions. The ability of normal mode analysis to predict directions of collective, large-amplitude motions is applied to bias the conformational exploration performed by a motion planning algorithm. To reduce the dimension of the problem, normal modes are computed for a coarse-grained elastic network model built on short fragments of three residues. Nevertheless, the validity of intermediate conformations is checked using the all-atom model, which is accurately reconstructed from the coarse-grained one using closed-form inverse kinematics. Results Tests on a set of ten proteins demonstrate the ability of the method to model conformational transitions of proteins within a few hours of computing time on a single processor. These results also show that the computing time scales linearly with the protein size, independently of the protein topology. Further experiments on adenylate kinase show that main features of the transition between the open and closed conformations of this protein are well captured in the computed path. Conclusions The proposed method enables the simulation of large-amplitude conformational transitions in proteins using very few computational resources. The resulting paths are a first approximation that can directly provide important information on the molecular mechanisms involved in the conformational transition. This approximation can be subsequently refined and analyzed using state-of-the-art energy models and molecular modeling methods. PMID:24564964

  7. On the computation of long period seismograms in a 3-D earth using normal mode based approximations

    NASA Astrophysics Data System (ADS)

    Romanowicz, Barbara A.; Panning, Mark P.; Gung, Yuancheng; Capdeville, Yann

    2008-11-01

    Tomographic inversions for large-scale structure of the earth's mantle involve a forward modelling step of wave propagation through 3-D heterogeneity. Until now, most investigators have worked in the framework of the simplest theoretical assumptions, namely the infinite frequency `ray theory' in the case of body wave traveltime inversions, or the `path-average' approximation (PAVA) to normal mode perturbation theory, in the case of surface waves and long-period waveforms. As interest is shifting to mapping shorter wavelength structures, the need for a more accurate theoretical account of the interaction of seismic waves with mantle heterogeneity, coupled with improvements in path coverage, has been realized. Here we discuss different levels of approximations used in the context of normal mode perturbation theory, when modelling time domain seismic waveforms. We compare the performance of asymptotic approximations, which collapse the effects of 3-D structure onto the great circle vertical plane: the 1-D PAVA and a 2-D approximation called non-linear asymptotic coupling theory (NACT), which both are zeroth order asymptotic approximations. We then discuss how off-vertical plane effects can be introduced using higher order asymptotics. These computationally efficient approximations are compared to the linear Born formalism (BORN), which computes scattering integrals over the entire surface of the sphere. We point out some limitations of this linear formalism in the case of spatially extended anomalies, and show how that can be remedied through the introduction of a non-linear term (NBORN). All these approximations are referenced to a precise 3-D numerical computation afforded by the spectral element method. We discuss simple geometries, and explore a range of sizes of anomalies compared to the wavelength of the seismic waves considered, thus illustrating the range of validity and limitations of the various approximations considered.

  8. Active control of the resistive wall mode with power saturation

    SciTech Connect

    Li Li; Liu Yue; Liu Yueqiang

    2012-01-15

    An analytic model of non-linear feedback stabilization of the resistive wall mode is presented. The non-linearity comes from either the current or the voltage saturation of the control coil power supply. For the so-called flux-to-current control, the current saturation of active coils always results in the loss of control. On the contrary, the flux-to-voltage control scheme tolerates certain degree of the voltage saturation. The minimal voltage limit is calculated, below which the control will be lost.

  9. Elastic parabolic equation and normal mode solutions for seismo-acoustic propagation in underwater environments with ice covers.

    PubMed

    Collis, Jon M; Frank, Scott D; Metzler, Adam M; Preston, Kimberly S

    2016-05-01

    Sound propagation predictions for ice-covered ocean acoustic environments do not match observational data: received levels in nature are less than expected, suggesting that the effects of the ice are substantial. Effects due to elasticity in overlying ice can be significant enough that low-shear approximations, such as effective complex density treatments, may not be appropriate. Building on recent elastic seafloor modeling developments, a range-dependent parabolic equation solution that treats the ice as an elastic medium is presented. The solution is benchmarked against a derived elastic normal mode solution for range-independent underwater acoustic propagation. Results from both solutions accurately predict plate flexural modes that propagate in the ice layer, as well as Scholte interface waves that propagate at the boundary between the water and the seafloor. The parabolic equation solution is used to model a scenario with range-dependent ice thickness and a water sound speed profile similar to those observed during the 2009 Ice Exercise (ICEX) in the Beaufort Sea. PMID:27250161

  10. All-atom normal-mode analysis reveals an RNA-induced allostery in a bacteriophage coat protein

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric C.; Twarock, Reidun

    2010-03-01

    Assembly of the T=3 bacteriophage MS2 is initiated by the binding of a 19 nucleotide RNA stem loop from within the phage genome to a symmetric coat protein dimer. This binding event effects a folding of the FG loop in one of the protein subunits of the dimer and results in the formation of an asymmetric dimer. Since both the symmetric and asymmetric forms of the dimer are needed for the assembly of the protein container, this allosteric switch plays an important role in the life cycle of the phage. We provide here details of an all-atom normal-mode analysis of this allosteric effect. The results suggest that asymmetric contacts between the A -duplex RNA phosphodiester backbone of the stem loop with the EF loop in one coat protein subunit results in an increased dynamic behavior of its FG loop. The four lowest-frequency modes, which encompass motions predominantly on the FG loops, account for over 90% of the increased dynamic behavior due to a localization of the vibrational pattern on a single FG loop. Finally, we show that an analysis of the allosteric effect using an elastic network model fails to predict this localization effect, highlighting the importance of using an all-atom full force field method for this problem.

  11. Normal Mode Analysis of Ambient-Noise Induced Free Oscillations of a Slender Medieval Masonry Tower in Bologna (Italy)

    NASA Astrophysics Data System (ADS)

    Morelli, A.; Azzara, R. M.; Cavaliere, A.; Zaccarelli, L.

    2014-12-01

    Analysis of the oscillations of buildings — either excited by earthquakes or by ambient noise — has become an effective tool to evaluate the response of such structures to strong ground motion, and hence to assess their seismic vulnerability. Response to small-amplitude ground motion may also provide crucial information on the elastic and anelastic properties of a structure — essential in the case of historical buildings — and constrain numerical full dynamic structural analyses. We report about an analysis carried out for a tall medieval monumental building in the urban center of the Norther Italian city of Bologna. Seismic monitoring, carried on for six months using field seismic instrumentation, has revealed the response to ambient noise, and has allowed to reconstruct, with high detail, the free oscillation modes of the tower. At 97 meters, the XII-century tower of the Asinelli is the tallest masonry building in Europe, and the most slender. We measured the fundamental, and several higher-order, flexural normal modes of oscillation, as well as the fundamental torsional mode. Asymmetry due to non-coincidence of centers of mass and of stiffness produces slightly different modal frequencies of oscillation in two orthogonal directions, consistently with dynamical modeling. Horizontal particle-motion polarization plots show the cyclic energy transfer between two degrees of freedom of the system. The Asinelli spectral signature can also be easily recognized in the motion recorded at the base of nearby Garisenda. We verify that there is correlation of spectral amplitudes with time of the day — in agreement with expected time-variance of anthropic disturbance —- but also with wind velocity and, intriguingly, with temperature variations inside the buidings. We are using these data to adjust the numerical dynamical models of the buildings, to examine time variations of behavior, and to identify the origin of anthropogenic sources of vibration in view of their

  12. EEG Alpha and Beta Activity in Normal and Deaf Subjects.

    ERIC Educational Resources Information Center

    Waldron, Manjula; And Others

    Electroencephalogram and task performance data were collected from three groups of young adult males: profoundly deaf Ss who signed from an early age, profoundly deaf Ss who only used oral (speech and speedreading) methods of communication, and normal hearing Ss. Alpha and Beta brain wave patterns over the Wernicke's area were compared across…

  13. Effects of brain amyloid deposition and reduced glucose metabolism on the default mode of brain function in normal aging.

    PubMed

    Kikuchi, Mitsuru; Hirosawa, Tetsu; Yokokura, Masamichi; Yagi, Shunsuke; Mori, Norio; Yoshikawa, Etsuji; Yoshihara, Yujiro; Sugihara, Genichi; Takebayashi, Kiyokazu; Iwata, Yasuhide; Suzuki, Katsuaki; Nakamura, Kazuhiko; Ueki, Takatoshi; Minabe, Yoshio; Ouchi, Yasuomi

    2011-08-01

    Brain β-amyloid (Aβ) deposition during normal aging is highlighted as an initial pathogenetic event in the development of Alzheimer's disease. Many recent brain imaging studies have focused on areas deactivated during cognitive tasks [the default mode network (DMN), i.e., medial frontal gyrus/anterior cingulate cortex and precuneus/posterior cingulate cortex], where the strength of functional coordination was more or less affected by cerebral Aβ deposits. In the present positron emission tomography study, to investigate whether regional glucose metabolic alterations and Aβ deposits seen in nondemented elderly human subjects (n = 22) are of pathophysiological importance in changes of brain hemodynamic coordination in DMN during normal aging, we measured cerebral glucose metabolism with [(18)F]FDG, Aβ deposits with [(11)C]PIB, and regional cerebral blood flow during control and working memory tasks by H(2)(15)O on the same day. Data were analyzed using both region of interest and statistical parametric mapping. Our results indicated that the amount of Aβ deposits was negatively correlated with hemodynamic similarity between medial frontal and medial posterior regions, and the lower similarity was associated with poorer working memory performance. In contrast, brain glucose metabolism was not related to this medial hemodynamic similarity. These findings suggest that traceable Aβ deposition, but not glucose hypometabolism, in the brain plays an important role in occurrence of neuronal discoordination in DMN along with poor working memory in healthy elderly people. PMID:21813680

  14. High-latitude filtering in a global grid-point model using model normal modes. [Fourier filters for synoptic weather forecasting

    NASA Technical Reports Server (NTRS)

    Takacs, L. L.; Kalnay, E.; Navon, I. M.

    1985-01-01

    A normal modes expansion technique is applied to perform high latitude filtering in the GLAS fourth order global shallow water model with orography. The maximum permissible time step in the solution code is controlled by the frequency of the fastest propagating mode, which can be a gravity wave. Numerical methods are defined for filtering the data to identify the number of gravity modes to be included in the computations in order to obtain the appropriate zonal wavenumbers. The performances of the model with and without the filter, and with a time tendency and a prognostic field filter are tested with simulations of the Northern Hemisphere winter. The normal modes expansion technique is shown to leave the Rossby modes intact and permit 3-5 day predictions, a range not possible with the other high-latitude filters.

  15. Generation of dissipative solitons in an actively mode-locked ultralong fibre laser

    SciTech Connect

    Koliada, N A; Nyushkov, B N; Ivanenko, A V; Kobtsev, Sergey M; Harper, Paul; Turitsyn, Sergei K; Denisov, Vladimir I; Pivtsov, V S

    2013-02-28

    A single-pulse actively mode-locked fibre laser with a cavity length exceeding 1 km has been developed and investigated for the first time. This all-fibre erbium-doped laser has a normal intracavity dispersion and generates dissipative 8-ns solitons with a fundamental repetition rate of 163.8 kHz; the energy per pulse reaches 34 nJ. The implemented mode locking, based on the use of intracavity intensity modulator, provides self-triggering and high stability of pulsed lasing. A possibility of continuous tuning of the centre lasing wavelength in the range of 1558 - 1560 nm without any tunable spectral selective elements in the cavity is demonstrated. The tuning occurs when controlling the modulation signal frequency due to the forced change in the pulse repetition time (group delay) under the conditions of intracavity chromatic dispersion. (laser optics 2012)

  16. Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, central China

    NASA Astrophysics Data System (ADS)

    Rao, Gang; Lin, Aiming; Yan, Bing; Jia, Dong; Wu, Xiaojun

    2014-12-01

    This study examines the tectonic activity and structural features of active normal faults in the Weihe Graben, central China. The Weihe Graben is an area with a high level of historic seismicity, and it is one of the intracontinental systems that developed since Tertiary in the extensional environment around the Ordos Block. Analysis of high-resolution remote-sensing imagery data, field observations, and radiocarbon dating results reveal the following: i) active normal faults are mainly developed within a zone < 500 m wide along the southern border of the eastern part of the Weihe Graben; ii) the active faults that have been identified are characterized by stepwise fault scarps dipping into the graben at angles of 40°-71°; iii) there are numerous discontinuous individual fault traces, ranging in length from a few tens of meters to 450 m (generally < 200 m); iv) fault zone structures, topographic features, and fault striations on the main fault planes indicate almost pure normal-slip; and v) late Pleistocene-Holocene terrace risers, loess, and alluvial deposits have been vertically offset by up to ~ 80 m, with a non-uniform dip-slip rate (throw-rates) ranging from ~ 2.1 to 5.7 mm/yr, mostly 2-3 mm/yr. Our results reveal that active normal faults have been developing in the Weihe Graben under an ongoing extensional environment, probably associated with the pre-existing graben and spreading of the continental crust, and this is in contrast with the Ordos Block and neighboring orogenic regions. These results provide new insights into the nature of extensional tectonic deformation in intracontinental graben systems.

  17. The salience network causally influences default mode network activity during moral reasoning

    PubMed Central

    Wilson, Stephen M.; D’Esposito, Mark; Kayser, Andrew S.; Grossman, Scott N.; Poorzand, Pardis; Seeley, William W.; Miller, Bruce L.; Rankin, Katherine P.

    2013-01-01

    Large-scale brain networks are integral to the coordination of human behaviour, and their anatomy provides insights into the clinical presentation and progression of neurodegenerative illnesses such as Alzheimer’s disease, which targets the default mode network, and behavioural variant frontotemporal dementia, which targets a more anterior salience network. Although the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, patients with Alzheimer’s disease give normal responses to these dilemmas whereas patients with behavioural variant frontotemporal dementia give abnormal responses to these dilemmas. We hypothesized that this apparent discrepancy between activation- and patient-based studies of moral reasoning might reflect a modulatory role for the salience network in regulating default mode network activation. Using functional magnetic resonance imaging to characterize network activity of patients with behavioural variant frontotemporal dementia and healthy control subjects, we present four converging lines of evidence supporting a causal influence from the salience network to the default mode network during moral reasoning. First, as previously reported, the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, but patients with behavioural variant frontotemporal dementia producing atrophy in the salience network give abnormally utilitarian responses to these dilemmas. Second, patients with behavioural variant frontotemporal dementia have reduced recruitment of the default mode network compared with healthy control subjects when deliberating about these dilemmas. Third, a Granger causality analysis of functional neuroimaging data from healthy control subjects demonstrates directed functional connectivity from nodes of the salience network to nodes of the default mode network during moral reasoning. Fourth, this Granger causal influence is diminished in

  18. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  19. cNMA: a framework of encounter complex-based normal mode analysis to model conformational changes in protein interactions

    PubMed Central

    Oliwa, Tomasz; Shen, Yang

    2015-01-01

    Motivation: It remains both a fundamental and practical challenge to understand and anticipate motions and conformational changes of proteins during their associations. Conventional normal mode analysis (NMA) based on anisotropic network model (ANM) addresses the challenge by generating normal modes reflecting intrinsic flexibility of proteins, which follows a conformational selection model for protein–protein interactions. But earlier studies have also found cases where conformational selection alone could not adequately explain conformational changes and other models have been proposed. Moreover, there is a pressing demand of constructing a much reduced but still relevant subset of protein conformational space to improve computational efficiency and accuracy in protein docking, especially for the difficult cases with significant conformational changes. Method and results: With both conformational selection and induced fit models considered, we extend ANM to include concurrent but differentiated intra- and inter-molecular interactions and develop an encounter complex-based NMA (cNMA) framework. Theoretical analysis and empirical results over a large data set of significant conformational changes indicate that cNMA is capable of generating conformational vectors considerably better at approximating conformational changes with contributions from both intrinsic flexibility and inter-molecular interactions than conventional NMA only considering intrinsic flexibility does. The empirical results also indicate that a straightforward application of conventional NMA to an encounter complex often does not improve upon NMA for an individual protein under study and intra- and inter-molecular interactions need to be differentiated properly. Moreover, in addition to induced motions of a protein under study, the induced motions of its binding partner and the coupling between the two sets of protein motions present in a near-native encounter complex lead to the improved

  20. Estimation of earthquake source parameters from GRACE observations of changes in Earth's gravitational potential field using normal modes

    NASA Astrophysics Data System (ADS)

    Sterenborg, G.; Simons, F. J.; Welch, E.; Morrow, E.; Mitrovica, J. X.

    2013-12-01

    Since its launch in 2002, the Gravity Recovery and Climate Experiment (GRACE) has yielded tremendous insights into the spatio-temporal changes of mass redistribution in the Earth system. Such changes occur on widely varying spatial and temporal scales and take place both on Earth's surface, e.g., atmospheric mass fluctuations and the exchange of water, snow and ice, as well as in its interior, e.g., glacial isostatic adjustment and earthquakes. Each of these processes causes changes in the Earth's gravitational potential field which GRACE observes. One example is the Antarctic and Greenland ice mass changes inferred from GRACE observations of the changing geopotential as well as the associated time rate of change of its degree 2 and 4 zonal harmonics observed by satellite laser ranging. Deforming the Earth's surface and interior both co- and post-seismically, with some of the deformation permanent, earthquakes can affect the geopotential at a spatial scale up to thousands of kilometers and at temporal scales from seconds to months. Traditional measurements of earthquakes, e.g., by seismometers, GPS and inSAR, observe the co- and post-seismic surface displacements and are invaluable in understanding earthquake triggering mechanisms, slip distributions, rupture dynamics and slow post-seismic changes. Space-based observations of geopotential changes can add a whole new dimension to this as such observations are also sensitive to changes in the Earth's interior, over a larger area affected by the earthquake, over longer timescales, beyond that of Earth's longest period normal mode, and because they have global sensitivity including over sparsely instrumented oceanic domains. We use a joint seismic and gravitational normal-mode formalism to quantify changes in the gravitational potential due to different types of earthquakes, comparing them to predictions from dislocation models. We discuss the inverse problem of estimating the source parameters of large earthquakes

  1. Diagnostic for two-mode variable valve activation device

    SciTech Connect

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  2. Phosphatase inhibitors activate normal and defective CFTR chloride channels.

    PubMed Central

    Becq, F; Jensen, T J; Chang, X B; Savoia, A; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epithelial cells. We report that the alkaline phosphatase inhibitors bromotetramisole, 3-isobutyl-1-methylxanthine, theophylline, and vanadate slow the rundown of CFTR channel activity in excised membrane patches and reduce dephosphorylation of CFTR protein in isolated membranes. It was also found that in unstimulated cells, CFTR channels can be activated by exposure to phosphatase inhibitors alone. Most importantly, exposure of mammalian cells to phosphatase inhibitors alone activates CFTR channels that have disease-causing mutations, provided the mutant channels are present in the plasma membrane (R117H, G551D, and delta F508 after cooling). These results suggest that CFTR dephosphorylation is dynamic and that membrane-associated phosphatase activity may be a potential therapeutic target for the treatment of cystic fibrosis. Images PMID:7522329

  3. Phosphatase inhibitors activate normal and defective CFTR chloride channels.

    PubMed

    Becq, F; Jensen, T J; Chang, X B; Savoia, A; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-09-13

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epithelial cells. We report that the alkaline phosphatase inhibitors bromotetramisole, 3-isobutyl-1-methylxanthine, theophylline, and vanadate slow the rundown of CFTR channel activity in excised membrane patches and reduce dephosphorylation of CFTR protein in isolated membranes. It was also found that in unstimulated cells, CFTR channels can be activated by exposure to phosphatase inhibitors alone. Most importantly, exposure of mammalian cells to phosphatase inhibitors alone activates CFTR channels that have disease-causing mutations, provided the mutant channels are present in the plasma membrane (R117H, G551D, and delta F508 after cooling). These results suggest that CFTR dephosphorylation is dynamic and that membrane-associated phosphatase activity may be a potential therapeutic target for the treatment of cystic fibrosis. PMID:7522329

  4. Observation of multipulse bunches in a graphene oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion

    NASA Astrophysics Data System (ADS)

    Huang, Shisheng; Wang, Yonggang; Peiguang, Yan; Zhang, Gelin; Zhao, Junqing; Li, Huiquan; Lin, Rongyong; Cao, Guangzhong; Duan, Ji'an

    2014-09-01

    We give a systematic experimental study of multipulse bunches in a graphene oxide saturable absorber (GOSA) passively mode-locked all-normal dispersion ytterbium-doped fiber laser (YDFL). Some special phenomena such as harmonic multipulse bunches, harmonic mode-locking, and chaotic multipulse states are also obtained. Our experiment reveals that the inserted 2.5-nm narrow bandwidth filter plays an important role in the formation of multipulse in all-normal dispersion fiber lasers. Because of the effective gain bandwidth depends on both the 2.5-nm narrow bandwidth filter and the artificial fiber birefringence filter, the multipulse operation states are sensitive to the polarization. It is the first demonstration of multipulse evolution in a GOSA passively mode-locked all-normal dispersion YDFL.

  5. Aligning Experimental and Theoretical Anisotropic B-Factors: Water Models, Normal-Mode Analysis Methods, and Metrics

    PubMed Central

    2014-01-01

    The strength of X-ray crystallography in providing the information for protein dynamics has been under appreciated. The anisotropic B-factors (ADPs) from high-resolution structures are invaluable in studying the relationship among structure, dynamics, and function. Here, starting from an in-depth evaluation of the metrics used for comparing the overlap between two ellipsoids, we applied normal-mode analysis (NMA) to predict the theoretical ADPs and then align them with experimental results. Adding an extra layer of explicitly treated water on protein surface significantly improved the energy minimization results and better reproduced the anisotropy of experimental ADPs. In comparing experimental and theoretical ADPs, we focused on the overlap in shape, the alignment of dominant directions, and the similarity in magnitude. The choices of water molecules, NMA methods, and the metrics for evaluating the overlap of ADPs determined final results. This study provides useful information for exploring the physical basis and the application potential of experimental ADPs. PMID:24673391

  6. Efficient method for the computation of wave propagation in the atmosphere: horizontal rays and vertical normal modes

    NASA Astrophysics Data System (ADS)

    Lahaye, Noe; Llewellyn Smith, Stefan

    2015-11-01

    The development of efficient methods for computing the propagation of waves throughout the atmosphere is a longstanding issue. The widely-used WKBJ approximation is inaccurate when the typical scale of the fluid properties is of the order of the wave scale, or in particular regions such as turning points or critical levels. Homogeneity in the horizontal allows one to reduce the problem to an ODE (generally in the vertical) and solve this numerically with no further approximation. However, this may not be a valid approximation in applications; for example tsunami-generated acoustic-gravity waves have a large length scale and propagate over long distances up to the ionosphere. We propose a resolution method for 3D wave propagation that combines normal-modes and ray tracing, relying on scale separation between vertical and horizontal directions. This method has been widely used in the oceanic acoustic context and in waveguide theory, yet few applications in the atmospheric context seem to have been reported. First, we present some results in a simple framework (quiescent fluid, rigid boundary conditions), then show how the method may be adapted in the atmospheric context (including compressibility) to the propagation of waves emitted by a moving source and/or in a moving fluid.

  7. Actively mode-locked all fiber laser with cylindrical vector beam output.

    PubMed

    Zhou, Yong; Wang, Anting; Gu, Chun; Sun, Biao; Xu, Lixin; Li, Feng; Chung, Dick; Zhan, Qiwen

    2016-02-01

    We demonstrated an all fiber actively mode-locked laser that emits a cylindrical vector beam. An intra-cavity few-mode fiber Bragg grating inscribed in a short section of four-mode fiber is employed to provide mode selection and spectrum filtering functions. Mode coupling is achieved by offset splicing between the single-mode fiber and the four-mode fiber in the laser cavity. A LiNbO3 Mach-Zehnder modulator is used to achieve active mode-locking in the laser. The laser operates at 1547 nm with 30 dB spectrum width of 0.2 nm. The mode-locked pulses have a duration of 2 ns and repetition of 12.06 MHz. Through adjusting the polarization state in the laser cavity, both radially and azimuthally polarized beams have been obtained with high mode purity. PMID:26907420

  8. From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing

    NASA Astrophysics Data System (ADS)

    Weiss, T.; Mesch, M.; Schäferling, M.; Giessen, H.; Langbein, W.; Muljarov, E. A.

    2016-06-01

    We present a first-order perturbation theory to calculate the frequency shift and linewidth change of photonic resonances in one- and two-dimensional periodic structures under modifications of the surrounding refractive index. Our method is based on the resonant state expansion, for which we extend the analytical mode normalization to periodic structures. We apply this theory to calculate the sensitivity of bright dipolar and much darker quadrupolar plasmonic modes by determining the maximum shift and optimal sensing volume.

  9. From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing.

    PubMed

    Weiss, T; Mesch, M; Schäferling, M; Giessen, H; Langbein, W; Muljarov, E A

    2016-06-10

    We present a first-order perturbation theory to calculate the frequency shift and linewidth change of photonic resonances in one- and two-dimensional periodic structures under modifications of the surrounding refractive index. Our method is based on the resonant state expansion, for which we extend the analytical mode normalization to periodic structures. We apply this theory to calculate the sensitivity of bright dipolar and much darker quadrupolar plasmonic modes by determining the maximum shift and optimal sensing volume. PMID:27341256

  10. Enhanced Power Within the Default Mode Network in Normal Subjects with Elevated Scores on an Egocentric Scale

    PubMed Central

    Collins, Mark W.G; Persinger, Michael A

    2014-01-01

    Integrated global power from the primary structures that composed the Default Mode Network (DMN) and from a random collection of other structures were measured by sLORETA (standardized low-resolution electromagnetic tomography) for young university volunteers who had completed an inventory that contained a subscale by which egocentricity has been inferred. Subjects who exhibited higher scores for egocentricity displayed significantly more power within the DMN structures relative to comparison areas. This was not observed for individuals whose egocentricity scores were lowest where the power differences between the DMN and comparison structures were not significant statistically. DMN power was greater in the right hemisphere than the left for men but greater in the left hemisphere than the right for women. The results are consistent with our operating metaphor that elevation of power or activity within the DMN is associated with greater affiliation with the self and its cognitive contents. PMID:25419254

  11. Activation of normal murine B cells by Echinococcus granulosus.

    PubMed Central

    Cox, D A; Marshall-Clarke, S; Dixon, J B

    1989-01-01

    Echinococcus granulosus protoscolex (PSC) infection of BALB/c mice led, after 4 days, to raised numbers of cells forming plaques with trinitrophenyl-treated sheep red cells and bromelain-treated mouse red cells. The findings were similar in athymic and euthymic CBA mice. Activation of B cells was accompanied by secretion of immunoglobulin, as indicated by the reverse plaque technique. In addition, co-culture of PSC with the 7OZ/3 pre-B-cell led to the induction of differentiation, resulting in the expression of surface immunoglobulin (Ig). It is concluded that E. granulosus is a polyclonal activator of B cells inducing both transformation and differentiation, and that the effect is thymus-independent. PMID:2661414

  12. Multi-mode multistatics for passive/active airborne surveillance

    NASA Astrophysics Data System (ADS)

    Ogrodnik, Robert F.

    1986-07-01

    The increasing performance demands for air surveillance assets, as well as the necessity for continued surveillance operations in the presence of enemy jamming anti-radiation missile (ARM) attacks, have increased interest in passive surveillance, in particular multi-mode passive/active multistatic sensing. The use of noncooperative radiation as illuminators of opportunity combined with passive surveillance electromagnetic support measurement (ESM) sensors opens new horizons to multistatic surveillance from a passive airborne platform. Research and field tests have been conducted on ESM augmented bistatics as well as noncooperative multistatics which support the development of airborne multi-mode passive surveillance technology. This work has been conducted under such programs as the Bistatic Enhanced Altimeter Detection (BEAD) and the noncooperative multistatic Passive Coherent Location (PCL). Both BEAD and PCL technology directly support the receiver, signal processing and target location/tracking operations necessary for passive surveillance. The demonstrated technologies for EM interference rejection and multistatic multi-target tracking and location under PCL provide a promising performance bench mark for passive surveillance in the presence of a complex electromagnetic environment. Passive receiver intercept performance under BEAD has provided a receiver design baseline for both look-down and look-up surveillance applications. The technologies under development in BEAD and PCL are presented along with the field test results and the sensor concepts. In particular, spin-off data such as bistatic look-down clutter, noise-floor limitation of noncooperative multistatics and sensitivity limitations set by passive surveillance using signal intercept techniques and illuminators of opportunity are provided.

  13. Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency: Activity in Normal, Mutant, and Heterozygote-Cultured Human Skin Fibroblasts

    PubMed Central

    Fujimoto, Wilfred Y.; Seegmiller, J. Edwin

    1970-01-01

    Cultured skin fibroblasts from patients deficient for the enzyme hypoxanthine-guanine phosphoribosyltransferase (PRT) activity show very low but nevertheless significant levels of apparent PRT enzyme despite absence of detectable activity (<0.004% of normal) in erythrocytes of the same patients. In fibroblasts this mutant enzyme is more heat labile than the normal enzyme. These findings indicate that PRT deficiency in this disorder is not due to a deletion mutation of the PRT locus. Individual cultured skin fibroblasts from heterozygote females for PRT deficiency show normal, intermediate, or very low levels of PRT activity. The mosaicism demonstrated in the heterozygotes for this X-linked disorder accounts for the cells with normal and very low activities of PRT. Intermediate activity can best be explained by the phenomenon of metabolic cooperation presumably from the transfer of either PRT enzyme or messenger RNA, from normal to mutant cells. Images PMID:5267139

  14. Anatomy of a microearthquake sequence on an active normal fault.

    PubMed

    Stabile, T A; Satriano, C; Orefice, A; Festa, G; Zollo, A

    2012-01-01

    The analysis of similar earthquakes, such as events in a seismic sequence, is an effective tool with which to monitor and study source processes and to understand the mechanical and dynamic states of active fault systems. We are observing seismicity that is primarily concentrated in very limited regions along the 1980 Irpinia earthquake fault zone in Southern Italy, which is a complex system characterised by extensional stress regime. These zones of weakness produce repeated earthquakes and swarm-like microearthquake sequences, which are concentrated in a few specific zones of the fault system. In this study, we focused on a sequence that occurred along the main fault segment of the 1980 Irpinia earthquake to understand its characteristics and its relation to the loading-unloading mechanisms of the fault system. PMID:22606366

  15. Anatomy of a microearthquake sequence on an active normal fault

    PubMed Central

    Stabile, T. A.; Satriano, C.; Orefice, A.; Festa, G.; Zollo, A.

    2012-01-01

    The analysis of similar earthquakes, such as events in a seismic sequence, is an effective tool with which to monitor and study source processes and to understand the mechanical and dynamic states of active fault systems. We are observing seismicity that is primarily concentrated in very limited regions along the 1980 Irpinia earthquake fault zone in Southern Italy, which is a complex system characterised by extensional stress regime. These zones of weakness produce repeated earthquakes and swarm-like microearthquake sequences, which are concentrated in a few specific zones of the fault system. In this study, we focused on a sequence that occurred along the main fault segment of the 1980 Irpinia earthquake to understand its characteristics and its relation to the loading-unloading mechanisms of the fault system. PMID:22606366

  16. Normal-Mode Excitation by Sumatran Earthquake and Short-Timescale THERMO-MECHANICS AND RHEOLOGY OF THE EARTH'S LITHOSPHERE

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, K.; Yuen, D. A.

    2005-05-01

    Solutions of the free-oscillation amplitudes,excited by the recent Sumatran wallop, by Okal and Stein ( 2005 ) have revealed a linearly growing trend in the semi-log plot between amplitude and period from 300 seconds to around an hour. This tantalizing plot (http://www.earth.northwestern.edu/people/seth/research/sumatra.html ) is very much reminiscent of the Rayleigh-Jeans portion of the Planck function in radiation physics, which was called the ultra-violet catastrophe. This distinct signature at long periods shows that some other physics must intervene to neutralize this singular tendency at a longer timescale. Thus in earthquake thermo-mechanics the size of an earthquake or moment is analogous to temperature in statistical physics. In this vein we have studied the thermal-mechanical shear interaction within the framework of a two-dimensional time-dependent model wherein a realistic visco-elastic-plastic rheology is implemented, and the governing equations include the momentum equation without inertia, the rheological and energy equations. We have retained all mechanical heating terms and heating terms involving volumetric expansion in the energy eq uation. In our simulations wherein we have modeled a bending situation, we encou nter two basically different bifurcation phenomena at the brittle-ductile transition-zone in the lithosphere, which can be attributed to two different families of eigenmodes of the system. One in which the shear zone nucleates on thermal perturbations in the ductile field, and the second which is fully associated with elasto-plastic (brittle, pressure-dependent) displacements. A quartz slab has all two modes operating simultaneously at three different depth levels. The bottom of the crust is controlled by the elasto-visco-plastic mode while the top is controlled by the elasto-plastic mode. The exchange of the two modes appears to communicate on a sub-horizontal layer in a flip-flop fashion, which may yield a fractal-like signature in time

  17. Herbicide activity of monosulfuron and its mode of action.

    PubMed

    Fan, Zhi-Jin; Ai, Ying-Wei; Qian, Chuan-Fan; Li, Zheng-Ming

    2005-01-01

    Monosulfuron was developed for weed control in the field of wheat (Triticum, aestivum L.) and millet (Panicum miliaceum L.) with the application rate ranging from 15 to 60 g ai/hm2. Herbicidal activity of monosulfuron was evaluated systematically by bioassay using maize (Zea mays L.) taproot as indicator and weed fresh weight of Acalypha australis L. and Echinochloa phyllopogon. Maize CAU 3138 was the most tolerant cultivars to monosulfuron with IC50 (concentration of 50% inhibition) of 85 microg/kg, Yedan 13 was one of the most sensitive cultivars to monosulfuron with IC50 of 6.4 microg/kg. Monosulfuron inhibited the growth of Acalypha australis L. strongly comparing with that of Echinochloa phyllopogon. Monosulfuron was a good acetolactate synthase (ALS) inhibitor in vitro, the I50 (50% of inhibition) of monosulfuron, chlorsulfuron, tribenuron-methyl and nicosulfuron for CAU 3138 were 32, 2, 19 and 26 nmol/L respectively, for Yedan 13 the I50 were 15, 3, 17 and 65 nmol/L respectively. In vivo ALS inhibition occurred only in higher concentration of 4 sulfonylurea herbicide tested. Comparison study of this test indicated that the mode of action of monosulfuron was the same as that of other sulfonylurea herbicides such as chlorsulfuron, tribenuron-methyl and nicosulfuron, they were all inhibitors targeted at the ALS. PMID:16083111

  18. Phase stabilization of an actively mode-locked ring laser

    NASA Astrophysics Data System (ADS)

    Takada, Akira; Saika, Makoto; Nagano, Shigenori

    2015-03-01

    A phase-resolved system based on swept source optical coherence tomography (SS-OCT) has to incorporate a phase-stabilized wavelength-swept light source. The phase variation is induced by fluctuation of a beginning swept frequency. The conventional phase-sensitive SS-OCTs use a fiber Bragg grating (FBG) in order to avoid A-scan trigger fluctuations. However this method does not always solve the trigger fluctuation problem. In actively mode-locked ring lasers (AMLLs), the beginning swept frequency fluctuates by abrupt frequency change between the end of a sweep and the beginning of the subsequent one. To overcome this issue, we proposes a new phase stabilization method. By employing the method with an auxiliary reference configuration, the sweeping phase has successfully stabilized because the timing jitter is calculated by interference signals from the auxiliary reference path. In this research, we have proposed the phase stabilization method that has nanometer sensitivity with millisecond response. In addition, the method has successfully suppressed the depth dependence of phase instability.

  19. Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser.

    PubMed

    Sobon, Grzegorz; Sotor, Jaroslaw; Martynkien, Tadeusz; Abramski, Krzysztof M

    2016-03-21

    We report generation of ultra-broadband dissipative solitons and noise-like pulses from a simple, fully fiberized mode-locked Tm-doped fiber laser. The oscillator operates in the normal net dispersion regime and is mode-locked via nonlinear polarization evolution. Depending on the cavity dispersion, the laser was capable of generating 60 nm or 100 nm broad dissipative solitons. These are the broadest spectra generated from a normal dispersion mode-locked Tm-doped fiber laser so far. The same oscillator might also operate in the noise-like pulse regime with extremely broad emission spectra (over 300 nm), which also significantly outperforms the previous reports. PMID:27136809

  20. Risk of COPD with obstruction in active smokers with normal spirometry and reduced diffusion capacity.

    PubMed

    Harvey, Ben-Gary; Strulovici-Barel, Yael; Kaner, Robert J; Sanders, Abraham; Vincent, Thomas L; Mezey, Jason G; Crystal, Ronald G

    2015-12-01

    Smokers are assessed for chronic obstructive pulmonary disease (COPD) using spirometry, with COPD defined by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) as airflow limitation that is not fully reversible with bronchodilators. There is a subset of smokers with normal spirometry (by GOLD criteria), who have a low diffusing capacity of the lung for carbon monoxide (DLCO), a parameter linked to emphysema and small airway disease. The natural history of these "normal spirometry/low DLCO" smokers is unknown.From a cohort of 1570 smokers in the New York City metropolitian area, all of whom had normal spirometry, two groups were randomly selected for lung function follow-up: smokers with normal spirometry/normal DLCO (n=59) and smokers with normal spirometry/low DLCO (n=46). All had normal history, physical examination, complete blood count, urinalysis, HIV status, α1-antitrypsin level, chest radiography, forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC ratio and total lung capacity. Throughout the study, all continued to be active smokers.In the normal spirometry/normal DLCO group assessed over 45±20 months, 3% developed GOLD-defined COPD. In contrast, in the normal spirometry/low DLCO group, followed over 41±31 months, 22% developed GOLD-defined COPD.Despite appearing "normal" according to GOLD, smokers with normal spirometry but low DLCO are at significant risk of developing COPD with obstruction to airflow. PMID:26541521

  1. Personalizing energy expenditure estimation using physiological signals normalization during activities of daily living.

    PubMed

    Altini, Marco; Penders, Julien; Vullers, Ruud; Amft, Oliver

    2014-09-01

    In this paper we propose a generic approach to reduce inter-individual variability of different physiological signals (HR, GSR and respiration) by automatically estimating normalization parameters (e.g. baseline and range). The proposed normalization procedure does not require a dedicated personal calibration during system setup. On the other hand, normalization parameters are estimated at system runtime from sedentary and low intensity activities of daily living (ADLs), such as lying and walking. When combined with activity-specific energy expenditure (EE) models, our normalization procedure improved EE estimation by 15 to 33% in a study group of 18 participants, compared to state of the art activity-specific EE models combining accelerometer and non-normalized physiological signals. PMID:25120177

  2. [Ecological demonstration activity and eco-civilization construction mode: review and prospects].

