Science.gov

Sample records for active optical components

  1. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. Thermal, mechanical, and structural considerations leading to the design of the tray hardware are discussed. In general, changes in the retested component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials, multilayer optical interference filters, and extreme-infrared reflectivity of black paints show unexpected changes.

  2. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1991-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six-inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. The experimental results for those component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials and extreme-infrared reflectivity of black paints show unexpected changes.

  3. Thermo-optically active planar polymeric components for telecommunication applications

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.; Beeson, Karl W.; Pant, Deepti; Blomquist, Robert; Shacklette, Lawrence W.; McFarland, Michael J.

    2000-05-01

    A key property that differentiates optical polymers from more conventional optical materials such as glass, is the rapid variation of the refractive index with temperature. This large difference in dn/dT can be leveraged to produce efficient thermo-optically active optical components. An advanced polymeric waveguide technology was developed for affordable thermo-optically active integrated optical devices that address the needs of the telecom industry. We engineered high-performance organic polymers that can be readily made into single-mode waveguide structures of controlled geometries and of modal profiles that closely match standard telecom glass fibers. These materials are formed from highly-crosslinked halogenated acrylate monomers with specific linkages that determined properties such as flexibility, toughness, optical loss, thermal stability, and humidity resistance. These monomers are intermiscible, providing for precise continuous adjustment of the refractive index over a wide range. In polymer form, they exhibit state-of-the-art loss values, suppressed polarization effects, and exceptional environmental stability. The devices we describe include thermally tunable Bragg-grating-based wavelength filters, thermally tunable arrayed-waveguide gratings, and digital optical switches.

  4. Optical communication components

    NASA Astrophysics Data System (ADS)

    Eldada, Louay

    2004-03-01

    We review and contrast key technologies developed to address the optical components market for communication applications. We first review the component requirements from a network perspective. We then look at different material systems, compare their properties, and describe the functions achieved to date in each of them. The material systems reviewed include silica fiber, silica on silicon, silicon on insulator, silicon oxynitride, sol-gels, polymers, thin-film dielectrics, lithium niobate, indium phosphide, gallium arsenide, magneto-optic materials, and birefringent crystals. We then describe the most commonly used classes of optical device technology and present their pros and cons as well as the functions achieved to date in each of them. The technologies reviewed include passive, actuation, and active technologies. The passive technologies described include fused fibers, dispersion-compensating fiber, beam steering, Bragg gratings, diffraction gratings, holographic elements, thin-film filters, photonic crystals, microrings, and birefringent elements. The actuation technologies include thermo-optics, electro-optics, acousto-optics, magneto-optics, electroabsorption, liquid crystals, total internal reflection technologies, and mechanical actuation. The active technologies include heterostructures, quantum wells, rare-earth doping, dye doping, Raman amplification, and semiconductor amplification. We also investigate the use of different material systems and device technologies to achieve building-block functions, including lasers, amplifiers, detectors, modulators, polarization controllers, couplers, filters, switches, attenuators, isolators, circulators, wavelength converters, chromatic dispersion compensators, and polarization mode dispersion compensators. Some of the technologies presented are well established in the industry and in some cases have reached the commodity stage, others have recently become ready for commercial introduction, while some others

  5. Investigation of the effects of long-duration exposure on active optical system components (S0050)

    NASA Technical Reports Server (NTRS)

    Blue, M. D.; Gallagher, J. J.; Shackelford, R. G.

    1984-01-01

    The effects of long duration space exposure on the relevant performance parameters of lasers, radiation detectors, and selected optical components, was determined. The results and implications of the measurements indicating real or suspected degradation mechanisms were evaluated and guidelines, based on these results, for selection and use of components for space electro-optical systems are established.

  6. Revealing Optical Components

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Optical Vector Analyzer (OVA) 1550 significantly reduces the time and cost of testing sophisticated optical components. The technology grew from the research Luna Technologies' Dr. Mark Froggatt conducted on optical fiber strain measurement while working at Langley Research Center. Dr. Froggatt originally developed the technology for non- destructive evaluation testing at Langley. The new technique can provide 10,000 independent strain measurements while adding less than 10 grams to the weight of the vehicle. The OVA is capable of complete linear characterization of single-mode optical components used in high- bit-rate applications. The device can test most components over their full range in less than 30 seconds, compared to the more than 20 minutes required by other testing methods. The dramatically shortened measurement time results in increased efficiency in final acceptance tests of optical devices, and the comprehensive data produced by the instrument adds considerable value for component consumers. The device eliminates manufacturing bottlenecks, while reducing labor costs and wasted materials during production.

  7. Investigation of the effects of long duration space exposure on active optical system components

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1994-01-01

    This experiment was exposed to the space environment for 6 years on the Long Duration Exposure Facility (LDEF). It investigated quantitatively the effects of the long-duration space exposure on the relevant performance parameters of a representative set of electron-optic system components, including lasers, radiation detectors, filters, modulators, windows, and other related components. It evaluated the results and implications of the measurements indicating real or suspected degradation mechanisms. This information will be used to establish guidelines for the selection and use of components for space-based, electro-optic systems.

  8. Remote sensing reflectance model of optically active components of turbid waters

    NASA Astrophysics Data System (ADS)

    Kutser, Tiit; Arst, Helgi

    1994-12-01

    A mathematical model that simulates the spectral curves of remote sensing reflectance is developed. The model is compared to measurements obtained from research vessel or boat in the Baltic Sea and Estonian lakes. The model simulates the effects of light backscattering from water and suspended matter, and the effects of its absorption due to water, phytoplankton, suspended matter and yellow substance. Measured by remote sensing spectral curves are compared by multiple of spectra obtained from model calculations to find the theoretical spectrum which is closest to experimental. It is assumed that in case of coincidence of the spectral curves concentrations of optically active substances in the model correspond to real ones. Preliminary testing of the model demonstrates that this model is useful for estimation of concentration of optically active substances in the waters of the Baltic Sea and Estonian lakes.

  9. Additive manufacturing of optical components

    NASA Astrophysics Data System (ADS)

    Heinrich, Andreas; Rank, Manuel; Maillard, Philippe; Suckow, Anne; Bauckhage, Yannick; Rößler, Patrick; Lang, Johannes; Shariff, Fatin; Pekrul, Sven

    2016-08-01

    The development of additive manufacturing methods has enlarged rapidly in recent years. Thereby, the work mainly focuses on the realization of mechanical components, but the additive manufacturing technology offers a high potential in the field of optics as well. Owing to new design possibilities, completely new solutions are possible. This article briefly reviews and compares the most important additive manufacturing methods for polymer optics. Additionally, it points out the characteristics of additive manufactured polymer optics. Thereby, surface quality is of crucial importance. In order to improve it, appropriate post-processing steps are necessary (e.g. robot polishing or coating), which will be discussed. An essential part of this paper deals with various additive manufactured optical components and their use, especially in optical systems for shape metrology (e.g. borehole sensor, tilt sensor, freeform surface sensor, fisheye lens). The examples should demonstrate the potentials and limitations of optical components produced by additive manufacturing.

  10. Photonic crystals as optical components

    NASA Astrophysics Data System (ADS)

    Halevi, P.; Krokhin, A. A.; Arriaga, J.

    1999-11-01

    Photonic crystals (PCs) have already found numerous applications associated with the photonic band gap. We point out that PCs could be also employed as custom-made optical components in the linear region well below the photonic gap. As an example, we discuss a birefringent PC lens that acts as a polarizing beam splitter. This idea is supported by a precise method of calculation of the optical constants of a transparent two-dimensional (2D) PC. Such a process of homogenization is performed for hexagonal arrays of polymer-based PCs and also for the mammalian cornea. Finally, 2D PCs are classified as optically uniaxial or biaxial.

  11. Multi-tipped optical component

    DOEpatents

    D'urso, Brian R; Simpson, John T

    2010-04-13

    An optical component includes a support structure having a first composition including a recessive phase material and a second composition including protrusive phase material, the protrusive phase material defining a plurality of spaced apart surface features, each of the surface features comprising a distal end opposite the support structure, integrated with the support structure, and protruding distally from a surface of the support structure, each of the surface features reducing in cross sectional area distally from the support structure to provide a lowest cross sectional area at the distal end, the recessive phase material supporting and separating the surface features and defining a contiguous recessed surface area between the surface features, at least two of the protrusive features being characterized as optical waveguides.

  12. Advances in telecom and datacom optical components

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2001-07-01

    We review and contrast key technologies developed to address the optical components market for telecom and datacom applications. We first look at different material systems, compare their properties, and describe the functions achieved to date in each of them. The material systems reviewed include glass fiber, silica on silicon, silicon on insulator, silicon oxynitride, sol-gels, polymers, thin film dielectrics, lithium niobate, indium phosphide, gallium arsenide, magneto-optic materials, and birefringent crystals. We then look at the most commonly used classes of technology and present their pros and cons as well as the functions achieved to date in each. The technologies reviewed include passive, actuation, and active technologies. The passive technologies described include fused fibers, dispersion-compensating fiber, beam steering (e.g., AWG), Bragg gratings, diffraction gratings, holographic elements, thin film filters, photonic crystals, microrings, and birefringent elements. The actuation technologies include thermo-optics, electro-optics, acousto- optics, magneto-optics, liquid crystals, total internal reflection technologies (e.g., bubble technology), and mechanical actuation (e.g., moving fibers and MEMS). We finally describe active technologies including heterostructures, quantum wells, rare earth doping, and semiconductor optical amplifiers. We also investigate the use of different material systems and technologies to achieve building block functions including lasers, amplifiers, detectors, modulators, polarization controllers, couplers, filters, switches, attenuators, nonreciprocal elements (Faraday rotators or nonreciprocal phase shifters) for isolators and circulators, wavelength converters, and dispersion compensators.

  13. Optical components damage parameters database system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong

    2012-10-01

    Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.

  14. Indexing Mount For Rotation Of Optical Component

    NASA Technical Reports Server (NTRS)

    Reichle, Donald J., Jr.; Barnes, Norman P.

    1993-01-01

    Indexing mount for polarizer, wave plate, birefringent plate, or other optical component facilitates rotation of component to one or more preset angles. Includes hexagonal nut holding polarizer or other optical component. Ball bearing loaded by screw engages notch on cylindrical extension of nut engaging bracket. Time-consuming and tedious angular adjustment unnecessary: component turned quickly and easily, by hand or by use of wrench, to preset angular positions maintained by simple ball-detent mechanism.

  15. Actively coupled optical waveguides

    NASA Astrophysics Data System (ADS)

    Alexeeva, N. V.; Barashenkov, I. V.; Rayanov, K.; Flach, S.

    2014-01-01

    We consider light propagation through a pair of nonlinear optical waveguides with absorption, placed in a medium with power gain. The active medium boosts the in-phase component of the overlapping evanescent fields of the guides, while the nonlinearity of the guides couples it to the damped out-of-phase component creating a feedback loop. As a result, the structure exhibits stable stationary and oscillatory regimes in a wide range of gain-loss ratios. We show that the pair of actively coupled (AC) waveguides can act as a stationary or integrate-and-fire comparator sensitive to tiny differences in their input powers.

  16. Fabrication of an optical component

    DOEpatents

    Nichols, Michael A.; Aikens, David M.; Camp, David W.; Thomas, Ian M.; Kiikka, Craig; Sheehan, Lynn M.; Kozlowski, Mark R.

    2000-01-01

    A method for forming optical parts used in laser optical systems such as high energy lasers, high average power lasers, semiconductor capital equipment and medical devices. The optical parts will not damage during the operation of high power lasers in the ultra-violet light range. A blank is first ground using a fixed abrasive grinding method to remove the subsurface damage formed during the fabrication of the blank. The next step grinds and polishes the edges and forms bevels to reduce the amount of fused-glass contaminants in the subsequent steps. A loose abrasive grind removes the subsurface damage formed during the fixed abrasive or "blanchard" removal process. After repolishing the bevels and performing an optional fluoride etch, the surface of the blank is polished using a zirconia slurry. Any subsurface damage formed during the loose abrasive grind will be removed during this zirconia polish. A post polish etch may be performed to remove any redeposited contaminants. Another method uses a ceria polishing step to remove the subsurface damage formed during the loose abrasive grind. However, any residual ceria may interfere with the optical properties of the finished part. Therefore, the ceria and other contaminants are removed by performing either a zirconia polish after the ceria polish or a post ceria polish etch.

  17. Optical access: networks and components (overview)

    NASA Astrophysics Data System (ADS)

    Mynbaev, Djafar K.

    2004-09-01

    The exponential gtowth of traffic delivered to an individual customer both for business and personal needs puts tremendous pressure on the telecommunications networks. Because the development of the long-haul and metro networks has advanced rapidly and their capacity much eceeds demand, tremendous pressure now falls in the local networks to provide customers with access to the global telecom infrastructure. Building a broadband access network enabling fast delivery of high-volume traffic is the current task of network operators. A brief review of broadband access networks brings us to the conclusion that only wired optical networks can serve as an immediate and future solution to the "last-mile" problem. After discussin goptical access network classification, we focus mainly on passive optical networks (PON) because PON is a major technology today. From the network standpoint, we discuss the principle of PON operation, architectures, topologies, protocols and standards, design issues, and network management and services. We also discuss the main problems with PON and the use of WDM technology. From the hardware standpoint, we consider both active and passive components. We analyze the structure and elements of these components, including their technical characteristics.

  18. Optical components and subsystems: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Hong, J.; Lee, P.; Zhu, T.; Lee, G.; Xu, K.; Wang, R.

    2006-02-01

    This paper presents a brief review and discussion on the opportunities and challenges facing the optical components and sub-systems vendors. Specifically, this paper discusses some of the current components and sub-system development on the low loss CWDM filters, wavelength blockers, PLC switch arrays, wavelength selective switches, optical protection switching sub-systems, tunable filters and DCMs, and in addition, the fiber-coupled short-wavelength diode-lasers for medical applications.

  19. Metamaterials for Miniaturization of Optical Components

    DTIC Science & Technology

    2014-09-24

    AFRL-OSR-VA-TR-2014-0226 METAMATERIALS FOR MINIATURIZATION OF OPTICAL COMPONENTS Aleksandr Figotin UNIVERSITY OF CALIFORNIA IRVINE Final Report 09/24...8-98) v Prescribed by ANSI Std. Z39.18 10/09/2014 Final 30/06/2011-30/06/2014 METAMATERIALS FOR MINIATURIZATION OF OPTICAL COMPONENTS FA9550-11-1...relativistic and spinorial aspects of our neoclassical electromagnetic theory. Metamaterials , fundamentals of electromagnetic theory, dissipation, magnetic

  20. Optical components in harsh space environment

    NASA Astrophysics Data System (ADS)

    Pelizzo, Maria G.; Corso, Alain Jody; Tessarolo, Enrico; Zuppella, P.; Böttger, Roman; Huebner, Rene; Della Corte, Vincenzo; Palumbo, Pasquale; Taglioni, G.; Preti, G.; Foggetta, Luca; Valente, Paolo; Rancoita, Piergiorgio; Martucci, Alessandro; Napolitani, Enrico

    2016-09-01

    Space exploration is linked to the development of increasingly innovative instrumentation, able to withstand the operation environment, rich in ion particles and characterized by high temperatures. Future space missions such as JUICE and SOLAR ORBITER will operate in a very harsh and extreme environment-. Electrons and ions are considered among the causes of potential damage of the optical instrumentation and components. Development of hard coatings capable to preserve their optical properties is pivotal. Different coating materials have been exposed to ion irradiation in particle accelerators. Change in optical performances has been observed in the extreme ultraviolet and visible spectral region and structural properties have been analyzed by different techniques. The knowledge of the damage mechanisms and thresholds allows the selection of more promising candidate materials to realize the optical components for the new frontiers space missions.

  1. Optical Path Difference Evaluation of Laser-Soldered Optical Components

    NASA Astrophysics Data System (ADS)

    Burkhardt, T.; Hornaff, M.; Burkhardt, D.; Beckert, E.

    2015-12-01

    We present Solderjet Bumping, a laser-based soldering process, as an all inorganic joining technique for optical materials and mechanical support structures. The adhesive-free bonding process enables the low-stress assembly of fragile and sensitive components for advanced optical systems. Our process addresses high demanding applications, e.g. under high energetic radiation (short wavelengths of 280 nm and below and/or high intensities), for vacuum operation, and for harsh environmental conditions. Laser-based soldering allows the low stress assembly of aligned sub-cells as key components for high quality optical systems. The evaluation of the optical path difference in fused silica and the radiation resistant LAK9G15 glass components after soldering and environmental testing shows the potential of the technique.

  2. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  3. Degradation of optical components in space

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    This report concerns two types of optical components: multilayer filters and mirrors, and self-scanned imaging arrays using charge coupled device (CCD) readouts. For the filters and mirrors, contamination produces a strong reduction in transmittance in the ultraviolet spectral region, but has little or no effect in the visible and infrared spectral regions. Soft substrates containing halides are unsatisfactory as windows or substrates. Materials choice for dielectric layers should also reflect such considerations. Best performance is also found for the harder materials. Compaction of the layers and interlayer diffusion causes a blue shift in center wavelength and loss of throughput. For sensors using CCD's, shifts in gate voltage and reductions in transfer efficiency occur. Such effects in CCD's are in accord with expectations of the effects of the radiation dose on the device. Except for optical fiber, degradation of CCD's represents the only ionizing-radiation induced effect on the Long Duration Exposure Facility (LDEF) optical systems components that has been observed.

  4. Multimode siloxane polymer components for optical interconnects

    NASA Astrophysics Data System (ADS)

    Bamiedakis, Nikolaos; Beals, Joseph, IV; Penty, Richard V.; White, Ian H.; DeGroot, Jon v., Jr.; Clapp, Terry V.; De Shazer, David

    2009-02-01

    This paper presents an overview of multimode waveguides and waveguide components formed from siloxane polymer materials which are suitable for use in optical interconnection applications. The components can be cost-effectively integrated onto conventional PCBs and offer increased functionality in optical transmission. The multimode waveguides exhibit low loss (0.04 dB/cm at 850 nm) and low crosstalk (< -30 dB) performance, large alignment tolerances and negligible mode mixing for short waveguide lengths. Error-free data transmission at 10 Gb/s over 1.4 m long waveguides has been successfully demonstrated. Waveguide crossings exhibit very low excess losses, below 0.01 dB/crossing, and excellent crosstalk performance. Low loss is obtained for waveguide bends with radii of curvature larger than 8 mm and 6 mm for 90° and S-shaped bends respectively. High-uniformity splitting is achieved with multimode Y-splitters even in the presence of input misalignments. Y-combiners are shown to benefit from the multimode nature of the waveguides allowing low loss combining (4 dB for an 8×1 device). A large range of power splitting ratios between 30% and 75% is achieved with multimode coupler devices. Examples of system applications benefiting from the use of these components are briefly presented including a terabit capacity optical backplane, a radio-over-fibre multicasting system and a SCM passive optical network.

  5. Ion beam figuring of small optical components

    NASA Astrophysics Data System (ADS)

    Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.

    1995-12-01

    Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.

  6. Compact component for integrated quantum optic processing

    NASA Astrophysics Data System (ADS)

    Sahu, Partha Pratim

    2015-11-01

    Quantum interference is indispensable to derive integrated quantum optic technologies (1-2). For further progress in large scale integration of quantum optic circuit, we have introduced first time two mode interference (TMI) coupler as an ultra compact component. The quantum interference varying with coupling length corresponding to the coupling ratio is studied and the larger HOM dip with peak visibility ~0.963 ± 0.009 is found at half coupling length of TMI coupler. Our results also demonstrate complex quantum interference with high fabrication tolerance and quantum visibility in TMI coupler.

  7. Scatter From Optical Components: An Overview

    NASA Astrophysics Data System (ADS)

    Stover, John C.

    1990-01-01

    Although optical scatter is a source of noise, limits resolution and reduces system throughput, it is also an extremely sensitive metrology tool and is being employed in a wide variety of applications both in and out of the optics industry. This paper is intended as a brief review of the current state of this important technology as it emerges from university and government laboratories to more general industry use. The bidirectional scatter distribution function (or BSDF) has become the common format for expressing scatter data and is now used almost universally. Measurements are routinely made at several laboratories around the country from the UV to the mid-IR. Data analysis of optical component scatter has progressed to the point where a variety of analysis tools are becoming available for discriminating between the various sources of scatter. Work has progressed on the analysis of rough surface scatter and the application of these techniques to some challenging problems outside the optical industry. Scatter metrology is acquiring standards and formal test procedures. The available scatter data base is rapidly expanding as the number and sophistication of measurement facilities increases. Scatter from contaminants, which is a key issue for space optics, is continuing to be a major area of work as scatterometers appear in vacuum chambers at various laboratories across the country. The current flurry of work in this growing area of metrology can be expected to continue for several more years and expand to applications outside the optics industry.

  8. Polymeric components for all-optical networks

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.; Beeson, Karl W.; Pant, Deepti; Blomquist, Robert; Shacklette, Lawrence W.; McFarland, Michael J.

    2000-04-01

    All-optical networks that exhibit high speed, high capacity, scalability, configurability, and transparency are becoming a reality through the exploitation of the unique properties of fiber and integrated optics. An advanced polymeric waveguide technology was developed for affordable passive and active integrated optical elements that address the needs of these networks. We engineered high-performance organic polymers that can be readily made into photonic circuits of controlled numerical apertures and geometries. These materials are formed from highly-crosslinked acrylate monomers with specific linkages that determine properties such as flexibility, robustness, optical loss, thermal stability, and humidity resistance. These monomers are intermiscible, providing for precise continuous adjustment of the refractive index over a wide range. In polymer form, they exhibit state-of-the-art optical loss values, suppressed polarization effects, and exceptional environmental stability. A wide range of rigid and flexible substrates can be used. The devices we describe include demultiplexers, tunable wavelength filters, digital optical switches, and variable optical attenuators.

  9. Prospects For Optical Instruments Using Integrated Optics And Components

    NASA Astrophysics Data System (ADS)

    Yeoman, M. L.

    1989-10-01

    Integrated optical instruments and their components are described by comparison with existing technology and the potential advantages of the new systems are outlined. Fundamental problems of material fabrication need to be overcome before a truly integrated circuit becomes feasible but useful advances are being made by combining discrete with integrated components in hybrid systems. A very large investment programme in R & D is underway in Europe, the U.S.A. and Japan. The first products to emerge in instrumental form have not yet had a significant influence on industrial and commercial markets. Future prospects will depend upon improvements in capability, reliability and on cost reductions.

  10. Performance capabilities of fiber optic components and photonic devices

    NASA Astrophysics Data System (ADS)

    Jha, Asu R.

    2001-09-01

    This paper reveals performance capabilities of critical fiber optic components and photonic devices, which have potential applications in industrial, commercial and military systems and equipment. These devices are widely used in battlefield, space surveillance, medical diagnosis, crime fighting, and detection of terrorist activities. Performance capabilities of fiber optic components for possible applications in WDM and DWDM systems are summarized. Photonic devices and sensor for forward battlefield applications are identified with emphasis on performance and reliability. Performance parameters of Erbium-doped fiber amplifiers, Erbium doped waveguide amplifiers, and optical hybrid amplifiers comprising of EDFAs and Raman amplifiers are discussed withe emphasis on bandwidth, gain-flatness, data handling capability, channel capacity and cost-effectiveness.

  11. Spatial independent component analysis of functional brain optical imaging

    NASA Astrophysics Data System (ADS)

    Li, Yong; Li, Pengcheng; Liu, Yadong; Luo, Weihua; Hu, Dewen; Luo, Qingming

    2003-12-01

    This paper introduces the algorithm and the basic theory of Independent Component Analysis (ICA), and discusses how to choose the proper ICA model of the data by the characteristics of the underlying signals to be estimated. The Spatial ICA (SICA) is applied to model and analysis of the data in the experiment when the signals and noises are spatially dependent. The data acquired from the intrinsic optical signals which are caused by electricity stimulation to sciatic nerve of rat are analyzed by SICA. In the result, the active-related component of the signals and its time course can be separate, and the signals of heartbeat and respiration also can be separated.

  12. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOEpatents

    Kramer, Daniel P.

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements.

  13. Bulk Electro-Optical Polymer Component

    NASA Technical Reports Server (NTRS)

    Gottsche, Allan; Perry, Joseph W.; Perry, Kelly J.

    1992-01-01

    Polymer serves in high-voltage sensors and laser-beam modulators. Electro-optical polymer of relatively low cost formed as bulk specimen from azo dye 4-(4-nitrophenylazo)-N-ethyl, N-2-hydroxyethylaniline, also known as Disperse Red 1 or DR1, and transparent epoxy. More stable than prior electro-optical polymers based on DR1 and poly(methylmethacrylate). If polymer were sandwiched between electrodes, it provides direct measurement of high voltage via electro-optical effect. Has significant nonlinear optical properties. Material useful in microelectronics, micro-optics, integrated optics, and testing of materials. Polymer withstands electric fields up to 120 kV/cm.

  14. Integral window hermetic fiber optic components

    SciTech Connect

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1994-12-31

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  15. Advanced Integrated Optical Signal Processing Components.

    NASA Astrophysics Data System (ADS)

    Rastani, Kasra

    This research was aimed at the development of advanced integrated optical components suitable for devices capable of processing multi-dimensional inputs. In such processors, densely packed waveguide arrays with low crosstalk are needed to provide dissection of the information that has been partially processed. Waveguide arrays also expand the information in the plane of the processor while maintaining its coherence. Rib waveguide arrays with low loss, high mode confinement and highly uniform surface quality (660 elements, 8 μm wide, 1 μm high, and 1 cm long with 2 mu m separations) were fabricated on LiNbO _3 substrates through the ion beam milling technique. A novel feature of the multi-dimensional IO processor architecture proposed herein is the implementation of large area uniform outcoupling (with low to moderate outcoupling efficiencies) from rib waveguide arrays in order to access the third dimension of the processor structure. As a means of outcoupling, uniform surface gratings (2 μm and 4 μm grating periods, 0.05 μm high and 1 mm long) with low outcoupling efficiencies (of approximately 2-18%/mm) were fabricated on the nonuniform surface of the rib waveguide arrays. As a practical technique of modulating the low outcoupling efficiencies of the surface gratings, it was proposed to alter the period of the grating as a function of position along each waveguide. Large aperture (2.5 mm) integrated lenses with short positive focal lengths (1.2-2.5 cm) were developed through a modification of the titanium-indiffused proton exchanged (TIPE) technique. Such integrated lenses were fabricated by increasing the refractive index of the slab waveguides by the TIPE process while maintaining the refractive index of the lenses at the lower level of Ti:LiNbO _3 waveguide. By means of curvature reversal of the integrated lenses, positive focal length lenses have been fabricated while providing high mode confinement for the slab waveguide. The above elements performed as

  16. Active optical zoom system.

    PubMed

    Wang, Di; Wang, Qiong-Hua; Shen, Chuan; Zhou, Xin; Liu, Chun-Mei

    2014-11-01

    In this work, we propose an active optical zoom system. The zoom module of the system is formed by a liquid lens and a spatial light modulator (SLM). By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM panel, we can change the magnification of an image without mechanical moving parts and keep the output plane stationary. The magnification can change from 1/3 to 3/2 as the focal length of the encoded lens on the SLM changes from infinity to 24 cm. The proposed active zoom system is simple and flexible, and has widespread application in optical communications, imaging systems, and displays.

  17. A final look at LDEF electro-optic systems components

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1995-01-01

    Postrecovery characteristics of LDEF electro-optic components from the GTRI tray are compared with their prelaunch characteristics and with the characteristics of similar components from related experiments. Components considered here include lasers, light-emitting diodes, semiconducting radiation detectors and arrays, optical substrates, filters, and mirrors, and specialized coatings. Our understanding of the physical effects resulting from low earth orbit are described, and guidelines and recommendations for component and materials choices are presented.

  18. Fiber optics wavelength division multiplexing(components)

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.

    1985-01-01

    The long term objectives are to develop optical multiplexers/demultiplexers, different wavelength and modulation stable semiconductor lasers and high data rate transceivers, as well as to test and evaluate fiber optic networks applicable to the Space Station. Progress in each of the above areas is briefly discussed.

  19. Electro-optic component mounting device

    DOEpatents

    Gruchalla, M.E.

    1994-09-13

    A technique is provided for integrally mounting a device such as an electro-optic device in a transmission line to avoid series resonant effects. A center conductor of the transmission line has an aperture formed therein for receiving the device. The aperture splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface which is spaced apart from the center conductor with a dielectric material. One set of electrodes formed on the surface of the electro-optic device is directly connected to the center conductor and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface. The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage formed therein for passage of optical signals to an electro-optic device. 10 figs.

  20. Electro-optic component mounting device

    DOEpatents

    Gruchalla, Michael E.

    1994-01-01

    A technique is provided for integrally mounting a device such as an electro-optic device (50) in a transmission line to avoid series resonant effects. A center conductor (52) of the transmission line has an aperture (58) formed therein for receiving the device (50). The aperture (58) splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface (54), which is spaced apart from the center conductor with a dielectric material (56). One set of electrodes formed on the surface of the electro-optic device (50) is directly connected to the center conductor 52 and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface (54). The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage ( 60) formed therein for passage of optical signals to an electro-optic device.

  1. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOEpatents

    Kramer, D.P.

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.

  2. Recent developments in plastic optical fiber components for automotive applications

    NASA Astrophysics Data System (ADS)

    Cirillo, James R.; Jennings, Kurt L.; Lynn, Mark A.; Steele, Robert E.

    1993-02-01

    The majority of production applications using plastic optical fiber (POF) have been for illumination applications. These applications continue to be refined and new illumination applications continue to be introduced. Point-to-point data communication applications of POF are beginning to appear in production vehicles. New developments in connection systems and networking components are occurring rapidly. This paper discusses recently developed components for illumination and data communications. The illumination components were designed for three different applications: lamp monitoring, keyhole illumination, and PRNDL indication (gear shift). Components for data communications include two connection systems and two passive stars designed for networking. The two connections systems are a 16 electrical/1 optical system for point-to-point links and a 5 electrical/2 optical for two-way optical communications. The two stars are a 16 node star and 7 node star. Performance characteristics and design advantages are described for all components.

  3. Improved evaluation of optical depth components from Langley plot data

    NASA Technical Reports Server (NTRS)

    Biggar, S. F.; Gellman, D. I.; Slater, P. N.

    1990-01-01

    A simple, iterative procedure to determine the optical depth components of the extinction optical depth measured by a solar radiometer is presented. Simulated data show that the iterative procedure improves the determination of the exponent of a Junge law particle size distribution. The determination of the optical depth due to aerosol scattering is improved as compared to a method which uses only two points from the extinction data. The iterative method was used to determine spectral optical depth components for June 11-13, 1988 during the MAC III experiment.

  4. Optically active quantum dots

    NASA Astrophysics Data System (ADS)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  5. Characterization of optical components using contact and non-contact interferometry techniques: advanced metrology for optical components

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Conroy, Mike; Smith, Richard

    2012-10-01

    Advanced metrology plays an important role in the research, production and quality control of optical components. With surface finish, form error and other parameter specifications becoming more stringent, precision measurements are increasingly demanded by optics manufacturers and users. The modern metrologist now has both contact and noncontact measurement solutions available and a combination of these techniques now provides a more detailed understanding of optical components. Phase Grating Interferometry (PGI) with sub-nanometre vertical resolution and sub-micron lateral resolution can provide detailed characterization of a wide range of components including shallow and steep-sided optics. PGI is ideal for precision form measurement of a comprehensive range of lenses, moulds and other spherical or aspheric products. Because of the complex nature of these components, especially precision aspheric and asphero-diffractive optics, control of the form is vital to ensure they perform correctly. Recent hardware and software developments now make it possible to gain a better understanding and control of the form and function of this optics. Another change is the use of high speed 3D non-contact measurement of optics which is becoming more popular. Often scanning interferometric techniques such as coherence correlation interferometry (CCI) can be used to study components not suited to 2D contact analysis, including fragile surfaces and structured surfaces. Scanning interferometry can also be used to measure film thickness and uniformity of any coating present. In this paper the use of both PGI and CCI to measure optical lenses and coatings is discussed.

  6. Compact surface plasmonic waveguide component for integrated optical processor

    NASA Astrophysics Data System (ADS)

    Gogoi, Nilima; Sahu, Partha Pratim

    2015-06-01

    A compact surface plasmonic two mode interference waveguide component having silicon core and silver and GaAsInP side cladding is proposed for optical processor elements. Coupling operation is obtained by using index modulation of GaAsInP cladding with applied optical pulse.

  7. Specification of optical components using the power spectral density function

    SciTech Connect

    Lawson, J.K.; Wolfe, C.R.; Manes, K.R.; Trenholme, J.B.; Aikens, D.M.; English, R.E. Jr.

    1995-06-20

    This paper describes the use of Fourier techniques to characterize the wavefront of optical components, specifically, the use of the power spectral density, (PSD), function. The PSDs of several precision optical components will be shown. Many of the optical components of interest to us have square, rectangular or irregularly shaped apertures with major dimensions up-to 800 mm. The wavefronts of components with non-circular apertures cannot be analyzed with Zernicke polynomials since these functions are an orthogonal set for circular apertures only. Furthermore, Zernicke analysis is limited to treating low frequency wavefront aberrations; mid-spatial scale and high frequency error are expressed only as ``residuals.`` A more complete and powerful representation of the optical wavefront can be obtained by Fourier analysis in 1 or 2 dimensions. The PSD is obtained from the amplitude of frequency components present in the Fourier spectrum. The PSD corresponds to the scattered intensity as a function of scattering angle in the wavefront and can be used to describe the intensity distribution at focus. The shape of a resultant wavefront or the focal spot of a complex multi-component laser system can be calculated and optimized using the PSDs of individual optical components which comprise it.

  8. Lightweight Thermoformed Structural Components and Optics

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W.; Bradford, Larry J.

    2004-01-01

    A technique that involves the use of thermoformed plastics has been developed to enable the design and fabrication of ultra-lightweight structural components and mirrors for use in outer space. The technique could also be used to produce items for special terrestrial uses in which minimization of weight is a primary design consideration. Although the inherent strengths of thermoplastics are clearly inferior to those of metals and composite materials, thermoplastics offer a distinct advantage in that they can be shaped, at elevated temperatures, to replicate surfaces (e.g., prescribed mirror surfaces) precisely. Furthermore, multiple elements can be bonded into structures of homogeneous design that display minimal thermal deformation aside from simple expansion. The design aspect of the present technique is based on the principle that the deflection of a plate that has internal structure depends far more on the overall thickness than on the internal details; thus, a very stiff, light structure can be made from thin plastic that is heatformed to produce a sufficiently high moment of inertia. General examples of such structures include I beams and eggcrates.

  9. Integrated optical components in thin films of polymers

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey; Abdeldayem, Hossin; Venkateswarlu, Putcha; Teague, Zedric

    1995-01-01

    /sq.cm pump power) demonstrated emission spectrum narrowing near 616 nm peak with 18% power conversion slope efficiency. In this case emission spectrum modification was caused by the enhanced light absorption along the direction of propagating waveguide modes. Changing length, thickness, and other morphlogical waveguide parameters one can modify emission spectrum in predictable direction. The results show that polymeric waveguides, especially based on high temperature polymers such as Pl, can be used to produce a varietiy of active and passive silicon compatible integrated optical components for aerospace applications.

  10. Characterization of optical components for use in harsh environments

    NASA Astrophysics Data System (ADS)

    Bright, Michelle; Morelli, Gregg

    2006-08-01

    The characterization of mounted and/or bonded optical assemblies for survivability in harsh environments is crucial for the development of robust laser-optical firing systems. Customized mounts, bonded assemblies and packaging strategies were utilized for each of the laser resonator optics with the goal of developing and fielding a reliable initiation system for use in extreme conditions. Specific components were selected for initial testing based on past experience, material properties and optical construction. Shock, vibration and temperature testing was performed on three mounted optical components; polarizing cube beam splitters, Q-switch assemblies and xenon flashlamps. Previously, flashlamps of a solder-sealed construction type were successfully tested and characterized. This test regiment characterized the more fragile glass-to-metal seal constructed flashlamps. Components were shock-tested to a maximum impulse level of 5700 G's with a 1.1 millisecond long pulse. Vibration tests were performed to a maximum level of 15.5 grms for forty seconds in each of three axes. During each test, components were functionally tested and visually inspected at a specified point to verify survival. Temperature tests were performed over a range extending from a maximum of 75 degrees C to a minimum of -55 degrees C, allowing for a two hour soak at each temperature set point. Experimental results obtained from these tests will be discussed as will their impact on future component mounting strategies.

  11. Production Quantities Of Optical Components Using Diamond Machining

    NASA Astrophysics Data System (ADS)

    Devlin, A.

    1986-10-01

    Single point diamond machining can now be used as a very effective production tool for optical components. Materials which have been successfully machined so far include various aluminium alloys, OFHC copper, brass, acrylic, germanium and silicon. This paper describes some of the work done within the Optical Components Group of Ferranti. Components manufactured to date range from flats to off-axis paraboloids. It has been shown that discussions with the customer at the early design stage can lead to simpler production techniques and, subsequently, faster turnaround times. Fixture design is also very critical when working to the tolerances demanded within the optics industry. Finally, the most important factor is probably cost. Care must be taken to ensure that the required specification is realistic. Unnecessary demands will usually lead to an escalation in cost which will certainly not be acceptable to the customer.

  12. Diamond machining of micro-optical components and structures

    NASA Astrophysics Data System (ADS)

    Gläbe, Ralf; Riemer, Oltmann

    2010-05-01

    Diamond machining originates from the 1950s to 1970s in the USA. This technology was originally designed for machining of metal optics at macroscopic dimensions with so far unreached tolerances. During the following decades the machine tools, the monocrystalline diamond cutting tools, the workpiece materials and the machining processes advanced to even higher precision and flexibility. For this reason also the fabrication of small functional components like micro optics at a large spectrum of geometries became technologically and economically feasible. Today, several kinds of fast tool machining and multi axis machining operations can be applied for diamond machining of micro optical components as well as diffractive optical elements. These parts can either be machined directly as single or individual component or as mold insert for mass production by plastic replication. Examples are multi lens arrays, micro mirror arrays and fiber coupling lenses. This paper will give an overview about the potentials and limits of the current diamond machining technology with respect to micro optical components.

  13. Low-temperature hermetic sealing of optical fiber components

    DOEpatents

    Kramer, D.P.

    1996-10-22

    A method for manufacturing low-temperature hermetically sealed optical fiber components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber. 5 figs.

  14. Low-temperature hermetic sealing of optical fiber components

    DOEpatents

    Kramer, Daniel P.

    1996-10-22

    A method for manufacturing low-temperature hermetically sealed optical fi components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber.

  15. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  16. Performance evaluation of fiber optic components in nuclear plant environments

    SciTech Connect

    Hastings, M.C.; Miller, D.W.; James, R.W.

    1996-03-01

    Over the past several years, the Electric Power Research Institute (EPRI) has funded several projects to evaluate the performance of commercially available fiber optic cables, connective devices, light sources, and light detectors under environmental conditions representative of normal and abnormal nuclear power plant operating conditions. Future projects are planned to evaluate commercially available fiber optic sensors and to install and evaluate performance of instrument loops comprised of fiber optic components in operating nuclear power plant applications. The objective of this research is to assess the viability of fiber optic components for replacement and upgrade of nuclear power plant instrument systems. Fiber optic instrument channels offer many potential advantages: commercial availability of parts and technical support, small physical size and weight, immunity to electromagnetic interference, relatively low power requirements, and high bandwidth capabilities. As existing nuclear power plants continue to replace and upgrade I&C systems, fiber optics will offer a low-cost alternative technology which also provides additional information processing capabilities. Results to date indicate that fiber optics are a viable technology for many nuclear applications, both inside and outside of containments. This work is funded and manage& under the Operations & Maintenance Cost Control research target of EPRI`s Nuclear Power Group. The work is being performed by faculty and students in the Mechanical and Nuclear Engineering Departments and the staff of the Nuclear Reactor Laboratory of the Ohio State University.

  17. Nanolubrication of sliding components in adaptive optics used in microprojectors

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Lee, Hyungoo; Chaparala, Satish C.; Bhatia, Vikram

    2010-10-01

    Integrated microprojectors are being developed to project a large image on any surface chosen by the users. For a laser-based microprojector, a piezo-electric based adaptive optics unit is adopted in the green laser architecture. The operation of this unit depends on stick-slip motion between the sliding components. Nanolubrication of adaptive optics sliding components is needed to reduce wear and for smooth operation. In this study, a methodology to measure lubricant thickness distribution with a nanoscale resolution is developed. Friction, adhesion, and wear mechanisms of lubricant on the sliding components are studied. Effect of actual composite components, scan direction, scale effect, temperature, and humidity to correlate AFM data with the microscale device performance is studied.

  18. Qualification and Lessons Learned with Space Flight Fiber Optic Components

    NASA Technical Reports Server (NTRS)

    Ott, Melanie

    2007-01-01

    This presentation covers lessons learned during the design, development, manufacturing and qualification of space flight fiber optic components. Changes at NASA, including short-term projects and decreased budgets have brought about changes to vendors and parts. Most photonics for NASA needs are now commercial off the shelf (COTS) products. The COTS Tecnology Assurance approach for space flight and qualification plans are outlined.

  19. Optical and optomechanical ultralightweight C/SiC components

    NASA Astrophysics Data System (ADS)

    Papenburg, Ulrich; Pfrang, Wilhelm; Kutter, G. S.; Mueller, Claus E.; Kunkel, Bernd P.; Deyerler, Michael; Bauereisen, Stefan

    1999-11-01

    Optical and optomechanical structures based on silicon carbide (SiC) ceramics are becoming increasingly important for ultra- lightweight optical systems that must work in adverse environments. At IABG and Dornier Satellite Systems (DSS) in Munich, a special form of SiC ceramics carbon fiber reinforced silicon carbide (C/SiCR) has been developed partly under ESA and NASA contracts. C/SiCR is a light-weight, high- strength engineering material that features tunable mechanical and thermal properties. It offers exceptional design freedom due to its reduced brittleness and negligible volume shrinkage during processing in comparison to traditional, powder-based ceramics. Furthermore, its rapid fabrication process produces near-net-shape components using conventional NC machining/milling equipment and, thus, provides substantial schedule, cost, and risk savings. These characteristics allow C/SiCR to overcome many of the problems associated with more traditional optical materials. To date, C/SiCR has been used to produce ultra-lightweight mirrors and reflectors, antennas, optical benches, and monolithic and integrated reference structures for a variety of space and terrestrial applications. This paper describes the material properties, optical system and structural design aspects, the forming and manufacturing process including high-temperature joining technology, precision grinding and cladding techniques, and the performance results of a number of C/SiCR optical components we have built.

  20. Analysis of adaptive laser scanning optical system with focus-tunable components

    NASA Astrophysics Data System (ADS)

    Pokorný, P.; Mikš, A.; Novák, J.; Novák, P.

    2015-05-01

    This work presents a primary analysis of an adaptive laser scanner based on two-mirror beam-steering device and focustunable components (lenses with tunable focal length). It is proposed an optical scheme of an adaptive laser scanner, which can focus the laser beam in a continuous way to a required spatial position using the lens with tunable focal length. This work focuses on a detailed analysis of the active optical or opto-mechanical components (e.g. focus-tunable lenses) mounted in the optical systems of laser scanners. The algebraic formulas are derived for ray tracing through different configurations of the scanning optical system and one can calculate angles of scanner mirrors and required focal length of the tunable-focus component provided that the position of the focused beam in 3D space is given with a required tolerance. Computer simulations of the proposed system are performed using MATLAB.

  1. 77 FR 65713 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... COMMISSION Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products... the United States after importation of certain optoelectronic devices for fiber optic communications... importation of certain optoelectronic devices for fiber optic communications, components thereof, and...

  2. Active full-shell grazing-incidence optics

    NASA Astrophysics Data System (ADS)

    Roche, Jacqueline M.; Elsner, Ronald F.; Ramsey, Brian D.; O'Dell, Stephen L.; Kolodziejczak, Jeffrey J.; Weisskopf, Martin C.; Gubarev, Mikhail V.

    2016-09-01

    MSFC has a long history of developing full-shell grazing-incidence x-ray optics for both narrow (pointed) and wide field (surveying) applications. The concept presented in this paper shows the potential to use active optics to switch between narrow and wide-field geometries, while maintaining large effective area and high angular resolution. In addition, active optics has the potential to reduce errors due to mounting and manufacturing lightweight optics. The design presented corrects low spatial frequency error and has significantly fewer actuators than other concepts presented thus far in the field of active x-ray optics. Using a finite element model, influence functions are calculated using active components on a full-shell grazing-incidence optic. Next, the ability of the active optic to effect a change of optical prescription and to correct for errors due to manufacturing and mounting is modeled.

  3. Airborne molecular contamination: quality criterion for laser and optical components

    NASA Astrophysics Data System (ADS)

    Otto, Michael

    2015-02-01

    Airborne molecular contaminations (AMCs) have been recognized as a major problem in semiconductor fabrication. Enormous technical and financial efforts are made to remove or at least reduce these contaminations in production environments to increase yield and process stability. It can be shown that AMCs from various sources in laser devices have a negative impact on quality and lifetime of lasers and optical systems. Outgassing of organic compounds, especially condensable compounds were identified as the main source for deterioration of optics. These compounds can lead to hazing on surfaces of optics, degradation of coating, reducing the signal transmission or the laser signal itself and can enhance the probability of laser failure and damage. Sources of organic outgassing can be molding materials, resins, seals, circuit boards, cable insulation, coatings, paints and others. Critical compounds are siloxanes, aromatic amines and high boiling aromatic hydrocarbons like phthalates which are used as softeners in plastic materials. Nowadays all sensitive assembly steps are performed in controlled cleanroom environments to reduce risks of contamination. We will demonstrate a high efficient air filter concept to remove AMCs for production environments with special AMC filters and methods for the qualification and monitoring of these environments. Additionally, we show modern techniques and examples for the pre-qualification of materials. For assembled components, we provide sampling concepts for a routine measurement for process, component and product qualification. A careful selection of previously tested and certified materials and components is essential to guarantee the quality of lasers and optical devices.

  4. Micro-optical components and systems in polymers for optical networks and sensors

    NASA Astrophysics Data System (ADS)

    Teubner, Ulrich

    2004-09-01

    Miniaturization of precision optical components offers the opportunity for highly integrated high performance but lowcost devices for a wide field of applications. An increasing amount of examples could be found in the optical communication market and in sensor technology. Basing on several examples, we discuss actual developments in both fields.

  5. Highly precise and robust packaging of optical components

    NASA Astrophysics Data System (ADS)

    Leers, Michael; Winzen, Matthias; Liermann, Erik; Faidel, Heinrich; Westphalen, Thomas; Miesner, Jörn; Luttmann, Jörg; Hoffmann, Dieter

    2012-03-01

    In this paper we present the development of a compact, thermo-optically stable and vibration and mechanical shock resistant mounting technique by soldering of optical components. Based on this technique a new generation of laser sources for aerospace applications is designed. In these laser systems solder technique replaces the glued and bolted connections between optical component, mount and base plate. Alignment precision in the arc second range and realization of long term stability of every single part in the laser system is the main challenge. At the Fraunhofer Institute for Laser Technology ILT a soldering and mounting technique has been developed for high precision packaging. The specified environmental boundary conditions (e.g. a temperature range of -40 °C to +50 °C) and the required degrees of freedom for the alignment of the components have been taken into account for this technique. In general the advantage of soldering compared to gluing is that there is no outgassing. In addition no flux is needed in our special process. The joining process allows multiple alignments by remelting the solder. The alignment is done in the liquid phase of the solder by a 6 axis manipulator with a step width in the nm range and a tilt in the arc second range. In a next step the optical components have to pass the environmental tests. The total misalignment of the component to its adapter after the thermal cycle tests is less than 10 arc seconds. The mechanical stability tests regarding shear, vibration and shock behavior are well within the requirements.

  6. Laptop photothermal reflectance measurement instrument assembled with optical fiber components.

    PubMed

    Yarai, Atsushi; Nakanishi, Takuji

    2007-05-01

    In this article, we propose a laptop photothermal reflectance measurement instrument assembled with optical fiber components. The primary feature of this instrument is that all of the optical routes for the pumping and probing beams, as well as the beam sources using a laser diode, are composed of optical fiber and optical fiber components. With this configuration, the problems related to the technical shortcomings of the conventional instrument can be solved completely. Our proposed instrument is also appropriate for in situ measurement of the thermoproperties of thin film. The dimensions of our instrument's case are 400 mm wide, 250 mm deep, and 60 mm tall, and its weight is approximately 1 kg, containing the power supply for driving the laser diode of the pumping beam and electronics for the detection of photothermal reflectance. These are at least 120 and 150 smaller than the volume and weight of the conventional commercial instrument, respectively. Nevertheless, it is only necessary to prepare a synchronous detection instrument for signal recovery (e.g., lock-in amplifier) with our instrument. To evaluate our instrument's thermoproperty measurement capability, we measured the thermal diffusivity and thermal conductivity of Au thin film. The thermal diffusivity of 1.5-microm-thick Au film measured by our instrument matched previously reported values within a margin of error of a few percent.