    PubMed

    Mao, Hui-ping; He, Xuan; He, Jia; Niu, Dong-jie; Bao, Cun-kuan

    2013-04-01

    Ecological civilization is to normalize human development behaviors to harmonize the relationships between social and ecological development and eco-environment protection. In this paper, a comparative analysis was made on the ecological demonstration activities of ecological demonstration areas led by the Ministry of Environmental Protection, exemplar cities of national environmental protection, and ecological provinces, cities, and counties. It was considered that all the ecological demonstration activities had the problems of lacking pertinence of construction goals, disordered construction subjects, inefficient construction processes, and lacking continuous incentive mechanisms of assessment. In the meantime, through the analysis of the connotations of eco-civilization, the relationships between eco-civilization and eco-demonstration constructions were approached, and the eco-civilization construction mode was put forward in terms of construction goal, construction subject, and construction processes and assessment. The construction mode included the construction goal based on regional characteristics; the synergistic cooperation of construction subjects, the expanding ways of public participation, and the establishment of evaluation system for comprehensively measuring the 'actions and results'. PMID:23898681

  3. Synchronization of active/passive mode-locked erbium fiber lasers

    NASA Astrophysics Data System (ADS)

    Kaechele, Walter; Haus, Joseph W.; Hayduk, Michael J.; Erdmann, Reinhard K.; Teegarden, Kenneth J.

    1997-07-01

    Injection seeding of a passively mode-locked fiber laser by an actively mode-locked fiber laser source is described. The passively mode-locked laser employs a multiple quantum well saturable absorber to establish pulsed operation. Mode-locked synchronized operation was maintained with average injection powers as low as 1.3 mW. Stable synchronized pulses were observed with pulse widths as narrow as 10 ps.

  4. High frequency normal mode statistics in a shallow water waveguide: the effect of random linear internal waves.

    PubMed

    Raghukumar, Kaustubha; Colosi, John A

    2014-07-01

    Using transport theory and Monte Carlo numerical simulation, the statistical properties of mode propagation at a frequency of 1 kHz are studied in a shallow water environment with random sound-speed perturbations from linear internal waves. The environment is typical of summer conditions in the mid-Atlantic bight during the Shallow Water 2006 experiment. Observables of interest include the second and fourth moments of the mode amplitudes, which are relevant to full-field mean intensity and scintillation index. It is found that mode phase randomization has a strong adiabatic component while at the same time mode coupling rates are significant. As a consequence, a computationally efficient transport theory is presented, which models cross-mode correlation adiabatically, but accounts for mode coupling using the mode energy equations of Creamer [(1996). J. Acoust. Soc. Am. 99, 2825-2838]. The theory also has closed-form expressions for the internal wave scattering matrix and a correction for an edge effect. The hybrid transport theory is shown to accurately reproduce many statistical quantities from the Monte Carlo simulations. PMID:24993196

  5. Effect of damping on excitability of high-order normal modes. [for a large space telescope spacecraft

    NASA Technical Reports Server (NTRS)

    Merchant, D. H.; Gates, R. M.; Straayer, J. W.

    1975-01-01

    The effect of localized structural damping on the excitability of higher-order large space telescope spacecraft modes is investigated. A preprocessor computer program is developed to incorporate Voigt structural joint damping models in a finite-element dynamic model. A postprocessor computer program is developed to select critical modes for low-frequency attitude control problems and for higher-frequency fine-stabilization problems. The selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensor, and on image-plane motions due to sinusoidal or random PSD force and torque inputs.

  6. Dynamic analysis of space frames: The method of reverberation-ray matrix and the orthogonality of normal modes

    NASA Astrophysics Data System (ADS)

    Guo, Y. Q.; Chen, W. Q.; Pao, Y.-H.

    2008-11-01

    The formulation of reverberation-ray matrix analysis has been proposed to study wave propagation in planar frames. It is applied here to modal analysis of complex three-dimensional framed structures, optionally with lumped masses and/or elastic supports. Furthermore, by means of Betti's reciprocity theorem, orthogonal conditions are established for different natural modes, and hence transient response analysis based on mode superposition is developed. Both the reverberation-ray matrix analysis for free vibration and the mode superposition method for transient response are illustrated by numerical examples.

  7. Steady-state entanglement and normal-mode splitting in an atom-assisted optomechanical system with intensity-dependent coupling

    SciTech Connect

    Barzanjeh, Sh.; Naderi, M. H.; Soltanolkotabi, M.

    2011-12-15

    In this paper, we study theoretically bipartite and tripartite continuous variable entanglement as well as normal-mode splitting in a single-atom cavity optomechanical system with intensity-dependent coupling. The system under consideration is formed by a Fabry-Perot cavity with a thin vibrating end mirror and a two-level atom in the Gaussian standing wave of the cavity mode. We first derive the general form of the Hamiltonian describing the tripartite intensity-dependent atom-field-mirror coupling due to the presence of the cavity mode structure. We then restrict our treatment to the first vibrational sideband of the mechanical resonator and derive a tripartite atom-field-mirror Hamiltonian. We show that when the optical cavity is intensely driven, one can generate bipartite entanglement between any pair in the tripartite system and that, due to entanglement sharing, atom-mirror entanglement is efficiently generated at the expense of optical-mechanical and optical-atom entanglement. We also find that in such a system, when the Lamb-Dicke parameter is large enough, one can simultaneously observe the normal mode splitting into three modes.

  8. High-frequency normal-mode statistics in shallow water: the combined effect of random surface and internal waves.

    PubMed

    Raghukumar, Kaustubha; Colosi, John A

    2015-05-01

    In an earlier article, the statistical properties of mode propagation were studied at a frequency of 1 kHz in a shallow water environment with random sound-speed perturbations from linear internal waves, using a hybrid transport theory and Monte Carlo numerical simulations. Here, the analysis is extended to include the effects of random linear surface waves, in isolation and in combination with internal waves. Mode coupling rates for both surface and internal waves are found to be significant, but strongly dependent on mode number. Mode phase randomization by surface waves is found to be dominated by coupling effects, and therefore a full transport theory treatment of the range evolution of the cross mode coherence matrix is needed. The second-moment of mode amplitudes is calculated using transport theory, thereby providing the mean intensity while the fourth-moment is calculated using Monte Carlo simulations, which provides the scintillation index. The transport theory results for second-moment statistics are shown to closely reproduce Monte Carlo simulations. Both surface waves and internal waves strongly influence the acoustic field fluctuations. PMID:25994721

  9. Actively mode-locked GaInAsP laser with subpicosecond output

    SciTech Connect

    Corzine, S.W.; Bowers, J.E.; Przybylek, G.; Koren, U.; Miller, B.I.; Soccolich, C.E.

    1988-02-01

    We actively mode lock a high-frequency GaInAsP laser at a rate of 16 GHz to obtain nearly transform-limited hyperbolic secant pulses with a pulse width of 0.58 ps. This is the shortest pulse width yet demonstrated for either passively or actively mode-locked semiconductor lasers.

  10. Active following fuzzy output feedback sliding mode control of real-vehicle semi-active suspensions

    NASA Astrophysics Data System (ADS)

    Liu, H.; Nonami, K.; Hagiwara, T.

    2008-07-01

    Many semi-active suspension systems have been investigated in various literatures in order to achieve lower energy consumption and as good performance as full-active suspension systems. Full-active suspension systems can achieve a good ride quality by actuators; however, their implementation equipments are expensive. The full-active suspensions are perfect from the point of view of control; hence, semi-active control laws with performance similar to full-active controls have attracted the engineering community for their ease and lower cost of implementation. This paper presents a new active following fuzzy output feedback sliding mode control for a real-vehicle semi-active suspension system. The performance of the proposed controller has been verified by comparing it with passive control and also with the full-active target semi-active approximation control method. In the experiment, it was shown that the proposed method has the effectiveness in stabilizing heave, roll and pitch movement of the car body.

  11. Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation.

    PubMed

    Smirnov, Sergey; Kobtsev, Sergey; Kukarin, Sergey; Ivanenko, Aleksey

    2012-11-19

    We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment. PMID:23187603

  12. High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber

    NASA Astrophysics Data System (ADS)

    Huang, S. S.; Wang, Y. G.; Yan, P. G.; Zhang, G. L.; Zhao, J. Q.; Li, H. Q.; Lin, R. Y.

    2014-01-01

    A high order passive harmonic mode-locking (HML) Yb-doped all-normal-dispersion fiber laser based on a graphene oxide saturable absorber has been experimentally demonstrated. For two different pump powers and different polarization states of the laser cavity, lower order and higher order HML have been achieved. The highest 30th-order harmonic (31.86 MHz) was achieved with subnanosecond pulse duration; this is transitional from a bunched multipulse state.

  13. High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity

    NASA Astrophysics Data System (ADS)

    Lin, J.-H.; Wang, D.; Lin, K.-H.

    2011-01-01

    Robust passively mode-locked pulse generation with low pulse repetition rate and giant spectrum bandwidth in an all-fiber, all-normal-dispersion ytterbium-doped fiber laser has been experimentally demonstrated using nonlinear polarization evolution technique. The highest pulse energy over 20 nJ with spectrum bandwidth over 50 nm can be experimentally obtained at 175 mW pump power. The mode-locked pulses reveal broadened 3-dB pulsewidth about several nanosecond and widened pedestal in time trace that is resulted from enormous dispersion in laser cavity and gain dynamics. At certain mode-locking state, a spectrum gap around 1056 nm are observed between the three and four energy levels of Yb-doped fiber laser. By properly rotating the polarization controller, the gap can be eliminated due to four-wave mixing to produce more flattened spectrum output.

  14. Detection of aryl hydrocarbon hydroxylase activity in normal and neoplastic human breast epithelium

    SciTech Connect

    Greiner, J.W.; Malan-Shibley, L.B.; Janss, D.H.

    1980-01-28

    Studies were conducted to determine whether normal and/or neoplastic (MCF-7) human breast epithelial cells contain the microsomal aryl hydrocarbon hydroxylase (AHH) which catalyses the conversion of polycyclic aromatic hydrocarbons (PAH) to carcinogenic intermediates. Low constitutive levels of AHH activity were found in homogenates of both normal human breast epithelial and MCF-7 cells. The addition of 7,12-dimethylbenz(a)anthracene (DMBA) to the culture medium of either cell type significantly increased AHH activity. Peak induction of hydroxylase activity occurred following the in vitro addition of 10 ..mu..M DMBA. A time course of DMBA-induced AHH activity in both normal human breast epithelium and MCF-7 cells revealed maximal induction 16 hr after 10 ..mu..M DMBA was added to the culture medium. Benzo(a)pyrene (BP), 3-methylcholanthrene (MCA) and benz(a)anthracene (BA) also induced AHH activity in normal and MCF-7 cells. For example, the addition of 10 ..mu..M BP to the culture medium of either normal human breast epithelial or MCF-7 cells for 16 hr increased AHH activity 13.8 and 65.3-fold, respectively. For all PAH, the magnitude of AHH induction was substantially greater in MCF-7 than normal breast epithelial cells. Finally, ..cap alpha..-naphthoflavone inhibited BA-induced AHH activity in MCF-7 cells. The study demonstrates the presence of a PAH-inducible AHH enzyme(s) in normal human breast epithelial cells grown in primary culture and in the human breast tumor cell line, MCF-7.

  15. MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES

    SciTech Connect

    Treyer, Marie; Martin, Christopher D.; Wyder, Ted; Schiminovich, David; O'Dowd, Matt; Johnson, Benjamin D.; Charlot, Stephane; Heckman, Timothy; Martins, Lucimara; Seibert, Mark; Van der Hulst, J. M.

    2010-08-20

    We investigate the use of mid-infrared (MIR) polycyclic aromatic hydrocarbon (PAH) bands, the continuum, and emission lines as probes of star formation (SF) and active galactic nucleus (AGN) activity in a sample of 100 'normal' and local (z {approx} 0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph as part of the Spitzer-SDSS-GALEX Spectroscopic Survey, which includes multi-wavelength photometry from the ultraviolet to the far-infrared and optical spectroscopy. The continuum and features were extracted using PAHFIT, a decomposition code which we find to yield PAH equivalent widths (EWs) up to {approx}30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low-metallicity galaxies, or ULIRGs), we find significant variations in PAH, continuum, and emission-line properties, and systematic trends between these MIR properties and optically derived physical properties, such as age, metallicity, and radiation field hardness. We revisit the diagnostic diagram relating PAH EWs and [Ne II]12.8 {mu}m/[O IV]25.9 {mu}m line ratios and find it to be in much better agreement with the standard optical SF/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and, with poorer statistics, of the neon emission lines and molecular hydrogen lines are found to be tightly correlated to the total infrared (TIR) luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the TIR luminosity, these individual components can be used to estimate dust attenuation in the UV and in H{alpha} lines based on energy balance arguments. We also propose average scaling relations between these components and dust-corrected, H{alpha}-derived SF rates.

  16. Analysis of AB Initio Normal-Mode Displacement Vectors Along the Internal Rotation Path for the Three C-H Stretching Vibrations in Methanol

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Lees, Ronald M.; Hougen, Jon T.

    2012-06-01

    Stemming from the observation of inverted A/E splittings for the ν2 and ν9 asymmetric CH-stretching modes in methanol, there has been much theoretical interest in attempting to explain the nature of the inversion. We have recently examined the ab initio normal-mode vibrational displacement vectors along the internal rotation path for the three C-H stretching vibrations in methanol, both in the symmetrized and non-symmetrized PAM coordinates. Graphical representations of the Cartesian atomic normal mode displacement vectors di(γ) determined by the Gaussian suite of programs for the three CH stretching motions, ν2(A1), ν3(A1) and ν9(A2), along the steepest-descent internal rotation path γ in methanol (CH_3OH) will be presented and discussed, where A1 and A2 are notations in permutation-inversion group G6. These modes are interesting because the symmetry environment of each C-H bond changes significantly during the internal rotation, i.e., each of the methyl bonds takes turns passing (twice for a complete torsional revolution) through the plane of symmetry of the COH frame of the molecule. We present some simple theoretical models which can be used to help understand these displacement vectors. Although this is work in progress, some explanation is already possible for the rather irregular (avoided-crossing-like) behavior of these displacement vectors.

  17. Surface enhanced Raman scattering, natural bond orbitals and Mulliken atomic charge distribution in the normal modes of diethyldithiocarbamate cadmium (II) complex, [Cd(DDTC)2

    NASA Astrophysics Data System (ADS)

    Téllez Soto, C. A.; Costa, A. C.; Versiane, O.; Lemma, T.; Machado, N. C. F.; Mondragón, M. A.; Martin, A. A.

    2015-07-01

    Theoretical and experimental bands have been assigned to the Fourier Transform Infrared (FT-IR) and FT-Raman spectra of the bis(diethyldithiocarbamate)Cd(II) complex, abbreviated as ([Cd(DDTC)2]). The calculations and spectral interpretation have been based on the DFT/B3LYP method, infrared and Raman second derivative spectra, and band deconvolution analysis to assist in the assignment of observed fundamentals. This study validated the unusual pseudo tetrahedral molecular structure formed around the Cd(II) cation. Surface-enhanced Raman scattering (SERS) was used to determine the interactions of the normal-modes of the diethyldithiocarbamate cadmium (II) complex on nano-structured silver surfaces. Natural bond orbital (NBO) analysis was also carried out to study the Cd(II) hybridization causing the pseudo tetrahedral geometry of the framework of the [Cd(DDTC)2] complex, and to confirm the charge transfer mechanisms through second order perturbation theory analysis of the Fox Matrix. In order to find out the electronic dispersion of the Mulliken atomic charges (MAC) in the normal modes, we calculated the MAC for each normal mode and correlated these values with the SERS effect. Experimental UV-Vis spectra were obtained and charge transfer bands were assigned. Good agreement between the calculated and experimental values for the vibrational and UV-Vis spectra was obtained.

  18. Surface enhanced Raman scattering, electronic spectrum, natural bond orbital, and Mulliken charge distribution in the normal modes of diethyldithiocarbamate copper (II) complex, [Cu(DDTC)2].

    PubMed

    Téllez Soto, C A; Costa, A C; Ramos, J M; Vieira, L S; Rost, N C V; Versiane, O; Rangel, J L; Mondragón, M A; Raniero, L; Martin, A A

    2013-12-01

    Surface-enhanced Raman scattering (SERS) was used to study the interactions of the normal modes of the diethyldithiocarbamate copper (II) complex, [Cu(DDTC)2] on nano-structured mixture silver-gold surfaces and on silver surfaces. The electronic spectrum of this complex was measured and the charge transfer bands were assigned through the TD-PBE1PBE procedure. Natural bond orbital (NBO) were also carried out to study the Cu(II) hybridation leading to the square planar geometry of the framework of the [Cu(DDTC)2] complex, and to study which are the donor NBO and the acceptor NBO in meaningful charge transfer through the Second Order Perturbation Theory Analysis of the Fox Matrix in NBO basis. To see the electronic dispersion, the Mulliken electronic charges (MAC) were calculated for each normal mode and correlated with the SERS effect. Full assignment of the SERS spectra was also supported by carefully analysis of the distorted geometries generated by the normal modes. PMID:23978740

  19. Surface enhanced Raman scattering, natural bond orbitals and Mulliken atomic charge distribution in the normal modes of diethyldithiocarbamate cadmium (II) complex, [Cd(DDTC)₂].

    PubMed

    Soto, C A Téllez; Costa, A C; Versiane, O; Lemma, T; Machado, N C F; Mondragón, M A; Martin, A A

    2015-07-01

    Theoretical and experimental bands have been assigned to the Fourier Transform Infrared (FT-IR) and FT-Raman spectra of the bis(diethyldithiocarbamate)Cd(II) complex, abbreviated as ([Cd(DDTC)2]). The calculations and spectral interpretation have been based on the DFT/B3LYP method, infrared and Raman second derivative spectra, and band deconvolution analysis to assist in the assignment of observed fundamentals. This study validated the unusual pseudo tetrahedral molecular structure formed around the Cd(II) cation. Surface-enhanced Raman scattering (SERS) was used to determine the interactions of the normal-modes of the diethyldithiocarbamate cadmium (II) complex on nano-structured silver surfaces. Natural bond orbital (NBO) analysis was also carried out to study the Cd(II) hybridization causing the pseudo tetrahedral geometry of the framework of the [Cd(DDTC)2] complex, and to confirm the charge transfer mechanisms through second order perturbation theory analysis of the Fox Matrix. In order to find out the electronic dispersion of the Mulliken atomic charges (MAC) in the normal modes, we calculated the MAC for each normal mode and correlated these values with the SERS effect. Experimental UV-Vis spectra were obtained and charge transfer bands were assigned. Good agreement between the calculated and experimental values for the vibrational and UV-Vis spectra was obtained. PMID:25813176

  20. Computation of synthetic seismograms in a 3 dimensional Earth and inversion of eigenfrequency and Q quality factor datasets of normal modes

    NASA Astrophysics Data System (ADS)

    Roch, Julien; Clevede, Eric; Roult, Genevieve

    2010-05-01

    The 26 December 2004 Sumatra-Andaman event is the third biggest earthquake that has never been recorded but the first recorded with high quality broad-band seismometers. Such an earthquake offered a good opportunity for studying the normal modes of the Earth and particularly the gravest ones (frequency lower than 1 mHz) which provide important information on deep Earth. The splitting of some modes has been carefully analyzed. The eigenfrequencies and the Q quality factors of particular singlets have been retrieved with an unprecedented precision. In some cases, the eigenfrequencies of some singlets exhibit a clear shift when compared to the theoretical eigenfrequencies. Some core modes such as the 3S2 mode present an anomalous splitting, that is to say, a splitting width much larger than the expected one. Such anomalous splitting is presently admitted to be due to the existence of lateral heterogeneities in the inner core. We need an accurate model of the whole Earth and a method to compute synthetic seismograms in order to compare synthetic and observed data and to explain the behavior of such modes. Synthetic seismograms are computed by normal modes summation using a perturbative method developed up to second order in amplitude and up to third order in frequency (HOPT method). The last step consists in inverting both eigenfrequency and Q quality factor datasets in order to better constrain the deep Earth structure and especially the inner core. In order to find models of acceptable data fit in a multidimensional parameter space, we use the neighborhood algorithm method which is a derivative-free search method. It is particularly well adapted in our case (non linear problem) and is easy to tune with only 2 parameters. Our purpose is to find an ensemble of models that fit the data rather than a unique model.

  1. 29 CFR 778.332 - Awards for activities not normally part of employee's job.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Awards for activities not normally part of employee's job. 778.332 Section 778.332 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... of employee's job. (a) Where the prize is awarded for activities outside the customary working...

  2. 29 CFR 778.332 - Awards for activities not normally part of employee's job.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Awards for activities not normally part of employee's job. 778.332 Section 778.332 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... of employee's job. (a) Where the prize is awarded for activities outside the customary working...

  3. 29 CFR 778.332 - Awards for activities not normally part of employee's job.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Awards for activities not normally part of employee's job. 778.332 Section 778.332 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... of employee's job. (a) Where the prize is awarded for activities outside the customary working...

  4. Electrodermal Activity to Auditory Stimuli in Autistic, Retarded, and Normal Children.

    ERIC Educational Resources Information Center

    Stevens, Sheila; Gruzelier, John

    1984-01-01

    Electrodermal activity to auditory stimuli was compared in 20 autistic children and their matched retarded and normal controls (N=80). The autistic children were virtually indistinguishable in individual features of electrodermal activity from controls when both chronological and mental age comparisons were accounted for. (Author/CL)

  5. Active multi-mode-interferometer broadband superluminescent diodes

    NASA Astrophysics Data System (ADS)

    Feifei, Wang; Peng, Jin; Ju, Wu; Yanhua, Wu; Fajie, Hu; Zhanguo, Wang

    2016-01-01

    We report a new quantum dot superluminescent diode with a new device structure. In this device, a multi-mode-interferometer configuration and a J-bend structure were monolithically integrated. Owing to the multi-mode-interferometer structure, the superluminescent diode exhibits 60% increase in output power and 43% reduction in the differential resistance compared with the uniform waveguide width superluminescent diode fabricated from the same wafer. Our device produces an emission spectrum as wide as 103.7 nm with an output power of 2.5 mW at 600 mA continue-wave injection current. This broadband emission spectrum makes the axial resolution of the optical coherence tomography system employing the superluminescent diode to 6 μm in theory, which is high enough for most tissue imaging. Project supported by the National Natural Science Foundation of China (No. 61274072) and the National High Technology Research and Development Program of China (No. 2013AA014201).

  6. External kink modes as a model for MHD activity associated with ELMs

    SciTech Connect

    Manickam, J.

    1992-01-01

    Tokamak plasmas in the high confinement mode of operation are known to exhibit edge localized activity referred to as ELMs. A model is proposed for the underlying cause in terms of the external kink mode. The build up of the current density near the plasma edge is shown to decrease the shear in the safety-factor, q, profile and lead to destabilization of the kink mode. The role of the plasma geometry and equilibrium profiles is discussed.

  7. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique

    SciTech Connect

    Fry-Petit, A. M. E-mail: afry@fullerton.edu; Sheckelton, J. P.; McQueen, T. M. E-mail: afry@fullerton.edu; Rebola, A. F.; Fennie, C. J.; Mourigal, M.; Valentine, M.; Drichko, N.

    2015-09-28

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn{sub 2}Mo{sub 3}O{sub 8}, this approach allows direct assignment of the constrained rotational mode of Mo{sub 3}O{sub 13} clusters and internal modes of MoO{sub 6} polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems.

  8. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique.

    PubMed

    Fry-Petit, A M; Rebola, A F; Mourigal, M; Valentine, M; Drichko, N; Sheckelton, J P; Fennie, C J; McQueen, T M

    2015-09-28

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn2Mo3O8, this approach allows direct assignment of the constrained rotational mode of Mo3O13 clusters and internal modes of MoO6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems. PMID:26429001

  9. Cyclic GMP phosphodiesterase activity role in normal and inflamed human dental pulp.

    PubMed

    Spoto, G; Ferrante, M; D'Intino, M; Rega, L; Dolci, M; Trentini, P; Ciavarelli, L

    2004-01-01

    Cyclic GMP phosphodiesterase (cGMP PDE) plays an important role in pulp tissues. High levels of cGMP PDE are found in dental pulp cells. In the present study cGMP PDE activity was analyzed in normal healthy human dental pulps, in reversible pulpitis and in irreversible pulpitis. Enzymatic cGMP PDE control values for normal healthy pulps were 4.74+/-0.32 nmol/mg of proteins. In reversible pulpitis the cGMP PDE activity increased almost 3 times. In irreversible pulpitis specimens the values increased 4.5 times compared with the normal healthy pulps activity. The differences between the groups (control vs. reversible pulpitis and vs. irreversible pulpitis) were statistically significant. These results point to a role of cGMP PDE in the initial pulp response after injury. PMID:16857102

  10. Cyclic Amp phosphodiesterase activity in normal and inflamed human dental pulp.

    PubMed

    Spoto, G; Menna, V; Serra, E; Santoleri, F; Perfetti, G; Ciavarelli, L; Trentini, P

    2004-01-01

    Cyclic AMP phosphodiesterase (cAMP PDE) seems to be important in pulp tissues. High levels of cAMP PDE have been demonstrated to be in dental pulp cells. In the present study cAMP PDE activity was analyzed in normal healthy human dental pulps, in reversible pulpitis and in irreversible pulpitis. Enzymatic cAMP PDE control values for normal healthy pulps were 12.14 +/- 3.74 nmols/mg of proteins. In reversible pulpitis the cAMP PDE activity increased almost 2.5 times. In irreversible pulpitis specimens the values increased 4.5 times compared with normal healthy pulps activity. The differences between the groups (control vs. reversible pulpitis and vs. irreversible pulpitis) were statistically significant. These results could point to a role of cAMP PDE in the initial pulp response after injury. PMID:16857100

  11. The Properties of Large Amplitude Whistler Mode Waves in the Magnetosphere: Propagation and Relationship with Geomagnetic Activity

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Wygant, J. R.; Goetz, K.; Breneman, A.; Kersten, K.

    2011-01-01

    Wepresent resultsof a studyof the characteristicsof very large amplitude whistler mode waves inside the terrestrial magnetosphere at radial distances of less than 15 RE using waveform capture data from the Wind spacecraft. We observed 247 whistler mode waves with at least one electric field component (105/247 had !80 mV/m peak!to!peak amplitudes) and 66 whistler mode waves with at least one search coil magnetic field component (38/66 had !0.8 nT peak!to!peak amplitudes). Wave vectors determined from events with three magnetic field components indicate that 30/46 propagate within 20 of the ambient magnetic field, though some are more oblique (up to "50 ). No relationship was observed between wave normal angle and GSM latitude. 162/247 of the large amplitude whistler mode waves were observed during magnetically active periods (AE > 200 nT). 217 out of 247 total whistler mode waves examined were observed inside the radiation belts. We present a waveform capture with the largest whistler wave magnetic field amplitude (^8 nT peak!to!peak) ever reported in the radiation belts. The estimated Poynting flux magnitude associated with this wave is ^300 mW/m2, roughly four orders of magnitude above estimates from previous satellite measurements. Such large Poynting flux values are consistent with rapid energization of electrons.

  12. Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations

    SciTech Connect

    Wu, Xiaokun; Han, Min; Ming, Dengming

    2015-10-07

    Membrane proteins play critically important roles in many cellular activities such as ions and small molecule transportation, signal recognition, and transduction. In order to fulfill their functions, these proteins must be placed in different membrane environments and a variety of protein-lipid interactions may affect the behavior of these proteins. One of the key effects of protein-lipid interactions is their ability to change the dynamics status of membrane proteins, thus adjusting their functions. Here, we present a multi-scaled normal mode analysis (mNMA) method to study the dynamics perturbation to the membrane proteins imposed by lipid bi-layer membrane fluctuations. In mNMA, channel proteins are simulated at all-atom level while the membrane is described with a coarse-grained model. mNMA calculations clearly show that channel gating motion can tightly couple with a variety of membrane deformations, including bending and twisting. We then examined bi-channel systems where two channels were separated with different distances. From mNMA calculations, we observed both positive and negative gating correlations between two neighboring channels, and the correlation has a maximum as the channel center-to-center distance is close to 2.5 times of their diameter. This distance is larger than recently found maximum attraction distance between two proteins embedded in membrane which is 1.5 times of the protein size, indicating that membrane fluctuation might impose collective motions among proteins within a larger area. The hybrid resolution feature in mNMA provides atomic dynamics information for key components in the system without costing much computer resource. We expect it to be a conventional simulation tool for ordinary laboratories to study the dynamics of very complicated biological assemblies. The source code is available upon request to the authors.

  13. Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations

    NASA Astrophysics Data System (ADS)

    Wu, Xiaokun; Han, Min; Ming, Dengming

    2015-10-01

    Membrane proteins play critically important roles in many cellular activities such as ions and small molecule transportation, signal recognition, and transduction. In order to fulfill their functions, these proteins must be placed in different membrane environments and a variety of protein-lipid interactions may affect the behavior of these proteins. One of the key effects of protein-lipid interactions is their ability to change the dynamics status of membrane proteins, thus adjusting their functions. Here, we present a multi-scaled normal mode analysis (mNMA) method to study the dynamics perturbation to the membrane proteins imposed by lipid bi-layer membrane fluctuations. In mNMA, channel proteins are simulated at all-atom level while the membrane is described with a coarse-grained model. mNMA calculations clearly show that channel gating motion can tightly couple with a variety of membrane deformations, including bending and twisting. We then examined bi-channel systems where two channels were separated with different distances. From mNMA calculations, we observed both positive and negative gating correlations between two neighboring channels, and the correlation has a maximum as the channel center-to-center distance is close to 2.5 times of their diameter. This distance is larger than recently found maximum attraction distance between two proteins embedded in membrane which is 1.5 times of the protein size, indicating that membrane fluctuation might impose collective motions among proteins within a larger area. The hybrid resolution feature in mNMA provides atomic dynamics information for key components in the system without costing much computer resource. We expect it to be a conventional simulation tool for ordinary laboratories to study the dynamics of very complicated biological assemblies. The source code is available upon request to the authors.

  14. Effect of cimetidine on burst-promoting activity of normal T lymphocytes.

    PubMed

    Morra, L; Moccia, F; Casti, P; Bessone, G; Ponassi, G A

    1992-05-01

    The effect of cimetidine, an inhibitor of suppressor T lymphocytes, on the burst-promoting activity (BPA) of normal T lymphocytes has been studied. Cimetidine has been shown to increase the BPA of normal T lymphocytes, both when added to the culture and when T lymphocytes were preincubated for 1 h with it. Cimetidine had no direct effect on the in vitro growth of burst-forming units (BFU-E). Our results show that CD8 suppressor T lymphocytes inhibit the in vitro growth of BFU-E in normal conditions, either directly or through inhibition of BPA of CD4 helper T lymphocytes. Cimetidine has proved to be a useful tool for investigating the hematological role of T-lymphocyte subsets in normal and pathological conditions. PMID:1623056

  15. Wilsonville SRC-I pilot plant: I. Fractionation area corrosion studies; II. Hot vs. normal separation mode of operation

    SciTech Connect

    Lee, J.M.

    1981-04-01

    Extensive corrosion studies in solvent recovery columns have been done with different coals (mainly Kentucky number 9 Lafayette, Dotiki and Fies). Sodium carbonate (0.1 to 1.1% of coal) was added as neutralizer to control corrosion rate. Chloride balance runs were made for isolation of corrosive streams with high chlorine content. A caustic wash program of inlet streams has been developed for selective treatment of corrosive streams as an alternative means for possible replacement of sodium carbonate addition. High chlorine content coals such as Kentucky number 9 Lafayette and Dotiki (0.2 to 0.3%) were very corrosive, compared to low chlorine content coal, Kentucky number 9 Fies (< 0.1%). Sodium carbonate addition (0.6 to 0.7% of coal) reduced corrosion rate from 500 MPY to an insignificant level of less than 5 MPY. Caustic wash of solvents could reduce corrosion rate by 50%, removing most corrosive compounds present in the 440 to 480/sup 0/F boiling fraction. Extensive studies for the hot separator mode of operation have been done as a means of saving substantial energy by elimination of dissolver slurry cooling (0.3 MM Btu/hr) and reheating for solvent recovery (1 MM Btu/h). Impacts of the hot separator mode on plant operability, product quality and Kerr-McGee CSD Unit recovery have been studied. The hot separator mode of operation was carried out by controlling the V103 temperature to 740/sup 0/F. It was observed that preasphaltene contents increased in the SRC products such as V110 L/F SRC and CSD feed; CSD unit recovery was not affected significantly; solvent quality was not affected significantly.

  16. Theoretical study of mode evolution in active long tapered multimode fiber.

    PubMed

    Shi, Chen; Wang, Xiaolin; Zhou, Pu; Xu, Xiaojun; Lu, Qisheng

    2016-08-22

    A concise and effective model based on coupled mode theory to describe mode evolution in long tapered active fiber is presented in this manuscript. The mode coupling due to variation of core radius and slight perturbation have been analyzed and local gain with transverse spatial hole burning (TSHB) effect, loss and curvature have been taken into consideration in our model. On the base of this model, the mode evolution behaviors under different factors have been numerically investigated. Our model and results can provide instructive suggestions when designing long tapered fiber based laser and amplifiers. PMID:27557225

  17. Study of different HILIC, mixed-mode, and other aqueous normal-phase approaches for the liquid chromatography/mass spectrometry-based determination of challenging polar pesticides.

    PubMed

    Vass, Andrea; Robles-Molina, José; Pérez-Ortega, Patricia; Gilbert-López, Bienvenida; Dernovics, Mihaly; Molina-Díaz, Antonio; García-Reyes, Juan F

    2016-07-01

    The aim of the study was to evaluate the performance of different chromatographic approaches for the liquid chromatography/mass spectrometry (LC-MS(/MS)) determination of 24 highly polar pesticides. The studied compounds, which are in most cases unsuitable for conventional LC-MS(/MS) multiresidue methods were tested with nine different chromatographic conditions, including two different hydrophilic interaction liquid chromatography (HILIC) columns, two zwitterionic-type mixed-mode columns, three normal-phase columns operated in HILIC-mode (bare silica and two silica-based chemically bonded columns (cyano and amino)), and two standard reversed-phase C18 columns. Different sets of chromatographic parameters in positive (for 17 analytes) and negative ionization modes (for nine analytes) were examined. In order to compare the different approaches, a semi-quantitative classification was proposed, calculated as the percentage of an empirical performance value, which consisted of three main features: (i) capacity factor (k) to characterize analyte separation from the void, (ii) relative response factor, and (iii) peak shape based on analytes' peak width. While no single method was able to provide appropriate detection of all the 24 studied species in a single run, the best suited approach for the compounds ionized in positive mode was based on a UHPLC HILIC column with 1.8 μm particle size, providing appropriate results for 22 out of the 24 species tested. In contrast, the detection of glyphosate and aminomethylphosphonic acid could only be achieved with a zwitterionic-type mixed-mode column, which proved to be suitable only for the pesticides detected in negative ion mode. Finally, the selected approach (UHPLC HILIC) was found to be useful for the determination of multiple pesticides in oranges using HILIC-ESI-MS/MS, with limits of quantitation in the low microgram per kilogram in most cases. Graphical Abstract HILIC improves separation of multiclass polar pesticides

  18. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    PubMed

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter. PMID:25402069

  19. Full-dimensional quantum dynamics study of vinylidene-acetylene isomerization: a scheme using the normal mode Hamiltonian.

    PubMed

    Ren, Yinghui; Li, Bin; Bian, Wensheng

    2011-02-14

    Full-dimensional quantum dynamics calculations of vinylidene-acetylene isomerization are performed and the state-specific resonance decay lifetimes of vinylidene(-d(2)) are computed. The theoretical scheme is a combination of several methods: normal coordinates are chosen to describe the nuclear motion of vinylidene, with both the parity and permutation symmetry exploited; phase space optimization in combination with physical considerations is used to generate an efficient discrete variable representation; the reaction coordinate is defined by us according to the three most relevant normal coordinates, along which a kind of optimal complex absorbing potential is imposed; the preconditioned inexact spectral transform method combined with an efficient preconditioner is employed to extract the energies and lifetimes of vinylidene. The overall computation is efficient. The computed energy levels generally agree with experiment well, and several state-specific lifetimes are reported for the first time. PMID:21186383

  20. Fuzzy-logic-based hybrid locomotion mode classification for an active pelvis orthosis: Preliminary results.

    PubMed

    Yuan, Kebin; Parri, Andrea; Yan, Tingfang; Wang, Long; Munih, Marko; Vitiello, Nicola; Wang, Qining

    2015-08-01

    In this paper, we present a fuzzy-logic-based hybrid locomotion mode classification method for an active pelvis orthosis. Locomotion information measured by the onboard hip joint angle sensors and the pressure insoles is used to classify five locomotion modes, including two static modes (sitting, standing still), and three dynamic modes (level-ground walking, ascending stairs, and descending stairs). The proposed method classifies these two kinds of modes first by monitoring the variation of the relative hip joint angle between the two legs within a specific period. Static states are then classified by the time-based absolute hip joint angle. As for dynamic modes, a fuzzy-logic based method is proposed for the classification. Preliminary experimental results with three able-bodied subjects achieve an off-line classification accuracy higher than 99.49%. PMID:26737144

  1. Complement Regulatory Activity of Normal Human Intraocular Fluid Is Mediated by MCP, DAF, and CD59

    PubMed Central

    Sohn, Jeong-Hyeon; Kaplan, Henry J.; Suk, Hye-Jung; Bora, Puran S.; Bora, Nalini S.

    2007-01-01

    Purpose To identify the molecules in normal human intraocular fluid (aqueous humor and vitreous) that inhibit the functional activity of the complement system. Methods Aqueous humor and vitreous were obtained from patients with noninflammatory ocular disease at the time of surgery. Samples were incubated with normal human serum (NHS), and the mixture assayed for inhibition of the classical and alternative complement pathways using standard CH50 and AH50 hemolytic assays, respectively. Both aqueous humor and vitreous were fractionated by microconcentrators and size exclusion column chromatography. The inhibitory molecules were identified by immunoblotting as well as by studying the effect of depletion of membrane cofactor protein (MCP), decay-accelerating factor (DAF), and CD59 on inhibitory activity. Results Both aqueous humor and vitreous inhibited the activity of the classical pathway (CH50). Microcentrifugation revealed the major inhibitory activity resided in the fraction with an Mr ≥ 3 kDa. Chromatography on an S-100-HR column demonstrated that the most potent inhibition was associated with the high-molecular-weight fractions (≥ 19.5 kDa). In contrast to unfractionated aqueous and vitreous, fractions with an Mr ≥ 3 kDa also had an inhibitory effect on the alternative pathway activity (AH50). The complement regulatory activity in normal human intraocular fluid was partially blocked by monoclonal antibodies against MCP, DAF, and CD59. Immunoblot analysis confirmed the presence of these three molecules in normal intraocular fluid. Conclusions Our results demonstrate that normal human intraocular fluid (aqueous humor and vitreous) contains complement inhibitory factors. Furthermore, the high-molecular-weight factors appear to be the soluble forms of MCP, DAF, and CD59. PMID:11095615

  2. Whistler mode waves observed by MGF search coil magnetometer -Polarization and wave normal features of upstream waves near the bow-shock

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Matsui, H.; Kawano, H.; Yamamoto, T.; Kokubun, S.

    1994-12-01

    Whistler mode waves observed in the upstream region very close to the bow-shock is focused from the initial survey for magnetic fed data in a frequency range between 1Hz and 50Hz observed by the search coil magnetometer on board the Geotail satellite. Based on the three component wave form data polarization and wave-normal characteristics of foreshock waves is first shown as dynamic spectra for the whole Fourier components of the 50 Hz band width. Intense whistler mode waves generated in the foot region of the bow-shock are found strongly controlled in the observed polarization dependent on the angle between directions of the wave propagation and the solar wind flow but not very dependent on frequency. Our simple scheme to derive the ware characteristics which is effective to survey large amount of data continuously growing is also introduced.

  3. Application of normal mode theory to seismic source and structure problems: Seismic investigations of upper mantle lateral heterogeneity. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Okal, E. A.

    1978-01-01

    The theory of the normal modes of the earth is investigated and used to build synthetic seismograms in order to solve source and structural problems. A study is made of the physical properties of spheroidal modes leading to a rational classification. Two problems addressed are the observability of deep isotropic seismic sources and the investigation of the physical properties of the earth in the neighborhood of the Core-Mantle boundary, using SH waves diffracted at the core's surface. Data sets of seismic body and surface waves are used in a search for possible deep lateral heterogeneities in the mantle. In both cases, it is found that seismic data do not require structural differences between oceans and continents to extend deeper than 250 km. In general, differences between oceans and continents are found to be on the same order of magnitude as the intrinsic lateral heterogeneity in the oceanic plate brought about by the aging of the oceanic lithosphere.

  4. Quantification of pulmonary thallium-201 activity after upright exercise in normal persons: importance of peak heart rate and propranolol usage in defining normal values

    SciTech Connect

    Brown, K.A.; Boucher, C.A.; Okada, R.D.; Strauss, H.W.; Pohost, G.M.

    1984-06-01

    Fifty-nine normal patients (34 angiographically normal and 25 clinically normal by Bayesian analysis) underwent thallium-201 imaging after maximal upright exercise. Lung activity was quantitated relative to myocardial activity and a lung/myocardial activity ratio was determined for each patient. Stepwise regression analysis was then used to examine the influence of patient clinical characteristics and exercise variables on the lung/myocardium ratio. Peak heart rate during exercise and propranolol usage both showed significant negative regression coefficients (p less than 0.001). No other patient data showed a significant relation. Using the regression equation and the estimated variance, a 95% confidence level upper limit of normal could be determined for a give peak heart rate and propranolol status. Sixty-one other patients were studied to validate the predicted upper limits of normal based on this model. None of the 27 patients without coronary artery disease had an elevated lung/myocardial ratio, compared with 1 of 8 with 1-vessel disease (difference not significant), 6 of 14 with 2-vessel disease (p less than 0.005), and 6 of 12 with 3-vessel disease (p less than 0.0001). Thus, lung activity on upright exercise thallium-201 studies can be quantitated relative to myocardial activity, and is inversely related to peak heart rate and propranolol use. Use of a regression analysis allows determination of a 95% confidence upper limit of normal to be anticipated in an individual patient.

  5. Ab initio calculation of transition state normal mode properties and rate constants for the H(T)+CH4(CD4) abstraction and exchange reactions

    NASA Astrophysics Data System (ADS)

    Schatz, George C.; Walch, Stephen P.; Wagner, Albert F.

    1980-11-01

    We present ab initio (GVB-POL-CI) calculations for enough of the region about the abstraction and exchange saddle points for H(T)+CH4(CD4) to perform a full normal mode analysis of the transition states. The resulting normal mode frequencies are compared to four other published surfaces: an ab initio UHF-SCF calculation by Carsky and Zahradnik, a semiempirical surface by Raff, and two semiempirical surfaces by Kurylo, Hollinden, and Timmons. Significant quantitative and qualitative differences exist between the POL-CI results and those of the other surfaces. Transition state theory rate constants and vibrationally adiabatic reaction threshold energies were computed for all surfaces and compared to available experimental values. For abstraction, the POL-CI rates are in good agreement with experimental rates and in better agreement than are the rates of any of the other surfaces. For exchange, uncertainties in the experimental values and in the importance of vibrationally nonadiabatic effects cloud the comparison of theory to experiment. Tentative conclusions are that the POL-CI barrier is too low by several kcal. Unless vibrationaly nonadiabatic effects are severe, the POL-CI surface is still in better agreement with experiment than are the other surfaces. The rates for a simple 3-atom transition state theory model (where CH3 is treated as an atom) are compared to the rates for the full 6-atom model. The kinetic energy coupling of reaction coordinate modes to methyl group modes is identified as being of primary importance in determining the accuracy of the 3-atom model for this system. Substantial coupling in abstraction, but not exchange, causes the model to fail for abstraction but succeed for exchange.

  6. Intracontinental active normal faulting and paleoseismicity in the eastern Weihe Graben, central China

    NASA Astrophysics Data System (ADS)

    Rao, G.; Lin, A.; Yan, B.; Jia, D.; Wu, X.

    2012-12-01

    During the past decades, tectonic deformation and seismogenic behavior of active strike-slip and thrust faults have been well investigated, due to the high-frequent occurrence of large-magnitude strike-slip and thrust-type earthquakes. In contrast, normal-faulting earthquakes of M≥7 scarcely occurred, and the rupture process and deformation features of seismogenic normal-faults are still not clear. The intracontinental graben systems around the stable Ordos Block, central China, experienced extension over the past ~50 Ma, which are ideal places to study the extensional tectonic deformation. As well, these regions with high historical seismicity including 3 large earthquakes of M≥8, provide a good chance to learn the rupture mechanism of large intracontinental normal-faulting earthquakes. Based on the 3D analysis of high-resolution remote-sensing images (0.5-m WorldView and 1-m IKONOS images) and field investigations, active normal faults are mainly distributed along the margin zones of the uplifted mountainous blocks (e.g., Weinan Loess Tableland and Huashan Mountains), characterized by the distributed fault scarps. Striations and scratch steps observed on the main fault planes, reveal a normal slip-sense of active faults in study area. In combination with the 14C age dating, the vertical offset amount of ~30 m during the past 14,050-16,270 years was observed, yielding an average vertical displacement-rate of ~1.8-2.1 mm/a, which is consistent with previous estimation in the Weihe Graben. According to the field observations of fault outcrops and the exposed trench walls, the offset strata, scarp-derived colluvial deposits and in-filled fissures generally can be observed, indicating the occurrence of paleoearthquakes. Together with the 14C ages, the late Pleistocene-Holocene activity of normal faults was demonstrated. Especially, it is concluded that at least 3 strong earthquakes associated with surface-faulting in the past 2600 years, including the most recent

  7. Normal mode analysis of a rotating group of lashed turbine blades by substructures. [calculations for blades at rest and at operating speed

    NASA Technical Reports Server (NTRS)

    Filstrup, A. W.

    1973-01-01

    A group of 5 lashed identical stream turbine blades is studied through the use of single level substructuring using NASTRAN level 15.1. An altered version, similar to DMAP Program Number 3 of the NASTRAN Newsletter, of Rigid Format 13.0 was used. Steady-state displacements and stresses due to centrifugal loads are obtained both without and with consideration of differential stiffness. The normal mode calculations were performed for blades at rest and at operating speed. Substructuring lowered the computation costs of the analysis by a factor of four.

  8. Note: amplification characteristics of all-normal-dispersion mode-locked Yb-doped fiber laser: influence of input pulse shape.

    PubMed

    Mukhopadhyay, Pranab K; Gupta, Pradeep K; Bindra, Kushvinder S; Oak, Shrikant M

    2013-07-01

    The amplification properties of the pulses at and after the nonlinear polarization rejection (NPR) port of an all-normal-dispersion Yb-doped mode-locked fiber laser are studied. The experimental results show that the spectra of the output pulses after the NPR port are considerably resistant to distortions on amplification and can be compressed in the femtosecond regime without any significant side-lobes and hence can serve as an excellent seed source for further power amplification. The experimental results are substantiated by numerical analysis of the amplifier setup. PMID:23902124

  9. Simple all-PM-fiber laser system seeded by an all-normal-dispersion oscillator mode-locked with a nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Szczepanek, Jan; Kardaś, Tomasz; Nejbauer, Michał; Radzewicz, Czesław; Stepanenko, Yuriy

    2016-03-01

    In this paper we report an all-PM-fiber laser amplifier system seeded by an all-normal-dispersion oscillator mode-locked with a Nonlinear Optical Loop Mirror (NOLM). The presented all-normal-dispersion cavity works in a dissipative soliton regime and delivers highly-chirped, high energy pulses above 2.5 nJ with full width at half maximum below 200 fs. The ultrafast oscillator followed by the all-PM-fiber amplifying stage delivered pulses with the energy of 42.5 nJ and time duration below 190 fs. The electrical field of optical pulses from the system was reconstructed using the SPIDER technique. The influence of nonlinear processes on the pulse temporal envelope was investigated.

  10. Quasi normal modes and P-V criticallity for scalar perturbations in a class of dRGT massive gravity around black holes

    NASA Astrophysics Data System (ADS)

    Prasia, P.; Kuriakose, V. C.

    2016-07-01

    We investigate black holes in a class of dRGT massive gravity for their quasi normal modes (QNMs) for neutral and charged ones using Improved Asymptotic Iteration Method and their thermodynamic behavior. The QNMs are studied for different values of the massive parameter m_g for both neutral and charged dRGT black holes under a massless scalar perturbation. As m_g increases, the magnitude of the quasi normal frequencies are found to be increasing. The results are also compared with the Schwarzchild de Sitter case. P-V criticallity of the aforesaid black hoels under massles scalar perturbation in the de Sitter space are also studied in this paper. It is found that the thermodynamic behavior of a neutral black hole shows no physically feasible phase transition while a charged black hole shows a definite phase transition.

  11. School travel mode, parenting practices and physical activity among UK Year 5 and 6 children

    PubMed Central

    2014-01-01

    Background School travel mode and parenting practices have been associated with children’s physical activity (PA). The current study sought to examine whether PA parenting practices differ by school travel mode and whether school travel mode and PA parenting practices are associated with PA. Methods 469 children (aged 9-11) wore accelerometers from which mean weekday and after-school (3.30 to 8.30 pm) minutes of moderate-to-vigorous intensity PA (MVPA) and counts per minute (CPM) were derived. Mode of travel to and from school (passive vs. active) and PA parenting practices (maternal and paternal logistic support and modelling behaviour) were child-reported. Results Children engaged in an average of 59.7 minutes of MVPA per weekday. Active travel to school by girls was associated with 5.9 more minutes of MVPA per day compared with those who travelled to school passively (p = 0.004). After-school CPM and MVPA did not differ by school travel mode. There was no evidence that physical activity parenting practices were associated with school travel mode. Conclusions For girls, encouraging active travel to school is likely to be important for overall PA. Further formative research may be warranted to understand how both parental logistic support and active travel decisions are operationalized in families as a means of understanding how to promote increased PA among pre-adolescent children. PMID:24739338

  12. Tempo and Mode of Transposable Element Activity in Drosophila

    PubMed Central

    Kofler, Robert; Nolte, Viola; Schlötterer, Christian

    2015-01-01

    The evolutionary dynamics of transposable element (TE) insertions have been of continued interest since TE activity has important implications for genome evolution and adaptation. Here, we infer the transposition dynamics of TEs by comparing their abundance in natural D. melanogaster and D. simulans populations. Sequencing pools of more than 550 South African flies to at least 320-fold coverage, we determined the genome wide TE insertion frequencies in both species. We suggest that the predominance of low frequency insertions in the two species (>80% of the insertions have a frequency <0.2) is probably due to a high activity of more than 58 families in both species. We provide evidence for 50% of the TE families having temporally heterogenous transposition rates with different TE families being affected in the two species. While in D. melanogaster retrotransposons were more active, DNA transposons showed higher activity levels in D. simulans. Moreover, we suggest that LTR insertions are mostly of recent origin in both species, while DNA and non-LTR insertions are older and more frequently vertically transmitted since the split of D. melanogaster and D. simulans. We propose that the high TE activity is of recent origin in both species and a consequence of the demographic history, with habitat expansion triggering a period of rapid evolution. PMID:26186437

  13. Control of sulfatase activity by nomegestrol acetate in normal and cancerous human breast tissues.

    PubMed

    Chetrite, Gérard Samuel; Thomas, Jean-Louis; Shields-Botella, Jaqueline; Cortes-Prieto, Joaquin; Philippe, Jean-Claude; Pasqualini, Jorge Raul

    2005-01-01

    Nomegestrol acetate (NOMAC), a 17alpha-hydroxy-nor-progesterone derivative (17alpha-acetoxy-6-methyl-19-nor-4,6-pregnadiene-3,20-dione, the active substance in Lutenyl), is a potent and useful clinical synthetic progestin for the treatment of menopausal complaints and is under current development for oral contraception. Previous studies in this laboratory demonstrated that NOMAC can block sulfatase and 17beta-hydroxysteroid dehydrogenase, the enzymes involved in the biosynthesis and transformation of estradiol (E2) in hormone-dependent MCF-7 and T-47D breast cancer cells. In the present study, the effect of NOMAC on sulfatase activity using total breast cancer tissue, compared to the effect in normal breast tissue, was explored. Slices of tumoral or normal breast tissues (45-65 mg) were incubated in buffer (20 mM Tris-HCl, pH 7.2) with physiological concentrations of [3H]-estrone sulfate (5x10(-9) M), alone or in the presence of nomegestrol acetate (5x10(-5) - 5x10(-7) - 5x10(-9) M), for 4 h at 37 degrees C. Estrone sulfate (E1S), estrone (E1) and E2 were characterized by thin layer chromatography and quantified using the corresponding standard. It was observed that [3H]- E1S was only converted to [3H]- E1 and not to [3H]- E2, in normal or cancerous breast tissues, which suggests a low or no 17beta-HSD activity under these experimental conditions. The sulfatase activity was more intense with breast cancer tissue than normal tissue, since the concentrations of E1 were 42.5 +/- 3.4 and 27.2 +/- 2.5 pg/mg tissue, respectively. NOMAC, at the concentration of 5x10(-5) M, inhibited this conversion by 49.2% and 40.8% in cancerous and normal breast tissues, respectively. The sulfatase inhibition at low concentration (5x10(-7) M) was 32.5% and 22.8%, respectively. It is concluded that sulfatase activity is almost twice as potent in cancerous breast tissues than in normal tissues. Nomegestrol acetate is a strong anti-sulfatase agent, in particular with cancerous breast

  14. Contact system activation in patients with HAE and normal C1 inhibitor function.

    PubMed

    Ghannam, Arije; Defendi, Federica; Charignon, Delphine; Csopaki, Françoise; Favier, Bertrand; Habib, Mohammed; Cichon, Sven; Drouet, Christian

    2013-11-01

    In addition to hereditary angioedema (HAE) with C1 inhibitor (C1INH) deficiency, a type of HAE with dominant inheritance and normal C1INH function (HAE with normal C1INH) has been described. This relates to contact phase activation with exaggerated kinin formation, and mutations in the coagulation factor XII gene have been identified in some affected families, but the cause of the disease has remained elusive in a majority of families. Several triggering factors are responsible for developing kinin forming system, with participation of endothelium and mast cell component. Angioedema conditions meet the accumulation of kinins with failed kinin catabolism. PMID:24176216

  15. Doubly active Q switching and mode locking of an all-fiber laser.

    PubMed

    Cuadrado-Laborde, Christian; Díez, Antonio; Cruz, Jose L; Andrés, Miguel V

    2009-09-15

    Simultaneous and independent active Q switching and active mode locking of an erbium-doped fiber laser is demonstrated using all-fiber modulation techniques. A magnetostrictive rod attached to the output fiber Bragg grating modulates the Q factor of the Fabry-Perot cavity, whereas active mode locking is achieved by amplitude modulation with a Bragg-grating-based acousto-optic device. Fully modulated Q-switched mode-locked trains of optical pulses were obtained for a wide range of pump powers and repetition rates. For a Q-switched repetition rate of 500 Hz and a pump power of 100 mW, the laser generates trains of 12-14 mode-locked pulses of about 1 ns each, within an envelope of 550 ns, an overall energy of 0.65 microJ, and a peak power higher than 250 W for the central pulses of the train. PMID:19756079

  16. Artemisinin Inhibits Chloroplast Electron Transport Activity: Mode of Action

    PubMed Central

    Bharati, Adyasha; Kar, Monaranjan; Sabat, Surendra Chandra

    2012-01-01

    Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo), behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the QB; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth. PMID:22719995

  17. Normal Mode Analysis of the Spectral Density of the Fenna–Matthews–Olson Light-Harvesting Protein: How the Protein Dissipates the Excess Energy of Excitons

    PubMed Central

    2012-01-01

    We report a method for the structure-based calculation of the spectral density of the pigment–protein coupling in light-harvesting complexes that combines normal-mode analysis with the charge density coupling (CDC) and transition charge from electrostatic potential (TrEsp) methods for the computation of site energies and excitonic couplings, respectively. The method is applied to the Fenna–Matthews–Olson (FMO) protein in order to investigate the influence of the different parts of the spectral density as well as correlations among these contributions on the energy transfer dynamics and on the temperature-dependent decay of coherences. The fluctuations and correlations in excitonic couplings as well as the correlations between coupling and site energy fluctuations are found to be 1 order of magnitude smaller in amplitude than the site energy fluctuations. Despite considerable amplitudes of that part of the spectral density which contains correlations in site energy fluctuations, the effect of these correlations on the exciton population dynamics and dephasing of coherences is negligible. The inhomogeneous charge distribution of the protein, which causes variations in local pigment–protein coupling constants of the normal modes, is responsible for this effect. It is seen thereby that the same building principle that is used by nature to create an excitation energy funnel in the FMO protein also allows for efficient dissipation of the excitons’ excess energy. PMID:23163520

  18. Normal Weight with Central Obesity, Physical Activity, and Functional Decline: Data from the Osteoarthritis Initiative

    PubMed Central

    Batsis, John A.; Zbehlik, Alicia J.; Scherer, Emily A.; Barre, Laura K.; Bartels, Stephen J.

    2015-01-01

    OBJECTIVES To identify the risks of the combination of normal body mass index (BMI) and central obesity (normal weight and central obesity (NWCO)) on physical activity and function. DESIGN Longitudinal Osteoarthritis Initiative Study. SETTING Community based. PARTICIPANTS Adults aged 60 and older at risk of osteoarthritis (N= 2,210; mean age 68, range 67.1–69.0) were grouped according to BMI (normal 18.5–24.9 kg/m2, overweight 25.0–29.9 kg/m2, obese ≥30.0 kg/m2). High waist circumference (WC) was defined as greater than 88 cm for women and greater than 102 cm for men. Subjects were subcategorized according to WC (five categories). Subjects with normal BMI and a large WC were considered to have NWCO (n=280, 12.7%). MEASUREMENTS Six-year changes in the Physical Component Summary of the Medical Outcomes Study 12-item Short Form Survey (PCS), Physical Activity Scale for the Elderly (PASE), and Late-Life Function and Disability Index (LL-FDI) were examined. The association between BMI and WC over 6 years was assessed (reference normal BMI, normal WC). Stratified analyses were performed according to age (60–69; ≥70). RESULTS Physical component scores, PASE, and LL-FDI declined with time. Mean PASE scores at 6 years differed between the NWCO group and the group with normal BMI and WC (117.7 vs 141.5), but rate of change from baseline to 6 years was not significantly different (p=.35). In adjusted models, those with NWCO had greater decline in PCS over time, particularly those aged 70 and older than those with normal BMI and WC (time interaction β=–0.37, 95% confidence interval=–0.68 to –0.06). CONCLUSION NWCO in older adults at risk of osteoarthritis may be a risk factor for declining function and physical activity, particularly in those aged 70 and older, suggesting the value of targeting those with NWCO who would otherwise be labeled as low risk. PMID:26173812

  19. Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes

    NASA Astrophysics Data System (ADS)

    Park, Jinhyuk; Yoon, Gun-Ha; Kang, Je-Won; Choi, Seung-Bok

    2016-08-01

    This paper proposes a new prosthesis operated in two different modes; the semi-active and active modes. The semi-active mode is achieved from a flow mode magneto-rheological (MR) damper, while the active mode is obtained from an electronically commutated (EC) motor. The knee joint part of the above knee prosthesis is equipped with the MR damper and EC motor. The MR damper generates reaction force by controlling the field-dependent yield stress of the MR fluid, while the EC motor actively controls the knee joint angle during gait cycle. In this work, the MR damper is designed as a two-end type flow mode mechanism without air chamber for compact size. On other hand, in order to predict desired knee joint angle to be controlled by EC motor, a polynomial prediction function using a statistical method is used. A nonlinear proportional-derivative controller integrated with the computed torque method is then designed and applied to both MR damper and EC motor to control the knee joint angle. It is demonstrated that the desired knee joint angle is well achieved in different walking velocities on the ground ground.

  20. Active mode locking of quantum cascade lasers in an external ring cavity.

    PubMed

    Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A

    2016-01-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409

  1. Active mode locking of quantum cascade lasers in an external ring cavity

    NASA Astrophysics Data System (ADS)

    Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.

    2016-05-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.

  2. Active mode locking of quantum cascade lasers in an external ring cavity

    PubMed Central

    Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.

    2016-01-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409

  3. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  4. Normal mode sensitivity to Earth's D″ layer and topography on the core-mantle boundary: what we can and cannot see

    NASA Astrophysics Data System (ADS)

    Koelemeijer, P. J.; Deuss, A.; Trampert, J.

    2012-07-01

    The core-mantle boundary (CMB) is Earth's most profound internal boundary separating the liquid iron outer core and the solid silicate mantle. The detailed structure near the CMB has a major influence on mantle convection and the evolution of the core. Seismic observations, such as topography on the CMB, thin ultra-low velocity zones (ULVZs), seismic anisotropy and the anticorrelation between shear wave and bulk sound velocity heterogeneities have mainly been made using body waves and are still poorly constrained. We investigate the sensitivity of Earth's free oscillations to these features and specifically show how large individual anomalies must be for them to be observable. In addition, we discuss the possible trade-offs between these different lowermost mantle structures. Although modes have strong sensitivity to all the structures inserted, the results illustrate the limits of what normal modes can resolve. Our tests show that: (i) Even small scale features, such as ULVZs, with a thickness larger than 19 km can be observed as long as their distribution contains a long wavelength component. (ii) The peak-to-peak amplitude of CMB topography has a larger influence than its pattern and has to be smaller than 5 km to fit the data. (iii) The effect of scaling between shear wave velocity and density anomalies is less constrained, but a laterally varying pattern is implied by a simple test, suggesting the presence of chemical variations. (iv) A strong trade-off exists between anisotropy in compressional wave velocity and incidence angle whereas shear wave anisotropy is less observable. These findings provide valuable information for future normal mode studies on structures in Earth's lowermost mantle and their trade-offs.

  5. Dynamical response of the Galileo Galilei on the ground rotor to test the equivalence principle: Theory, simulation, and experiment. I. The normal modes

    SciTech Connect

    Comandi, G.L.; Chiofalo, M.L.; Toncelli, R.; Bramanti, D.; Polacco, E.; Nobili, A.M.

    2006-03-15

    Recent theoretical work suggests that violation of the equivalence principle might be revealed in a measurement of the fractional differential acceleration {eta} between two test bodies-of different compositions, falling in the gravitational field of a source mass--if the measurement is made to the level of {eta}{approx_equal}10{sup -13} or better. This being within the reach of ground based experiments gives them a new impetus. However, while slowly rotating torsion balances in ground laboratories are close to reaching this level, only an experiment performed in a low orbit around the Earth is likely to provide a much better accuracy. We report on the progress made with the 'Galileo Galilei on the ground' (GGG) experiment, which aims to compete with torsion balances using an instrument design also capable of being converted into a much higher sensitivity space test. In the present and following articles (Part I and Part II), we demonstrate that the dynamical response of the GGG differential accelerometer set into supercritical rotation-in particular, its normal modes (Part I) and rejection of common mode effects (Part II)-can be predicted by means of a simple but effective model that embodies all the relevant physics. Analytical solutions are obtained under special limits, which provide the theoretical understanding. A simulation environment is set up, obtaining a quantitative agreement with the available experimental data on the frequencies of the normal modes and on the whirling behavior. This is a needed and reliable tool for controlling and separating perturbative effects from the expected signal, as well as for planning the optimization of the apparatus.

  6. Dynamical response of the Galileo Galilei on the ground rotor to test the equivalence principle: Theory, simulation, and experiment. I. The normal modes

    NASA Astrophysics Data System (ADS)

    Comandi, G. L.; Chiofalo, M. L.; Toncelli, R.; Bramanti, D.; Polacco, E.; Nobili, A. M.

    2006-03-01

    Recent theoretical work suggests that violation of the equivalence principle might be revealed in a measurement of the fractional differential acceleration η between two test bodies—of different compositions, falling in the gravitational field of a source mass—if the measurement is made to the level of η ≃10-13 or better. This being within the reach of ground based experiments gives them a new impetus. However, while slowly rotating torsion balances in ground laboratories are close to reaching this level, only an experiment performed in a low orbit around the Earth is likely to provide a much better accuracy. We report on the progress made with the "Galileo Galilei on the ground" (GGG) experiment, which aims to compete with torsion balances using an instrument design also capable of being converted into a much higher sensitivity space test. In the present and following articles (Part I and Part II), we demonstrate that the dynamical response of the GGG differential accelerometer set into supercritical rotation—in particular, its normal modes (Part I) and rejection of common mode effects (Part II)—can be predicted by means of a simple but effective model that embodies all the relevant physics. Analytical solutions are obtained under special limits, which provide the theoretical understanding. A simulation environment is set up, obtaining a quantitative agreement with the available experimental data on the frequencies of the normal modes and on the whirling behavior. This is a needed and reliable tool for controlling and separating perturbative effects from the expected signal, as well as for planning the optimization of the apparatus.

  7. Cardiac Time Intervals by Tissue Doppler Imaging M-Mode: Normal Values and Association with Established Echocardiographic and Invasive Measures of Systolic and Diastolic Function

    PubMed Central

    Mogelvang, Rasmus; de Knegt, Martina Chantal; Olsen, Flemming Javier; Galatius, Søren; Jensen, Jan Skov

    2016-01-01

    Purpose To define normal values of the cardiac time intervals obtained by tissue Doppler imaging (TDI) M-mode through the mitral valve (MV). Furthermore, to evaluate the association of the myocardial performance index (MPI) obtained by TDI M-mode (MPITDI) and the conventional method of obtaining MPI (MPIConv), with established echocardiographic and invasive measures of systolic and diastolic function. Methods In a large community based population study (n = 974), where all are free of any cardiovascular disease and cardiovascular risk factors, cardiac time intervals, including isovolumic relaxation time (IVRT), isovolumic contraction time (IVCT), and ejection time (ET) were obtained by TDI M-mode through the MV. IVCT/ET, IVRT/ET and the MPI ((IVRT+IVCT)/ET) were calculated. We also included a validation population (n = 44) of patients who underwent left heart catheterization and had the MPITDI and MPIConv measured. Results IVRT, IVRT/ET and MPI all increased significantly with increasing age in both genders (p<0.001 for all). IVCT, ET, IVRT/ET, and MPI differed significantly between males and females, displaying that women, in general exhibit better cardiac function. MPITDI was significantly associated with invasive (dP/dt max) and echocardiographic measures of systolic (LVEF, global longitudinal strain and global strainrate s) and diastolic function (e’, global strainrate e)(p<0.05 for all), whereas MPIConv was significantly associated with LVEF, e’ and global strainrate e (p<0.05 for all). Conclusion Normal values of cardiac time intervals differed between genders and deteriorated with increasing age. The MPITDI (but not MPIConv) is associated with most invasive and established echocardiographic measures of systolic and diastolic function. PMID:27093636

  8. Unravelling the competing influence of regional uplift and active normal faulting in SW Calabria, Italy

    NASA Astrophysics Data System (ADS)

    Whittaker, Alex; Roda Boluda, Duna; Boulton, Sarah; Erhardt, Sebastian

    2015-04-01

    The Neogene geological and geomorphological evolution of Southern Italy is complex and is fundamentally controlled by the subduction of the Ionian slab along the Apennine belt from the Calabrian Arc, and back-arc extension driven by trench rollback. In the area of Calabria and the Straits of Messina the presence of (i) uplifted, deformed and dissected basin sediments and marine terraces, ranging in age from the early to mid-Pleistocene and (ii) seismicity associated with NE-SW normal faults that have well-developed footwall topography and triangular facets have led workers to suggest that both significant regional uplift and extensional faulting in SW Calabria have played a role in generating relief in the area since the mid Pleistocene. However, there is considerable uncertainty in the rates of total surface uplift relative to sea level in both time and space, and the relative partitioning of this uplift between a mantle-driven regional signal, potentially related to a slab tear, and the active extensional structures. Additionally, despite the widespread recognition of normal faults in Calabria to which historical earthquakes are often linked, there is much less agreement on (i) which ones are active and for what length of time; (ii) how the faults interact; and (iii) what their throw and throw rates are. In particular, the ability to resolve both regional uplift and normal faulting in SW Calabria is essential in order to fully understand the tectonic history of the region, while an understanding of location and slip rate of active faults, in an area where the population numbers more than two million people, is essential to assess regional seismic hazards. Here we address these important questions using a combination of tectonic geomorphology and structural geology. We critically examine existing constraints on the rates and distribution of active normal faulting and regional uplift in the area, and we derive new constraints on the along-strike variation in throw

  9. 4-Alkynylphenylsilatranes: Insecticidal activity, mammalian toxicity, and mode of action

    SciTech Connect

    Horsham, M.A.; Palmer, C.J.; Cole, L.M.; Casida, J.E. )

    1990-08-01

    4-Ethynyl- and 4-(prop-1-ynyl)phenylsilatranes (N(CH{sub 2}CH{sub 2}O){sub 3}SiR, R = C{sub 6}H{sub 4}-4-C{triple bond}CH or C{sub 6}H{sub 4}-4-C{triple bond}CCH{sub 3}) are highly toxic to houseflies (pretreated with piperonyl butoxide) and milkweed bugs (topical LD{sub 50}s 3-14 {mu}g/g) and to mice (intraperitoneal LD{sub 50}s 0.4-0.9 mg/kg), and they are moderately potent inhibitors of the ({sup 35}S)-tert-butylbicyclophosphorothionate or TBPS binding site (GABA-gated chloride channel) of mouse brain membranes. Scatchard analysis indicates noncompetitive interaction of 4-ethynylphenylsilatrane with the TBPS binding site. Phenylsilatrane analogues with 4-substituents of H, CH{sub 3}, Cl, Br, and C{triple bond}CSi(CH{sub 3}){sub 3} are highly toxic to mice but have little or no activity in the insect and receptor assays. Radioligand binding studies with (4-{sup 3}H)phenylsilatrane failed to reveal a specific binding site in mouse brain. Silatranes with R = H, CH{sub 3}, CH{sub 2}Cl, CH{double bond}CH{sub 2}, OCH{sub 2}CH{sub 3}, and C{sub 6}H{sub 4}-4-CH{sub 2}CH{sub 3} are of little or no activity in the insect and mouse toxicity and TBPS binding site assays as are the trithia and monocyclic analogues of phenylsilatrane. 4-Alkynylphenylsilatranes are new probes to examine the GABA receptor-ionophore complex of insects and mammals.

  10. Actively mode-locked fiber ring laser by intermodal acousto-optic modulation.

    PubMed

    Bello-Jiménez, M; Cuadrado-Laborde, C; Sáez-Rodríguez, D; Diez, A; Cruz, J L; Andrés, M V

    2010-11-15

    We report an actively mode-locked fiber ring laser. A simple and low-insertion-loss acousto-optic modulator driven by standing flexural waves, which couples core-to-cladding modes in a standard single-mode optical fiber, is used as an active mechanism for mode locking. Among the remarkable features of the modulator, we mention its high modulation depth (72%), broad bandwidth (187 GHz), easy tunability in the optical wavelength, and low insertion losses (0.7 dB). The narrowest optical pulses obtained were of 95 ps time width, 21 mW peak power, repetition rate of 4.758 MHz, and 110 mW of pump power. PMID:21081995

  11. Spontaneous activation of the NF-kappaB signaling pathway in isolated normal glomeruli.

    PubMed

    Hayakawa, Kunihiro; Meng, Yiman; Hiramatsu, Nobuhiko; Kasai, Ayumi; Yao, Jian; Kitamura, Masanori

    2006-12-01

    In this report, we describe that NF-kappaB is spontaneously activated in isolated, normal glomeruli. Ex vivo incubation of isolated rat glomeruli triggered expression of a NF-kappaB-dependent gene, monocyte chemoattractant protein-1 (MCP-1), in parallel with downregulation of IkappaBalpha and IkappaBbeta proteins and activation of the p65 NF-kappaB subunit. The induction of MCP-1 was also observed in mesangial cells coincubated with isolated glomeruli or exposed to media conditioned by isolated glomeruli (GCM), which was abrogated by inhibition of NF-kappaB. The activation of NF-kappaB by glomerulus-derived factors was confirmed using reporter mesangial cells that produce secreted alkaline phosphatase (SEAP) under the control of the kappaB enhancer element. When the reporter cells were adoptively transferred into normal glomeruli, expression of SEAP mRNA and activity of SEAP were also upregulated in the explanted glomeruli. The molecular weight of factors responsible for activation of NF-kappaB was >50 kDa, and TNF-alpha was identified as one of glomerulus-derived activators. To examine upstream events involved, we focused on MAP kinases that are spontaneously activated in explanted glomeruli. Selective suppression of ERK or p38 MAP kinase significantly attenuated activation of NF-kappaB in mesangial cells triggered by coculture with isolated glomeruli. Interestingly, the suppressive effects by MAP kinase inhibitors were not observed in mesangial cells treated with GCM. These data suggested that NF-kappaB was spontaneously activated in explanted glomeruli via autocrine/paracrine factors including TNF-alpha and that the production of NF-kappaB activators by glomeruli was, at least in part, through MAP kinase pathways. PMID:16705144

  12. TAE modes and MHD activity in TFTR DT plasmas

    SciTech Connect

    Fredrickson, E.; Batha, S.; Bell, M.

    1995-03-01

    The high power deuterium and tritium experiments on TFTR have produced fusion a parameters similar to those expected on ITER. The achieved {beta}{sub {alpha}}/{beta} and the R{triangledown}{beta}{sub {alpha}} in TFRR D-T shots are 1/2 to 1/3 those predicted in the ITER EDA. Studies of the initial TFTR D-T plasmas find no evidence that the presence of the fast fusion {alpha} population has affected the stability of MHD, with the possible exception of Toroidal Alfven Eigenmodes (TAE`s). The initial TFTR DT plasmas had MHD activity similar to that commonly seen in deuterium plasmas. Operation of TFTR at plasma currents of 2.0--2.5 MA has greatly reduced the deleterious effects of MHD commonly observed at lower currents. Even at these higher currents, the performance of TFTR is limited by {beta}-limit disruptions. The effects of MHD on D-T fusion {alpha}`s was similar to effects observed on other fusion products in D only plasmas.

  13. Influence of Activity Mode on Feeling States of High School Physical Education Students

    ERIC Educational Resources Information Center

    Hannon, James C.; Pellet, Tracey L.

    2005-01-01

    The purpose of this study was to determine if changes in positive well-being, psychological distress, fatigue, and enjoyment vary as a function of physical activity mode. Fifty-five senior high school students participated in one of four fitness activities including two defined as traditional (running and step-aerobics) and two defined as…

  14. Normal and Mutant Rhodopsin Activation Measured with the Early Receptor Current in a Unicellular Expression System

    PubMed Central

    Shukla, Pragati; Sullivan, Jack M.

    1999-01-01

    The early receptor current (ERC) represents molecular charge movement during rhodopsin conformational dynamics. To determine whether this time-resolved assay can probe various aspects of structure–function relationships in rhodopsin, we first measured properties of expressed normal human rhodopsin with ERC recordings. These studies were conducted in single fused giant cells containing on the order of a picogram of regenerated pigment. The action spectrum of the ERC of normal human opsin regenerated with 11-cis-retinal was fit by the human rhodopsin absorbance spectrum. Successive flashes extinguished ERC signals consistent with bleaching of a rhodopsin photopigment with a normal range of photosensitivity. ERC signals followed the univariance principle since millisecond-order relaxation kinetics were independent of the wavelength of the flash stimulus. After signal extinction, dark adaptation without added 11-cis-retinal resulted in spontaneous pigment regeneration from an intracellular store of chromophore remaining from earlier loading. After the ERC was extinguished, 350-nm flashes overlapping metarhodopsin-II absorption promoted immediate recovery of ERC charge motions identified by subsequent 500-nm flashes. Small inverted R2 signals were seen in response to some 350-nm flashes. These results indicate that the ERC can be photoregenerated from the metarhodopsin-II state. Regeneration with 9-cis-retinal permits recording of ERC signals consistent with flash activation of isorhodopsin. We initiated structure–function studies by measuring ERC signals in cells expressing the D83N and E134Q mutant human rhodopsin pigments. D83N ERCs were simplified in comparison with normal rhodopsin, while E134Q ERCs had only the early phase of charge motion. This study demonstrates that properties of normal rhodopsin can be accurately measured with the ERC assay and that a structure–function investigation of rapid activation processes in analogue and mutant visual pigments is

  15. High normalized beta plasmas exceeding the ideal stability limit and projected RWM active stabilization performance using newly installed feedback sensors in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Yoon, S. W.; Jeon, Y. M.; Bak, J. G.; Ko, W. H.; Hahn, S. H.; Bae, C.; Bae, Y. S.; in, Y. K.; Kim, J.; Lee, S. G.; Kwak, J. G.; Oh, Y. K.; Park, H. K.; Choi, M. J.; Yun, G. S.

    2015-11-01

    H-mode plasma operation of KSTAR has been expanded to significantly surpass the ideal MHD no-wall beta limit by achieving normalized beta up to 4.3 while reducing plasma internal inductance to near 0.7 exceeding the computed n = 1 ideal no-wall limit by a factor of 1.6. These high normalized beta values have been achieved in discharges having BT in the range 0.9-1.1 T after the plasma reached flattop current of 0.35-0.4 MA, with the highest neutral beam heating power of 4 MW. A significant conclusion of the analysis of these plasmas is that low- n global kink/ballooning or RWMs were not detected, and therefore were not the cause of the plasma termination. Advances from the 2015 run campaign aiming to achieve prolonged pulse duration at maximum normalized beta and to subsequently investigate the MHD stability of these plasmas will be reported. As KSTAR H-mode operation can now routinely surpass the ideal no-wall stability limit, n = 1 RWM active control is planned for the device. RWM active feedback using a newly installed set of poloidal magnetic field sensors mounted on the passive stabilizer plates and designed for optimal performance is analyzed using the VALEN-3D code. The advantages of the new sensors over other device sensors for RWM active control are discussed. Supported by U.S. DOE grant DE-FG02-99ER54524.

  16. The chaperone activity and toxicity of ambroxol on Gaucher cells and normal mice.

    PubMed

    Luan, Zhuo; Li, Linjing; Higaki, Katsumi; Nanba, Eiji; Suzuki, Yoshiyuki; Ohno, Kousaku

    2013-04-01

    Gaucher disease (GD), caused by a defect of acid β-glucosidase (β-Glu), is one of the most common sphingolipidoses. Recently, ambroxol, an FDA-approved drug used to treat airway mucus hypersecretion and hyaline membrane disease in newborns, was identified as a chemical chaperone for GD. In the present study, we investigated the chaperone activity and toxicity of ambroxol on both cultured GD patient cells and normal mice. We found that ambroxol treatment significantly increased N370S, F213I, N188S/G193W and R120W mutant β-Glu activities in GD fibroblasts with low cytotoxicity. Additionally, we measured the β-Glu activity in the tissues of normal mice which received water containing increasing concentrations of ambroxol ad libitum for one week. No serious adverse effect was observed during this experiment. Ambroxol significantly increased the β-Glu activity in the spleen, heart and cerebellum of the mice. This result showed its oral availability and wide distribution and chaperone activity in the tissues, including the brain, and its lack of acute toxicity. These characteristics of ambroxol would make it a potential therapeutic chaperone in the treatment of GD with neurological manifestations. PMID:22682976

  17. An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long-period waveforms

    NASA Astrophysics Data System (ADS)

    Moulik, P.; Ekström, G.