  7. Degradation of electro-optic components aboard LDEF

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  8. Evaluation of systems and components for hybrid optical firing sets

    SciTech Connect

    Landry, M.J.; Rupert, J.W.; Mittas, A.

    1989-06-01

    High-energy density light appears to be a unique energy form that may be used to enhance the nuclear safety of weapon systems. Hybrid optical firing sets (HOFS) utilize the weak-link/strong-link exclusion region concept for nuclear safety; this method is similar to present systems, but uses light to transmit power across the exclusion region barrier. This report describes the assembling, operating, and testing of fourteen HOFS. These firing sets were required to charge a capacitor-discharge unit to 2.0 and 2.5 kV (100 mJ) in less than 1 s. First, we describe the components, the measurement techniques used to evaluate the components, and the different characteristics of the measured components. Second, we describe the HOFS studied, the setups used for evaluating them, and the resulting characteristics. Third, we make recommendations for improving the overall performance and suggest the best HOFS for packaging. 36 refs., 145 figs., 14 tabs.

  9. Reduced cost and improved figure of sapphire optical components

    NASA Astrophysics Data System (ADS)

    Walters, Mark; Bartlett, Kevin; Brophy, Matthew R.; DeGroote Nelson, Jessica; Medicus, Kate

    2015-10-01

    Sapphire presents many challenges to optical manufacturers due to its high hardness and anisotropic properties. Long lead times and high prices are the typical result of such challenges. The cost of even a simple 'grind and shine' process can be prohibitive. The high precision surfaces required by optical sensor applications further exacerbate the challenge of processing sapphire thereby increasing cost further. Optimax has demonstrated a production process for such windows that delivers over 50% time reduction as compared to traditional manufacturing processes for sapphire, while producing windows with less than 1/5 wave rms figure error. Optimax's sapphire production process achieves significant improvement in cost by implementation of a controlled grinding process to present the best possible surface to the polishing equipment. Following the grinding process is a polishing process taking advantage of chemical interactions between slurry and substrate to deliver excellent removal rates and surface finish. Through experiments, the mechanics of the polishing process were also optimized to produce excellent optical figure. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. Through specially developed polishing slurries, the peak-to-valley figure error of spherical sapphire parts is reduced by over 80%.

  10. Optical Studies of Active Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    This grant was to support optical studies of comets close enough to the sun to be outgassing. The main focus of the observations was drawn to the two extraordinarily bright comets Hyakutake and Hale-Bopp, but other active comets were also studied in detail during the period of funding. Major findings (all fully published) under this grant include: (1) Combined optical and submillimeter observations of the comet/Centaur P/Schwassmann-Wachmann 1 were used to study the nature of mass loss from this object. The submillimeter observations show directly that the optically prominent dust coma is ejected by the sublimation of carbon monoxide. Simultaneous optical-submillimeter observations allowed us to test earlier determinations of the dust mass loss rate. (2) We modelled the rotation of cometary nuclei using time-resolved images of dust jets as the primary constraint. (3) We obtained broad-band optical images of several comets for which we subsequently attempted submillimeter observations, in order to test and update the cometary ephemerides. (4) Broad-band continuum images of a set of weakly active comets and, apparently, inactive asteroids were obtained in BVRI using the University of Hawaii 2.2-m telescope. These images were taken in support of a program to test the paradigm that many near-Earth asteroids might be dead or dormant comets. We measured coma vs. nucleus colors in active comets (finding that coma particle scattering is different from, and cannot be simply related to, nucleus color). We obtained spectroscopic observations of weakly active comets and other small bodies using the HIRES spectrograph on the Keck 10-m telescope. These observation place sensitive limits to outgassing from these bodies, aided by the high (40,000) spectral resolution of HIRES.

  11. Thin film technologies for optoelectronic components in fiber optic communication

    NASA Astrophysics Data System (ADS)

    Perinati, Agostino

    1998-02-01

    will grow at an annual average rate of 22 percent from 1.3 million fiber-km in 1995 to 3.5 million fiber-km in 2000. The worldwide components market-cable, transceivers and connectors - 6.1 billion in 1994, is forecasted to grow and show a 19 percent combined annual growth rate through the year 2000 when is predicted to reach 17.38 billion. Fiber-in-the-loop and widespread use of switched digital services will dominate this scenario being the fiber the best medium for transmitting multimedia services. As long as communication will partially replace transportation, multimedia services will push forward technology for systems and related components not only for higher performances but for lower cost too in order to get the consumers wanting to buy the new services. In the long distance transmission area (trunk network) higher integration of electronic and optoelectronic functions are required for transmitter and receiver in order to allow for higher system speed, moving from 2.5 Gb/s to 5, 10, 40 Gb/s; narrow band wavelength division multiplexing (WDM) filters are required for higher transmission capacity through multiwavelength technique and for optical amplifier. In the access area (distribution network) passive components as splitters, couplers, filters are needed together with optical amplifiers and transceivers for point-to-multipoint optical signal distribution: main issue in this area is the total cost to be paid by the customer for basic and new services. Multimedia services evolution, through fiber to the home and to the desktop approach, will be mainly affected by the availability of technologies suitable for component consistent integration, high yield manufacturing processes and final low cost. In this paper some of the optoelectronic components and related thin film technologies expected to mainly affect the fiber optic transmission evolution, either for long distance telecommunication systems or for subscriber network, are presented.

  12. Picosecond laser welding of optical to metal components

    NASA Astrophysics Data System (ADS)

    Carter, Richard M.; Troughton, Michael; Chen, Jinanyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-03-01

    We report on practical, industrially relevant, welding of optical components to themselves and aluminum alloy components. Weld formation is achieved through the tight focusing of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. By selecting suitable surface preparation, clamping and laser parameters, the plasma can be confined, even with comparatively rough surfaces, by exploiting the melt properties of the glass. The short interaction time allows for a permanent weld to form between the two materials with heating limited to a region ~300 µm across. Practical application of these weld structures is typically limited due to the induced stress within the glass and, critically, the issues surrounding post-weld thermal expansion. We report on the measured strength of the weld, with a particular emphasis on laser parameters and surface preparation.

  13. 78 FR 16296 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products... optic communications, components thereof, and products containing the same by reason of infringement...

  14. Different ways to active optical frequency standards

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Zhang, Xiaogang; Chen, Jingbiao

    2016-06-01

    Active optical frequency standard, or active optical clock, is a new concept of optical frequency standard, where a weak feedback with phase coherence information in optical bad-cavity limitation is formed, and the continuous self-sustained coherent stimulated emission between two atomic transition levels with population inversion is realized. Through ten years of both theoretical and experimental exploration, the narrow linewidth and suppression of cavity pulling effect of active optical frequency standard have been initially proved. In this paper, after a simple review, we will mainly present the most recent experimental progresses of active optical frequency standards in Peking University, including 4-level cesium active optical frequency standards and active Faraday optical frequency standards. The future development of active optical frequency standards is also discussed.

  15. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  16. Optical components and systems for synchrotron radiation: an introduction

    SciTech Connect

    Howells, M.R.

    1981-01-01

    A brief description of the nature and origins of synchrotron radiation is given with special reference to its geometrical optical properties and the use of storage rings as light souces. The geographical distribution of SR sources in the world is reviewed and some discussion of the level of experimental activity is given. Estimates of future levels of experimental activity are also made both for existing storage rings and those planned for the future. Calculations of the approximate number of mirrors and gratings that will be required are offered. Some general considerations are outlined showing how synchrotron radiation optical systems couple to the light source and indicating which parameters need to be maximized for best overall performance.

  17. Improved stress prediction in adhesive bonded optical components

    NASA Astrophysics Data System (ADS)

    de Vreugd, J.; te Voert, M. J. A.; Nijenhuis, J. R.; Pijnenburg, J. A. C. M.; Tabak, E.

    2012-09-01

    Adhesives are widely used in optomechanical structures for bonding optical components to their mounts. The main advantage of using adhesives is the excellent strength to weight ratio. Adhesive bonding is seen as a desirable joining technique as it allows for greater flexibility in design. A disadvantage of adhesives however is the limited dimensional stability and loadability. To design stable optical mounts, accurate prediction of stresses and deformation is therefore needed. Adhesives show strong temperature and loading history dependent behavior. Viscoelastic material models are needed for accurate prediction of stresses and strains in bonded joints. However, representative material data for adhesives is difficult to find. In this research, an experimental framework is build up to determine relevant mechanical properties of adhesives for improving stress and deformation prediction. This paper shows the results of the characterization experiments and modeling techniques. Also the implementation of material models in finite element code is briefly discussed. The obtained models are used in the mount design in the EUCLID and TROPOMI programs as described in “Ultra stable isostatic bonded optical mount design for harsh environments, J.A.C.M Pijnenburg et al” (this conference).

  18. 78 FR 64009 - Certain Optical Disc Drives, Components Thereof, and Products Containing the Same; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... COMMISSION Certain Optical Disc Drives, Components Thereof, and Products Containing the Same; Institution of... certain optical disc drives, components thereof, and products containing the same by reason of... sale within the United States after importation of certain optical disc drives, components thereof,...

  19. Installation and through-life operation issues for fiber optic components and systems in aircraft applications

    NASA Astrophysics Data System (ADS)

    White, Henry; Proudley, Geoff; Charlton, D. Wez; Kazemi, Alex A.

    2012-06-01

    Installation of fiber optic communication systems on aircraft is very challenging, particularly in military fighters requiring tight confinement. The issues to be addressed include developing an installation approach compatible with maintenance and through-life support whilst having affordable upfront costs. This applies both to the passive harness components (cable and connectors) and to active transceivers. In this paper we discuss the challenges for cable, connector, and transceiver installations and the system implications for civil and military platforms. This paper further demonstrates how an innovative approach to sub-system testing can help to de-risk technology by simulating installation environments in the laboratory and verifying through-life performance. Furthermore, testing of fiber optic cable in the laboratory with prototype components, representative cable lengths, routing and number of connector breaks, and even harness abuse is elaborated upon. A technique was devised using the BAE Systems Optical System and Component Assessment Rig (OSCAR) to evaluate through life operation. This report also shows prototype testing for typical fiber optic harnesses (during build) and the environmental conditions faced on aerospace platforms. Transceiver installation options (integrated onto processor boards, use of daughter PCBs, active connectors and active cables) are discussed and sub-system test setups are described. Results show how test data is used to assess subsystems: passive components have been tested over the -55 °C to +125 °C temperature range and active components over the -40 °C to +80 °C region. In addition, Gigabit Ethernet data is shown operating over the representative hardware with the results tabulated and shown in this paper. The implications for anticipated aircraft installations are summarized.

  20. Validation of Commercial Fiber Optic Components for Aerospace Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2005-01-01

    Full qualification for commercial photonic parts as defined by the Military specification system in the past, is not feasible. Due to changes in the photonic components industry and the Military specification system that NASA had relied upon so heavily in the past, an approach to technology validation of commercial off the shelf parts had to be devised. This approach involves knowledge of system requirements, environmental requirements and failure modes of the particular components under consideration. Synthesizing the criteria together with the major known failure modes to formulate a test plan is an effective way of establishing knowledge based "qualification". Although this does not provide the type of reliability assurance that the Military specification system did in the past, it is an approach that allows for increased risk mitigation. The information presented will introduce the audience to the technology validation approach that is currently applied at NASA for the usage of commercial-off-the-shelf (COTS) fiber optic components for space flight environments. The focus will be on how to establish technology validation criteria for commercial fiber products such that continued reliable performance is assured under the harsh environmental conditions of typical missions. The goal of this presentation is to provide the audience with an approach to formulating a COTS qualification test plan for these devices. Examples from past NASA missions will be discussed.

  1. Optical design and active optics methods in astronomy

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2013-03-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis.

  2. Characterization of the optical parameters of high aspect ratio polymer micro-optical components

    NASA Astrophysics Data System (ADS)

    Krajewski, Rafal; Van Erps, Jurgen; Wissmann, Markus; Kujawinska, Malgorzata; Parriaux, Olivier; Tonchev, S.; Mohr, Jurgen; Thienpont, Hugo

    2008-04-01

    Over the last decades the significant grow of interest of photonics devices is observed in various fields of applications. Due to the market demands, the current research studies are focused on the technologies providing miniaturized, reliable low-cost micro-optical systems, particularly the ones featuring the fabrication of high aspect ratio structures. A high potential of these technologies comes from the fact that fabrication process is not limited to single optical components, but entire systems integrating sets of elements could be fabricated. This could in turn result in a significant saving on the assembly and packaging costs. We present a brief overview of the most common high aspect ratio fabrication technologies for micro-optical components followed by some characterization studies of these techniques. The sidewall quality and internal homogeneity will be considered as the most crucial parameters, having an impact on the wavefront propagation in the fabricated components. We show the characterization procedure and measurement results for components prototyped with Deep Proton Writing and glass micromachining technology replicated with Hot Embossing and Elastomeric Mould Vacuum Casting technology. We discuss the pros and cons for using these technologies for the production of miniaturized interferometers blocks. In this paper we present the status of our research on the new technology chain and we show the concept of microinterferometers to be fabricated within presented technology chain.

  3. Silica-based integrated optic components for telecommunications applications

    NASA Astrophysics Data System (ADS)

    Allen, James J.; Shipley, Simon P.; Nourshargh, Noorallah

    1993-05-01

    Waveguide devices have been produced comprising germania-doped silica cores and silica claddings on silica substrates, using microwave plasma assisted chemical vapor deposition and reactive-ion etching. This all-silica structure offers the maximum compatibility between fibers and waveguides in terms of both optical and physical properties. The all-silica philosophy is extended to the use of laser-cut silica V grooves in the construction of input/output fiber arrays. An important features of this approach is that it enables fiber/waveguide interfacing by CO2 laser welding of the respective silica blocks without the introduction of any significant additional loss. Both the waveguide fabrication and laser-welding processes are well suited to large-scale production of low-cost components.

  4. Penetrating radiation impact on NIF final optic components

    SciTech Connect

    Marshall, C.D.; Speth, J.A.; DeLoach, L.D.; Payne, S.A.

    1996-10-15

    Goal of the National Ignition Facility (NIF) is to achieve thermonuclear ignition in a laboratory environment in inertial confinement fusion (ICF). This will enable NIF to service the DOE stockpile stewardship management program, inertial fusion energy goals, and advance scientific frontiers. All of these applications will make use of the extreme conditions that the facility will create in the target chamber. In the case of a prospected 20 MJ yield scenario, NIF will produce 10{sup 19} neutrons with DT fusion 14 MeV energy per neutron. There will also be high-energy x rays as well as solid, liquid, and gaseous target debris produced either directly or indirectly by the inertial confinement fusion process. A critical design issue is the protection of the final optical components as well as sophisticated target diagnostics in such a harsh environment.

  5. Polarization optical components of the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Sueoka, Stacey Ritsuyo

    2016-08-01

    The Daniel K Inouye Solar Telescope (DKIST), when completed in 2019 will be the largest solar telescope built to date. DKIST will have a suite of first light polarimetric instrumentation requiring broadband polarization modulation and calibration optical elements. Compound crystalline retarders meet the design requirements for efficient modulators and achromatic calibration retarders. These retarders are the only possible large diameter optic that can survive the high flux, 5 arc minute field, and ultraviolet intense environment of a large aperture solar telescope at Gregorian focus. This dissertation presents work performed for the project. First, I measured birefringence of the candidate materials necessary to complete designs. Then, I modeled the polarization effects with three-dimensional ray-tracing codes as a function of angle of incidence and field of view. Through this analysis I learned that due to the incident converging F/13 beam on the calibration retarders, the previously assumed linear retarder model fails to account for effects above the project polarization specifications. I discuss modeling strategies such as Mueller matrix decompositions and simplifications of those strategies while still meeting fit error requirements. Finally, I present characterization techniques and how these were applied to prototype components.

  6. Automated packaging platform for low-cost high-performance optical components manufacturing

    NASA Astrophysics Data System (ADS)

    Ku, Robert T.

    2004-05-01

    Delivering high performance integrated optical components at low cost is critical to the continuing recovery and growth of the optical communications industry. In today's market, network equipment vendors need to provide their customers with new solutions that reduce operating expenses and enable new revenue generating IP services. They must depend on the availability of highly integrated optical modules exhibiting high performance, small package size, low power consumption, and most importantly, low cost. The cost of typical optical system hardware is dominated by linecards that are in turn cost-dominated by transmitters and receivers or transceivers and transponders. Cost effective packaging of optical components in these small size modules is becoming the biggest challenge to be addressed. For many traditional component suppliers in our industry, the combination of small size, high performance, and low cost appears to be in conflict and not feasible with conventional product design concepts and labor intensive manual assembly and test. With the advent of photonic integration, there are a variety of materials, optics, substrates, active/passive devices, and mechanical/RF piece parts to manage in manufacturing to achieve high performance at low cost. The use of automation has been demonstrated to surpass manual operation in cost (even with very low labor cost) as well as product uniformity and quality. In this paper, we will discuss the value of using an automated packaging platform.for the assembly and test of high performance active components, such as 2.5Gb/s and 10 Gb/s sources and receivers. Low cost, high performance manufacturing can best be achieved by leveraging a flexible packaging platform to address a multitude of laser and detector devices, integration of electronics and handle various package bodies and fiber configurations. This paper describes the operation and results of working robotic assemblers in the manufacture of a Laser Optical Subassembly

  7. Optical methods for measurements of surface shape in optical components for high power laser beam forming

    NASA Astrophysics Data System (ADS)

    Józwik, Michał; Trusiak, Maciej; LiŻewski, Kamil; Martínez-Carranza, Juan; Voznesenskiy, Nikolay; Kujawińska, Małgorzata

    2016-12-01

    The paper presents modifications of full-field optical methods commonly used to test the surface quality of optical components used for forming a high power laser beam and tests of a final wavefront. The modifications in reference to surface measurements rely on implementation of the novel fringe pattern processing methods including the quality improvement of initial interferogram and analysis of a reconstructed phase based on Hilbert-Huang transform aided by the principal component analysis. Also the Point Diffraction Interferometer as the efficient tool for high quality measurements of elements with high NA is introduced. In reference to a wavefront quality measurements two solutions are discussed: the use of a lateral shear interferometer and the system employing Transport of Intensity Equation method. The pros and cons for both methods are discussed.

  8. Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level.

    PubMed

    Killow, Christian J; Fitzsimons, Ewan D; Hough, James; Perreur-Lloyd, Michael; Robertson, David I; Rowan, Sheila; Ward, Henry

    2013-01-10

    A method for constructing quasimonolithic, precision-aligned optical assemblies is presented. Hydroxide-catalysis bonding is used, adapted to allow optimization of component fine alignment prior to the bond setting. We demonstrate the technique by bonding a fused silica mirror substrate to a fused silica baseplate. In-plane component placement at the submicrometer level is achieved, resulting in angular control of a reflected laser beam at the sub-10-μrad level. Within the context of the LISA Pathfinder mission, the technique has been demonstrated as suitable for use in space-flight applications. It is expected that there will also be applications in a wide range of areas where accuracy, stability, and strength of optical assemblies are important.

  9. 78 FR 55292 - Certain Optical Disc Drives, Components Thereof, and Products Containing the Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... COMMISSION Certain Optical Disc Drives, Components Thereof, and Products Containing the Same; Notice of... ] Commission has received a complaint entitled Certain Optical Disc Drives, Components Thereof, and Products..., and the sale within the United States after importation of certain optical disc drives,...

  10. Space Flight Requirements for Fiber Optic Components: Qualification Testing and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2006-01-01

    This viewgraph presentation reviews the qualification testing requirements for Fiber Optic Components used during space flight. Since most components for space flight fiber optic components are now commercial of the shelf (COTS) products, and the changes at Goddard Space Flight Center, such as short term projects, and low budgets and other changes, have made full qualification of Fiber Optic Components not only too expensive also impossible. This presentation reviews the environmental parameters, the testing and or testing requirements of some optical components on board some NASA satellites.

  11. Method of making an integral window hermetic fiber optic component

    DOEpatents

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1996-11-12

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam. 9 figs.

  12. Method of making an integral window hermetic fiber optic component

    DOEpatents

    Dalton, Rick D.; Kramer, Daniel P.; Massey, Richard T.; Waker, Damon A.

    1996-11-12

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  13. Hybrid solar collector using nonimaging optics and photovoltaic components

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  14. Achromatic registration of quadrature components of the optical spectrum in spectral domain optical coherence tomography

    SciTech Connect

    Shilyagin, P A; Gelikonov, G V; Gelikonov, V M; Moiseev, A A; Terpelov, D A

    2014-07-31

    We have thoroughly investigated the method of simultaneous reception of spectral components with the achromatised quadrature phase shift between two portions of a reference wave, designed for the effective suppression of the 'mirror' artefact in the resulting image obtained by means of spectral domain optical coherence tomography (SD OCT). We have developed and experimentally tested a phase-shifting element consisting of a beam divider, which splits the reference optical beam into the two beams, and of delay lines being individual for each beam, which create a mutual phase difference of π/2 in the double pass of the reference beam. The phase shift achromatism over a wide spectral range is achieved by using in the delay lines the individual elements with different dispersion characteristics. The ranges of admissible adjustment parameters of the achromatised delay line are estimated for exact and inexact conformity of the geometric characteristics of its components to those calculated. A possibility of simultaneous recording of the close-to-quadrature spectral components with a single linear photodetector element is experimentally confirmed. The suppression of the artefact mirror peak in the OCT-signal by an additional 9 dB relative to the level of its suppression is experimentally achieved when the air delay line is used. Two-dimensional images of the surface positioned at an angle to the axis of the probe beam are obtained with the correction of the 'mirror' artefact while maintaining the dynamic range of the image. (laser biophotonics)

  15. Quasi-optical active antennas

    NASA Astrophysics Data System (ADS)

    Moussessian, Alina

    Quasi-optical power combiners such as quasi-optical grids provide an efficient means of combining the output power of many solid-state devices in free space. Unlike traditional power combiners no transmission lines are used, therefore, high output powers with less loss can be achieved at higher frequencies. This thesis investigates four different active antenna grids. The first investigation is into X-band High Electron Mobility Transistor (HEMT) grid amplifiers. Modelling and stability issues of these grids are discussed, and gain and power measurements are presented. A grid amplifier with a maximum efficiency of 22.5% at 10 GHz and a peak gain of 11dB is presented. The second grid is a varactor grid used as a positive feedback network for a grid amplifier to construct a tunable grid oscillator. Reflection measurements for the varactor grid show a tuning range of 1.2 GHz. The third grid is a self- complementary grid amplifier. The goal is to design a new amplifier with a unit cell structure that can be directly modelled using CAD tools. The properties of self- complementary structures are studied and used in the design of this new amplifier grid. The fourth grid is a 12 x 12 terahertz Schottky grid frequency doubler with a measured output power of 24 mW at 1 THz for 3.1-μs 500-GHz input pulses with a peak power of 47 W. A passive millimeter-wave travelling-wave antenna built on a dielectric substrate is also presented. Calculations indicate that the antenna has a gain of 15 dB with 3-dB beamwidths of 10o in the H-plane and 64o in the E-plane. Pattern measurements at 90 GHz support the theory. The antenna is expected to have an impedance in the range of 50/Omega to 80/Omega.

  16. Conceptual design of an on-board optical processor with components

    NASA Technical Reports Server (NTRS)

    Walsh, J. R.; Shackelford, R. G.

    1977-01-01

    The specification of components for a spacecraft on-board optical processor was investigated. A space oriented application of optical data processing and the investigation of certain aspects of optical correlators were examined. The investigation confirmed that real-time optical processing has made significant advances over the past few years, but that there are still critical components which will require further development for use in an on-board optical processor. The devices evaluated were the coherent light valve, the readout optical modulator, the liquid crystal modulator, and the image forming light modulator.

  17. Measurement of optical activity of honey bee

    NASA Astrophysics Data System (ADS)

    Ortiz-Gutiérrez, Mauricio; Olivares-Pérez, Arturo; Salgado-Verduzco, Marco Antonio; Ibarra-Torres, Juan Carlos

    2016-03-01

    Optical activity of some substances, such as chiral molecules, often exhibits circular birefringence. Circular birefringence causes rotation of the vibration plane of the plane polarized light as it passes through the substance. In this work we present optical characterization of honey as function of the optical activity when it is placed in a polariscope that consists of a light source and properly arranged polarizing elements.

  18. Coherent optical component technologies for WDM transmission systems

    NASA Astrophysics Data System (ADS)

    Mino, S.; Murata, K.; Saida, T.; Ogawa, I.

    2011-01-01

    We review our recent progress toward 100 Gbps and beyond, focusing on integrated optical devices. Topics include our recently developed integrated optical front-ends for 100 Gbps PDM-QPSK based on multi-channel micro collimator optics and hermetically sealed O/E converters, and PLC-LiNbO3 hybrid optical modulators for 100 Gbps PDM-QPSK. We also describe our recent work on exceeding 100 Gbps, including 64 QAM modulators, modulation-level-selectable modulators, and high-speed digital-analog converter ICs for future multi-level transmissions.

  19. Selectively deuterated and optically active cyclic ethers

    SciTech Connect

    Kawakami, Y.; Asai, T.; Umeyama, K.; Yamashita, Y.

    1982-08-27

    The synthesis of selectively deuterated epihalohydrins (F, Cl, Br, I) and 3,3-bis(chloromethyl)-d/sub 2/)oxetane and some observations on the stereochemistry of each transformation are reported. Further, the synthesis of optically active epihalohydrins, especially the optically active epifluorohydrin, from (S)-glycerol 1,2-acetonide ((S)-2), using mainly KX-18-CR-6 (X = F, Br, I), is reported. This is the first report on the synthesis of optically active epifluorohydrin. The direct halogenation of the presynthesized optically active epichlorohydrin with the same reagents gave the racemized products. The selectively deuterated or optically active compounds reported herein are expected to find a variety of uses in organic chemistry.

  20. Optical packaging activities at Institute of Microelectronics (IME), Singapore

    NASA Astrophysics Data System (ADS)

    Teo, Keng-Hwa; Sudharsanam, Krishnamachari; Pamidighantam, Ramana V.; Yeo, Yongkee; Iyer, Mahadevan K.

    2002-08-01

    The development of optoelectronic components for gigabit Ethernet communications is converging towards access networks where the cost of device makes a significant impact on the market acceptance. Device fabrication and packaging cost have to be brought down with novel assembly and packaging methods. Singapore has established a reputation in semiconductor device development and fabrication with excellent process and packaging facilities. Institute of Microelectronics (IME) was founded in 1991 to add value to the Singapore electronics industry. IME is involved in the development of active and passive photonics components using Silicon and polymer materials. We present a brief report on the development activities taking place in the field of optical component packaging at IME in recent years. We present a review of our competence and some of the optical device packaging activities that are being undertaken.

  1. New Integrated Optical Components for Broadband Communication Systems

    DTIC Science & Technology

    2002-04-01

    2085- 2092, 1996. W. Yang, A. Gopinath, Design of planar optical waveguide corners with turning mirrors, 1996 Integrated Photonics Research Meeting... Integrated Photonics Research Meeting, July 1999, Santa Barbarra, CA. William Berglund, Anand Gopinath, WKB analysis of optical waveguide bends, Integrated ...International Microwave Symposium, Boston, MA, June 2000. Prakash Koonath, Anand Gopinath: GaAs Polarization convertor, Integrated Photonics Research Meeting

  2. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated

  3. Determination of tea components with antioxidant activity.

    PubMed

    Cabrera, Carmen; Giménez, Rafael; López, M Carmen

    2003-07-16

    Levels of essential elements with antioxidant activity, as well as catechins, gallic acid, and caffeine levels, in a total of 45 samples of different teas commercialized in Spain have been evaluated. Chromium, manganese, selenium, and zinc were determined in the samples mineralized with HNO(3) and V(2)O(5), using ETAAS as the analytical technique. The reliability of the procedure was checked by analysis of a certified reference material. Large variations in the trace element composition of teas were observed. The levels ranged from 50.6 to 371.4 ng/g for Cr, from 76.1 to 987.6 microg/g for Mn, from 48.5 to 114.6 ng/g for Se, and from 56.3 to 78.6 ng/g for Zn. The four major catechins [(-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epicatechin (EC)], gallic acid (GA), and caffeine were simultaneously determined by a simple and fast HPLC method using a photodiode array detector. In all analyzed samples, EGCG ranged from 1.4 to 103.5 mg/g, EGC from 3.9 to 45.3 mg/g, ECG from 0.2 to 45.6 mg/g, and EC ranged from 0.6 to 21.2 mg/g. These results indicated that green tea has a higher content of catechins than both oolong and fermented teas (red and black teas); the fermentation process during tea manufacturing reduces the levels of catechins significantly. Gallic acid content ranged from 0.039 to 6.7 mg/g; the fermentation process also elevated remarkably gallic acid levels in black teas (mean level of 3.9 +/- 1.5 mg/g). The amount of caffeine in the analyzed samples ranged from 7.5 to 86.6 mg/g, and the lower values were detected in green and oolong teas. This study will be useful for the appraisal of trace elements and antioxidant components in various teas, and it will also be of interest for people who like drinking this beverage.

  4. NASA SBIR Subtopic S2.04 "Advanced Optical Components"

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2009-01-01

    The primary purpose of this subtopic is to develop and demonstrate technologies to manufacture ultra-low-cost precision optical systems for very large x-ray, UV/optical or infrared telescopes. Potential solutions include but are not limited to direct precision machining, rapid optical fabrication, slumping or replication technologies to manufacture 1 to 2 meter (or larger) precision quality mirror or lens segments (either normal incidence for uv/optical/infrared or grazing incidence for x-ray). An additional key enabling technology for UV/optical telescopes is a broadband (from 100 nm to 2500 nm) high-reflectivity mirror coating with extremely uniform amplitude and polarization properties which can be deposited on 1 to 3 meter class mirror.

  5. Measurement of wavefront structure from large aperture optical components by phase shifting interferometry

    SciTech Connect

    Wolfe, C.R.; Lawson, J.K.; Kellam, M.; Maney, R.T.; Demiris, A.

    1995-05-12

    This paper discusses the results of high spatial resolution measurement of the transmitted or reflected wavefront of optical components using phase shifting interferometry with a wavelength of 6328 {angstrom}. The optical components studied range in size from approximately 50 mm {times} 100 mm to 400 mm {times} 750 mm. Wavefront data, in the form of 3-D phase maps, have been obtained for three regimes of scale length: ``micro roughness``, ``mid-spatial scale``, and ``optical figure/curvature.`` Repetitive wavefront structure has been observed with scale lengths from 10 mm to 100 mm. The amplitude of this structure is typically {lambda}/100 to {lambda}/20. Previously unobserved structure has been detected in optical materials and on the surfaces of components. We are using this data to assist in optimizing laser system design, to qualify optical components and fabrication processes under study in our component development program.

  6. Arbitrary GRIN component fabrication in optically driven diffusive photopolymers.

    PubMed

    Urness, Adam C; Anderson, Ken; Ye, Chungfang; Wilson, William L; McLeod, Robert R

    2015-01-12

    We introduce a maskless lithography tool and optically-initiated diffusive photopolymer that enable arbitrary two-dimensional gradient index (GRIN) polymer lens profiles. The lithography tool uses a pulse-width modulated deformable mirror device (DMD) to control the 8-bit gray-scale intensity pattern on the material. The custom polymer responds with a self-developing refractive index profile that is non-linear with optical dose. We show that this nonlinear material response can be corrected with pre-compensation of the intensity pattern to yield high fidelity, optically induced index profiles. The process is demonstrated with quadratic, millimeter aperture GRIN lenses, Zernike polynomials and GRIN Fresnel lenses.

  7. Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement.

    PubMed

    Gu, Guiru; Vaillancourt, Jarrod; Lu, Xuejun

    2014-10-20

    In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (E(x)) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than E(z) and thus is determined to be the major near-field component to the QDIP enhancement.

  8. Extracting S-parameters of bilateral electro-optic network for lightwave component analyzer calibration

    NASA Astrophysics Data System (ADS)

    Frolov, D.; Levchenko, A.; Korotkov, K.

    2015-11-01

    A new method for extracting E/O and O/E S-parameters of a bilateral electro-optic network (BEON) is theoretically proposed. It is based on measuring reflection coefficients from three optical loads: an absorber and two mirrors. This technique includes two series of reflections measurements: first when loads are connected to optical port of BEON directly and second when loads are connected in series with optical waveguide of fixed length. Using two BEONs and this calibration technique allows to make calibrated lightwave measurements with a standard microwave network analyzer without using additional electro-optical equipment such as lightwave component analyzer or optical heterodyne techniques.

  9. Cultural Components of Physically Active Schools

    ERIC Educational Resources Information Center

    Rickwood, Greg

    2015-01-01

    It is well known that a large majority of school-age children and adolescents are not active enough to gain the physical and psychological benefits associated with regular moderate-to-vigorous physical activity. Schools can play a pivotal role in reversing this trend due to the time students spend in this setting. The purpose of this article is to…

  10. High resolution measurement of water levels in optical components

    NASA Astrophysics Data System (ADS)

    Murrieta-Rico, Fabian N.; Petranovskii, Vitalii; Sergiyenko, Oleg; Hernandez-Balbuena, Daniel; Raymond-Herrera, Oscar

    2016-09-01

    Systems for optical analysis use vacuum chambers, where low pressures are reached. Remaining water molecules are the prevalent contaminant in high vacuum chambers. For this reason measurement of water levels is an important task that allows correct equipment operation. In this work, a different approach is presented for detecting and quantifying the water molecules inside a the vacuum chamber used in optical systems. A zeolite coated quartz crystal microbalance is used for detecting the water molecules, and the change in the resonance frequency is measured using a novel technique known as the principle of rational approximations. Theoretical results show how nanograms of adsorbed molecules are measured, and the number of molecules are quantified.

  11. Mid-Range Spatial Frequency Errors in Optical Components.

    DTIC Science & Technology

    1983-01-01

    pattern. Malacara (1978, pp. 356-359) describes the diffraction intensity distri- bution on either side of the focal plane and presents a diagram of the...Leoble and Co., Ltd., Aug. 1963. Kintner, Eric C., and Richard M. Sillitto. "A New Analytic Method for Computing the Optical Transfer Function." OPTICA ...2, 1976. Malacara , Daniel (ed). Optical Shop Testing. New York: John Wiley and Sons, 1978. Reticon Corporation. Reticon G Series Data Sheet. Sunnyvale, CA: Reticon, 1976. 41 FILMED 9-85 DTIC

  12. Updated optical read/write memory system components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The fabrication of an updated block data composer and holographic storage array for a breadboard holographic read/write memory system is described. System considerations such as transform optics and controlled aberration lens design are described along with the block data composer, photoplastic recording materials, and material development.

  13. Radiation effects and propagation in optical fibers and components

    SciTech Connect

    Gedam, S.G.

    1987-01-01

    The power series expansion method was used to solve the wave equation in step-index optical fiber. The cut off frequencies were calculated using 200 coefficients. The cutoff frequencies of TM modes were found to differ from those of TE modes. This difference, which is the error due to the approximations made, was calculated as a function of the relative refractive index difference. A polarization control system was designed to be used in a coherent optical communication system, to restore the state of polarization (SOP) of the light output of a singlemode fiber. Rotating quarter wave and half wave plates were used to compensate for the changes in SOP. The sensitivity of the system was greatly improved by utilizing the heterodyne principle. The effects of neutron irradiation were studied on fiber optic materials (glasses), optical fibers, and photodetectors. In case of the heavy metal fluoride glasses, a red shift was found in the UV edge, which increased with neutron fluence. A very small amount of recovery was observed after three weeks. The shift could be due to the occurrence of color centers on irradiation and/or due to the shift in the Urbach edge itself.

  14. Vector-component isolation of an arbitrary modulating electric field in zincblende electro-optic probes

    NASA Astrophysics Data System (ADS)

    Reano, Ronald M.; Whitaker, John F.; Katehi, Linda P. B.

    2005-08-01

    Analysis of the field-induced linear birefringence in zincblende crystals shows that one can obtain complete isolation of a single vector component of an arbitrary modulating electric field. For an optical probe beam path aligned parallel to the [110] direction and an optical probe beam polarization aligned parallel to the [110] direction, the field-induced birefringence occurs only for the component of the modulating electric field aligned parallel to the [110] direction. Measurements using a modulating electric field with known polarization and electro-optic probes machined from (110) gallium arsenide wafers demonstrate an alignment-limited isolation between orthogonal modulating electric field components of 17 dB.

  15. Influences of misalignment errors of optical components in an orthogonal two-axis Lloyd's mirror interferometer.

    PubMed

    Shimizu, Yuki; Aihara, Ryo; Ren, Zongwei; Chen, Yuan-Liu; Ito, So; Gao, Wei

    2016-11-28

    This paper presents a detailed analysis on the influence of misalignment errors of optical components in an orthogonal two-axis Lloyd's mirror interferometer, which can fabricate two-dimensional grating structures in a single exposure. In an ideal condition, defect-free two-dimensional grating structures can be fabricated by the interferometer. However, in a real case, visible stripes caused by misalignment errors of the optical components in the interferometer always appear on the fabricated grating structures. In this paper, theoretical analysis and experiments are carried out to analyze the influences of the misalignment errors of the optical components in the orthogonal two-axis Lloyd's mirror interferometer.

  16. Thermo-optical pressure difference in one-component gas

    SciTech Connect

    Chermyaninov, I. V.; Chernyak, V. G.

    2014-09-15

    A new phenomenon—thermo-optical pressure difference in the gas (TOPD) is regarded. This effect is the steady state of the second order which arises in the gas located in a closed capillary in the presence of a fixed temperature gradient and a resonant optical radiation. TOPD is the result of imposition thermal transpiration and light-induced drift of gas in a capillary. The problem is solved on the basis of the linearized Boltzmann kinetic equations for excited and unexcited gaseous particles. Expressions for the kinetic coefficients and pressure drop in gas at the ends of the closed capillary are obtained. Possible cases of the steady state are regarded for atoms and molecules. Numerical estimates of this effect for atomic and molecular gases in the whole range of Knudsen numbers are given.

  17. Updated optical read/write memory system components

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A survey of the building blocks of the electro-optic read/write system was made. Critical areas and alternate paths are discussed. The latest PLZT block data composer is analyzed. Stricter controls in the production and fabrication of PLZT are implied by the performance of the BDC. A reverse charge before erase has eliminated several problems observed in the parallel plane charging process for photoconductor-thermoplastic hologram storage.

  18. Vaccination in children with allergy to non active vaccine components.

    PubMed

    Franceschini, Fabrizio; Bottau, Paolo; Caimmi, Silvia; Crisafulli, Giuseppe; Lucia, Liotti; Peroni, Diego; Saretta, Francesca; Vernich, Mario; Povesi Dascola, Carlotta; Caffarelli, Carlo

    2015-01-01

    Childhood immunisation is one of the greatest public health successes of the last century. Vaccines contain an active component (the antigen) which induces the immune response. They may also contain additional components such as preservatives, additives, adjuvants and traces of other substances. This review provides information about risks of hypersensitivity reactions to components of vaccines. Furthermore, recommendations to avoid or reduce reactions to vaccine components have been detailed.

  19. Specification of optical components for a high average-power laser environment

    SciTech Connect

    Taylor, J.R.; Chow, R.; Rinmdahl, K.A.; Willis, J.B.; Wong, J.N.

    1997-06-25

    Optical component specifications for the high-average-power lasers and transport system used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant must address demanding system performance requirements. The need for high performance optics has to be balanced against the practical desire to reduce the supply risks of cost and schedule. This is addressed in optical system design, careful planning with the optical industry, demonstration of plant quality parts, qualification of optical suppliers and processes, comprehensive procedures for evaluation and test, and a plan for corrective action.

  20. The replacement of dry heat in generic reliability assurance requirements for passive optical components

    NASA Astrophysics Data System (ADS)

    Ren, Xusheng; Qian, Longsheng; Zhang, Guiyan

    2005-12-01

    According to Generic Reliability Assurance Requirements for Passive Optical Components GR-1221-CORE (Issue 2, January 1999), reliability determination test of different kinds of passive optical components which using in uncontrolled environments is taken. The test condition of High Temperature Storage Test (Dry Test) and Damp Test is in below sheet. Except for humidity condition, all is same. In order to save test time and cost, after a sires of contrast tests, the replacement of Dry Heat is discussed. Controlling the Failure mechanism of dry heat and damp heat of passive optical components, the contrast test of dry heat and damp heat for passive optical components (include DWDM, CWDM, Coupler, Isolator, mini Isolator) is taken. The test result of isolator is listed. Telcordia test not only test the reliability of the passive optical components, but also test the patience of the experimenter. The cost of Telcordia test in money, manpower and material resources, especially in time is heavy burden for the company. After a series of tests, we can find that Damp heat could factually test the reliability of passive optical components, and equipment manufacturer in accord with component manufacture could omit the dry heat test if damp heat test is taken first and passed.

  1. A COMPREHENSIVE STUDY OF GAMMA-RAY BURST OPTICAL EMISSION. I. FLARES AND EARLY SHALLOW-DECAY COMPONENT

    SciTech Connect

    Li Liang; Liang Enwei; Tang Qingwen; Chen Jiemin; Xi Shaoqiang; Zhang Bing; Lu Ruijing; Lue Lianzhong; Lue Houjun; Gao He; Zhang Jin; Wei Jianyan; Yi Shuangxi E-mail: zhang@physics.unlv.edu

    2012-10-10

    Well-sampled optical light curves of 146 gamma-ray bursts (GRBs) are compiled from the literature. By empirical fitting, we identify eight possible emission components and summarize the results in a 'synthetic' light curve. Both optical flare and early shallow-decay components are likely related to long-term central engine activities. We focus on their statistical properties in this paper. Twenty-four optical flares are obtained from 19 GRBs. The isotropic R-band energy is smaller than 1% of E{sub {gamma},iso}. The relation between the isotropic luminosities of the flares and gamma rays follows L{sup F}{sub R,iso}{proportional_to}L {sup 1.11{+-}0.27}{sub {gamma},iso}. Later flares tend to be wider and dimmer, i.e., w{sup F} {approx} t{sup F}{sub p}/2 and L{sup F}{sub R,iso}{proportional_to}[t{sup F}{sub p}/(1 + z)]{sup -1.15{+-}0.15}. The detection probability of the optical flares is much smaller than that of X-ray flares. An optical shallow-decay segment is observed in 39 GRBs. The relation between the break time and break luminosity is a power law, with an index of -0.78 {+-} 0.08, similar to that derived from X-ray flares. The X-ray and optical breaks are usually chromatic, but a tentative correlation is found. We suggest that similar to the prompt optical emission that tracks {gamma}-rays, the optical flares are also related to the erratic behavior of the central engine. The shallow-decay component is likely related to a long-lasting spinning-down central engine or piling up of flare materials onto the blast wave. Mixing of different emission components may be the reason for the diverse chromatic afterglow behaviors.

  2. Design of a multi-channel free space optical interconnection component

    NASA Astrophysics Data System (ADS)

    Jia, Da-Gong; Zhang, Pei-Song; Jing, Wen-Cai; Tan, Jun; Zhang, Hong-Xia; Zhang, Yi-Mo

    2008-11-01

    A multi-channel free space optical interconnection component, fiber optic rotary joint, was designed using a Dove prism. When the Dove prism is rotated an angle of α around the longitudinal axis, the image rotates an angle of 2 α. The optical interconnection component consists of the signal transmission system, Dove prim and driving mechanism. The planetary gears are used to achieve the speed ratio of 2:1 between the total optical interconnection component and the Dove prism. The C-lenses are employed to couple different optical signals in the signal transmission system. The coupling loss between the receiving fiber of stationary part and the transmitting fiber of rotary part is measured.

  3. Active/Passive Optical Hydrography

    DTIC Science & Technology

    1990-01-01

    existing date Sources,A D -A 230 6 7 )and r ~twn he Colieclio.n of Information. Send comments regarding this burden estimate Of any other aspect 0f ’nog thc...PormEmntN.63704w 1.~ ________________________________________________________________ Prolec I No. 01987 * J 6. Author(s). Task No. l... Stephen P...to 3 optical depths. krey v-iov-Ac - --- ~ H r ~ o~~ surveyj nq 14. Subject Terms. 15. Number of Pages. (u) mutispectral; (U) Hydrographic Surveying

  4. Investigation of variable spindle speed in slow tool servo-based turning of noncircular optical components

    NASA Astrophysics Data System (ADS)

    Huang, Weihai; Yu, Deping; Chen, Dongsheng; Zhang, Min; Liu, Jinguang; Yao, Jin

    2016-10-01

    Ultra-precision noncircular optical components, e.g. hyperbolic quadrupole in mass spectrometer, can be machined by diamond turning assisted by slow tool servo (STS). However, the bandwidth of STS is usually small, which limits the STS's capability in following the required tool path, leading to a large form error. To reduce the form error, this paper proposes an approach to apply variable spindle speed (VSS) to STS-based turning. Design of the VSS trajectory based on the noncircular profile of the optical component was investigated in detail. To validate the proposed approach, simulation on the application of VSS in the STS-based turning process was established and applied to the machining of typical noncircular optical components. Simulation results show that the proposed approach is effective in reducing the requirement on the bandwidth of the STS, resulting in higher form accuracy of the machined noncircular optical components.

  5. Automated alignment of optical components for high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Brecher, C.; Pyschny, N.; Haag, S.; Guerrero Lule, V.

    2012-03-01

    Despite major progress in developing brilliant laser sources a huge potential for cost reductions can be found in simpler setups and automated assembly processes, especially for large volume applications. In this presentation, a concept for flexible automation in optics assembly is presented which is based on standard micro assembly systems with relatively large workspace and modular micromanipulators to enhance the system with additional degrees of freedom and a very high motion resolution. The core component is a compact flexure-based micromanipulator especially designed for the alignment of micro optical components which will be described in detail. The manipulator has been applied in different scenarios to develop and investigate automated alignment processes. This paper focuses on the automated alignment of fast axis collimation (FAC) lenses which is a crucial step during the production of diode lasers. The handling and positioning system, the measuring arrangement for process feedback during active alignment as well as the alignment strategy will be described. The fine alignment of the FAC lens is performed with the micromanipulator under concurrent analysis of the far and the near field intensity distribution. An optimization of the image processing chains for the alignment of a FAC in front of a diode bar led to cycle times of less than 30 seconds. An outlook on other applications and future work regarding the development of automated assembly processes as well as new ideas for flexible assembly systems with desktop robots will close the talk.

  6. Chiral THz metamaterial with tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Taylor, Antoinette; O' Hara, John; Chowdhury, Roy; Zhao, Rongkuo; Soukoullis, Costas M

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  7. The optical immersion effect in disperse systems with supercritical components

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Yuvchenko, S. A.; Ushakova, O. V.; Tyagnibedin, D. A.; Bagratashvili, V. N.

    2015-04-01

    The method of optical immersion of randomly inhomogeneous media with porous structures into a supercritical fluid (SCF) is considered. Growth in the fluid density upon isothermal increase in the pressure leads to growth in the refractive index and, accordingly, in diffuse transmission of light through a layer of immersed medium. Experimental data on the small-angle diffuse transmission of a model scattering medium (filter paper, PTFE ribbon) are presented for various SCF pressures. Values of the transport length of laser radiation in these media are recovered as dependent on the SCF refractive index.

  8. Linear Invariant Multiclass Component Spaces For Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Hester, Charles F.

    1983-04-01

    Optical processing systems which perform linear transformations on image data at high rates are ideal for image pattern recognition systems. As a result of this processing capability, the linear opera-tion of matched spatial filtering has been explored extensively for pattern recognition. For many practical pattern recognition problems, however, multiclass filtering must be used to overcome the variations of input objects due to image scale changes, image rotations, object aspect differences and sensor differences. Hester and Casasent have shown that a linear mapping can be constructed which images all the class elements of a multiclass set into one out-put element or value. This special multi-class filter concept is extended in this paper to show that a subspace of the multi-class set exists that is invariant with respect to the multiclass mapping under linear operations. The concept of this in-variant space and its generation is detailed and a single example given. A typical optical processing architecture using these invariant elements as filters in an associative pattern recognition system is also presented.

  9. Photovoltaic concentrator assembly with optically active cover

    DOEpatents

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  10. Active Optical Devices and Applications. Volume 228

    DTIC Science & Technology

    1980-04-01

    obscuration, 5-cm-thick solid, segmented (6 petals) Zerodur . Mirror A is near the limit of what can be fabricated with current technology. The honeycomb...DEW Descriptors, Keywords: Active Optical Device Application Large Optics Adaptive Technology Wavefront Sensor Deformable Mirror Performance...Cuneo, Jr., U.S. Air Force, NASA Headquarters 228-01 Wavefront sensors and deformable mirrors for visible wavelengths 4 Noah Bareket, Lockheed

  11. Recent optical activity of Mrk 421

    NASA Astrophysics Data System (ADS)

    Semkov, E.; Bachev, R.; Strigachev, A.; Ibryamov, S.; Peneva, S.; Gupta, A. C.

    2013-04-01

    Our BVRI optical observations of Mrk 421 were performed within the multiwavelength international campaign (December 2012-June 2013), with the participation of GASP-WEBT, Swift, MAGIC, VLBA, NuSTAR, Fermi, VERITAS, F-GAMMA and other collaborations. Following the reports of enhanced X-ray and gamma activity of Mrk 421 (ATel #4978, ATel #4977, ATel #4976, ATel #4974, ATel #4918), we observed this blazar with the optical telescopes of the National Astronomical Observatory Rozhen and the Astronomical Observatory Belogradchik, Bulgaria.