    2014-12-01

    We use normal-mode splitting functions in addition to surface wave phase anomalies, body wave traveltimes and long-period waveforms to construct a 3-D model of anisotropic shear wave velocity in the Earth's mantle. Our modelling approach inverts for mantle velocity and anisotropy as well as transition-zone discontinuity topographies, and incorporates new crustal corrections for the splitting functions that are consistent with the non-linear corrections we employ for the waveforms. Our preferred anisotropic model, S362ANI+M, is an update to the earlier model S362ANI, which did not include normal-mode splitting functions in its derivation. The new model has stronger isotropic velocity anomalies in the transition zone and slightly smaller anomalies in the lowermost mantle, as compared with S362ANI. The differences in the mid- to lowermost mantle are primarily restricted to features in the Southern Hemisphere. We compare the isotropic part of S362ANI+M with other recent global tomographic models and show that the level of agreement is higher now than in the earlier generation of models, especially in the transition zone and the lower mantle. The anisotropic part of S362ANI+M is restricted to the upper 300 km in the mantle and is similar to S362ANI. When radial anisotropy is allowed throughout the mantle, large-scale anisotropic patterns are observed in the lowermost mantle with vSV > vSH beneath Africa and South Pacific and vSH > vSV beneath several circum-Pacific regions. The transition zone exhibits localized anisotropic anomalies of ˜3 per cent vSH > vSV beneath North America and the Northwest Pacific and ˜2 per cent vSV > vSH beneath South America. However, small improvements in fits to the data on adding anisotropy at depth leave the question open on whether large-scale radial anisotropy is required in the transition zone and in the lower mantle. We demonstrate the potential of mode-splitting data in reducing the trade-offs between isotropic velocity and

  18. Identification of novel target genes specifically activated by deregulated E2F in human normal fibroblasts.

    PubMed

    Kitamura, Hodaka; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P; Okuno, Junko; Shimizu, Emi; Kurayoshi, Kenta; Kugawa, Kazuyuki; Toh, Hiroyuki; Ohtani, Kiyoshi

    2015-09-01

    The transcription factor E2F is the principal target of the tumor suppressor pRB. E2F plays crucial roles not only in cell proliferation by activating growth-related genes but also in tumor suppression by activating pro-apoptotic and growth-suppressive genes. We previously reported that, in human normal fibroblasts, the tumor suppressor genes ARF, p27(Kip1) and TAp73 are activated by deregulated E2F activity induced by forced inactivation of pRB, but not by physiological E2F activity induced by growth stimulation. In contrast, growth-related E2F targets are activated by both E2F activities, underscoring the roles of deregulated E2F in tumor suppression in the context of dysfunctional pRB. In this study, to further understand the roles of deregulated E2F, we explored new targets that are specifically activated by deregulated E2F using DNA microarray. The analysis identified nine novel targets (BIM, RASSF1, PPP1R13B, JMY, MOAP1, RBM38, ABTB1, RBBP4 and RBBP7), many of which are involved in the p53 and RB tumor suppressor pathways. Among these genes, the BIM gene was shown to be activated via atypical E2F-responsive promoter elements and to contribute to E2F1-mediated apoptosis. Our results underscore crucial roles of deregulated E2F in growth suppression to counteract loss of pRB function. PMID:26201719

  19. Lifetime and conductance of acetylcholine-activated channels in normal and denervated toad sartorius muscle.

    PubMed Central

    Gage, P W; Hamill, O P

    1980-01-01

    1. The average lifetime and conductance of acetylcholine-activated channels were measured in normal and denervated, voltage-clamped toad sartorius muscle fibres at 10 degrees C. 2. The null potential was -4 +/- 1 mV for subsynaptic channels in normal fibres and -6 +/- 3 mV for extrasynaptic channels in denervated fibres. 3. There was a linear relationship between variance of conductance fluctuations and mean conductance for acetylcholine-induced currents up to 50 nA, in denervated fibres clamped at -50 mV. The ratio gave a channel conductance of 14 pS. 4. At the same membrane potential, the average lifetime of extrasynaptic channels in denervated fibres was approximately double, whereas channel conductance was approximately half, that of subsynaptic channels in normal fibres: there was little difference in net charge transfer through the two types of channel under similar conditions. 5. Single channel conductance increased, whereas average channel lifetime decreased, as the membrane potential became more positive (depolarized). The effect of potential on channel lifetime and conductance was more pronounced in denervated than in normal fibres. PMID:6767026

  20. Multiple dynamo modes as a mechanism for long-term solar activity variations

    NASA Astrophysics Data System (ADS)

    Käpylä, M. J.; Käpylä, P. J.; Olspert, N.; Brandenburg, A.; Warnecke, J.; Karak, B. B.; Pelt, J.

    2016-05-01

    Context. Solar magnetic activity shows both smooth secular changes, such as the modern Grand Maximum, and quite abrupt drops that are denoted as grand minima, such as the Maunder Minimum. Direct numerical simulations (DNS) of convection-driven dynamos offer one way of examining the mechanisms behind these events. Aims: In this work, we analyze a solution of a solar-like DNS that was evolved for roughly 80 magnetic cycles of 4.9 years and where epochs of irregular behavior are detected. The emphasis of our analysis is to find physical causes for such behavior. Methods: The DNS employed is a semi-global (wedge-shaped) magnetoconvection model. For the data analysis tasks we use Ensemble Empirical Mode Decomposition and phase dispersion methods, as they are well suited for analyzing cyclic (non-periodic) signals. Results: A special property of the DNS is the existence of multiple dynamo modes at different depths and latitudes. The dominant mode is solar-like (equatorward migration at low latitudes and poleward at high latitudes). This mode is accompanied by a higher frequency mode near the surface and at low latitudes, showing poleward migration, and a low-frequency mode at the bottom of the convection zone. The low-frequency mode is almost purely antisymmetric with respect to the equator, while the dominant mode has strongly fluctuating mixed parity. The overall behavior of the dynamo solution is extremely complex, exhibiting variable cycle lengths, epochs of disturbed and even ceased surface activity, and strong short-term hemispherical asymmetries. Surprisingly, the most prominent suppressed surface activity epoch is actually a global magnetic energy maximum; during this epoch the bottom toroidal magnetic field obtains a maximum, demonstrating that the interpretation of grand minima-type events is non-trivial. The hemispherical asymmetries are seen only in the magnetic field, while the velocity field exhibits considerably weaker asymmetry. Conclusions: We interpret

  1. Relationship between normal faulting and volcanic activity in the Taranaki backarc basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Giba, M.; Walsh, J. J.; Nicol, A.

    2009-04-01

    Volcanoes and normal faults are, by definition, both present within volcanic rifts. Despite this association the causal relationships between volcanism and normal faulting can be unclear and are poorly understood. One of the principal challenges for investigations of the links between faulting and volcanic activity, is the definition of the detailed temporal relationships between these two processes. The northern Taranaki Basin, which benefits from excellent seismic (2D and 3D) and drillhole coverage, provides the basis for a detailed study of volcanism and faulting over the last ca 15 Myr. Most of the basin is characterised by sedimentation rates which exceed fault displacement rates, a condition which permits displacement backstripping of these syn-sedimentary growth faults. The timing of a suite of mostly andesitic submarine volcanoes has been constrained by interdigitation of the volcanic cones with basinal sedimentary rocks. Eleven dated horizons within the ca 15 Myr and younger stratigraphy together with mapping provide a means of examining the temporal and spatial links between fault and volcanic activity within the basin. The northern Taranaki Basin has a multiphase deformation history, with extension during the Late Cretaceous to Mid Eocene (ca 80-45 Ma), followed by contraction in the Late Eocene to Early Miocene (ca 40-18 Ma) and then by Mid Miocene to recent back arc extension (ca 15-0 Ma). The youngest phase of extensional faulting initiated in the north and west of the basin and migrated to the southeast where present activity is focused. Volcanic activity also commenced in the north during the Mid Miocene and migrated towards the south and east. Volcanism and backarc extension are driven by subduction of the Pacific plate along the Hikurangi margin. The southward and eastward migration of both faulting and volcanic activity is attributed to the steepening and rotation of the subducting slab beneath the Taranaki Basin. Despite the common origin of

  2. Differential thioredoxin reductase activity from human normal hepatic and hepatoma cell lines.

    PubMed

    Jung, Haeng-Im; Lim, Hye-Won; Kim, Byung-Chul; Park, Eun-Hee; Lim, Chang-Jin

    2004-04-30

    Thioredoxin reductase (TrxR), a component of the thioredoxin system, including thioredoxin (Trx) and NADPH, catalyzes the transfer of electrons from NADPH to Trx, acts as a reductant of disulfide-containing proteins and participates in the defense system against oxidative stresses. In this study, the regulation pattern of TrxR in the presence of various stressful reagents was compared between Chang (human normal hepatic cell) and HepG2 (human hepatoma cell) cell lines. Aluminum chloride (0.5 mM) and zinc chloride (0.5 mM) enhanced the TrxR activity in the Chang cell line to a higher degree than in the HepG2 cell line, but cupric chloride (0.2 mM) and cadmium chloride (0.1 mM) enhanced the TrxR activity in the HepG2 cell line to a greater degree. The TrxR activities in both Chang and HepG2 cell lines were similarly induced by treatment with sodium selenite (0.02 mM) and menadione (0.5 and 1.0 mM). Lipopolysaccharide (2 micro g/m1) increased the TrxR activity upto 4.02- and 2.2-fold in the Chang and HepG2 cell lines, respectively, in time-dependent manners. Hydrogen peroxide (5 mM) markedly enhanced the TrxR activity in the HepG2 cell line, but not in the Chang cell line. NO-generating sodium nitroprusside (3.0 and 6.0 mM) induced TrxR activities in both human liver cell lines. The TrxR activity was also induced in human liver cells under limited growth conditions by serum deprivation. These results imply that the TrxR activities in normal hepatic and hepatoma cell lines are subject to different regulatory responses to various stresses. PMID:15118998

  3. Normal amygdala activation but deficient ventrolateral prefrontal activation in adults with bipolar disorder during euthymia.

    PubMed

    Foland-Ross, Lara C; Bookheimer, Susan Y; Lieberman, Matthew D; Sugar, Catherine A; Townsend, Jennifer D; Fischer, Jeffrey; Torrisi, Salvatore; Penfold, Conor; Madsen, Sarah K; Thompson, Paul M; Altshuler, Lori L

    2012-01-01

    Functional neuroimaging studies have implicated the involvement of the amygdala and ventrolateral prefrontal cortex (vlPFC) in the pathophysiology of bipolar disorder. Hyperactivity in the amygdala and hypoactivity in the vlPFC have been reported in manic bipolar patients scanned during the performance of an affective faces task. Whether this pattern of dysfunction persists during euthymia is unclear. Using functional magnetic resonance imaging (fMRI), 24 euthymic bipolar and 26 demographically matched healthy control subjects were scanned while performing an affective task paradigm involving the matching and labeling of emotional facial expressions. Neuroimaging results showed that, while amygdala activation did not differ significantly between groups, euthymic patients showed a significant decrease in activation of the right vlPFC (BA47) compared to healthy controls during emotion labeling. Additionally, significant decreases in activation of the right insula, putamen, thalamus and lingual gyrus were observed in euthymic bipolar relative to healthy control subjects during the emotion labeling condition. These data, taken in context with prior studies of bipolar mania using the same emotion recognition task, could suggest that amygdala dysfunction may be a state-related abnormality in bipolar disorder, whereas vlPFC dysfunction may represent a trait-related abnormality of the illness. Characterizing these patterns of activation is likely to help in understanding the neural changes related to the different mood states in bipolar disorder, as well as changes that represent more sustained abnormalities. Future studies that assess mood-state related changes in brain activation in longitudinal bipolar samples would be of interest. PMID:21854858

  4. A multi-mode sensing system for corrosion detection using piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Giurgiutiu, Victor; Pollock, Patrick

    2008-03-01

    As an emerging technology for in-situ damage detection and nondestructive evaluation, structural health monitoring with active sensors (active SHM) plays as a promising candidate for the pipeline inspection and diagnosis. Piezoelectric wafer active sensor (PWAS), as an active sensing device, can be permanently attached to the structure to interrogate it at will and can operate in propagating wave mode or electromechanical impedance mode. Its small size and low cost (about $10 each) make itself a potential and unique technology for in-situ SHM application. The objective of the research in this paper is to develop a permanently installed in-situ "multi-mode" sensing system for the corrosion monitoring and prediction of critical pipeline systems. Such a system is used during in-service period, recording and monitoring the changes of the pipelines over time, such as corrosion, wall thickness, etc. Having the real-time data available, maintenance strategies based on these data can then be developed to ensure a safe and less expensive operation of the pipeline systems. After a detailed review of PWAS SHM methods, including ultrasonic, impedance, and thickness measurement, we introduce the concept of PWAS-based multi-mode sensing approach for corrosion detection in pipelines. Particularly, we investigate the potential for using PWAS waves for in thickness mode experimentally. Finally, experiments are conducted to verify the corrosion detection ability of the PWAS network in both metallic plate and pipe in a laboratory setting. Results show successful corrosion localization in both tests.

  5. Neuroprotective Pathways: Lifestyle activity, brain pathology and cognition in cognitively normal older adults

    PubMed Central

    Wirth, Miranka; Haase, Claudia M.; Villeneuve, Sylvia; Vogel, Jacob; Jagust, William J.

    2014-01-01

    This study used path analysis to examine effects of cognitive activity and physical activity on cognitive functioning in older adults, through pathways involving beta-amyloid (Aβ) burden, cerebrovascular lesions, and neural injury within brain regions affected in Alzheimer’s disease (AD). Ninety-two cognitively normal older adults (75.2±5.6 years) reported lifetime cognitive activity and current physical activity using validated questionnaires. For each participant, we evaluated cortical Aβ burden (using PIB-PET), cerebrovascular lesions (using MRI-defined white matter lesion (WML)), and neural integrity within AD regions (using a multimodal biomarker). Path models (adjusted for age, gender, and education) indicated that higher lifetime cognitive activity and higher current physical activity was associated with fewer WMLs. Lower WML volumes were in turn related to higher neural integrity and higher global cognitive functioning. As shown previously, higher lifetime cognitive activity was associated with lower PIB retention, which itself moderated the impact of neural integrity on cognitive functioning. Lifestyle activity may thus promote cognitive health in aging by protecting against cerebrovascular pathology and Aβ pathology thought to be relevant to AD development. PMID:24656834

  6. Normal protein content but abnormally inhibited enzyme activity in muscle carnitine palmitoyltransferase II deficiency.

    PubMed

    Lehmann, Diana; Zierz, Stephan

    2014-04-15

    The biochemical consequences of the disease causing mutations of muscle carnitine palmitoyltransferase II (CPT II) deficiency are still enigmatic. Therefore, CPT II was characterized in muscle biopsies of nine patients with genetically proven muscle CPT II deficiency. Total CPT activity (CPT I+CPT II) of patients was not significantly different from that of controls. Remaining activities upon inhibition by malonyl-CoA and Triton X-100 were significantly reduced in patients. Immunohistochemically CPT II protein was predominantly expressed in type-I-fibers with the same intensity in patients as in controls. Western blot showed the same CPT II staining intensity ratio in patients and controls. CPT I and CPT II protein concentrations estimated by ELISA were not significantly different in patients and in controls. Citrate synthase activity in patients was significantly increased. Total CPT activity significantly correlated with both CPT I and CPT II protein concentrations in patients and controls. This implies (i) that normal total CPT activity in patients with muscle CPT II deficiency is not due to compensatory increase of CPT I activity and that (ii) the mutant CPT II is enzymatically active. The data further support the notion that in muscle CPT II deficiency enzyme activity and protein content are not reduced, but rather abnormally inhibited when fatty acid metabolism is stressed. PMID:24602495

  7. Inelastic X-Ray Scattering (IXS) of a Transition Metal Complex (FeCl4−)– Vibrational Spectroscopy for All Normal Modes

    PubMed Central

    Wang, Hongxin; Dong, Weibing; Olmstead, Marilyn M.; Fettinger, James C.; Nix, Jay; Uchiyama, Hiroshi; Tsutsui, Satoshi; Baron, Alfred Q. R.; Dowty, Eric; Cramer, Stephen P.

    2015-01-01

    The tetraethylammonium salt of the transition metal complex (FeCl4−) has been examined using inelastic x-ray scattering (IXS) with 1.5 meV resolution (12 cm−1) at 21.747 keV. This sample serves as a feasibility test for more complex transition metal complexes. The IXS spectra were compared with previously recorded infrared, Raman, and NRVS spectra, revealing the same normal modes but with less strict selection rules. Calculations with a previously derived Urey Bradley force field were used to simulate the expected Q and orientation dependence of the IXS intensities. The relative merits of IXS, as compared to other photon based vibrational spectroscopies such as NRVS, Raman, and IR are discussed. PMID:23668798

  8. Molecular structure, natural bond analysis, vibrational and electronic spectra, surface enhanced Raman scattering and Mulliken atomic charges of the normal modes of [Mn(DDTC)2] complex.

    PubMed

    Téllez S, Claudio A; Costa, Anilton C; Mondragón, M A; Ferreira, Glaucio B; Versiane, O; Rangel, J L; Lima, G Müller; Martin, A A

    2016-12-01

    Theoretical and experimental bands have been assigned for the Fourier Transform Infrared and Raman spectra of the bis(diethyldithiocarbamate)Mn(II) complex, [Mn(DDTC)2]. The calculations have been based on the DFT/B3LYP method, second derivative spectra and band deconvolution analysis. The UV-vis experimental spectra were measured in acetonitrile solution, and the calculated electronic spectrum was obtained using the TD/B3LYP method with 6-311G(d, p) basis set for all atoms. Charge transfer bands and those d-d spin forbidden were assigned in the UV-vis spectrum. The natural bond orbital analysis was carried out using the DFT/B3LYP method and the Mn(II) hybridization leading to the planar geometry of the framework was discussed. Surface enhanced Raman scattering (SERS) was also performed. Mulliken charges of the normal modes were obtained and related to the SERS enhanced bands. PMID:27344520

  9. Hypoglycemic activity of Ailanthus excelsa leaves in normal and streptozotocin-induced diabetic rats.

    PubMed

    Cabrera, W; Genta, S; Said, A; Farag, A; Rashed, K; Sánchez, S

    2008-03-01

    The hypoglycemic activity of a 70% methanol extract from the leaves of Ailanthus excelsa Roxb. (Simaroubaceae) was studied in normal, transiently hyperglycemic and streptozotocin (STZ)-induced diabetic rats. Oral administration of the extract at doses of 14, 70 and 350 mg/kg body weight caused no significant changes in fasting blood glucose levels of normal rats. In an oral glucose tolerance test, the extract produced a significant decrease in glycemia 90 min after the glucose pulse. Daily administration of A. excelsa extract for 60 days produced a significant hypoglycemic effect in diabetic animals. In addition, this treatment improved the altered renal function observed in diabetic control rats. This study suggests that Ailanthus leaf extract could be potentially useful for post-prandial hyperglycemia treatment. PMID:18058975

  10. Patterns of brain activity in normals and schizophrenics with positron emission tomography

    SciTech Connect

    Volkow, N.D.; Wolf, A.P.; Gomez-Mont, F.; Brodie, J.D.; Canero, R.; Van Gelder, P.; Russell, J.A.G.

    1985-05-01

    The authors investigated the functional interaction among brain areas under baseline and upon activation by a visual task to compare the response of normal subjects from the ones of chronic schizophrenics. Cerebral metabolic images were obtained on twelve healthy volunteers an eighteen schizophrenics with positron emission tomography and 11-C-Deoxyglucose. Correlation coefficients among the relative metabolic values (region of interest divided by the average of whole brain gray matter) of 11 brain regions; frontal, parietal, temporal and occipital left and right lobes, left and right basal ganglia and thalamus were computed for the baseline and for the task. Under baseline, normals showed more functional correlations than schizophrenics. Both groups showed a thalamo-occipital (positive) and thalamo-frontal (negative) interaction. The highest correlations among homologous brain areas were the frontal, occipital and basal ganglia.

  11. Activation of caspases in intestinal villus epithelial cells of normal and nematode infected rats

    PubMed Central

    Hyoh, Y; Ishizaka, S; Horii, T; Fujiwara, A; Tegoshi, T; Yamada, M; Arizono, N

    2002-01-01

    Background: Small intestinal epithelial cells (IEC) show apoptosis in physiological turnover of cells and in certain inflammatory diseases. Aims: To investigate the role of caspases in the progression of IEC apoptosis in vivo. Methods: IEC were separated along the villus-crypt axis from the jejunum of normal and Nippostrongylus brasiliensis infected rats at 4°C. Caspases were examined by a fluorometric assay method, histochemistry, and immunoblotting. Results: Villus cell rich IEC from normal rats exhibited a high level of caspase-3-like activity whereas activities of caspase-1, -8, and -9 were negligible. Immunoblotting analysis of villus cell rich IEC revealed partial cleavage of procaspase-3 into a 17 kDa molecule as well as cleavage of a caspase-3 substrate, poly(ADP-ribose) polymerase (PARP), whereas in crypt cell rich IEC, caspase-3 cleavage was less significant. Caspase-3 activity was also observed histochemically in villus epithelium on frozen sections of the normal small intestine. IEC prepared at 4°C did not reveal nuclear degradation whereas subsequent incubation in a suspension at 37°C induced intense nuclear degradation within one hour in accordance with increases in active caspase-3. This apoptosis was partially suppressed by the caspase inhibitor Z-VAD-fmk. Nematode infected animals showed villus atrophy together with significant increases in levels of caspase-3 in IEC but not of caspase-1, -8, or -9. Conclusion: Caspase-3 may have an important role in the physiological replacement of IEC as well as in progression of IEC apoptosis induced by nematode infection. PMID:11772970

  12. Numerical simulation of coastal flooding after potential reactivation of an active normal fault in northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Yu-Chang; Kuo, Chih-Yu; Chang, Kuo-Jen; Chen, Rou-Fei; Hsieh, Yu-Chung

    2016-04-01

    Rapid coastal flooding from seawards may be resulted from storm surge, tsunamis, and sudden land subsidence due to fault activities. Many observations and numerical modeling of flooding have been made for cases resulted from storm surge and tsunami events; however, coastal flooding caused by a potential normal faulting event nearby coastal areas is rarely reported. In addition to the earthquake hazards from fault rupturing and ground shaking, the accompanied hazards of earthquake-induced flooding is also important to be investigated. The Jinshan area in northern Taiwan was reported to have been flooded by a tsunami event in the year of 1867 possibly resulted from the reactivation of the Shanchiao normal fault offshore. Historical records have shown that the Shanchiao Fault that extends from Shulin along the western edge of the Taipei Basin to the town of Jinshan may have also ruptured in the year of 1694. The rupturing event has created a depression on the western side of the Taipei Basin that was later filled by sea water called the Taipei Lake. The geological conditions in northern Taiwan provide an opportunity for numerically simulating the dynamic processes of sea water flooding nearby the coastal area immediately after an earthquake-induced normal faulting event. In this study, we focused on the potential active normal faulting that may occur and result in an expected catastrophic flooding in lowland area of Jinshan in northern Taiwan. We applied the continuum shallow water equation to evaluate the unknown inundation processes including location, extent, velocity and water depths after the flooding initiated and the final state of the flooding event. The modeling results were well compared with borehole observations of the extent of previous flooding events possibly due to tsunami events. In addition, the modeling results may provide a future basis for safety evaluation of the two nuclear power plants nearby the region.

  13. Active normal faulting along the Mt. Morrone south-western slopes (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Gori, Stefano; Giaccio, Biagio; Galadini, Fabrizio; Falcucci, Emanuela; Messina, Paolo; Sposato, Andrea; Dramis, Francesco

    2011-01-01

    In the present work we analyse one of the active normal faults affecting the central Apennines, i.e. the Mt. Morrone normal fault system. This tectonic structure, which comprises two parallel, NW-SE trending fault segments, is considered as potentially responsible for earthquakes of magnitude ≥ 6.5 and its last activation probably occurred during the second century AD. Structural observations performed along the fault planes have allowed to define the mainly normal kinematics of the tectonic structure, fitting an approximately N 20° trending extensional deformation. Geological and geomorphological investigations performed along the whole Mt. Morrone south-western slopes permitted us to identify the displacement of alluvial fans, attributed to Middle and Late Pleistocene by means of tephro-stratigraphic analyses and geomorphological correlations with dated lacustrine sequences, along the western fault branch. This allowed to evaluate in 0.4 ± 0.07 mm/year the slip rate of this segment. On the other hand, the lack of synchronous landforms and/or deposits that can be correlated across the eastern fault segment prevented the definition of the slip rate related to this fault branch. Nevertheless, basing on a critical review of the available literature dealing with normal fault systems evolution, we hypothesised a total slip rate of the fault system in the range of 0.4 ± 0.07 to 0.8 ± 0.09 mm/year. Moreover, basing on the length at surface of the Mt. Morrone fault system (i.e. 22-23 km) we estimated the maximum expected magnitude of an earthquake that might originate along this tectonic structure in the order of 6.6-6.7.

  14. c-Abl Activates Janus Kinase 2 in Normal Hematopoietic Cells*

    PubMed Central

    Tao, Wenjing; Leng, Xiaohong; Chakraborty, Sandip N.; Ma, Helen; Arlinghaus, Ralph B.

    2014-01-01

    Jak2 is involved in cytokine growth factor-stimulated signal transduction, but the mechanism of its activation is largely unknown. Here, we investigated Jak2 activation in a normal hematopoietic cell line, 32D mouse myeloid cells. The bimolecular fluorescence complementation studies showed that c-Abl formed a stable complex with Jak2 in live cells. Co-immunoprecipitation results showed that c-Abl bound to the βc chain of IL-3/IL-5/GM-CSF receptors. The kinase activities of both c-Abl and Jak2 were stimulated by IL-3 in 32D cells. Decreasing c-Abl protein expression in 32D cells by inducible shRNA decreased Jak2 activity and resulted in the failure of Jak2 activation in response to IL-3. Treatment of IL-3 and serum-starved 32D cells with 1 μm imatinib mysylate inhibited IL-3 stimulated kinase activities of both c-Abl and Jak2. In addition, the kinase-deficient Bcr-Abl mutant (p210K1172R) was defective for activation of Jak2 in 32D cells and impaired IL-3 independent growth, which was rescued by overexpression of c-Abl (+Abl). IL-3 efficiently inhibited apoptosis of 32Dp210K/R+Abl cells induced by imatinib mysylate but not Jak2 kinase inhibitor TG101209. In summary, our findings provide evidence that the kinase function of c-Abl and its C-terminal CT4 region is crucial for its interaction with Jak2 and its activation. c-Abl kinase activity induced by IL-3 is required for IL-3-stimulated Jak2 and Jak1 activation. Our findings reveal a novel regulatory role of c-Abl in Jak2 activation induced by IL-3 cytokine growth factor in 32D hematopoietic cells. PMID:24923444

  15. Insulin secretion enhancing activity of roselle calyx extract in normal and streptozotocin-induced diabetic rats

    PubMed Central

    Wisetmuen, Eamruthai; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Yutanawiboonchai, Wiboonchai; Itharat, Arunporn

    2013-01-01

    Background and Objective: Our recent study revealed the antihyperglycemic activity of an ethanolic extract of roselle calyxes (Hibiscus sabdariffa) in diabetic rats. The present study had, therefore, an objective to investigate the mechanism underlying this activity. Materials and Methods: Male Sprague Dawley rats were induced to be diabetes by intraperitoneal injection of 45 mg/kg streptozotocin (STZ). Normal rats as well as diabetic rats were administered with the ethanolic extract of H. sabdariffa calyxes (HS-EE) at 0.1 and 1.0 g/kg/day, respectively, for 6 weeks. Then, blood glucose and insulin levels, at basal and glucose-stimulated secretions, were measured. The pancreas was dissected to examine histologically. Results: HS-EE 1.0 g/kg/day significantly decreased the blood glucose level by 38 ± 12% in diabetic rats but not in normal rats. In normal rats, treatment with 1.0 g/kg HS-EE increased the basal insulin level significantly as compared with control normal rats (1.28 ± 0.25 and 0.55 ± 0.05 ng/ml, respectively). Interestingly, diabetic rats treated with 1.0 g/kg HS-EE also showed a significant increase in basal insulin level as compared with the control diabetic rats (0.30 ± 0.05 and 0.15 ± 0.01 ng/ml, respectively). Concerning microscopic histological examination, HS-EE 1.0 g/kg significantly increased the number of islets of Langerhans in both normal rats (1.2 ± 0.1 and 2.0 ± 0.1 islet number/10 low-power fields (LPF) for control and HS-EE treated group, respectively) and diabetic rats (1.0 ± 0.3 and 3.9 ± 0.6 islet number/10 LPF for control and HS-EE treated group, respectively). Conclusion: The antidiabetic activity of HS-EE may be partially mediated via the stimulating effect on insulin secretion. PMID:23798879

  16. High-wavenumber solar f-mode strengthening prior to active region formation

    NASA Astrophysics Data System (ADS)

    Singh, Nishant; Raichur, Harsha; Brandenburg, Axel

    2016-05-01

    We report a systematic strengthening of the local solar surface mode, i.e. the f-mode, 1-2 days prior to the emergence of an active region (AR) in the same (corotating) location while no indication can yet be seen in the magnetograms. Our study is motivated by earlier numerical findings of Singh et al. (2014) which showed that, in the presence of a nonuniform magnetic field that is concentrated a few scale heights below the surface, the f-mode fans out in the diagnostic kΩ diagram at high wavenumbers. Here we explore this possibility using data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, and show for four ARs 11130, 11158, 11768, and 12051, that at large latitudinal wavenumbers (corresponding to horizontal scales of around 3000 km), the f-mode displays strengthening about two days prior to AR formation and thus provides a new precursor for AR formation. The idea that the f-mode is perturbed days before any visible magnetic activity occurs on the surface can be important in constraining dynamo models aimed at understanding the global magnetic activity of the Sun.

  17. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent

    PubMed Central

    Bonenfant, Débora; Rubert, Joëlle; Vangrevelinghe, Eric; Scheufler, Clemens; Marque, Fanny; Régnier, Catherine H.; De Pover, Alain; Ryckelynck, Hugues; Bhagwat, Neha; Koppikar, Priya; Goel, Aviva; Wyder, Lorenza; Tavares, Gisele; Baffert, Fabienne; Pissot-Soldermann, Carole; Manley, Paul W.; Gaul, Christoph; Voshol, Hans; Levine, Ross L.; Sellers, William R.; Hofmann, Francesco; Radimerski, Thomas

    2016-01-01

    JAK inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type-I binding mode leads to an increase in JAK activation-loop phosphorylation, despite blockade of kinase function. Here we report that stabilizing the inactive state via type-II inhibition acts in the opposite manner, leading to a loss of activation-loop phosphorylation. We used X-ray crystallography to corroborate the binding mode and report for the first time the crystal structure of the JAK2 kinase domain in an inactive conformation. Importantly, JAK inhibitor-induced activation-loop phosphorylation requires receptor interaction, as well as intact kinase and pseudokinase domains. Hence, depending on the respective conformation stabilized by a JAK inhibitor, hyperphosphorylation of the activation-loop may or may not be elicited. PMID:22684457

  18. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis.

    PubMed

    Plumb, Jonnie; McQuaid, Stephen; Mirakhur, Meenakshi; Kirk, John

    2002-04-01

    Blood-brain barrier (BBB) breakdown, demonstrable in vivo by enhanced MRI is characteristic of new and expanding inflammatory lesions in relapsing-remitting and chronic progressive multiple sclerosis (MS). Subtle leakage may also occur in primary progressive MS. However, the anatomical route(s) of BBB leakage have not been demonstrated. We investigated the possible involvement of interendothelial tight junctions (TJ) by examining the expression of TJ proteins (occludin and ZO-1 ) in blood vessels in active MS lesions from 8 cases of MS and in normal-appearing white (NAWM) matter from 6 cases. Blood vessels (10-50 per frozen section) were scanned using confocal laser scanning microscopy to acquire datasets for analysis. TJ abnormalities manifested as beading, interruption, absence or diffuse cytoplasmic localization of fluorescence, or separation of junctions (putative opening) were frequent (affecting 40% of vessels) in oil-red-O-positive active plaques but less frequent in NAWM (15%), and in normal (< 2%) and neurological controls (6%). Putatively "open" junctions were seen in vessels in active lesions and in microscopically inflamed vessels in NAWM. Dual fluorescence revealed abnormal TJs in vessels with pre-mortem serum protein leakage. Abnormal or open TJs, associated with inflammation may contribute to BBB leakage in enhancing MRI lesions and may also be involved in subtle leakage in non-enhancing focal and diffuse lesions in NAWM. BBB disruption due to tight junctional pathology should be regarded as a significant form of tissue injury in MS, alongside demyelination and axonopathy. PMID:11958369

  19. VizieR Online Data Catalog: Star formation in active and normal galaxies (Tsai+, 2015)

    NASA Astrophysics Data System (ADS)

    Tsai, M.; Hwang, C.-Y.

    2015-11-01

    We selected 104 active galaxies from the lists of Melendez et al. (2010MNRAS.406..493M), Condon et al. 1991 (cat. J/ApJ/378/65), and Ho & Ulvestad 2001 (cat. J/ApJS/133/77). Most of the sources are identified as Active Galactic Nuclei (AGNs), and a few of them are classified as Luminous InfraRed Galaxies (LIRGs). We obtained 3.6 and 8μm infrared images of these galaxies from the Spitzer Archive (http://sha.ipac.caltech.edu/applications/Spitzer/SHA/) and 8GHz images from the VLA archive (http://archive.nrao.edu/archive/archiveimage.html). We also selected a nearby AGN sub-sample containing 21 radio-selected AGNs for further spatial analysis. We selected 25 nearby AGNs exhibiting no detected radio emission in order to compare with the results of the radio-selected sources. For comparison, we also selected normal galaxies with distances less than 15Mpc from the catalog of Tully 1994 (see cat. VII/145). We only selected the galaxies that have Spitzer archive data and are not identified as AGNs in either the Veron-Cetty & Veron 2006 (see cat. VII/258) AGN catalog or in the NED database (http://ned.ipac.caltech.edu/). Our results for the radio-selected and the non-radio-selected active galaxies are listed in Table1, and those for the normal galaxies are listed in Table2. (2 data files).

  20. Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy.

    PubMed

    Adapala, R K; Thoppil, R J; Ghosh, K; Cappelli, H C; Dudley, A C; Paruchuri, S; Keshamouni, V; Klagsbrun, M; Meszaros, J G; Chilian, W M; Ingber, D E; Thodeti, C K

    2016-01-21

    Tumor vessels are characterized by abnormal morphology and hyperpermeability that together cause inefficient delivery of chemotherapeutic agents. Although vascular endothelial growth factor has been established as a critical regulator of tumor angiogenesis, the role of mechanical signaling in the regulation of tumor vasculature or tumor endothelial cell (TEC) function is not known. Here we show that the mechanosensitive ion channel transient receptor potential vanilloid 4 (TRPV4) regulates tumor angiogenesis and tumor vessel maturation via modulation of TEC mechanosensitivity. We found that TECs exhibit reduced TRPV4 expression and function, which is correlated with aberrant mechanosensitivity towards extracellular matrix stiffness, increased migration and abnormal angiogenesis by TEC. Further, syngeneic tumor experiments revealed that the absence of TRPV4 induced increased vascular density, vessel diameter and reduced pericyte coverage resulting in enhanced tumor growth in TRPV4 knockout mice. Importantly, overexpression or pharmacological activation of TRPV4 restored aberrant TEC mechanosensitivity, migration and normalized abnormal angiogenesis in vitro by modulating Rho activity. Finally, a small molecule activator of TRPV4, GSK1016790A, in combination with anticancer drug cisplatin, significantly reduced tumor growth in wild-type mice by inducing vessel maturation. Our findings demonstrate TRPV4 channels to be critical regulators of tumor angiogenesis and represent a novel target for anti-angiogenic and vascular normalization therapies. PMID:25867067

  1. Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy

    PubMed Central

    Adapala, Ravi K.; Thoppil, Roslin J.; Ghosh, Kaustabh; Cappelli, Holly; Dudley, Andrew C.; Paruchuri, Sailaja; Keshamouni, Venkateshwar; Klagsbrun, Michael; Meszaros, J. Gary; Chilian, William M.; Ingber, Donald E.; Thodeti, Charles K.

    2016-01-01

    Tumor vessels are characterized by abnormal morphology and hyper-permeability that together cause inefficient delivery of chemotherapeutic agents. Although VEGF has been established as a critical regulator of tumor angiogenesis, the role of mechanical signaling in the regulation of tumor vasculature or tumor endothelial cell (TEC) function is not known. Here, we show that the mechanosensitive ion channel TRPV4 regulates tumor angiogenesis and tumor vessel maturation via modulation of TEC mechanosensitivity. We found that TEC exhibit reduced TRPV4 expression and function, which is correlated with aberrant mechanosensitivity towards ECM stiffness, increased migration and abnormal angiogenesis by TEC. Further, syngeneic tumor experiments revealed that the absence of TRPV4 induced increased vascular density, vessel diameter and reduced pericyte coverage resulting in enhanced tumor growth in TRPV4 KO mice. Importantly, overexpression or pharmacological activation of TRPV4 restored aberrant TEC mechanosensitivity, migration and normalized abnormal angiogenesis in vitro by modulating Rho activity. Finally, a small molecule activator of TRPV4, GSK1016790A, in combination with anti-cancer drug Cisplatin, significantly reduced tumor growth in WT mice by inducing vessel maturation. Our findings demonstrate TRPV4 channels to be critical regulators of tumor angiogenesis and represent a novel target for anti-angiogenic and vascular normalization therapies. PMID:25867067

  2. On the physical interpretation of ab initio normal-mode coordinates for the three C-H stretching vibrations of methanol along the internal-rotation path

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Hougen, Jon T.; Lees, R. M.

    2013-11-01

    Graphical representations are presented for variation along the steepest-descent internal-rotation path in methanol of the normal mode frequencies and their associated eigenvectors in several sets of internal coordinates and in Cartesian atomic displacement vectors di(γ), as determined for the three CH stretching vibrations (ν3, ν2, and ν9) by projected-frequency calculations from the Gaussian suite of programs. The methyl-group CH stretching modes are interesting because the symmetry environment of each C-H bond changes significantly during the internal rotation, i.e., each of the methyl bonds takes turns passing (twice for a complete torsional revolution) through the plane of symmetry of the COH frame of the molecule. No accumulation of geometric phase is observed in any of these plots, and all quantities return to their original values after the internal rotation angle γ increases by 2π. A simple two-vibrational-state, three-parameter model, closely based on earlier models from the literature, can be used to understand nearly quantitatively much of the γ-variation observed in the Gaussian plots, including a number of cusp-like features. In particular, when the three parameters in the model are determined from a fit to the Gaussian projected frequencies for ν2 and ν9 at the top and bottom of the internal rotation path, it is found that the Renner-Teller-like torsion-vibration interaction term is slightly larger in magnitude than the Jahn-Teller-like term, which is consistent with no accumulation of geometric phase in the various plots. Finally, a highly simplified computation is presented to illustrate the changes that will be necessary in order to move from the usual diabatic torsion-vibration treatments in the literature to adiabatic treatments, in which the normal-mode Cartesian displacement vectors given at each point along the internal rotation path by the Gaussian projected frequency calculation are used directly in the torsion-vibration energy

  3. Predicting above normal wildfire activity in southern Europe as a function of meteorological drought

    NASA Astrophysics Data System (ADS)

    Gudmundsson, L.; Rego, F. C.; Rocha, M.; Seneviratne, S. I.

    2014-08-01

    Wildfires are a recurrent feature of ecosystems in southern Europe, regularly causing large ecological and socio-economic damages. For efficient management of this hazard, long lead time forecasts could be valuable tools. Using logistic regression, we show that the probability of above normal summer wildfire activity in the 1985-2010 time period can be forecasted as a function of meteorological drought with significant predictability (p \\lt 0.05) several months in advance. The results show that long lead time forecasts of this natural hazard are feasible in southern Europe, which could potentially aid decision-makers in the design of strategies for forest management.

  4. Effects of auricular stimulation on feeding-related hypothalamic neuronal activity in normal and obese rats.

    PubMed

    Shiraishi, T; Onoe, M; Kojima, T; Sameshima, Y; Kageyama, T

    1995-01-01

    It is known that auriculotherapy occasionally affects dramatic body weight reduction for obese patients, although the physiological and anorexigenic functions are not clear. Effects of auricular stimulation on feeding-related lateral (LHA) and ventromedial (VMH) hypothalamic neuronal activity in normal and experimental (hypothalamic and dietary) obese rats were investigated. The LHA and/or VMH neuronal activity were recorded from feeding-related regions in Wistar SPF/VAF male and experimental (hypothalamic and dietary) obese rats, anesthetized with urethane-chloralose, under stereotaxic coordination. Recording was through 3 M KCI glass microelectrodes, while stimulating the ipsilateral vagal innervated region of the auricle. This is equivalent to the cavum conchae in the human, and was identified by resistance less than 10-50 k omega. The stimulating electrode was a stainless steel ear acupuncture (0.12 x 2.0 mm). The latency of potentials evoked in the LHA by unilateral stimulation of a specific site in the ear was 28.1 +/- 3.3 ms (8-92, n = 41). LHA neuronal activity was depressed 45.6% (n = 12, p < 0.01), and VMH activity was excited (60.5%, n = 18, p < 0.01). The auricular acupuncture stimulation clearly modulates feeding-related hypothalamic neuronal activity of experimental (both hypothalamic and dietary) obese rats. These auricle acupuncture stimulation effects were correlated to the degree of obesity. In conclusion, the results suggest that auricular acupuncture stimulation may not reduce appetite, but is more likely concerned with satiation formation and preservation. Thus, auricular acupuncture should be more effective on obese rats than on normal rats. PMID:7895091

  5. Resting-state activity in development and maintenance of normal brain function

    PubMed Central

    Pizoli, Carolyn E.; Snyder, Abraham Z.; Shimony, Joshua S.; Limbrick, David D.; Schlaggar, Bradley L.; Smyth, Matthew D.

    2011-01-01

    One of the most intriguing recent discoveries concerning brain function is that intrinsic neuronal activity manifests as spontaneous fluctuations of the blood oxygen level–dependent (BOLD) functional MRI signal. These BOLD fluctuations exhibit temporal synchrony within widely distributed brain regions known as resting-state networks. Resting-state networks are present in the waking state, during sleep, and under general anesthesia, suggesting that spontaneous neuronal activity plays a fundamental role in brain function. Despite its ubiquitous presence, the physiological role of correlated, spontaneous neuronal activity remains poorly understood. One hypothesis is that this activity is critical for the development of synaptic connections and maintenance of synaptic homeostasis. We had a unique opportunity to test this hypothesis in a 5-y-old boy with severe epileptic encephalopathy. The child developed marked neurologic dysfunction in association with a seizure disorder, resulting in a 1-y period of behavioral regression and progressive loss of developmental milestones. His EEG showed a markedly abnormal pattern of high-amplitude, disorganized slow activity with frequent generalized and multifocal epileptiform discharges. Resting-state functional connectivity MRI showed reduced BOLD fluctuations and a pervasive lack of normal connectivity. The child underwent successful corpus callosotomy surgery for treatment of drop seizures. Postoperatively, the patient's behavior returned to baseline, and he resumed development of new skills. The waking EEG revealed a normal background, and functional connectivity MRI demonstrated restoration of functional connectivity architecture. These results provide evidence that intrinsic, coherent neuronal signaling may be essential to the development and maintenance of the brain's functional organization. PMID:21709227

  6. Activity-dependent excitability changes in normal and demyelinated rat spinal root axons.

    PubMed Central

    Bostock, H; Grafe, P

    1985-01-01

    Myelinated nerve fibres with a reduced safety factor for conduction due to demyelination are easily blocked by trains of impulses. To find out why, in vivo recordings from rat ventral root fibres demyelinated with diphtheria toxin have been supplemented with in vivo and in vitro recordings from normal fibres. Despite a small rise in extracellular potassium activity, normal fibres were invariably hyperpolarized by intermittent trains of impulses. This hyperpolarization resulted in an increase in threshold and also in an enhancement of the depolarizing after-potential and the superexcitable period. Replacement of NaCl in the extracellular solution by LiCl completely blocked both the membrane hyperpolarization and the threshold increase which were normally observed during intermittent trains of impulses. At demyelinated nodes which were blocked by trains of impulses (10-50 Hz), conduction block was preceded by a rise in threshold current and in an increase in internodal conduction time, but by no detectable reduction in the outward current generated by the preceding node. It was found possible to prevent the threshold from changing during a train by automatic adjustment of a d.c. polarizing current. This 'threshold clamp' prevented the conduction failure and virtually abolished the changes in internodal conduction time. The threshold changes were attributed to hyperpolarization, as in normal fibres, since (a) the polarizing current required to prevent them was always a depolarizing current, and (b) they were accompanied by an increase in superexcitability. The post-tetanic depression that can follow continuous trains of impulses was attributed to the combination of increased threshold and enhanced superexcitable period due to hyperpolarization. It is concluded that the susceptibility of these demyelinated fibres to impulse trains is not due to a membrane depolarization induced by extracellular potassium accumulation but to a membrane hyperpolarization as a consequence

  7. 78 FR 7939 - Energy Conservation Program: Test Procedures for Microwave Ovens (Active Mode)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    .... 75 FR 42579, 42581. In addition, in comments received in response to a separate test procedure notice... referred to as the June 2012 NODA). 77 FR 33106. In the June 2012 NODA, DOE presented test results from... single compartment. 78 FR 4015, 4018 (Jan. 18, 2013). For the purpose of this active mode test...

  8. Modes of Engagement in Foreign Language Writing: An Activity Theoretical Perspective

    ERIC Educational Resources Information Center

    Haneda, Mari

    2007-01-01

    This article makes the case for using activity theory to explore the learning and teaching of writing in a foreign language. I illustrate my argument by bringing this theory to bear on a re-examination of the different modes of engagement in writing by university-level students of Japanese as a foreign language that I identified in an earlier…

  9. X-mode reflectometry for magnetohydrodynamic activity associated with q=1 surface measurements on Tore Supra

    SciTech Connect

    Vermare, L.; Clairet, F.; Gabillet, F.; Sabot, R.; Sirinelli, A.; Heuraux, S.; Leclert, G.

    2004-10-01

    Tore Supra is equipped with two 20 {mu}s fast sweep X-mode reflectometers operating between 50-110 GHz dedicated to density profile determination and an X-mode fixed frequency reflectometer operating between 105-155 GHz for density fluctuation measurements. Heterodyne and sine-cosine detection provide measurements of the reflected signal with high sensitivity. Operating profile reflectometer in burst mode (5 {mu}s dead time between two consecutive sweeps) allows quasi-simultaneous measurements at fixed frequency over a broad frequency band. Thus, information on plasma fluctuations, such as magnetohydrodynamic (MHD) activity, up to 20 kHz as well as a radial localization of the modes is accessible. The temporal evolution of the q=1 rational surface during sawtooth crash activity has been recorded in the plasma center with high spatial resolution. In addition, a direct comparison between signals associated with a central MHD mode from both profile and fluctuation reflectometers, positioned at different toroidal angles, allows one to determine the plasma toroidal velocity.

  10. X-mode reflectometry for magnetohydrodynamic activity associated with q=1 surface measurements on Tore Supra

    NASA Astrophysics Data System (ADS)

    Vermare, L.; Clairet, F.; Gabillet, F.; Sabot, R.; Sirinelli, A.; Heuraux, S.; Leclert, G.

    2004-10-01

    Tore Supra is equipped with two 20 μs fast sweep X-mode reflectometers operating between 50-110 GHz dedicated to density profile determination and an X-mode fixed frequency reflectometer operating between 105-155 GHz for density fluctuation measurements. Heterodyne and sine-cosine detection provide measurements of the reflected signal with high sensitivity. Operating profile reflectometer in burst mode (5 μs dead time between two consecutive sweeps) allows quasi-simultaneous measurements at fixed frequency over a broad frequency band. Thus, information on plasma fluctuations, such as magnetohydrodynamic (MHD) activity, up to 20 kHz as well as a radial localization of the modes is accessible. The temporal evolution of the q=1 rational surface during sawtooth crash activity has been recorded in the plasma center with high spatial resolution. In addition, a direct comparison between signals associated with a central MHD mode from both profile and fluctuation reflectometers, positioned at different toroidal angles, allows one to determine the plasma toroidal velocity.

  11. Normal coordinate analysis and fungicidal activity study on anilazine and its related compound using spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Sheeja Mol, Gilbert Pushpam; Arul Dhas, Deva Dhas; Hubert Joe, Isaac; Balachandran, Sreedharan

    2016-06-01

    The FTIR and FT-Raman spectra of anilazine have been recorded in the range 400-4000 cm-1 and 50-3500 cm-1 respectively. The optimized geometrical parameters of the compound were calculated using B3LYP method with 6-311G(d,p) basis set. The distribution of the vibrational bands were carried out with the help of normal coordinate analysis (NCA). The 1H and 13C nuclear spectra have been recorded and chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method. The UV-Visible spectrum of the compound was recorded in the region 190-900 nm and the electronic properties were determined by time-dependent DFT (TD-DFT) approach. Anilazine was screened for its antifungal activity. Molecular docking studies are conducted to predict its fungicidal activity.

  12. Different pulse pattern generation by frequency detuning in pulse modulated actively mode-locked ytterbium doped fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, He; Chen, Sheng-Ping; Si, Lei; Zhang, Bin; Jiang, Zong-Fu

    2015-10-01

    We report the results of our recent experimental investigation of the modulation frequency detuning effect on the output pulse dynamics in a pulse modulated actively mode-locked ytterbium doped fiber laser. The experimental study shows the existence of five different mode-locking states that mainly depend on the modulation frequency detuning, which are: (a) amplitude-even harmonic/fundamental mode-locking, (b) Q-switched harmonic/fundamental mode-locking, (c) sinusoidal wave modulation mode, (d) pulses bundle state, and (e) noise-like state. A detailed experimental characterization of the output pulses dynamics in each operating mode is presented.

  13. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking

    PubMed Central

    Bruijn, Sjoerd M.; Van Dieën, Jaap H.; Daffertshofer, Andreas

    2015-01-01

    Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG) during stabilized and normal walking. Subjects walked on a treadmill in two conditions, each lasting 10 min; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG) of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component (IC) analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e., lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability. PMID:26578937

  14. The hypotensive effect of acute and chronic AMP-activated protein kinase activation in normal and hyperlipidemic mice

    PubMed Central

    Greig, Fiona H.; Ewart, Marie-Ann; McNaughton, Eilidh; Cooney, Josephine; Spickett, Corinne M.; Kennedy, Simon

    2015-01-01

    AMP-activated protein kinase (AMPK) is present in the arterial wall and is activated in response to cellular stressors that raise AMP relative to ADP/ATP. Activation of AMPK in vivo lowers blood pressure but the influence of hyperlipidemia on this response has not been studied. ApoE−/− mice on high fat diet for 6 weeks and age-matched controls were treated with the AMPK activator, AICAR daily for two weeks. Under anesthesia, the carotid artery was cannulated for blood pressure measurements. Aortic tissue was removed for in vitro functional experiments and AMPK activity was measured in artery homogenates by Western blotting. ApoE−/− mice had significantly raised mean arterial pressure; chronic AICAR treatment normalized this but had no effect in normolipidemic mice, whereas acute administration of AICAR lowered mean arterial pressure in both groups. Chronic AICAR treatment increased phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase in normolipidemic but not ApoE−/− mice. In aortic rings, AMPK activation induced vasodilation and an anticontractile effect, which was attenuated in ApoE−/− mice. This study demonstrates that hyperlipidemia dysregulates the AMPK pathway in the arterial wall but this effect can be reversed by AMPK activation, possibly through improving vessel compliance. PMID:26196300

  15. Physiological Content and Intrinsic Activities of 10 Cytochrome P450 Isoforms in Human Normal Liver Microsomes.

    PubMed

    Zhang, Hai-Feng; Wang, Huan-Huan; Gao, Na; Wei, Jun-Ying; Tian, Xin; Zhao, Yan; Fang, Yan; Zhou, Jun; Wen, Qiang; Gao, Jie; Zhang, Yang-Jun; Qian, Xiao-Hong; Qiao, Hai-Ling

    2016-07-01

    Due to a lack of physiologic cytochrome P450 (P450) isoform content, P450 activity is typically only determined at the microsomal level (per milligram of microsomal protein) and not at the isoform level (per picomole of P450 isoform), which could result in the misunderstanding of variations in P450 activity between individuals and further hinder development of personalized medicine. We found that there were large variations in protein content, mRNA levels, and intrinsic activities of the 10 P450s in 100 human liver samples, in which CYP2E1 and CYP2C9 showed the highest expression levels. P450 gene polymorphisms had different effects on activity at two levels: CYP3A5*3 and CYP2A6*9 alleles conferred increased activity at the isoform level but decreased activity at the microsomal level; CYP2C9*3 had no effect at the isoform level but decreased activity at the microsomal level. The different effects at each level stem from the different effects of each polymorphism on the resulting P450 protein. Individuals with CYP2A6*1/*4, CYP2A6*1/*9, CYP2C9*1/*3, CYP2D6 100C>T TT, CYP2E1 7632T>A AA, CYP3A5*1*3, and CYP3A5*3*3 genotypes had significantly lower protein content, whereas CYP2D6 1661G>C mutants had a higher protein content. In conclusion, we first offered the physiologic data of 10 P450 isoform contents and found that some single nucleotide polymorphisms had obvious effects on P450 expression in human normal livers. The effects of gene polymorphisms on intrinsic P450 activity at the isoform level were quite different from those at the microsomal level, which might be due to changes in P450 protein content. PMID:27189963

  16. Long-term facilitation of genioglossus activity is present in normal humans during NREM sleep

    PubMed Central

    Chowdhuri, Susmita; Pierchala, Lisa; Aboubakr, Salah E.; Shkoukani, Mahdi; Badr, M. Safwan

    2008-01-01

    Episodic hypoxia (EH) is followed by increased ventilatory motor output in the recovery period indicative of long-term facilitation (LTF). We hypothesized that episodic hypoxia evokes LTF of genioglossus (GG) muscle activity in humans during non-rapid eye movement sleep (NREM) sleep. We studied 12 normal non-flow limited humans during stable NREM sleep. We induced 10 brief (3 minute) episodes of isocapnic hypoxia followed by 5 minutes of room air. Measurements were obtained during control, hypoxia, and at 5, 10, 20, 30 and 40 minutes of recovery, respectively, for minute ventilation (V̇I), supraglottic pressure (PSG), upper airway resistance (RUA) and phasic GG electromyogram (EMGGG). In addition, sham studies were conducted on room air. During hypoxia there was a significant increase in phasic EMGGG (202.7±24.1% of control, p<0.01) and in V̇I (123.0±3.3% of control, p<0.05); however, only phasic EMGGG demonstrated a significant persistent increase throughout recovery (198.9±30.9%, 203.6±29.9% and 205.4±26.4% of control, at 5, 10, and 20 minutes of recovery, respectively, p<0.01). In multivariate regression analysis, age and phasic EMGGG activity during hypoxia were significant predictors of EMGGG at recovery 20 minutes. No significant changes in any of the measured parameters were noted during sham studies. Conclusion: 1) EH elicits LTF of GG in normal non-flow limited humans during NREM sleep, without ventilatory or mechanical LTF. 2) GG activity during the recovery period correlates with the magnitude of GG activation during hypoxia, and inversely with age. PMID:17945544

  17. Normal faults, normal friction?

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Sibson, Richard H.

    2001-10-01

    Debate continues as to whether normal faults may be seismically active at very low dips (δ < 30°) in the upper continental crust. An updated compilation of dip estimates (n = 25) has been prepared from focal mechanisms of shallow, intracontinental, normal-slip earthquakes (M > 5.5; slip vector raking 90° ± 30° in the fault plane) where the rupture plane is unambiguously discriminated. The dip distribution for these moderate-to-large normal fault ruptures extends from 65° > δ > 30°, corresponding to a range, 25° < θr < 60°, for the reactivation angle between the fault and inferred vertical σ1. In a comparable data set previously obtained for reverse fault ruptures (n = 33), the active dip distribution is 10° < δ = θr < 60°. For vertical and horizontal σ1 trajectories within extensional and compressional tectonic regimes, respectively, dip-slip reactivation is thus restricted to faults oriented at θr ≤ 60° to inferred σ1. Apparent lockup at θr ≈ 60° in each dip distribution and a dominant 30° ± 5° peak in the reverse fault dip distribution, are both consistent with a friction coefficient μs ≈ 0.6, toward the bottom of Byerlee's experimental range, though localized fluid overpressuring may be needed for reactivation of less favorably oriented faults.

  18. Inhibition of platelet-aggregating activity in thrombotic thrombocytopenic purpura plasma by normal adult immunoglobulin G.

    PubMed Central

    Lian, E C; Mui, P T; Siddiqui, F A; Chiu, A Y; Chiu, L L

    1984-01-01

    Plasma from patients with thrombotic thrombocytopenic purpura (TTP) caused the aggregation of autologous and homologous platelets, and effect which was inhibited by normal plasma. IgG purified from seven normal adults at a concentration of 0.7 mg/ml completely inhibited the platelet aggregation induced by plasma obtained from two TTP patients with active disease. The inhibition of platelet aggregation by human adult IgG was concentration dependent, and the inhibitory activity of human IgG was neutralized by rabbit antihuman IgG. Fab fragments inhibited the TTP plasma-induced platelet aggregation as well as intact IgG, whereas Fc fragments had no effect. Platelet aggregation caused by ADP, collagen, epinephrine, or thrombin was not affected by purified human IgG. The prior incubation of IgG with TTP plasma caused a significantly greater reduction of platelet aggregation by TTP plasma than that of IgG and platelet suspension, suggesting that the IgG inhibits TTP plasma-induced platelet aggregation through direct interaction with platelet aggregating factor in TTP plasma. IgG obtained initially from five infants and young children under the age of 4 yr did not possess any inhibitory activity. When one of the children reached 3 yr of age, his IgG inhibited the aggregation induced by one TTP plasma, but not that caused by another plasma. The IgG procured from the same boy at 4 yr of age inhibited the aggregation induced by both TTP plasmas. The IgG purified from the TTP plasma during active disease failed to inhibit the aggregation caused by the same plasma. After recovery, however, the IgG effectively inhibited aggregation. These observations suggest that platelet-aggregating factors present in the TTP plasma are heterogeneous in nature and that the IgG present in the normal adult plasma, which inhibits the TTP plasma-induced platelet aggregation, may be partially responsible for the success of plasma infusion therapy in TTP. Images PMID:6538207

  19. Active Noise Control of Low Speed Fan Rotor-Stator Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Hu, Ziqiang; Pla, Frederic G.; Heidelberg, Laurence J.

    1996-01-01

    This report describes the Active Noise Cancellation System designed by General Electric and tested in the NASA Lewis Research Center's 48 inch Active Noise Control Fan. The goal of this study was to assess the feasibility of using wall mounted secondary acoustic sources and sensors within the duct of a high bypass turbofan aircraft engine for active noise cancellation of fan tones. The control system is based on a modal control approach. A known acoustic mode propagating in the fan duct is cancelled using an array of flush-mounted compact sound sources. Controller inputs are signals from a shaft encoder and a microphone array which senses the residual acoustic mode in the duct. The canceling modal signal is generated by a modal controller. The key results are that the (6,0) mode was completely eliminated at 920 Hz and substantially reduced elsewhere. The total tone power was reduced 9.4 dB. Farfield 2BPF SPL reductions of 13 dB were obtained. The (4,0) and (4,1) modes were reduced simultaneously yielding a 15 dB modal PWL decrease. Global attenuation of PWL was obtained using an actuator and sensor system totally contained within the duct.

  20. Wavelength-tunable actively mode-locked erbium-doped fiber ring laser using a distributed feedback semiconductor laser as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-07-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a distributed feedback semiconductor laser as an intensity mode locker and a tunable optical filter. Very stable optical pulse trains at gigabit repetition rates were generated using harmonica mode locking. The supermode noise was suppressed to 60 dB below the signal level and the root-mean-square timing jitter (0.45 kHz-1 MHz) was found to be about 1% of the pulse duration. A continuous wavelength tuning range of 1.8 nm was achieved by changing the semiconductor laser temperature from 11.4 to 30 °C.

  1. Astrocyte activation is suppressed in both normal and injured brain by FGF signaling.

    PubMed

    Kang, Wenfei; Balordi, Francesca; Su, Nan; Chen, Lin; Fishell, Gordon; Hébert, Jean M

    2014-07-22

    In the brain, astrocytes are multifunctional cells that react to insults and contain damage. However, excessive or sustained reactive astrocytes can be deleterious to functional recovery or contribute to chronic inflammation and neuronal dysfunction. Therefore, astrocyte activation in response to damage is likely to be tightly regulated. Although factors that activate astrocytes have been identified, whether factors also exist that maintain astrocytes as nonreactive or reestablish their nonreactive state after containing damage remains unclear. By using loss- and gain-of-function genetic approaches, we show that, in the unperturbed adult neocortex, FGF signaling is required in astrocytes to maintain their nonreactive state. Similarly, after injury, FGF signaling delays the response of astrocytes and accelerates their deactivation. In addition, disrupting astrocytic FGF receptors results in reduced scar size without affecting neuronal survival. Overall, this study reveals that the activation of astrocytes in the normal and injured neocortex is not only regulated by proinflammatory factors, but also by factors such as FGFs that suppress activation, providing alternative therapeutic targets. PMID:25002516

  2. Astrocyte activation is suppressed in both normal and injured brain by FGF signaling

    PubMed Central

    Kang, Wenfei; Balordi, Francesca; Su, Nan; Chen, Lin; Fishell, Gordon; Hébert, Jean M.

    2014-01-01

    In the brain, astrocytes are multifunctional cells that react to insults and contain damage. However, excessive or sustained reactive astrocytes can be deleterious to functional recovery or contribute to chronic inflammation and neuronal dysfunction. Therefore, astrocyte activation in response to damage is likely to be tightly regulated. Although factors that activate astrocytes have been identified, whether factors also exist that maintain astrocytes as nonreactive or reestablish their nonreactive state after containing damage remains unclear. By using loss- and gain-of-function genetic approaches, we show that, in the unperturbed adult neocortex, FGF signaling is required in astrocytes to maintain their nonreactive state. Similarly, after injury, FGF signaling delays the response of astrocytes and accelerates their deactivation. In addition, disrupting astrocytic FGF receptors results in reduced scar size without affecting neuronal survival. Overall, this study reveals that the activation of astrocytes in the normal and injured neocortex is not only regulated by proinflammatory factors, but also by factors such as FGFs that suppress activation, providing alternative therapeutic targets. PMID:25002516

  3. Relation between QT interval variability and muscle sympathetic nerve activity in normal subjects.

    PubMed

    El-Hamad, Fatima; Lambert, Elisabeth; Abbott, Derek; Baumert, Mathias

    2015-10-01

    Beat-to-beat variability of the QT interval (QTV) is sought to provide an indirect noninvasive measure of sympathetic nerve activity, but a formal quantification of this relationship has not been provided. In this study we used power contribution analysis to study the relationship between QTV and muscle sympathetic nerve activity (MSNA). ECG and MSNA were recorded in 10 healthy subjects in the supine position and after 40° head-up tilt. Power spectrum analysis was performed using a linear autoregressive model with two external inputs: heart period (RR interval) variability (RRV) and MSNA. Total and low-frequency power of QTV was decomposed into contributions by RRV, MSNA, and sources independent of RRV and MSNA. Results show that the percentage of MSNA power contribution to QT is very small and does not change with tilt. RRV power contribution to QT power is notable and decreases with tilt, while the greatest percentage of QTV is independent of RRV and MSNA in the supine position and after 40° head-up tilt. In conclusion, beat-to-beat QTV in normal subjects does not appear to be significantly affected by the rhythmic modulations in MSNA following low to moderate orthostatic stimulation. Therefore, MSNA oscillations may not represent a useful surrogate for cardiac sympathetic nerve activity at moderate levels of activation, or, alternatively, sympathetic influences on QTV are complex and not quantifiable with linear shift-invariant autoregressive models. PMID:26276814

  4. An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser

    NASA Astrophysics Data System (ADS)

    Yao, B. Q.; Cui, Z.; Wang, J.; Duan, X. M.; Dai, T. Y.; Du, Y. Q.; Yuan, J. H.; Liu, W.

    2015-02-01

    A continuous wave mode-locked (CWML) Ho: YAG laser based on an acousto-optic modulator (AOM) pumped by a 1.9 μm Tm: YLF laser is demonstrated. This is the first time a report on an active CWML Ho: YAG laser has been published. A maximum output power of 1.04 W at 2097.25 nm in the CWML regime is obtained at a pump power of 13.2 W, corresponding to a slope efficiency of 13.3%. The mode-locked pulse repetition frequency is 82.76 MHz and the single pulse energy is 12.57 nJ. The mode-locked pulse width is 102 ps measured through a no-background second harmonic autocorrelation with KTP as the nonlinear crystal. Furthermore, the M2 factor is calculated to be 1.146.

  5. Impacts of human activity modes and climate on heavy metal "spread" in groundwater are biased.

    PubMed

    Chen, Ming; Qin, Xiaosheng; Zeng, Guangming; Li, Jian

    2016-06-01

    Groundwater quality deterioration has attracted world-wide concerns due to its importance for human water supply. Although more and more studies have shown that human activities and climate are changing the groundwater status, an investigation on how different groundwater heavy metals respond to human activity modes (e.g. mining, waste disposal, agriculture, sewage effluent and complex activity) in a varying climate has been lacking. Here, for each of six heavy metals (i.e. Fe, Zn, Mn, Pb, Cd and Cu) in groundwater, we use >330 data points together with mixed-effect models to indicate that (i) human activity modes significantly influence the Cu and Mn but not Zn, Fe, Pb and Cd levels, and (ii) annual mean temperature (AMT) only significantly influences Cu and Pb levels, while annual precipitation (AP) only significantly affects Fe, Cu and Mn levels. Given these differences, we suggest that the impacts of human activity modes and climate on heavy metal "spread" in groundwater are biased. PMID:27003366

  6. Inhibitory effect of methanol extract of Rosa damascena Mill. flowers on alpha-glucosidase activity and postprandial hyperglycemia in normal and diabetic rats.

    PubMed

    Gholamhoseinian, A; Fallah, H; Sharifi far, F

    2009-10-01

    The effect of a methanol extract of Rosa damascena Mill. flowers was studied, in comparison to the alpha-glucosidase inhibitor acarbose, in normal and diabetic rats. The inhibition mode of this extract was examined by measuring enzyme activity in different concentrations of substrate for Lineweaver-Burk plot analysis. The results show that Rosa damascena extract has an intensive inhibitory effect on alpha-glucosidase. Its inhibition was found to be noncompetitive. Oral administration of this plant extract (100 to 1000 mg/kg body wt.) significantly decreased blood glucose after maltose loading in normal and diabetic rats in a dose-dependent manner. These results suggest that Rosa damascena might exert an anti-diabetic effect by suppressing carbohydrate absorption from the intestine and can reduce the postprandial glucose level. PMID:19380218

  7. High-average-power actively-mode-locked Tm3+ fiber lasers

    NASA Astrophysics Data System (ADS)

    Eckerle, Michael; Kieleck, Christelle; Hübner, Philipp; Świderski, Jacek; Jackson, Stuart D.; Mazé, Gwenael; Eichhorn, Marc

    2012-02-01

    Fiber lasers emitting in the 2 μm wavelength range doped with thulium ions can be used as highly efficient pump sources for nonlinear converters to generate mid-infrared radiation. For spectroscopic purposes, illumination and countermeasures, a broad mid-infrared emission spectrum is advantageous. This can be reached by supercontinuum generation in fibers, e.g. fluoride fibers, which up to now has, however, only been presented with either low average power, complex Raman-shifted 1.55 μm pump sources or multi-stage amplifier pump schemes. Here we present recent results of a new actively-mode-locked single-oscillator scheme that can provide the high-repetition rate sub-ns pump pulses needed for pumping supercontinuum generators. A thulium-doped silica fiber laser is presented that provides > 11 W of average power CW-mode-locked pulses at 38 MHz repetition rate at ~ 38 ps pulse width. Upgrading the setup to allow Q-switched mode-locked operation yields mode-locked 40 MHz pulses arranged in 60 kHz bunched Q-switch envelopes and thus increases further the available peak power. In this Q-switched mode-locked regime over 5 W of average power has been achieved.

  8. Defective Dendrite Elongation but Normal Fertility in Mice Lacking the Rho-Like GTPase Activator Dbl

    PubMed Central

    Hirsch, Emilio; Pozzato, Michela; Vercelli, Alessandro; Barberis, Laura; Azzolino, Ornella; Russo, Chiara; Vanni, Cristina; Silengo, Lorenzo; Eva, Alessandra; Altruda, Fiorella

    2002-01-01

    Dbl is the prototype of a large family of GDP-GTP exchange factors for small GTPases of the Rho family. In vitro, Dbl is known to activate Rho and Cdc42 and to induce a transformed phenotype. Dbl is specifically expressed in brain and gonads, but its in vivo functions are largely unknown. To assess its role in neurogenesis and gametogenesis, targeted deletion of the murine Dbl gene was accomplished in embryonic stem cells. Dbl-null mice are viable and did not show either decreased reproductive performances or obvious neurological defects. Histological analysis of mutant testis showed normal morphology and unaltered proliferation and survival of spermatogonia. Dbl-null brains indicated a correct disposition of the major neural structures. Analysis of cortical stratification indicated that Dbl is not crucial for neuronal migration. However, in distinct populations of Dbl-null cortical pyramidal neurons, the length of dendrites was significantly reduced, suggesting a role for Dbl in dendrite elongation. PMID:11940671

  9. Active and passive kink mode studies in a tokamak with a movable ferromagnetic walla)

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Hughes, P. E.; Bialek, J.; Byrne, P. J.; Mauel, M. E.; Navratil, G. A.; Peng, Q.; Rhodes, D. J.; Stoafer, C. C.

    2015-05-01

    High-resolution active and passive kink mode studies are conducted in a tokamak with an adjustable ferromagnetic wall near the plasma surface. Ferritic tiles made from 5.6 mm thick Hiperco® 50 alloy have been mounted on the plasma-facing side of half of the in-vessel movable wall segments in the High Beta Tokamak-Extended Pulse device [D. A. Maurer et al., Plasma Phys. Controlled Fusion 53, 074016 (2011)] in order to explore ferritic resistive wall mode stability. Low-activation ferritic steels are a candidate for structural components of a fusion reactor, and these experiments examine MHD stability of plasmas with nearby ferromagnetic material. Plasma-wall separation for alternating ferritic and non-ferritic wall segments is adjusted between discharges without opening the vacuum vessel. Amplification of applied resonant magnetic perturbations and plasma disruptivity are observed to increase when the ferromagnetic wall is close to plasma surface instead of the standard stainless steel wall. Rapidly rotating m / n = 3 / 1 external kink modes have higher growth rates with the nearby ferritic wall. Feedback suppression of kinks is still as effective as before the installation of ferritic material in vessel, in spite of increased mode growth rates.

  10. Active and passive kink mode studies in a tokamak with a movable ferromagnetic wall

    SciTech Connect

    Levesque, J. P.; Hughes, P. E.; Bialek, J.; Byrne, P. J.; Mauel, M. E.; Navratil, G. A.; Peng, Q.; Rhodes, D. J.; Stoafer, C. C.

    2015-05-15

    High-resolution active and passive kink mode studies are conducted in a tokamak with an adjustable ferromagnetic wall near the plasma surface. Ferritic tiles made from 5.6 mm thick Hiperco{sup ®} 50 alloy have been mounted on the plasma-facing side of half of the in-vessel movable wall segments in the High Beta Tokamak-Extended Pulse device [D. A. Maurer et al., Plasma Phys. Controlled Fusion 53, 074016 (2011)] in order to explore ferritic resistive wall mode stability. Low-activation ferritic steels are a candidate for structural components of a fusion reactor, and these experiments examine MHD stability of plasmas with nearby ferromagnetic material. Plasma-wall separation for alternating ferritic and non-ferritic wall segments is adjusted between discharges without opening the vacuum vessel. Amplification of applied resonant magnetic perturbations and plasma disruptivity are observed to increase when the ferromagnetic wall is close to plasma surface instead of the standard stainless steel wall. Rapidly rotating m/n=3/1 external kink modes have higher growth rates with the nearby ferritic wall. Feedback suppression of kinks is still as effective as before the installation of ferritic material in vessel, in spite of increased mode growth rates.

  11. A Multi-Mode Blade Damping Control using Shunted Piezoelectric Transducers with Active Feedback Structure

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Morrison, Carlos; Min, James

    2009-01-01

    The Structural Dynamics and. Mechanics branch (RXS) is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this presentation, only one shunted PE transducer was used to demonstrate active control of multi-mode blade resonance damping on a titanium alloy (Ti-6A1-4V) flat plate model, regardless of bending, torsion, and 2-stripe modes. This work would have a significant impact on the conventional passive shunt damping world because the standard feedback control design tools can now be used to design and implement electric shunt for vibration control. In other words, the passive shunt circuit components using massive inductors and. resistors for multi-mode resonance control can be replaced with digital codes. Furthermore, this active approach with multi patches can simultaneously control several modes in the engine operating range. Dr. Benjamin Choi presented the analytical and experimental results from this work at the Propulsion-Safety and. Affordable Readiness (P-SAR) Conference in March, 2009.

  12. Peripheral chemoreflex sensitivity and sympathetic nerve activity are normal in apnea divers during training season.

    PubMed

    Breskovic, Toni; Ivancev, Vladimir; Banic, Ivana; Jordan, Jens; Dujic, Zeljko

    2010-04-19

    Apnea divers are exposed to repeated massive arterial oxygen desaturation, which could perturb chemoreflexes. An earlier study suggested that peripheral chemoreflex regulation of sympathetic vasomotor tone and ventilation may have recovered 4 or more weeks into the off season. Therefore, we tested the hypothesis that peripheral chemoreflex regulation of ventilation and sympathetic vasomotor tone is present during the training season. We determined ventilation, heart rate, blood pressure, cardiac stroke volume, and muscle sympathetic nerve activity (MSNA) during isocapnic hypoxia in 10 breath hold divers and 11 matched control subjects. The study was carried out at the end of the season of intense apnea trainings. Baseline MSNA frequency was 30+/-4bursts/min in control subjects and 25+/-4bursts/min in breath hold divers (P=0.053). During hypoxia burst frequency and total sympathetic activity increased similarly in both groups. Sympathetic activity normalized during the 30-minute recovery. Hypoxia-induced stimulation of minute ventilation was similar in both groups, although in divers it was maintained by higher tidal volumes and lower breathing frequency compared with control subjects. In both groups, hypoxia increased heart rate and cardiac output whereas total peripheral resistance decreased. Blood pressure remained unchanged. We conclude that peripheral chemoreflex regulation of ventilation and sympathetic vasomotor tone is paradoxically preserved in apnea divers, both, during the off and during the training season. The observation suggests that repeated arterial oxygen desaturation may not be sufficient explaining sympathetic reflex abnormalities similar to those in obstructive sleep apnea patients. PMID:19926535

  13. Effects of active music therapy on the normal brain: fMRI based evidence.

    PubMed

    Raglio, Alfredo; Galandra, Caterina; Sibilla, Luisella; Esposito, Fabrizio; Gaeta, Francesca; Di Salle, Francesco; Moro, Luca; Carne, Irene; Bastianello, Stefano; Baldi, Maurizia; Imbriani, Marcello

    2016-03-01

    The aim of this study was to investigate the neurophysiological bases of Active Music Therapy (AMT) and its effects on the normal brain. Twelve right-handed, healthy, non-musician volunteers were recruited. The subjects underwent 2 AMT sessions based on the free sonorous-music improvisation using rhythmic and melodic instruments. After these sessions, each subject underwent 2 fMRI scan acquisitions while listening to a Syntonic (SP) and an A-Syntonic (AP) Production from the AMT sessions. A 3 T Discovery MR750 scanner with a 16-channel phased array head coil was used, and the image analysis was performed with Brain Voyager QX 2.8. The listening to SP vs AP excerpts mainly activated: (1) the right middle temporal gyrus and right superior temporal sulcus, (2) the right middle frontal gyrus and in particular the right precentral gyrus, (3) the bilateral precuneus, (4) the left superior temporal sulcus and (5) the left middle temporal gyrus. These results are consistent with the psychological bases of the AMT approach and with the activation of brain areas involved in memory and autobiographical processes, and also in personal or interpersonal significant experiences. Further studies are required to confirm these findings and to explain possible effects of AMT in clinical settings. PMID:25847861

  14. All-normal dispersion passively mode-locked Yb-doped fiber laser using MoS2-PVA saturable absorber

    NASA Astrophysics Data System (ADS)

    Sathiyan, S.; Velmurugan, V.; Senthilnathan, K.; Babu, P. Ramesh; Sivabalan, S.

    2016-05-01

    We demonstrate the generation of a dissipative soliton in an all-normal dispersion ytterbium (Yb)-doped fiber laser using few-layer molybdenum disulfide (MoS2) as a saturable absorber. The saturable absorber is prepared by mixing few-layer MoS2 solution with polyvinyl alcohol (PVA) to form a free-standing composite film. The modulation depth and saturation intensity of the MoS2-PVA film are 11% and 5.86 MW cm-2, respectively. By incorporating the MoS2 saturable absorber in the fiber laser cavity, the mode-locked pulses are generated with a pulse width of 1.55 ns and a 3 dB spectral bandwidth of 0.9 nm centered at 1037.5 nm. The fundamental repetition rate and the average power are measured as 15.43 MHz and 1.5 mW, respectively. These results reveal the feasibility of deploying liquid-phase exfoliated few-layer MoS2 nanosheets for dissipative soliton generation in the near-IR region.