  12. Hybridization of active and passive elements for planar photonic components and interconnects

    NASA Astrophysics Data System (ADS)

    Pearson, M.; Bidnyk, S.; Balakrishnan, A.

    2007-02-01

    The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.

  13. Influence of optical activity on rogue waves propagating in chiral optical fibers

    NASA Astrophysics Data System (ADS)

    Temgoua, D. D. Estelle; Kofane, T. C.

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  14. Influence of optical activity on rogue waves propagating in chiral optical fibers.

    PubMed

    Temgoua, D D Estelle; Kofane, T C

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  15. Optically active quantum-dot molecules.

    PubMed

    Shlykov, Alexander I; Baimuratov, Anvar S; Baranov, Alexander V; Fedorov, Anatoly V; Rukhlenko, Ivan D

    2017-02-20

    Chiral molecules made of coupled achiral semiconductor nanocrystals, also known as quantum dots, show great promise for photonic applications owing to their prospective uses as configurable building blocks for optically active structures, materials, and devices. Here we present a simple model of optically active quantum-dot molecules, in which each of the quantum dots is assigned a dipole moment associated with the fundamental interband transition between the size-quantized states of its confined charge carriers. This model is used to analytically calculate the rotatory strengths of optical transitions occurring upon the excitation of chiral dimers, trimers, and tetramers of general configurations. The rotatory strengths of such quantum-dot molecules are found to exceed the typical rotatory strengths of chiral molecules by five to six orders of magnitude. We also study how the optical activity of quantum-dot molecules shows up in their circular dichroism spectra when the energy gap between the molecular states is much smaller than the states' lifetime, and maximize the strengths of the circular dichroism peaks by optimizing orientations of the quantum dots in the molecules. Our analytical results provide clear design guidelines for quantum-dot molecules and can prove useful in engineering optically active quantum-dot supercrystals and photonic devices.

  16. Replication and molding of optical components; Proceedings of the Meeting, Los Angeles, CA, Jan. 13, 14, 1988

    NASA Astrophysics Data System (ADS)

    Riedl, Max J.

    1988-01-01

    Various papers on the replication and molding of optical components are presented. Individual topics discussed include: advantages and limitations of epoxy replication, protecting optical replication models with hard carbon, aspheric optics made by thin film epoxy replication, replication of transmissive optical surfaces, stability of lightweight replicated mirrors, replication of optical components, novel ultraviolet light-absorbing polymers for optical applications, improved acrylic resins for optical applications, novel acrylic resin for injection-molded precision lenses, and birefringence control in optical disk molding. Also addressed are: development of prototype plastic optics, molded acrylic retroreflector, injection molding of optical components, coating of plastics, problems and solutions for coating plastic optics, abrasion testing of coated plastic lenses, surface enhancement for optical plastics, survey of present lens-molding techniques, new directions in glass and plastic aspherics, characterization of molded glass and plastic aspheric lenses, and precision glass microlens array by a photothermal technique.

  17. The optomechanical analysis of high-accuracy mesh design in optical transmission components

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Ying; Chang, Shenq-Tsong; Huang, Ting-Ming

    2016-09-01

    This paper presents the optomechanical analysis of the thermal effect by the finite difference method (FDM) in refraction optical components. The incident rays through the FDM elements, the temperature, or the stress in the ray path are estimated by weighting. The weighting will introduce some error in the calculated optical path difference (OPD) and bring some high-frequency aberration into the optical simulation; therefore, the mesh design process must consider the optical ray path footprint. The incident and emergence rays' footprints are associated at the lens surface by Patran software; those associated footprints will add into the mesh point at the lens surface. The incident rays separate into several sections; each section can find its nearest grid point in the lens FDM mesh. Thus, moving the nearest grid point to the incident ray section can reduce the weighting or interpolation error in OPD calculations. The calculation results can evaluate the thermal or stress effect in optical transmission components more accurately.

  18. Design of pitch conversion component for formation of multibeam optical recording head.

    PubMed

    Sasaki, Kentaro; Kawamura, Norikazu; Tokumaru, Haruki

    2008-04-10

    We describe a design of a planar lightwave circuit for parallel information processing using visible light. The circuit serves as a pitch conversion component (PCC) that can align multiple beams close together and easily composes a compact optical system that can project optical spots at a narrow pitch on a certain small plane. From the viewpoint of its application to optical recording, a PCC is designed to have over 50 waveguides according to the fabrication of waveguides for a blue-violet beam. It is analytically confirmed that a PCC contributes to the formation of a multibeam optical recording head with numerous beams.

  19. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  20. Fiber optic gyroscope using an eight-component LiNbO3 integrated optic circuit

    NASA Technical Reports Server (NTRS)

    Minford, W. J.; Stone, F. T.; Youmans, B. R.; Bartman, R. K.

    1990-01-01

    A LiNbO3 integrated optic circuit (IOC) containing eight optical functions has been successfully incorporated into an interferometric fiber optic gyroscope. The IOC has the minimum configuration optical functions (a phase modulator, a polarizer, and two beam splitters) and Jet Propulsion Laboratory's novel beat detection circuit (a phase modulator, two optical taps, and a beam splitter) which provides a means of directly reading angular position and rotation rate. The optical subsystem consisting of the fiber-pigtailed IOC and a sensing coil of 945 meters of polarization-maintaining fiber has a loss of 18.7dB, which includes 9dB due to the architecture and unpolarized source. A random walk coefficient was measured using an edge-emitting LED as the source.

  1. Railway track component condition monitoring using optical fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Buggy, S. J.; James, S. W.; Staines, S.; Carroll, R.; Kitson, P.; Farrington, D.; Drewett, L.; Jaiswal, J.; Tatam, R. P.

    2016-05-01

    The use of optical fibre Bragg grating (FBG) strain sensors to monitor the condition of safety critical rail components is investigated. Fishplates, switchblades and stretcher bars on the Stagecoach Supertram tramway in Sheffield in the UK have been instrumented with arrays of FBG sensors. The dynamic strain signatures induced by the passage of a tram over the instrumented components have been analysed to identify features indicative of changes in the condition of the components.

  2. Semantic-Aware Components and Services of ActiveMath

    ERIC Educational Resources Information Center

    Melis, Erica; Goguadze, Giorgi; Homik, Martin; Libbrecht, Paul; Ullrich, Carsten; Winterstein, Stefan

    2006-01-01

    ActiveMath is a complex web-based adaptive learning environment with a number of components and interactive learning tools. The basis for handling semantics of learning content is provided by its semantic (mathematics) content markup, which is additionally annotated with educational metadata. Several components, tools and external services can…

  3. Femtosecond spectral interferometry of optical activity: Theory

    NASA Astrophysics Data System (ADS)

    Rhee, Hanju; Ha, Jeong-Hyon; Jeon, Seung-Joon; Cho, Minhaeng

    2008-09-01

    Optical activities such as circular dichroism (CD) and optical rotatory dispersion (ORD) are manifested by almost all natural products. However, the CD is an extremely weak effect so that time-resolved CD spectroscopy has been found to be experimentally difficult and even impossible for vibrational CD with current technology. Here, we show that the weak-signal and nonzero background problems can be overcome by heterodyned spectral interferometric detection of the phase and amplitude of optical activity free-induction-decay (OA FID) field. A detailed theoretical description and a cross-polarization scheme for selectively measuring the OA FID are presented and discussed. It is shown that the parallel and perpendicular electric fields when the solution sample contains chiral molecules are coupled to each other. Therefore, simultaneous spectral interferometric measurements of the parallel and perpendicular FID fields can provide the complex susceptibility, which is associated with the circular dichroism and optical rotatory dispersion as its imaginary and real parts, respectively. On the basis of the theoretical results, to examine its experimental possibility, we present numerical simulations for a model system. We anticipate the method discussed here to be a valuable tool for detecting electronic or vibrational optical activity in femtosecond time scale.

  4. Splitting up an optical beam in a polarized component added to an unpolarized component

    NASA Astrophysics Data System (ADS)

    Lacaze, Bernard

    2016-08-01

    The decomposition of an optical beam in a polarized part added to an unpolarized part was studied by G.G. Stokes among numerous other works. Today, the problem is no longer a trigonometric manipulation proper to monochromatic waves, but a problem handling stationary processes with band spectra. In literature, the question seems to be: given some spectral properties and some propagation medium, can we obtain a decomposition? Furthermore, in the case of a positive answer, we have to provide devices for exhibiting solutions. In a linear framework, the problem always has a solution (and even an infinity) whatever the chosen polarization direction. In this paper, we study the links which appear most often between the members of the decomposition.

  5. PRINCIPAL COMPONENT ANALYSIS STUDIES OF TURBULENCE IN OPTICALLY THICK GAS

    SciTech Connect

    Correia, C.; Medeiros, J. R. De; Lazarian, A.; Burkhart, B.; Pogosyan, D.

    2016-02-20

    In this work we investigate the sensitivity of principal component analysis (PCA) to the velocity power spectrum in high-opacity regimes of the interstellar medium (ISM). For our analysis we use synthetic position–position–velocity (PPV) cubes of fractional Brownian motion and magnetohydrodynamics (MHD) simulations, post-processed to include radiative transfer effects from CO. We find that PCA analysis is very different from the tools based on the traditional power spectrum of PPV data cubes. Our major finding is that PCA is also sensitive to the phase information of PPV cubes and this allows PCA to detect the changes of the underlying velocity and density spectra at high opacities, where the spectral analysis of the maps provides the universal −3 spectrum in accordance with the predictions of the Lazarian and Pogosyan theory. This makes PCA a potentially valuable tool for studies of turbulence at high opacities, provided that proper gauging of the PCA index is made. However, we found the latter to not be easy, as the PCA results change in an irregular way for data with high sonic Mach numbers. This is in contrast to synthetic Brownian noise data used for velocity and density fields that show monotonic PCA behavior. We attribute this difference to the PCA's sensitivity to Fourier phase information.

  6. Optical Methods For Automatic Rating Of Engine Test Components

    NASA Astrophysics Data System (ADS)

    Pritchard, James R.; Moss, Brian C.

    1989-03-01

    In recent years, increasing commercial and legislative pressure on automotive engine manufacturers, including increased oil drain intervals, cleaner exhaust emissions and high specific power outputs, have led to increasing demands on lubricating oil performance. Lubricant performance is defined by bench engine tests run under closely controlled conditions. After test, engines are dismantled and the parts rated for wear and accumulation of deposit. This rating must be consistently carried out in laboratories throughout the world in order to ensure lubricant quality meeting the specified standards. To this end, rating technicians evaluate components, following closely defined procedures. This process is time consuming, inaccurate and subject to drift, requiring regular recalibration of raters by means of international rating workshops. This paper describes two instruments for automatic rating of engine parts. The first uses a laser to determine the degree of polishing of the engine cylinder bore, caused by the reciprocating action of piston. This instrument has been developed to prototype stage by the NDT Centre at Harwell under contract to Exxon Chemical, and is planned for production within the next twelve months. The second instrument uses red and green filtered light to determine the type, quality and position of deposit formed on the piston surfaces. The latter device has undergone feasibility study, but no prototype exists.

  7. Summary of the effects of radiation upon the passive optical components of the Versatile Link

    NASA Astrophysics Data System (ADS)

    Huffman, B. T.; Weidberg, A.

    2014-01-01

    The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC) will require high-speed optical links to read out data from its detectors. The ATLAS and CMS experiments in collaboration with CERN have developed the Versatile Link in order to address the technical issues of optical data transmission within the harsh radiation environment experienced by any experiment within the HL-LHC. Passive optical components can suffer damage in the form of reduced optical transparency (radiation induced absorption or RIA), reduced bandwidth, and mechanical damage to the components themselves and their connection hardware. This paper summarizes the results of the optical and mechanical tests that have been performed on the Versatile Link's passive optical components. The authors conclude that two single mode and two multimode fibres, as well as standard connector components, can be qualified for use in the HL-LHC environment. The qualifying fibers are: Corning SMF-28e, DrakaElite® SRH-SMF, Corning Clearcurve® OM4 multimode graded index, and DrakaElite® SRH-MMF.

  8. A Large Aperture, High Energy Laser System for Optics and Optical Component Testing

    SciTech Connect

    Nostrand, M C; Weiland, T L; Luthi, R L; Vickers, J L; Sell, W D; Stanley, J A; Honig, J; Auerbach, J; Hackel, R P; Wegner, P J

    2003-11-01

    A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm{sup 2} high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics.

  9. Active learning in optics and photonics

    NASA Astrophysics Data System (ADS)

    Niemela, Joseph J.

    2016-09-01

    Active learning in optics and photonics (ALOP) is a program of the International Basic Sciences Program at UNESCO, in collaboration with the Abdus Salam International Centre for Theoretical Physics (ICTP) and supported by SPIE, which is designed to help teachers in the developing world attract and retain students in the physical sciences. Using optics and photonics, it naturally attracts the interest of students and can be implemented using relatively low cost technologies, so that it can be more easily reproduced locally. The active learning methodology is student-centered, meaning the teachers give up the role of lecturer in favor of guiding and facilitating a learning process in which students engage in hands-on activities and active peer-peer discussions, and is shown to effectively enhance basic conceptual understanding of physics.

  10. Replication of deep micro-optical components prototyped by Deep Proton Writing

    NASA Astrophysics Data System (ADS)

    Van Erps, J.; Wissmann, M.; Guttmann, M.; Hartmann, M.; Desmet, L.; Debaes, C.; Mohr, J.; Thienpont, H.

    2008-04-01

    Using our rapid prototyping technology called Deep Proton Writing (DPW), we have in recent years made a wide range of micro-optical components with a large depth (500-μm) for a variety of applications. One of these components is a pluggable out-of-plane coupler for printed circuit board-level optical interconnections. Whereas DPW is capable of rapidly fabricating high-quality master components, the technology is not suitable for low-cost mass fabrication. Therefore, we investigate the replication of out-of-plane coupling components using hot embossing, through the fabrication of a metal mould of the DPW master by applying electroplating. We compare these hot embossed replicas with components replicated using the elastomeric mould vacuum casting technology.

  11. [Research on the blood components detecting by multi-optical path length spectroscopy technique].

    PubMed

    Li, Gang; Zhao, Zhe; Liu, Rui; Wang, Hui-quan; Wu, Hong-jie; Lin, Ling

    2010-09-01

    To discuss the feasibility of using the serum's multi-optical path length spectroscopy information for measuring the concentration of the human blood components, the automatic micro-displacement measuring device was designed, which can obtain the near-infrared multi-optical path length from 0 to 4.0 mm (interval is 0.2 mm) spectra of 200 serum samples with multioptical path length spectrum of serum participated in building the quantitative analysis model of four components of the human blood: glucose (GLU), total cholesterol (TC), total protein (TP) and albumin (ALB), by mean of the significant non-linear spectral characteristic of blood. Partial least square (PLS) was used to set up the calibration models of the multi-optical path length near-infrared absorption spectrum of 160 experimental samples against the biochemical analysis results of them. The blood components of another 40 samples were predicted according to the model. The prediction effect of four blood components was favorable, and the correlation coefficient (r) of predictive value and biochemical analysis value were 0.9320, 0.9712, 0.9462 and 0.9483, respectively. All of the results proved the feasibility of the multi-optical path length spectroscopy technique for blood components analysis. And this technique established the foundation of detecting the components of blood and other liquid conveniently and rapidly.

  12. The Adaptive Optics Summer School Laboratory Activities

    NASA Astrophysics Data System (ADS)

    Ammons, S. M.; Severson, S.; Armstrong, J. D.; Crossfield, I.; Do, T.; Fitzgerald, M.; Harrington, D.; Hickenbotham, A.; Hunter, J.; Johnson, J.; Johnson, L.; Li, K.; Lu, J.; Maness, H.; Morzinski, K.; Norton, A.; Putnam, N.; Roorda, A.; Rossi, E.; Yelda, S.

    2010-12-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO systems as a research tool. The activities are divided into three stations: Vision Science, Fourier Optics, and the AO Demonstrator. We briefly overview these activities, which are described fully in other articles in these conference proceedings (Putnam et al., Do et al., and Harrington et al., respectively). We devote attention to the unique challenges encountered in the design of these activities, including the marriage of inquiry-like investigation techniques with complex content and the need to tune depth to a graduate- and PhD-level audience. According to before-after surveys conducted in 2008, the vast majority of participants found that all activities were valuable to their careers, although direct experience with integrated, functional AO systems was particularly beneficial.

  13. Recent advances in fiber optics components for high speed data transmission

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1991-04-01

    The concept of guided lightwave communication along optical fibers has stimulated a major new technology over the past two decades. This technology profoundly impacts communication and instrumentation systems as well as computer interconnections and systems architecture. In this paper, the state of the art of optical transmitters, low loss fiber waveguides, receivers, and associated electronics components are reviewed and summarized for optical data transmission systems operating between 100 Mbit/s and 2.5 Gbit/s. Emphasis is placed on high speed data transmission subassemblies, such as time division multiplexers and demultiplexers, clock and data recovery circuits, as well as optical transmitters and receivers. In addition, the performance of candidate components of the wide band digital transmission systems intended for deployment in large detection systems for particle physics is discussed.

  14. Towards do-it-yourself planar optical components using plasmon-assisted etching

    PubMed Central

    Chen, Hao; Bhuiya, Abdul M.; Ding, Qing; Johnson, Harley T.; Toussaint Jr, Kimani C.

    2016-01-01

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter—all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown. PMID:26814026

  15. Towards do-it-yourself planar optical components using plasmon-assisted etching

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Bhuiya, Abdul M.; Ding, Qing; Johnson, Harley T.; Toussaint, Kimani C., Jr.

    2016-01-01

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter--all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown.

  16. Flexible, non-contact and high-precision measurements of optical components

    NASA Astrophysics Data System (ADS)

    Beutler, A.

    2016-06-01

    A high-accuracy cylindrical coordinate measuring instrument developed for the measurement of optical components is presented. It is equipped with an optical point sensor system including a high aperture probe. This setup allows measurements to be performed with high accuracy in a flexible way. Applications include the measurement of the topography of high-precision aspheric and freeform lenses and diffractive structures. High measuring speeds guarantee the implementation in a closed-loop production process.

  17. Optical formation of stable waveguiding structures from a photopolymerisable composition with a nonpolymerisable component

    SciTech Connect

    Mensov, Sergei N; Polushtaitsev, Yu V

    2012-06-30

    We report formation of stable dielectric waveguiding structures from a photopolymerisable composition containing a nonpolymerisable component by optical radiation. A computer simulation has shown that the use of nonpolymerisable additives not only retains the self-trapping modes of incident radiation but also provides matching conditions for the synthesised waveguiding structure with standard optical fibres at telecommunication wavelengths. The efficiency of these nonlinear wave processes for connecting single-mode fibres SMF-28 is experimentally confirmed.

  18. Optical fiber sensor having an active core

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.

  19. Integrated device with diffractive polarization components for a magneto-optical disk head

    NASA Technical Reports Server (NTRS)

    Haggans, Charles W.; Fujita, Teruo; Kostuk, Raymond K.

    1992-01-01

    The optical components in the detection train of a conventional magneto-optical (MO) disk head include a half-wave plate and a polarization beamsplitter. These polarization components are bulky and require specialized mounting hardware. In order to realize a more compact head, we propose that these elements be replaced by an integrated device composed of cascaded volume and surface-relief gratings. Herein, the proposed system is described in detail for the individual elements, theoretical and prototype element performance are compared, and the operational tolerances of these elements are discussed.

  20. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing

    PubMed Central

    Wang, Pengfei; Bo, Lin; Semenova, Yuliya; Farrell, Gerald; Brambilla, Gilberto

    2015-01-01

    Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres. PMID:26287252

  1. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing.

    PubMed

    Wang, Pengfei; Bo, Lin; Semenova, Yuliya; Farrell, Gerald; Brambilla, Gilberto

    2015-07-22

    Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres.

  2. Fast and cheap prototyping of nonstandard optical components for sensing speckle dynamics

    NASA Astrophysics Data System (ADS)

    Jakobsen, M. L.; Olesen, A. S.; Stubager, J.; Hanson, S. G.; Kühn, Jan; Pedersen, H. C.

    2016-04-01

    As a part of the work carried out a project supported by the Danish council for technology and innovation, we have investigated the option of smoothening standard CNC machined surfaces. In the process of constructing optical prototypes, involving custom-designed optics, the development price and time can become a prohibitively large part of a research budget. Machining the optical surfaces of a molding tool may be done directly using diamond turning, but it is expensive and time consuming. Alternatively, a more standardized and cheaper machining method can be used, however, calling for manual polishing afterwards. Particularly, this last process is expensive as well, and will introduce an uncertainty in precisely how much material the polishing process will remove, introducing roughness on a larger lateral scale, such as waviness. Therefore, we have investigated the possibilities of smoothening surfaces of various shapes succeeding a standard CNC machining process. Different coatings have been tested for their abilities to fill and smoothen out structures of larger scales, while removing the small-scale roughness, which is critical for optical uses. In this work we will present an optical element, designed for optical spatial filtering velocimetry. The spatial filter is the key component in an optical sensor for non-contact measurement of surface vibrations, based on speckle dynamics. The optical element is casted in silicon. The results of smoothing an optical element will be demonstrated, and the sensor will be demonstrated for real-time measurements.

  3. Design considerations for multi component molecular-polymeric nonlinear optical materials

    SciTech Connect

    Singer, K.D. . Dept. of Physics); Kuzyk, M.G. . Dept. of Physics); Fang, T.; Holland, W.R. ); Cahill, P.A. )

    1990-01-01

    We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85{degree} and posses an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to posses a large third order nonlinearity, and may display two-level behavior. 24 refs., 11 figs.

  4. Radiation effects on optical components of a laser radar sensor designed for remote metrology in ITER

    SciTech Connect

    Menon, M.M.; Grann, E.B.; Slotwinski, A.

    1997-09-01

    A frequency modulated laser radar is being developed for in-vessel metrology and viewing of plasma-facing surfaces. Some optical components of this sensor must withstand intense gamma radiation (3 {times} 10{sup 6} rad/h) during operation. The authors have tested the effect of radiation on a silica core polarization maintaining optical fiber and on TeO{sub 2} crystals at doses up to {approximately} 10{sup 9} rad. Additional tests are planned for evaluating the performance of a complete acousto-optic (AO) scanning device. The progress made in these tests is also described.

  5. Glancing angle deposition for production of optical components in UV region

    NASA Astrophysics Data System (ADS)

    Tolenis, Tomas; GrinevičiÅ«tÄ--, Lina; Buzelis, Rytis; Petronis, Laurynas; Drazdys, Ramutis

    2016-09-01

    Technological developments in laser technology require advancements in optical components. Such demand is particularly important in UV spectral region. Antireflection coatings (AR) and waveplates as a widely used optical elements were produced based on glancing angle deposition (GLAD) method. Superior optical performance was measured for AR thin films. Broadband and broad-angle antireflection coatings were manufactured by using multilayer system when changing the refractive index profile by varying the porosity of material. SiO2, Al2O3 and LaF3 materials were used for formation of waveplates for UV region. An investigation of optical and resistant performance were conducted. All materials showed optical losses at the wavelength of 355 nm. Possible technological solutions are presented and investigated.

  6. Proton radiation testing of laser optical components for NASA Jupiter Europa Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Thomes, W. Joe, Jr.; Cavanaugh, John F.; Ott, Melanie N.

    2011-09-01

    The Jupiter Europa Orbiter (JEO) is NASA's element of the joint Europa Jupiter System Mission (EJSM). Based on current trajectories, the spacecraft will spend a significant amount of time in the Jovian radiation belts. Therefore, research endeavors are underway to study the radiation effects on the various parts and components needed to implement the instruments. Data from these studies will be used for component selection and system design to ensure reliable operation throughout the mission duration. The radiation environment en route to Jupiter is nothing new for NASA designed systems, however, the long durations orbiting Jupiter and Europa present new challenges for radiation exposure. High-energy trapped electrons and protons at Jupiter dominate the expected radiation environment. Therefore, most of the initial component level radiation testing is being conducted with proton exposure. In this paper we will present in-situ monitoring of the optical transmission of various laser optical components during proton irradiation. Radiation induced optical attenuation of some components is less than would be expected, based on the authors experiences, and is attributed to the interaction of the protons with the materials. The results are an encouraging first step in screening these optical materials for spaceflight in a high radiation environment.

  7. Galangal pungent component, 1'-acetoxychavicol acetate, activates TRPA1.

    PubMed

    Narukawa, Masataka; Koizumi, Kanako; Iwasaki, Yusaku; Kubota, Kikue; Watanabe, Tatsuo

    2010-01-01

    We investigated the activation of transient receptor potential cation channel (TRP) subfamily V, member 1 (TRPV1) and TRP subfamily A, member 1 (TRPA1) by 1'-acetoxychavicol acetate (ACA), the main pungent component in galangal. ACA did not activate TRPV1-expressing human embryonic kidney (HEK) cells, but strongly activated TRPA1-expressing HEK cells. ACA was more potent than allyl isothiocyanate, the typical TRPA1 agonist.

  8. Fiber Optics Component Testing: Requirements And Trends-Fibers, Cables, Connectors

    NASA Astrophysics Data System (ADS)

    Makuch, John A.

    1983-03-01

    A review of requirements for testing of fibre optic components is presented, with emphasis on connectors, the connector/cable interface, and fibre and cable parameters affecting the connector/connector interface parameters. The review will be developed from the point of view of an ultimate user of a connectorized cable, and will correlate system requirements with the parameters to be tested and the trends in developing test techniques which properly assign performance responsibility to the cognizant component supplier.

  9. Acousto-optical combined frequency splitters and shifters as components of a ring optical gyroscope

    SciTech Connect

    Kotov, V M

    1999-03-31

    An analysis is made of the task of symmetrisation of a Y-type directional coupler and of shifting the frequency of counterpropagating waves in a ring gyroscope by means of the relatively recently discovered new type of acousto-optical diffraction when the incident radiation is diffracted simultaneously into two orders. Anisotropic and isotropic acousto-optical diffraction in a uniaxial crystal is considered and expressions convenient for calculations are derived. Experiments carried out on isotropic diffraction in LiNbO{sub 3} confirm, on the whole, the theoretical predictions. (laser applications and other topics in quantum electronics)

  10. Deep proton writing: a powerful rapid prototyping technology for various micro-optical components

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Debaes, Christof; Ottevaere, Heidi; Van Overmeire, Sara; Hermanne, Alex; Thienpont, Hugo

    2010-05-01

    One of the important challenges for the deployment of the emerging breed of nanotechnology components is interfacing them with the external world, preferably accomplished with low-cost micro-optical devices. For the fabrication of this kind of micro-optical modules, we make use of deep proton writing (DPW) as a generic rapid prototyping technology. DPW consists of bombarding polymer samples with swift protons, which results after chemical processing steps in high quality micro-optical components. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we give an overview of the process steps of the technology and we present several examples of micro-optical and micro-mechanical components, fabricated through DPW, targeting applications in optical interconnections and in bio-photonics. These include: high-precision 2-D fiber connectors, out-of-plane coupling structures featuring high-quality 45° and curved micro-mirrors, arrays of high aspect ratio micro-pillars, and fluorescence and absorption detection bio-photonics modules. While DPW is clearly not a mass fabrication technique as such, one of its assets is that once the master component has been prototyped, a metal mould can be generated from the DPW master by applying electroplating. After removal of the plastic master, this metal mould can be used as a shim in a final microinjection moulding or hot embossing step. This way, the master component can be mass-produced at low cost in a wide variety of high-tech plastics.

  11. ESTIMATION OF INHERENT OPTICAL PROPERTIES AND THE WATER QUALITY COMPONENTS IN THE NEUSE RIVER-PAMLICO SOUND ESTUARINE SYSTEM

    EPA Science Inventory

    Field observations carried out in the Neuse River-Pamlico Sound Estuarine System (NRE-PS), North Carolina, USA were used to develop optical algorithms for assessing inherent optical properties, IOPs (absorption and backscattering) associated with water quality components (WQC).

  12. Optical activity of chirally distorted nanocrystals

    NASA Astrophysics Data System (ADS)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2016-05-01

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.

  13. Active materials for integrated optic applications

    NASA Astrophysics Data System (ADS)

    Hayden, Joseph S.; Funk, David S.; Veasey, David L.; Peters, Philip M.; Sanford, Norman A.

    1999-11-01

    The ability to engineer glass properties through the selection and adjustment of chemical composition continues to make glass a leading material in both active and passive applications. The development of optimal glass compositions for integrated optical applications requires a number of considerations that are often at variance with one another. Of critical importance is that the glass offers compatibility with standard ion exchange technologies, allowing fabrication of guided wave structures. In addition, for application as an active material, the resultant structures must be characterized by absence of inclusions and low absorption at the lasing wavelength, putting demands on both the selection and identity of the raw materials used to prepare the glass. We report on the development of an optimized glass composition for integrated optic applications that combines good laser properties with good chemical durability allowing for a wide range of chemical processing steps to be employed without substrate deterioration. In addition, care was taken during the development of this glass to insure that the selected composition was consistent with manufacturing technology for producing high optical quality glass. We present the properties of the resultant glasses, including results of detailed chemical and laser properties, for use in the design and modeling of active waveguides prepared with these glasses.

  14. 78 FR 77166 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products Containing the Same; Notice of Request for Statements on the Public Interest AGENCY: U.S. International...

  15. Dielectric prisms would improve performance of quasi-optical microwave components

    NASA Technical Reports Server (NTRS)

    Carson, J. W.

    1967-01-01

    Properties of the Brewster angle and internal reflection in a dielectric prism are proposed as the basis of a new type of element for use in oversize waveguide in quasi-optical microwave components. Waveguide loss is reduced and precision broadband attenuators, phase shifters, and directional couplers can be constructed on the basis of the properties.

  16. Quasi-optical components for MMW fed radars and particle accelerators

    NASA Astrophysics Data System (ADS)

    Petelin, M. I.; Caryotakis, G.; Tolkachev, A. A.; Kuzikov, S. V.; Postoenko, G. K.; Tai, M. L.; Yunakovsky, A. D.

    1999-05-01

    In future radars and electron-positron colliders projected to be fed with millimeter waves of high power, electromagnetic flows should be canalized with strongly oversized waveguides or mirror lines. To control such flows, wave beam switches, combiners, multiplexers, pulse compressors, particle acceleration structures and other relevant components should be also quasi-optical.

  17. Solar cyclic tests of optical fiber components working in ammonia and high temperatures

    NASA Astrophysics Data System (ADS)

    Fidelus, Janusz D.; Stańczyk, Tomasz; Wysokiński, Karol; Lipiński, Stanisław; Tenderenda, Tadeusz; Rodriguez Garcia, José; Canadas Martinez, Inmaculada; Nasiłowski, Tomasz

    2015-12-01

    The paper reports on the metal (Cu, Ni, Au)-coated fibers annealed under concentrated solar radiation in ammonia and N2/H2 atmospheres at temperatures up to 580 °C. Tensile strength of the annealed fiber components was studied from the point of view of their possible application as a fiber optic sensors in urea chemical synthesis process control.

  18. 3D-integrated optics component for astronomical spectro-interferometry.

    PubMed

    Saviauk, Allar; Minardi, Stefano; Dreisow, Felix; Nolte, Stefan; Pertsch, Thomas

    2013-07-01

    We present the experimental characterization of a spectro-interferometry setup based on a laser-written three-dimensional integrated optics component. By exploiting the interferometric capability of a two-dimensional array of evanescently coupled waveguides, we measure the mutual coherence properties of three different polychromatic optical fields. Direct application of our discrete beam combiner (DBC) component is astronomical interferometry. The DBC can be scaled up to combine arbitrary large number of telescopes for the determination of coherence properties of astronomical targets. Besides applications to astronomy, the DBC can be also applied to optical integrated metrology system requiring nanometric position monitoring. The working principle, the experimental setup used, and the broadband performance of the DBC are presented.

  19. Electro-Optical and Optical Components for Processor to Processor Interconnects

    DTIC Science & Technology

    2013-04-01

    1997. 78(16): p. 3221-3224. 26. Olmschenk, S., et al., Quantum Teleportation Between Distant Matter Qubits. Science, 2009. 323: p. 486-489. 27...principle, be entangled. In most well-known applications of Quantum Entanglement (QE) such as photon teleportation , entanglement swapping, or...correction protocols in Linear Optics Quantum Computation (LOQC). It is not so well known that teleportation of the spectral state of entangled photons

  20. LSST active optics system software architecture

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine J.; Chandrasekharan, Srinivasan; Lotz, Paul; Xin, Bo; Claver, Charles; Angeli, George; Sebag, Jacques; Dubois-Felsmann, Gregory P.

    2016-08-01

    The Large Synoptic Survey Telescope (LSST) is an 8-meter class wide-field telescope now under construction on Cerro Pachon, near La Serena, Chile. This ground-based telescope is designed to conduct a decade-long time domain survey of the optical sky. In order to achieve the LSST scientific goals, the telescope requires delivering seeing limited image quality over the 3.5 degree field-of-view. Like many telescopes, LSST will use an Active Optics System (AOS) to correct in near real-time the system aberrations primarily introduced by gravity and temperature gradients. The LSST AOS uses a combination of 4 curvature wavefront sensors (CWS) located on the outside of the LSST field-of-view. The information coming from the 4 CWS is combined to calculate the appropriate corrections to be sent to the 3 different mirrors composing LSST. The AOS software incorporates a wavefront sensor estimation pipeline (WEP) and an active optics control system (AOCS). The WEP estimates the wavefront residual error from the CWS images. The AOCS determines the correction to be sent to the different degrees of freedom every 30 seconds. In this paper, we describe the design and implementation of the AOS. More particularly, we will focus on the software architecture as well as the AOS interactions with the various subsystems within LSST.

  1. Single-shot acquisition of optical direct and global components using single coded pattern projection

    NASA Astrophysics Data System (ADS)

    Ando, Takamasa; Horisaki, Ryoichi; Nakamura, Tomoya; Tanida, Jun

    2015-04-01

    We present a single-shot approach for separating optical direct and global components from an object. The former component is caused by direct illumination that travels from a light source to a point on the object and goes back to a camera directly. The latter one is caused by indirect illumination that travels from the light source to a point on the object through other points and goes back to the camera, such as multi-path reflection, diffusion, and scattering, or from another unintended light source, such as ambient illumination. In this method, the direct component is modulated by a single coded pattern from a projector. The modulated direct and un-modulated global components are integrated on an image sensor, which captures a single image. These two components are separated from the single captured image with a numerical algorithm employing a sparsity constraint. Ambient light separation and descattering based on the proposed scheme are experimentally demonstrated.

  2. Nonlinear optical response induced by a second-harmonic electric-field component concomitant with optical near-field excitation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Maiku; Nobusada, Katsuyuki; Yatsui, Takashi

    2015-10-01

    Electron dynamics excited by an optical near field (ONF) in a two-dimensional quantum dot model was investigated by solving a time-dependent Schrödinger equation. It was found that the ONF excitation of the electron caused two characteristic phenomena: a two-photon absorption and an induction of a magnetic dipole moment with a strong third-harmonic component. By analyzing the interaction dynamics of the ONF and the electron, we explained that the physical mechanism underlying these phenomena was the second-harmonic electric-field component concomitant with the near-field excitation originating from the nonuniformity of the ONF. Despite a y -polarized ONF source, the second-harmonic component of an x -polarized electric field was inherently generated. The effect of the second-harmonic electric-field component is not due to usual second-order nonlinear response but appears only when we explicitly consider the electron dynamics interacting with the ONF beyond the conventional optical response assuming the dipole approximation.

  3. Diamond optical components for high-power and high-energy laser applications

    NASA Astrophysics Data System (ADS)

    Anoikin, Eugene; Muhr, Alexander; Bennett, Andrew; Twitchen, Daniel; de Wit, Henk

    2015-02-01

    High-power and high-energy laser systems have firmly established their industrial presence with applications that span materials processing; high - precision and high - throughput manufacturing; semiconductors, and defense. Along with high average power CO2 lasers operating at wavelengths of ~ 10 microns, solid state lasers and fiber lasers operating at ~ 1 micron wavelength are now increasingly being used, both in the high average power and high energy pulse regimes. In recent years, polycrystalline diamond has become the material of choice when it comes to making optical components for multi-kilowatt CO2 lasers at 10 micron, outperforming ZnSe due to its superior thermo-mechanical characteristics. For 1 micron laser systems, fused silica has to date been the most popular optical material owing to its outstanding optical properties. This paper characterizes high - power / high - energy performance of anti-reflection coated optical windows made of different grades of diamond (single crystal, polycrystalline) and of fused silica. Thermo-optical modeling results are also presented for water cooled mounted optical windows. Laser - induced damage threshold tests are performed and analyzed. It is concluded that diamond is a superior optical material for working with extremely high-power and high-energy laser beams at 1 micron wavelength.

  4. Plasmonic Biofoam: A Versatile Optically Active Material.

    PubMed

    Tian, Limei; Luan, Jingyi; Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2016-01-13

    Owing to their ability to confine and manipulate light at the nanoscale, plasmonic nanostructures are highly attractive for a broad range of applications. While tremendous progress has been made in the synthesis of size- and shape-controlled plasmonic nanostructures, their integration with other materials and application in solid-state is primarily through their assembly on rigid two-dimensional (2D) substrates, which limits the plasmonically active space to a few nanometers above the substrate. In this work, we demonstrate a simple method to create plasmonically active three-dimensional biofoams by integrating plasmonic nanostructures with highly porous biomaterial aerogels. We demonstrate that plasmonic biofoam is a versatile optically active platform that can be harnessed for numerous applications including (i) ultrasensitive chemical detection using surface-enhanced Raman scattering; (ii) highly efficient energy harvesting and steam generation through plasmonic photothermal heating; and (iii) optical control of enzymatic activity by triggered release of biomolecules encapsulated within the aerogel. Our results demonstrate that 3D plasmonic biofoam exhibits significantly higher sensing, photothermal, and loading efficiency compared to conventional 2D counterparts. The design principles and processing methodology of plasmonic aerogels demonstrated here can be broadly applied in the fabrication of other functional foams.

  5. Heterogeneous wireless/wireline optical access networks with the R-EAT as backend component

    NASA Astrophysics Data System (ADS)

    Hagedorn, Klaus; Gindera, Ralf; Stohr, Andreas; Jager, Dieter

    2004-09-01

    A heterogeneous wireless/wireline optical transmission link using a reflection type electroabsorption transceiver (R-EAT) is presented. Simultaneous transmission of full-duplex broadband wireless LAN (WLAN) channels and 1Gb/s base band data is experimentally demonstrated. The system link employs sub-carrier multiplexing (SCM) and two optical channels for full duplex transmission of various analog WLAN channels and downlink digital base band data. The developed link architecture is suitable for simultaneous transmission of broadband wireline and wireless signals, it enables the coexistence and interoperability between wireline and wireless access technologies. The developed R-EAT component employed in this wireline/wireless access system, features "single-chip-component" base stations in access networks with star type topology where only a single optical fiber is used for bidirectional optical transmission. The R-EAT can be used within the optical C-band (1530- 1560nm) and is suitable for (D)WDM networks. Bit error rate measurements demonstrate the capabilities of the R-EAT for 1Gb/s base band transmission. The analog performance for WLAN transmission is characterised by a spurious free dynamic range (SFDR) of more than 75dB and 90dB for uplink and downlink transmission, respectively. The link gain for uplink and downlink transmission is -42dB and -37dB, respectively. The demonstrates the analog performances of the R-EAT for being used in wireless access networks such as W-LAN.

  6. Selective adsorption of flavor-active components on hydrophobic resins.

    PubMed

    Saffarionpour, Shima; Sevillano, David Mendez; Van der Wielen, Luuk A M; Noordman, T Reinoud; Brouwer, Eric; Ottens, Marcel

    2016-12-09

    This work aims to propose an optimum resin that can be used in industrial adsorption process for tuning flavor-active components or removal of ethanol for producing an alcohol-free beer. A procedure is reported for selective adsorption of volatile aroma components from water/ethanol mixtures on synthetic hydrophobic resins. High throughput 96-well microtiter-plates batch uptake experimentation is applied for screening resins for adsorption of esters (i.e. isoamyl acetate, and ethyl acetate), higher alcohols (i.e. isoamyl alcohol and isobutyl alcohol), a diketone (diacetyl) and ethanol. The miniaturized batch uptake method is adapted for adsorption of volatile components, and validated with column breakthrough analysis. The results of single-component adsorption tests on Sepabeads SP20-SS are expressed in single-component Langmuir, Freundlich, and Sips isotherm models and multi-component versions of Langmuir and Sips models are applied for expressing multi-component adsorption results obtained on several tested resins. The adsorption parameters are regressed and the selectivity over ethanol is calculated for each tested component and tested resin. Resin scores for four different scenarios of selective adsorption of esters, higher alcohols, diacetyl, and ethanol are obtained. The optimal resin for adsorption of esters is Sepabeads SP20-SS with resin score of 87% and for selective removal of higher alcohols, XAD16N, and XAD4 from Amberlite resin series are proposed with scores of 80 and 74% respectively. For adsorption of diacetyl, XAD16N and XAD4 resins with score of 86% are the optimum choice and Sepabeads SP2MGS and XAD761 resins showed the highest affinity towards ethanol.

  7. Damage to coated ZnSe optical components by high-power CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Haas, C. R.; Kreutz, Ernst-Wolfgang; Wesner, David A.

    1994-07-01

    Coated ZnSe optical components are irradiated with high-power, pulsed CO2 laser radiation ((lambda equals 10.6 micrometers , pulse length approximately 100 ns) at fluences up to 210 J/cm2. The components are characterized at various stages of irradiation by thermography, optical microscopy, stylus profilometry, and surface chemical analysis (x-ray photoemission and Auger electron spectroscopy). During irradiation no temperature in the component surface is observed. Two types of coating damage occur within the irradiated area of the component: a breaking apart of the ZnSe overlayer of the coating system over relatively large areas, and the formation of isolate craters of diameter approximately 30 - 50 micrometers extending in depth approximately 3 micrometers through the coating system down to the ZnSe substrate. Chemically, the irradiated area is characterized by an oxidation of both Zn and Se and an increase in the stoichiometric ratio of Zn to Se. These effects are especially pronounced at the crater defects, and are attributed to localized optical absorption, leading to thermal stress and chemical reactions of Zn and Se with atmospheric or adsorbed water and/or oxygen.

  8. Development of linear and nonlinear components for integrated optical signal processing

    NASA Astrophysics Data System (ADS)

    Tseng, Shuo-Yen

    Optical processors have potentially a major advantage over electronic processors because of their tremendous bandwidth. Massive parallelism is another inherent advantage of optical processors. However, it is traditionally demonstrated with free space components and seldom used for integrated optical signal processing. In this thesis, we consider spatial domain signal processing in guided wave structures, which brings a new dimension to the existing serial signal processing architecture and takes advantage of the parallelism in optics. A novel class of devices using holograms in multimode channel waveguides is developed in this work. Linear optical signal processing using multimode waveguide holograms (MWHs) is analyzed. We focus on discrete unitary transformations to take advantage of the discrete nature of modes in multimode waveguides. We prove that arbitrary unitary transformations can be performed using holograms in multimode waveguides. A model using the wide-angle beam propagation method (WA-BPM) is developed to simulate the devices and shows good agreement with the theory. The design principle of MWH devices is introduced. Based on the design principle, BPM models are used to design several devices including a mode-order converter, a Hadamard transformer, and an optical pattern generator/correlator. Optical pattern generators are fabricated to verify the theory and the model. Also, the bandwidth and fabrication tolerance of MWH devices are also analyzed. Also, we examine the nonlinear optical switches which allow the integration of MWHs into modern optical communication networks. A simple optical setup using an imaged 2-D phase grating is developed for characterization of the complex third-order nonlinearity chi(3) to identify suitable nonlinear materials for integrated optical switches. This technique provides a reliable way to characterize chi(3) as new materials are constantly being developed. Finally, we demonstrate the concept of optical switching using

  9. Optical Activity of Anisotropic Achiral Surfaces

    SciTech Connect

    Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoons, A. |

    1996-08-01

    Anisotropic achiral surfaces respond differently to left- and right-hand circularly polarized light. This occurs when the orientation of the surface with respect to an otherwise achiral experimental setup makes the total geometry chiral. Such optical activity is demonstrated in second-harmonic generation from an anisotropic thin molecular film. The circular-difference response reverses sign as the handedness of the geometry is reversed and vanishes when the setup possesses a mirror plane. The results are explained within the electric-dipole-allowed second-order surface nonlinearity. {copyright} {ital 1996 The American Physical Society.}

  10. The whispering gallery as an optical component in the X-ray region

    SciTech Connect

    Howells, M.R.

    1995-08-01

    The whispering gallery phenomenon in acoustics has been known and studied for more than a century, and the same effect has been observed to take place with waves other than sound waves. In this paper we review the theoretical basis and attractive features of the whispering gallery as a soft x-ray optical component and indicate some of its potential applications. We then describe what may be its most unique capability which, in favorable cases, is to provide a way. to manipulate the phase difference between the s and p polarization components and thus to generate circularly or elliptically polarized soft x-rays.

  11. Effect of component variations on the gate fidelity in linear optical networks

    NASA Astrophysics Data System (ADS)

    Crickmore, Jonathan; Frazer, Jonathan; Shaw, Scott; Kok, Pieter

    2016-08-01

    We investigate the effect of variations in beam-splitter transmissions and path-length differences in the nonlinear sign gate that is used for linear optical quantum computing. We identify two implementations of the gate and show that the sensitivity to variations in their components differs significantly between them. Therefore, circuits that require a precision implementation will generally benefit from additional circuit analysis of component variations to identify the most practical implementation. We suggest possible routes to efficient circuit analysis in terms of quantum parameter estimation.

  12. Using MapleSim to model a six-strut kinematic mount for aligning optical components

    NASA Astrophysics Data System (ADS)

    Duffy, Alan; Yates, Brian; Hu, Yongfeng

    2011-09-01

    Ray tracing simulations are often performed for an ideal situation of perfect alignment, but it is usually necessary to move optical components for various reasons. The mounts that hold these components can be complicated and modeling their motion is vital to understanding how they affect the performance of the system. This paper examines the behaviour of a six-strut kinematic mount using MapleSim to investigate and understand precisely how a mirror pole moves with its mount and quantify any cross-coupled motion that may occur during actuator adjustments. This positional information can be used to mitigate errors, improve ray tracing results, and assist in alignment.

  13. Optic foramen morphology and activity pattern in birds.

    PubMed

    Hall, Margaret I; Iwaniuk, Andrew N; Gutiérrez-Ibáñez, Cristián

    2009-11-01

    The optic nerve is the sole output of visual information from the ganglion cell layer of the retina to the brain in vertebrates. The size of the optic nerve is predicted to be closely associated with activity pattern, and, in many birds, the size of the optic foramen approximates the size of the optic nerve. Specifically, nocturnal species should have relatively smaller optic foramina than diurnal species because of differences in retinal pooling between activity patterns. If optic foramen morphology varies predictably with activity pattern in birds, this variable may be useful for interpreting activity pattern for birds that do not have soft tissue available for study, specifically for fossils. Across 177 families (from 27 orders), we describe four different optic foramen morphologies, only one of which corresponds well with the size of the optic nerve and is therefore appropriate for activity pattern analyses. Here, we test our hypothesis that nocturnal species will have relatively smaller optic foramina than diurnal species, across all species that we measured that have a discrete optic foramen. Regression analyses using species as independent data points and using comparative methods yielded significant differences in optic foramen size between nocturnal and diurnal species relative to three variables: head length, orbit depth, and sclerotic ring inner diameter. Nocturnal species consistently exhibit significantly smaller relative optic foramen diameters than diurnal species. Our results indicate that optic foramen diameter, in combination with either the sclerotic ring or the orbit diameter, can be used to predict activity pattern.

  14. Analysis of Photosynthetic Rate and Bio-Optical Components from Ocean Color Imagery

    NASA Technical Reports Server (NTRS)

    Kiefer, Dale A.; Stramski, Dariusz

    1997-01-01

    Our research over the last 5 years indicates that the successful transformation of ocean color imagery into maps of bio-optical properties will require continued development and testing of algorithms. In particular improvements in the accuracy of predicting from ocean color imagery the concentration of the bio-optical components of sea as well as the rate of photosynthesis will require progress in at least three areas: (1) we must improve mathematical models of the growth and physiological acclimation of phytoplankton; (2) we must better understand the sources of variability in the absorption and backscattering properties of phytoplankton and associated microparticles; and (3) we must better understand how the radiance distribution just below the sea surface varies as a function sun and sky conditions and inherent optical properties.