  15. Vibrational normal modes calculation in the crystalline state of methylated monosaccharides: Anomers of the methyl-D-glucopyranoside and methyl-D-xylopyranoside molecules.

    PubMed

    Taleb-Mokhtari, Ilham Naoual; Lazreg, Abbassia; Sekkal-Rahal, Majda; Bestaoui, Noreya

    2016-01-15

    A structural investigation of the organic molecules is being carried out using vibrational spectroscopy. In this study, normal co-ordinate calculations of anomers of the methyl-D-glucopyranoside and methyl-β-D-xylopyranoside in the crystalline state have been performed using the modified Urey-Bradley-Shimanouchi force field (mUBSFF) combined with an intermolecular potential energy function. The latter includes Van der Waals interactions, electrostatic terms, and explicit hydrogen bond functions. The vibrational spectra of the compounds recorded in the crystalline state, in the 4000-500 cm(-1) spectral region for the IR spectra, and in the 4000-20 cm(-1) spectral range for the Raman spectra are presented. After their careful examination, several differences in the intensities and frequency shifts have been observed. The theoretical spectra have been obtained after a tedious refinement of the force constants. Thus, on the basis of the obtained potential distribution, each observed band in IR and in Raman has been assigned to a vibrational mode. The obtained results are indeed in agreement with those observed experimentally and thus confirm the previous assignments made for the methyl-α and β-D-glucopyranoside, as well as for the methyl-β-D-xylopyranoside. PMID:26342821

  16. Vibrational normal modes calculation in the crystalline state of methylated monosaccharides: Anomers of the methyl-D-glucopyranoside and methyl-D-xylopyranoside molecules

    NASA Astrophysics Data System (ADS)

    Taleb-Mokhtari, Ilham Naoual; Lazreg, Abbassia; Sekkal-Rahal, Majda; Bestaoui, Noreya

    2016-01-01

    A structural investigation of the organic molecules is being carried out using vibrational spectroscopy. In this study, normal co-ordinate calculations of anomers of the methyl-D-glucopyranoside and methyl-β-D-xylopyranoside in the crystalline state have been performed using the modified Urey-Bradley-Shimanouchi force field (mUBSFF) combined with an intermolecular potential energy function. The latter includes Van der Waals interactions, electrostatic terms, and explicit hydrogen bond functions. The vibrational spectra of the compounds recorded in the crystalline state, in the 4000-500 cm- 1 spectral region for the IR spectra, and in the 4000-20 cm- 1 spectral range for the Raman spectra are presented. After their careful examination, several differences in the intensities and frequency shifts have been observed. The theoretical spectra have been obtained after a tedious refinement of the force constants. Thus, on the basis of the obtained potential distribution, each observed band in IR and in Raman has been assigned to a vibrational mode. The obtained results are indeed in agreement with those observed experimentally and thus confirm the previous assignments made for the methyl-α and β-D-glucopyranoside, as well as for the methyl-β-D-xylopyranoside.

  17. Mode-locking pulse generation with MoS2-PVA saturable absorber in both anomalous and ultra-long normal dispersion regimes.

    PubMed

    Ahmed, M H M; Latiff, A A; Arof, H; Harun, S W

    2016-05-20

    We experimentally demonstrate a stable and simple mode locked erbium doped fiber laser (EDFL) utilizing passive few-layer molybdenum disulfide (MoS2) as a saturable absorber. The MoS2 is obtained by liquid phase exfoliation before it is embedded in a polymer composite film and then inserted in the laser cavity. A stable soliton pulse train started at a low threshold pump power of 20 mW in the anomalous dispersion regime after fine-tuning the rotation of the polarization controller. The central wavelength, 3 dB bandwidth, pulse width, and repetition rate of the soliton pulses are 1574.6 nm, 9.5 nm, 790 fs, and 29.5 MHz, respectively. By inserting a 850 m long dispersion shifted fiber (DSF) in the cavity, a dissipative soliton with square pulse train is obtained in the normal dispersion regime where the operating wavelength is centered at 1567.44 nm with a 3 dB bandwidth of 19.68 nm. The dissipative soliton pulse has a pulse width of 90 ns at a low repetition rate of 231.5 kHz due to the long DSF used. These results are a contribution to the pool of knowledge in nonlinear optical properties of two-dimensional nanomaterials especially for ultrafast photonic applications. PMID:27411156

  18. Computational modeling of the Fc αRI receptor binding in the Fc α domain of the human antibody IgA: Normal Modes Analysis (NMA) study

    NASA Astrophysics Data System (ADS)

    Jayasinghe, Manori; Posgai, Monica; Tonddast-Navaei, Sam; Ibrahim, George; Stan, George; Herr, Andrew; George Stan Group Collaboration; Herr's Group Team

    2014-03-01

    Fc αRI receptor binding in the Fc α domain of the antibody IgA triggers immune effector responses such as phagocytosis and antibody-dependent cell-mediated cytotoxicity in eukaryotic cells. Fc α is a dimer of heavy chains of the IgA antibody and each Fc α heavy chain which consisted of two immunoglobulin constant domains, CH2 and CH3, can bind one Fc αRI molecule at the CH2-CH3 interface forming a 2:1 stoichiometry. Experimental evidences confirmed that Fc αRI binding to the Fc α CH2-CH3 junction altered the kinetics of HAA lectin binding at the distant IgA1 hinge. Our focus in this research was to understand the conformational changes and the network of residues which co-ordinate the receptor binding dynamics of the Fc α dimer complex. Structure-based elastic network modeling was used to compute normal modes of distinct Fc α configurations. Asymmetric and un-liganded Fc α configurations were obtained from the high resolution crystal structure of Fc α-Fc αRI 2:1 symmetric complex of PDB ID 1OW0. Our findings confirmed that Fc αRI binding, either in asymmetric or symmetric complex with Fc α, propagated long-range conformational changes across the Fc domains, potentially also impacting the distant IgA1 hinge.

  19. High glycolate oxidase activity is required for survival of maize in normal air.

    PubMed

    Zelitch, Israel; Schultes, Neil P; Peterson, Richard B; Brown, Patrick; Brutnell, Thomas P

    2009-01-01

    A mutant in the maize (Zea mays) Glycolate Oxidase1 (GO1) gene was characterized to investigate the role of photorespiration in C4 photosynthesis. An Activator-induced allele of GO1 conditioned a seedling lethal phenotype when homozygous and had 5% to 10% of wild-type GO activity. Growth of seedlings in high CO2 (1%-5%) was sufficient to rescue the mutant phenotype. Upon transfer to normal air, the go1 mutant became necrotic within 7 d and plants died within 15 d. Providing [1-14C]glycolate to leaf tissue of go1 mutants in darkness confirmed that the substrate is inefficiently converted to 14CO2, but both wild-type and GO-deficient mutant seedlings metabolized [1-14C]glycine similarly to produce [14C]serine and 14CO2 in a 1:1 ratio, suggesting that the photorespiratory pathway is otherwise normal in the mutant. The net CO2 assimilation rate in wild-type leaves was only slightly inhibited in 50% O2 in high light but decreased rapidly and linearly with time in leaves with low GO. When go1 mutants were shifted from high CO2 to air in light, they accumulated glycolate linearly for 6 h to levels 7-fold higher than wild type and 11-fold higher after 25 h. These studies show that C4 photosynthesis in maize is dependent on photorespiration throughout seedling development and support the view that the carbon oxidation pathway evolved to prevent accumulation of toxic glycolate. PMID:18805949

  20. Detection of short-term activity avalanches in human brain default mode network with ultrafast MR encephalography.

    PubMed

    Rajna, Zalán; Kananen, Janne; Keskinarkaus, Anja; Seppänen, Tapio; Kiviniemi, Vesa

    2015-01-01

    Recent studies pinpoint visually cued networks of avalanches with MEG/EEG data. Co-activation pattern (CAP) analysis can be used to detect single brain volume activity profiles and hemodynamic fingerprints of neuronal avalanches as sudden high signal activity peaks in classical fMRI data. In this study, we aimed to detect dynamic patterns of brain activity spreads with the use of ultrafast MR encephalography (MREG). MREG achieves 10 Hz whole brain sampling, allowing the estimation of spatial spread of an avalanche, even with the inherent hemodynamic delay of the BOLD signal. We developed a novel computational method to separate avalanche type fast activity spreads from motion artifacts, vasomotor fluctuations, and cardio-respiratory noise in human brain default mode network (DMN). Reproducible and classical DMN sources were identified using spatial ICA prior to advanced noise removal in order to assure that ICA converges to reproducible networks. Brain activity peaks were identified from parts of the DMN, and normalized MREG data around each peak were extracted individually to show dynamic avalanche type spreads as video clips within the DMN. Individual activity spread video clips of specific parts of the DMN were then averaged over the group of subjects. The experiments show that the high BOLD values around the peaks are mostly spreading along the spatial pattern of the particular DMN segment detected with ICA. With also the spread size and lifetime resembling the expected power law distributions, this indicates that the detected peaks are parts of activity avalanches, starting from (or crossing) the DMN. Furthermore, the split, one-sided sub-networks of the DMN show different spread directions within the same DMN framework. The results open possibilities to follow up brain activity avalanches in the hope to understand more about the system wide properties of diseases related to DMN dysfunction. PMID:26321936

  1. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets.

    PubMed

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  2. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets

    PubMed Central

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C.

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein–protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  3. The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults

    NASA Astrophysics Data System (ADS)

    Kapetanidis, V.; Deschamps, A.; Papadimitriou, P.; Matrullo, E.; Karakonstantis, A.; Bozionelos, G.; Kaviris, G.; Serpetsidaki, A.; Lyon-Caen, H.; Voulgaris, N.; Bernard, P.; Sokos, E.; Makropoulos, K.

    2015-09-01

    The Corinth Rift in Central Greece has been studied extensively during the past decades, as it is one of the most seismically active regions in Europe. It is characterized by normal faulting and extension rates between 6 and 15 mm yr-1 in an approximately N10E° direction. On 2013 May 21, an earthquake swarm was initiated with a series of small events 4 km southeast of Aigion city. In the next days, the seismic activity became more intense, with outbursts of several stronger events of magnitude between 3.3 and 3.7. The seismicity migrated towards the east during June, followed by a sudden activation of the western part of the swarm on July 15th. More than 1500 events have been detected and manually analysed during the period between 2013 May 21 and August 31, using over 15 local stations in epicentral distances up to 30 km and a local velocity model determined by an error minimization method. Waveform similarity-based analysis was performed, revealing several distinct multiplets within the earthquake swarm. High-resolution relocation was applied using the double-difference algorithm HypoDD, incorporating both catalogue and cross-correlation differential traveltime data, which managed to separate the initial seismic cloud into several smaller, densely concentrated spatial clusters of strongly correlated events. Focal mechanism solutions for over 170 events were determined using P-wave first motion polarities, while regional waveform modelling was applied for the calculation of moment tensors for the 18 largest events of the sequence. Selected events belonging to common spatial groups were considered for the calculation of composite mechanisms to characterize different parts of the swarm. The solutions are mainly in agreement with the regional NNE-SSW extension, representing typical normal faulting on 30-50° north-dipping planes, while a few exhibit slip in an NNE-SSW direction, on a roughly subhorizontal plane. Moment magnitudes were calculated by spectral analysis

  4. Fifty-ps Raman fiber laser with hybrid active-passive mode locking.

    PubMed

    Kuznetsov, A G; Kharenko, D S; Podivilov, E V; Babin, S A

    2016-07-25

    Actively mode locked Raman lasing in a ring PM-fiber cavity pumped by a linearly polarized Yb-doped fiber laser is studied. At co-propagating pumping, a stochastic pulse with duration defined by the AOM switching time (~15 ns) is generated with the round-trip period. At counter-propagating pumping, one or several sub-ns pulses (within the AOM switching envelope) are formed. It has been found that the formation of such stable multi-pulse structure is defined by the single-pulse energy limit (~20 nJ) set by the second-order Raman generation. Adding a NPE-based saturable absorber in the actively mode locked cavity, results in sufficient shortening of the generated pulses both in single- and multi-pulse regimes (down to 50 ps). A model is developed adequately describing the regimes. PMID:27464081

  5. Default-Mode Network Activity Identified by Group Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Conghui; Zhuang, Jie; Peng, Danling; Yu, Guoliang; Yang, Yanhui

    Default-mode network activity refers to some regional increase in blood oxygenation level-dependent (BOLD) signal during baseline than cognitive tasks. Recent functional imaging studies have found co-activation in a distributed network of cortical regions, including ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PPC) that characterize the default mode of human brain. In this study, general linear model and group independent component analysis (ICA) were utilized to analyze the fMRI data obtained from two language tasks. Both methods yielded similar, but not identical results and detected a resting deactivation network at some midline regions including anterior and posterior cingulate cortex and precuneus. Particularly, the group ICA method segregated functional elements into two separate maps and identified ventral cingulate component and fronto-parietal component. These results suggest that these two components might be linked to different mental function during "resting" baseline.

  6. Elevated Ornithine Decarboxylase Levels Activate ATM - DNA Damage Signaling in Normal Keratinocytes

    PubMed Central

    Wei, Gang; DeFeo, Karen; Hayes, Candace S.; Woster, Patrick M.; Mandik-Nayak, Laura; Gilmour, Susan K.

    2008-01-01

    We examined the effect of increased expression of ornithine decarboxylase (ODC), a key rate-limiting enzyme in polyamine biosynthesis, on cell survival in primary cultures of keratinocytes isolated from the skin of K6/ODC transgenic mice (Ker/ODC) and their normal littermates (Ker/Norm). Although elevated levels of ODC and polyamines stimulate proliferation of keratinocytes, Ker/ODC undergo apoptotic cell death within days of primary culture unlike Ker/Norm that continue to proliferate. Phosphorylation of ATM and its substrate p53 are significantly induced both in Ker/ODC and in K6/ODC transgenic skin. ChIP analyses show that the increased level of p53 in Ker/ODC is accompanied by increased recruitment of p53 to the Bax proximal promoter. ATM activation is polyamine-dependent since DFMO, a specific inhibitor of ODC activity, blocks its phosphorylation. Ker/ODC also display increased generation of H2O2, acrolein-lysine conjugates, and protein oxidation products as well as polyamine-dependent DNA damage, as measured by the comet assay and the expression of the phosphorylated form of the histone variant γH2AX. Both ROS generation and apoptotic cell death of Ker/ODC may, at least in part, be due to induction of a polyamine catabolic pathway that generates both H2O2 and cytotoxic aldehydes, since spermine oxidase (SMO) levels are induced in Ker/ODC. In addition, treatment with MDL 72,527, an inhibitor of SMO, blocks the production of H2O2 and increases the survival of Ker/ODC. These results demonstrate a novel activation of the ATM/DNA damage signaling pathway in response to increased ODC activity in nontumorigenic keratinocytes. PMID:18381427

  7. The spatial distribution of p-mode absorption in active regions

    NASA Technical Reports Server (NTRS)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1990-01-01

    The interaction of solar p-mode waves and active regions has been the subject of recent observational and theoretical investigations. Observations show that up to one-half of the power of incident high-degree acoustic may be absorbed in and around sunspots. In this paper the horizontal spatial distribution of high-degree p-mode absorption in solar active regions is explored. An appropriate Fourier-Hankel transform can be used to detect the mean absorption of waves passing through any given point on the solar surface. By repeating the analysis at multiple positions a map of the absorption can be constructed. A technique for optimal computation of absorption maps is developed and applied to observations of several active regions and an area of quiet sun near disk center. By comparing the distribution of p-mode absorption with magnetograms and line-wing intensity images, it is directly observed that the absorption is not limited to the location of the visible sunspots but is also associated with magnetic fields in the surrounding plage. It is estimated that the absorption efficiency scales roughly with the magnetic flux density, although the absorption appears to saturate inside the strongest fields.

  8. B-cell antigens within normal and activated human T cells

    PubMed Central

    Sandilands, G P; Perry, M; Wootton, M; Hair, J; More, I A R

    1999-01-01

    In this study we compared cell surface staining for human peripheral blood lymphocyte (PBL) CD antigens by flow cytometry, with staining obtained following permeabilization of PBL using the Cytoperm method (Serotec). Six CD antigens (CD20, CD21, CD22, CD32, CD35 and major histocompatibility complex class II antigen) normally found on the surface of B cells, were also found to be expressed within T cells. We also showed, by immunoelectron microscopy, that these inappropriately expressed (‘occult’) CD antigens are located within cytoplasmic vesicles or within the rough endoplasmic reticulum. Following in vitro activation of T cells a distinct increase in expression of all of these cytoplasmic antigens was observed but staining at the cell surface was, by comparison, weak. We therefore propose that up-regulation of various B-cell CD antigens occurs within the cytoplasm of T cells following activation and that these antigens may be synthesized and released into the fluid-phase as soluble immunoregulatory molecules. PMID:10233724

  9. B-cell antigens within normal and activated human T cells.

    PubMed

    Sandilands, G P; Perry, M; Wootton, M; Hair, J; More, I A

    1999-03-01

    In this study we compared cell surface staining for human peripheral blood lymphocyte (PBL) CD antigens by flow cytometry, with staining obtained following permeabilization of PBL using the Cytoperm method (Serotec). Six CD antigens (CD20, CD21, CD22, CD32, CD35 and major histocompatibility complex class II antigen) normally found on the surface of B cells, were also found to be expressed within T cells. We also showed, by immunoelectron microscopy, that these inappropriately expressed ('occult') CD antigens are located within cytoplasmic vesicles or within the rough endoplasmic reticulum. Following in vitro activation of T cells a distinct increase in expression of all of these cytoplasmic antigens was observed but staining at the cell surface was, by comparison, weak. We therefore propose that up-regulation of various B-cell CD antigens occurs within the cytoplasm of T cells following activation and that these antigens may be synthesized and released into the fluid-phase as soluble immunoregulatory molecules. PMID:10233724

  10. Prestimulus default mode activity influences depth of processing and recognition in an emotional memory task.

    PubMed

    Soravia, Leila M; Witmer, Joëlle S; Schwab, Simon; Nakataki, Masahito; Dierks, Thomas; Wiest, Roland; Henke, Katharina; Federspiel, Andrea; Jann, Kay

    2016-03-01

    Low self-referential thoughts are associated with better concentration, which leads to deeper encoding and increases learning and subsequent retrieval. There is evidence that being engaged in externally rather than internally focused tasks is related to low neural activity in the default mode network (DMN) promoting open mind and the deep elaboration of new information. Thus, reduced DMN activity should lead to enhanced concentration, comprehensive stimulus evaluation including emotional categorization, deeper stimulus processing, and better long-term retention over one whole week. In this fMRI study, we investigated brain activation preceding and during incidental encoding of emotional pictures and on subsequent recognition performance. During fMRI, 24 subjects were exposed to 80 pictures of different emotional valence and subsequently asked to complete an online recognition task one week later. Results indicate that neural activity within the medial temporal lobes during encoding predicts subsequent memory performance. Moreover, a low activity of the default mode network preceding incidental encoding leads to slightly better recognition performance independent of the emotional perception of a picture. The findings indicate that the suppression of internally-oriented thoughts leads to a more comprehensive and thorough evaluation of a stimulus and its emotional valence. Reduced activation of the DMN prior to stimulus onset is associated with deeper encoding and enhanced consolidation and retrieval performance even one week later. Even small prestimulus lapses of attention influence consolidation and subsequent recognition performance. PMID:26663662

  11. Differential activation of the default mode network in jet lagged individuals.

    PubMed

    Coutinho, Joana Fernandes; Gonçalves, Oscar Filipe; Maia, Liliana; Fernandes Vasconcelos, Cristiana; Perrone-McGovern, Kristin; Simon-Dack, Stephanie; Hernandez, Kristina; Oliveira-Silva, Patricia; Mesquita, Ana Raquel; Sampaio, Adriana

    2015-02-01

    Long-term exposure to transmeridian flights has been shown to impact cognitive functioning. Nevertheless, the immediate effects of jet lag in the activation of specific brain networks have not been investigated. We analyzed the impact of short-term jet lag on the activation of the default mode network (DMN). A group of individuals who were on a transmeridian flight and a control group went through a functional magnetic resonance imaging acquisition. Statistical analysis was performed to test for differences in the DMN activation between groups. Participants from the jet lag group presented decreased activation in the anterior nodes of the DMN, specifically in bilateral medial prefrontal and anterior cingulate cortex. No areas of increased activation were observed for the jet lag group. These results may be suggestive of a negative impact of jet lag on important cognitive functions such as introspection, emotional regulation and decision making in a few days after individuals arrive at their destination. PMID:25180985

  12. Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Lee, Ju Han; Yung Jeong, Myung; Kim, Chang-Seok

    2011-07-01

    The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.

  13. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis

    1991-02-01

    CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.

  14. Normal Human Pregnancy Results in Maternal Immune Activation in the Periphery and at the Uteroplacental Interface

    PubMed Central

    Yesayan, Maria N.; Kahn, Daniel A.

    2014-01-01

    Pregnancy poses a unique challenge to the human immune system: the semi-allogeneic fetus must be protected from maternal immune attack while immunity towards pathogens is maintained. Breakdown in maternal-fetal tolerance can lead to pregnancy-specific diseases with potentially high degrees of morbidity and mortality for both the mother and her fetus. Various immune cell-types could mediate these functions, but a comprehensive evaluation of the peripheral and local maternal T cell and regulatory T cell compartments in normal human pregnancy is lacking. In this case-control study, we apply the Human Immunology Project Consortium proposed gating strategies to samples from healthy 3rd trimester human subjects compared with healthy non-pregnant controls. The proportions of HLA-DR+ and CD38+ effector- and effector memory CD8 T cells are significantly increased in the peripheral blood of pregnant women. Utilizing a novel technique that takes advantage of the standard protocol for intrauterine cleanup after cesarean section, we isolate lymphocytes resident at the uteroplacental interface (UPI). At the UPI, the CD4 and CD8 T cell compartments largely mirror the peripheral blood, except that the proportion of HLA-DR+ activated T regulatory cells is significantly increased in direct proportion to an observed increase in the number of activated CD8 T cells. We find that cryopreservation and delayed sample processing (>12 hours) decreases our ability to identify regulatory T cell subsets. Further, the Consortium proposed method for Treg identification underrepresents Resting and Cytokine Tregs compared with Activated Tregs, thus skewing the entire population. Better understanding of the changes in the immune system during pregnancy in the peripheral blood and at the uteroplacental interface are essential for progress in treatment of pregnancy diseases such as pre-eclampsia and recurrent miscarriage. PMID:24846312

  15. The loss of independence in activities of daily living: the role of low normal cognitive function in elderly nuns.

    PubMed Central

    Greiner, P A; Snowdon, D A; Schmitt, F A

    1996-01-01

    OBJECTIVES. This study investigated the role of low normal cognitive function in the subsequent loss of independence in activities of daily living. METHODS. Of the 678 elderly nuns who-completed cognitive and physical function assessments in 1992/93, 575 were reassessed in 1993/94. Mini-Mental State Examination scores were divided into three categories and related to loss of independence in six activities of daily living. RESULTS. Participants with low normal cognitive function at first assessment had twice the risk of losing independence in three activities of daily living by second assessment relative to those with high normal cognitive function. This relationship was largely due to a progression from low normal cognitive function at first assessment to impaired cognitive function at second assessment and was associated with an elevated risk of losing independence in the six activities. CONCLUSIONS. Progression from low normal to impaired cognitive function was associated with loss of independence in activities of daily living. Thus low normal cognitive function could be viewed as an early warning of impending cognitive impairment and loss of physical function. PMID:8561244

  16. YANA – a software tool for analyzing flux modes, gene-expression and enzyme activities

    PubMed Central

    Schwarz, Roland; Musch, Patrick; von Kamp, Axel; Engels, Bernd; Schirmer, Heiner; Schuster, Stefan; Dandekar, Thomas

    2005-01-01

    Background A number of algorithms for steady state analysis of metabolic networks have been developed over the years. Of these, Elementary Mode Analysis (EMA) has proven especially useful. Despite its low user-friendliness, METATOOL as a reliable high-performance implementation of the algorithm has been the instrument of choice up to now. As reported here, the analysis of metabolic networks has been improved by an editor and analyzer of metabolic flux modes. Analysis routines for expression levels and the most central, well connected metabolites and their metabolic connections are of particular interest. Results YANA features a platform-independent, dedicated toolbox for metabolic networks with a graphical user interface to calculate (integrating METATOOL), edit (including support for the SBML format), visualize, centralize, and compare elementary flux modes. Further, YANA calculates expected flux distributions for a given Elementary Mode (EM) activity pattern and vice versa. Moreover, a dissection algorithm, a centralization algorithm, and an average diameter routine can be used to simplify and analyze complex networks. Proteomics or gene expression data give a rough indication of some individual enzyme activities, whereas the complete flux distribution in the network is often not known. As such data are noisy, YANA features a fast evolutionary algorithm (EA) for the prediction of EM activities with minimum error, including alerts for inconsistent experimental data. We offer the possibility to include further known constraints (e.g. growth constraints) in the EA calculation process. The redox metabolism around glutathione reductase serves as an illustration example. All software and documentation are available for download at . Conclusion A graphical toolbox and an editor for METATOOL as well as a series of additional routines for metabolic network analyses constitute a new user-friendly software for such efforts. PMID:15929789

  17. Normal-mode frequency band view of the Off-the-West-Coast of Northern Sumatra Earthquake of April 11, 2012

    NASA Astrophysics Data System (ADS)

    Igarashi, M.; Tanimoto, T.

    2012-12-01

    Many studies with body-wave and long-period surface wave analyses on the Off-the-West-coast of Northern Sumatra Earthquake of April 11, 2012, have already pointed out complexities of this event (e.g., Meng et al., 2012). A sequence of events with fairly wide spatial and temporal extent are clearly needed to explain many facets of seismic data. In this study, we attempt to summarize a few distinct features from the normal-mode frequency band (0.3-2.0 mHz) which are obviously much simpler by their long wavelength and long periods. We analyzed long-period seismic data from STS1 and KS54000 sensors for the first 12 hours of the main event using the time-domain waveform fitting technique (Tanimoto, et al., 2012). Adoption of this short time series is partly to avoid uncertain Q parameters on amplitudes but also to avoid the effects from two earthquakes in Oregon (Mw6.0) and Mexico (Mw6.7) that occurred about 23rd hour on the same day. These events are much smaller but their effects cannot be ignored in seismic stations in North America. Two major events reported by the Global CMT project, the Mw8.6 main shock and the Mw8.2 aftershock that occurred two hours later, are clearly not sufficient to explain the amplitude data at about 1 mHz (0.6-1.5 mHz). Synthetic seismograms for the two events under-predicts data by about 30 percent. Amplitudes also show two-theta azimuthal variation that indicates a necessity of at least one hidden event (if not rupture propagation). This necessity has already been pointed out by various groups (e.g., Duputel et al., 2012, Shao et al., 2012). Duputel et al. (2012), for example, reports that the Mw8.6 main event by GCMT should be split up by two large events, the Mw8.5 main event and Mw8.3 event that occurred 70 seconds later. Our analysis shows that their three-source solution, including the Mw8.2 event two hours later, satisfies overall amplitude data in the normal-mode frequency band. However, their solution still shows two

  18. QuickView video preview software of colon capsule endoscopy: reliability in presenting colorectal polyps as compared to normal mode reading.

    PubMed

    Farnbacher, Michael J; Krause, Horst H; Hagel, Alexander F; Raithel, Martin; Neurath, Markus F; Schneider, Thomas

    2014-03-01

    OBJECTIVE. Colon capsule endoscopy (CCE) proved to be highly sensitive in detection of colorectal polyps (CP). Major limitation is the time-consuming video reading. The aim of this prospective, double-center study was to assess the theoretical time-saving potential and its possible impact on the reliability of "QuickView" (QV), in the presentation of CP as compared to normal mode (NM). METHODS. During NM reading of 65 CCE videos (mean patient´s age 56 years), all frames showing CPs were collected and compared to the number of frames presented by QV at increasing QV settings (10, 20, ... 80%). Reliability of QV in presenting polyps <6 mm and ≥6 mm (significant polyp), and identifying patients for subsequent therapeutic colonoscopy, capsule egestion rate, cleansing level, and estimated time-saving potential were assessed. RESULTS. At a 30% QV setting, the QV video presented 89% of the significant polyps and 86% of any polyps with ≥1 frame (per-polyp analysis) identified in NM before. At a 10% QV setting, 98% of the 52 patients with significant polyps could be identified (per-patient analysis) by QV video analysis. Capsule excretion rate was 74% and colon cleanliness was adequate in 85%. QV´s presentation rate correlates to the QV setting, the polyp size, and the number of frames per finding. CONCLUSIONS. Depending on its setting, the reliability of QV in presenting CP as compared to NM reading is notable. However, if no significant polyp is presented by QV, NM reading must be performed afterwards. The reduction of frames to be analyzed in QV might speed up identification of candidates for therapeutic colonoscopy. PMID:24325660

  19. Convergence of normal mode variational calculations of methane spectra: Theoretical linelist in the icosad range computed from potential energy and dipole moment surfaces

    NASA Astrophysics Data System (ADS)

    Rey, Michaël; Nikitin, Andrei V.; Tyuterev, Vladimir G.

    2015-10-01

    Accurate basis set convergence of first-principles predictions of rotationally resolved spectra at high energy range is a common challenging issue for variational methods. In this paper, a detailed convergence study for the methane spectra is presented both for vibrational and rotational degrees of freedom as well as for intensities. For this purpose, we use our previously reported nine-dimensional potential energy and dipole moment surfaces of the methane molecule [Nikitin et al. Chem Phys Lett 2011;501:179-86; 2013;565:5-11]. Vibration-rotation calculations were carried out using variational normal mode approach with a full account of the Td symmetry. The aim was to obtain accurate theoretical methane line lists for the wavenumber range beyond currently available spectra analyses. The focus of this paper is the complicated icosad range (6280-7900 cm-1) containing 20 bands and 134 sub-bands where over 90% of experimental lines still remain unassigned. We provide variational line lists converged to a "spectroscopic precision" for icosad transitions for T=80 K and T=296 K. The first one contains 70 300 lines and the second one 286 170 lines with the intensity cut-off 10-29cm-1 /(moleculecm-2) with Jmax=18. An average error in line positions of theoretical predictions up to J=15 is estimated as 0.2-0.5 cm-1 from the comparisons with currently analyzed bands. Ab initio line strength calculations give the integrated intensity 4.37 ×10-20cm-1 /(moleculecm-2) at T=80 K for the sum of all icosad bands. This is to be compared to the integrated intensity 4.36 ×10-20cm-1 /(moleculecm-2) of the experimental icosad line list recorded in Grenoble University [Campargue et al., J Mol Spectrosc 2013;291:16-22] using very sensitive laser techniques. The shapes of absorption bands are also in a good qualitative agreement with experimental spectra.

  20. Playing in parallel: the effects of multiplayer modes in active video game on motivation and physical exertion.

    PubMed

    Peng, Wei; Crouse, Julia

    2013-06-01

    Although multiplayer modes are common among contemporary video games, the bulk of game research focuses on the single-player mode. To fill the gap in the literature, the current study investigated the effects of different multiplayer modes on enjoyment, future play motivation, and the actual physical activity intensity in an active video game. One hundred sixty-two participants participated in a one-factor between-subject laboratory experiment with three conditions: (a) single player: play against self pretest score; (b) cooperation with another player in the same physical space; (c) parallel competition with another player in separated physical spaces. We found that parallel competition in separate physical spaces was the optimal mode, since it resulted in both high enjoyment and future play motivation and high physical intensity. Implications for future research on multiplayer mode and play space as well as active video game-based physical activity interventions are discussed. PMID:23509986

  1. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections.

    PubMed

    Sampath Kumar, T S; Madhumathi, K; Rubaiya, Y; Doble, Mukesh

    2015-01-01

    Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP) bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA) nanoparticles has been developed. Antibacterial ions such as zinc, silver, and strontium have been incorporated into CDHA at concentrations of 6, 0.25-0.75, and 2.5-7.5 at. %, respectively. The samples were found to be phase pure, acicular nanoparticles of length 40-50 nm and width 5-6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for 5 days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on Staphylococcus aureus and Escherichia coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria, while SrCDHA was weakly active against S. aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity, and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent drug

  2. BrainModes: a principled approach to modeling and measuring large-scale neuronal activity.

    PubMed

    Breakspear, Michael J; Daffertshofer, Andreas; Ritter, Petra

    2009-09-30

    Complex systems, such as the brain, exhibit multiple levels of organization due to processes which support the separation of scales across time and/or space. That is, cooperative phenomena--or "modes" of activity--occurring at one scale give rise to coherent spatiotemporal structures at a coarser scale. In turn, structures at the coarser scale constrain--and hence influence--emerging activity at a finer scale. BrainModes is an annual scientific summit which seeks to bring together experimental, computational and theoretical neuroscientists engaged at different levels of organization, with the goal of advancing a principled approach to understanding brain function based on the concept of cooperative phenomena in complex systems. Phenomena of particular interest include synchronization, stochastic influences, and spatiotemporal processes in both healthy and pathological states such as seizures. This Special Issue reports the 2008 BrainModes Workshop, held in Amsterdam (December 2008) which focused on the application of this framework to the analysis of brain oscillations and synchronization phenomena across time scales. PMID:19607859

  3. ECCD-induced tearing mode stabilization via active control in coupled NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.

    2012-10-01

    Actively controlled electron cyclotron current drive (ECCD) applied within magnetic islands formed by neoclassical tearing modes (NTMs) has been shown to control or suppress these modes. In conjunction with ongoing experimental efforts, the development and verification of integrated numerical models of this mode stabilization process is of paramount importance in determining optimal NTM stabilization strategies for ITER. In the advanced model developed by the SWIM Project, the equations/closures of extended (not reduced) MHD contain new terms arising from 3D (not toroidal or bounce-averaged) RF-induced quasilinear diffusion. The quasilinear operator formulation models the equilibration of driven current within the island using the same extended MHD dynamics which govern the physics of island formation, yielding a more accurate and self-consistent picture of 3D island response to RF drive. Results of computations which model ECRF deposition using ray tracing, assemble the 3D quasilinear operator from ray/profile data, and calculate the resultant forces within the extended MHD code will be presented. We also discuss the efficacy of various numerical active feedback control systems, which gather data from synthetic diagnostics to dynamically trigger and spatially align RF fields.

  4. Active control of ECCD-induced tearing mode stabilization in coupled NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, Scott; Held, Eric

    2013-10-01

    Actively controlled ECCD applied in or near magnetic islands formed by NTMs has been successfully shown to control/suppress these modes, despite uncertainties in island O-point locations (where induced current is most stabilizing) relative to the RF deposition region. Integrated numerical models of the mode stabilization process can resolve these uncertainties and augment experimental efforts to determine optimal ITER NTM stabilization strategies. The advanced SWIM model incorporates RF effects in the equations/closures of extended MHD as 3D (not toroidal or bounce-averaged) quasilinear diffusion coefficients. Equilibration of driven current within the island geometry is modeled using the same extended MHD dynamics governing the physics of island formation, yielding a more accurate/self-consistent picture of island response to RF drive. Additionally, a numerical active feedback control system gathers data from synthetic diagnostics to dynamically trigger & spatially align the RF fields. Computations which model the RF deposition using ray tracing, assemble the 3D QL operator from ray & profile data, calculate the resultant xMHD forces, and dynamically realign the RF to more efficiently stabilize modes are presented; the efficacy of various control strategies is also discussed. Supported by the SciDAC Center for Extended MHD Modeling (CEMM); see also https://cswim.org.

  5. Rapid Detection of Microorganisms Based on Active and Passive Modes of QCM

    PubMed Central

    Farka, Zdeněk; Kovář, David; Skládal, Petr

    2015-01-01

    Label-free immunosensors are well suited for detection of microorganisms because of their fast response and reasonable sensitivity comparable to infection doses of common pathogens. Active (lever oscillator and frequency counter) and passive (impedance analyzer) modes of quartz crystal microbalance (QCM) were used and compared for rapid detection of three strains of E. coli. Different approaches for antibody immobilization were compared, the immobilization of reduced antibody using Sulfo‐SMCC was most effective achieving the limit of detection (LOD) 8 × 104 CFU·mL−1 in 10 min. For the passive mode, software evaluating impedance characteristics in real-time was developed and used. Almost the same results were achieved using both active and passive modes confirming that the sensor properties are not limited by the frequency evaluation method but mainly by affinity of the antibody. Furthermore, reference measurements were done using surface plasmon resonance. Effect of condition of cells on signal was observed showing that cells ruptured by ultrasonication provided slightly higher signal changes than intact microbes. PMID:25545267

  6. Use of active extracts of poplar buds against Penicillium italicum and possible modes of action.

    PubMed

    Yang, Shuzhen; Liu, Limei; Li, Dongmei; Xia, Huan; Su, Xiaojun; Peng, Litao; Pan, Siyi

    2016-04-01

    Antifungal components, from poplar buds active fraction (PBAF) against Penicillium italicum, the causal agent of blue mold in citrus fruits, were identified and possible action modes were investigated. Pinocembrin, chrysin and galangin were determined as active components in PBAF, using HPLC and HPLC-MS analysis. The antifungal activity is stable at temperatures ranging from 4 °C to 100 °C and pH levels ranging from 4 to 8. In the presence of PBAF, the hyphae become shriveled, wrinkled and the cell membrane became seriously disrupted. Further investigation on cell permeability, nucleic acid content and alkaline phosphatase suggest that the cell membrane might be the target. Mycelial oxygen consumption and the respiration-related enzymatic activity of succinate dehydrogenase, malate dehydrogenase and ATPase were all inhibited by PBAF. We propose that PBAF is a potentially useful alternative for blue mold control and may act against P. italicum by interfering with respiration and disrupting the cell membrane. PMID:26593534

  7. Active mode calibration of the combined thermal epithermal neutron (CTEN) system

    SciTech Connect

    Veilleux, J. M.

    2001-01-01

    The Combined Thermal Epithermal Neutron (CTEN) system was developed by the Los Alamos National Laboratory to perform active and passive neutron interrogation of waste. The higher energy epithermal neutrons are able to penetrate further into the matrix and active material, thus reducing matrix attenuation and self-shielding effects compared to a thermal neutron pulse alone. The developmental unit was installed in 2001 at the Los Alamos Non-Destructive Assay (NDA) facility to characterize waste for the TRU Waste Characterization Project (TWCP). This paper summarizes the active mode certification results. National Institute of Standards and Technology (NIST) traceable standards were used to determine the system response as a function of mass. Finally, NIST-traceable verification standards were used to verify the calibration in the range 30 milligrams to 25 g of weapons grade plutonium although self-shielding limits the upper active interrogation to 10 g.

  8. NASTRAN component-mode synthesis

    NASA Technical Reports Server (NTRS)

    Guyan, R. J.

    1976-01-01

    Procedure for dynamic substructuring analysis technique is generally as follows: calculation of component modes; selection of component normal modes, calculation of component generalized matrices, assembly of system matrices, and computation of normal modes; and retrieval of component response.

  9. A pleasant familiar odor influences perceived stress and peripheral nervous system activity during normal aging

    PubMed Central

    Joussain, Pauline; Rouby, Catherine; Bensafi, Moustafa

    2014-01-01

    Effects of smells on stress have been demonstrated in animals and humans, suggesting that inhaling certain odorants may counteract the negative effects of stress. Because stress plays a key role in cerebral aging, the present study set out to examine whether positive odor effects on perceived stress can be achieved in elderly individuals. To this end, two groups of aged individuals (n = 36 women, aged from 55 to 65 years), were tested. The first group was exposed for 5 days to a pleasant and, by end of exposure, familiar odor (“exposure odor”), whereas the other was exposed to a non-scented control stimulus. Stress and mood states were assessed before and after the 5-day odor exposure period. Psychophysiological markers were also assessed at the end of exposure, in response to the “exposure odor” and to a “new odor.” Results revealed that stress on this second exposure was decreased and zygomatic electromyogram activity was increased specifically in the group previously exposed to the odor (p < 0.05). Taken as a whole, these findings offer a new look at the relationship between perceived stress, olfaction and normal aging, opening up new research perspectives on the effect of olfaction on quality of life and well-being in aged individuals. PMID:24596564

  10. Anti-amyloidogenic Activity of IgGs Contained in Normal Plasma

    PubMed Central

    Williams, Angela D.; McWilliams-Koeppen, Helen P.; Acero, Luis; Weber, Alfred; Ehrlich, Hartmut; Schwarz, Hans P.; Solomon, Alan

    2010-01-01

    Introduction We have previously shown that a subpopulation of naturally occurring human IgGs has therapeutic potential for the amyloid-associated disorders. These molecules cross-react with conformational epitopes on amyloidogenic assemblies, including amyloid beta (Aβ) protein fibrils that are a pathological hallmark of Alzheimer’s disease. Materials and Methods Using our europium-linked immunosorbant assay, we established that ∼95% of 260 screened donor plasma samples had amyloid fibril-reactive IgGs and Aβ conformer-reactive IgGs with minimal binding to Aβ monomers. Anti-amyloidogenic reactivity was diverse and attributed to Aβ targeting multiple fibril-related binding sites and/or variations in multidentate binding. Results and Discussion There was no correlation between anti-fibril and anti-oligomer reactivity and donor age (19 to 60 years old) or gender. These findings demonstrate the inherent but diverse anti-amyloidogenic activity of natural IgGs contained in normal plasma. Conclusion Our studies provide support for investigating the clinical significance and physiological function of this novel class of antibodies. PMID:20405179

  11. Inactivation of factor XII active fragment in normal plasma. Predominant role of C-1-inhibitor.

    PubMed

    de Agostini, A; Lijnen, H R; Pixley, R A; Colman, R W; Schapira, M

    1984-06-01

    To define the factors responsible for the inactivation of the active fragment derived from Factor XII (Factor XIIf ) in plasma, we studied the inactivation kinetics of Factor XIIf in various purified and plasma mixtures. We also analyzed the formation of 125I-Factor XIIf -inhibitor complexes by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). In purified systems, the bimolecular rate constants for the reactions of Factor XIIf with C-1-inhibitor, alpha 2-antiplasmin, and antithrombin III were 18.5, 0.91, and 0.32 X 10(4) M-1 min-1, respectively. Furthermore, SDS-PAGE analysis revealed that 1:1 stoichiometric complexes were formed between 125I-Factor XIIf and each of these three inhibitors. In contrast, kinetic and SDS-PAGE studies indicated that Factor XIIf did not react with alpha 1-antitrypsin or alpha 2-macroglobulin. The inactivation rate constant of Factor XIIf by prekallikrein-deficient plasma was 14.4 X 10(-2) min-1, a value that was essentially identical to the value predicted from the studies in purified systems (15.5 X 10(-2) min-1). This constant was reduced to 1.8 X 10(-2) min-1 when Factor XIIf was inactivated by prekallikrein-deficient plasma that had been immunodepleted (less than 5%) of C-1-inhibitor. In addition, after inactivation in normal plasma, 74% of the active 125I-Factor XIIf was found to form a complex with C-1-inhibitor, whereas 26% of the enzyme formed complexes with alpha 2-antiplasmin and antithrombin III. Furthermore, 42% of the labeled enzyme was still complexed with C-1-inhibitor when 125I-Factor XII was inactivated in hereditary angioedema plasma that contained 32% of functional C-1-inhibitor. This study quantitatively demonstrates the dominant role of C-1-inhibitor in the inactivation of Factor XIIf in the plasma milieu. PMID:6725552

  12. Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Wysocki, Gerard (Inventor); Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor)

    2010-01-01

    A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.

  13. FMRI Brain Activation in a Finnish Family with Specific Language Impairment Compared with a Normal Control Group

    ERIC Educational Resources Information Center

    Hugdahl, Kenneth; Gundersen, Hilde; Brekke, Cecilie; Thomsen, Tormod; Rimol, Lars Morten; Ersland, Lars; Niemi, Jussi

    2004-01-01

    The aim of the present study was to investigate differences in brain activation in a family with SLI as compared to intact individuals with normally developed language during processing of language stimuli. Functional magnetic resonance imaging (fMRI) was used to monitor changes in neuronal activation in temporal and frontal lobe areas in 5…

  14. Wrestling model of the repertoire of activity propagation modes in quadruple neural networks.

    PubMed

    Shteingart, Hanan; Raichman, Nadav; Baruchi, Itay; Ben-Jacob, Eshel

    2010-01-01

    The spontaneous activity of engineered quadruple cultured neural networks (of four-coupled sub-networks) exhibits a repertoire of different types of mutual synchronization events. Each event corresponds to a specific activity propagation mode (APM) defined by the order of activity propagation between the sub-networks. We statistically characterized the frequency of spontaneous appearance of the different types of APMs. The relative frequencies of the APMs were then examined for their power-law properties. We found that the frequencies of appearance of the leading (most frequent) APMs have close to constant algebraic ratio reminiscent of Zipf's scaling of words. We show that the observations are consistent with a simplified "wrestling" model. This model represents an extension of the "boxing arena" model which was previously proposed to describe the ratio between the two activity modes in two coupled sub-networks. The additional new element in the "wrestling" model presented here is that the firing within each network is modeled by a time interval generator with similar intra-network Lévy distribution. We modeled the different burst-initiation zones' interaction by competition between the stochastic generators with Gaussian inter-network variability. Estimation of the model parameters revealed similarity across different cultures while the inter-burst-interval of the cultures was similar across different APMs as numerical simulation of the model predicts. PMID:20890451

  15. How different modes of child delivery influence abdominal muscle activities in the active straight leg raise.

    PubMed

    Kwon, Yu-Jeong; Hyung, Eun-Ju; Yang, Kyung-Hye; Lee, Hyun-Ok

    2014-08-01

    [Purpose] The purpose of this study was to examine the activities of the abdominal muscles of women who had experienced vaginal delivery in comparison with those who had experienced Cesarean childbirth. [Subjects and Methods] A total of 14 subjects (7 vaginal delivery, 7 Cesarean section) performed an active straight leg raise to 20 cm above the ground, and we measured the activities of the internal oblique abdominal muscle, the external oblique abdominal muscle, and the rectus abdominal muscle on both sides using electromyography. The effort required to raise the leg was scored on a Likert scale. Then, the subjects conducted maximum isometric contraction for hip joint flexion with the leg raised at 20 cm, and maximum torque and abdominal muscle activities were measured using electromyography. [Results] During the active straight leg raise, abdominal muscle activities were higher in the Cesarean section subjects. The Likert scale did not show a significant difference. The activities of the abdominal muscles and the maximum torque of the hip joint flexion at maximum isometric contraction were higher in the vaginal delivery subjects. [Conclusion] The abdominal muscles of Cesarean section subjects showed greater recruitment for maintaining pelvic stability during the active straight leg raising, but were relatively weaker when powerful force was required. Therefore, we consider that more abdominal muscle training is necessary for maintaining pelvic stability of Cesarean section subjects. PMID:25202194

  16. Oro-facial activities in sleep bruxism patients and in normal subjects: a controlled polygraphic and audio-video study.

    PubMed

    Dutra, K M C; Pereira, F J; Rompré, P H; Huynh, N; Fleming, N; Lavigne, G J

    2009-02-01

    To our knowledge, the large spectrum of sleep motor activities (SMA) present in the head and neck region has not yet been systematically estimated in normal and sleep bruxism (SB) subjects. We hypothesized that in the absence of audio-video signal recordings, normal and SB subjects would present a high level of SMA that might confound the scoring specificity of SB. A retrospective analysis of several SMA, including oro-facial activities (OFA) and rhythmic masticatory muscle activities (RMMA), was made from polygraphic and audio-video recordings of 21 normal subjects and 25 SB patients. Sleep motor activities were scored, blind to subject status, from the second night of sleep recordings. Discrimination of OFA included the following types of activities: lip sucking, head movements, chewing-like movements, swallowing, head rubbing and scratching, eye opening and blinking. These were differentiated from RMMA and tooth grinding. The frequency of SMA per hour of sleep was lower in normal subjects in comparison with SB patients (P < 0.001). Up to 85% of all SMA in normal subjects were related to OFA while 30% of SMA in SB patients were related to OFA scoring (P < 0.001). The frequency of RMMA was seven times higher in SB patients than in normal subjects (P < 0.001). Several SMA can be observed in normal and SB subjects. In the absence of audio-video signal recordings, the discrimination of various types of OFA is difficult to achieve and may lead to erroneous estimation of SB-related activities. PMID:18976258

  17. Proliferating cell nuclear antigen (PCNA) activity in hepatocellular carcinoma, benign peri-neoplastic and normal liver.

    PubMed

    Mun, Kein-Seong; Cheah, Phaik-Leng; Baharudin, Nurul Bahiyah; Looi, Lai-Meng

    2006-12-01

    Hepatocellular carcinoma (HCC) is among the ten most common cancers in Malaysian males. As cellular proliferation is an important feature of malignant transformation, we studied the proliferation pattern of normal and benign perineoplastic liver versus hepatocellular carcinoma in an attempt to further understand the tumour transformation process. 39 HCC (21 with accompanying and 18 without cirrhosis) histologically diagnosed at the Department of Pathology, University of Malaya Medical Centre between January 1992 and December 2003 were immunohistochemically studied using a monoclonal antibody to PCNA (Clone PC10: Dako). 20 livers from cases who had succumbed to traumatic injuries served as normal liver controls (NL). PCNA labeling index (PCNA-LI) was determined by counting the number of immunopositive cells in 1000 contiguous HCC, benign cirrhotic perineoplastic liver (BLC), benign perineoplastic non-cirrhotic (BLNC) and NL cells and conversion to a percentage. The PCNA-LI was also expressed as Ojanguren et al's grades. PCNA was expressed in 10% NL, 38.9% BLNC, 76.2% BLC and 71.8% HCC with BLNC, BLC and HCC showing significantly increased (p < 0.05) number of cases which expressed PCNA compared with NL. The number of BLC which expressed PCNA was also significantly increased compared with BLNC. PCNA-LI ranged from 0-2.0% (mean = 0.2%) in NL, 0-2.0% (mean = 0.3%) in BLNC, 0-3.6% (mean = 0.7%) in BLC and 0-53.8% (mean = 7.6%) in HCC with PCNA-LI significantly increased (p < 0.05) only in HCC compared with BLC, BLNC and NL. Accordingly, all NL, BLC and BLNC showed minimal (<5% cells being immunopositive) immunoreactivity on Ojanguren et al's grading system and only HCC demonstrated immunoreactivity which ranged up to grade 3 (75% of cells). From this study, there appears to be a generally increasing trend of proliferative activity from NL to BLNC to BLC and HCC. Nonetheless, BLNC and BLC, like NL, retained low PCNA-LI and only HCC had a significantly increased PCNA

  18. High resolution seismic imaging of an active normal fault in the Agri Valley, Southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Improta, L.; Bruno, P.; di Fiore, V.; Mariani, S.

    2004-12-01

    The Agri Valley is an intermontane basin located in the Southern Apennine seismic belt (Italy) whose formation in tied to large NW-trending trastensional and extensional faults active since Early Pleistocene. Recent faulting activity in the area is documented by faulted paleosoils and suggested by a M7 earthquake that struck the basin in 1857. On the contrary, present-day background seismicity in the area is extremely low. Despite intense geomorphic investigations, the identification of the source responsible for this historical event and of further large seismogenic faults in the area is still a matter of debate. A new NW trending normal faulting system has been recently recognized based on subtle geomorphic expressions on the ridge bounding the basin westward. Recent faulting activity along this structure is locally documented by a trench. Aimed at yielding new information about the shallow structure of the fault, we conducted a high resolution seismic experiment in a small lacustrine basin, located 4 km south of the trench, in which the presence of the fault is inferred by a linear surface warping but trench excavation is impractical. Both multi-fold wide-angle data and multichannel near vertical reflection data have been collected along a 220-m-long profile in order to obtain an accurate model of the basin combining seismic velocity and reflectivity images. About 3600 first arrival traveltimes picked on 36 wide-angle record sections have been inverted by a non-linear tomographic technique that is specially designed to image complex structures. The tomographic inversion provides a high-resolution velocity model of the basin down to 60 m depth. The model is strongly heterogeneous and displays sharp lateral velocity variations. Seismic reflection processing has been applied to both data sets. Data have been edited for trace quality and first (refracted and direct) arrivals have been muted. A following FK dip filtering on the shot gathers reduced the energy

  19. Does greater low frequency EEG activity in normal immaturity and in children with epilepsy arise in the same neuronal network?

    PubMed

    Michels, L; Bucher, K; Brem, S; Halder, P; Lüchinger, R; Liechti, M; Martin, E; Jeanmonod, D; Kröll, J; Brandeis, D

    2011-03-01

    Greater low frequency power (<8 Hz) in the electroencephalogram (EEG) at rest is normal in the immature developing brain of children when compared to adults. Children with epilepsy also have greater low frequency interictal resting EEG activity. Whether these power elevations reflect brain immaturity due to a developmental lag or the underlying epileptic pathophysiology is unclear. The present study addresses this question by analyzing spectral EEG topographies and sources for normally developing children and children with epilepsy. We first compared the resting EEG of healthy children to that of healthy adults to isolate effects related to normal brain immaturity. Next, we compared the EEG from 10 children with generalized cryptogenic epilepsy to the EEG of 24 healthy children to isolate effects related to epilepsy. Spectral analysis revealed that global low (delta: 1-3 Hz, theta: 4-7 Hz), medium (alpha: 8-12 Hz) and high (beta: 13-25 Hz) frequency EEG activity was greater in children without epilepsy compared to adults, and even further elevated for children with epilepsy. Topographical and tomographic EEG analyses showed that normal immaturity corresponded to greater delta and theta activity at fronto-central scalp and brain regions, respectively. In contrast, the epilepsy-related activity elevations were predominantly in the alpha band at parieto-occipital electrodes and brain regions, respectively. We conclude that lower frequency activity can be a sign of normal brain immaturity or brain pathology depending on the specific topography and frequency of the oscillating neuronal network. PMID:20820898

  20. Observations of the azimuthal dependence of normal mode coupling below 4 mHz at the South Pole and its nearby stations: Insights into the anisotropy beneath the Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Hu, Xiao Gang

    2016-08-01

    Normal mode coupling pair 0S26-0T26 and 0S27-0T27 are significantly present at the South Pole station QSPA after the 2011/03/11 Mw9.1 Tohoku earthquake. In an attempt to determine the mechanisms responsible for the coupling pairs, I first investigate mode observations at 43 stations distributed along the polar great-circle path for the earthquake and observations at 32 Antarctic stations. I rule out the effect of Earth's rotation as well as the effect of global large-scale lateral heterogeneity, but argue instead for the effect of small-scale local azimuthal anisotropy in a depth extent about 300 km. The presence of quasi-Love waveform in 2-5 mHz at QSPA and its nearby stations confirms the predication. Secondly, I analyze normal mode observations at the South Pole location after 28 large earthquakes from 1998 to 2015. The result indicates that the presence of the mode coupling is azimuthal dependent, which is related to event azimuths in -46° to -18°. I also make a comparison between the shear-wave splitting measurements of previous studies and the mode coupling observations of this study, suggesting that their difference can be explained by a case that the anisotropy responsible for the mode coupling is not just below the South Pole location but located below region close to the Transantarctic Mountains (TAM). Furthermore, more signals of local azimuthal anisotropy in normal-mode observations at QSPA and SBA, such as coupling of 0S12-0T11 and vertical polarization anomaly for 0T10, confirms the existence of deep anisotropy close to TAM, which may be caused by asthenospheric mantle flow and edge convection around cratonic keel of TAM.

  1. Learning about Modes in Atomic Force Microscopy by Means of Hands-On Activities Based on a Simple Apparatus

    ERIC Educational Resources Information Center

    Phuapaiboon, Unchada; Panijpan, Bhinyo; Osotchan, Tanakorn

    2009-01-01

    This study was conducted to examine the results of using a low-cost hands-on setup in combination with accompanying activities to promote understanding of the contact mode of atomic force microscopy (AFM). This contact mode setup enabled learners to study how AFM works by hand scanning using probing cantilevers with different characteristics on…

  2. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    PubMed

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV. PMID:26685856

  3. Dynamic Multiscale Modes of Resting State Brain Activity Detected by Entropy Field Decomposition.

    PubMed

    Frank, Lawrence R; Galinsky, Vitaly L

    2016-09-01

    The ability of functional magnetic resonance imaging (FMRI) to noninvasively measure fluctuations in brain activity in the absence of an applied stimulus offers the possibility of discerning functional networks in the resting state of the brain. However, the reconstruction of brain networks from these signal fluctuations poses a significant challenge because they are generally nonlinear and nongaussian and can overlap in both their spatial and temporal extent. Moreover, because there is no explicit input stimulus, there is no signal model with which to compare the brain responses. A variety of techniques have been devised to address this problem, but the predominant approaches are based on the presupposition of statistical properties of complex brain signal parameters, which are unprovable but facilitate the analysis. In this article, we address this problem with a new method, entropy field decomposition, for estimating structure within spatiotemporal data. This method is based on a general information field-theoretic formulation of Bayesian probability theory incorporating prior coupling information that allows the enumeration of the most probable parameter configurations without the need for unjustified statistical assumptions. This approach facilitates the construction of brain activation modes directly from the spatial-temporal correlation structure of the data. These modes and their associated spatial-temporal correlation structure can then be used to generate space-time activity probability trajectories, called functional connectivity pathways, which provide a characterization of functional brain networks. PMID:27391678

  4. Short cavity active mode locking fiber laser for optical sensing and imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Han, Ga Hee; Jeong, Syung Won; Jeong, Myung Yung; Kim, Chang-Seok; Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong

    2014-05-01

    We demonstrate a highly linear wavenumber- swept active mode locking (AML) fiber laser for optical sensing and imaging without any wavenumber-space resampling process. In this all-electric AML wavenumber-swept mechanism, a conventional wavelength selection filter is eliminated and, instead, the suitable programmed electric modulation signal is directly applied to the gain medium. Various types of wavenumber (or wavelength) tunings can be implemented because of the filter-less cavity configuration. Therefore, we successfully demonstrate a linearly wavenumber-swept AML fiber laser with 26.5 mW of output power to obtain an in-vivo OCT image at the 100 kHz swept rate.

  5. Analogue experiments applied to active tectonics studies: the case of seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Seno, S.; Bonini, L.; Toscani, G.

    2010-12-01

    Lithosphere can be divided into three main zones as a function of increasing depth: an aseismic updip zone, the seismogenic zone and a deep aseismic zone. Identifying the location of these zones is a key goal to understand how a specific seismogenic fault works. The evaluation of the seismogenic structures potential in tectonically active regions needs an accurate knowledge of the geometries and kinematic of the faults. In many cases, large seismogenic faults are not clearly and unambiguously expressed at the surface, whereas in other regions with higher deformation rates a clear geological surface evidence is often associated with large earthquakes. Therefore, the characterization of the seismogenic faults and of their mutual interactions it is not always straightforward; in this case, analogue modeling can provide an independent and useful tool for the interpretation of the surface geological data. Analogue modeling applied to earthquake geology is a quite innovative technique: when combined with other datasets (e.g.: seismic tomography, seismic profiles, well-logging data, field geology, morphotectonic and palaeo-seismological data) it can provide significant insights on the long term (i.e. Quaternary) evolution of a seismogenic fault. We carried out a set of analogue models at 1 : 100,000 scale that reproduce in 2D a normal fault with a relatively low dip angle (45°-50°). In our experimental approach different materials have been used to simulate the three main zones in which the lithosphere is separated. Dry sand and wet clay simulate different mechanical behaviour of rocks during seismic cycle. The dry sand, with its negligible cohesion and ductility, represents brittle rocks that deformed by localized faulting during earthquakes. Wet clay, with its slightly greater cohesion and ductility, mimics aseismic updip zone. Glass microbeads simulate aseismic plastic zone. Preliminary results are highlighting a mutual control among the three analogue materials

  6. Distribution of deformation on an active normal fault network, NW Corinth Rift

    NASA Astrophysics Data System (ADS)

    Ford, Mary; Meyer, Nicolas; Boiselet, Aurélien; Lambotte, Sophie; Scotti, Oona; Lyon-Caen, Hélène; Briole, Pierre; Caumon, Guillaume; Bernard, Pascal

    2013-04-01

    Over the last 20-25 years, geodetic measurements across the Gulf of Corinth have recorded high extension rates varying from 1.1 cm/a in the east to a maximum of 1.6 cm/a in the west. Geodetic studies also show that current deformation is confined between two relatively rigid blocks defined as Central Greece (to the north) and the Peloponnesus to the south. Active north dipping faults (<1 Ma) define the south coast of the subsiding Gulf, while high seismicity (major earthquakes and micro-seismicity) is concentrated at depth below and to the north of the westernmost Gulf. How is this intense deformation distributed in the upper crust? Our objectives here are (1) to propose two models for the distribution of deformation in the upper crust in the westernmost rift since 1 Ma, and (2) to place the tectonic behaviour of the western Gulf in the context of longer term rift evolution. Over 20 major active normal faults have been identified in the CRL area based specific characteristics (capable of generating earthquakes M> 5.5, active in the last 1 M yrs, slip rate >0.5 mm/a). Because of the uncertainty related to fault geometry at depth two models for 3D fault network geometry in the western rift down to 10 km were constructed using all available geophysical and geological data. The first model assumes planar fault geometries while the second uses listric geometries for major faults. A model for the distribution of geodetically-defined extension on faults is constructed along five NNE-SSW cross sections using a variety of data and timescales. We assume that the role of smaller faults in accommodating deformation is negligible so that extension is fully accommodated on the identified major faults. Uncertainties and implications are discussed. These models provide estimates of slip rate for each fault that can be used in seismic hazard models. A compilation of onshore and offshore data shows that the western Gulf is the youngest part of the Corinth rift having initiated

  7. Theory of psychological adaptive modes.

    PubMed

    Lehti, Juha

    2016-05-01

    When an individual is facing a stressor and normal stress-response mechanism cannot guarantee sufficient adaptation, special emotional states, adaptive modes, are activated (for example a depressive reaction). Adaptive modes are involuntary states of mind, they are of comprehensive nature, they interfere with normal functioning, and they cannot be repressed or controlled the same way as many emotions. Their transformational nature differentiates them from other emotional states. The object of the adaptive mode is to optimize the problem-solving abilities according to the situation that has provoked the mode. Cognitions and emotions during the adaptive mode are different than in a normal mental state. These altered cognitions and emotional reactions guide the individual to use the correct coping skills in order to deal with the stressor. Successful adaptation will cause the adaptive mode to fade off since the adaptive mode is no longer necessary, and the process as a whole will lead to raised well-being. However, if the adaptation process is inadequate, then the transformation period is prolonged, and the adaptive mode will turn into a dysfunctional state. Many psychiatric disorders are such maladaptive processes. The maladaptive processes can be turned into functional ones by using adaptive skills that are used in functional adaptive processes. PMID:27063089

  8. Increased origin activity in transformed versus normal cells: identification of novel protein players involved in DNA replication and cellular transformation

    PubMed Central

    Di Paola, Domenic; Rampakakis, Emmanouil; Chan, Man Kid; Arvanitis, Dina N.; Zannis-Hadjopoulos, Maria

    2010-01-01

    Using libraries of replication origins generated previously, we identified three clones that supported the autonomous replication of their respective plasmids in transformed, but not in normal cells. Assessment of their in vivo replication activity by in situ chromosomal DNA replication assays revealed that the chromosomal loci corresponding to these clones coincided with chromosomal replication origins in all cell lines, which were more active by 2–3-fold in the transformed by comparison to the normal cells. Evaluation of pre-replication complex (pre-RC) protein abundance at these origins in transformed and normal cells by chromatin immunoprecipitation assays, using anti-ORC2, -cdc6 and -cdt1 antibodies, showed that they were bound by these pre-RC proteins in all cell lines, but a 2–3-fold higher abundance was observed in the transformed by comparison to the normal cells. Electrophoretic mobility shift assays (EMSAs) performed on the most efficiently replicating clone, using nuclear extracts from the transformed and normal cells, revealed the presence of a DNA replication complex in transformed cells, which was barely detectable in normal cells. Subsequent supershift EMSAs suggested the presence of transformation-specific complexes. Mass spectrometric analysis of these complexes revealed potential new protein players involved in DNA replication that appear to correlate with cellular transformation. PMID:20064876

  9. Generation of high fidelity 62-fs, 7-nJ pulses at 1035 nm from a net normal-dispersion Yb-fiber laser with anomalous dispersion higher-order-mode fiber.

    PubMed

    Zhu, L; Verhoef, A J; Jespersen, K G; Kalashnikov, V L; Grüner-Nielsen, L; Lorenc, D; Baltuška, A; Fernández, A

    2013-07-15

    Fiber oscillators operating in the normal dispersion regime allow generating high energy output pulses. The best stability of such oscillators is observed when the intracavity dispersion is close to zero. Intracavity dispersion compensation in such oscillators can be achieved using a higher-order mode fiber, which substantially reduces the higher order dispersion compared to all-normal dispersion oscillators or oscillators using intracavity gratings for dispersion compensation. Using this approach, we are able to obtain relatively high energy pulses, with high fidelity. Our modeling based on an analytic approach for oscillators operating in the normal dispersion regime predicts that at intermediate pulse energies an almost flat chirp can be obtained at the oscillator output enabling good pulse compression with a grating compressor close to Fourier limited duration. Here, we present a mode-locked ytterbium-doped fiber oscillator with a higher-order mode fiber operating in the net normal-dispersion regime, delivering 7.2 nJ pulses that can be dechirped down to 62 fs using a simple grating compressor. PMID:23938476

  10. Activities of gamma-glutamyl transpeptidase and erythrocyte glutathione dependent enzymes in nasopharyngeal carcinoma patients and normal controls.

    PubMed

    Ngah, W Z; Shamaan, N A; Said, M H; Azhar, M T

    1993-01-01

    Plasma gamma-glutamyltranspeptidase (gamma-GT), glutathione peroxidase (GPx) and glutathione reductase (GR) activities were determined in normal and nasopharyngeal carcinoma (NPC) patients. No difference in enzyme activities was observed in the three major races of the Malaysian population, i.e. Malay, Chinese and Indian patients. However, plasma gamma-GT, erythrocyte glutathione S-transferase (GST) and GPx activities were significantly increased in all NPC patients, while GR activity remained unchanged. Patients with elevated plasma gamma-GT activities also had increased GST and GPx activities. Plasma gamma-GT and GPx activities were then found to be affected by treatment. Patients with plasma gamma-GT activity greater than 70 IU/l had very poor prognoses but patients with decreased gamma-GT activities were found to be in remission. PMID:8105826

  11. A Comparison of Muscle Activities in the Lower Extremity between Flat and Normal Feet during One-leg Standing

    PubMed Central

    Lee, Ju-Eun; Park, Ga-Hyeon; Lee, Yun-Seop; Kim, Myoung-Kwon

    2013-01-01

    [Purpose] This study examined the differences in muscle activation between flat and normal feet in the one-leg standing position which delivers the greatest load to the lower extremity. [Subjects] This study was conducted with 23 adults, 12 with normal feet and 12 with flat feet, with ages ranging from 21 to 30 years old, who had no neurological history or gait problems. [Methods] The leg used for one leg standing was the dominant leg of the subjects. The experimenter instructed the subjects to raise the non-dominant leg with their eyes open, and the subjects maintained a posture with the non-dominant leg's knee flexed at 90° and the hip joint flexed at 45° for six seconds. In the position of one-leg standing, a horizontal rod was set at the height of the waist line of the subjects who lightly placed two fingers of each hand on the rod to prevent inclination of the trunk to one side. Measurements were taken three times and the maximum value was used. A surface electromyogram (TeleMyo 2400T, Noraxon Co., USA) was used to measure muscle activities. [Results] We compared muscle activities between flat and normal foot, and the results show a significant difference between normal and flat feet in the muscle activity of the abductor hallucis muscle. [Conclusion] The subjects with flat feet had relatively lower activation of the abductor hallucis muscle than those with normal feet during one leg standing. We infer from this that the abductor hallucis muscle of flat foot doesn't work as well as a dynamic stabilizer, compared to a normal foot, during one leg standing. PMID:24259915

  12. Single-mode array optoelectronic packaging based on actively aligned planar optical waveguides

    NASA Astrophysics Data System (ADS)

    Kalman, Robert F.; Silva, Edward R.; Knapp, Daniel F.

    1996-03-01

    Packaging of integrated optoelectronic devices (e.g., laser diode arrays and OEICs) is motivated by potential cost savings and the increased functionality of more highly integrated devices. To date, attempts to package integrated optoelectronic devices with arrays of single- mode fibers have tended to exhibit high optical losses. We have developed a single-mode array packaging process based on the use of an intermediate silica-on-silicon planar optical waveguides (POWs) assembly to which optical fibers are attached using V-grooves. By lensing the POWs, we have achieved coupling efficiencies of greater than 50%. The photolithographic registration of the POWs allows a large (greater than or equal to 8) array of POWs with attached fibers to be aligned to an array of optoelectronic devices in a single active alignment procedure. This single active alignment step is well-suited to automation, and our approach is thus well-suited to achieving low cost in a manufacturing environment. We also discuss our positioning and mounting techniques, which provide high-stability coupling in adverse temperature and vibration environments and are compatible with hermetic packaging.

  13. Role of surface-active elements during keyhole-mode laser welding

    NASA Astrophysics Data System (ADS)

    Ribic, B.; Tsukamoto, S.; Rai, R.; DebRoy, T.

    2011-12-01

    During high power density laser welding of mild steel, the keyhole depth, liquid metal flow, weld geometry and weld integrity are affected by base-metal sulfur content and oxygen (O2) present in the atmosphere or shielding gas. The role of these surface-active elements during keyhole-mode laser welding of steels is not well understood. In order to better understand their effects, welding of mild steel specimens containing various concentrations of oxygen and sulfur are examined. In addition, a numerical model is used to evaluate the influence of the surface-active elements on heat transfer and fluid flow in keyhole-mode laser welding. Increase in base-metal sulfur concentration or O2 content of shielding gas results in decreased weld widths. Sulfur results in a negligible increase in penetration depth whereas the presence of O2 in shielding gas significantly affects the weld penetration. It has earlier been proposed that oxygen, if present in the shielding gas, can get introduced into the weld pool resulting in formation of carbon monoxide (CO) at the keyhole surface and additional pressure from CO can result in increased penetration. Numerical modelling has been used in this work to understand the effects of formation of CO on the keyhole and weld geometries.

  14. Dual Mode Antibacterial Activity of Ion Substituted Calcium Phosphate Nanocarriers for Bone Infections

    PubMed Central

    Sampath Kumar, T. S.; Madhumathi, K.; Rubaiya, Y.; Doble, Mukesh

    2015-01-01

    Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP) bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA) nanoparticles has been developed. Antibacterial ions such as zinc, silver, and strontium have been incorporated into CDHA at concentrations of 6, 0.25–0.75, and 2.5–7.5 at. %, respectively. The samples were found to be phase pure, acicular nanoparticles of length 40–50 nm and width 5–6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for 5 days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on Staphylococcus aureus and Escherichia coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria, while SrCDHA was weakly active against S. aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity, and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent

  15. Semi-active sliding mode control of vehicle suspension with magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Zhang, Hailong; Wang, Enrong; Zhang, Ning; Min, Fuhong; Subash, Rakheja; Su, Chunyi

    2015-01-01

    The vehicle semi-active suspension with magneto-rheological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity ( F- v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems.

  16. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  17. Growth Factor–dependent Activation of αvβ3 Integrin in Normal Epithelial Cells: Implications for Tumor Invasion

    PubMed Central

    Trusolino, Livio; Serini, Guido; Cecchini, Germana; Besati, Cristina; Ambesi-Impiombato, Francesco Saverio; Marchisio, Pier Carlo; De Filippi, Rosaria

    1998-01-01

    Integrin activation is a multifaceted phenomenon leading to increased affinity and avidity for matrix ligands. To investigate whether cytokines produced during stromal infiltration of carcinoma cells activate nonfunctional epithelial integrins, a cellular system of human thyroid clones derived from normal glands (HTU-5) and papillary carcinomas (HTU-34) was employed. In HTU-5 cells, αvβ3 integrin was diffused all over the membrane, disconnected from the cytoskeleton, and unable to mediate adhesion. Conversely, in HTU-34 cells, αvβ3 was clustered at focal contacts (FCs) and mediated firm attachment and spreading. αvβ3 recruitment at FCs and ligand-binding activity, essentially identical to those of HTU-34, occurred in HTU-5 cells upon treatment with hepatocyte growth factor/scatter factor (HGF/SF). The HTU-34 clone secreted HGF/SF and its receptor was constitutively tyrosine phosphorylated suggesting an autocrine loop responsible for αvβ3 activated state. Antibody-mediated inhibition of HGF/SF function in HTU-34 cells disrupted αvβ3 enrichment at FCs and impaired adhesion. Accordingly, activation of αvβ3 in normal cells was produced by HTU-34 conditioned medium on the basis of its content of HGF/SF. These results provide the first example of a growth factor–driven integrin activation mechanism in normal epithelial cells and uncover the importance of cytokine-based autocrine loops for the physiological control of integrin activation. PMID:9722624

  18. Respiratory burst activity of intestinal macrophages in normal and inflammatory bowel disease.

    PubMed Central

    Mahida, Y R; Wu, K C; Jewell, D P

    1989-01-01

    Macrophages isolated from normal mucosa (greater than 5 cm from tumour) and inflamed mucosa (from patients with inflammatory bowel disease) of colon and ileum were studied for their ability to undergo a respiratory burst as assessed by reduction of nitroblue tetrazolium to formazan. Using phorbol myristate acetate (PMA) and opsonised zymosan as triggers, only a minority (median: 8% for zymosan and 9% for PMA) of macrophages isolated from normal colonic mucosa demonstrated release of oxygen radicals. In contrast, a significantly greater (median: 17% for zymosan and 45% for PMA) proportion of macrophages isolated from inflamed colonic mucosa were able to undergo respiratory burst. Studies with normal and inflamed ileum showed similar results. Stimulation of macrophages isolated from normal colon with interferon-gamma produced only a small increase in the proportion of cells showing release of oxygen radicals. We conclude that the respiratory burst capacity of majority of macrophages isolated from normal colon and ileum is downregulated and a greater proportion of macrophages isolated from inflamed colon and ileum are able to undergo a respiratory burst. Images Fig. 2 PMID:2511088

  19. Antihyperglycemic and antihyperlipidemic activity of plectranthus amboinicus on normal and alloxan-induced diabetic rats.

    PubMed

    Viswanathaswamy, A H M; Koti, B C; Gore, Aparna; Thippeswamy, A H M; Kulkarni, R V

    2011-03-01

    The present study was undertaken to investigate the antihyperglycemic and antihyperlipidemic effects of ethanol extract of Plectranthus amboinicus in normal and alloxan-induced diabetic rats. Diabetes was induced in Wistar rats by single intraperitoneal administration of alloxan monohydrate (150 mg/kg). Normal as well as diabetic rats were divided into groups (n=6) receiving different treatments. Graded doses (200 mg/kg and 400 mg/kg) of ethanol extract of Plectranthus amboinicus were studied in both normal and alloxan-induced diabetic rats for a period of 15 days. Glibenclamide (600 μg/kg) was used as a reference drug. Oral administration with graded doses of ethanol extract of Plectranthus amboinicus exhibited hypoglycemic effect in normal rats and significantly reduced the peak glucose levels after 120 min of glucose loading. In alloxan-induced diabetic rats, the daily oral treatment with ethanol extract of Plectranthus amboinicus showed a significant reduction in blood glucose. Besides, administration of ethanol extract of Plectranthus amboinicus for 15 days significantly decreased serum contents of total cholesterol, triglycerides whereas HDL-cholesterol, total proteins and calcium were effectively increased. Furthermore, effect of ethanol extract of Plectranthus amboinicus showed profound elevation of serum amylase and reduction of serum lipase. Histology examination showed ethanol extract of Plectranthus amboinicus exhibited almost normalization of damaged pancreatic architecture in rats with diabetes mellitus. Studies clearly demonstrated that ethanol extract of Plectranthus amboinicus leaves possesses hypoglycemic and antihyperlipidemic effects mediated through the restoration of the functions of pancreatic tissues and insulinotropic effect. PMID:22303055

  20. Antihyperglycemic and Antihyperlipidemic Activity of Plectranthus Amboinicus on Normal and Alloxan-Induced Diabetic Rats

    PubMed Central

    Viswanathaswamy, A. H. M.; Koti, B. C.; Gore, Aparna; Thippeswamy, A. H. M.; Kulkarni, R. V.

    2011-01-01

    The present study was undertaken to investigate the antihyperglycemic and antihyperlipidemic effects of ethanol extract of Plectranthus amboinicus in normal and alloxan-induced diabetic rats. Diabetes was induced in Wistar rats by single intraperitoneal administration of alloxan monohydrate (150 mg/kg). Normal as well as diabetic rats were divided into groups (n=6) receiving different treatments. Graded doses (200 mg/kg and 400 mg/kg) of ethanol extract of Plectranthus amboinicus were studied in both normal and alloxan-induced diabetic rats for a period of 15 days. Glibenclamide (600 μg/kg) was used as a reference drug. Oral administration with graded doses of ethanol extract of Plectranthus amboinicus exhibited hypoglycemic effect in normal rats and significantly reduced the peak glucose levels after 120 min of glucose loading. In alloxan-induced diabetic rats, the daily oral treatment with ethanol extract of Plectranthus amboinicus showed a significant reduction in blood glucose. Besides, administration of ethanol extract of Plectranthus amboinicus for 15 days significantly decreased serum contents of total cholesterol, triglycerides whereas HDL-cholesterol, total proteins and calcium were effectively increased. Furthermore, effect of ethanol extract of Plectranthus amboinicus showed profound elevation of serum amylase and reduction of serum lipase. Histology examination showed ethanol extract of Plectranthus amboinicus exhibited almost normalization of damaged pancreatic architecture in rats with diabetes mellitus. Studies clearly demonstrated that ethanol extract of Plectranthus amboinicus leaves possesses hypoglycemic and antihyperlipidemic effects mediated through the restoration of the functions of pancreatic tissues and insulinotropic effect. PMID:22303055

  1. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent anti-tumor activity

    PubMed Central

    Caruso, Hillary G.; Hurton, Lenka V.; Najjar, Amer; Rushworth, David; Ang, Sonny; Olivares, Simon; Mi, Tiejuan; Switzer, Kirsten; Singh, Harjeet; Huls, Helen; Lee, Dean A.; Heimberger, Amy B.; Champlin, Richard E.; Cooper, Laurence J. N.