  15. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  16. Light scattering characterization of optical components: BRDF, BTDF, and scatter losses

    NASA Astrophysics Data System (ADS)

    Schröder, Sven; Finck, Alexander; Katsir, Dina; Zeitner, Uwe; Duparré, Angela

    2014-11-01

    Light scattering caused by imperfections of optical components can critically affect the performance of optical systems in terms of losses and image degradation. Because of the numerous potential sources of scattering such as roughness, surface and sub-surface defects, bulk inhomogeneities, as well as coatings, scattering properties must be carefully specified and measured at the wavelengths of application. Bidirectional Reflectance and Transmittance Distribution Functions (BRDF / BTDF) are used to quantify the angle resolved scattering properties. The data can be used as an input for optical engineering software just as FRED, ASAP, ZEMAX for stray light modeling. In addition, analyzing the scattered light can provide valuable information about the relevant imperfections. The presentation provides an overview of instrumentation for light scattering measurements at wavelengths ranging from the visible to the extreme ultraviolet and the infrared spectral regions. Examples of applications will be discussed ranging from superpolished mirrors to diffraction gratings, interference coatings, and black absorbing coatings.

  17. Multiple component codes based generalized LDPC codes for high-speed optical transport.

    PubMed

    Djordjevic, Ivan B; Wang, Ting

    2014-07-14

    A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.

  18. Achromatic flat optical components via compensation between structure and material dispersions

    PubMed Central

    Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang

    2016-01-01

    Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems. PMID:26794855

  19. Relations between ac-dc components and optical path length in photoplethysmography

    NASA Astrophysics Data System (ADS)

    Lee, Chungkeun; Sik Shin, Hang; Lee, Myoungho

    2011-07-01

    Photoplethysmography is used in various areas such as vital sign measurement, vascular characteristics analysis, and autonomic nervous system assessment. Photoplethysmographic signals are composed of ac and dc, but it is difficult to find research about the interaction of photoplethysmographic components. This study suggested a model equation combining two Lambert-Beer equations at the onset and peak points of photoplethysmography to evaluate ac characteristics, and verified the model equation through simulation and experiment. In the suggested equation, ac was dependent on dc and optical path length. In the simulation, dc was inversely proportionate to ac sensitivity (slope), and ac and optical path length were proportionate. When dc increased from 10% to 90%, stabilized ac decreased from 1 to 0.89 +/- 0.21, and when optical path length increased from 10% to 90%, stabilized ac increased from 1 to 1.53 +/- 0.40.

  20. Radiation effects on various optical components for the Mars Observer spacecraft

    NASA Astrophysics Data System (ADS)

    Lowry, Jay H.; Iffrig, C. D.

    The performance of selected optical parts of the Mars Observer Laser Altimeter (MOLA) is considered. Test results indicate that Schott RG-830, RG-850 filter glass, and the Rolyn Optics Neutral Density filters are essentially immune to levels of radiation an order of magnitude larger than that expected for the MOLA spacecraft. The Corion LG-840 filters are shown to be relatively safe for this application, but exposures to levels higher than 15 kilo-rads(Si) have a severe effect on this material. The BK-7 prism appears to be acceptable for the relatively benign environment required for MOLA. It is concluded that the optical performance of the components tested is not degraded by exposure to the whole life dose expected for the Mars Observer.

  1. Active polarimeter optical system laser hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-07-01

    A laser hazard analysis was performed for the SNL Active Polarimeter Optical System based on the ANSI Standard Z136.1-2000, American National Standard for Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for Safe Use of Lasers Outdoors. The Active Polarimeter Optical System (APOS) uses a pulsed, near-infrared, chromium doped lithium strontium aluminum fluoride (Cr:LiSAF) crystal laser in conjunction with a holographic diffuser and lens to illuminate a scene of interest. The APOS is intended for outdoor operations. The system is mounted on a height adjustable platform (6 feet to 40 feet) and sits atop a tripod that points the beam downward. The beam can be pointed from nadir to as much as 60 degrees off of nadir producing an illuminating spot geometry that can vary from circular (at nadir) to elliptical in shape (off of nadir). The JP Innovations crystal Cr:LiSAF laser parameters are presented in section II. The illuminating laser spot size is variable and can be adjusted by adjusting the separation distance between the lens and the holographic diffuser. The system is adjusted while platform is at the lowest level. The laser spot is adjusted for a particular spot size at a particular distance (elevation) from the laser by adjusting the separation distance (d{sub diffuser}) to predetermined values. The downward pointing angle is also adjusted before the platform is raised to the selected operation elevation.

  2. New light-trapping concept by means of several optical components applied to compact holographic 3D concentration solar module

    NASA Astrophysics Data System (ADS)

    Villamarín Villegas, Ayalid M.; Pérez López, Francisco J.; Calo López, Antonio; Rodríguez San Segundo, Hugo-José

    2014-05-01

    A new light-trapping concept is presented, which joins broad bandwidth volume phase reflection holograms (VPRH) working together with three other optical components: specifically designed three-dimensional (3D) cavities, Total Internal Reflection (TIR) within an optical medium, and specular reflection by means of a highly reflective surface. This concept is applied to the design and development of both low concentration photovoltaic (LCPV) and solar thermal modules reaching a concentration factor of up to 3X. Higher concentrations are feasible for use in concentrated solar power (CSP) devices. The whole system is entirely made of polymeric materials (except for the solar cells or fluid carrying pipes), thus reducing cost by up to 40%. The module concentrates solar light onto solar cells - or fluid carrying pipes - with no need for active tracking of the sun, covering the whole seasonal and daily incident angle spectrum while it also minimizes optical losses. In this work we analyze the first experimentally measured optical characteristics and performance of VPRH in dichromated gelatin film (DCG) in our concept. The VPRH can reach high diffraction efficiencies (˜98%, ignoring Fresnel reflection losses). Thanks to specifically designed raw material, coating and developing process specifications, also very broad selective spectral (higher than 300 nm) and angular bandwidths (˜+20º) per grating are achieved. The VPRH was optimized to use silicon solar cells, but designs for other semiconductor devices or for fluid heating are feasible. The 3D shape, the hologram's and reflective surface's optical quality, the TIR effect and the correct coupling of all the components are key to high performance of the concentration solar module.

  3. Optimization of displacement-measuring quadrature interferometers considering the real properties of optical components

    SciTech Connect

    Pozar, Tomaz; Gregorcic, Peter; Mozina, Janez

    2011-03-20

    We present the influence of alignment and the real properties of optical components on the performance of a two-detector homodyne displacement-measuring quadrature laser interferometer. An experimental method, based on the optimization of visibility and sensitivity, was established and theoretically described to assess the performance and stability of the interferometer. We show that the optimal performance of such interferometers is achieved with the iterative alignment procedure described.

  4. Optimization of displacement-measuring quadrature interferometers considering the real properties of optical components.

    PubMed

    Požar, Tomaž; Gregorčič, Peter; Možina, Janez

    2011-03-20

    We present the influence of alignment and the real properties of optical components on the performance of a two-detector homodyne displacement-measuring quadrature laser interferometer. An experimental method, based on the optimization of visibility and sensitivity, was established and theoretically described to assess the performance and stability of the interferometer. We show that the optimal performance of such interferometers is achieved with the iterative alignment procedure described.

  5. Progress on the optical materials and components for the high power laser system in China

    NASA Astrophysics Data System (ADS)

    Shao, Jian-Da; Dai, Ya-Ping; Xu, Qiao

    2011-11-01

    The paper summarizes the recent progress on the optical materials and components for the high power laser system in China. The amplifier material, Nd glass, has been developed with continuous melt. Non-linear crystals, KDP/DKDP, have been grown with rapid and traditional growth method. Fused silica and K9 glass has been achieved high quality. Some potential materials for next generation high power laser system are also evinced in this summary.

  6. Progress on the optical materials and components for the high power laser system in China

    NASA Astrophysics Data System (ADS)

    Shao, Jian-da; Dai, Ya-ping; Xu, Qiao

    2012-01-01

    The paper summarizes the recent progress on the optical materials and components for the high power laser system in China. The amplifier material, Nd glass, has been developed with continuous melt. Non-linear crystals, KDP/DKDP, have been grown with rapid and traditional growth method. Fused silica and K9 glass has been achieved high quality. Some potential materials for next generation high power laser system are also evinced in this summary.

  7. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  8. Optical and electrical properties of composites based on functional components of an electroluminescent layer

    NASA Astrophysics Data System (ADS)

    Avanesyan, V. T.; Rakina, A. V.; Sychov, M. M.; Vasina, E. S.

    2016-07-01

    Optical and electrical properties of cyanoethyl ether of polyvinyl alcohol with filling of barium titanate BaTiO3 modified by shungite carbon nanoparticles are studied. It is found that the modification affects the diffuse reflectance spectra and dispersion characteristics of the impedance components due to a change in the nature of interfacial interactions in the system. The values of the forbidden band width for various modifier and filler concentrations are determined.

  9. WIYN active optics: a platform for AO

    NASA Astrophysics Data System (ADS)

    Code, Arthur D.; Claver, Charles F.; Goble, Larry W.; Jacoby, George H.; Sawyer, David G.

    1998-09-01

    The WIYN 3.5 meter telescope is situated on the southwest ridge of Kitt Peak yielding excellent atmosphere seeing conditions. As such, the telescope and enclosure design was directed towards exploiting this feature. The primary mirror was spun cast and figured by the Steward Observatory Mirror Laboratory and the secondary mirror by Contraves. In both cases the performance exceeded the design specifications. The borosilicate primary is actively temperature controlled to within 0.2 C of the desired temperature, typically 0.5 degrees C below the ambient air. The telescope structure is also temperature controlled and the enclosure is opened to the outside ion all sides, which all heat sources are vented to ducts carrying air downwind of the facility. The primary mirror is actively controlled for low order aberrations by 66 axial actuators which are adjusted open loop via force matrix look-up tables and closed loop via real-time wavefront curvature sensing measurements. The active optics also included real-time collimation and focus control. The telescope drive and guider are capable of providing tracking to a few hundredths of a second of arc. By employing active telescope control at this level, it is possible to maintain telescope and local wavefront distortion to a level where atmospheric effects dominate the image quality. Since a significant fraction of the power in the atmospheric disturbances is contained in image motion the first step in adaptive optics control will be simple tip tilt. Studies of higher order AO system are being carried out, as well as additional test characterizing the telescope and site. It is intended to continue such studies in an attempt to establish long term variances.

  10. Active components and clinical applications of olive oil.

    PubMed

    Waterman, Emily; Lockwood, Brian

    2007-12-01

    The olive tree, Olea europaea, is native to the Mediterranean basin and parts of Asia Minor. The fruit and compression-extracted oil have a wide range of therapeutic and culinary applications. Olive oil also constitutes a major component of the "Mediterranean diet." The chief active components of olive oil include oleic acid, phenolic constituents, and squalene. The main phenolics include hydroxytyrosol, tyrosol, and oleuropein, which occur in highest levels in virgin olive oil and have demonstrated antioxidant activity. Antioxidants are believed to be responsible for a number of olive oil's biological activities. Oleic acid, a monounsaturated fatty acid, has shown activity in cancer prevention, while squalene has also been identified as having anticancer effects. Olive oil consumption has benefit for colon and breast cancer prevention. The oil has been widely studied for its effects on coronary heart disease (CHD), specifically for its ability to reduce blood pressure and low-density lipoprotein (LDL) cholesterol. Antimicrobial activity of hydroxytyrosol, tyrosol, and oleuropein has been demonstrated against several strains of bacteria implicated in intestinal and respiratory infections. Although the majority of research has been conducted on the oil, consumption of whole olives might also confer health benefits.

  11. Microfluidic cytometers with integrated on-chip optical components for blood cell analysis

    NASA Astrophysics Data System (ADS)

    Zhao, Yingying; Li, Qin; Hu, Xiao-Ming

    2016-10-01

    In the last two decades, microfluidic technologies have shown the great potential in developing portable and point-of care testing blood cell analysis devices. It is challenging to integrate all free-space detecting components in a single microfluidic platform. In this paper, a microfluidic cytometer with integrated on-chip optical components was demonstrated. To facilitate on-chip detection, the device integrated optical fibers and on-chip microlens with microfluidic channels on one polydimethylsiloxane layer by standard soft photolithography. This compact design increased the sensitivity of the device and also eliminated time-consuming free-space optical alignments. Polystyrene particles, together with red blood cells and platelets, were measured in the microfluidic cytometer by small angle forward scatter. Experimental results indicated that the performance of the microfluidic device was comparable to a conventional cytometer. And it was also demonstrated its ability to detect on-chip optical signals in a highly compact, simple, truly portable and low cost format which was perfect suitable for point-of-care testing clinical hematology diagnostics.

  12. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  13. Nitric oxide radical scavenging active components from Phyllanthus emblica L.

    PubMed

    Kumaran, A; Karunakaran, R Joel

    2006-03-01

    An activity-directed fractionation and purification process was used to identify the nitric oxide (NO) scavenging components of Phyllanthus emblica. Dried fruit rind of P. emblica was extracted with methanol and then separated into hexane, ethyl acetate, and water fractions. Among these only the ethyl acetate phase showed strong NO scavenging activity in vitro, when compared with water and hexane phases. The ethyl acetate fraction was then subjected to separation and purification using Sephadex LH-20 chromatography. Five compounds showing strong NO scavenging activity were identified by spectral methods (1H NMR, 13C NMR, and MS) and by comparison with literature values to be Gallic acid, Methyl gallate, Corilagin, Furosin, and Geraniin. In addition, HPLC identification and quantification of isolated compounds were also performed. Gallic acid was found to be a major compound in the ethyl acetate extract and Geraniin showed highest NO scavenging activity among the isolated compounds.

  14. Design and component specifications for high average power laser optical systems

    SciTech Connect

    O'Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs.

  15. Human psychophysiological activity monitoring methods using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  16. Biochemical component identification by light scattering techniques in whispering gallery mode optical resonance based sensor

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-03-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins (albumin, interferon, C reactive protein), microelements (Na+, Ca+), antibiotic of different generations, in both single and multi component solutions under varied in wide range concentration are represented. Analysis has been performed on the light scattering parameters of whispering gallery mode (WGM) optical resonance based sensor with dielectric microspheres from glass and PMMA as sensitive elements fixed by spin - coating techniques in adhesive layer on the surface of substrate or directly on the coupling element. Sensitive layer was integrated into developed fluidic cell with a digital syringe. Light from tuneable laser strict focusing on and scattered by the single microsphere was detected by a CMOS camera. The image was filtered for noise reduction and integrated on two coordinates for evaluation of integrated energy of a measured signal. As the entrance data following signal parameters were used: relative (to a free spectral range) spectral shift of frequency of WGM optical resonance in microsphere and relative efficiency of WGM excitation obtained within a free spectral range which depended on both type and concentration of investigated agents. Multiplexing on parameters and components has been realized using spatial and spectral parameters of scattered by microsphere light with developed data processing. Biochemical component classification and identification of agents under investigation has been performed by network analysis techniques based on probabilistic network and multilayer perceptron. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis.

  17. Active optics in Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Liang, Ming; Krabbendam, Victor; Claver, Charles F.; Chandrasekharan, Srinivasan; Xin, Bo

    2012-09-01

    The Large Synoptic Survey Telescope (LSST) has a 3.5º field of view and F/1.2 focus that makes the performance quite sensitive to the perturbations of misalignments and mirror surface deformations. In order to maintain the image quality, LSST has an active optics system (AOS) to measure and correct those perturbations in a closed loop. The perturbed wavefront errors are measured by the wavefront sensors (WFS) located at the four corners of the focal plane. The perturbations are solved by the non-linear least square algorithm by minimizing the rms variation of the measured and baseline designed wavefront errors. Then the correction is realized by applying the inverse of the perturbations to the optical system. In this paper, we will describe the correction processing in the LSST AOS. We also will discuss the application of the algorithm, the properties of the sensitivity matrix and the stabilities of the correction. A simulation model, using ZEMAX as a ray tracing engine and MATLAB as an analysis platform, is set up to simulate the testing and correction loop of the LSST AOS. Several simulation examples and results are presented.

  18. Active optics with a minimum number of actuators

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2014-06-01

    Optics for astronomy implies powerful developments of active and adaptive optics methods applied to instrumentation from X-rays to the near infrared for the design of telescopes, spectrographs, and coronagraph planet finders. This presentation particularly emphasizes the development of active optics methods. Highly accurate and remarkably smooth surfaces from active optics methods allow new optical systems that use highly aspheric and non-axisymmetric - freeform - surfaces. Depending on the goal and performance required for a deformable optical surface, elasticity theory analysis is carried out either with small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, or the weakly conical shell theory. A mirror thickness distribution is then determined as a function of associated bending actuators and boundary conditions. For a given optical shape to generate, one searches for optical solutions with a minimum number of actuators.

  19. [Synchronization of the activity of gamma oscillation and ERP components].

    PubMed

    Wang, Mingshi; Liu, Jin; Zhu, Qiang; Chen, Yun

    2005-10-01

    In the present study the activity of the gamma oscillation synchronized with the stimuli and ERP is investigated by means of unimodal and bimodal experiments. The multiresolution wavelet algorithm is used for signal extraction and Gabor transform is employed to represent the temporal evolution of the selected frequency components. The results show that the gamma oscillation is strongly phase-locked not only with the exogenous stimuli in the three experiments, but also with the endogenous components of ERPs (N2b, P300). And the ERP and the gamma oscillation induced by the bimodal stimuli show the audio-visual bisensory integration and relationship. In addition, the results from the experiments with the auditory stimuli show that the gamma oscillation may be closely related to the perception of auditory signals.

  20. Degradation of electro-optic components aboard LDEF. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    Re-measurement of the properties of a set of electro-optic components exposed to the low earth orbital environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, LED's, filter, mirrors, and black paints will be presented. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens. We find plastics and multi-layer dielectric coatings to be potentially unstable. Semiconductor devices, metal, and glass are more likely to be stable.

  1. Radiation studies of optical and electronic components used in astronomical satellite studies

    NASA Technical Reports Server (NTRS)

    Becher, J.; Kernell, R. L.

    1981-01-01

    The synchronous orbit of the IUE carries the satellite through Earth's outer electron belt. A 40 mCi Sr90 source was used to simulate these electrons. A 5 mCi source of Co60 was used to simulate bremmstrahlung. A 10 MeV electron Linac and a 1.7 MeV electron Van de Graaf wer used to investigate the energy dependence of radiation effects and to perform radiations at a high flux rate. A 100 MeV proton cyclotron was used to simulate cosmic rays. Results are presented for three instrument systems of the IUE and measurements for specific components are reported. The three instrument systems were the ultraviolet converter, the fine error sensor (FES), and the SEC vidicon camera tube. The components were optical glasses, electronic components, silicon photodiodes, and UV window materials.

  2. Neuroprotective Activity of Hypericum perforatum and Its Major Components.

    PubMed

    Oliveira, Ana I; Pinho, Cláudia; Sarmento, Bruno; Dias, Alberto C P

    2016-01-01

    Hypericum perforatum is a perennial plant, with worldwide distribution, commonly known as St. John's wort. It has been used for centuries in traditional medicine for the treatment of several disorders, such as minor burns, anxiety, and mild to moderate depression. In the past years, its antidepressant properties have been extensively studied. Despite that, other H. perforatum biological activities, as its neuroprotective properties have also been evaluated. The present review aims to provide a comprehensive summary of the main biologically active compounds of H. perforatum, as for its chemistry, pharmacological activities, drug interactions and adverse reactions and gather scattered information about its neuroprotective abilities. As for this, it has been demonstrated that H. perforatum extracts and several of its major molecular components have the ability to protect against toxic insults, either directly, through neuroprotective mechanisms, or indirectly, through is antioxidant properties. H. perforatum has therefore the potential to become an effective neuroprotective therapeutic agent, despite further studies that need to be carried out.

  3. Polymer optical fiber grating as water activity sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Webb, David J.

    2014-05-01

    Controlling the water content within a product has long been required in the chemical processing, agriculture, food storage, paper manufacturing, semiconductor, pharmaceutical and fuel industries. The limitations of water content measurement as an indicator of safety and quality are attributed to differences in the strength with which water associates with other components in the product. Water activity indicates how tightly water is "bound," structurally or chemically, in products. Water absorption introduces changes in the volume and refractive index of poly(methyl methacrylate) PMMA. Therefore for a grating made in PMMA based optical fiber, its wavelength is an indicator of water absorption and PMMA thus can be used as a water activity sensor. In this work we have investigated the performance of a PMMA based optical fiber grating as a water activity sensor in sugar solution, saline solution and Jet A-1 aviation fuel. Samples of sugar solution with sugar concentration from 0 to 8%, saline solution with concentration from 0 to 22%, and dried (10ppm), ambient (39ppm) and wet (68ppm) aviation fuels were used in experiments. The corresponding water activities are measured as 1.0 to 0.99 for sugar solution, 1.0 to 0.86 for saline solution, and 0.15, 0.57 and 1.0 for the aviation fuel samples. The water content in the measured samples ranges from 100% (pure water) to 10 ppm (dried aviation fuel). The PMMA based optical fiber grating exhibits good sensitivity and consistent response, and Bragg wavelength shifts as large as 3.4 nm when the sensor is transferred from dry fuel to wet fuel.

  4. Gating effects of component B on oxygen activation by the methane monooxygenase hydroxylase component.

    PubMed

    Liu, Y; Nesheim, J C; Lee, S K; Lipscomb, J D

    1995-10-20

    Component B (MMOB) of the soluble methane monooxygenase (MMO) system accelerates the initial velocity of methane oxidation by up to 150-fold by an unknown mechanism. The active site of MMO contains a diferric, hydroxo-bridged diiron cluster located on the hydroxylase component (MMOH). This cluster is reduced by the NAD(P)H-coupled reductase component to the diferrous state, which then reacts with O2 to yield two reaction cycle intermediates sequentially termed compounds P and Q. The rate of compound P formation is shown here to be independent of O2 concentration, suggesting that an MMOH-O2 complex (compound O) is (congruent to irreversibly) formed before compound P. Compound Q is capable of reacting with hydrocarbons to yield the MMOH-product complex, compound T. It is shown here that MMOB accelerates catalysis by increasing congruent to 1000-fold the rate of O2 association and reaction with diferrous MMOH leading to compound P. Modeling of the single turnover reaction in the presence of substoichiometric MMOB suggests that MMOB also accelerates the compound P to Q conversion by congruent to 40-fold. Due to this O2-gating effect of MMOB, either compound Q or T becomes the dominant species during turnover, depending upon the substrate concentration and type. Because these are the species that either react with substrate (Q) or release product (T), their buildup maximizes the turnover rate. This is the first direct role in catalysis to be recognized for MMOB and represents a novel method for oxygenase regulation.

  5. Vibrational Raman optical activity of ketose monosaccharides

    NASA Astrophysics Data System (ADS)

    Bell, Alasdair F.; Hecht, Lutz; Barron, Laurence D.

    1995-07-01

    The vibrational Raman optical activity (ROA) spectra of the four ketose sugars D-fructose, L-sorbose, D-tagatose and D-psicose in aqueous solution, which have been measured in backscattering in the range ≈250-1500 cm -1, are reported. These results are combined with those from a previous ROA study of aldose and pentose sugars in an attempt to establish new vibrational assignments and to verify old ones. The high information content of these spectra provides a new perspective on all the central features of monosaccharide stereochemistry including dominant anomeric configuration, ring conformation, exocyclic CH 2OH group conformation and relative disposition of the hydroxyl groups around the ring.

  6. Mineral components and anti-oxidant activities of tropical seaweeds

    NASA Astrophysics Data System (ADS)

    Takeshi, Suzuki; Yumiko, Yoshie-Stark; Joko, Santoso

    2005-07-01

    Seaweeds are known to hold substances of high nutritional value; they are the richest resources of minerals important to the biochemical reactions in the human body. Seaweeds also hold non-nutrient compounds like dietary fiber and polyphenols. However, there is not enough information on the mineral compounds of tropical seaweeds. Also we are interested in the antioxidant activities of seaweeds, especially those in the tropical area. In this study, Indonesian green, brown and red algae were used as experimental materials with their mineral components analyzed by using an atomic absorption spectrophotometer. The catechins and flavonoids of these seaweeds were extracted with methanol and analyzed by high performance liquid chromatography (HPLC); the antioxidant activities of these seaweeds were evaluated in a fish oil emulsion system. The mineral components of tropical seaweeds are dominated by calcium, potassium and sodium, as well as small amounts of copper, iron and zinc. A green alga usually contains epigallocatechin, gallocatechin, epigallocatechin gallate and catechin. However, catechin and its isomers are not found in some green and red algae. In the presence of a ferrous ion catalyst, all the methanol extracts from the seaweeds show significantly lower peroxide values of the emulsion than the control, and that of a green alga shows the strongest antioxidant activity. The highest chelation on ferrous ions is also found in the extract of this alga, which is significantly different from the other methanol extracts in both 3 and 24 h incubations.

  7. [Studies on acetylspiramycin. II. Biological activities of spiramycin components].

    PubMed

    Kondo, A; Sato, K; Shuto, K; Yamashita, K; Ichikawa, S; Takahashi, K; Kita, K; Nishiie, Y; Sano, H; Yamaguchi, K

    1990-09-01

    Acetylspiramycin (ASPM) was fractionated using high performance liquid chromatography (HPLC). The peak fractions were named F1 to F7 successively in order of increasing retention times (Rt), i.e., increasing hydrophobicity, and studied for 1) antibacterial activities (MIC), 2) antibacterial potency against Bacillus subtilis ATCC 6633, 3) therapeutic effect on mice infected with Streptococcus pneumoniae III, Staphylococcus aureus Smith, 4) acute toxicity by i.p. administration to mice (LD50) and 5) cytotoxicities to fibroblasts derived from Chinese-hamster lung (CHL), cow pulmonary artery endothelial cells (CPAE) and rat hepatic cells. The results obtained are summarized below. 1. Components F1 and 4'-acetylspiramycin F2 had significantly different biological activities from those of other components: F1 showed the lowest antibacterial potency of 492 micrograms (potency)/mg, F2 showed the highest antibacterial potency of 2,040 micrograms (potency)/mg and correspondingly the lowest LD50 value of 692 mg/kg (the highest toxicity). The therapeutic effect of F2 on infections in mice was found to be the second smallest and was superior only to that of F1. The LD50 value of F1 was 1,200 mg/kg and similar to that of ASPM. 2. Antibacterial potencies of F3, F4, F5 and F6 were 1,165, 1,266, 1,374 and 1,530 micrograms (potency)/mg, respectively; fraction with the higher antibacterial activities corresponded to the longer retention times, i.e., the greater hydrophobicities. The most hydrophobic component, F7, 3-propionyl-3",4"-diacetylspiramycin, however, showed a low antibacterial potency of 1,085 micrograms (potency)/mg, next to the lowest one, F1, a fact which was in contradiction to with the sequential relation between hydrophobicities and potencies from F3 to F6.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Antiplatelet effect of active components derived from Chinese herbal medicine.

    PubMed

    Zhang, Ying; Ma, Xiao-Juan; Shi, Da-Zhuo

    2015-10-10

    Atherothrombosis is the major cause of acute coronary syndromes and cardiovascular deaths. Platelets participate in the processes of forming and extending atherosclerotic plaques. Therefore, antiplatelet therapy is a milestone in the primary and second prevention of atherothrombotic diseases. Along with the longterm use of antiplatelet agents, the safety and drug resistance has become a big concern in clinic and new drugs possessing higher effectiveness and fewer adverse effects are needed. Abundant recent data support that traditional Chinese herbs may be a good alternative and complementary choice of new antiplatelet drugs. This review highlights the progress of antiplatelet effect of active components derived from traditional Chinese herbs based on their chemical structures.

  9. A new generation active arrays for optical flexibility in astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Kroes, G.; Jaskó, A.; Pragt, J. H.; Venema, L.; De Haan, M.

    2012-09-01

    Throughout the history of telescopes and astronomical instrumentation, new ways were found to open up unexplored possibilities in fundamental astronomical research by increasing the telescope size and instrumentation complexity. The ever demanding requirements on instrument performance pushes instrument complexity to the edge. In order to take the next leap forward in instrument development the optical design freedom needs to be increased drastically. The use of more complex and more accurate optics allows for shorter optical trains with smaller sizes, smaller number of components and reduced fabrication and alignment verification time and costs. Current optics fabrication is limited in surface form complexity and/or accuracy. Traditional active and adaptive optics lack the needed intrinsic long term stability and simplicity in design, manufacturing, verification and control. This paper explains how and why active arrays literally provide a flexible but stable basis for the next generation optical instruments. Combing active arrays with optically high quality face sheets more complex and accurate optical surface forms can be provided including extreme a-spherical (freeform) surfaces and thus allow for optical train optimization and even instrument reconfiguration. A zero based design strategy is adopted for the development of the active arrays addressing fundamental issues in opto-mechanical engineering. The various choices are investigated by prototypes and Finite Element Analysis. Finally an engineering concept will be presented following a highly stable adjustment strategy allowing simple verification and control. The Optimization metrology is described in an additional paper for this conference by T. Agócs et al.

  10. High quality actively cooled plasma facing components for fusion

    SciTech Connect

    Nygren, R.

    1993-12-31

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra`s Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed.

  11. The Cryogenic Performances of Specific Optical and Electrical Components for a Liquid Argon Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Gong, Datao; Hou, Suen; Liu, Chonghan; Liu, Tiankuan; Su, Da-shung; Teng, Ping-kun; Xiang, Annie C.; Ye, Jingbo; LBNE Collaboration

    In this paper we present a cryogenic performance study of specific optical and electrical components for the Liquid Argon Time Projection Chamber (LArTPC), a potential far site detector technology of the long baseline neutrino experiment (LBNE). We have confirmed that an LVDS driver can drive a 20-meter CAT5E twisted pair up to 1 gigabit per second at liquid nitrogen temperature (77 K). We have verified that a 16:1 serializer Application Specific Integrated Circuit (ASIC), three types of laser diodes, optical fibers and connectors, and field-programming gate arrays (FPGAs) continue to function at 77 K. A variety of commercial resistors and capacitors have been tested at 77 K. All tests we have conducted show that the cold front-end electronics is promising.

  12. Comparison of Materials for Use in the Precision Grinding of Optical Components

    SciTech Connect

    Evans, Boyd M. III; Miller, Arthur C. Jr.; Egert, Charles M.

    1997-12-31

    Precision grinding of optical components is becoming an accepted practice for rapidly and deterministically fabrication optical surfaces to final or near-final surface finish and figure. In this paper, a comparison of grinding techniques and materials is performed. Flat and spherical surfaces were ground in three different substrate materials: BK7 glass, chemical vapor deposited (CVD) silicon carbide ceramic, and sapphire. Spherical surfaces were used to determine the contouring capacity of the process, and flat surfaces were used for surface finish measurements. The recently developed Precitech Optimum 2800 diamond turning and grinding platform was used to grind surfaces in 40mm diameter substrates sapphire and silicon carbide substrates and 200 mm BK7 glass substrates using diamond grinding wheels. The results of this study compare the surface finish and figure for the three materials.

  13. On-line monitoring of one-step laser fabrication of micro-optical components.

    PubMed

    Juliá, J E; Soriano, J C

    2001-07-01

    The use of an on-line monitoring method based on photoelasticity techniques for the fabrication of micro-optical components by means of controlled laser heating is described. From this description it is possible to show in real time the mechanical stresses that form the microelement. A new parameter, stressed area, is introduced that quantifies the stresses of a microelement during its fabrication, facilitating a deeper understanding of the physical phenomena involved in the process as well as being a useful test of quality. It also permits the stress produced in the manufacturing process and the optical properties of the final microelement to be correlated. The results for several microlenses monitored with this technique are presented.

  14. Absorbed XFEL Dose in the Components of the LCLS X-Ray Optics

    SciTech Connect

    Hau-Riege, Stefan

    2010-12-03

    There is great concern that the short, intense XFEL pulse of the LCLS will damage the optics that will be placed into the beam. We have analyzed the extent of the problem by considering the anticipated materials and position of the optical components in the beam path, calculated the absorbed dose as a function of photon energy, and compared these doses with the expected doses required (i) to observe rapid degradation due to thermal fatigue, (ii) to reach the melting temperature, or (iii) to actually melt the material. We list the materials that are anticipated to be placed into the Linac Coherent Light Source (LCLS) x-ray free electron laser (XFEL) beam line, their positions, and the absorbed dose, and compare this dose with anticipated damage thresholds.

  15. Hybrid optoelectronic vector matrix multipliers using guided-wave and micro-optic components

    NASA Astrophysics Data System (ADS)

    Handerek, V.; McCarthy, A.; Laycock, L.

    2007-10-01

    There is a need for faster processing hardware to provide modern radar systems with advanced capabilities such as multiple hypothesis tracking, real-time clutter removal and space-time adaptive beamforming (STAP) for jammer nulling. One approach that may help to meet this need is to use analogue methods in parts of the signal processing chain using optoelectronics. The vector-matrix multiplier is a powerful optical processing architecture that potentially offers very large gains in computation speed, but has not so far become commercially successful. This paper reports investigation of a novel arrangement for this type of processor that is aimed at improving the prospects for commercialisation, using guided-wave and micro-optic components. This approach will assist miniaturisation of the processor and improve ruggedness and scalability to large matrices.

  16. Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam

    2007-01-01

    "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the

  17. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components

    PubMed Central

    Yan, Beizhan; Kennedy, Daniel; Miller, Rachel L.; Cowin, James P.; Jung, Kyung-hwa; Perzanowski, Matt; Balletta, Marco; Perera, Federica P.; Kinney, Patrick L.; Chillrud, Steven N.

    2011-01-01

    Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM2.5 filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R2 = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at

  18. Asymmetric diffraction from two-component optical gratings made of passive and lossy materials.

    PubMed

    Liang, Guanquan; Abouraddy, Ayman; Christodoulides, Demetrios; Thomas, Edwin L

    2016-12-26

    Diffraction with asymmetric enhancement and suppression, and alternating contrast for symmetric diffraction orders is demonstrated from planar two-component optical gratings made of passive/lossy materials. Simulations agree well with the experimental diffraction pattern of the fabricated sample. Our fabrication approach uses simple, standard planar micro/nano lithography employing one photoresist and one dye. No 3D profiling is needed. The phenomena is due to the left-right asymmetric material distribution in the periodic grating, which gives rise to non-reciprocal light coupling for diffraction to the positive and negative orders.

  19. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components.

    PubMed

    Yan, Beizhan; Kennedy, Daniel; Miller, Rachel L; Cowin, James P; Jung, Kyung-Hwa; Perzanowski, Matt; Balletta, Marco; Perera, Federica P; Kinney, Patrick L; Chillrud, Steven N

    2011-12-01

    Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM(2.5) filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R(2) = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at

  20. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components

    NASA Astrophysics Data System (ADS)

    Yan, Beizhan; Kennedy, Daniel; Miller, Rachel L.; Cowin, James P.; Jung, Kyung-hwa; Perzanowski, Matt; Balletta, Marco; Perera, Federica P.; Kinney, Patrick L.; Chillrud, Steven N.

    2011-12-01

    Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM 2.5 filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R2 = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at

  1. Cleaning of optical components for high-power laser-based firing systems

    SciTech Connect

    Sparrow, B.D.; Hendrix, J.L.

    1993-08-01

    This report discusses the progress of AlliedSignal Inc., Kansas City Division (KCD), in addressing the issues of cleaning of hardware and optical components for laser-based firing sets. These issues are acceptability of cleaning processes and techniques of other government programs to the quality, reliability, performance, stockpile life, materials compatibility issues, and, perhaps most important, environmentally conscious manufacturing requirements of the Department of Energy (DOE). A review of ``previous cleaning art`` is presented using Military Standards (MIL STDs) and Military Interim Specifications (MISs) as well as empirical data compiled by the authors. Observations on processes and techniques used in building prototype hardware and plans for future work are presented.

  2. Enhanced pluggable out-of-plane coupling components for printed circuit board-level optical interconnections

    NASA Astrophysics Data System (ADS)

    Van Erps, J.; Heyvaert, S.; Debaes, C.; Van Giel, B.; Hendrickx, N.; Van Daele, P.; Thienpont, H.

    2008-04-01

    We present an enhanced out-of-plane coupling component for Printed Circuit Board-level optical interconnections. Rather than using a standard 45° micro-mirror to turn the light path over 90° we introduce a curvature in the mirror profile and incorporate an extra cylindrical micro-lens for beam collimation. Both modifications enable an increase in coupling efficiency and are extensively investigated using non-sequential ray tracing simulations in combination with Matlab optimization algorithms. The resulting design is fabricated using Deep Proton Writing and experimental characterization of the geometrical properties and measured coupling efficiencies are presented.

  3. Optical System For Laser Welding In The Nuclear Power Plant Core Components

    NASA Astrophysics Data System (ADS)

    Cantello, M.; Ghiringhello, G.; CAI, G.; Chiasera, M.

    1987-07-01

    This paper presents the experimental work and the results obtained in laser welding of chandelles, to the sommier plates of the Super Phoenix 2 (SPX2) reactor. The real dimensions of the sommier (m 7.70 diameter) and the high number of chandelles to he fastened to the plates (1200 chandelles) impose very strict tolerances. The laser technology is particularly useful for the very low deformations induced in the welded component and for the possibility to manipulate the energy beam using flexible optical systems.

  4. Photonic Beamformer Model Based on Analog Fiber-Optic Links’ Components

    NASA Astrophysics Data System (ADS)

    Volkov, V. A.; Gordeev, D. A.; Ivanov, S. I.; Lavrov, A. P.; Saenko, I. I.

    2016-08-01

    The model of photonic beamformer for wideband microwave phased array antenna is investigated. The main features of the photonic beamformer model based on true-time-delay technique, DWDM technology and fiber chromatic dispersion are briefly analyzed. The performance characteristics of the key components of photonic beamformer for phased array antenna in the receive mode are examined. The beamformer model composed of the components available on the market of fiber-optic analog communication links is designed and tentatively investigated. Experimental demonstration of the designed model beamforming features includes actual measurement of 5-element microwave linear array antenna far-field patterns in 6-16 GHz frequency range for antenna pattern steering up to 40°. The results of experimental testing show good accordance with the calculation estimates.

  5. Tumor necrosis factor-inducing activities of Cryptococcus neoformans components.

    PubMed Central

    Delfino, D; Cianci, L; Migliardo, M; Mancuso, G; Cusumano, V; Corradini, C; Teti, G

    1996-01-01

    Cryptococcus neoformans-induced tumor necrosis factor alpha (TNF-alpha) production may lead to increased human immunodeficiency virus replication in patients with AIDS. In order to identify cryptococcal components that are predominantly responsible for stimulating TNF production, various concentrations of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), mannoproteins (MP), and alpha(1-3) [corrected] glucan were added to whole-blood cultures. All of the cryptococcal components tested, as well as whole heat-killed cryptococci, were capable of inducing TNF-alpha release in a dose-dependent manner. MP were significantly more potent than any of the other cryptococcal components tested or heat-killed cryptococci in stimulating TNF-alpha production (P < 0.05). GXM, in contrast, was significantly less potent in this activity than either GalXM or MP (P < 0.05). As little as 0.5 microg of MP per ml was sufficient to produce moderate but significant elevations of TNF-alpha release. Maximal MP-induced TNF-alpha levels were similar to those induced by Salmonella enteritidis lipopolysaccharide, our positive control. Further experiments using isolated leukocytes suggested that monocytes were the cell population mainly responsible for TNF-alpha production, although the participation of other cell types could not be excluded. The presence of complement-sufficient plasma was a necessary requirement for TNF-alpha induction by GXM, GalXM, and low doses of MP. High MP concentrations (100 microg/ml) were also capable of stimulating TNF-alpha production in the absence of plasma. These data indicate that soluble products released by C. neoformans are capable of inducing TNF-alpha secretion in human leukocytes. This may be clinically relevant, since high concentrations of such products are frequently found in the body fluids of AIDS patients infected with C. neoformans. PMID:8945566

  6. Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    SciTech Connect

    N. Lybeck; B. Pham; M. Tawfik; J. B. Coble; R. M. Meyer; P. Ramuhalli; L. J. Bond

    2011-08-01

    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure, and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and

  7. Magneto-optic imaging: Normal and parallel field components of in-plane magnetized samples

    NASA Astrophysics Data System (ADS)

    Ferrari, H.; Bekeris, V.; Thibeault, M.; Johansen, T. H.

    2007-06-01

    Magneto-optical (MO) imaging has become a powerful tool for determining magnetic properties of materials by detecting the stray magnetic fields. The technique consists in measuring the Faraday rotation, θF, in the light polarization plane when light travels through a transparent sensitive garnet (ferrite garnet film, FGF) placed in close contact to the sample. For in-plane magnetized samples, the MO image is not trivially related to the sample magnetization, and to contribute to this understanding we have imaged commercial audio tapes in which computer-generated functions were recorded. We present MO images of periodically in-plane magnetized tapes with square, sawtooth, triangular and sinusoidal waveforms, for which we analytically calculate the perpendicular and parallel stray magnetic field components generated by the tape. As a first approach we correlate the measured light intensity with the perpendicular magnetic field component at the FGF, and we show that it can be approximated to the gradient of the sample magnetization. A more detailed calculation, taking into account the effect of both field components in the Faraday rotation, is presented and satisfactorily compared with the obtained MO images. The presence of magnetic domains in the garnet is shown to be related to the change in sign of the parallel component of the stray magnetic field, which can be approximated to the second derivative of the sample magnetization.

  8. Signaling Components of Redox Active Endosomes: The Redoxosomes

    PubMed Central

    Oakley, Fredrick D.; Abbott, Duane; Li, Qiang

    2009-01-01

    Abstract Subcellular compartmentalization of reactive oxygen species (ROS) plays a critical role in transmitting cell signals in response to environmental stimuli. In this regard, signals at the plasma membrane have been shown to trigger NADPH oxidase-dependent ROS production within the endosomal compartment and this step can be required for redox-dependent signal transduction. Unique features of redox-active signaling endosomes can include NADPH oxidase complex components (Nox1, Noxo1, Noxa1, Nox2, p47phox, p67phox, and/or Rac1), ROS processing enzymes (SOD1 and/or peroxiredoxins), chloride channels capable of mediating superoxide transport and/or membrane gradients required for Nox activity, and novel redox-dependent sensors that control Nox activity. This review will discuss the cytokine and growth factor receptors that likely mediate signaling through redox-active endosomes, and the common mechanisms whereby they act. Additionally, the review will cover ligand-independent environmental injuries, such as hypoxia/reoxygenation injury, that also appear to facilitate cell signaling through NADPH oxidase at the level of the endosome. We suggest that redox-active endosomes encompass a subset of signaling endosomes that we have termed redoxosomes. Redoxosomes are uniquely equipped with redox-processing proteins capable of transmitting ROS signals from the endosome interior to redox-sensitive effectors on the endosomal surface. In this manner, redoxosomes can control redox-dependent effector functions through the spatial and temporal regulation of ROS as second messengers. Antioxid. Redox Signal. 11, 1313–1333. PMID:19072143

  9. Neuroprotective Activity of Hypericum perforatum and Its Major Components

    PubMed Central

    Oliveira, Ana I.; Pinho, Cláudia; Sarmento, Bruno; Dias, Alberto C. P.

    2016-01-01

    Hypericum perforatum is a perennial plant, with worldwide distribution, commonly known as St. John’s wort. It has been used for centuries in traditional medicine for the treatment of several disorders, such as minor burns, anxiety, and mild to moderate depression. In the past years, its antidepressant properties have been extensively studied. Despite that, other H. perforatum biological activities, as its neuroprotective properties have also been evaluated. The present review aims to provide a comprehensive summary of the main biologically active compounds of H. perforatum, as for its chemistry, pharmacological activities, drug interactions and adverse reactions and gather scattered information about its neuroprotective abilities. As for this, it has been demonstrated that H. perforatum extracts and several of its major molecular components have the ability to protect against toxic insults, either directly, through neuroprotective mechanisms, or indirectly, through is antioxidant properties. H. perforatum has therefore the potential to become an effective neuroprotective therapeutic agent, despite further studies that need to be carried out. PMID:27462333

  10. An Exploration of Professional Culture Differentials and Their Potential Impact on the Information Assurance Component of Optical Transmission Networks Design

    ERIC Educational Resources Information Center

    Cuthrell, Michael Gerard

    2011-01-01

    Optical transmission networks are an integral component of the critical infrastructures for many nations. Many people believe that optical transmission networks are impenetrable. In actuality, these networks possess weaknesses that can be exploited to bring about harm. An emerging Information Assurance (IA) industry has as its goals: to…

  11. Reinvestigation of the proteolytically active components of Bromelia pinguin fruit.

    PubMed

    Payrol, Juan Abreu; Obregón, Walter D; Natalucci, Claudia L; Caffini, Néstor O

    2005-09-01

    Pinguinain is the name given to a proteolytic enzyme preparation obtained from Bromelia pinguin fruits that has been scarcely studied. The present paper deals on the reexamination of the proteases present in fruits of B. pinguin grown in Cienfuegos, Cuba. The preparation (partially purified pinguinain, PPP) showed the main characteristics of the cysteine proteases, i.e., optimum pH within alkaline range (pH 7.2-8.8), inhibition of proteolytic activity by thiol blocking reagents, which is usually reverted by addition of cysteine, a remarkable thermal stability and notable stability at high ionic strength values. Isoelectric focusing and zymogram of PPP revealed the presence of several proteolytic components between pI 4.6 and 8.1. Preliminary peptidase purification by cationic exchange chromatography showed the presence of two main proteolytic fractions with molecular masses of approximately 20.0 kDa, according to SDS-PAGE.

  12. Active Learning Environment with Lenses in Geometric Optics

    ERIC Educational Resources Information Center

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  13. Optics Elements for Modeling Electrostatic Lenses and Accelerator Components: III. Electrostatic Deflectors

    SciTech Connect

    Brown, T.A.; Gillespie, G.H.

    1999-10-21

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the computer code TRACE 3-D. TRACE 3-D is an envelope (matrix) code, which includes a linear space charge model, that was originally developed to model bunched beams in magnetic transport systems and radiofrequency (RF) accelerators. Several new optical models for a number of electrostatic lenses and accelerator columns have been developed recently that allow the code to be used for modeling beamlines and accelerators with electrostatic components. The new models include a number of options for: (1) Einzel lenses, (2) accelerator columns, (3) electrostatic prisms, and (4) electrostatic quadrupoles. A prescription for setting up the initial beam appropriate to modeling 2-D (continuous) beams has also been developed. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the modeling of cylindrical, spherical, and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low energy beamline at CAMS.

  14. Research on the flywheel components' disturbance mechanism of a high resolution optical satellite

    NASA Astrophysics Data System (ADS)

    Lin, Li; Dong, Wang; Sitong, Zhou; Tan, Luyang

    2016-10-01

    According to the picture of a sub-meter resolution optical satellite acquired on the orbit, there is a phenomenon of jitter in the process of taking pictures. The flywheel as the main attitude control component of the satellite, the disturbance that it caused has great influence on the high resolution optical satellite in its normal action. This paper has respectively researched the flywheel components' disturbance mechanism from three parts, including uneven rotator, rotator friction, bearing disturbance, builds the mathematics model of disturbance to analysis the characteristic of disturbance. we get that the vibration system is not a fully linear system, the system is linear before the occurrence of rubbing. It also can be seen that the system has a number of different cross rigidity, it will often appear unstable motion that resulting in damage, or becomes the ultimate destruction due to the role of nonlinear damping. When the rolling roll in the surface, it will produce an alternative excitation force if there exist defects or damage in the rolling surface. This research would offer guidance for system optimization design and vibrating isolation compensation of the later type of improved satellite.

  15. Continuous angle steering of an optically- controlled phased array antenna based on differential true time delay constituted by micro-optical components.

    PubMed

    Wang, Jian; Hou, Peipei; Cai, Haiwen; Sun, Jianfeng; Wang, Shunan; Wang, Lijuan; Yang, Fei

    2015-04-06

    We propose an optically controlled phased array antenna (PAA) based on differential true time delay constructed optical beamforming network (OBFN). Differential true time delay is realized by stack integrated micro-optical components. Optically-controlled angle steering of radio frequency (RF) beams are realized and demonstrated by this configuration. Experimental results demonstrate that OBFN based PAA can accomplish RF-independent broadband beam steering without beam squint effect and can achieve continuous angle steering. In addition, multi-beams for different steering angles are acquired synchronously.

  16. Electro-Optic Computing Architectures: Volume II. Components and System Design and Analysis

    DTIC Science & Technology

    1998-02-01

    The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit

  17. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    NASA Astrophysics Data System (ADS)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  18. Spatial frequency components influence cell activity in the inferotemporal cortex.

    PubMed

    Bermudez, Maria A; Vicente, Ana F; Romero, Maria C; Perez, Rogelio; Gonzalez, Francisco

    2009-01-01

    We studied the correlation between the spatial frequency of complex stimuli and neuronal activity in the monkey inferotemporal (IT) cortex while performing a task that required visual recognition. Single-cell activity was recorded from the right IT cortex. The frequency components of the images used as stimuli were analyzed by using a fast Fourier transform, and a modulus was obtained for 40 spatial frequency ranges from 0.3 to 11.1 cycles/deg. We recorded 82 cells showing statistically significant responses (analysis of variance, P < 0.05) to at least one of the images used as a stimulus. Seventy-eight percent of these cells (n = 64) showed significant responses to at least three images, and in two thirds of them (n = 42), we found a statistically significant correlation (P < 0.05) between cell response and the modulus amplitude of at least one frequency range present in the images. Our results suggest that information about spatial frequency of the visual images is present in the IT cortex.

  19. Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers

    NASA Astrophysics Data System (ADS)

    Tsuji, Hideto; Noda, Soma; Kimura, Takayuki; Sobue, Tadashi; Arakawa, Yuki

    2017-03-01

    D-configured poly(D-lactic acid) (D-PLA) and poly(D-2-hydroxy-3-methylbutanoic acid) (D-P2H3MB) crystallized separately into their homo-crystallites when crystallized by precipitation or solvent evaporation, whereas incorporation of L-configured poly(L-2-hydroxybutanoic acid) (L-P2HB) in D-configured D-PLA and D-P2H3MB induced co-crystallization or ternary stereocomplex formation between D-configured D-PLA and D-P2H3MB and L-configured L-P2HB. However, incorporation of D-configured poly(D-2-hydroxybutanoic acid) (D-P2HB) in D-configured D-PLA and D-P2H3MB did not cause co-crystallization between D-configured D-PLA and D-P2H3MB and D-configured D-P2HB but separate crystallization of each polymer occurred. These findings strongly suggest that an optically active polymer (L-configured or D-configured polymer) like unsubstituted or substituted optically active poly(lactic acid)s can act as “a configurational or helical molecular glue” for two oppositely configured optically active polymers (two D-configured polymers or two L-configured polymers) to allow their co-crystallization. The increased degree of freedom in polymer combination is expected to assist to pave the way for designing polymeric composites having a wide variety of physical properties, biodegradation rate and behavior in the case of biodegradable polymers.

  20. Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers.

    PubMed

    Tsuji, Hideto; Noda, Soma; Kimura, Takayuki; Sobue, Tadashi; Arakawa, Yuki

    2017-03-24

    D-configured poly(D-lactic acid) (D-PLA) and poly(D-2-hydroxy-3-methylbutanoic acid) (D-P2H3MB) crystallized separately into their homo-crystallites when crystallized by precipitation or solvent evaporation, whereas incorporation of L-configured poly(L-2-hydroxybutanoic acid) (L-P2HB) in D-configured D-PLA and D-P2H3MB induced co-crystallization or ternary stereocomplex formation between D-configured D-PLA and D-P2H3MB and L-configured L-P2HB. However, incorporation of D-configured poly(D-2-hydroxybutanoic acid) (D-P2HB) in D-configured D-PLA and D-P2H3MB did not cause co-crystallization between D-configured D-PLA and D-P2H3MB and D-configured D-P2HB but separate crystallization of each polymer occurred. These findings strongly suggest that an optically active polymer (L-configured or D-configured polymer) like unsubstituted or substituted optically active poly(lactic acid)s can act as "a configurational or helical molecular glue" for two oppositely configured optically active polymers (two D-configured polymers or two L-configured polymers) to allow their co-crystallization. The increased degree of freedom in polymer combination is expected to assist to pave the way for designing polymeric composites having a wide variety of physical properties, biodegradation rate and behavior in the case of biodegradable polymers.

  1. Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers

    PubMed Central

    Tsuji, Hideto; Noda, Soma; Kimura, Takayuki; Sobue, Tadashi; Arakawa, Yuki

    2017-01-01

    D-configured poly(D-lactic acid) (D-PLA) and poly(D-2-hydroxy-3-methylbutanoic acid) (D-P2H3MB) crystallized separately into their homo-crystallites when crystallized by precipitation or solvent evaporation, whereas incorporation of L-configured poly(L-2-hydroxybutanoic acid) (L-P2HB) in D-configured D-PLA and D-P2H3MB induced co-crystallization or ternary stereocomplex formation between D-configured D-PLA and D-P2H3MB and L-configured L-P2HB. However, incorporation of D-configured poly(D-2-hydroxybutanoic acid) (D-P2HB) in D-configured D-PLA and D-P2H3MB did not cause co-crystallization between D-configured D-PLA and D-P2H3MB and D-configured D-P2HB but separate crystallization of each polymer occurred. These findings strongly suggest that an optically active polymer (L-configured or D-configured polymer) like unsubstituted or substituted optically active poly(lactic acid)s can act as “a configurational or helical molecular glue” for two oppositely configured optically active polymers (two D-configured polymers or two L-configured polymers) to allow their co-crystallization. The increased degree of freedom in polymer combination is expected to assist to pave the way for designing polymeric composites having a wide variety of physical properties, biodegradation rate and behavior in the case of biodegradable polymers. PMID:28338051

  2. Optical sensor technology for a noninvasive continuous monitoring of blood components

    NASA Astrophysics Data System (ADS)

    Kraitl, Jens; Timm, Ulrich; Lewis, Elfed; Ewald, Hartmut

    2010-02-01

    NIR-spectroscopy and Photoplethysmography (PPG) is used for a measurement of blood components. The absorptioncoefficient of blood differs at different wavelengths. This fact is used to calculate the optical absorbability characteristics of blood which is yielding information about blood components like hemoglobin (Hb), carboxyhemoglobin (CoHb) and arterial oxygen saturation (SpO2). The measured PPG time signals and the ratio between the peak to peak pulse amplitudes are used for a measurement of these parameters. Hemoglobin is the main component of red blood cells. The primary function of Hb is the transport of oxygen from the lungs to the tissue and carbon dioxide back to the lungs. The Hb concentration in human blood is an important parameter in evaluating the physiological status of an individual and an essential parameter in every blood count. Currently, invasive methods are used to measure the Hb concentration, whereby blood is taken from the patient and subsequently analyzed. Apart from the discomfort of drawing blood samples, an added disadvantage of this method is the delay between the blood collection and its analysis, which does not allow real time patient monitoring in critical situations. A noninvasive method allows pain free continuous on-line patient monitoring with minimum risk of infection and facilitates real time data monitoring allowing immediate clinical reaction to the measured data.

  3. In orbit degradation of UV optical components for the wavelength range 10-140 microns. AO 138.3 (FRECOPA)

    NASA Technical Reports Server (NTRS)

    Delabouinere, J. P.; Carabetian, C.; Hochedez, J. F.

    1992-01-01

    Optical components (thin film filters and multilayered mirrors) for use in the wavelength range 10-140 micro-m were included in the vacuum tight container FRECOPA in preparation for the SOHO mission. They were exposed during 9 months at the beginning of the Long Duration Exposure Facility (LDEF) flight. One batch of components was exposed to the sun, while another one was shielded from solar radiation. The results of the optical transmission measurements of the flight components and of a groundbase reference set, made at the ORSAY Synchotron radiation light source are presented.

  4. Active learning in optics and photonics: Fraunhofer diffraction

    NASA Astrophysics Data System (ADS)

    Ghalila, H.; Ben Lakhdar, Z.; Lahmar, S.; Dhouaidi, Z.; Majdi, Y.

    2014-07-01

    "Active Learning in Optics and Photonics" (ALOP), funded by UNESCO within its Physics Program framework with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE (Society of Photo-Optical Instrumentation Engineers), aimed to helps and promotes a friendly and interactive method in teaching optics using simple and inexpensive equipment. Many workshops were organized since 2005 the year when Z. BenLakhdar, whom is part of the creators of ALOP, proposed this project to STO (Société Tunisienne d'Optique). These workshops address several issues in optics, covering geometrical optics, wave optics, optical communication and they are dedicated to both teachers and students. We focus this lecture on Fraunhofer diffraction emphasizing the facility to achieve this mechanism in classroom, using small laser and operating a slit in a sheet of paper. We accompany this demonstration using mobile phone and numerical modeling to assist in the analysis of the diffraction pattern figure.

  5. Extraversion and behavioral activation: integrating the components of approach.

    PubMed

    Quilty, Lena C; DeYoung, Colin G; Oakman, Jonathan M; Bagby, R Michael

    2014-01-01

    This investigation evaluates the structure and correlates of lower order traits related to approach, specifically, facets of extraversion and behavioral activation system (BAS) sensitivity. A 3-factor structure of approach was derived in community and clinical samples: assertiveness, enthusiasm, and sensation seeking. All factors were positively associated with Openness/Intellect scores. Enthusiasm and assertiveness were both negatively associated with Neuroticism scores, but were distinguished by associations with Agreeableness and Conscientiousness. Sensation seeking was negatively associated with Conscientiousness scores. The 3 factors demonstrated a unique profile of association with components of impulsivity. Enthusiasm and assertiveness were negatively related to psychopathological symptoms, whereas sensation seeking was largely independent of psychopathology. Results suggest that approach is associated with 3 subfactors, which differ in their pattern or magnitude of associations with other variables, thus underscoring the importance of distinguishing among them. Further, results support the construct validity of the Assertiveness and Enthusiasm aspect scales of the Big Five Aspect Scales to assess traits at this level of the personality hierarchy.

  6. Aroma-active components of nonfat dry milk.

    PubMed

    Karagül-Yüceer, Y; Drake, M A; Cadwallader, K R

    2001-06-01

    Application of aroma extract dilution analysis (AEDA) on the volatile components of low-, medium-, and high-heat-treated nonfat dry milks (NDM) revealed aroma-active compounds in the log(3) flavor dilution (log(3) FD) factor range of 1 to 6. The following compounds contributed the highest log(3) FD factors to overall NDM flavor: 2,5-dimethyl-4-hydroxy-3(2H)-furanone [(Furaneol), burnt sugar-like]; butanoic acid (rancid); 3-(methylthio)propanal [(methional), boiled potato-like]; o-aminoacetophenone (grape-like); delta-decalactone (sweet); (E)-4,5-epoxy-(E)-2-decenal (metallic); pentanoic acid (sweaty); 4,5-dimethyl-3-hydroxy-2(5H)-furanone [(sotolon), curry]; 3-methoxy-4-hydroxybenzaldehyde [(vanillin), vanilla]; 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline (popcorn-like); hexanoic acid (vinegar-like); phenylacetic acid (rose-like); octanoic acid (waxy); nonanal (fatty); and 1-octen-3-one (mushroom-like). The odor intensities of Furaneol, butanoic acid, methional, o-aminoacetophenone, sotolon, vanillin, (E)-4,5-epoxy-(E)-2-decenal, and phenylacetic acid were higher in high-heat-treated samples than others. However, the odor intensities of lactones, 2-acetyl-1-pyrroline, and 2-acetyl-2-thiazoline were not affected by heat treatment. Sensory evaluation results also revealed that heat-generated flavors have a major impact on the flavor profile of NDM.

  7. Reversible optical memory based on single-component phototropic liquid crystal

    NASA Astrophysics Data System (ADS)

    Sobolewska, A.; Bartkiewicz, S.; Mysliwiec, J.

    2013-08-01

    The authors report fully reversible holographic recording of the diffraction grating realized using the phenomenon of the photochemical phase transition of the single- component phototropic liquid crystal. The grating was formed as a result of the isotropic-to-nematic phase transition. The writing, reading, and erasure of the holograms were performed only by means of the light. A typical degenerate two-wave mixing experiment was used for the grating recording combined with a polarized optical microscope enabling the observation in the real time. The dynamics of the process was investigated as a function of the writing laser beams intensity from 30 mW/cm2 to 200 mW/cm2.

  8. Quasi-optical solid-state power combining for millimeter-wave active seeker applications

    NASA Astrophysics Data System (ADS)

    Halladay, R. H.; Terrill, S. D.; Bowling, D. R.; Gagnon, D. R.

    1992-05-01

    Consideration is given to quasi-optical power combining techniques, state-of-the-art demonstrated performance, and system issues as they apply to endoatmospheric homing seeker insertion. Quasi-optical power combining is based on combining microwave and millimeter-wave solid-state device power in space through the use of antennas and lenses. It is concluded that quasi-optical power combining meets the severe electrical requirements and packaging constraints of active MMW seekers for endoatmospheric hit-to-kill missiles. The approach provides the possibility of wafer-scale integration of major components for low cost production and offers high reliability. Critical issues include thermal loading and system integration, which must be resolved before the quasi-optical power combining technology will be applied to an active MMW seeker.

  9. THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared M.; Taniguchi, Yoshi; Nagao, Tohru; Shioya, Yasuhiro; Brusa, Marcella; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Huchra, John P.; Jahnke, Knud; Koekemoer, Anton M.; Salvato, Mara; Capak, Peter; Scoville, Nick Z.; Kartaltepe, Jeyhan S.; Lanzuisi, Giorgio; McCarthy, Patrick J.; Maineri, Vincenzo

    2009-11-20

    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull active galactic nuclei (AGNs) in the COSMOS field. These objects exhibit the X-ray luminosity of an AGN but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to approx70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining approx30% of optically dull AGNs have anomalously high f{sub X} /f{sub O} ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.

  10. Detection of spectral variability of the optical component of the IR source IRAS 20508+2011

    NASA Astrophysics Data System (ADS)

    Klochkova, V. G.; Panchuk, V. E.; Tavolzhanskaya, N. S.; Zhao, G.

    2006-03-01

    Our high-resolution spectral observations have revealed variability of the optical spectrum of the cool star identified with the IR source IRAS 20508+2011. We measured the equivalent widths of numerous absorption lines of neutral atoms and ions at wavelengths 4300 7930 Å, along with the corresponding radial velocities. Over the four years of our observations, the radial velocity derived from photospheric absorption lines varied in the interval V r⊙ = 15 30 km/s. In the same period, the Hα profile varied from being an intense bell-shaped emission line with a small amount of core absorption to displaying two-peaked emission with a central absorption feature below the continuum level. At all but one epoch, the positions of the metallic photospheric lines were systematically shifted relative to the Hα emission: ΔV r = V r(met) - V r(Hα, emis) ≈ -23 km/s. The Na D doublet displayed a complex profile with broad (half-width ≈ 120 km/s) emission and photospheric absorption, as well as an interstellar component. We used model atmospheres to determine the physical parameters and chemical composition of the star’s atmosphere: T eff = 4800 K, log g = 1.5, ξt = 4.0 km/s. The metallicity of the star differs little from the solar value: [Fe/H]⊙ = -0.36. We detected overabundances of oxygen [O/Fe]⊙ = +1.79 (with the ratio [C/O] ≈ -0.9), and α-process elements, as well as a deficit of heavy metals. The entire set of the star’s parameters suggests that the optical component of IRAS 20508+2011 is an “O-rich” AGB star with luminosity M v ≈ -3m that is close to its evolutionary transition to the post-AGB stage.

  11. The development of optical techniques for component inspection in the aerospace industry

    NASA Astrophysics Data System (ADS)

    Irving, Paul Anthony

    A key requirement discussed within this thesis is feature extraction, in particular line segments. The Hough Transform is an elegant feature extraction technique for image analysis which performs well in noisy scenes and where occlusion may be problematic. Since its inception by P. V. C. Hough in 1962 for the detection of lines in bubble chambers, it has been widely researched, but minimal machine vision applications of the Hough Transform have been implemented. This lack of an application for the Hough Transform, coupled with the need for experimentation of an optical probe based on a conventional granite bed Coordinate Measuring Machine (CMM) is addressed. This latter requirement is currently fulfilled by mechanical touch trigger probes, or where optical techniques are used, back-illuminated glass tables. The suitability of the Hough Transform for machine vision inspection tasks is analyzed, and conclusions are drawn on whether or not useful results can be obtained by mounting a camera on the head of a CMM coupled with illumination from above. The industrial application addressed a drill and rout template digitizing within the aerospace industry; furthermore, the Hough Transform is also demonstrated for object recognition with a view to automatic component datum setting. New methods are illustrated for efficient, high accuracy Hough Transformation. Techniques are given for peak extraction in Hough space, enabling the isolation of all peaks irrespective of comparative magnitude, thereby eliminating the need for thresholding. Software data structures are shown to be an efficient method for implementing the above, especially with the later processing stages involving component boundary segment parsing.

  12. Active Correction of Aberrations of Low-Quality Telescope Optics

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Yijian

    2007-01-01

    A system of active optics that includes a wavefront sensor and a deformable mirror has been demonstrated to be an effective means of partly correcting wavefront aberrations introduced by fixed optics (lenses and mirrors) in telescopes. It is envisioned that after further development, active optics would be used to reduce wavefront aberrations of about one wave or less in telescopes having aperture diameters of the order of meters or tens of meters. Although this remaining amount of aberration would be considered excessive in scientific applications in which diffraction-limited performance is required, it would be acceptable for free-space optical- communication applications at wavelengths of the order of 1 m. To prevent misunderstanding, it is important to state the following: The technological discipline of active optics, in which the primary or secondary mirror of a telescope is directly and dynamically tilted, distorted, and/or otherwise varied to reduce wavefront aberrations, has existed for decades. The term active optics does not necessarily mean the same thing as does adaptive optics, even though active optics and adaptive optics are related. The term "adaptive optics" is often used to refer to wavefront correction at speeds characterized by frequencies ranging up to between hundreds of hertz and several kilohertz high enough to enable mitigation of adverse effects of fluctuations in atmospheric refraction upon propagation of light beams. The term active optics usually appears in reference to wavefront correction at significantly lower speeds, characterized by times ranging from about 1 second to as long as minutes. Hence, the novelty of the present development lies, not in the basic concept of active or adaptive optics, but in the envisioned application of active optics in conjunction with a deformable mirror to achieve acceptably small wavefront errors in free-space optical communication systems that include multi-meter-diameter telescope mirrors that are

  13. Alternative technology for fabrication of nano- or microstructured mould inserts used for optical components

    NASA Astrophysics Data System (ADS)

    Wissmann, M.; Guttmann, M.; Hartmann, M.

    2010-02-01

    For mass production of multiscale-optical components, micro- and nanostructured moulding tools are needed. Metal tools are used for hot embossing or injection moulding of microcomponents in plastics. Tools are typically produced by classical forming processes such as mechanical manufacturing e.g. turning or milling, laser manufacturing or electrical discharge machining (EDM). Microstructures with extremely tight specifications, e.g. low side wall roughness and high aspect ratios are generally made by lithographic procedures such as LIGA or DPW technology. However, these processes are unsuitable for low-cost mass production. They are limited by the exposure area and structure design. In cooperation with international partners alternative manufacturing methods of moulding tools have been developed at the Institute of Microstructure Technology (IMT). In a new replication procedure, mould inserts are fabricated using micro- and nanoscale optics. The multiscale structured prototypes, either in plastics, glass, metal or material combinations are used as sacrificial parts. Using joining technology, electroforming and EDM technology, a negative copy of a prototype is transferred into metal to be used as a moulding tool. The benefits of this replication technique are rapid and economical production of moulding tools with extremely precise micro- and nanostructures, large structured area and long tool life. Low-cost mass replication is possible with these moulding tools. In this paper, an established manufacturing chain will be presented. Multiscale and multimaterial optical prototypes e.g. out-of-plane coupler or microinterferometer were made by DPW or laser technology. The mould insert fabrication of each individual manufacturing step will be shown. The process reliability and suitability for mass production was tested by hot embossing.

  14. Combination of principal component analysis and optical-flow motion compensation for improved cardiac MR thermometry

    NASA Astrophysics Data System (ADS)

    Toupin, S.; de Senneville, B. Denis; Ozenne, V.; Bour, P.; Lepetit-Coiffe, M.; Boissenin, M.; Jais, P.; Quesson, B.

    2017-02-01

    The use of magnetic resonance (MR) thermometry for the monitoring of thermal ablation is rapidly expanding. However, this technique remains challenging for the monitoring of the treatment of cardiac arrhythmia by radiofrequency ablation due to the heart displacement with respiration and contraction. Recent studies have addressed this problem by compensating in-plane motion in real-time with optical-flow based tracking technique. However, these algorithms are sensitive to local variation of signal intensity on magnitude images associated with tissue heating. In this study, an optical-flow algorithm was combined with a principal component analysis method to reduce the impact of such effects. The proposed method was integrated to a fully automatic cardiac MR thermometry pipeline, compatible with a future clinical workflow. It was evaluated on nine healthy volunteers under free breathing conditions, on a phantom and in vivo on the left ventricle of a sheep. The results showed that local intensity changes in magnitude images had lower impact on motion estimation with the proposed method. Using this strategy, the temperature mapping accuracy was significantly improved.

  15. Studies of effects on optical components and sensors: LDEF experiments AO-147 (ERB components) and S-0014 (APEX)

    NASA Technical Reports Server (NTRS)

    Hickey, John R.; Brinker, David J.; Jenkins, Philip

    1993-01-01

    Some additional results of testing of optical filters and window materials and thermopile sensors of the two experiments are included. The Advanced Photovoltaic Experiment (APEX) interference filters exhibited much greater degradation in space than the ERB filters. The adhesion of the Indium washers to the APEX interference filters is reported.

  16. Laser optical disk position encoder with active heads

    NASA Technical Reports Server (NTRS)

    Osborne, Eric P.

    1991-01-01

    An angular position encoder that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads with beam steering optics that actively track the disk in directions along the disk radius and normal to its surface is discussed. The device adapts features prevalent in optical disk technology to the application of angular position sensing.

  17. Optical resolution of 5-alkyl-delta-valerolactones and synthesis of optically active 5-fluoroalkanols.

    PubMed

    Riswoko, Asep; Aoki, Yoshio; Hirose, Takuji; Nohira, Hiroyuki

    2002-01-01

    Optical resolutions of 5-alkyl-delta-valerolactones were carried out by derivatization to the diastereomeric amides, in which (R)-(+)-1-(1-naphthyl)ethylamine or (S)-(-)-1-phenylethylamine were used as resolving agents. Optically active 5-fluoroalkanols, useful intermediates for fluorinated ferroelectric liquid crystals, were derived from the resolved lactones in four steps without racemization.

  18. Study of a distributed feedback diode laser based hygrometer combined Herriot-gas cell and waterless optical components

    NASA Astrophysics Data System (ADS)

    Wei, Yubin; Chang, Jun; Lian, Jie; Wang, Qiang; Wei, Wei

    2016-09-01

    A distributed feedback diode laser (DFB-DL) based hygrometer combined with a long-path-length Herriot gas cell and waterless optical components was proposed and investigated. The main function of this sensor was to simultaneously improve the measurement reliability and resolution. A comparison test between a 10-cm normal transmission-type gas cell and a 3-m Herriot gas cell was carried out to demonstrate the improvement. Reliability improvement was achieved by influence suppression of water vapor inside optical components (WVOC) through combined action of the Herriot gas cell and waterless optical components. The influence of WVOC was suppressed from 726 ppmv to 25 ppmv using the Herriot gas cell. Moreover, combined with waterless optical components, the influence of WVOC was further suppressed to no more than 4 ppmv. Resolution improvement from 11.7 ppmv to 0.32 ppmv was achieved mainly due to the application of the long-path-length Herriot gas cell. The results show that the proposed sensor has a good performance and considerable potential application in gas sensing, especially when probed gas possibly permeates into optical components.

  19. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers.

    PubMed

    Cai, Chen; Stewart, David J; Reid, Jonathan P; Zhang, Yun-hong; Ohm, Peter; Dutcher, Cari S; Clegg, Simon L

    2015-01-29

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments.

  20. Active optics and x-ray telescope mirrors

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gérard R.

    2008-07-01

    For more than 40 years in Marseille Provence observatories active optics concepts have found many fruitful developments in uv, visible and ir telescope optics. For these wavelength ranges, active optics methods are now widely extended by current use of variable curvature mirrors, in situ aspherization processes, stress figuring apsherization processes, replications of stressed diffraction gratings, and in situ control of large telescope optics. X-ray telescope mirrors will also benefit soon from the enhanced performances of active optics. For instance, the 0.5-1 arcsec spatial resolution of Chandra will be followed up by increased resolution space telescopes which will require the effective construction of more strictly aplanatic grazing-incidence two-mirror systems. In view to achieve a high-resolution imaging with two-mirror grazing-incidence telescope, say, 0.1 arcsec, this article briefly reviews the alternative optical concepts. Next, active optics analysis is investigated with the elasticity theory of shells for the active aspherization and in situ control of monolithic and segmented telescope mirrors for x-ray astronomy. An elasticity theory of weakly conical shells is developed for a first approach which uses a monotonic extension (or retraction) of the shell.

  1. CONTRACTING AND ERUPTING COMPONENTS OF SIGMOIDAL ACTIVE REGIONS

    SciTech Connect

    Liu Rui; Wang Yuming; Liu Chang; Wang Haimin; Toeroek, Tibor

    2012-10-01

    It has recently been noted that solar eruptions can be associated with the contraction of coronal loops that are not involved in magnetic reconnection processes. In this paper, we investigate five coronal eruptions originating from four sigmoidal active regions, using high-cadence, high-resolution narrowband EUV images obtained by the Solar Dynamic Observatory (SDO). The magnitudes of the flares associated with the eruptions range from GOES class B to class X. Owing to the high-sensitivity and broad temperature coverage of the Atmospheric Imaging Assembly (AIA) on board SDO, we are able to identify both the contracting and erupting components of the eruptions: the former is observed in cold AIA channels as the contracting coronal loops overlying the elbows of the sigmoid, and the latter is preferentially observed in warm/hot AIA channels as an expanding bubble originating from the center of the sigmoid. The initiation of eruption always precedes the contraction, and in the energetically mild events (B- and C-flares), it also precedes the increase in GOES soft X-ray fluxes. In the more energetic events, the eruption is simultaneous with the impulsive phase of the nonthermal hard X-ray emission. These observations confirm that loop contraction is an integrated process in eruptions with partially opened arcades. The consequence of contraction is a new equilibrium with reduced magnetic energy, as the contracting loops never regain their original positions. The contracting process is a direct consequence of flare energy release, as evidenced by the strong correlation of the maximal contracting speed, and strong anti-correlation of the time delay of contraction relative to expansion, with the peak soft X-ray flux. This is also implied by the relationship between contraction and expansion, i.e., their timing and speed.

  2. The age-mass relation for chromospherically active binaries. III. Lithium depletion in giant components

    NASA Astrophysics Data System (ADS)

    Barrado y Navascues, D.; de Castro, E.; Fernandez-Figueroa, M. J.; Cornide, M.; Garcia Lopez, R. J.

    1998-09-01

    We present a study of the lithium abundances of a sample of evolved components of Chromospherically Active Binary Systems. We show that a significant part of them have lithium excesses, independently of their mass and evolutionary stage. Therefore, it can be concluded that Li abundance does not depend on age for giant components of CABS. These overabundances appear to be closely related to the stellar rotation, and we interpret them as a consequence of the transfer of angular momentum from the orbit to the rotation as the stars evolve in and off the Main Sequence, in a similar way as it happens in the dwarf components of the same systems and in the Tidally Locked Binaries belonging to the Hyades and M67. Based on observations collected with the 2.2\\,m telescope of the German-Spanish Observatorio de Calar Alto (Almeria, Spain), and with the 2.56\\,m Nordic Optical Telescope in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrof\\'\\i sica de Canarias (La Palma, Spain)

  3. Proposal for loadable and erasable optical memory unit based on dual active microring optical integrators

    NASA Astrophysics Data System (ADS)

    Ding, Yunhong; Zhang, Xiaobei; Zhang, Xinliang; Huang, Dexiu

    2008-11-01

    A novel approach for loadable and erasable optical memory unit based on dual microring optical integrators is proposed and studied. The optical integrator, which can generate an optical step function for data storing, is synthesized using active media for loss compensation and a tunable phase shifter for data reading at any time. The input data into the memory is return-to-zero (RZ) signal, and the output data read from the memory is also RZ format with a narrower pulse width. An optical digital register based on the proposed optical memory unit is also investigated and simulated, which shows the potential for large scale data storage and serial-to-parallel data conversion. A great number of such memory units can be densely integrated on a photonic circuit for future large scale data storage and buffer.

  4. Advancement of Optical Component Control for an Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.

    2009-01-01

    Risk mitigation activities associated with a prototype imaging Fabry-Perot Interferometer (FPI) system are continuing at the NASA Langley Research Center. The system concept and technology center about enabling and improving future space-based atmospheric composition missions, with a current focus on observing tropospheric ozone around 9.6 micron, while having applicability toward measurement in different spectral regions and other applications. Recent activities have focused on improving an optical element control subsystem to enable precise and accurate positioning and control of etalon plates; this is needed to provide high system spectral fidelity critical for enabling the required ability to spectrally-resolve atmospheric line structure. The latest results pertaining to methodology enhancements, system implementation, and laboratory characterization testing will be reported

  5. Detection and identification of microparticles/nanoparticles and blood components using optical resonance of whispering-gallery modes in microspheres

    NASA Astrophysics Data System (ADS)

    Tcherniavskaia, E. A.; Saetchnikov, V. A.

    2010-11-01

    We present experimental data on the dependence of optical resonance spectra of whispering-gallery modes in dielectric microspheres on the constituent composition of solutions modeling blood plasma and also containing disease indicators and virus ghosts. We observe substantial changes in the optical resonance spectra of whispering-gallery modes, associated both with a change in the macroscopic parameters of the microsphere environment and with possible interaction between the microsphere surface and components of the solution.

  6. XUV synchrotron optical components for the Advanced Light Source: Summary of the requirements and the developmental program

    SciTech Connect

    McKinney, W.; Irick, S.; Lunt, D.

    1992-07-01

    We give a brief summary of the requirements for water cooled optical components for the Advanced Light Source (ALS), a third generation synchrotron radiation source under construction at Lawrence Berkeley Laboratory (LBL). Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from a finished water cooled copper alloy mirror will be used to demonstrate the state of the art in optical metrology with the Takacs Long Trace Profiler (LTP II).

  7. On the characterization of ultra-precise X-ray optical components: advances and challenges in ex situ metrology.

    PubMed

    Siewert, F; Buchheim, J; Zeschke, T; Störmer, M; Falkenberg, G; Sankari, R

    2014-09-01

    To fully exploit the ultimate source properties of the next-generation light sources, such as free-electron lasers (FELs) and diffraction-limited storage rings (DLSRs), the quality requirements for gratings and reflective synchrotron optics, especially mirrors, have significantly increased. These coherence-preserving optical components for high-brightness sources will feature nanoscopic shape accuracies over macroscopic length scales up to 1000 mm. To enable high efficiency in terms of photon flux, such optics will be coated with application-tailored single or multilayer coatings. Advanced thin-film fabrication of today enables the synthesis of layers on the sub-nanometre precision level over a deposition length of up to 1500 mm. Specifically dedicated metrology instrumentation of comparable accuracy has been developed to characterize such optical elements. Second-generation slope-measuring profilers like the nanometre optical component measuring machine (NOM) at the BESSY-II Optics laboratory allow the inspection of up to 1500 mm-long reflective optical components with an accuracy better than 50 nrad r.m.s. Besides measuring the shape on top of the coated mirror, it is of particular interest to characterize the internal material properties of the mirror coating, which is the domain of X-rays. Layer thickness, density and interface roughness of single and multilayer coatings are investigated by means of X-ray reflectometry. In this publication recent achievements in the field of slope measuring metrology are shown and the characterization of different types of mirror coating demonstrated. Furthermore, upcoming challenges to the inspection of ultra-precise optical components designed to be used in future FEL and DLSR beamlines are discussed.

  8. Observation of extraordinary optical activity in planar chiral photonic crystals.

    PubMed

    Konishi, Kuniaki; Bai, Benfeng; Meng, Xiangfeng; Karvinen, Petri; Turunen, Jari; Svirko, Yuri P; Kuwata-Gonokami, Makoto

    2008-05-12

    Control of light polarization is a key technology in modern photonics including application to optical manipulation of quantum information. The requisite is to obtain large rotation in isotropic media with small loss. We report on extraordinary optical activity in a planar dielectric on-waveguide photonic crystal structure, which has no in-plane birefringence and shows polarization rotation of more than 25 degrees for transmitted light. We demonstrate that in the planar chiral photonic crystal, the coupling of the normally incident light wave with low-loss waveguide and Fabry-Pérot resonance modes results in a dramatic enhancement of the optical activity.

  9. Selection of independent components based on cortical mapping of electromagnetic activity

    NASA Astrophysics Data System (ADS)

    Chan, Hui-Ling; Chen, Yong-Sheng; Chen, Li-Fen

    2012-10-01

    Independent component analysis (ICA) has been widely used to attenuate interference caused by noise components from the electromagnetic recordings of brain activity. However, the scalp topographies and associated temporal waveforms provided by ICA may be insufficient to distinguish functional components from artifactual ones. In this work, we proposed two component selection methods, both of which first estimate the cortical distribution of the brain activity for each component, and then determine the functional components based on the parcellation of brain activity mapped onto the cortical surface. Among all independent components, the first method can identify the dominant components, which have strong activity in the selected dominant brain regions, whereas the second method can identify those inter-regional associating components, which have similar component spectra between a pair of regions. For a targeted region, its component spectrum enumerates the amplitudes of its parceled brain activity across all components. The selected functional components can be remixed to reconstruct the focused electromagnetic signals for further analysis, such as source estimation. Moreover, the inter-regional associating components can be used to estimate the functional brain network. The accuracy of the cortical activation estimation was evaluated on the data from simulation studies, whereas the usefulness and feasibility of the component selection methods were demonstrated on the magnetoencephalography data recorded from a gender discrimination study.

  10. Active optics: variable curvature mirrors for ELT laser guide star refocusing systems

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel

    2011-10-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.

  11. Active stabilization of a fiber-optic two-photon interferometer using continuous optical length control.

    PubMed

    Cho, Seok-Beom; Kim, Heonoh

    2016-05-16

    The practical realization of long-distance entanglement-based quantum communication systems strongly rely on the observation of highly stable quantum interference between correlated single photons. This task must accompany active stabilization of the optical path lengths within the single-photon coherence length. Here, we provide two-step interferometer stabilization methods employing continuous optical length control and experimentally demonstrate two-photon quantum interference using an actively stabilized 6-km-long fiber-optic Hong-Ou-Mandel interferometer. The two-step active control techniques are applied for measuring highly stable two-photon interference fringes by scanning the optical path-length difference. The obtained two-photon interference visibilities with and without accidental subtraction are found to be approximately 90.7% and 65.4%, respectively.

  12. An Experimental Study on Performances of an Experimental Set for Optical Communication with an LED as a Light Receiving Component

    NASA Astrophysics Data System (ADS)

    Hasegawa, Makoto

    When performing experimental demonstration of optical communication by using an simplified experimental set, clear music transmission can be achieved in the case where an LED, rather than a photodiode, is used as a light receiving component. Measurements of output voltage waveforms from an LED as a light receiving component reveal that when a distance from a light source is relatively short, the output waveforms show no distortion, resulting in better music transmission performances.

  13. A Krebs Cycle Component Limits Caspase Activation Rate through Mitochondrial Surface Restriction of CRL Activation.

    PubMed

    Aram, Lior; Braun, Tslil; Braverman, Carmel; Kaplan, Yosef; Ravid, Liat; Levin-Zaidman, Smadar; Arama, Eli

    2016-04-04

    How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sβ and the GTP-specific SCSβ (G-Sβ), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sβ in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation.

  14. Pressure activated interconnection of micro transfer printed components

    NASA Astrophysics Data System (ADS)

    Prevatte, Carl; Guven, Ibrahim; Ghosal, Kanchan; Gomez, David; Moore, Tanya; Bonafede, Salvatore; Raymond, Brook; Trindade, António Jose; Fecioru, Alin; Kneeburg, David; Meitl, Matthew A.; Bower, Christopher A.

    2016-05-01

    Micro transfer printing and other forms of micro assembly deterministically produce heterogeneously integrated systems of miniaturized components on non-native substrates. Most micro assembled systems include electrical interconnections to the miniaturized components, typically accomplished by metal wires formed on the non-native substrate after the assembly operation. An alternative scheme establishing interconnections during the assembly operation is a cost-effective manufacturing method for producing heterogeneous microsystems, and facilitates the repair of integrated microsystems, such as displays, by ex post facto addition of components to correct defects after system-level tests. This letter describes pressure-concentrating conductor structures formed on silicon (1 0 0) wafers to establish connections to preexisting conductive traces on glass and plastic substrates during micro transfer printing with an elastomer stamp. The pressure concentrators penetrate a polymer layer to form the connection, and reflow of the polymer layer bonds the components securely to the target substrate. The experimental yield of series-connected test systems with >1000 electrical connections demonstrates the suitability of the process for manufacturing, and robustness of the test systems against exposure to thermal shock, damp heat, and mechanical flexure shows reliability of the resulting bonds.

  15. Optical coating performance for heat reflectors of JWST-ISIM electronic component

    NASA Astrophysics Data System (ADS)

    Quijada, Manuel A.; Bousquet, Robert; Garrison, Matt; Perrygo, Chuck; Threat, Felix; Rashford, Robert

    2008-07-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling reflector.

  16. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components.

    PubMed

    Malkov, Serghei; Shepherd, John

    2014-02-17

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  17. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    PubMed Central

    Malkov, Serghei; Shepherd, John

    2014-01-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed. PMID:25083118

  18. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    NASA Astrophysics Data System (ADS)

    Malkov, Serghei; Shepherd, John

    2014-02-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  19. Model reduction of cavity nonlinear optics for photonic logic: a quasi-principal components approach

    NASA Astrophysics Data System (ADS)

    Shi, Zhan; Nurdin, Hendra I.

    2016-11-01

    Kerr nonlinear cavities displaying optical thresholding have been proposed for the realization of ultra-low power photonic logic gates. In the ultra-low photon number regime, corresponding to energy levels in the attojoule scale, quantum input-output models become important to study the effect of unavoidable quantum fluctuations on the performance of such logic gates. However, being a quantum anharmonic oscillator, a Kerr-cavity has an infinite dimensional Hilbert space spanned by the Fock states of the oscillator. This poses a challenge to simulate and analyze photonic logic gates and circuits composed of multiple Kerr nonlinearities. For simulation, the Hilbert of the oscillator is typically truncated to the span of only a finite number of Fock states. This paper develops a quasi-principal components approach to identify important subspaces of a Kerr-cavity Hilbert space and exploits it to construct an approximate reduced model of the Kerr-cavity on a smaller Hilbert space. Using this approach, we find a reduced dimension model with a Hilbert space dimension of 15 that can closely match the magnitudes of the mean transmitted and reflected output fields of a conventional truncated Fock state model of dimension 75, when driven by an input coherent field that switches between two levels. For the same input, the reduced model also closely matches the magnitudes of the mean output fields of Kerr-cavity-based AND and NOT gates and a NAND latch obtained from simulation of the full 75 dimension model.

  20. Deep Proton Writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Ottevaere, Heidi; Hermanne, Alex; Thienpont, Hugo

    2013-07-01

    The use of photonics in data communication and numerous other industrial applications brought plenty of prospects for innovation and opened up different unexplored market opportunities. This is a major driving force for the fabrication of micro-optical and micro-mechanical structures and their accurate alignment and integration into opto-mechanical modules and systems. To this end, we present Deep Proton Writing (DPW) as a powerful rapid prototyping technology for such micro-components. The DPW process consists of bombarding polymer samples (PMMA or SU-8) with swift protons, which results after chemical processing steps in high-quality micro-optical components. One of the strengths of the DPW micro-fabrication technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we comment on how we shifted from using 8.3 to 16.5 MeV protons for DPW and give some examples of micro-optical and micro-mechanical components recently fabricated through DPW, targeting applications in optical interconnections and in optofluidics.

  1. Fast optical recording of light-flash evoked neural activation in amphibian retina

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; George, John S.

    2005-08-01

    Imaging of fast intrinsic optical responses closely associated with neural activation promises important technical advantages over traditional single and multi-channel electrophysiological techniques for dynamic measurements of visual processing and early detection of eye diseases. We have developed a fast, no-moving-parts optical coherence tomography (OCT), system based on an electro-optic phase modulator, and used it to record dynamic near infrared (NIR) light scattering changes in frog retina activated by a visible light-flash. We also employed transmitted light for highly sensitive measurement and imaging of neural activation, and to optimize illumination and optical configuration. Using a photodiode detector, we routinely measured dynamic NIR transmitted optical responses in single passes. When the whole retina was illuminated by a visible light-flash, a positive peak was typically observed in transmitted light measurements. CCD image sequences disclosed larger fractional responses, in some cases exceeding 0.5% in individual pixels, and showed evidence of multiple response components with both negative- and positive-going signals with different timescales and complex but consistent spatial organization. The fast negative-going signals are highly correlated with the a-wave of the electrophysiological signals, and may reflect the activation of photoreceptors. The fast positive-going responses are related to the b-wave of the electrophysiological signals, and may result from the activation of ON bipolar cells. Slow optical responses may signal metabolic changes of retinal tissue. Our experimental results and theoretical analysis suggest that the optical responses may result from dynamic volume changes associated with neural activation, corresponding to ion and water flow across the cell membrane.

  2. Preliminary optical design of an Active Optics test bench for space applications.

    NASA Astrophysics Data System (ADS)

    Calcines, A.; Bitenc, U.; Rolt, S.; Reeves, S.; Doelman, N.; Human, J.; Morris, T.; Myers, R.; Talbot, G.

    2017-03-01

    This communication presents a preliminary optical design for a test bench conceived within the European Space Agency's TRP project (Active Optics Correction Chain (AOCC) for large monolithic mirrors) with the goal of designing and developing an Active Optics system able to correct in space on telescopes apertures larger than 3 meters. The test bench design uses two deformable mirrors of 37.5 mm and 116 mm, the smallest mirror to generate aberrations and the largest one to correct them. The system is configured as a multi-functional test bench capable of verifying the performance of a Shack-Hartmann wavefront sensor as well as of a Phase Diversity based wavefront sensor. A third optical path leads to a high-order Shack-Hartmann wavefront sensor to monitor the entire system performance.

  3. Label-free optical activation of astrocyte in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Yoon, Jonghee; Ku, Taeyun; Choi, Kyungsun; Choi, Chulhee

    2011-07-01

    As the most abundant cell type in the central nervous system, astrocyte has been one of main research topics in neuroscience. Although various tools have been developed, at present, there is no tool that allows noninvasive activation of astrocyte in vivo without genetic or pharmacological perturbation. Here we report a noninvasive label-free optical method for physiological astrocyte activation in vivo using a femtosecond pulsed laser. We showed the laser stimulation robustly induced astrocytic calcium activation in vivo and further verified physiological relevance of the calcium increase by demonstrating astrocyte mediated vasodilation in the brain. This novel optical method will facilitate noninvasive physiological study on astrocyte function.

  4. Magneto-Optical Activity in High Index Dielectric Nanoantennas

    PubMed Central

    de Sousa, N.; Froufe-Pérez, L. S.; Sáenz, J. J.; García-Martín, A.

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones. PMID:27488903

  5. Active Component Support to Reserve Component Training, Changes to Training Support XXI

    DTIC Science & Technology

    2007-11-02

    provide support to reserve units in the Pacific Command area of responsibility. Training Support Mobilization Compliance MACA Hybrid Alternative eSB...mobilization, compliance, and Military Assistance to Civil Authorities ( MACA ).”16 The plan establishes and explains the command relationship between the CONUSA...CA TSBn TSB TSD CSS TSBn CONUSA OCAR USARC RPA Execution RSC Integrated Active Reserve l OMA l RPA RPA request MACA XXXX XXXX $ RPA Guidance

  6. Active Learning Strategies for Introductory Light and Optics

    ERIC Educational Resources Information Center

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…

  7. Incident diagnoses of cancers in the active component and cancer-related deaths in the active and reserve components, U.S. Armed Forces, 2005-2014.

    PubMed

    Lee, Terrence; Williams, Valerie F; Clark, Leslie L

    2016-07-01

    Cancer is the second leading cause of death in the U.S., surpassed only by heart disease. It is estimated that approximately one of every four deaths in the U.S. is due to cancer. Between 2005 and 2014 among active component service members in the U.S. military, crude incidence rates of most cancer diagnoses have remained relatively stable. During this period, 8,973 active component members were diagnosed with at least one of the cancers of interest and no specific increasing or decreasing trends were evident. Cancers accounted for 1,054 deaths of service members on active duty during the 10-year surveillance period; this included 727 service members in the active component and 327 in the reserve component.

  8. Scalable Advanced Network Services Based on Coordinated Active Components

    DTIC Science & Technology

    2004-02-01

    as a means of customizing both high functionality and scalable communication components to meet the needs of specific services. • A service...considering both the service quality for the user and the efficient use of the infrastructure (cost). ( 4 ) Finally, the synthesizer needs to configure the...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed , and completing

  9. Alignment of optical system components using an ADM beam through a null assembly

    NASA Technical Reports Server (NTRS)

    Hayden, Joseph E. (Inventor); Olczak, Eugene G. (Inventor)

    2010-01-01

    A system for testing an optical surface includes a rangefinder configured to emit a light beam and a null assembly located between the rangefinder and the optical surface. The null assembly is configured to receive and to reflect the emitted light beam toward the optical surface. The light beam reflected from the null assembly is further reflected back from the optical surface toward the null assembly as a return light beam. The rangefinder is configured to measure a distance to the optical surface using the return light beam.

  10. Protect Minnesota's Agricultural Land: Components and Activities for Elementary Students.

    ERIC Educational Resources Information Center

    Noy, Laura

    An endeavor to alert elementary teachers and students to the need to protect and conserve one of Minnesota's basic resources, soil, these supplementary instructional activities are designed for easy integration into science, social studies, language arts, mathematics, and art subject and skill areas. Each activity includes a brief description of…

  11. Modeling injection molding of net-shape active ceramic components.

    SciTech Connect

    Baer, Tomas; Cote, Raymond O.; Grillet, Anne Mary; Yang, Pin; Hopkins, Matthew Morgan; Noble, David R.; Notz, Patrick K.; Rao, Rekha Ranjana; Halbleib, Laura L.; Castaneda, Jaime N.; Burns, George Robert; Mondy, Lisa Ann; Brooks, Carlton, F.

    2006-11-01

    To reduce costs and hazardous wastes associated with the production of lead-based active ceramic components, an injection molding process is being investigated to replace the current machining process. Here, lead zirconate titanate (PZT) ceramic particles are suspended in a thermoplastic resin and are injected into a mold and allowed to cool. The part is then bisque fired and sintered to complete the densification process. To help design this new process we use a finite element model to describe the injection molding of the ceramic paste. Flow solutions are obtained using a coupled, finite-element based, Newton-Raphson numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. Thermal, rheological, and wetting properties of the PZT paste are measured for use as input to the model. The viscosity of the PZT is highly dependent both on temperature and shear rate. One challenge in modeling the injection process is coming up with appropriate constitutive equations that capture relevant phenomenology without being too computationally complex. For this reason we model the material as a Carreau fluid and a WLF temperature dependence. Two-dimensional (2D) modeling is performed to explore the effects of the shear in isothermal conditions. Results indicate that very low viscosity regions exist near walls and that these results look similar in terms of meniscus shape and fill times to a simple Newtonian constitutive equation at the shear-thinned viscosity for the paste. These results allow us to pick a representative viscosity to use in fully three-dimensional (3D) simulation, which because of numerical complexities are restricted to using a Newtonian constitutive equation. Further 2D modeling at nonisothermal conditions shows that the choice of

  12. A new active solder for joining electronic components

    SciTech Connect

    SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.; LUGSCHEIDER,E.; RASS,I.; HILLEN,F.

    2000-05-11

    Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.

  13. Fast incorporation of optical flow into active polygons.

    PubMed

    Unal, Gozde; Krim, Hamid; Yezzi, Anthony

    2005-06-01

    In this paper, we first reconsider, in a different light, the addition of a prediction step to active contour-based visual tracking using an optical flow and clarify the local computation of the latter along the boundaries of continuous active contours with appropriate regularizers. We subsequently detail our contribution of computing an optical flow-based prediction step directly from the parameters of an active polygon, and of exploiting it in object tracking. This is in contrast to an explicitly separate computation of the optical flow and its ad hoc application. It also provides an inherent regularization effect resulting from integrating measurements along polygon edges. As a result, we completely avoid the need of adding ad hoc regularizing terms to the optical flow computations, and the inevitably arbitrary associated weighting parameters. This direct integration of optical flow into the active polygon framework distinguishes this technique from most previous contour-based approaches, where regularization terms are theoretically, as well as practically, essential. The greater robustness and speed due to a reduced number of parameters of this technique are additional and appealing features.

  14. Do energy drinks contain active components other than caffeine?

    PubMed

    McLellan, Tom M; Lieberman, Harris R

    2012-12-01

    Energy drinks (EDs) contain caffeine and are a new, popular category of beverage. It has been suggested that EDs enhance physical and cognitive performance; however, it is unclear whether the claimed benefits are attributable to components other than caffeine. A typical 235 mL ED provides between 40 and 250 mg of caffeine, equating to doses that improve cognitive and, at the higher levels, physical performance. EDs often contain taurine, guaraná, ginseng, glucuronolactone, B-vitamins, and other compounds. A literature search using PubMed, Psych Info, and Google Scholar identified 32 articles that examined the effects of ED ingredients alone and/or in combination with caffeine on physical or cognitive performance. A systematic evaluation of the evidence-based findings in these articles was then conducted. With the exception of some weak evidence for glucose and guaraná extract, there is an overwhelming lack of evidence to substantiate claims that components of EDs, other than caffeine, contribute to the enhancement of physical or cognitive performance. Additional well-designed, randomized, placebo-controlled studies replicated across laboratories are needed in order to assess claims made for these products.