    2015-01-01

    Many tumors over express tumor-associated antigens relative to normal tissue, such as epidermal growth factor receptor (EGFR). This limits targeting by human T cells modified to express chimeric antigen receptors (CARs) due to potential for deleterious recognition of normal cells. We sought to generate CAR+ T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies which differ in affinity. T cells with low affinity Nimo-CAR selectively targeted cells over-expressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high affinity Cetux-CAR was not impacted by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from non-malignant cells. PMID:26330164

  2. The brain on art: intense aesthetic experience activates the default mode network

    PubMed Central

    Vessel, Edward A.; Starr, G. Gabrielle; Rubin, Nava

    2012-01-01

    Aesthetic responses to visual art comprise multiple types of experiences, from sensation and perception to emotion and self-reflection. Moreover, aesthetic experience is highly individual, with observers varying significantly in their responses to the same artwork. Combining fMRI and behavioral analysis of individual differences in aesthetic response, we identify two distinct patterns of neural activity exhibited by different sub-networks. Activity increased linearly with observers' ratings (4-level scale) in sensory (occipito-temporal) regions. Activity in the striatum (STR) also varied linearly with ratings, with below-baseline activations for low-rated artworks. In contrast, a network of frontal regions showed a step-like increase only for the most moving artworks (“4” ratings) and non-differential activity for all others. This included several regions belonging to the “default mode network” (DMN) previously associated with self-referential mentation. Our results suggest that aesthetic experience involves the integration of sensory and emotional reactions in a manner linked with their personal relevance. PMID:22529785

  3. The Psychedelic State Induced by Ayahuasca Modulates the Activity and Connectivity of the Default Mode Network

    PubMed Central

    Palhano-Fontes, Fernanda; Andrade, Katia C.; Tofoli, Luis F.; Santos, Antonio C.; Crippa, Jose Alexandre S.; Hallak, Jaime E. C.; Ribeiro, Sidarta; de Araujo, Draulio B.

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN. PMID:25693169

  4. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    PubMed

    Palhano-Fontes, Fernanda; Andrade, Katia C; Tofoli, Luis F; Santos, Antonio C; Crippa, Jose Alexandre S; Hallak, Jaime E C; Ribeiro, Sidarta; de Araujo, Draulio B

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN. PMID:25693169

  5. Small acousto-optic modulation for active mode locking in the iodine photodissociation laser and the effect of supplementary saturable absorber

    SciTech Connect

    Kim, Y.S.; Lee, S.S.

    1985-02-01

    Active, passive, and active--passive mode locking of the iodine photodissociation laser are investigated. The peak-to-background ratio (PBR) of the acousto-optically mode-locked pulse is 85% for rf power of 5 W. Passive mode locking using BDN dye gives PBR of 75% and has inferior reproducibility. The active--passive mode locking using the two methods simultaneously is useful for the pressure broadened iodine laser line and gives a PBR of 91%. In this case the rf power required for complete mode locking is calculated to be 7 W which is much less than the required power of 11 W in using active mode locking alone.

  6. Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects.

    PubMed

    Lorenzano, C; Gilio, F; Inghilleri, M; Conte, A; Fofi, L; Manfredi, M; Berardelli, A

    2002-11-01

    In normal subjects, focal repetitive transcranial magnetic stimulation (rTMS) of the hand motor area evokes muscle potentials (MEPs) from muscles in the hand (target muscles) and the arm (non-target muscles). In this study we investigated the mechanisms underlying the spread of MEPs induced by focal rTMS in non-target muscles. rTMS was delivered with a Magstim stimulator and a figure-of-eight coil placed over the first dorsal interosseus (FDI) motor area of the left hemisphere. Trains of 10 stimuli were given at a suprathreshold intensity (120% of motor threshold) and at frequencies of 5, 10 and 20 Hz at rest. Electromyographic (EMG) activity was recorded simultaneously from the FDI (target muscle) and the contralateral biceps muscle and from the FDI muscle ipsilateral to the side of stimulation (non-target muscle). rTMS delivered in trains to the FDI motor area of the left hemisphere elicited MEPs in the contralateral FDI (target muscle) that gradually increased in amplitude over the course of the train. Focal rTMS trains also induced MEPs in the contralateral biceps (non-target muscle) but did so only after the second or third stimulus; like target-muscle MEPs, in non-target muscle MEPs progressively increased in amplitude during the train. At no frequency did rTMS elicit MEPs in the FDI muscle ipsilateral to the site of stimulation. rTMS left the latency of EMG responses in the FDI and biceps muscles unchanged during the trains of stimuli. The latency of biceps MEPs was longer after rTMS than after a single TMS pulse. In conditioning-test experiments designed to investigate the cortical origin of the spread, a single TMS pulse delivered over the left hemisphere at an interstimulus interval (ISI) of 50, 100 and 150 ms reduced the amplitude of the test MEP evoked by a single TMS pulse delivered over the right hemisphere; and a conditioning rTMS train delivered over the left hemisphere increased the amplitude of the test MEP evoked by a single TMS pulse over the

  7. Physical Activity of Underweight, Normal Weight and Overweight Polish Adolescents: The Role of Classmate and Teacher Support in Physical Education

    ERIC Educational Resources Information Center

    Kantanista, Adam; Osinski, Wieslaw; Bronikowski, Michal; Tomczak, Maciej

    2013-01-01

    The aim of the study was to investigate the relationships of classmate and teacher support during physical education (PE) lessons on moderate-to-vigorous physical activity of 14-16 year-old students whom were underweight, normal weight and overweight. The cross-sectional sample for the study concerned data from 1702 girls and 1547 boys, recruited…

  8. High-quality lowest-frequency normal mode strain observations at the Black Forest Observatory (SW-Germany) and comparison with horizontal broad-band seismometer data and synthetics

    NASA Astrophysics Data System (ADS)

    Zürn, W.; Ferreira, A. M. G.; Widmer-Schnidrig, R.; Lentas, K.; Rivera, L.; Clévédé, E.

    2015-12-01

    We present spectra concentrating on the lowest-frequency normal modes of the Earth obtained from records of the invar-wire strainmeters and STS-1 broad-band seismometers located in the Black Forest Observatory, Germany after the disastrous earthquakes off the NW coast of Sumatra in 2004 and off the coast near Tohoku, Japan in 2011. We compare the spectra to ones obtained from synthetic seismograms computed using a mode summation technique for an anelastic, elliptical, rotating, spherically symmetric Earth model. The synthetics include strain-strain-coupling effects by using coupling coefficients obtained from comparisons between Earth tide signals recorded by the strainmeters and synthetic tidal records. We show that for the low-frequency toroidal and spheroidal modes up to 1 mHz, the strainmeters produce better signal-to-noise ratios than the broad-band horizontal seismometers. Overall, the comparison with the synthetics is satisfactory but not as good as for vertical accelerations. In particular, we demonstrate the high quality of the strainmeter data by showing the Coriolis splitting of toroidal modes for the first time in individual records, the first clear observation of the singlet _2S_1^0 and the detection of the fundamental radial mode 0S0 with good signal-to-noise ratio and with a strain amplitude of 10-11. We also identify the latter mode in a record of the Isabella strainmeter after the great Chilean quake in 1960, the detection of which was missed by the original studies.

  9. The interaction between gambling activities and modes of access: a comparison of Internet-only, land-based only, and mixed-mode gamblers.

    PubMed

    Gainsbury, Sally M; Russell, Alex; Blaszczynski, Alex; Hing, Nerilee

    2015-02-01

    Research suggests that Internet-based gambling includes risk factors that may increase gambling problems. The current study aimed to investigate subgroups of gamblers to identify the potential harms associated with various forms and modes of gambling. An online survey was completed by 4,594 respondents identified as Internet-only (IG), land-based only (LBGs), or mixed-mode (MMG) gamblers based on self-reported gambling behaviour in the last 12months. Results showed significant socio-demographic differences between groups, with the LBGs being the oldest and MMGs the youngest. MMGs engaged in the greatest variety of gambling forms, had the highest average problem gambling severity scores, and were more likely to attribute problems to sports betting than the other groups. IGs were involved in the lowest number of divergent gambling activities, most likely to gamble frequently on sports and races, and attribute problems to these forms. Compared to the other groups, LBs had a higher proportion of problem gamblers than IGs and were most likely to play electronic gaming machines weekly, with this form of gambling contributing to problems at a substantially greater rate. This study confirms the importance of considering gambling involvement across subgroups of Internet or land-based gamblers. There is a need to consider the interaction between forms and modes of gambling to advance our understanding of the potential risk of mode of gambling to contribute to problems. PMID:25305656

  10. Defect modes and magnetooptical activity of a one-dimensional magnetophotonic crystal

    SciTech Connect

    Eliseeva, S. V. Sementsov, D. I.

    2011-02-15

    The reflection spectrum of a periodic transverse-magnetized structure containing a finite number of ferromagnet-dielectric periods has been obtained. The influence of a substitutional defect on the reflection spectrum is analyzed for normal incidence of light on the structure. It is shown that the intensity and position of the defect miniband in the bad gap of the spectrum depend on the location of the defect layer in the structure and on its type (magnetic or nonmagnetic). It is found that magnetooptical activity of the defect structure is higher than in a defect-free structure.

  11. Semi-active damping with negative stiffness for multi-mode cable vibration mitigation: approximate collocated control solution

    NASA Astrophysics Data System (ADS)

    Weber, F.; Distl, H.

    2015-11-01

    This paper derives an approximate collocated control solution for the mitigation of multi-mode cable vibration by semi-active damping with negative stiffness based on the control force characteristics of clipped linear quadratic regulator (LQR). The control parameters are derived from optimal modal viscous damping and corrected in order to guarantee that both the equivalent viscous damping coefficient and the equivalent stiffness coefficient of the semi-active cable damper force are equal to their desired counterparts. The collocated control solution with corrected control parameters is numerically validated by free decay tests of the first four cable modes and combinations of these modes. The results of the single-harmonic tests demonstrate that the novel approach yields 1.86 times more cable damping than optimal modal viscous damping and 1.87 to 2.33 times more damping compared to a passive oil damper whose viscous damper coefficient is optimally tuned to the targeted mode range of the first four modes. The improvement in case of the multi-harmonic vibration tests, i.e. when modes 1 and 3 and modes 2 and 4 are vibrating at the same time, is between 1.55 and 3.81. The results also show that these improvements are obtained almost independent of the cable anti-node amplitude. Thus, the proposed approximate real-time applicable collocated semi-active control solution which can be realized by magnetorheological dampers represents a promising tool for the efficient mitigation of stay cable vibrations.

  12. Enzyme activation and catalysis: characterisation of the vibrational modes of substrate and product in protochlorophyllide oxidoreductase.

    PubMed

    Sytina, Olga A; Alexandre, Maxime T; Heyes, Derren J; Hunter, C Neil; Robert, Bruno; van Grondelle, Rienk; Groot, Marie Louise

    2011-02-14

    The light-dependent reduction of protochlorophyllide, a key step in the synthesis of chlorophyll, is catalyzed by the enzyme protochlorophyllide oxidoreductase (POR) and requires two photons (O. A. Sytina et al., Nature, 2008, 456, 1001-1008). The first photon activates the enzyme-substrate complex, a subsequent second photon initiates the photochemistry by triggering the formation of a catalytic intermediate. These two events are characterized by different spectral changes in the infra-red spectral region. Here, we investigate the vibrational frequencies of the POR-bound and unbound substrate, and product, and thus provide a detailed assignment of the spectral changes in the 1800-1250 cm(-1) region associated with the catalytic conversion of PChlide:NADPH:TyrOH into Chlide:NADP(+):TyrO(-). Fluorescence line narrowed spectra of the POR-bound Pchlide reveal a C=O keto group downshifted by more than 20 cm(-1) to a relatively low vibrational frequency of 1653 cm(-1), as compared to the unbound Pchlide, indicating that binding of the chromophore to the protein occurs via strong hydrogen bond(s). The frequencies of the C=C vibrational modes are consistent with a six-coordinated state of the POR-bound Pchlide, suggesting that there are two coordination interactions between the central Mg atom of the chromophore and protein residues, and/or a water molecule. The frequencies of the C=C vibrational modes of Chlide are consistent with a five-coordinated state, indicating a single interaction between the central Mg atom of the chromophore and a water molecule. Rapid-scan FTIR measurements on the Pchlide:POR:NADPH complex at 4 cm(-1) spectral resolution reveal a new band in the 1670 cm(-1) region. The FTIR spectra of the enzyme activation phase indicate involvement of a nucleotide-binding structural motif, and an increased exposure of the protein to solvent after activation. PMID:21103538

  13. Total body calcium by neutron activation analysis in normals and osteoporotic populations: a discriminator of significant bone mass loss

    SciTech Connect

    Ott, S.M.; Murano, R.; Lewellen, T.K.; Nelp, W.B.; Chesnut, C.M.

    1983-10-01

    Measurements of total body calcium by neutron activation (TBC) in 94 normal individuals and 86 osteoporotic patients are reported. The ability of TBC to discriminate normal from osteoporotic females was evaluated with decision analysis. Bone mineral content (BMC) by single-photon absorptiometry was also measured. TBC was higher in males (range 826 to 1363 gm vs 537 to 1054 in females) and correlated with height in all normals. In females over age 55 there was a negative correlation with age. Thus, for normals an algorithm was derived to allow comparison between measured TBC and that predicted by sex, age, and height (TBCp). In the 28 normal females over age 55, the TBC was 764 +/- 115 gm vs. 616 +/- 90 in the osteoporotics. In 63 of the osteoporotic females an estimated height, from tibial length, was used to predict TBC. In normals the TBC/TBCp ratio was 1.00 +/- 0.12, whereas in osteoporotic females it was 0.80 +/- 0.12. A receiver operating characteristic curve showed better discrimination of osteoporosis with TBC/TBCp than with wrist BMC. By using Bayes' theorem, with a 25% prevalence of osteoporosis (estimate for postmenopausal women), the posttest probability of disease was 90% when the TBC/TBCp ratio was less than 0.84. The authors conclude that a low TBC/TBCp ratio is very helpful in determining osteoporosis.

  14. Normally Occurring Environmental and Behavioral Influences on Gene Activity: From Central Dogma to Probabilistic Epigenesis.

    ERIC Educational Resources Information Center

    Gottlieb, Gilbert

    1998-01-01

    Attempts to show how genes and environments cooperate in the construction of organisms, focusing on how genes require environmental and behavioral inputs to function appropriately during the normal course of human development. The discussion is related to a model of probabilistic epigenesis. (SLD)

  15. Developmental Component in Brain Electrical Activity of Normal and Learning Disabled Boys.

    ERIC Educational Resources Information Center

    Naour, Paul J.; Martin, Daniel J.

    The study examined the electrophysiologic organization of cognitive function in 12 normally achieving righthanded boys and 12 reading disabled third and sixth grade boys. Ss were administered reading comprehension and spelling recognition subtests from the Peabody Individual Achievement Test. Electroencephalography (EEG) scores were recorded for…

  16. Top-down regulation of default mode activity in spatial visual attention.

    PubMed

    Wen, Xiaotong; Liu, Yijun; Yao, Li; Ding, Mingzhou

    2013-04-10

    Dorsal anterior cingulate and bilateral anterior insula form a task control network (TCN) whose primary function includes initiating and maintaining task-level cognitive set and exerting top-down regulation of sensorimotor processing. The default mode network (DMN), comprising an anatomically distinct set of cortical areas, mediates introspection and self-referential processes. Resting-state data show that TCN and DMN interact. The functional ramifications of their interaction remain elusive. Recording fMRI data from human subjects performing a visual spatial attention task and correlating Granger causal influences with behavioral performance and blood oxygen level-dependent (BOLD) activity we report three main findings. First, causal influences from TCN to DMN, i.e., TCN → DMN, are positively correlated with behavioral performance. Second, causal influences from DMN to TCN, i.e., DMN → TCN, are negatively correlated with behavioral performance. Third, stronger DMN → TCN are associated with less elevated BOLD activity in TCN, whereas the relationship between TCN → DMN and DMN BOLD activity is unsystematic. These results suggest that, during visual spatial attention, top-down signals from TCN to DMN regulate the activity in DMN to enhance behavioral performance, whereas signals from DMN to TCN, acting possibly as internal noise, interfere with task control, leading to degraded behavioral performance. PMID:23575842

  17. Top-down regulation of default mode activity in spatial visual attention

    PubMed Central

    Wen, Xiaotong; Liu, Yijun; Yao, Li; Ding, Mingzhou

    2013-01-01

    Dorsal anterior cingulate and bilateral anterior insula form a task control network (TCN) whose primary function includes initiating and maintaining task-level cognitive set and exerting top-down regulation of sensorimotor processing. The default mode network (DMN), comprising an anatomically distinct set of cortical areas, mediates introspection and self-referential processes. Resting-state data show that TCN and DMN interact. The functional ramifications of their interaction remain elusive. Recording fMRI data from human subjects performing a visual spatial attention task and correlating Granger causal influences with behavioral performance and blood-oxygen-level-dependent (BOLD) activity we report three main findings. First, causal influences from TCN to DMN, i.e., TCN→DMN, are positively correlated with behavioral performance. Second, causal influences from DMN to TCN, i.e., DMN→TCN, are negatively correlated with behavioral performance. Third, stronger DMN→TCN are associated with less elevated BOLD activity in TCN, whereas the relationship between TCN→DMN and DMN BOLD activity is unsystematic. These results suggest that during visual spatial attention, top-down signals from TCN to DMN regulate the activity in DMN to enhance behavioral performance, whereas signals from DMN to TCN, acting possibly as internal noise, interfere with task control, leading to degraded behavioral performance. PMID:23575842

  18. Increased default mode network activity in socially anxious individuals during reward processing

    PubMed Central

    2014-01-01

    Background Social anxiety has been associated with potentiated negative affect and, more recently, with diminished positive affect. It is unclear how these alterations in negative and positive affect are represented neurally in socially anxious individuals and, further, whether they generalize to non-social stimuli. To explore this, we used a monetary incentive paradigm to explore the association between social anxiety and both the anticipation and consumption of non-social incentives. Eighty-four individuals from a longitudinal community sample underwent functional magnetic resonance imaging (fMRI) while participating in a monetary incentive delay (MID) task. The MID task consisted of alternating cues indicating the potential to win or prevent losing varying amounts of money based on the speed of the participant’s response. We examined whether self-reported levels of social anxiety, averaged across approximately 7 years of data, moderated brain activity when contrasting gain or loss cues with neutral cues during the anticipation and outcome phases of incentive processing. Whole brain analyses and analyses restricted to the ventral striatum for the anticipation phase and the medial prefrontal cortex for the outcome phase were conducted. Results Social anxiety did not associate with differences in hit rates or reaction times when responding to cues. Further, socially anxious individuals did not exhibit decreased ventral striatum activity during anticipation of gains or decreased MPFC activity during the outcome of gain trials, contrary to expectations based on literature indicating blunted positive affect in social anxiety. Instead, social anxiety showed positive associations with extensive regions implicated in default mode network activity (for example, precuneus, posterior cingulate cortex, and parietal lobe) during anticipation and receipt of monetary gain. Social anxiety was further linked with decreased activity in the ventral striatum during anticipation

  19. Active and passive mode calibration of the Combined Thermal Epithermal Neutron (CTEN) system

    SciTech Connect

    Veilleux, J. M.

    2002-06-01

    The Combined Thermal/Epithermal Neutron (CTEN) non-destructive assay (NDA) system was designed to assay transuranic waste by employing an induced active neutron interrogation and/or a spontaneous passive neutron measurement. This is the second of two papers, and focuses on the passive mode, relating the net double neutron coincidence measurement to the plutonium mass via the calibration constant. National Institute of Standards and Technology (NIST) calibration standards were used and the results verified with NIST-traceable verification standards. Performance demonstration program (PDP) 'empty' 208-L matrix drum was used for the calibration. The experimentally derived calibration constant was found to be 0.0735 {+-} 0.0059 g {sup 240}Pu effective per unit response. Using this calibration constant, the Waste Isolation Pilot Plant (WIPP) criteria was satisfied with five minute waste assays in the range from 3 to 177g Pu. CTEN also participated in the PDP Cycle 8A blind assay with organic sludge and metal matrices and passed the criteria for accuracy and precision in both assay modes. The WIPP and EPA audit was completed March 1, 2002 and full certification is awaiting the closeout of one finding during the audit. With the successful closeout of the audit, the CTEN system will have shown that it can provide very fast assays (five minutes or less) of waste in the range from the minimum detection limit (about 2 mg Pu) to 177 g Pu.

  20. Substorm recurrence during steady and variable solar wind driving: Evidence for a normal mode in the unloading dynamics of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Baker, D. N.; Vassiliadis, D.; Roberts, D. A.

    1994-01-01

    Farrugia et al (1993) have recently studied substorm activity driven by the passage of an interplanetary magnetic cloud during which the interplanetary magnetic field turned southward for approximately 18 hours. It was shown that both the epsilon and the VB(sub s) parameters varied slowly on the timescale of a substorm but changed considerably over the interval as a whole. The substorm occurrence rate did not reflect the variation in magnetospheric energy loading rate as measured by these parameters but, rather, remained roughly constant with a 50-min average period. Klimas et al. (1992) showed that the Faraday loop analog model of geomagnetic activity predicts this single unloading rate under various constant loading rates. However, various model parameters were adjusted to yield a 1-hour unloading period in agreement with the Bargatze et al. (1985) linear prediction filters and in approximate agreement with the Farrugia et al. (1993) results. It has since been found necessary to add a slow relaxation mechanism to the Faraday loop model to allow for its approach to a ground state during long periods of inactivity. It is proposed that the relaxation mechanism is provided by slow convection of magnetic flux out of the magnetotail to the dayside magnetosphere. In addition, a rudimentary representation of magnetotail-ionosphere coupling has been added to enable comparison of model output to measured AL. The present study is of the modified Faraday loop model response to solar wind input from the Bargatze et al. data set with comparison of its output to concurrent AL. This study has removed the degree of freedom in parameter choice that had earlier allowed adjustments toward the 1-hour unloading period and has, instead, yielded the 1-hour unloading period under various constant loading rates. It is demonstrated that the second peak of the bimodal Bargatze et al. linear prediction filters at approximately equal 1-hour lag and the approximately constant substorm

  1. Normal activation of the supplementary motor area in patients with Parkinson's disease undergoing long-term treatment with levodopa.

    PubMed Central

    Rascol, O; Sabatini, U; Chollet, F; Fabre, N; Senard, J M; Montastruc, J L; Celsis, P; Marc-Vergnes, J P; Rascol, A

    1994-01-01

    Regional cerebral blood flow (rCBF) changes in cortical motor areas were measured during a movement of the dominant right hand in 15 patients with Parkinson's disease deprived of their usual levodopa treatment, in 11 patients with Parkinson's disease undergoing long-term treatment with levodopa, and in 15 normal volunteers. The supplementary motor areas were significantly activated in the normal subjects and in the patients receiving levodopa but not in the patients deprived of levodopa. The contralateral primary sensory motor area was significantly activated in all three groups. The ipsilateral primary sensory motor cortex was not activated in the normal subjects and the non-treated patients but was in the patients treated with levodopa. It is concluded that the supplementary motor area hypoactivation which is observed in akinetic non-treated patients with Parkinson's disease is not present in patients undergoing long-term treatment with levodopa. This result suggests that (a) levodopa improves the functional activity of supplementary motor areas in Parkinson's disease and (b) there is no pharmacological tolerance to this effect. The ipsilateral primary motor cortex activation observed in the patients treated with levodopa could be related to levodopa-induced abnormal involuntary movements. PMID:8201325

  2. Urokinase and type I plasminogen activator inhibitor production by normal human hepatocytes: modulation by inflammatory agents.

    PubMed

    Busso, N; Nicodeme, E; Chesne, C; Guillouzo, A; Belin, D; Hyafil, F

    1994-07-01

    We examined the effects of inflammatory cytokines (interleukin-1 beta, tumor necrosis factor-alpha and transforming growth factor-beta) on the plasminogen activator system (urokinase, tissue-type plasminogen activator, type 1 plasminogen activator inhibitor) in primary cultures of human hepatocytes. We show that interleukin-1 beta and tumor necrosis factor-alpha increase urokinase-type plasminogen activator production, reinforcing the concept that increased urokinase production is associated with inflammatory processes. By contrast, the same agents (i.e., interleukin-1 beta and tumor necrosis factor-alpha) do not stimulate plasminogen activator inhibitor type 1 production. This latter observation rules out hepatocytes as a major cellular source of plasmatic plasminogen activator inhibitor type 1 during acute-phase-related responses. Among the inflammatory agents used, transforming growth factor-beta was found to be the most effective modulator of both urokinase-type plasminogen activator and plasminogen activator inhibitor type 1, inducing severalfold increases of activity of urokinase-type plasminogen activator, antigen and the corresponding mRNA and increasing plasminogen activator inhibitor type 1 antigen and mRNA levels. Urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 modulation by transforming growth factor-beta may play a critical role in hepatic pathophysiology. PMID:8020888

  3. Default Mode Network Activity Predicts Early Memory Decline in Healthy Young Adults Aged 18-31.

    PubMed

    Nelson, Steven M; Savalia, Neil K; Fishell, Andrew K; Gilmore, Adrian W; Zou, Fan; Balota, David A; McDermott, Kathleen B

    2016-08-01

    Functional magnetic resonance imaging (fMRI) research conducted in healthy young adults is typically done with the assumption that this sample is largely homogeneous. However, studies from cognitive psychology suggest that long-term memory and attentional control begin to diminish in the third decade of life. Here, 100 participants between the ages of 18 and 31 learned Lithuanian translations of English words in an individual differences study using fMRI. Long-term memory ability was operationalized for each participant by deriving a memory score from 3 convergent measures. Age of participant predicted memory score in this cohort. In addition, degree of deactivation during initial encoding in a set of regions occurring largely in the default mode network (DMN) predicted both age and memory score. The current study demonstrates that early memory decline may partially be accounted for by failure to modulate activity in the DMN. PMID:26209847

  4. Active uplift and normal faulting in the eastern flank of Taiwan Central Range

    NASA Astrophysics Data System (ADS)

    Chang, Chung-Pai; Hsu, Yi-Chun; Kang, Chu-Chun

    2015-04-01

    As the backbone range of Taiwan orogen, the highest peaks of the Central Range have been uplifted to nearly 4 km above sea level. A rapid exhumation rate of about 6 mm/yr over the past several million years has been determined by many previous thermochronological studies in the eastern flank of the Central Range. However, the uplift mechanism of the Central Range is still in debate. Especially, the most important structural component, the Central Range Fault in the eastern boundary of the Central Range, has never been clearly observed in the previous studies. An east-vergent "backthrusting" or "backfolding" was firstly proposed by Ernst in 1977. However, normal faulting and oblique faulting with a normal component were also proposed by the following field workers (e.g., Crespi et al., 1996; Fisher, 1999). In this study, we use the geomorphic, stratigraphic, and structural analyses to figure out the near surface geometry of the Central Range Fault, and as well use the recent earthquake data to understand the deeper structures beneath the Central Range. By combining these results, we propose a doubly vergent model with a roll-back Central Range fault to explain the local structure and the rapid uplift of the eastern flank of the Central Range. The normal faults along the eastern flank of Central Range can also be separated into three segments form the north to the south. This late-stage structure suggests that the rotation-accommodating structure is extensional in nature.

  5. Plasma mineral profiles and hormonal activities of normal cycling and repeat breeding crossbred cows: A comparative study

    PubMed Central

    Barui, Abhijit; Batabyal, Subhasis; Ghosh, Sarbaswarup; Saha, Debjani; Chattopadhyay, Saibal

    2015-01-01

    Aim: The present study was carried out to compare the associated role of micro minerals and hormones in repeat breeding animals with the normal crossbred cows. Materials and Methods: Blood samples were collected from 10 normal cycling and 10 repeat breeding crossbred cows of Ramakrishna Mission Ashram, Narendrapur to study the plasma mineral profile and hormonal activities. Results: Zn was found to be highly significant (p<0.01) between the two groups. Follicle stimulating hormone (FSH) and progesterone showed significant (p<0.05) difference in repeat breeding animal from the normal cyclic animal, whereas no significant differences were observed in Ca, P, Cu, Se, Co, luteinizing hormone and estradiol level. Conclusion: It may conclude that repeat breeding condition of crossbred cows in farm condition is mainly due to the low level of progesterone, FSH and zinc. PMID:27046994

  6. Activation and Connectivity within the Default Mode Network Contribute Independently to Future-Oriented Thought.

    PubMed

    Xu, Xiaoxiao; Yuan, Hong; Lei, Xu

    2016-01-01

    Future-oriented thought, a projection of the self into the future to pre-experience an event, has been linked to default mode network (DMN). Previous studies showed that the DMN was generally divided into two subsystems: anterior part (aDMN) and posterior part (pDMN). The former is mostly related to self-referential mental thought and latter engages in episodic memory retrieval and scene construction. However, functional contribution of these two subsystems and functional connectivity between them during future-oriented thought has rarely been reported. Here, we investigated these issues by using an experimental paradigm that allowed prospective, episodic decisions concerning one's future (Future Self) to be compared with self-referential decisions about one's immediate present state (Present Self). Additionally, two parallel control conditions that relied on non-personal semantic knowledge (Future Non-Self Control and Present Non-Self Control) were conducted. Our results revealed that the aDMN was preferentially activated when participants reflected on their present states, whereas the pDMN exhibited preferentially activation when participants reflected on their personal future. Intriguingly, significantly decreased aDMN-pDMN connectivity was observed when thinking about their future relative to other conditions. These results support the notion that activation within these subsystems and connectivity between them contribute differently to future-oriented thought. PMID:26867499

  7. Mode of physical activity and self-efficacy in older adults: a latent growth curve analysis.

    PubMed

    McAuley, E; Katula, J; Mihalko, S L; Blissmer, B; Duncan, T E; Pena, M; Dunn, E

    1999-09-01

    A randomized controlled trial examined the effect of two physical activity modes on changes in self-efficacy over the course of a 12-month period in older, formerly sedentary adults (N = 174, M age = 65.5 years). Participants were randomized into either an aerobic activity group or a stretching and toning group. Structural equation modeling was employed to conduct multiple sample latent growth curve analyses of individual growth in exercise and physical self-efficacy over time. Results revealed a curvilinear growth pattern for both types of efficacy with increases occurring over the first 6 months followed by declines at the 6-month follow-up. There was a significant treatment by mean level growth interaction for exercise efficacy with both groups increasing over time, but the aerobic group evidenced a twofold increase in growth over the stretching group. Structural analyses indicated that frequency of exercise participation was a significant predictor of overall growth in efficacy, and improvements in fitness were only related to exercise efficacy growth in the stretching group. Findings are discussed in terms of social cognitive theory and further application of latent growth curve modeling to studies of physical activity effects in older adults. PMID:10542821

  8. Activation and Connectivity within the Default Mode Network Contribute Independently to Future-Oriented Thought

    PubMed Central

    Xu, Xiaoxiao; Yuan, Hong; Lei, Xu

    2016-01-01

    Future-oriented thought, a projection of the self into the future to pre-experience an event, has been linked to default mode network (DMN). Previous studies showed that the DMN was generally divided into two subsystems: anterior part (aDMN) and posterior part (pDMN). The former is mostly related to self-referential mental thought and latter engages in episodic memory retrieval and scene construction. However, functional contribution of these two subsystems and functional connectivity between them during future-oriented thought has rarely been reported. Here, we investigated these issues by using an experimental paradigm that allowed prospective, episodic decisions concerning one’s future (Future Self) to be compared with self-referential decisions about one’s immediate present state (Present Self). Additionally, two parallel control conditions that relied on non-personal semantic knowledge (Future Non-Self Control and Present Non-Self Control) were conducted. Our results revealed that the aDMN was preferentially activated when participants reflected on their present states, whereas the pDMN exhibited preferentially activation when participants reflected on their personal future. Intriguingly, significantly decreased aDMN-pDMN connectivity was observed when thinking about their future relative to other conditions. These results support the notion that activation within these subsystems and connectivity between them contribute differently to future-oriented thought. PMID:26867499

  9. Modulation of western North Pacific tropical cyclone activity by the Atlantic Meridional Mode

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Vecchi, Gabriel A.; Villarini, Gabriele; Murakami, Hiroyuki; Rosati, Anthony; Yang, Xiaosong; Jia, Liwei; Zeng, Fanrong

    2016-05-01

    This study examines the year-to-year modulation of the western North Pacific (WNP) tropical cyclones (TC) activity by the Atlantic Meridional Mode (AMM) using both observations and the Geophysical Fluid Dynamics Laboratory Forecast-oriented Low Ocean Resolution Version of CM2.5 (FLOR) global coupled model. 1. The positive (negative) AMM phase suppresses (enhances) WNP TC activity in observations. The anomalous occurrence of WNP TCs results mainly from changes in TC genesis in the southeastern part of the WNP. 2. The observed responses of WNP TC activity to the AMM are connected to the anomalous zonal vertical wind shear (ZVWS) caused by AMM-induced changes to the Walker circulation. During the positive AMM phase, the warming in the North Atlantic induces strong descending flow in the tropical eastern and central Pacific, which intensifies the Walker cell in the WNP. The intensified Walker cell is responsible for the suppressed (enhanced) TC genesis in the eastern (western) part of the WNP by strengthening (weakening) ZVWS. 3. The observed WNPTC-AMM linkage is examined by the long-term control and idealized perturbations experiment with FLOR-FA. A suite of sensitivity experiments strongly corroborate the observed WNPTC-AMM linkage and underlying physical mechanisms.

  10. Cyclodextrin type dependent host-guest interaction mode with phthalocyanine and their influence on photodynamic activity to cancer.

    PubMed

    Lu, S; Wang, A; Ma, Y J; Xuan, H Y; Zhao, B; Li, X D; Zhou, J H; Zhou, L; Wei, S H

    2016-09-01

    Three host-guest complexes of phthalocyanines (Pc) with α-, β- or γ-cyclodextrins (CDs) were prepared and their interaction modes, reactive oxygen species (ROSs) generation ability and in vitro anticancer activities were studied and compared. After forming complex with CD, the aggregation degree of Pc was greatly decreased and the water solubility and photodynamic activity was sharply increased. Computer modeling results indicated that the interaction modes between Pc and CDs were varied with different kinds of CD. Especially, the complex of Pc and β-CD has superior stability, ROSs generation ability, and anticancer activity to other complexes. PMID:27185136

  11. In-space technology flight experiments: Middeck 0-gravity Dynamics Experiment (MODE) and Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Venneri, Samuel L.

    1991-01-01

    The topics addressed are covered in viewgraph form. The objective of the Middeck 0-gravity Dynamics Experiment (MODE) programs is to study gravity dependent nonlinearities associated with fluid slosh and truss structure dynamics. MODE provides a reusable facility for on-orbit dynamics testing of small scale test articles in the shirt sleeve environment on the Shuttle middeck. Flight program objective of Middeck Active Control Experiment (MACE) is to study gravity effects on the performance and stability of controlled structures.

  12. Evidence of normal functional levels of activated protein C inhibitor in combined Factor V/VIII deficiency disease.

    PubMed Central

    Canfield, W M; Kisiel, W

    1982-01-01

    Human activated protein C (APC) is a plasma serine protease that possesses amidolytic and anticoagulant activity. The rate at which the amidolytic and anticoagulant activity of APC was neutralized in normal plasma was essentially identical to that observed in plasma obtained from four individuals with combined Factor V/VIII deficiency disease. Incubation of radioiodinated APC with either normal human plasma or the combined Factor V/VIII-deficient plasmas resulted in the formation of a stable complex (Mr = 96,000) of the enzyme and a plasma protein as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Pretreatment of the radiolabeled APC with diisopropyl fluorophosphate prevented the formation of the enzyme-protein complex. On the basis of its ability to form a complex with radiolabeled APC, the APC-binding protein was purified to homogeneity from normal human plasma by ammonium sulfate fractionation, heparin-agarose chromatography, and QAE-Sephadex A-50 chromatography. The APC-binding protein (Mr = 54,000) is a glycoprotein, and possesses an amino-terminal sequence of Gly-Arg-Thr-Cys-Pro-Lys-Pro-Asp. The amino-terminal sequence of the APC-binding protein exhibited considerable homology with bovine colostrum inhibitor and pancreatic trypsin inhibitor, but no apparent sequence homology with the plasma serine protease inhibitors. Affinity-purified antibody against APC-binding protein immunoprecipitated a complex of radiolabeled APC and native APC-binding protein from normal human plasma. Complex formation was virtually eliminated in plasma immunodepleted of the APC-binding protein. Quantitative electroimmunoassay indicated essentially equal levels of APC-binding protein antigen in normal plasma compared with plasma from four patients with combined Factor V/VIII deficiency disease. Images PMID:6294139

  13. Broad spectrum antibacterial and antifungal polymeric paint materials: synthesis, structure-activity relationship, and membrane-active mode of action.

    PubMed

    Hoque, Jiaul; Akkapeddi, Padma; Yadav, Vikas; Manjunath, Goutham B; Uppu, Divakara S S M; Konai, Mohini M; Yarlagadda, Venkateswarlu; Sanyal, Kaustuv; Haldar, Jayanta

    2015-01-28

    Microbial attachment and subsequent colonization onto surfaces lead to the spread of deadly community-acquired and hospital-acquired (nosocomial) infections. Noncovalent immobilization of water insoluble and organo-soluble cationic polymers onto a surface is a facile approach to prevent microbial contamination. In the present study, we described the synthesis of water insoluble and organo-soluble polymeric materials and demonstrated their structure-activity relationship against various human pathogenic bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and beta lactam-resistant Klebsiella pneumoniae as well as pathogenic fungi such as Candida spp. and Cryptococcus spp. The polymer coated surfaces completely inactivated both bacteria and fungi upon contact (5 log reduction with respect to control). Linear polymers were more active and found to have a higher killing rate than the branched polymers. The polymer coated surfaces also exhibited significant activity in various complex mammalian fluids such as serum, plasma, and blood and showed negligible hemolysis at an amount much higher than minimum inhibitory amounts (MIAs). These polymers were found to have excellent compatibility with other medically relevant polymers (polylactic acid, PLA) and commercial paint. The cationic hydrophobic polymer coatings disrupted the lipid membrane of both bacteria and fungi and thus showed a membrane-active mode of action. Further, bacteria did not develop resistance against these membrane-active polymers in sharp contrast to conventional antibiotics and lipopeptides, thus the polymers hold great promise to be used as coating materials for developing permanent antimicrobial paint. PMID:25541751

  14. Diatom-Derived Polyunsaturated Aldehydes Activate Cell Death in Human Cancer Cell Lines but Not Normal Cells

    PubMed Central

    Sansone, Clementina; Braca, Alessandra; Ercolesi, Elena; Romano, Giovanna; Palumbo, Anna; Casotti, Raffaella; Francone, Maria; Ianora, Adrianna

    2014-01-01

    Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs) that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD), 2-trans,4-trans-octadienal (OD) and 2-trans,4-trans-heptadienal (HD) on the adenocarcinoma cell lines lung A549 and colon COLO 205, and th