  15. Transcriptional activation of hedgehog pathway components in aggressive hemangioma.

    PubMed

    Wendling-Keim, Danielle S; Wanie, Lynn; Grantzow, Rainer; Kappler, Roland

    2017-03-31

    Infantile hemangioma is a vascular neoplasm and is one of the most common tumors diagnosed in young children. Although most hemangiomas are harmless and involute spontaneously, some show severe progression, leading to serious complications, such as high output cardiac failure, ulcerations, compression of the trachea or deprivation amblyopia, depending on their size and localization. However, the pathogenesis and cause of hemangioma are largely unknown to date. The goal of this study was to identify markers that could predict hemangiomas with aggressive growth and severe progression that would benefit from early intervention. By using a PCR-based screening approach, we first confirmed that previously known markers of hemangioma, namely FGF2 and GLUT1, are highly expressed in hemangioma. Nevertheless, these genes did not show any differential expression between severely progressing tumors and mild tumors. However, transcriptional upregulation of several Hedgehog signaling components, comprising the ligand Sonic Hedgehog (SHH),the transcription factor GLI2 and its target gene FOXA2 were detected in extremely aggressive hemangioma specimens during the proliferation phase. Notably, GLI2 was even overexpressed in involuting hemangiomas if they showed an aggressive growth pattern. In conclusion, our data suggest that overexpression of the Hedgehog components SHH, GLI2 and FOXA2 might be used as markers of an aggressive hemangioma that would benefit from too early intervention, while FGF2 and GLUT1 are more general markers of hemangiomas. This article is protected by copyright. All rights reserved.

  16. Improved Convergence for Two-Component Activity Expansions

    SciTech Connect

    DeWitt, H E; Rogers, F J; Sonnad, V

    2007-03-06

    It is well known that an activity expansion of the grand canonical partition function works well for attractive interactions, but works poorly for repulsive interactions, such as occur between atoms and molecules. The virial expansion of the canonical partition function shows just the opposite behavior. This poses a problem for applications that involve both types of interactions, such as occur in the outer layers of low-mass stars. We show that it is possible to obtain expansions for repulsive systems that convert the poorly performing Mayer activity expansion into a series of rational polynomials that converge uniformly to the virial expansion. In the current work we limit our discussion to the second virial approximation. In contrast to the Mayer activity expansion the activity expansion presented herein converges for both attractive and repulsive systems.

  17. Chemical Components and Cardiovascular Activities of Valeriana spp.

    PubMed Central

    Chen, Heng-Wen; Wei, Ben-Jun; He, Xuan-Hui; Liu, Yan; Wang, Jie

    2015-01-01

    Valeriana spp. is a flowering plant that is well known for its essential oils, iridoid compounds such as monoterpenes and sesquiterpenes, flavonoids, alkaloids, amino acids, and lignanoids. Valeriana spp. exhibits a wide range of biological activities such as lowering blood pressure and heart rate, antimyocardial ischemia reperfusion injury, antiarrhythmia, and regulation of blood lipid levels. This review focuses on the chemical constituents and cardiovascular activities of Valeriana spp. PMID:26788113

  18. Building blocks for actively-aligned micro-optical systems in rapid prototyping and small series production

    NASA Astrophysics Data System (ADS)

    Böttger, Gunnar; Queisser, Marco; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, K.-D.

    2015-03-01

    In recent years there has been considerable progress in utilizing fully automated machines for the assembly of microoptical systems. Such systems integrate laser sources, optical elements and detectors into tight packages, and efficiently couple light to free space beams, waveguides in optical backplanes, or optical fibers for longer reach transmission. The required electrical-optical and optical components are placed and aligned actively in more than one respect. For one, all active components are actually operated in the alignment process, and, more importantly, the placing of all components is controlled actively by camera systems and power detectors with live feedback for an optimal coupling efficiency. The total number of optical components typically is in the range of 5 to 50, whereas the number of actors with gripping tools for the actual handling and aligning is limited, with little flexibility in the gripping width. The assembly process therefore is strictly sequential and, given that an automated tool changing has not been established in this class of machines yet, there are either limitations in the geometries of components that may be used, or time-consuming interaction by human operators is needed. As a solution we propose and present lasered glass building blocks with standardized gripping geometries that enclose optical elements of various shapes and functionalities. These are cut as free form geometries with green short pulse and CO2 lasers. What seems to add cost at first rather increases freedom of design and adds an economical flexibility to create very hybrid assemblies of various micro-optical assemblies also in small numbers.

  19. [Antitumor components screening of Stellera chamaejasme L. under the case of discrete distribution of active data].

    PubMed

    Yang, Qian-Xu; Cheng, Meng-Chun; Wang, Li; Kan, Xiao-Xi; Zhu, Xiao-Xin; Xiao, Hong-Bin

    2014-06-01

    This is to report the screening, extracting and validating antitumor components and compounds from Stellera chamaejasme L. under the case of discrete distribution of active data. In this work, different components from Stellera chamaejasme L. were collected by HPD macroporous resin and polyamide resin column, and their antitumor activity on A549 were tested by MTT assay. Activity results indicate that activity of components at 30-39 min is more potent than that of Stellera chamaejasme L. extract, and the activity of components at 33.97 min is equivalent to positive drug, cis-platinum at 100 microg x mL(-1), but with totally different mode of action. Under the case of discrete activity, the weight analysis is capable of screening active components and compounds from natural products.

  20. Active optics system of the VLT Survey Telescope.

    PubMed

    Schipani, Pietro; Noethe, Lothar; Magrin, Demetrio; Kuijken, Konrad; Arcidiacono, Carmelo; Argomedo, Javier; Capaccioli, Massimo; Dall'Ora, Massimo; D'Orsi, Sergio; Farinato, Jacopo; Fierro, Davide; Holzlöhner, Ronald; Marty, Laurent; Molfese, Cesare; Perrotta, Francesco; Ragazzoni, Roberto; Savarese, Salvatore; Rakich, Andrew; Umbriaco, Gabriele

    2016-03-01

    This paper describes the active optics system of the VLT Survey Telescope, the 2.6-m survey telescope designed for visible wavelengths of the European Southern Observatory at Cerro Paranal, in the Atacama desert. The telescope is characterized by a wide field of view (1.42 deg diameter), leading to tighter active optics than in conventional telescopes, in particular for the alignment requirements. We discuss the effects of typical error sources on the image quality and present the specific solutions adopted for wavefront sensing and correction of the aberrations, which are based on the shaping of a monolithic primary mirror and the positioning of the secondary in five degrees of freedom.

  1. Optical activity via Kerr nonlinearity in a spinning chiral medium

    NASA Astrophysics Data System (ADS)

    Khan, Anwar Ali; Bacha, Bakht Amin; Khan, Rahmat Ali

    2016-11-01

    Optical activity is investigated in a chiral medium by employing the four level cascade atomic model, in which the optical responses of the atomic medium are studied with Kerr nonlinearity. Light entering into a chiral medium splits into circular birefringent beams. The angle of divergence between the circular birefringent beams and the polarization states of the two light beams is manipulated with Kerr nonlinearity. In the stationary chiral medium the angle of divergence between the circular birefringent beams is calculated to be 1.3 radian. Furthermore, circular birefringence is optically controlled in a spinning chiral medium, where the maximum rotary photon drag angle for left (right) circularly polarized beam is ±1.1 (±1.5) microradian. The change in the angle of divergence between circular birefringent beams by rotary photon drag is calculated to be 0.4 microradian. The numerical results may help to understand image designing, image coding, discovery of photonic crystals and optical sensing technology.

  2. Active flat optics using a guided mode resonance.

    PubMed

    Kim, Soo Jin; Brongersma, Mark L

    2017-01-01

    Dynamically-controlled flat optics relies on achieving active and effective control over light-matter interaction in ultrathin layers. A variety of metasurface designs have achieved efficient amplitude and phase modulation. Particularly, noteworthy progress has been made with the incorporation of newly emerging electro-optical materials into such metasurfaces, including graphene, phase change materials, and transparent conductive oxides. In this Letter, we demonstrate dynamic light-matter interaction in a silicon-based subwavelength grating that supports a guided mode resonance. By overcoating the grating with indium tin oxide as an electrically tunable material, its reflectance can be tuned from 4% to 86%. Guided mode resonances naturally afford higher optical quality factors than the optical antennas used in the construction of metasurfaces. As such, they facilitate more effective control over the flow of light within the same layer thickness.

  3. Independent component analysis for the detection of in vivo intrinsic signals from an optical imager of retinal function

    NASA Astrophysics Data System (ADS)

    Barriga, Eduardo S.; Pattichis, Marios; Abramoff, Michael; T'so, Dan; Kwon, Young; Kardon, Randy; Soliz, Peter

    2007-02-01

    To overcome the difficulty in detection of loss of retinal activity, a functional-Retinal Imaging Device (f-RID) was developed. The device, which is based on a modified fundus camera, seeks to detect changes in optical signals that reflect functional changes in the retina. Measured changes in reflectance in response to the visual stimulus are on the order of 0.1% to 1% of the total reflected intensity level, which makes the functional signal difficult to detect by standard methods because it is masked by other physiological signals and by noise. In this paper, we present a new Independent Component Analysis (ICA) algorithm used to analyze the video sequences from a set of experiments with different patterned stimuli from cats and humans. The ICA algorithm with priors (ICA-P) uses information about the stimulation paradigms to increase the signal detection thresholds when compared to traditional ICA algorithms. The results of the analysis show that we can detect signal levels as low as 0.01% of the total reflected intensity. Also, improvement of up to 30dB in signal detection over traditional ICA algorithms is achieved. The study found that in more than 80% of the in-vivo experiments the patterned stimuli effects on the retina can be detected and extracted.

  4. Phytochemical components and biological activities of Silene arenarioides Desf.

    PubMed

    Golea, Lynda; Benkhaled, Mohammed; Lavaud, Catherine; Long, Christophe; Haba, Hamada

    2017-02-24

    In this study, six known compounds 1-6 were isolated from the aerial parts of Silene arenarioides Desf. using different chromatographic methods. The structures of these compounds were identified as maltol glycoside (1), soyacerebroside I (2), chrysin (3), apigenin (4), quercetin (5) and stigmasterol glucoside (6). The compounds (1) and (2) are reported for the first time from this genus. The isolated compounds were determined using NMR techniques ((1)H NMR, (13)C NMR, COSY, HSQC and HMBC) and mass spectroscopy (ESI-MS). The antibacterial and antioxidant activities of extracts and of compound (1) have been evaluated. The antioxidant activity was performed by DPPH radical scavenging method, which showed that methanol extract possesses a good antioxidant activity with value of IC50 = 8.064 ± 0.005 μg/mL.

  5. Early active sun - Radiation history of distinct components in fines

    NASA Technical Reports Server (NTRS)

    Crozaz, G.; Taylor, G. J.; Walker, R. M.; Seitz, M. G.

    1974-01-01

    Plagioclase feldspars were separated from lunar soil samples and their compositions were determined by electron-microprobe analysis followed by etching and track counting in an effort to find effects of early solar activity. The feldspars were assigned on this basis to three major lithologies: mare basalts, anorthositic rocks, and KREEP rock. The results are in sharp contrast to Poupeau et al.'s (1973) observations on track densities in plagioclase crystals in the Luna 16 soil: no evidence is found for an early active sun, although the evidence does not preclude this possibility, either.

  6. Strain-optic active control for quantum integrated photonics.

    PubMed

    Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Salter, Patrick S; Booth, Martin J; Steven Kolthammer, W; Walmsley, Ian A

    2014-09-08

    We present a practical method for active phase control on a photonic chip that has immediate applications in quantum photonics. Our approach uses strain-optic modification of the refractive index of individual waveguides, effected by a millimeter-scale mechanical actuator. The resulting phase change of propagating optical fields is rapid and polarization-dependent, enabling quantum applications that require active control and polarization encoding. We demonstrate strain-optic control of non-classical states of light in silica, showing the generation of 2-photon polarisation N00N states by manipulating Hong-Ou-Mandel interference. We also demonstrate switching times of a few microseconds, which are sufficient for silica-based feed-forward control of photonic quantum states.

  7. Optical activity of semiconductor nanocrystals with ionic impurities

    NASA Astrophysics Data System (ADS)

    Tepliakov, N. V.; Baimuratov, A. S.; Gun'ko, Yu. K.; Baranov, A. V.; Fedorov, A. V.; Rukhlenko, I. D.

    2017-01-01

    The strength of the enantioselective interaction of chiral semiconductor nanocrystals with circularly polarized light can be varied over a wide range, which finds a series of important applications in modern nanophotonics. As a rule, this interaction is relatively weak, because the dimension of nanocrystals is much smaller than the wavelength of the optical radiation, and the optical activity of nanocrystals is rather low. In this work, we show theoretically that, by applying ion doping, one can significantly enhance the optical activity of nanocrystals and to vary its magnitude over a wide range of values and over a wide range of frequencies. We show that, by precisely arranging impurities inside nanocrystals, one can optimize the rotatory strengths of intraband transitions, making them 100 times stronger than typical rotatory strengths of small chiral molecules.

  8. Design of an Optically Controlled MR-Compatible Active Needle

    PubMed Central

    Ryu, Seok Chang; Quek, Zhan Fan; Koh, Je-Sung; Renaud, Pierre; Black, Richard J.; Moslehi, Behzad; Daniel, Bruce L.; Cho, Kyu-Jin; Cutkosky, Mark R.

    2015-01-01

    An active needle is proposed for the development of magnetic resonance imaging (MRI)-guided percutaneous procedures. The needle uses a low-transition-temperature shape memory alloy (LT SMA) wire actuator to produce bending in the distal section of the needle. Actuation is achieved with internal optical heating using laser light transported via optical fibers and side coupled to the LT SMA. A prototype, with a size equivalent to a standard 16-gauge biopsy needle, exhibits significant bending, with a tip deflection of more than 14° in air and 5° in hard tissue. A single-ended optical sensor with a gold-coated tip is developed to measure the curvature independently of temperature. The experimental results in tissue phantoms show that human tissue causes fast heat dissipation from the wire actuator; however, the active needle can compensate for typical targeting errors during prostate biopsy. PMID:26512231

  9. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  10. Tyrosinase inhibitory components from Aloe vera and their antiviral activity.

    PubMed

    Kim, Jang Hoon; Yoon, Ju-Yeon; Yang, Seo Young; Choi, Seung-Kook; Kwon, Sun Jung; Cho, In Sook; Jeong, Min Hee; Ho Kim, Young; Choi, Gug Seoun

    2017-12-01

    A new compound, 9-dihydroxyl-2'-O-(Z)-cinnamoyl-7-methoxy-aloesin (1), and eight known compounds (2-9) were isolated from Aloe vera. Their structures were elucidated using 1D/2D nuclear magnetic resonance and mass spectra. Compound 9 exhibited reversible competitive inhibitory activity against the enzyme tyrosinase, with an IC50 value of 9.8 ± 0.9 µM. A molecular simulation revealed that compound 9 interacts via hydrogen bonding with residues His244, Thr261, and Val283 of tyrosinase. Additionally, compounds 3 and 7 were shown by half-leaf assays to exhibit inhibitory activity towards Pepper mild mottle virus.

  11. Closed-loop active optical system control

    NASA Astrophysics Data System (ADS)

    Sparks, T. E.

    1980-01-01

    A control system, based on a real-time lateral shear interferometer has been developed for use in control during thermal tests and static error compensation experiments. The minicomputer which controls the interferometer and provides its service functions also controls the active system, thereby giving flexibility to the algorithm. The minicomputer system contains 288 K bytes of memory and 15 M bytes of disk storage. The interferometer system employed is composed of the measuring head and its support electronics, a video display on which wavefront contour maps are generated, and a DECwriter operator console. The versatility provided by the use of a general purpose interferometer system allows for interactive control of the closed-loop process. Various arithmetic capabilities such as the addition of wavefronts, division by a constant, and fitting of wavefront data with Zernike polynomials, allow for measurements to be averaged and for removal of alignment errors before correction is performed.

  12. A review of DOE HEPA filter component test activities

    SciTech Connect

    Slawski, J.W.; Bresson, J.F.; Scripsick, R.C.

    1997-08-01

    All HEPA filters purchased for installation in DOE nuclear facilities are required to be tested at a Filter Test Facility (FTF) prior to installation. The number of HEPA filters purchased by DOE has been reduced so much that the Hanford FTF was closed. From Fiscal Year (FY) 1992 to 1994, funding was not provided to the FTF Technical Support Group (TSG) at the Los Alamos National Laboratory. As a consequence, Round Robin Tests (RRTs), performed twice each year by the FTFs to assess constituency of test results among the FTFs, were not performed in FY 1992 and FY 1993. The Annual Reports of FTF test activities were not prepared for FY 1992 - 1995. Technical support provided to the FTFs was minimal. There is talk of closing a second FTF, and ongoing discussions as to whether DOE will continue to fund operation of the FTFs. In FY 1994, DOE Defense Programs commenced funding the TSG. RRT data for FY 1994 and 1995 have been entered into the database; the FY 1994 RRT report has been issued; and the FY 1995 RRT report is in progress. Data from semiannual reports have been retrieved and entered into the database. Standards related to HEPA filter test and procurement activities are now scheduled for issuance by FY 1996. Continuation of these activities depends on whether DOE will continue to support the HEPA filter test program. The history and activities of the FTFs and the TSG at Los Alamos have been reported at previous Air Cleaning Conferences. Data from the FY 1991 Annual Report of FTF activities was presented at the 1992 Air Cleaning Conference. Preparation of the Annual Reports was temporarily suspended in 1992. However, all of the FTF Semiannual report data have been retrieved and entered into the data base. This paper focuses primarily on the results of HEPA filter tests conducted by FTFs during FY 1992 - FY 1995, and the possible effects of the DOE program uncertainties on the quality of HEPA filters for installation at the DOE sites. 15 refs., 13 tabs.

  13. BROAD COMPONENTS IN OPTICAL EMISSION LINES FROM THE ULTRA-LUMINOUS X-RAY SOURCE NGC 5408 X-1

    SciTech Connect

    Cseh, D.; Corbel, S.

    2011-02-10

    High-resolution optical spectra of the ultra-luminous X-ray source (ULX) NGC 5408 X-1 show a broad component with a width of {approx}750 km s{sup -1} in the He II and H{beta} lines in addition to the narrow component observed in these lines and [O III]. Reanalysis of moderate-resolution spectra shows a similar broad component in the He II line. The broad component likely originates in the ULX system itself, probably in the accretion disk. The central wavelength of the broad He II line is shifted by 252 {+-} 47 km s{sup -1} between the two observations. If this shift represents motion of the compact object, then its mass is less than {approx}1800 M{sub sun}.

  14. Comparison of mitochondrial and nucleolar RNase MRP reveals identical RNA components with distinct enzymatic activities and protein components.

    PubMed

    Lu, Qiaosheng; Wierzbicki, Sara; Krasilnikov, Andrey S; Schmitt, Mark E

    2010-03-01

    RNase MRP is a ribonucleoprotein endoribonuclease found in three cellular locations where distinct substrates are processed: the mitochondria, the nucleolus, and the cytoplasm. Cytoplasmic RNase MRP is the nucleolar enzyme that is transiently relocalized during mitosis. Nucleolar RNase MRP (NuMRP) was purified to homogeneity, and we extensively purified the mitochondrial RNase MRP (MtMRP) to a single RNA component identical to the NuMRP RNA. Although the protein components of the NuMRP were identified by mass spectrometry successfully, none of the known NuMRP proteins were found in the MtMRP preparation. Only trace amounts of the core NuMRP protein, Pop4, were detected in MtMRP by Western blot. In vitro activity of the two enzymes was compared. MtMRP cleaved only mitochondrial ORI5 substrate, while NuMRP cleaved all three substrates. However, the NuMRP enzyme cleaved the ORI5 substrate at sites different than the MtMRP enzyme. In addition, enzymatic differences in preferred ionic strength confirm these enzymes as distinct entities. Magnesium was found to be essential to both enzymes. We tested a number of reported inhibitors including puromycin, pentamidine, lithium, and pAp. Puromycin inhibition suggested that it binds directly to the MRP RNA, reaffirming the role of the RNA component in catalysis. In conclusion, our study confirms that the NuMRP and MtMRP enzymes are distinct entities with differing activities and protein components but a common RNA subunit, suggesting that the RNA must be playing a crucial role in catalytic activity.

  15. Magneto-optical activity in organic thin film materials

    NASA Astrophysics Data System (ADS)

    Vleugels, Rick; de Vega, Laura; Brullot, Ward; Verbiest, Thierry; Gómez-Lor, Berta; Gutierrez-Puebla, Enrique; Hennrich, Gunther

    2016-12-01

    A series of CF3-capped phenylacetylenes with varying symmetry is obtained by a conventional palladium-catalyzed cross-coupling protocol. The phenylacetylene targets form thin films both, liquid crystalline (LC) and crystalline in nature depending on their molecular structure. The magneto-optical activity of the resulting organic material is extraordinarily high as proved by Faraday rotation spectroscopy on thin film devices.

  16. A trap potential model investigation of the optical activity induced in dye-DNA intercalation complexes

    NASA Astrophysics Data System (ADS)

    Kamiya, Mamoru

    1988-02-01

    The fundamental features of the optical activity induced in dye-DNA intercalation complexes are studied by application of the trap potential model which is useful to evaluate the induced rotational strength without reference to detailed geometrical information about the intercalation complexes. The specific effect of the potential depth upon the induced optical activity is explained in terms of the relative magnitudes of the wave-phase and helix-phase variations in the path of an electron moving on a restricted helical segment just like an exciton trapped around the dye intercalation site. The parallel and perpendicular components of the induced rotational strength well reflect basic properties of the helicity effects about the longitudinal and tangential axes of the DNA helical cylinder. The trap potential model is applied to optimize the potential parameters so as to reproduce the ionic strength effect upon the optical activity induced to proflavine-DNA intercalation complexes. From relationships between the optimized potential parameters and ionic strengths, it is inferred that increase in the ionic strength contributes to the optical activity induced by the nearest-neighbour interaction between intercalated proflavine and DNA base pairs.

  17. The orbit of Phi Cygni measured with long-baseline optical interferometry - Component masses and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, J. T.; Hummel, C. A.; Quirrenbach, A.; Buscher, D. F.; Mozurkewich, D.; Vivekanand, M.; Simon, R. S.; Denison, C. S.; Johnston, K. J.; Pan, X.-P.

    1992-01-01

    The orbit of the double-lined spectroscopic binary Phi Cygni, the distance to the system, and the masses and absolute magnitudes of its components are presented via measurements with the Mar III Optical Interferometer. On the basis of a reexamination of the spectroscopic data of Rach & Herbig (1961), the values and uncertainties are adopted for the period and the projected semimajor axes from the present fit to the spectroscopic data and the values of the remaining elements from the present fit to the Mark III data. The elements of the true orbit are derived, and the masses and absolute magnitudes of the components, and the distance to the system are calculated.

  18. Dynamical quantum phase transition of a two-component Bose-Einstein condensate in an optical lattice

    SciTech Connect

    Collin, Anssi; Martikainen, Jani-Petri; Larson, Jonas

    2010-01-15

    We study the dynamics of a two-component Bose-Einstein condensate where the two components are coupled via an optical lattice. In particular, we focus on the dynamics as one drives the system through a critical point of a first-order phase transition characterized by a jump in the internal populations. Solving the time-dependent Gross-Pitaevskii equation, we analyze the breakdown of adiabaticity, impact of nonlinear atom-atom scattering, and role of a harmonic trapping potential. Our findings demonstrate that the phase transition is resilient to both contact interaction between atoms and external trapping confinement.

  19. Antidromic activation of the isthmo-optic nucleus

    PubMed Central

    Holden, A. L.

    1968-01-01

    1. This paper describes experiments carried out to record from output cells in the isthmo-optic nucleus. 2. One-hundred and twenty-seven axonal responses were fired at fixed latency from the optic nerve-head. 3. Ninety-nine cell responses were fired trans-synaptically from the optic nerve-head. 4. Ninety-four cells were activated antidromically from the optic nerve-head. 5. Tectal tracks could be recognized by the field potential profile of the N-wave, R-wave and P-wave, and by the occurrence of fixed latency axonal responses and trans-synaptically fired cells. 6. Tectal tracks were verified histologically. 7. Tracks yielding antidromically activated cells were traced histologically to the isthmo-optic nucleus. 8. The antidromic A-wave could be recorded from the nucleus, corresponding in timing to the invasion of cell bodies. 9. Somatic records in the nucleus could be recognized by their duration, conformation, and A—B blocking. 10. When antidromic discharge was interacted with orthodromic firing, collision evidence could be provided, showing that the orthodromic impulse travels centrifugally to the retina. ImagesFig. 3Fig. 4 PMID:5675042

  20. Optical properties of actively controlled reflection and transmission gratings

    NASA Astrophysics Data System (ADS)

    Rodriguez, Miguel Angel

    2001-05-01

    Reflection and transmission gratings have found a wide variety of applications as optical filters and beam steering elements. In this work we have studied the optical properties of reflection and transmission gratings whose diffraction properties could be actively controlled. Two different material systems were utilized for the study. Reflection gratings in optical fibers were used and reflection and transmission gratings were fabricated holographically in a polymer dispersed liquid crystal (PDLC) material. The optical properties of refractive index-shifted gratings were studied using the fiber Bragg gratings. It was found that narrow, high transmission spikes developed inside a high reflectivity stopgap when the refractive index of a section of the grating is shifted. The refractive index-shift was achieved using the thermo- optic effect. Experimental as well as theoretical results are presented and discussed. The optical properties of electrically switchable reflection and transmission gratings fabricated in polymer dispersed liquid crystal materials were also studied. The PDLC material is electro-optic and therefore by applying an external electric field to the gratings the diffraction properties are modified. Gratings were fabricated holographically. From the study of the transmission properties of the reflection gratings we found that the reflection of the structures can be switched off by applying an external electric field and that the reflectivity is polarization insensitive for normal incidence. We also studied the diffraction properties of PDLC transmission gratings. In our analysis of the diffraction properties of these electrically- switchable liquid crystal gratings we found that it was necessary to use a generalized two-wave coupled mode theory that includes the effects of the optical anisotropy of the liquid crystal. We found that the morphology of the PDLC gratings depends on the specific PDLC mixture used to fabricate the grating.

  1. Active disturbance rejection controller of fine tracking system for free space optical communication

    NASA Astrophysics Data System (ADS)

    Cui, Ning; Liu, Yang; Chen, Xinglin; Wang, Yan

    2013-08-01

    Free space optical communication is one of the best approaches in future communications. Laser beam's acquisition, pointing and tracking are crucial technologies of free space optical communication. Fine tracking system is important component of APT (acquisition, pointing and tracking) system. It cooperates with the coarse pointing system in executing the APT mission. Satellite platform vibration and disturbance, which reduce received optical power, increase bit error rate and affect seriously the natural performance of laser communication. For the characteristic of satellite platform, an active disturbance rejection controller was designed to reduce the vibration and disturbance. There are three major contributions in the paper. Firstly, the effects of vibration on the inter satellite optical communications were analyzed, and the reasons and characters of vibration of the satellite platform were summarized. The amplitude-frequency response of a filter was designed according to the power spectral density of platform vibration of SILEX (Semiconductor Inter-satellite Laser Experiment), and then the signals of platform vibration were generated by filtering white Gaussian noise using the filter. Secondly, the fast steering mirror is a key component of the fine tracking system for optical communication. The mechanical design and model analysis was made to the tip/tilt mirror driven by the piezoelectric actuator and transmitted by the flexure hinge. The transfer function of the fast steering mirror, camera, D/A data acquisition card was established, and the theory model of transfer function of this system was further obtained. Finally, an active disturbance rejection control method is developed, multiple parallel extended state observers were designed for estimation of unknown dynamics and external disturbance, and the estimated states were used for nonlinear feedback control and compensation to improve system performance. The simulation results show that the designed

  2. Integration of optical and electrochemical sensors on a microfluidic platform using organic optoelectronic components and silver nanowires.

    PubMed

    Poorahong, Sujittra; Lefevre, Florent; Perron, Marie-Claude; Juneau, Philippe; Izquierdo, Ricardo

    2016-08-01

    Since the emergence of microfluidic platforms sensors integration has been a major challenge. With the advances in miniaturization of these platforms, there is a need for solutions to integrate various optical components in order to build sensors, which will offer different detection characteristics such as several emission and sensing wavelengths. Moreover, the integration of an electrochemical sensor including a transparent electrode that will be compatible with the optical sensor represents an additional challenge. In this perspective, organic optoelectronic devices combined with silver nanowire electrodes could be a solution. The integration of a fluorescent sensor and an electrochemical oxygen sensor into a microfluidic platform and the different characteristics, advantages and disadvantages that offer organic light-emitting diodes (OLED), organic photodetectors (OPD) and silver nanowire electrodes are discussed. Finally, an example of the integration of an optical and an electrochemical sensor into a microfluidic chip for water pollution detection will be described.

  3. Multicolour Optical Photometry of Active Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Jolley, A.; Wade, G.; Bedard, D.

    Although broadband photometry has been used to infer information about artificial satellites since soon after the launch of Sputnik 1, the development of photometric techniques for non-resolved space object identification or characterisation has been hampered by the large number of variables involved. Many individual studies, and some long ongoing experiments, have used costly metre-class telescopes to obtain data despite other experiments demonstrating that much more flexible and affordable small aperture telescopes may be suitable for the task. In addition, due to the highly time consuming and weather dependent nature of obtaining photometric observations, many studies have suffered from data sets of limited size, or relied upon simulations to support their claims. With this in mind, an experiment was conducted with the aim of determining the utility of small aperture telescopes for conducting broadband photometry of satellites for the purpose of non-resolved space object identification and characterisation. A 14 inch Celestron CG-14 telescope was used to gain multiple night-long, high temporal resolution data sets of six active geostationary satellites. The results of the experiment cast doubt on the efficacy of some of the previous approaches to obtaining and analysing photometric data. It was discovered that geostationary satellite lightcurves can vary to a greater degree than has generally been recognised, and colour ratios vary considerably with changes in the illumination/observation geometry, making it difficult to use colour for satellite discrimination. Evidence was also detected of variations in the spectral energy distribution of sunlight reflected off satellite surface materials, which could have implications for surface material characterisation and techniques that aim to separate satellite body and solar panel contributions to the total observed spectra.

  4. Identification of Optical Component of North Toroidal Source of Sporadic Meteors and its Origin

    NASA Technical Reports Server (NTRS)

    Hashimoto, T.; Watanabe, J.; Sato, M.; Ishiguro, M.

    2011-01-01

    We succeeded to identify the North Toroidal source by optical observations performed by the SonotaCo Network, which is a TV observation network coordinated by Japanese amateurs. This source has been known only for radar observations until now. The orbits of the optical meteors in the North Toroidal source are relatively large eccentricity and semi-major axis, compared with those of the radar meteors. In this paper, we report the characteristics of this North Toroidal source detected by optical observations, and discuss the possible origin and evolution of this source.

  5. Optical imaging of neural and hemodynamic brain activity

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  6. Pattern matching based active optical sorting of colloids/cells

    NASA Astrophysics Data System (ADS)

    Verma, R. S.; Dasgupta, R.; Ahlawat, S.; Kumar, N.; Uppal, A.; Gupta, P. K.

    2013-08-01

    We report active optical sorting of colloids/cells by employing a cross correlation based pattern matching technique for selection of the desired objects and thereafter sorting using dynamically controllable holographic optical traps. The problem of possible collision between the different sets of objects during sorting was avoided by raising one set of particles to a different plane. We also present the results obtained on using this approach for some representative applications such as sorting of silica particles of two different sizes, of closely packed colloids and of white blood cells and red blood cells from a mixture of the two.

  7. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  8. Differences in associations between active transportation and built environmental exposures when expressed using different components of individual activity spaces.

    PubMed

    van Heeswijck, Torbjorn; Paquet, Catherine; Kestens, Yan; Thierry, Benoit; Morency, Catherine; Daniel, Mark

    2015-05-01

    This study assessed relationships between built environmental exposures measured within components of individual activity spaces (i.e., travel origins, destinations and paths in-between), and use of active transportation in a metropolitan setting. Individuals (n=37,165) were categorised as using active or sedentary transportation based on travel survey data. Generalised Estimating Equations analysis was used to test relationships with active transportation. Strength and significance of relationships between exposures and active transportation varied for different components of the activity space. Associations were strongest when including travel paths in expression of the built environment. Land use mix and greenness were negatively related to active transportation.

  9. Optical studies of X-ray peculiar chromosphereically active stars

    NASA Astrophysics Data System (ADS)

    Pandey, J. C.

    2006-02-01

    A multiwavelength study of the late-type active stars, selected on the basis of their X-ray and radio luminosities is presented in this thesis. For FR Cnc, a photometric period 0.8267 +/- 0.0004 d has been established. The strong variation in the phase and amplitude of the FR Cnc light curves when folded on this period implies the presence of evolving and migrating spots or spot groups on its surface. A photometric period of 18.802 +/- 0.074 has been discovered in the star HD 81032. The shape and amplitude of the photometric light curves of FR Cnc, HD 81032, HD 95559 and LO Peg are observed to be changing from one epoch to another. The change in the amplitude is mainly due to a change in the minimum of the light curve, and this May be due to a change in the spot coverage. This indicates that photometric variability is due to the presence of dark spots on the surface of active star. Two groups of spots are identified for FR Cnc and LO Peg. The spots are found to migrate, and migration periods of 0.97 year and 0.93 year are determined from the 4 years of data. A migration period of 1.12 years for one group of spots in LO Peg is also determined. Formation of a new group of spots in the star HD 95559 was also seen during our observations. A single large group of spots is found to migrate, and a migration period of 7.32 +/- 0.04 years is determined for HD 81032. The stars FR Cnc, HD 81032, HD 160934 and LO Peg are seen to be redder at the light minimum and we interpret this is due to the relatively cooler temperature of the darker regions present in the visible hemisphere. We find the lack of color-brightness correlation in the star HD 95559 and this May be due to the presence of bright faculae and plages like regions accompanied by dark spots in any one component of the this binary system. The optical spectroscopy of FR Cnc and HD 81032 carried out during 2002-2003, reveals the presence of strong and variable Ca II H and K, Halpha and Hbeta emission features indicative

  10. Neural nets for aligning optical components in harsh environments: Beam smoothing spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.

    1991-01-01

    The goal is to develop an approach to automating the alignment and adjustment of optical measurement, visualization, inspection, and control systems. Classical controls, expert systems, and neural networks are three approaches to automating the alignment of an optical system. Neural networks were chosen for this project and the judgements that led to this decision are presented. Neural networks were used to automate the alignment of the ubiquitous laser-beam-smoothing spatial filter. The results and future plans of the project are presented.

  11. Azo-Carbazole Polymethacrylates as Single-Component Electro-Optic Materials

    DTIC Science & Technology

    2007-11-02

    previously. Sample Preparation The n-variable spacer poly( azo carbazole) (PAC-n) polymers used in this study were cast as films onto transparent...electric field poling and photoinduced birefringence. Once an electro-optic thin film sandwich of azo polymer is brought to Tg , application of an...and coefficients obtained from curve fitting. Figure 1. Azo -carbazole polymer cast as a thin film (top), an electro-optic sandwich (center), and an

  12. Soluble epoxide hydrolase inhibitory activity of anthraquinone components from Aloe.

    PubMed

    Sun, Ya Nan; Kim, Jang Hoon; Li, Wei; Jo, A Reum; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2015-10-15

    Aloe is a short-stemmed succulent herb widely used in traditional medicine to treat various diseases and as raw material in cosmetics and heath foods. In this study, we isolated and identified two new anthraquinone derivatives, aloinoside C (6) and aloinoside D (7), together with six known compounds from an aqueous dissolved Aloe exudate. Their structures were identified by spectroscopic analysis. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were evaluated. Compounds 1-8 inhibited sEH activity potently, with IC50 values ranging from 4.1±0.6 to 41.1±4.2 μM. A kinetic analysis of compounds 1-8 revealed that the inhibitory actions of compounds 1, 6 and 8 were non-competitive, whereas those of compounds 2-5 and 7 were the mixed-type. Molecular docking increases our understanding of receptor-ligand binding of all compounds. These results demonstrate that compounds 1-8 from Aloe are potential sEH inhibitors.

  13. Progress in modeling polarization optical components for the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Sueoka, Stacey Ritsuyo; Harrington, David M.

    2016-07-01

    The DKIST will have a suite of first-light polarimetric instrumentation requiring precise calibration of a complex articulated optical path. The optics are subject to large thermal loads caused by the 300Watts of collected solar irradiance across the 5 arc minute field of view. The calibration process requires stable optics to generate known polarization states. We present modeling of several optical, thermal and mechanical effects of the calibration optics, the first transmissive optical elements in the light path, because they absorb substantial heat. Previous studies showed significant angle of incidence effects from the f/13 converging beam and the 5 arc minute field of view, but were only modeled at a single nominal temperature. New thermal and polarization modeling of these calibration retarders shows heating causes significant stability limitations both in time and with field caused by the bulk temperature rise along with depth and radial thermal gradients. Modeling efforts include varying coating and material absorption, Mueller matrix stability estimates and mitigation efforts.

  14. The Design of Actively Cooled Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Scheerer, M.; Bolt, H.; Gervash, A.; Linke, J.; Smid, I.

    In future fusion devices, like in the stellarator Wendelstein 7-X, the target plates of the divertor will be exposed to heat loads up to power densities of 10 MW/m2 for 1000 s. For this purpose actively cooled target elements with an internal coolant flow return, made of 2-D CFC armor tiles brazed onto a two tube cooling structure were developed and manufactured at the Forschungszentrum Jülich. Individual bent- and coolant flow reversal elements were used to achieve a high flexibility in the shape of the target elements. A special brazing technology, using a thin layer of plasma-arc deposited titanium was used for the bonding of the cooling structure to the plasma facing armor (PFA). FEM-simulations of the thermal and mechanical behavior show that a detachment of about 25% of the bonded area between the copper tubes and the PFA can be tolerated, without exceeding the critical heat flux at 15 MW/m2 or a surface temperature of 1400°C at 10 MW/m2 by using twisted tape inserts with a twist ratio of 2 at a cooling water velocity of 10 m/s. Thermal cycling tests in an electron beam facility up to a power density level 10.5 MW/m2 show a very good behavior of parts of the target elements, which confirms the performance under fusion relevant conditions. Even defected parts in the bonding interface of the target elements, known from ultrasonic inspections before, show no change in the thermal performance under cycling, which confirms also the structural integrity of partly defected regions.

  15. Optical Neural Interfaces

    PubMed Central

    Warden, Melissa R.; Cardin, Jessica A.; Deisseroth, Karl

    2014-01-01

    Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals. PMID:25014785

  16. Optically active surfaces formed by ion implantation and thermal treatment

    SciTech Connect

    Gea, L.A.; Boatner, L.A.; Evans, H.M.; Zuhr, R.

    1996-08-01

    Embedded VO{sub 2} precipitates have been formed in single-crystal sapphire by the ion co-implantation of vanadium and oxygen and subsequent thermal annealing. The embedded VO{sub 2} particles have been shown to exhibit an optical switching behavior that is comparable to that of continuous thin films. In this work, the mechanisms of formation of these optically active particles are investigated. It is shown that precipitation of the vanadium dioxide phase is favored when the thermal treatment is performed on an ion-damaged but still crystalline (rather than amorphized) Al{sub 2}O{sub 3} substrate. The best optical switching behavior is observed in this case, and this behavior is apparently correlated with a more-favorable dispersion of VO{sub 2} small particles inside the matrix.

  17. Optical ordance system for use in explosive ordnance disposal activities

    SciTech Connect

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt III perchlorate (CP) as the DDT column and the explosive Octahydro 1, 3, 5, 7 -- tetranitro -- 1, 3, 5, 7 -- tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  18. Optical ordnance system for use in explosive ordnance disposal activities

    NASA Technical Reports Server (NTRS)

    Merson, J. A.; Salas, F. J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt(III) perchlorate (CP) as the DDT column and the explosive Octahydro- 1,3,5,7 - tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  19. Catalase activity as a potential indicator of the reducer component of small closed ecosystems

    NASA Astrophysics Data System (ADS)

    Sarangova, A. B.; Somova, L. A.; Pisman, T. I.

    1997-01-01

    Dynamics of catalase activity has been shown to reflect the growth curve of microorganisms in batch cultivation (celluloselythic bacteria Bacillus acidocaldarius and bacteria of the associated microflora Chlorella vulgaris). Gas and substrate closure of the three component ecosystems with spatially separated components ``producer-consumer-reducer'' (Chl. vulgaris-Paramecium caudatum-B. acidocaldarius, two bacterial strains isolated from the associated microflora Chl. vulgaris) demonstrated that the functioning of the reducer component can be estimated by the catalase activity of microorganisms of this component.

  20. The role of lanthanides in optical materials

    SciTech Connect

    Weber, M.J.

    1995-05-01

    A survey is presented of the use of the lanthanides as chemical components in transmitting optical materials and as activators in materials for luminescent, electro-optic, magneto-optic, and various photosensitive applications.

  1. Real-time optimal sensing strategies for active control of optical systems

    NASA Astrophysics Data System (ADS)

    Moon, Suk-Min; Fowler, Leslie P.; Clark, Robert L.; Anderson, Eric H.

    2007-04-01

    The pointing and imaging performance of precision optical systems is degraded by disturbances on the system that create optical jitter. These disturbances can be caused by structural motion of optical components due to vibration sources that (1) originate within the optical system, (2) originate external to the system and are transmitted through the structural path in the environment, and (3) are air-induced vibrations from acoustic noise. Beam control systems can suppress optical jitter, and active control techniques can be used to extend performance by incorporating information from accelerometers, microphones, and other auxiliary sensors. In some applications, offline fixed gain controllers can be used to minimize jitter. However there are many applications in which a real-time adaptive control approach would yield improved optical performance. Often we would like the capability to adapt in real-time to a system which is time-varying or whose disturbances are non-stationary and hard to predict. In the presence of these harsh, ever-changing environments we would like to use every available tool to optimize performance. Improvements in control algorithms are important, but another potentially useful tool is a real-time adaptive control method employing optimal sensing strategies. In this approach, real-time updating of reference sensors is provided to minimize optical jitter. The technique selects an optimal subset of sensors to use as references from an array of possible sensor locations. The optimal, weighted reference sensor set is well correlated with the disturbance and when used with an adaptive control algorithm, results in improved line-of-sight jitter performance with less computational burden compared to a controller which uses multiple reference sensors. The proposed technique is applied to an experimental test bed in which multiple proof-mass actuators generate structural vibrations on a flexible plate. These vibrations are transmitted to an optical

  2. Odour-evoked responses to queen pheromone components and to plant odours using optical imaging in the antennal lobe of the honey bee drone Apis mellifera L.

    PubMed

    Sandoz, Jean-Christophe

    2006-09-01

    The primordial functional role of honey bee males (drones) is to mate with virgin queens, a behaviour relying heavily on the olfactory detection of queen pheromone. In the present work I studied olfactory processing in the drone antennal lobe (AL), the primary olfactory centre of the insect brain. In drones, the AL consists of about 103 ordinary glomeruli and four enlarged glomeruli, the macroglomeruli (MG). Two macroglomeruli (MG1 and MG2) and approximately 20 ordinary glomeruli occupy the anterior surface of the antennal lobe and are thus accessible to optical recordings. Calcium imaging was used to measure odour-evoked responses to queen pheromonal components and plant odours. MG2 responded specifically to the main component of the queen mandibular pheromone, 9-ODA. The secondary components HOB and HVA each triggered activity in one, but not the same, ordinary glomerulus. MG1 did not respond to any of the tested stimuli. Plant odours induced signals only in ordinary glomeruli in a combinatorial manner, as in workers. This study thus shows that the major queen pheromonal component is processed in the most voluminous macroglomerulus of the drone antennal lobe, and that plant odours, as well as some queen pheromonal components, are processed in ordinary glomeruli.

  3. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    PubMed Central

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-01-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm−1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue. PMID:26926272

  4. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    NASA Astrophysics Data System (ADS)

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-03-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm‑1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue.

  5. Characteristics of Noise and Photon Statistics of Fiber Components in Electro-Optical Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng

    This thesis presents a comprehensive study of the role of the fiber replicator in electro-optical systems. In the all fiber optical diagnostic system for the National Ignition Facility's DANTE data acquisition system running at 1550nm, the 8x fiber replicator was used to increase the SNR (Signal to Noise Ratio) of single-shot, electrical pulse measurements. In the system, Mach-Zehnder modulators were used to convert the electrical signals into optical signals. The fiber replicator was used to create identical copies of the optical signals. A High SNR was achieved through the averaging of these duplicated signals. Erbium-doped fiber amplifiers (EDFAs) were built to amplify the optical signals after the fiber replicator. The EDFAs applied in the DANTEEO system should have high gain, low noise, low background signals and high pulse-shape fidelity. In this thesis, we discussed the effect of different configurations and the type of Er-doped fibers on the gain and noise performance of EDFAs. We also used a simplified model for dynamic gain in EDFAs to explore the effect of the EDFA on the shape of the amplified pulse. Based on this model, the calculated pulse-shape distortions were found to be dependent on the EDFA configuration and the optical gain. We also investigated the photon statistics with the fiber replicator in a photon entanglement system. The entangled photons were created through the up-conversion and down-conversion of a Q-switch laser beam running at 1053nm. The different behavior between entangled photon and non-entangled single photons in the system with the fiber replicator are discussed.

  6. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, R.B.

    1991-09-10

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch. 11 figures.

  7. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, Russell B.

    1991-01-01

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch.

  8. The Fiber Optic Subsystem Components on Express Logistics Carrier for International Space Station

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Switzer, Robert; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; Day, Lance

    2009-01-01

    ISS SSP 50184 HRDL optical fiber communication subsystem, has system level requirements that were changed to accommodate large loss optical fiber links previously installed. SSQ22680 design is difficult to implement, no metal shell over socket/pin combination to protect the weak part of the pin. Additions to ISS are planned for the future. AVIM still used for interconnection in space flight applications without incident. Thermal cycling resulted in less than 0.25 dB max change in Insertion Loss for all types during cycling, nominal as compared to the AVIM. Vibration testing results conclusion; no significant changes, nominal as compared to AVIM.

  9. LDEF (Postflight), S0050 : Investigation of the Effects of Long-Duration Exposure on Active Optical

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), S0050 : Investigation of the Effects of Long-Duration Exposure on Active Optical System Components, Tray E05 The postflight photograph was taken in SAEF II at KSC after the experiment tray was removed from the LDEF and the sun screens removed. The Active Optical System Component Experiment (S0050) contained 136 test specimen located in a six (6) inch deep LDEF peripheral experiment tray. The complement of specimen included optical and electro-optical components, glasses and samples of various surface finishes. The experiment tray was divided into six sections, each consisting of a 1/4 inch thick chromic anodized aluminum base plate and a 1/16th inch thick aluminum hat shaped structure for mounting the test specimen. The test specimen were typically placed in fiberglass-epoxy retainer strip assemblies prior to installation on the hat shaped mounting structure. Five of the six sections were covered by a 1/8 inch thick anodized aluminum sun screen with openings that allowed 56 percent transmission over the central region. Two sub-experiments, The Optical Materials and UV Detectors Experiment (S0050-01) consist of 15 optical windows, filters and detectors and occupies one of the trays six sub-sections and The Optical Substrates and Coatings Experiment (S0050-02 ) that includes 12 substrates and coatings and two secondary experiments,The Holographic Data Storage Experiment (AO044) consisting of four crystals of lithium niobate and ThePyroelectric Infrared Detectors Experiment (AO135) with twenty detectors, are also mounted in the integrated tray. The experiment structure was assembled with non-magnetic stainless steel fasteners. The experiment hardware appears to be intact with no apparent damage. A brown discoloration is clearly visible on the tray flanges. The location of experiment test specimen and their mountings are shown in this photograph. The fiberglass-epoxy mounting strip colors vary from the typical greenish-gray to a slate gray in

  10. Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

    2006-01-01

    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

  11. Optical activity of transparent polymer layers characterized by spectral means

    NASA Astrophysics Data System (ADS)

    Cosutchi, Andreea Irina; Dimitriu, Dan Gheorghe; Zelinschi, Carmen Beatrice; Breaban, Iuliana; Dorohoi, Dana Ortansa

    2015-06-01

    The method based on the channeled spectrum, validated for inorganic optical active layers, is used now to determine the optical activity of some transparent polymer solutions in different solvents. The circular birefringence, the dispersion parameter and the specific rotation were estimated in the visible range by using the measurements of wavelengths in the channeled spectra of Hydroxypropyl cellulose in water, methanol and acetic acid. The experiments showed the specific rotation dependence on the polymer concentration and also on the solvent nature. The decrease of the specific rotation in the visible range with the increase in wavelength was evidenced. The method has some advantages as the rapidity of the experiments and the large spectral range in which it can be applied. One disadvantage is the fact that the channeled spectrum does not allow to establish the rotation sense of the electric field intensity.

  12. Subtractive 3D Printing of Optically Active Diamond Structures

    NASA Astrophysics Data System (ADS)

    Martin, Aiden A.; Toth, Milos; Aharonovich, Igor

    2014-05-01

    Controlled fabrication of semiconductor nanostructures is an essential step in engineering of high performance photonic and optoelectronic devices. Diamond in particular has recently attracted considerable attention as a promising platform for quantum technologies, photonics and high resolution sensing applications. Here we demonstrate the fabrication of optically active, functional diamond structures using gas-mediated electron beam induced etching (EBIE). The technique achieves dry chemical etching at room temperature through the dissociation of surface-adsorbed H2O molecules by energetic electrons in a water vapor environment. Parallel processing is possible by electron flood exposure and the use of an etch mask, while high resolution, mask-free, iterative editing is demonstrated by direct write etching of inclined facets of diamond microparticles. The realized structures demonstrate the potential of EBIE for the fabrication of optically active structures in diamond.

  13. INFRARED AND RAMAN VIBRATIONAL OPTICAL ACTIVITY: Theoretical and Experimental Aspects

    NASA Astrophysics Data System (ADS)

    Nafie, Laurence A.

    1997-10-01

    Advances in the field of vibrational optical activity (VOA) are reviewed over the past decade. Topics are surveyed with an emphasis on the theoretical and instrumental progress in both vibrational circular dichroism (VCD) and Raman optical activity (ROA). Applications of VOA to stereochemical and biological problems are reviewed, with a bias toward new kinds of experiments made possible by theoretical and instrumental advances. In the field of VCD, the most notable advances have taken place in the quality and size of ab initio calculations of VOA intensities and in the quality of step-scan Fourier transform instrumentation. For ROA, the most dramatic progress has occurred in the areas of theoretical formulation and high-throughput instrumentation. Applications of VOA now include all major classes of biological and pharmaceutical molecules. VOA's importance as a diagnostic tool will likely grow as the control of molecular chirality increases in research and industrial areas.

  14. Diamagnetic Raman Optical Activity of Chlorine, Bromine, and Iodine Gases.

    PubMed

    Šebestík, Jaroslav; Kapitán, Josef; Pačes, Ondřej; Bouř, Petr

    2016-03-01

    Magnetic Raman optical activity of gases provides unique information about their electric and magnetic properties. Magnetic Raman optical activity has recently been observed in a paramagnetic gas (Angew. Chem. Int. Ed. 2012, 51, 11058; Angew. Chem. 2012, 124, 11220). In diamagnetic molecules, it has been considered too weak to be measurable. However, in chlorine, bromine and iodine vapors, we could detect a significant signal as well. Zeeman splitting of electronic ground-state energy levels cannot rationalize the observed circular intensity difference (CID) values of about 10(-4). These are explicable by participation of paramagnetic excited electronic states. Then a simple model including one electronic excited state provides reasonable spectral intensities. The results suggest that this kind of scattering by diamagnetic molecules is a general event observable under resonance conditions. The phenomenon sheds new light on the role of excited states in the Raman scattering, and may be used to probe molecular geometry and electronic structure.

  15. Ray-tracing as a tool for efficient specification of beamline optical components

    NASA Astrophysics Data System (ADS)

    Pedreira, P.; Sics, I.; Llonch, M.; Ladrera, J.; Ribó, Ll.; Colldelram, C.; Nicolas, J.

    2016-09-01

    We propose a method to determine the required performances of the positioning mechanics of the optical elements of a beamline. Generally, when designing and specifying a beamline, one assumes that the position and orientations of the optical elements should be aligned to its ideal position. For this, one would generally require six degrees of freedom per optical element. However, this number is reduced due to symmetries (e.g. a flat mirror does not care about yaw). Generally, one ends up by motorizing many axes, with high resolution and a large motion range. On the other hand, the diagnostics available at a beamline provide much less variables than the available motions. Moreover, the actual parameters that one wants to optimize are reduced to a very few. These are basically, spot size and size at the sample, flux, and spectral resolution. The result is that many configurations of the beamline are actually equivalent, and therefore indistinguishable from the ideal alignment in terms of performance.We propose a method in which the effect of misalignment of each one of the degrees of freedom of the beamline is scanned by ray tracing. This allows building a linear system in which one can identify and select the best set of motions to control the relevant parameters of the beam. Once the model is built it provides the required optical pseudomotors as well as the requirements in alignment and manufacturing, for all the motions, as well as the range, resolution and repeatability of the motorized axes.

  16. Demonstrating Optical Activity Using an iPad

    ERIC Educational Resources Information Center

    Schwartz, Pauline M.; Lepore, Dante M.; Morneau, Brandy N.; Barratt, Carl

    2011-01-01

    Optical activity using an iPad as a source of polarized light is demonstrated. A sample crystal or solution can be placed on the iPad running a white screen app. The sample is viewed through a polarized filter that can be rotated. This setup can be used in the laboratory or with a document camera to easily project in a large lecture hall.…

  17. Final Report: Imaging of Buried Nanoscale Optically Active Materials

    SciTech Connect

    Appelbaum, Ian

    2011-07-05

    This is a final report covering work done at University of Maryland to develop a Ballistic Electron Emission Luminescence (BEEL) microscope. This technique was intended to examine the carrier transport and photon emission in deeply buried optically-active layers and thereby provide a means for materials science to unmask the detailed consequences of experimentally controllable growth parameters, such as quantum dot size, statistics and orientation, and defect density and charge recombination pathways.

  18. Active optics control of VST telescope secondary mirror.

    PubMed

    Schipani, Pietro; D'Orsi, Sergio; Fierro, Davide; Marty, Laurent

    2010-06-01

    In telescopes based on active optics, defocus and coma are usually compensated for by secondary mirror movements. They are performed at the Very Large Telescope Survey Telescope (VST) with a hexapod--a parallel robot with six degrees of freedom positioning capability. We describe the application of the two-mirror telescope theory to the VST case and the solutions adopted for the hexapod control. We present the results of performance and reliability tests performed both in the laboratory and at the telescope.

  19. 76 FR 66750 - Certain Projectors With Controlled-Angle Optical Retarders, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ..., components thereof, and products containing same. The complaint names as respondents Sony Corporation of Japan; Sony Corporation of America of New York, NY; and Sony Electronics Inc. of San Diego, CA....

  20. Gamma-radiation-induced degradation of actively pumped single-mode ytterbium-doped optical fibers

    NASA Astrophysics Data System (ADS)

    Singleton, B.; Petrosky, J.; Pochet, M.; Usechak, N. G.; Francis, S. A.

    2014-03-01

    The integration of optical components into the digital processing units of satellite subsystems has the potential to remove interconnect bottlenecks inherent to the volume, mass, complexity, reliability and crosstalk issues of copper-based interconnects. Assuming on-board high-bandwidth communications will utilize passive optical fibers as a communication channel, this work investigates the impact of gamma irradiation from a Co-60 source on both passive optical fibers and ytterbium-doped single-mode fibers operated as amplifiers for a 1060-nm light source. Standard optical patch cables were evaluated along with active Yb-doped double-clad fibers. Varied exposure times and signal transmission wavelengths were used to investigate the degradation of the fibers exposed to total doses above 100 krad (Si). The effect on the amplified signal gain was studied for the Yb-doped fibers. The increased attenuation in the fibers across a broad wavelength range in response to multiple levels of gamma radiation exposure along with the effect that the increased attenuation has on the actively pumped Yb-doped fiber amplifier performance, is discussed.

  1. INHIBITION OF RETINOID ACTIVITY BY COMPONENTS OF A PAPER MILL EFFLUENT

    EPA Science Inventory

    A cell line stably transfected with reporter genes activated by retinoic acid was used to test a paper mill effluent for the presence of retinoids or components that interfere with retinoic acid-stimulated gene transcription.

  2. Nanoparticles as contrast-enhancing agents in optical coherence tomography imaging of the structural components of skin: Quantitative evaluation

    SciTech Connect

    Kirillin, M Yu; Agrba, P D; Kamenskii, V A; Sirotkina, M A; Shiryamova, M V; Zagainova, E V

    2010-08-27

    This work examines the effect of gold nanoshells and titania nanoparticles on the imaging contrast of structural components of skin in optical coherence tomography (OCT). Experimental data are compared to Monte Carlo (MC) simulation results. In experiments with pig skin in vivo, the epidermis - dermis contrast is improved from 0.78 {+-} 0.03 to 0.92 {+-} 0.04 by gold nanoshells applied to the skin surface and from 0.78 {+-} 0.03 to 0.86 {+-} 0.04 by titania nanoparticles. The contrast of glands is enhanced by titania from 0.68 {+-} 0.12 to 0.84 {+-} 0.07. The highest contrast is reached 120 - 150 min after applying gold nanoshells and 160 - 200 min after applying titania. According to the MC simulation results, the contrast of inclusions increases from zero to 0.85 and 0.65, respectively. (optical tomography)

  3. A Methodology for Modeling the Flow of Military Personnel Across Air Force Active and Reserve Components

    DTIC Science & Technology

    2016-01-01

    C O R P O R A T I O N Research Report A Methodology for Modeling the Flow of Military Personnel Across Air Force Active and Reserve Components...Lisa M. Harrington, James H . Bigelow, Alexander Rothenberg, James Pita, Paul D. Emslie Limited Print and Electronic Distribution Rights This document...of a particular component—whether active , guard, or reserve. As a result, when personnel policies are implemented in one component, little is known

  4. Optical bistability and multistability in an active interferometer.

    PubMed

    Ohtsubo, J; Liu, Y

    1990-07-01

    Optoelectronic hybrid bistability and multistability in an active interferometer using a laser diode are demonstrated experimentally. The active laser-diode interferometer is composed of a Twyman-Green interferometer with an electronic feedback circuit. By feeding back the interferometer output together with an external light input through a detector to control thelaser-diode injection current, the optical bistable and multistable states of the output power from the laser diode are observed. Bistable operation does not require cutoff or saturation in the amplifier. The theoretical background of the phenomena is discussed.

  5. Numerical simulation research and applications on scattering imaging of surface defects on optical components

    NASA Astrophysics Data System (ADS)

    Chai, Huiting; Cao, Pin; Yang, Yongying; Li, Chen; Wu, Fan; Zhang, Yihui; Xiong, Haoliang; Zhou, Lin; Yan, Kai; Xu, Wenlin; Liu, Dong; Bai, Jian; Shen, Yibing

    2016-11-01

    The principle of microscopic scattering dark-field imaging is adopted in surface defects evaluation system (SDES) for large fine optics. However, since defects are of micron or submicron scale, scattering imaging cannot be described simply by geometrical imaging. In this paper, the simulation model of the electromagnetic field in defect scattering imaging is established on the basis of Finite-Difference Time-Domain (FDTD) method to study the scattering imaging properties of rectangular and triangular defects with different sizes by simulation. The criterion board with scribed lines and dots on it is used to carry out experiments scattering imaging and obtain grayscale value distributions of scattering dark-field images of scribed lines. The experiment results are in good agreement with the simulation results. Based on the above analysis, defect width extraction width is preliminary discussed. Findings in this paper could provide theoretical references for defect calibration in optical fabrication and inspection.

  6. Fabrication of optical components for the ultraviolet spectrometer and polarimeter on the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Spencer, R. S.; Bergen, G. J.; Fleetwood, C. M.; Herzig, H.; Miner, L.; Rice, S. H.; Smigocki, E.; Woodgate, B. E.; Zaniewski, J. J.

    1985-01-01

    The Solar Maximum Mission (SMM) satellite was launched in February 1980 into a 573 km high circular orbit. It contains X-ray, UV, and optical instruments for the simultaneous observation of solar flares. The ultraviolet spectrometer and polarimeter (UVSP) is one of these instruments. The objectives of the UVSP require the employment of a raster scanning telescope to study the spatial dynamics of flares, the use of a high resolution spectrometer to select and scan spectral lines for temperature and velocity diagnostics, and the utilization of a polarimeter to measure magnetic fields in the solar transition zone. The present paper has the objective to provide a description of the optical fabrication techniques developed for the instrument. Attention is given to telescope mirrors, metering rods, the Ebert mirror, grating blanks, a four-mirror polarizer, beam splitter assemblies, beam splitter fabrication, deflector mirrors, and shipping containers.

  7. Advanced matrix-based algorithm for ion-beam milling of optical components

    NASA Astrophysics Data System (ADS)

    Carnal, Charles L.; Egert, Charles M.; Hylton, Kathy W.

    1992-12-01

    Control of an ion beam for milling optical surfaces is a nontrivial problem in two-dimensional deconvolution. The ion milling operation is performed by moving an ion beam gun through a grid of points over the surface of an optical workpiece. The control problem is to determine the amount of time to dwell at each point in the grid to obtain a desired surface profile. This research treats the problem in linear algebra terms. The required dwell times are the solutions to a large, sparse system of linear equations. Traditional factorization methods such as Gaussian elimination cannot be used because the linear equations are severely ill conditioned. Theoretically, a least-squares solution to this problem exists. Practical approaches to finding a minimal least-squares solution are discussed.

  8. Optical Components for the Fluorescence Detectors of the Pierre Auger Experiment

    NASA Astrophysics Data System (ADS)

    Klages, H. O.; Kleinfeller, H.; Bluemer, E.; Bollmann, R.; Gumbsheimer, J.

    The international Pierre Auger collaboration has started the commissioning of an engineering array on its southern hemisphere experiment site in the province of Mendoza, Argentina. It contains two prototype uorescence telescopes in-side a new building on a hill overlooking the first part of the ground array of particle detectors. These telescopes are designed following a Schmidt layout with large spherical mirrors and a diaphragm system for the reduction of coma aberration. The optical resolution of about 0.5 degree is dominated by spherical aberration. Diamond milled mirror segments machined from aluminium alloy sheets were developed and are used in the prototypes together with glass mirror elements. These aluminium mirrors are very robust and of good optical qual-ity. To increase the signal/noise of the telescopes an annular shaped Schmidt corrector lens is implemented in the diaphragm. The ring enlarges the effective acceptance of the telescopes by about 100corrector ring are made from special PMMA with high UV transmittance. Details of the mirror and lens production are presented. Optical tests and properties of the elements will be discussed.

  9. Bioactive Components of Chinese Propolis Water Extract on Antitumor Activity and Quality Control

    PubMed Central

    Xuan, Hongzhuan; Wang, Yuehua; Li, Aifeng; Fu, Chongluo; Wang, Yuanjun; Peng, Wenjun

    2016-01-01

    To understand the material basis of antitumor activity of Chinese propolis water extract (CPWE), we developed a simple and efficient method using macroporous absorptive resin coupled with preparative high performance liquid chromatography and separated and purified eleven chemical components (caffeic acid, ferulic acid, isoferulic acid, 3,4-dimethoxycinnamic acid, pinobanksin, caffeic acid benzyl ester, caffeic acid phenethyl ester, apigenin, pinocembrin, chrysin, and galangin) from CPWE; then we tested the antitumor activities of these eleven components using different human tumor cell lines (MCF-7, MDA-MB-231, HeLa, and A549). Furthermore, cell migration, procaspase 3 level, and reactive oxygen species (ROS) of effective components from CPWE were investigated. Our data showed that antitumor activities of the eleven components from CPWE were different from each other. CPWE and its effective components induced apoptosis by inhibiting tumor cell migration, activating caspase 3, and promoting ROS production. It can be deduced that the antitumor effects of propolis did not depend on a single component, and there must exist “bioactive components,” which also provides a new idea for Chinese propolis quality control. PMID:27123037

  10. Synthesis, absolute configuration and conformation of optically active 1,2-homoheptafulvalene.

    PubMed

    Ito, Shunji; Kurita, Mitsuhiro; Kikuchi, Sigeru; Asao, Toyonobu; Ito, Yoshitora; Oda, Masaji; Sotokawa, Hideo; Tajiri, Akio; Morita, Noboru

    2003-02-07

    An optically active 1,2-homoheptafulvalene was successfully synthesized and subjected to spectroscopic investigation. The cycloaddition of the optically active hydrocarbon with tetracyanoethylene (TCNE) and 4-phenyl-1,2,4-triazoline-3,5-dione(PTAD) gave a [4 + 2] cycloadduct and a mixture of [8 + 2] cycloadducts, respectively, which are both optically active.

  11. Electrically conductive and optically active porous silicon nanowires.

    PubMed

    Qu, Yongquan; Liao, Lei; Li, Yujing; Zhang, Hua; Huang, Yu; Duan, Xiangfeng

    2009-12-01

    We report the synthesis of vertical silicon nanowire array through a two-step metal-assisted chemical etching of highly doped n-type silicon (100) wafers in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of the as-grown silicon nanowires is tunable from solid nonporous nanowires, nonporous/nanoporous core/shell nanowires, to entirely nanoporous nanowires by controlling the hydrogen peroxide concentration in the etching solution. The porous silicon nanowires retain the single crystalline structure and crystallographic orientation of the starting silicon wafer and are electrically conductive and optically active with visible photoluminescence. The combination of electronic and optical properties in the porous silicon nanowires may provide a platform for novel optoelectronic devices for energy harvesting, conversion, and biosensing.

  12. Experiments on the abiotic amplification of optical activity

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Blair, N. E.; Dirbas, F. M.

    1981-01-01

    Experiments concerning the physical mechanisms for the abiotic generation and chemical mechanisms for the amplification of optical activity in biological compounds are reviewed. Attention is given to experiments involving the determination of the differential adsorption of racemic amino acids on d- and l-quartz, the asymmetric photolysis of racemic amino acids by circularly polarized light, and the asymmetric radiolysis of solid amino acids by longitudinally polarized electrons, and the enantiomeric enrichments thus obtained are noted. Further experiments on the amplification of the chirality in the polymerization of D, L-amino acid mixtures and the hydrolysis of D-, L-, and D, L-polypeptides are discussed. It is suggested that a repetitive cycle of partial polymerization-hydrolyses may account for the abiotic genesis of optically enriched polypeptides on the primitive earth.

  13. Active-passive calibration of optical tweezers in viscoelastic media.

    PubMed

    Fischer, Mario; Richardson, Andrew C; Reihani, S Nader S; Oddershede, Lene B; Berg-Sørensen, Kirstine

    2010-01-01

    In order to use optical tweezers as a force measuring tool inside a viscoelastic medium such as the cytoplasm of a living cell, it is crucial to perform an exact force calibration within the complex medium. This is a nontrivial task, as many of the physical characteristics of the medium and probe, e.g., viscosity, elasticity, shape, and density, are often unknown. Here, we suggest how to calibrate single beam optical tweezers in a complex viscoelastic environment. At the same time, we determine viscoelastic characteristics such as friction retardation spectrum and elastic moduli of the medium. We apply and test a method suggested [M. Fischer and K. Berg-Sørensen, J. Opt. A, Pure Appl. Opt. 9, S239 (2007)], a method which combines passive and active measurements. The method is demonstrated in a simple viscous medium, water, and in a solution of entangled F-actin without cross-linkers.

  14. Optical Assessment of Caries Lesion Structure and Activity

    NASA Astrophysics Data System (ADS)

    Lee, Robert Chulsung

    New, more sophisticated diagnostic tools are needed for the detection and characterization of caries lesions in the early stages of development. It is not sufficient to simply detect caries lesions, methods are needed to assess the activity of the lesion and determine if chemical or surgical intervention is needed. Previous studies have demonstrated that polarization sensitive optical coherence tomography (PS-OCT) can be used to nondestructively image the subsurface lesion structure and measure the thickness of the highly mineralized surface zone. Other studies have demonstrated that the rate of dehydration can be correlated with the lesion activity and that the rate can be measured using optical methods. The main objective of this work was to test the hypothesis that optical methods can be used to assess lesion activity on tooth coronal and root surfaces. Simulated caries models were used to develop and validate an algorithm for detecting and measuring the highly mineralized surface layer using PS-OCT. This work confirmed that the algorithm was capable of estimating the thickness of the highly mineralized surface layer with high accuracy. Near-infrared (NIR) reflectance and thermal imaging methods were used to assess activity of caries lesions by measuring the state of lesion hydration. NIR reflectance imaging performed the best for artificial enamel and natural coronal caries lesion samples, particularly at wavelengths coincident with the water absorption band at 1460-nm. However, thermal imaging performed the best for artificial dentin and natural root caries lesion samples. These novel optical methods outperformed the conventional methods (ICDAS II) in accurately assessing lesion activity of natural coronal and root caries lesions. Infrared-based imaging methods have shown potential for in-vivo applications to objectively assess caries lesion activity in a single examination. It is likely that if future clinical trials are a success, this novel imaging

  15. Active Optics for a Segmented Primary Mirror on a Deep-Space Optical Receiver Antenna (DSORA)

    NASA Technical Reports Server (NTRS)

    Clymer, B. D.

    1990-01-01

    This article investigates the active optical control of segments in the primary mirror to correct for wavefront errors in the Deep-Space Optical Receiver Antenna (DSORA). Although an exact assessment of improvement in signal blur radius cannot be made until a more detailed preliminary structural design is completed, analytical tools are identified for a time when such designs become available. A brief survey of appropriate sensing approaches is given. Since the choice of control algorithm and architecture depends on the particular sensing system used, typical control systems, estimated complexities, and the type of equipment required are discussed. Once specific sensor and actuator systems are chosen, the overall control system can be optimized using methods identified in the literature.

  16. Variation in contents of main active components and antioxidant activity in leaves of different pigeon pea cultivars during growth.

    PubMed

    Wei, Zuo-Fu; Jin, Shuang; Luo, Meng; Pan, You-Zhi; Li, Ting-Ting; Qi, Xiao-Lin; Efferth, Thomas; Fu, Yu-Jie; Zu, Yuan-Gang

    2013-10-23

    Pigeon pea is an important and multiuse grain legume crop, and its leaves are a very valuable natural resource. To obtain a high-quality biological resource, it is necessary to choose the excellent cultivar and determine the appropriate harvest time. In this study, the variation in contents of main active components and antioxidant activity in leaves of six pigeon pea cultivars during growth were investigated. The level of each individual active component significantly varied during growth, but with a different pattern, and this variation was different among cultivars. Flavonoid glycosides orientin, vitexin, and apigenin-6,8-di-C-α-L-arabinopyranoside showed two peak values at mid-late and final stages of growth in most cases. Pinostrobin chalcone, longistyline C, and cajaninstilbene acid showed remarkablely higher values at the mid-late stage of growth than at other stages. Pinostrobin had an extremely different variation pattern compared to other active components. Its content was the highest at the earlier stage of growth. Principal component analysis (PCA) revealed that vitexin and apigenin-6,8-di-C-α-L-arabinopyranoside were mainly responsible for distinguishing cultivars analyzed. In a comprehensive consideration, the leaves should preferentially be harvested at the 135th day after sowing when the level of active components and antioxidant activity reached higher values. Cultivars ICP 13092, ICPL 87091, and ICPL 96053 were considered to be excellent cultivars with high antioxidant activity. Our findings can provide valuable information for producing a high-quality pigeon pea resource.

  17. Fiber Optic Sensor Components and Systems for Smart Materials and Structures

    NASA Technical Reports Server (NTRS)

    Lyons, R.

    1999-01-01

    The general objective of the funded research effort has been the development of discrete and distributed fiber sensors and fiber optic centered opto-electronic networks for the intelligent monitoring of phenomena in various aerospace structures related to NASA Marshall specific applications. In particular, we have proposed and have been developing technologies that we believe to be readily transferrable and which involve new fabrication techniques. The associated sensors developed can be incorporated into the matrix or on the surfaces of structures for the purpose of sensing stress, strain, temperature-both low and high, pressure field variations, phase changes, and the presence of various chemical constituents.

  18. Photochemical welding of silica optical components to silicone rubber by F2 laser

    NASA Astrophysics Data System (ADS)

    Okoshi, M.; Li, J.; Herman, P. R.; Inoue, N.

    2007-04-01

    Photochemical welding of fused silica glass to silicone rubber has been demonstrated by 157-nm F2 laser-induced photochemical modification of the silicone surface in contact with the glass. Fused-silica coverslips (150 m thick), silica optical fibres (125 µm diameter), and 2.9- µm diameter microspheres were successfully welded onto 2-mm-thick silicone rubber by irradiating the silicone surface through the partially transparent glasses. Sufficient photochemical conversion for strong welding was provided by multiple exposures of tens to thousands of pulses in a narrow optimized fluence window near ~6-mJ/cm2 per pulse.

  19. Heritability of ocular component dimensions in mice phenotyped using depth-enhanced swept source optical coherence tomography.

    PubMed

    Wang, Ling; Považay, Boris; Chen, Yen Po; Hofer, Bernd; Drexler, Wolfgang; Guggenheim, Jeremy A

    2011-10-01

    The range of genetic and genomic resources available makes the mouse a powerful model for the genetic dissection of complex traits. Because accurate, high-throughput phenotypic characterisation is crucial to the success of such endeavours, we recently developed an optical coherence tomography (OCT) system with extended depth range scanning capability for measuring ocular component dimensions in mice. In order to test whether the accuracy and reproducibility of our OCT system was sufficient for gene mapping studies, we carried out an experiment designed to estimate the heritability of mouse ocular component dimensions. High-resolution, two dimensional tomograms were obtained for both eyes of 11 pairs of 8 week-old outbred MF1 mice. Subsequently, images were obtained when their offspring were aged 8 weeks. Biometric data were extracted after image segmentation, reconstruction of the geometric shape of each surface, and calculation of intraocular distances. The repeatability of measurements was evaluated for 12 mice scanned on consecutive days. Heritability estimates were calculated using variance components analysis. Sets of tomograms took ∼2 s to acquire. Biometric data could be obtained for 98% of the 130 eyes scanned. The 95% limits of repeatability ranged from ±6 to ±16 μm for the axial ocular component dimensions. The heritability of the axial ocular components was 0.6-0.8, except for corneal thickness, which had a heritability not significantly different from zero. In conclusion, axial ocular component dimensions are highly heritable in mice, as they are in humans. OCT with extended depth range scanning can be used to rapidly phenotype individual mice with sufficient accuracy and precision to permit gene mapping studies.

  20. All-optical video-image encryption with enforced security level using independent component analysis

    NASA Astrophysics Data System (ADS)

    Alfalou, A.; Mansour, A.

    2007-10-01

    In the last two decades, wireless communications have been introduced in various applications. However, the transmitted data can be, at any moment, intercepted by non-authorized people. That could explain why data encryption and secure transmission have gained enormous popularity. In order to secure data transmission, we should pay attention to two aspects: transmission rate and encryption security level. In this paper, we address these two aspects by proposing a new video-image transmission scheme. This new system consists in using the advantage of optical high transmission rate and some powerful signal processing tools to secure the transmitted data. The main idea of our approach is to secure transmitted information at two levels: at the classical level by using an adaptation of standard optical techniques and at a second level (spatial diversity) by using independent transmitters. In the second level, a hacker would need to intercept not only one channel but all of them in order to retrieve information. At the receiver, we can easily apply ICA algorithms to decrypt the received signals and retrieve information.

  1. Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials

    PubMed Central

    Naik, Gururaj V.; Saha, Bivas; Liu, Jing; Saber, Sammy M.; Stach, Eric A.; Irudayaraj, Joseph M. K.; Sands, Timothy D.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2014-01-01

    Titanium nitride (TiN) is a plasmonic material having optical properties resembling gold. Unlike gold, however, TiN is complementary metal oxide semiconductor-compatible, mechanically strong, and thermally stable at higher temperatures. Additionally, TiN exhibits low-index surfaces with surface energies that are lower than those of the noble metals which facilitates the growth of smooth, ultrathin crystalline films. Such films are crucial in constructing low-loss, high-performance plasmonic and metamaterial devices including hyperbolic metamaterials (HMMs). HMMs have been shown to exhibit exotic optical properties, including extremely high broadband photonic densities of states (PDOS), which are useful in quantum plasmonic applications. However, the extent to which the exotic properties of HMMs can be realized has been seriously limited by fabrication constraints and material properties. Here, we address these issues by realizing an epitaxial superlattice as an HMM. The superlattice consists of ultrasmooth layers as thin as 5 nm and exhibits sharp interfaces which are essential for high-quality HMM devices. Our study reveals that such a TiN-based superlattice HMM provides a higher PDOS enhancement than gold- or silver-based HMMs. PMID:24821762

  2. Using Indices of Fidelity to Intervention Core Components to Identify Program Active Ingredients

    ERIC Educational Resources Information Center

    Abry, Tashia; Hulleman, Chris S.; Rimm-Kaufman, Sara E.

    2015-01-01

    Identifying the active ingredients of an intervention--intervention-specific components serving as key levers of change--is crucial for unpacking the intervention black box. Measures of intervention fidelity can be used to identify specific active ingredients, yet such applications are rare. We illustrate how fidelity measures can be used to…

  3. Research on the influence of the disturbance characteristics of the flywheel components on a high resolution optical satellite

    NASA Astrophysics Data System (ADS)

    Li, Lin; Zhou, Sitong; Kong, Lin; Xu, Jing; Wang, Dong

    2016-10-01

    In order to study the influence of flywheel micro vibration on the imaging of a high resolution optical satellite, the flywheel components disturbance model was established, and the flywheel components were tested. The analysis of the measured data shows that there is a series of harmonic at the first order frequency 50Hz, and a series of peaks around the 190Hz and 280Hz. The integration of the angular displacement response that was obtained by exerting the unit sine excitation on the satellite and the flywheel measured disturbance data shows that there is a lot of angular displacement harmonic response frequency in 40Hz 80Hz and 230Hz 280Hz, the maximum angular displacement resonance response amplitude is 2.739" along the vertical direction, the angular displacement resonance response amplitude is 2.617" at 245Hz and 2600rpm, and 0.5" magnitude harmonic amplitude around 245Hz. Flywheel micro vibration has a great influence on the high resolution optical satellite imaging quality. Suggestions on further research on micro vibration of flywheel are proposed.

  4. Independent component feature-based human activity recognition via Linear Discriminant Analysis and Hidden Markov Model.

    PubMed

    Uddin, Md; Lee, J J; Kim, T S

    2008-01-01

    In proactive computing, human activity recognition from image sequences is an active research area. This paper presents a novel approach of human activity recognition based on Linear Discriminant Analysis (LDA) of Independent Component (IC) features from shape information. With extracted features, Hidden Markov Model (HMM) is applied for training and recognition. The recognition performance using LDA of IC features has been compared to other approaches including Principle Component Analysis (PCA), LDA of PC, and ICA. The preliminary results show much improved performance in the recognition rate with our proposed method.

  5. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components.

    PubMed

    Weeratunga, Prasanna; Uddin, Md Bashir; Kim, Myun Soo; Lee, Byeong-Hoon; Kim, Tae-Hwan; Yoon, Ji-Eun; Ma, Jin Yeul; Kim, Hongik; Lee, Jong-Soo

    2016-01-01

    Angelica tenuissima Nakai is a widely used commodity in traditional medicine. Nevertheless, no study has been conducted on the antiviral and immune-modulatory properties of an aqueous extract of Angelica tenuissima Nakai. In the present study, we evaluated the antiviral activities and the mechanism of action of an aqueous extract of Angelica tenuissima Nakai both in vitro and in vivo. In vitro, an effective dose of Angelica tenuissima Nakai markedly inhibited the replication of Influenza A virus (PR8), Vesicular stomatitis virus (VSV), Herpes simplex virus (HSV), Coxsackie virus, and Enterovirus (EV-71) on epithelial (HEK293T/HeLa) and immune (RAW264.7) cells. Such inhibition can be described by the induction of the antiviral state in cells by antiviral, IFNrelated gene induction and secretion of IFNs and pro-inflammatory cytokines. In vivo, Angelica tenuissima Nakai treated BALB/c mice displayed higher survivability and lower lung viral titers when challenged with lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3, and H9N2). We also found that Angelica tenuissima Nakai can induce the secretion of IL-6, IFN-λ, and local IgA in bronchoalveolar lavage fluid (BALF) of Angelica tenuissima Nakai treated mice, which correlating with the observed prophylactic effects. In HPLC analysis, we found the presence of several compounds in the aqueous fraction and among them; we evaluated antiviral properties of ferulic acid. Therefore, an extract of Angelica tenuissima Nakai and its components, including ferulic acid, play roles as immunomodulators and may be potential candidates for novel anti-viral/anti-influenza agents.

  6. The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change

    PubMed Central

    Yang, Hongli; Ren, Ruojin; Lockwood, Howard; Williams, Galen; Libertiaux, Vincent; Downs, Crawford; Gardiner, Stuart K.; Burgoyne, Claude F.

    2015-01-01

    Purpose To characterize optic nerve head (ONH) connective tissue change within 21 monkey experimental glaucoma (EG) eyes, so as to identify its principal components. Methods Animals were imaged three to five times at baseline then every 2 weeks following chronic unilateral IOP elevation, and euthanized early through end-stage confocal scanning laser tomographic change. Optic nerve heads were serial-sectioned, three-dimensionally (3D) reconstructed, delineated, and quantified. Overall EG versus control eye differences were assessed by general estimating equations (GEE). Significant, animal-specific, EG eye change was required to exceed the maximum physiologic intereye differences in six healthy animals. Results Overall EG eye change was significant (P < 0.0026) and animal-specific EG eye change most frequent, for five phenomena (number of EG eyes and range of animal-specific change): posterior laminar deformation (21, −29 to −437 μm), laminar thickening (11, 20–73 μm) and thinning (3, −23 to −31 μm), scleral canal expansion (17, 20–139 μm), outward anterior (16, −16 to −124 μm) and posterior (17, −22 to −279 μm) laminar insertion migration, and peripapillary scleral bowing (11, 21–77 μm). Experimental glaucoma versus control eye laminar thickness differences were bimodal in behavior, being thickened in most EG eyes demonstrating the least deformation and less thickened or thinned in most EG eyes demonstrating the greatest deformation. Conclusions Our postmortem studies retrospectively identify five connective tissue components of ONH “cupping” in monkey EG which serve as targets for longitudinally staging and phenotyping ONH connective tissue alteration within all forms of monkey and human optic neuropathy. PMID:26641545

  7. (Bio)hybrid materials based on optically active particles

    NASA Astrophysics Data System (ADS)

    Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg

    2014-03-01

    In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.

  8. Fiber optical measurements of electrical activity in canine ventricular preparations

    NASA Astrophysics Data System (ADS)

    Squires, Amgad; Luther, Gisa E.; Enyeart, Michael; Gilmour, Robert F.; Bodenschatz, Eberhard; Luther, Stefan

    2006-03-01

    Ventricular fibrillation (VF) is a cardiac arrhythmia that kills over 300,000 people every year in the US alone, yet efforts at finding a cure have been stymied by our incomplete information about patterns of electrical activity in the whole heart. As an excitable medium, the heart is a pattern forming system; but only a very limited subset of patterns is compatible with life. In particular, spiral waves have been associated with both tachycardia and VF, but their origin and spatial and temporal dynamics is not fully understood. We propose a novel measurement technique that combines optical mapping of the epicardial surface with data from intramural fiber optical probe arrays. The data obtained from the fiber optical probes is sparse in space but dense in time. The data processing is based on sequential data assimilation using an ensemble Kalman filter. The ensemble Kalman filter provides a numerically efficient (sub-) optimum state space estimate based on the available spatial and temporal observations. The feasibility of the method is demonstrated with numerical data and arterially perfused canine heart preparations.

  9. Using DFT Methods to Study Activators in Optical Materials

    DOE PAGES

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials.more » DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less

  10. Using DFT Methods to Study Activators in Optical Materials

    SciTech Connect

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials. DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.

  11. [Content and distribution of active components in cultivated and wild Taxus chinensis var. mairei plants].

    PubMed

    Yu, Shao-Shuai; Sun, Qi-Wu; Zhang, Xiao-Ping; Tian, Sheng-Ni; Bo, Pei-Lei

    2012-10-01

    Taxus chinensis var. mairei is an endemic and endangered plant species in China. The resources of T. chinensis var. mairei have been excessively exploited due to its anti-cancer potential, accordingly, the extant T. chinensis var. mairei population is decreasing. In this paper, ultrasonic extraction and HPLC were adopted to determine the contents of active components paclitaxel, 7-xylosyltaxol and cephalomannine in cultivated and wild T. chinensis var. mairei plants, with the content distribution of these components in different parts of the plants having grown for different years and at different slope aspects investigated. There existed obvious differences in the contents of these active components between cultivated and wild T. chinensis var. mairei plants. The paclitaxel content in the wild plants was about 0.78 times more than that in the cultivated plants, whereas the 7-xylosyltaxol and cephalomannine contents were slishtly higher in the cultivated plants. The differences in the three active components contents between different parts and tree canopies of the plants were notable, being higher in barks and upper tree canopies. Four-year old plants had comparatively higher contents of paclitaxel, 7-xylosyltaxol and cephalomannine (0.08, 0.91 and 0.32 mg x g(-1), respectively), and the plants growing at sunny slope had higher contents of the three active components, with significant differences in the paclitaxel and 7-xylosyltaxol contents and unapparent difference in the cephalomannine content of the plants at shady slope. It was suggested that the accumulation of the three active components in T. chinensis var. mairei plants were closely related to the sunshine conditions. To appropriately increase the sunshine during the artificial cultivation of T. chinensis var. mairei would be beneficial to the accumulation of the three active components in T. chinensis var. mairei plants.

  12. Entanglement generation between unstable optically active qubits without photodetectors

    SciTech Connect

    Matsuzaki, Yuichiro; Solinas, Paolo

    2011-09-15

    We propose a robust deterministic scheme to generate entanglement at high fidelity without the need for photodetectors even for quantum bits (qubits) with extremely poor optically active states. Our protocol employs stimulated Raman adiabatic passage for population transfer without actually exciting the system. Furthermore, it is found to be effective even if the environmental decoherence rate is of the same order of magnitude as the atom-photon coupling frequency. Our scheme has the potential to solve entanglement generation problems, e.g., in distributed quantum computing.

  13. Optically active polyelectrolyte multilayers as membranes for chiral separations.

    PubMed

    Rmaile, Hassan H; Schlenoff, Joseph B

    2003-06-04

    Ultrathin films of chiral polyelectrolyte complex, prepared by the multilayering process, exhibit selectivity in the membrane separations of optically active compounds, such as l- and d-ascorbic acid. The flux through these polyelectrolyte multilayers, PEMUs, is exceptionally high and may be controlled by the concentration of salt present in the permeating solutions. Both in-situ ATR-FTIR and chiral capillary electrochromatography indicate that flux selectivity is mainly kinetically controlled, stemming from a difference in diffusion rates of various enantiomers through PEMUs, rather than a difference in partitioning.

  14. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    NASA Technical Reports Server (NTRS)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  15. Calculation of optical second-harmonic susceptibilities and optical activity for crystals

    SciTech Connect

    Levine, Z.H.

    1994-12-31

    A new generation of nearly first-principles calculations predicts both the linear and second-harmonic susceptibilities for a variety of insulating crystals, including GaAs, GaP, AlAs, AlP, Se, {alpha}-quartz, and c-urea. The results are typically in agreement with experimental measurements. The calculations have been extended to optical activity, with somewhat less success to date. The theory, based on a simple self-energy correction to the local density approximation, and results are reviewed herein.

  16. Optical test bench for high precision metrology and alignment of zoom sub-assembly components

    NASA Astrophysics Data System (ADS)

    Leprêtre, F.; Levillain, E.; Wattellier, B.; Delage, P.; Brahmi, D.; Gascon, A.

    2013-09-01

    Thales Angénieux (TAGX) designs and manufactures zoom lens assemblies for cinema applications. These objectives are made of mobile lens assemblies. These need to be precisely characterized to detect alignment, polishing or glass index homogeneity errors, which amplitude may range to a few hundreds of nanometers. However these assemblies are highly aberrated with mainly spherical aberration (>30 μm PV). PHASICS and TAGX developed a solution based on the use of a PHASICS SID4HR wave front sensor. This is based on quadri-wave lateral shearing interferometry, a technology known for its high dynamic range. A 100-mm diameter He:Ne source illuminates the lens assembly entrance pupil. The transmitted wave front is then directly measured by the SID4- HR. The measured wave front (WFmeas) is then compared to a simulation from the lens sub-assembly optical design (WFdesign). We obtain a residual wave front error (WFmanufactured), which reveals lens imperfections due to its manufacturing. WFmeas=WFdesign+(WFEradius+WFEglass+WFEpolish)=WF design + WFmanufactured The optical test bench was designed so that this residual wave front is measured with a precision below 100 nm PV. The measurement of fast F-Number lenses (F/2) with aberrations up to 30 μm, with a precision of 100 nm PV was demonstrated. This bench detects mismatches in sub-assemblies before the final integration step in the zoom. Pre-alignment is also performed in order to overpass the mechanical tolerances. This facilitates the completed zoom alignment. In final, productivity gains are expected due to alignment and mounting time savings.

  17. Design of software and hardware components for a six-degrees of freedom optical position sensor

    SciTech Connect

    Garcia, F.N.

    1997-06-01

    This report summarizes the evaluation of a fully compatible and operational data acquisition system for a six-degrees of freedom optical sensor (SixDOF). The SixDOF, developed at Lawrence Livermore National Laboratory by Charles Vann, is capable of tracking an object`s position in all its six degrees of freedom without any datum specification by means of two reflective surfaces mounted on the object. To make the SixDOF operational and thus validate its underlying physics, a signal processing system has been designed so that information from the sensor is transferred accurately and efficiently to a computer. In addition, a six-degrees of freedom positioning stage has been built in efforts to calibrate the sensor in real time. A crucial design constraint is the necessity to build the complete data acquisition system so that it be small and most importantly portable. The prototype of the SixDOF system proved to be capable of crudely detecting changes in the position of an object in all six spatial degrees of freedom. An accuracy of around 0.5 mm is estimated presently even though the position of the two reflectors on the object is seen to significantly influence the accuracy of the sensor. The resolution of the sensor is not quite understood yet because of uncertainties in the actual spot size of the laser, however, field of the view has been seen to increase as the resolution decreases. The decoupling (calibration) of the sensor data proved to be rather successful although some coupling still exists. This coupling, however, is almost certain to come from the crudeness in the alignment of the optics within the sensor.

  18. Spatial Frequency Components of Images Modulate Neuronal Activity in Monkey Amygdala.

    PubMed

    Montes-Lourido, Pilar; Bermudez, M A; Romero, M C; Vicente, A F; Gonzalez, F

    2016-04-01

    Processing the spatial frequency components of an image is a crucial feature for visual perception, especially in recognition of faces. Here, we study the correlation between spatial frequency components of images of faces and neuronal activity in monkey amygdala while performing a visual recognition task. The frequency components of the images were analyzed using a fast Fourier transform for 40 spatial frequency ranges. We recorded 65 neurons showing statistically significant responses to at least one of the images used as a stimulus. A total of 37 of these neurons (n = 37) showed significant responses to at least three images, and in eight of them (8/37, 22%), we found a statistically significant correlation between neuron response and the modulus amplitude of at least one frequency range present in the images. Our results indicate that high spatial frequency and low spatial frequency components of images influence the activity of amygdala neurons.

  19. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  20. Active and Passive Coupled-Resonator Optical Waveguides

    NASA Astrophysics Data System (ADS)

    Poon, Joyce Kai See

    Coupled-Resonator Optical Waveguides (CROWs) are chains of resonators in which light propagates by virtue of the coupling between the resonators. The dispersive properties of these waveguides are controllable by the inter-resonator coupling and the geometry of the resonators. If the inter-resonator coupling is weak, light can be engineered to propagate slowly in these structures. The small group velocities possible in CROWs may enable applications in and technologies for optical delay lines, interferometers, buffers, nonlinear optics, and lasers. This thesis reports on achieving and controlling the optical delay in passive and active CROWs. Both theoretical and experimental results are presented. Transfer matrices, tight-binding models, and coupled-mode approaches are developed to analyze and design a variety of coupled resonator systems in the space, frequency, and time domains. Although each analytical method is fundamentally different, in the limit of weak inter-resonator coupling these approaches are consistent with each other. From these formalisms, simple expressions for the delay, loss, bandwidth, and a figure of merit are derived to compare the performance of CROW delay lines. Using a time-domain tight-binding model, we examine the resonant gain enhancement and spontaneous emission noise in amplifying CROWs to find that the net amplification of a propagating wave does not always vary with the group velocity but instead depends on the termination and excitation of the CROW. CROWs in the form of high-order (> 10) weakly coupled passive polymer microring resonators were fabricated and measured. The measured transmission, group delay, and dispersive properties of the CROWs agreed with the theoretical results. Delays in excess of 100 ps and slowing factors of about 25 over bandwidths of about 20 GHz were observed. The main limitation of the passive CROWs was the optical losses. To overcome the losses and to enable electrical integration, we demonstrated active

  1. Integrated treatment and handling of highly activated components from nuclear facilities

    SciTech Connect

    Schneider, K.A.; Kiolbassa, A.; Rose, K.A.; Raymont, J.M. Jr.

    1993-12-31

    A complete Underwater Treatment System (UTS) is described for activated/contaminated components of various origins in the nuclear industry. The system comprises different kinds of cutting/compacting equipment: the USC (Underwater Shear/compactor), the SCS (Stellite Corner Shear), the VLS (Velocity Limiter Shear) and the LCS (Light Crusher Shear). Transfer and loading equipment, the STB (Shielded Transfer Bell) provides safe and economic loading of containers with cut components. Operating experience and performance data are presented.

  2. Physical Activity and Sedentary Behavior Associated with Components of Metabolic Syndrome among People in Rural China

    PubMed Central

    Xiao, Jing; Shen, Chong; Chu, Min J.; Gao, Yue X.; Xu, Guang F.; Huang, Jian P.; Xu, Qiong Q.; Cai, Hui

    2016-01-01

    Background Metabolic syndrome is prevalent worldwide and its prevalence is related to physical activity, race, and lifestyle. Little data is available for people living in rural areas of China. In this study we examined associations of physical activity and sedentary behaviors with metabolic syndrome components among people in rural China. Methods The Nantong Metabolic Syndrome Study recruited 13,505 female and 6,997 male participants between 2007 and 2008. Data of socio-demographic characteristics and lifestyle were collected. The associations of physical activity and sedentary behaviors with metabolic syndrome components were analyzed. Results Prevalence of metabolic syndrome was 21.6%. It was significantly lower in men than in women. Low risks of metabolic syndrome were observed in those who did less sitting and engaged in more vigorous physical activity. The highest tertile of vigorous physical activity was associated with 15–40% decreased odds of metabolic syndrome and all of its components, except for low high-density lipoprotein cholesterol in men. Women with the highest tertile of moderate physical activity had 15–30% lower odds of central obesity, high glucose, and high triglycerides compared with those in the lowest tertile. Sitting time >42 hours per week had a 4%-12% attributable risk of metabolic syndrome, central obesity, and high triglycerides in both genders, and abnormal glucose and diastolic blood pressure in women. Sleeping for more than 8 hours per day was associated with risk of high serum glucose and lipids. Conclusions Our data suggested that physical activity has a preventive effect against metabolic syndrome and all its abnormal components, and that longer sitting time and sleep duration are associated with an increased risk of metabolic syndrome components, including central obesity and high triglycerides, glucose, and diastolic blood pressure. This study could provide information for future investigation into these associations. Also

  3. Assessment Of Mold-Design Dependent Textures In CIM-Components By Polarized Light Optical Texture Analysis (PLOTA)

    NASA Astrophysics Data System (ADS)

    Kern, Frank; Rauch, Johannes; Gadow, Rainer

    2007-04-01

    By thermoplastic ceramic injection moulding (CIM) ceramic components of high complexity can be produced in a large number of items at low dimensional tolerances. The cost advantage by the high degree of automation leads to an economical mass-production. The structure of injection-moulded components is determined by the form filling behaviour and viscosity of the feedstock, the machine parameters, the design of the mold and the gate design. With an adapted mold- and gate-design CIM-components without textures are possible. The "Polarized Light Optical Texture analysis" (PLOTA) makes it possible to inspect the components and detect and quantify the textures produced by a new mold. Based on the work of R. Fischer (2004) the PLOTA procedure was improved by including the possibility to measure the inclination angle and thus describe the orientation of the grains in three dimensions. Sampled thin sections of ceramic components are analysed under the polarization microscope and are brought in diagonal position. Pictures are taken with a digital camera. The pictures are converted in the L*a*b*- colour space and the crystals color values a* and b* in the picture are measured. The color values are compared with the values of a quartz wedge, which serves as universal standard. From the received values the inclination angle can be calculated relative to the microscope axis. It is possible to use the received data quantitatively e.g. for the FEM supported simulation of texture-conditioned divergences of mechanical values. Thus the injection molding parameters can be optimized to obtain improved mechanical properties.

  4. Visualization of optical and thermal performance of solar components using encapsulated liquid crystals

    NASA Astrophysics Data System (ADS)

    Worek, W. M.

    1983-01-01

    The characteristics of liquid crystals are described in order to demonstrate their usefulness for obtaining data on the temperatures and temperature gradients in solar components. Liquid crystals feature adjacent planes 0.3 nm apart which are generally rotated about 15 arcmin from superior layers. The layers rotate further from each other in response to rising temperature, resulting in alterations in transmitted light which can be measured with a resolution of 0.1 C and a time resolution of temperature variation of 0.1 sec. Potential applications of the materials in solar components include assaying the temperature gradients in a serpentine tube flat plate collector to a tube bend, gradients in the thermocline region of a stratified storage tank, and gradients caused by spatial variation of transmittance of a glass tube array used as a solar collector cover. Sample measurements and calculations are furnished for the latter by spraying liquid crystals on a square mylar substrate for a flat plate solar collector cover. Variations in color during exposure to simulated sunlight revealed variations in the solar transmittance.

  5. Spatial correspondence of brain alpha activity component in fMRI and EEG

    NASA Astrophysics Data System (ADS)

    Jeong, Jeong-Won; Kim, Sung-Heon; Singh, Manbir

    2005-04-01

    This paper presents a new approach to investigate the spatial correlation of brain alpha activity in functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). To avoid potential problems of simultaneous fMRI and EEG acquisitions in imaging brain alpha activity, data from each modality were acquired separately under a "three conditions" setup where one of the conditions involved closing eyes and relaxing, thus making it conducive to generation of alpha activity. The other two conditions -- eyes open in a lighted room or engaged in a mental arithmetic task, were designed to attenuate alpha activity. Using the Mixture Density Independent Component Analysis (MD-ICA) that incorporates flexible non-linearity functions into the conventional ICA framework, we could identify the spatiotemporal components of fMRI activations and EEG activities associated with the alpha rhythm. The sources of the individual EEG alpha activity component were localized by a Maximum Entropy (ME) method that solves an inverse problem in the framework of a classical four-sphere head model. The resulting dipole sources of EEG alpha activity were spatially transformed to 3D MRIs of the subject and compared to fMRI ICA-determined alpha activity maps.

  6. Optical Mapping of Electrical Activation in the Developing Heart

    NASA Astrophysics Data System (ADS)

    Sedmera, David; Reckova, Maria; Rosengarten, Carlin; Torres, Maria I.; Gourdie, Robert G.; Thompson, Robert P.

    2005-06-01

    Specialized conduction tissues mediate coordinated propagation of electrical activity through the adult vertebrate heart. Following activation of the atria, the activation wave is slowed down in the atrioventricular canal or node, after which it spreads rapidly into the left and right ventricles via the His-Purkinje system (HPS). This results in the ventricles being activated from the apex toward the base, which is a hallmark of HPS function. The development of mature HPS function follows significant phases of cardiac morphogenesis. Initially, the cardiac impulse propagates in a slow, linear, and isotropic fashion from the sinus venosus at the most caudal portion of the tubular heart. Although the speed of impulse propagation gradually increases as it travels toward the anterior regions of the heart tube, the actual sequence of ventricular activation in the looped heart proceeds in the same direction as blood flow. Eventually, the immature base-to-apex sequence of ventricular activation undergoes an apparent reversal, changing to the mature apex-to-base pattern. Using an optical mapping approach, we demonstrate that the timing of this last transition shows striking dependence on hemodynamic loading of the ventricle, being accelerated by pressure overload and delayed in left ventricular hypoplasia. Comparison of chick and mammalian hearts revealed some striking similarities as well as key differences in the timing of such events during cardiac organogenesis.

  7. OPTICAL TOMOGRAPHY: Nanoparticles as contrast-enhancing agents in optical coherence tomography imaging of the structural components of skin: Quantitative evaluation

    NASA Astrophysics Data System (ADS)

    Kirillin, M. Yu; Agrba, P. D.; Sirotkina, M. A.; Shiryamova, M. V.; Zagainova, E. V.; Kamenskii, V. A.

    2010-08-01

    This work examines the effect of gold nanoshells and titania nanoparticles on the imaging contrast of structural components of skin in optical coherence tomography (OCT). Experimental data are compared to Monte Carlo (MC) simulation results. In experiments with pig skin in vivo, the epidermis — dermis contrast is improved from 0.78 ± 0.03 to 0.92 ± 0.04 by gold nanoshells applied to the skin surface and from 0.78 ± 0.03 to 0.86 ± 0.04 by titania nanoparticles. The contrast of glands is enhanced by titania from 0.68 ± 0.12 to 0.84 ± 0.07. The highest contrast is reached 120 — 150 min after applying gold nanoshells and 160 — 200 min after applying titania. According to the MC simulation results, the contrast of inclusions increases from zero to 0.85 and 0.65, respectively.

  8. Competition between attractive and repulsive interactions in two-component Bose-Einstein condensates trapped in an optical lattice

    SciTech Connect

    Matuszewski, Michal; Malomed, Boris A.; Trippenbach, Marek

    2007-10-15

    We consider effects of interspecies attraction on two-component gap solitons (GSs) in the binary BEC with intraspecies repulsion, trapped in the one-dimensional optical lattice (OL). Systematic simulations of the coupled Gross-Pitaevskii equations corroborate an assumption that, because the effective mass of GSs is negative, the interspecies attraction may split the two-component soliton. Two critical values, {kappa}{sub 1} and {kappa}{sub 2}, of the OL strength ({kappa}) are identified. Two-species GSs with fully overlapping wave functions are stable in strong lattices ({kappa}>{kappa}{sub 1}). In an intermediate region, {kappa}{sub 1}>{kappa}>{kappa}{sub 2}, the soliton splits into a double-humped state with separated components. Finally, in weak lattices ({kappa}<{kappa}{sub 2}), the splitting generates a pair of freely moving single-species GSs. We present and explain the dependence of {kappa}{sub 1} and {kappa}{sub 2} on the number of atoms (total norm), and on the relative strength of the competing interspecies attraction and intraspecies repulsion. The splitting of asymmetric solitons, with unequal norms of the two species, is briefly considered too. It is found and explained that the splitting threshold grows with the increase of the asymmetry.

  9. Comparison of bioactive components and pharmacological activities of ophiopogon japonicas extracts from different geographical origins.

    PubMed

    Zhao, Min; Xu, Wan-Feng; Shen, Han-Yuan; Shen, Pei-Qiang; Zhang, Jun; Wang, Dan-Dan; Xu, Han; Wang, Hong; Yan, Ting-Ting; Wang, Lin; Hao, Hai-Ping; Wang, Guang-Ji; Cao, Li-Juan

    2017-02-07

    Ophiopogon japonicus (Linn. f.) Ker-Gawl (O. japonicas), mainly cultivated in Sichuan and Zhejiang province in China, has different bioactive components and therefore their pharmacological activities. To explain the different clinical efficacy of O. japonicas derived preparations, herein we report differences of pharmacological activities between Sichuan and Zhejiang O. japonicas and behind them the exact differences of bioactive components. Based on a LC/MS-IT-TOF method, the differences of bioactive components between Sichuan and Zhejiang O. japonicas extracts were analyzed and respective characteristic components were picked out. We determined 39 ophiopogonones and 71 ophiopogonins compounds in Sichuan and Zhejiang O. japonicas extracts and found the contents of these compositions have several times difference. Evidenced by experimental data of pharmacological activities in inhibiting cardiomyocyte damage induced by H2O2, mouse macrophage cell inflammation induced by lipopolysaccharide and cytotoxicity in vitro, Zhejiang O. japonicas extract had a stronger antioxidant and anti-inflammatory capacity than Sichuan O. japonicas extract, and the two O. japonicas extracts exhibited selective cytotoxicity on different cancer cell lines in vitro. These data shed light on the links between bioactive components and pharmacological activities of O. japonicas derived preparations. Thus, geographical origin of O. japonicas should be considered to be a key factor in efficacy studies and further clinical application.

  10. Active Learning Strategies for Introductory Light and Optics

    NASA Astrophysics Data System (ADS)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.

  11. Hydrogen induced optically-active defects in silicon photonic nanocavities.

    PubMed

    Boninelli, S; Franzò, G; Cardile, P; Priolo, F; Lo Savio, R; Galli, M; Shakoor, A; O'Faolain, L; Krauss, T F; Vines, L; Svensson, B G

    2014-04-21

    We demonstrate intense room temperature photoluminescence (PL) from optically active hydrogen- related defects incorporated into crystalline silicon. Hydrogen was incorporated into the device layer of a silicon on insulator (SOI) wafer by two methods: hydrogen plasma treatment and ion implantation. The room temperature PL spectra show two broad PL bands centered at 1300 and 1500 nm wavelengths: the first one relates to implanted defects while the other band mainly relates to the plasma treatment. Structural characterization reveals the presence of nanometric platelets and bubbles and we attribute different features of the emission spectrum to the presence of these different kind of defects. The emission is further enhanced by introducing defects into photonic crystal (PhC) nanocavities. Transmission electron microscopy analyses revealed that the isotropicity of plasma treatment causes the formation of a higher defects density around the whole cavity compared to the ion implantation technique, while ion implantation creates a lower density of defects embedded in the Si layer, resulting in a higher PL enhancement. These results further increase the understanding of the nature of optically active hydrogen defects and their relation with the observed photoluminescence, which will ultimately lead to the development of intense and tunable crystalline silicon light sources at room temperature.

  12. Manufacturing and coating of optical components for the EnMAP hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Schürmann, M.; Gäbler, D.; Schlegel, R.; Schwinde, S.; Peschel, T.; Damm, C.; Jende, R.; Kinast, J.; Müller, S.; Beier, M.; Risse, S.; Sang, B.; Glier, M.; Bittner, H.; Erhard, M.

    2016-07-01

    The optical system of the hyperspectral imager of the Environmental Mapping and Analysis Program (EnMAP) consists of a three-mirror anastigmat (TMA) and two independent spectrometers working in the VNIR and SWIR spectral range, respectively. The VNIR spectrometer includes a spherical NiP coated Al6061 mirror that has been ultra-precisely diamond turned and finally coated with protected silver as well as four curved fused silica (FS) and flint glass (SF6) prisms, respectively, each with broadband antireflection (AR) coating, while the backs of the two outer prisms are coated with a high-reflective coating. For AR coating, plasma ion assisted deposition (PIAD) has been used; the high-reflective enhanced Ag-coating on the backside has been deposited by magnetron sputtering. The SWIR spectrometer contains four plane and spherical gold-coated mirrors, respectively, and two curved FS prisms with a broadband antireflection coating. Details about the ultra-precise manufacturing of metal mirrors and prisms as well as their coating are presented in this work.

  13. Joint representation of translational and rotational components of optic flow in parietal cortex

    PubMed Central

    Sunkara, Adhira; DeAngelis, Gregory C.; Angelaki, Dora E.

    2016-01-01

    Terrestrial navigation naturally involves translations within the horizontal plane and eye rotations about a vertical (yaw) axis to track and fixate targets of interest. Neurons in the macaque ventral intraparietal (VIP) area are known to represent heading (the direction of self-translation) from optic flow in a manner that is tolerant to rotational visual cues generated during pursuit eye movements. Previous studies have also reported that eye rotations modulate the response gain of heading tuning curves in VIP neurons. We tested the hypothesis that VIP neurons simultaneously represent both heading and horizontal (yaw) eye rotation velocity by measuring heading tuning curves for a range of rotational velocities of either real or simulated eye movements. Three findings support the hypothesis of a joint representation. First, we show that rotation velocity selectivity based on gain modulations of visual heading tuning is similar to that measured during pure rotations. Second, gain modulations of heading tuning are similar for self-generated eye rotations and visually simulated rotations, indicating that the representation of rotation velocity in VIP is multimodal, driven by both visual and extraretinal signals. Third, we show that roughly one-half of VIP neurons jointly represent heading and rotation velocity in a multiplicatively separable manner. These results provide the first evidence, to our knowledge, for a joint representation of translation direction and rotation velocity in parietal cortex and show that rotation velocity can be represented based on visual cues, even in the absence of efference copy signals. PMID:27095846

  14. Resolving the spatial relationship between intracellular components by dual color super resolution optical fluctuations imaging (SOFI)

    PubMed Central

    Gallina, Maria Elena; Xu, Jianmin; Dertinger, Thomas; Aizer, Adva; Shav-Tal, Yaron; Weiss, Shimon

    2013-01-01

    Background Multi-color super-resolution (SR) imaging microscopy techniques can resolve ultrastructura relationships between- and provide co-localization information of- different proteins inside the cell or even within organelles at a higher resolution than afforded by conventional diffraction-limited imaging. While still very challenging, important SR colocalization results have been reported in recent years using STED, PALM and STORM techniques. Results In this work, we demonstrate dual-color Super Resolution Optical Fluctuations Imaging (SOFI) using a standard far-field fluorescence microscope and different color blinking quantum dots. We define the spatial relationship between hDcp1a, a processing body (P-body, PB) protein, and the tubulin cytoskeletal network. Our finding could open up new perspectives on the role of the cytoskeleton in PB formation and assembly. Further insights into PB internal organization are also reported and discussed. Conclusions Our results demonstrate the suitability and facile use of multi-color SOFI for the investigation of intracellular ultrastructures. PMID:24324919

  15. Optical Characterization of Component Wear and Near-Field Plasma of the Hermes Thruster

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Kamhawi, Hani

    2015-01-01

    Optical emission spectral (OES) data are presented which correlate trends in sputtered species and the near-field plasma with the Hall-Effect Rocket with Magnetic Shielding (HERMeS) thruster operating condition. The relative density of singly-ionized xenon (Xe II) is estimated using a collisional-radiative model. OES data were collected at three radial and several axial locations downstream of the thruster's exit plane. These data were deconvolved to show the structure for the near-field plasma as a function of thruster operating condition. The magnetic field is shown to have a much greater affect on plasma structure than the discharge voltage with the primary ionization/acceleration zone boundary being similar for all nominal operating voltages at constant power. OES measurement of sputtered boron shows that the HERMeS thruster is magnetically shielded across its operating envelope. Preliminary assessment of carbon sputtered from the keeper face suggest it increases significantly with operating voltage, but the uncertainty associated with these measurements is very high.

  16. A Fiber-Optic Interferometric Tri-Component Geophone for Ocean Floor Seismic Monitoring.

    PubMed

    Chen, Jiandong; Chang, Tianying; Fu, Qunjian; Lang, Jinpeng; Gao, Wenzhi; Wang, Zhongmin; Yu, Miao; Zhang, Yanbo; Cui, Hong-Liang

    2016-12-28

    For the implementation of an all fiber observation network for submarine seismic monitoring, a tri-component geophone based on Michelson interferometry is proposed and tested. A compliant cylinder-based sensor head is analyzed with finite element method and tested. The operation frequency ranges from 2 Hz to 150 Hz for acceleration detection, employing a phase generated carrier demodulation scheme, with a responsivity above 50 dB re rad/g for the whole frequency range. The transverse suppression ratio is about 30 dB. The system noise at low frequency originated mainly from the 1/f fluctuation, with an average system noise level -123.55 dB re rad / Hz ranging from 0 Hz to 500 Hz. The minimum detectable acceleration is about 2 ng / Hz , and the dynamic range is above 116 dB.

  17. A Fiber-Optic Interferometric Tri-Component Geophone for Ocean Floor Seismic Monitoring

    PubMed Central

    Chen, Jiandong; Chang, Tianying; Fu, Qunjian; Lang, Jinpeng; Gao, Wenzhi; Wang, Zhongmin; Yu, Miao; Zhang, Yanbo; Cui, Hong-Liang

    2016-01-01

    For the implementation of an all fiber observation network for submarine seismic monitoring, a tri-component geophone based on Michelson interferometry is proposed and tested. A compliant cylinder-based sensor head is analyzed with finite element method and tested. The operation frequency ranges from 2 Hz to 150 Hz for acceleration detection, employing a phase generated carrier demodulation scheme, with a responsivity above 50 dB re rad/g for the whole frequency range. The transverse suppression ratio is about 30 dB. The system noise at low frequency originated mainly from the 1/f fluctuation, with an average system noise level −123.55 dB re rad/Hz ranging from 0 Hz to 500 Hz. The minimum detectable acceleration is about 2 ng/Hz, and the dynamic range is above 116 dB. PMID:28036011

  18. Multi-function optical characterization and inspection of MEMS components using stroboscopic coherence scanning interferometry

    NASA Astrophysics Data System (ADS)

    Tapilouw, Abraham Mario; Chen, Liang-Chia; Xuan-Loc, Nguyen; Chen, Jin-Liang

    2014-08-01

    A Micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive industries. However, effective inspection systems are also needed to ensure the functional reliability of MEMS. This study developed a stroboscopic coherence scanning Interferometry (SCSI) technique for measuring key characteristics typically used as criteria in MEMS inspections. Surface profiles of MEMS both static and dynamic conditions were measured by means of coherence scanning Interferometry (CSI). Resonant frequencies of vibrating MEMS were measured by deformation of interferogram fringes for out-of-plane vibration and by image correlation for in-plane vibration. The measurement bandwidth of the developed system can be tuned up to three megahertz or higher for both in-plane and out-of-plane measurement of MEMS.

  19. Tea and human health: biomedical functions of tea active components and current issues*

    PubMed Central

    Chen, Zong-mao; Lin, Zhi

    2015-01-01

    Originating in China, tea and tea planting have spread throughout the world since the middle of the Tang dynasty. Now people from 160 countries in the world are accustomed to tea drinking. A brief history of tea’s medicinal role in China and its spread to the world are introduced. The effectiveness of tea active components and tea drinking on major human diseases, including cancer, metabolic syndrome, cardiovascular disease, and neurodegenerative diseases, is discussed. Also presented are some related issues, such as the bioavailability of tea active components, the new formulations of tea polyphenols, and the safety for consumers of dietary supplements containing tea polyphenols. PMID:25644464

  20. Tea and human health: biomedical functions of tea active components and current issues.

    PubMed

    Chen, Zong-mao; Lin, Zhi

    2015-02-01

    Originating in China, tea and tea planting have spread throughout the world since the middle of the Tang dynasty. Now people from 160 countries in the world are accustomed to tea drinking. A brief history of tea's medicinal role in China and its spread to the world are introduced. The effectiveness of tea active components and tea drinking on major human diseases, including cancer, metabolic syndrome, cardiovascular disease, and neurodegenerative diseases, is discussed. Also presented are some related issues, such as the bioavailability of tea active components, the new formulations of tea polyphenols, and the safety for consumers of dietary supplements containing tea polyphenols.

  1. LONG-TERM OPTICAL CONTINUUM COLOR VARIABILITY OF NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Sakata, Yu; Minezaki, Takeo; Yoshii, Yuzuru; Uchimoto, Yuka Katsuno; Sugawara, Shota; Kobayashi, Yukiyasu; Koshida, Shintaro; Aoki, Tsutomu; Tomita, Hiroyuki; Enya, Keigo; Suganuma, Masahiro

    2010-03-01

    We examine whether the spectral energy distribution of optical continuum emission of active galactic nuclei (AGNs) changes during flux variation, based on accurate and frequent monitoring observations of 11 nearby Seyfert galaxies and QSOs carried out in the B, V, and I bands for seven years by the MAGNUM telescope. The multi-epoch flux data in any two different bands obtained on the same night show a very tight linear flux-to-flux relationship for all target AGNs. The flux of the host galaxy within the photometric aperture is carefully estimated by surface brightness fitting to available high-resolution Hubble Space Telescope images and MAGNUM images. The flux of narrow emission lines in the photometric bands is also estimated from available spectroscopic data. We find that the non-variable component of the host galaxy plus narrow emission lines for all target AGNs is located on the fainter extension of the linear regression line of multi-epoch flux data in the flux-to-flux diagram. This result strongly indicates that the spectral shape of AGN continuum emission in the optical region ({approx}4400-7900 A) does not systematically change during flux variation. The trend of spectral hardening that optical continuum emission becomes bluer as it becomes brighter, which has been reported by many studies, is therefore interpreted as the domination of the variable component of the nearly constant spectral shape of an AGN as it brightens over the non-variable component of the host galaxy plus narrow lines, which is usually redder than AGN continuum emission.

  2. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  3. Thermal properties of ration components as affected by moisture content and water activity during freezing.

    PubMed

    Li, J; Chinachoti, P; Wang, D; Hallberg, L M; Sun, X S

    2008-11-01

    Beef roast with vegetables is an example of a meal, ready-to-eat (MRE) ration entrée. It is a mixture of meat, potato, mushroom, and carrot with a gravy sauce. The thermal properties of each component were characterized in terms of freezing point, latent heat, freezable and unfreezable water contents, and enthalpy during freezing using differential scanning calorimetry. Freezing and thawing curves and the effect of freezing and thawing cycles on thermal properties were also evaluated. The freezing points of beef, potato, mushroom, and sauce were all in the range of -5.1 to -5.6 degrees C, but moisture content, water activity, latent heat, freezable and unfreezable water contents, and enthalpy varied among these components. Freezing temperature greatly affected the unfrozen water fraction. The unfreezable water content (unfrozen water fraction at -50 degrees C) of ration components was in the range of 8.2% to 9.7%. The freezing and thawing curves of vegetables with sauce differed from those of beef but took similar time to freeze or thaw. Freezing and thawing cycles did not greatly affect the thermal properties of each component. Freezing point and latent heat were reduced by decreasing moisture content and water activity of each component. Water activity was proportionally linear to freezing point at a(w) > 0.88, and moisture content was proportionally linear to freezable water content in all ration components. Water was not available for freezing when moisture content was reduced to 28.8% or less. This study indicates that moisture content and water activity are critical factors affecting thermal behavior of ration components during freezing.

  4. Comparative pharmacological activity of optical isomers of phenibut.

    PubMed

    Dambrova, Maija; Zvejniece, Liga; Liepinsh, Edgars; Cirule, Helena; Zharkova, Olga; Veinberg, Grigory; Kalvinsh, Ivars

    2008-03-31

    Phenibut (3-phenyl-4-aminobutyric acid) is a GABA (gamma-aminobutyric acid)-mimetic psychotropic drug which is clinically used in its racemic form. The aim of the present study was to compare the effects of racemic phenibut and its optical isomers in pharmacological tests and GABAB receptor binding studies. In pharmacological tests of locomotor activity, antidepressant and pain effects, S-phenibut was inactive in doses up to 500 mg/kg. In contrast, R-phenibut turned out to be two times more potent than racemic phenibut in most of the tests. In the forced swimming test, at a dose of 100 mg/kg only R-phenibut significantly decreased immobility time. Both R-phenibut and racemic phenibut showed analgesic activity in the tail-flick test with R-phenibut being slightly more active. An GABAB receptor-selective antagonist (3-aminopropyl)(diethoxymethyl)phosphinic acid (CGP35348) inhibited the antidepressant and antinociceptive effects of R-phenibut, as well as locomotor depressing activity of R-phenibut in open field test in vivo. The radioligand binding experiments using a selective GABAB receptor antagonist [3H]CGP54626 revealed that affinity constants for racemic phenibut, R-phenibut and reference GABA-mimetic baclofen were 177+/-2, 92+/-3, 6.0+/-1 microM, respectively. We conclude that the pharmacological activity of racemic phenibut relies on R-phenibut and this correlates to the binding affinity of enantiomers of phenibut to the GABAB receptor.

  5. Polyazomethine as a component of solar cells-theoretical and optical study

    NASA Astrophysics Data System (ADS)

    Korona, K. P.; Korona, T.; Rutkowska-Zbik, D.; Grankowska-Ciechanowicz, S.; Iwan, A.; Kamińska, M.

    2015-11-01

    A recently synthesized 25Th-cardo polyazomethine (PAZ) and its photocurrent generating junction with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) have been examined as possible materials for construction of new-generation solar cells. Properties of a 25Th-cardo/PCBM system, where PAZ and PCBM act as donor and acceptor materials, respectively, have been studied theoretically by time-dependent density-functional theory (TD-DFT) and experimentally by means of optical absorption, photocurrent spectroscopy (PCS), and time-resolved luminescence (TRPL). Theoretical calculations show that highest occupied molecular orbital (HOMO) energy levels of PAZ and PCBM are almost equal (values of -6.01 and -5.98 eV were obtained with the B3LYP functional and the def2-TZVP orbital basis for PAZ and PCBM, respectively), what suggests a possibility of charge transfer in both directions for this system. The shape of the calculated absorption spectrum is in a qualitative agreement with the experiment. The PCS measurements of the new material show that the external quantum efficiency is the highest (about 0.3%) in the near UV range. The TRPL studies reveal a fast decay of a Langevin type (in picosecond range) of the PAZ-related photoluminescence, which accelerates in presence of PCBM, probably due to the charge transfer to PCBM. In addition, our measurements document a usually neglected process of the hole transfer from a donor to an acceptor. A leakage of holes from PAZ to PCBM is supported by a small energy difference of the HOMO energies, as predicted by theory.

  6. Optical Coating Performance for Heat Reflectors of the JWST-ISIM Electronic Component

    NASA Technical Reports Server (NTRS)

    Rashford, Robert A.; Perrygo, Charles M.; Garrison, Matthew B.; White, Bryant K.; Threat, Felix T.; Quijada, Manuel A.; Jeans, James W.; Huber, Frank K.; Bousquet, Robert R.; Shaw, Dave

    2011-01-01

    A document discusses a thermal radiator design consisting of lightweight composite materials and low-emittance metal coatings for use on the James Webb Space Telescope (JWST) structure. The structure will have a Thermal Subsystem unit to provide passive cooling to the Integrated Science Instrument Module (ISIM) control electronics. The ISIM, in the JWST observatory, is the platform that provides the mounting surfaces for the instrument control electronics. Dissipating the control electronic generated-heat away from JWST is of paramount importance so that the spacecraft s own heat does not interfere with the infrared-light gathering of distant cosmic sources. The need to have lateral control in the emission direction of the IEC (ISIM Electronics Compartment) radiators led to the development of a directional baffle design that uses multiple curved mirrorlike surfaces. This concept started out from the so-called Winston non-imaging optical concentrators that use opposing parabolic reflector surfaces, where each parabola has its focus at the opposite edge of the exit aperture. For this reason they are often known as compound parabolic concentrators or CPCs. This radiator system with the circular section was chosen for the IEC reflectors because it offers two advantages over other designs. The first is that the area of the reflector strips for a given radiator area is less, which results in a lower mass baffle assembly. Secondly, the fraction of energy emitted by the radiator strips and subsequently reflected by the baffle is less. These fewer reflections reduced the amount of energy that is absorbed and eventually re-emitted, typically in a direction outside the design emission range angle. A baffle frame holds the mirrors in position above a radiator panel on the IEC. Together, these will direct the majority of the heat from the IEC above the sunshield away towards empty space.

  7. Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components.

    PubMed

    Escobar, Patricia; Milena Leal, Sandra; Herrera, Laura Viviana; Martinez, Jairo Rene; Stashenko, Elena

    2010-03-01

    The chemical composition and biological activities of 19 essential oils and seven of their major components were tested against free and intracellular forms of Leishmania chagasi and Trypanosoma cruzi parasites as well as Vero and THP-1 mammalian cell lines. The essential oils were obtained from different species of Lippia, a widely distributed genus of Colombian plants. They were extracted by microwave radiation-assisted hydro-distillation and characterised by GC-FID and GC-MS. The major components were geranial, neral, limonene, nerol, carvacrol, p-cymene, gamma-terpinene, carvone and thymol. The essential oil of Lippia alba exhibited the highest activity against T. cruzi epimastigotes and intracellular amastigotes with an IC50 of 5.5 microg/mL and 12.2 microg/mL, respectively. The essential oil of Lippia origanoides had an IC50 of 4.4 microg/mL in L. chagasi promastigotes and exhibited no toxicity in mammalian cells. Thymol (IC50 3.2 +/- 0.4 microg/mL) and S-carvone (IC50 6.1 +/- 2.2 microg/mL), two of the major components of the active essential oils, were active on intracellular amastigotes of T. cruziinfected Vero cells, with a selective index greater than 10. None of the essential oils or major components tested in this study was active on amastigotes of L. chagasi infected THP-1 cells.

  8. Antibacterial activity of polyphenol components in oolong tea extract against Streptococcus mutans.

    PubMed

    Sasaki, H; Matsumoto, M; Tanaka, T; Maeda, M; Nakai, M; Hamada, S; Ooshima, T

    2004-01-01

    The purpose of the present study was to determine the antibacterial activity of oolong tea extract on oral streptococci, including Streptococcus mutans and Streptococcus sobrinus, and to identify the response to its components. Antibacterial activity was found when the extract was added to S. mutans cells in chemically defined medium but not in complex broth media. Further, pretreatment with bovine serum albumin reduced the antibacterial activity. The extract showed antibacterial activity against all of the oral streptococci examined, with the highest activity against S. mutans MT8148R. This activity was found to originate from a monomeric polyphenol-rich fraction, and it was stronger than that of pure polyphenols. Moreover, some combinations of monomeric polyphenols showed the highest level of antibacterial activity. These results suggest that the antibacterial activity of oolong tea extract is caused by a synergistic effect of monomeric polyphenols, which can easily bind to proteins.

  9. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting major components in bee pollen.

    PubMed

    González-Martín, I; Hernández-Hierro, J M; Barros-Ferreiro, N; Cordón Marcos, C; García-Villanova, R J

    2007-05-15

    In the present work, we study the use of near infra-red spectroscopy (NIRS) technology together with a remote reflectance fibre-optic probe for determination of the major components in bee pollen. The method allows immediate control of the bee pollen without prior sample treatment or destruction through direct application of the fibre-optic probe to the sample. The regression method employed was modified partial least squares (MPLS). The calibration results obtained using 45 samples of bee pollen allowed the measurement of protein, moisture, ash, reducing sugars, and pH with multiple correlation coefficients (RSQ) and prediction corrected standard errors (SEPC) of 0.91, 0.56% for protein, of 0.78 and 0.49% for moisture; 0.92 and 0.049% for ash; 0.81 and 1.32g of glucose/100g of bee pollen; 0.84 and 0.15 for pH, respectively. The prediction capacity of the pattern was checked by applying it to samples of unknown pollen in external validation.

  10. Meaningful Components of Exercise and Active Recreation for Spinal Cord Injuries.

    PubMed

    Luchauer, Bryna; Shurtleff, Timothy

    2015-10-01

    This qualitative study used focus groups to identify meaningful components of exercise and active recreation (E/AR) related to consistent participation for those with spinal cord injury (SCI). Transcripts from each focus group were analyzed with classical content analysis, grounded theory coding, and meaning condensation using the International Classification of Function, Disability and Health (ICF). Variables within each of the ICF domains (body structures and functions, activities/participation, and environment) were indicated as meaningful components leading to increased participation, independence, and reasons why people consistently participated in E/AR. Occupational therapists can utilize these components to implement therapeutic intervisions, which provide clients with a sense of purpose and being, thus improving outcomes in meaningful occupations.

  11. [Research on Chinese medicine pairs (III)--Their bio-active components].

    PubMed

    Li, Wei-Xia; Tang, Yu-Ping; Liu, Li; Liu, Pei; Su, Shu-Lan; Qian, Da-Wei; Duan, Jin-Ao

    2013-12-01

    The total effect of Chinese medicine pair (CMP) was not the simply addition of two single herbs, but the interaction of their different components. Therefore, the research on the bio-active components of CMP is the basis of CMP compatibility study, and has important significance for revealing the compatibility effect and action mechanism, and creating traditional Chinese medicine (TCM) new drugs. This paper summed up the latest research progress of CMP on the basis of the bio-active components variation regularity of CMP from chemical solutions and content changes in vitro and the actions of CMP on bodies in vivo, in order to further drive the modern basic and applied research of CMP, and to reveal the scientific essence of CMP compatibility.

  12. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-22

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  13. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    NASA Astrophysics Data System (ADS)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  14. Optical properties of selected components of mineral dust aerosol processed with organic acids and humic material

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer M.; Grassian, V. H.; Young, M. A.; Kleiber, P. D.

    2015-03-01

    Visible light scattering phase function and linear polarization profiles of mineral dust components processed with organic acids and humic material are measured, and results are compared to T-matrix simulations of the scattering properties. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acids. Clear differences in light scattering properties are observed for all three processed samples when compared to the unprocessed dust or organic salt products. Results for quartz processed with humic acid sodium salt (NaHA) indicate the presence of both internally mixed quartz-NaHA particles and externally mixed NaHA aerosol. Simulations of light scattering suggest that the processed quartz particles become more moderate in shape due to the formation of a coating of humic material over the mineral core. Experimental results for calcite reacted with acetic acid are consistent with an external mixture of calcite and the reaction product, calcium acetate. Modeling of the light scattering properties does not require any significant change to the calcite particle shape distribution although morphology changes cannot be ruled out by our data. It is expected that calcite reacted with oxalic acid will produce internally mixed particles of calcite and calcium oxalate due to the low solubility of the product salt. However, simulations of the scattering for the calcite-oxalic acid system result in rather poor fits to the data when compared to the other samples. The poor fit provides a less accurate picture of the impact of processing in the calcite-oxalic acid system.

  15. Optically and redox-active ferroceneacetylene polymers and oligomers

    PubMed

    Plenio; Hermann; Sehring

    2000-05-15

    The palladium-catalyzed Sonogashira reaction can be used to build optically active, oligomeric 1,2,3-substituted ferrocenes up to the tetramer, as well as polymers, by sequential coupling of optically active (ee > 98 %), planar chiral iodoferroceneacetylenes and ferroceneacetylenes. (SFC)-1-Iodoferrocene-2-carbaldehyde (1) was reduced to the alcohol and methylated to give the corresponding methyl ether, which was Sonogashira-coupled with HC(triple bond)CSiEt3, resulting in (RFc)-1-(C(triple bond)CSiEt3)-2-methoxymethylferrocene (4) (79%, three steps). Orthometalation with tBuLi followed by quenching with 1,2-diodoethane gave (RFc)-1-(C(triple bond)CSiEt3)-2-methoxymethyl-3-iodoferrocene (5). Deprotection of the acetylene with nBu4NF resulted in (RFc)-1-ethynyl-2-methoxymethyl-3-iodoferrocene (6), which was Sonogashira-coupled with itself to produce an optically active polymer. Deprotection of 4 with nBu4NF and Sonogashira coupling of the product with 5 resulted in the dinuclear ferrocene 9. Deprotection of 9 and coupling with 5, followed by deprotection of the resulting acetylene 11, gave the trinuclear ferrocene 12. Another such sequence involving 11 and 5 produced a tetranuclear ferrocene 13. To study the electronic communication in such oligomers in more detail, two symmetrical, closely interrelated, trinuclear ferrocenes 18 and 19 were synthesized. The redox potentials of all the ferrocenes and the ferroceneacetylene polymer were determined by cyclic and square-wave voltammetry. All the metallocenes were investigated by UV/Vis spectroscopy. A linear relationship was found between lambdamax and l/n (n=number of ferrocene units in the oligomer). The polymer displayed two redox waves in the cyclic voltammogram, at 0.65 and 0.795 V. The corresponding mixed-valence oligoferrocene cations were synthesized from four ferroceneacetylenes, and their metal-metal charge transfer bands were examined by UV/Vis-NIR. The resonance exchange integrals Had, calculated on the

  16. Suicide Risk by Military Occupation in the DoD Active Component Population

    ERIC Educational Resources Information Center

    Trofimovich, Lily; Reger, Mark A.; Luxton, David D.; Oetjen-Gerdes, Lynne A.

    2013-01-01

    Suicide risk based on occupational cohorts within the U.S. military was investigated. Rates of suicide based on military occupational categories were computed for the Department of Defense (DoD) active component population between 2001 and 2010. The combined infantry, gun crews, and seamanship specialist group was at increased risk of suicide…

  17. Analysis of the relationship between ribosomal DNA ITS sequences and active components in Rhodiola plants.

    PubMed

    Zhang, D J; Yuan, W T; Li, M T; Zhang, Y H

    2016-12-23

    Rhodiola plants are a valuable resource in traditional Chinese medicine. The objective of this study was to evaluate the correlation between ribosomal DNA internal transcribed spacer (ITS) sequences and the three active components in Rhodiola plants. For this, we determined ITS sequence polymorphisms and the concentrations of active components salidroside, tyrosol, and gallic acid in different Rhodiola species from the Tibetan Plateau. In a total of 23 Rhodiola samples, 16 different haplotypes were defined based on their ITS sequences. Analysis of the active components in these same samples revealed that salidroside was not detected in species with haplotypes H4, H5, or H10, tyrosol was not detected with haplotypes H3, H5, H7, H10, H14, or H15, and gallic acid was detected in with all haplotypes except H14 and H15. In addition, the concentrations of salidroside, tyrosol and gallic acid varied between samples with different haplotypes as well as those with the same haplotype, implying that no significant correlation exists between haplotype and salidroside, tyrosol or gallic acid concentrations. However, a statistically significant positive correlation was observed for among these three active components.

  18. ALTERATION OF CARDIAC ELECTRICAL ACTIVITY BY WATER-LEACHABLE COMPONENTS OF RESIDUAL OIL FLY ASH (ROFA)

    EPA Science Inventory

    Alteration of cardiac electrical activity by water-leachable components
    of residual oil fly ash (ROFA)

    Desuo Wang, Yuh-Chin T. Huang*, An Xie, Ting Wang

    *Human Studies Division, NHEERL, US EPA
    104 Mason Farm Road, Chapel Hill, NC 27599
    Department of Basic ...

  19. The Components of Effective Professional Development Activities in Terms of Teachers' Perspective

    ERIC Educational Resources Information Center

    Bayar, Adem

    2014-01-01

    Teacher preparedness is linked to student achievement, yet regularly teachers are entering the profession unprepared. In-service training, or professional development activities, are increasingly being used to remedy this situation. There is little agreement regarding exactly what key components should be included in an effective professional…

  20. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  1. Design, Analysis, and Characterization of Metamaterial Quasi-Optical Components for Millimeter-Wave Automotive Radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Vinh Ngoc

    Since their introduction by Mercedes Benz in the late 1990s, W-band radars operating at 76-77 GHz have found their way into more and more passenger cars. These automotive radars are typically used in adaptive cruise control, pre-collision sensing, and other driver assistance systems. While these systems are usually only about the size of two stacked cigarette packs, system size, and weight remains a concern for many automotive manufacturers. In this dissertation, I discuss how artificially structured metamaterials can be used to improve lens-based automotive radar systems. Metamaterials allow the fabrication of smaller and lighter systems, while still meeting the frequency, high gain, and cost requirements of this application. In particular, I focus on the development of planar artificial dielectric lenses suitable for use in place of the injection-molded lenses now used in many automotive radar systems. I begin by using analytic and numerical ray-tracing to compare the performance of planar metamaterial GRIN lenses to equivalent aspheric refractive lenses. I do this to determine whether metamaterials are best employed in GRIN or refractive automotive radar lenses. Through this study I find that planar GRIN lenses with the large refractive index ranges enabled by metamaterials have approximately optically equivalent performance to equivalent refractive lenses for fields of view approaching +/-20°. I also find that the uniaxial nature of most planar metamaterials does not negatively impact planar GRIN lens performance. I then turn my attention to implementing these planar GRIN lenses at W-band automotive radar frequencies. I begin by designing uniform sheets of W-band electrically-coupled LC resonator-based metamaterials. These metamaterial samples were fabricated by the Jokerst research group on glass and liquid crystal polymer (LCP) substrates and tested at Toyota Research Institute- North America (TRI-NA). When characterized at W-band frequencies, these

  2. Superfluidity and solid order in a two-component Bose gas with dipolar interactions in an optical lattice

    NASA Astrophysics Data System (ADS)

    Kuno, Yoshihito; Suzuki, Keita; Ichinose, Ikuo

    2014-12-01

    In this paper, we study an extended bosonic t-J model in an optical lattice, which describes two-component hard-core bosons with nearest-neighbor pseudospin interactions and, also, inter- and intraspecies dipole-dipole interactions. In particular, we focus on the case in which two-component hard-core bosons have antiparallel polarized dipoles with each other. The global phase diagram is studied by means of the Gutzwiller variational method and also quantum Monte Carlo (QMC) simulations. Both calculations show that a striped solid order, besides a checkerboard one, appears as a result of the dipole-dipole interactions. By QMC, we find that two kinds of supersolids (SSs) form, i.e., checkerboard SS and striped SS, and we also verify the existence of an exotic phase between the striped solid and the checkerboard SS. Finally, by QMC, we study the t-J-like model, which was recently realized experimentally by A. de Paz et al. [Phys. Rev. Lett. 111, 185305 (2013), 10.1103/PhysRevLett.111.185305].

  3. Ubiquity of optical activity in planar metamaterial scatterers.

    PubMed

    Sersic, Ivana; van de Haar, Marie Anne; Arango, Felipe Bernal; Koenderink, A Femius

    2012-06-01

    Recently it was discovered that periodic lattices of metamaterial scatterers show optical activity, even if the scatterers or lattice show no 2D or 3D chirality, if the illumination breaks symmetry. We demonstrate that such "pseudochirality" is intrinsic to any single planar metamaterial scatterer and in fact has a well-defined value at a universal bound. We argue that in any circuit model, a nonzero electric and magnetic polarizability derived from a single resonance automatically imply strong bi-anisotropy, i.e., magnetoelectric cross polarizability at the universal bound set by energy conservation. We confirm our claim by extracting polarizability tensors and cross sections for handed excitation from transmission measurements on near-infrared split ring arrays, and electrodynamic simulations for diverse metamaterial scatterers.

  4. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components.

    PubMed

    Wang, W; Wu, N; Zu, Y G; Fu, Y J

    2008-06-01

    This study was designed to examine the in vitro antioxidant activities of Rosmarinus officinalis L. essential oil compared to three of its main components (1,8-cineole, α-pinene, β-pinene). GC-MS analysis of the essential oil resulted in the identification of 19 compounds, representing 97.97% of the oil, the major constituents of the oil were described as 1,8-cineole (27.23%), α-pinene (19.43%), camphor (14.26%), camphene (11.52%) and β-pinene (6.71%). The oil and the components were subjected to screening for their possible antioxidant activity by means of 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and β-carotene bleaching test. In the DPPH test system, free radical-scavenging activity of R. officinalis L. essential oil, 1,8-cineole, α-pinene and β-pinene were determined to be 62.45%±3.42%, 42.7%±2.5%, 45.61%±4.23% and 46.21%±2.24% (v/v), respectively. In the β-carotene bleaching test system, we tested series concentration of samples to show the antioxidant activities of the oil and its main components, whereas the concentrations providing 50% inhibition (IC50) values of R. officinalis L. essential oil, 1,8-cineole, α-pinene and β-pinene were 2.04%±0.42%, 4.05%±0.65%, 2.28%±0.23% and 2.56%±0.16% (v/v), respectively. In general, R. officinalis L. essential oil showed greater activity than its components in both systems, and the antioxidant activities of all the tested samples were mostly related to their concentrations. Antioxidant activities of the synthetic antioxidant, ascorbic acid and BHT, were also determined in parallel experiments as positive control.

  5. Male pheromone protein components activate female vomeronasal neurons in the salamander Plethodon shermani

    PubMed Central

    Wirsig-Wiechmann, Celeste R; Houck, Lynne D; Wood, Jessica M; Feldhoff, Pamela W; Feldhoff, Richard C

    2006-01-01

    Background The mental gland pheromone of male Plethodon salamanders contains two main protein components: a 22 kDa protein named Plethodon Receptivity Factor (PRF) and a 7 kDa protein named Plethodon Modulating Factor (PMF), respectively. Each protein component individually has opposing effects on female courtship behavior, with PRF shortening and PMF lengthening courtship. In this study, we test the hypothesis that PRF or PMF individually activate vomeronasal neurons. The agmatine-uptake technique was used to visualize chemosensory neurons that were activated by each protein component individually. Results Vomeronasal neurons exposed to agmatine in saline did not demonstrate significant labeling. However, a population of vomeronasal neurons was labeled following exposure to either PRF or PMF. When expressed as a percent of control level labeled cells, PRF labeled more neurons than did PMF. These percentages for PRF and PMF, added together, parallel the percentage of labeled vomeronasal neurons when females are exposed to the whole pheromone. Conclusion This study suggests that two specific populations of female vomeronasal neurons are responsible for responding to each of the two components of the male pheromone mixture. These two neural populations, therefore, could express different receptors which, in turn, transmit different information to the brain, thus accounting for the different female behavior elicited by each pheromone component. PMID:16553953

  6. Spectroscopic sensing of reflection optical activity in achiral AgGaS₂.

    PubMed

    Arteaga, Oriol

    2015-09-15

    Optical activity is a fundamental effect of electrodynamics that was discovered more than 200 years ago. While optical activity is typically recognized by the rotation of the polarization of light as it propagates through a bulk medium, in certain configurations, the specular reflection of light on the surface of a material is also sensitive to its optical activity. Here, we show that the ellipsometric analysis of the light reflected at the surface of a gyrotropic but achiral crystal of AgGaS(2) allows the spectroscopic determination of its optical activity above the bandgap, where transmission methods are not applicable. This is the first clear spectroscopic determination of reflection optical activity in a crystal, and the values obtained are, to the best of our knowledge, the largest ever reported for a natural material. We also demonstrate that normal incidence transmission and reflection measurements probe different aspects of optical activity.

  7. Active fiber optic technologies used as tamper-indicating devices

    SciTech Connect

    Horton, P.R.V.; Waddoups, I.G.

    1995-11-01

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.

  8. FRET-based optical assay for monitoring riboswitch activation.

    PubMed

    Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Davidson, Molly; Narayanan, Latha; Trott, Sandra; Chushak, Yaroslav G; Stone, Morley O

    2009-05-11

    Riboswitches are regulatory RNAs located in the 5'-untranslated region of mRNA sequences that recognize and bind to small molecules and regulate the expression of downstream genes. Creation of synthetic riboswitches to novel ligands depends on the ability to monitor riboswitch activation in the presence of analyte. In our work, we have coupled a synthetic riboswitch to an optical reporter assay based on fluorescence resonance energy transfer (FRET) between two genetically encoded fluorescent proteins. The theophylline-sensitive riboswitch was placed upstream of the Tobacco Etch Virus (TEV) protease coding sequence. Our FRET construct was composed of eGFP and a nonfluorescent yellow fluorescent protein mutant called REACh (for resonance energy-accepting chromoprotein) connected with a peptide linker containing a TEV protease cleavage site. Addition of theophylline to the E. coli cells activates the riboswitch and initiates the translation of mRNA. Synthesized protease cleaves the linker in the FRET-based fusion protein causing a change in the fluorescence signal. By this method, we observed an 11-fold increase in cellular extract fluorescence in the presence of theophylline. The advantage of using an eGFP-REACh pair is the elimination of acceptor fluorescence. This leads to an improved detection of FRET via better signal-to-noise ratio, allowing us to monitor riboswitch activation in a wide range of analyte concentrations from 0.01 to 2.5 mM.

  9. Lymphocyte Activation Dynamics Is Shaped by Hereditary Components at Chromosome Region 17q12-q21

    PubMed Central

    Carreras-Sureda, Amado; Rubio-Moscardo, Fanny; Olvera, Alex; Argilaguet, Jordi; Kiefer, Kerstin; Mothe, Beatriz; Meyerhans, Andreas; Brander, Christian

    2016-01-01

    Single nucleotide polymorphisms (SNPs) located in the chromosome region 17q12-q21 are risk factors for asthma. Particularly, there are cis-regulatory haplotypes within this region that regulate differentially the expression levels of ORMDL3, GSDMB and ZPBP2 genes. Remarkably, ORMDL3 has been shown to modulate lymphocyte activation parameters in a heterologous expression system. In this context, it has been shown that Th2 and Th17 cytokine production is affected by SNPs in this region. Therefore, we aim to assess the impact of hereditary components within region 17q12-q21 on the activation profile of human T lymphocytes, focusing on the haplotype formed by allelic variants of SNPs rs7216389 and rs12936231. We measured calcium influx and activation markers, as well as the proliferation rate upon T cell activation. Haplotype-dependent differences in mRNA expression levels of IL-2 and INF-γ were observed at early times after activation. In addition, the allelic variants of these SNPs impacted on the extent of calcium influx in resting lymphocytes and altered proliferation rates in a dose dependent manner. As a result, the asthma risk haplotype carriers showed a lower threshold of saturation during activation. Finally, we confirmed differences in activation marker expression by flow cytometry using phytohemagglutinin, a strong polyclonal stimulus. Altogether, our data suggest that the genetic component of pro-inflammatory pathologies present in this chromosome region could be explained by different T lymphocyte activation dynamics depending on individual allelic heredity. PMID:27835674

  10. Water Extract of Ashwagandha Leaves Has Anticancer Activity: Identification of an Active Component and Its Mechanism of Action

    PubMed Central

    Gao, Ran; Shah, Navjot; Widodo, Nashi; Nakamoto, Tomoko; Ishida, Yoshiyuki; Terao, Keiji; Kaul, Sunil C.

    2013-01-01

    Background Cancer is a leading cause of death accounting for 15-20% of global mortality. Although advancements in diagnostic and therapeutic technologies have improved cancer survival statistics, 75% of the world population live in underdeveloped regions and have poor access to the advanced medical remedies. Natural therapies hence become an alternative choice of treatment. Ashwagandha, a tropical herb used in Indian Ayurvedic medicine, has a long history of its health promoting and therapeutic effects. In the present study, we have investigated an anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX). Methodology/Principal Findings Anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX) was detected by in vitro and in vivo assays. Bioactivity-based size fractionation and NMR analysis were performed to identify the active anticancer component(s). Mechanism of anticancer activity in the extract and its purified component was investigated by biochemical assays. We report that the ASH-WEX is cytotoxic to cancer cells selectively, and causes tumor suppression in vivo. Its active anticancer component was identified as triethylene glycol (TEG). Molecular analysis revealed activation of tumor suppressor proteins p53 and pRB by ASH-WEX and TEG in cancer cells. In contrast to the hypophosphorylation of pRB, decrease in cyclin B1 and increase in cyclin D1 in ASH-WEX and TEG-treated cancer cells (undergoing growth arrest), normal cells showed increase in pRB phosphorylation and cyclin B1, and decrease in cyclin D1 (signifying their cell cycle progression). We also found that the MMP-3 and MMP-9 that regulate metastasis were down regulated in ASH-WEX and TEG-treated cancer cells; normal cells remained unaffected. Conclusion We provide the first molecular evidence that the ASH-WEX and TEG have selective cancer cell growth arrest activity and hence may offer natural and economic resources for anticancer medicine. PMID:24130852

  11. Raman correlation spectroscopy: A feasibility study of a new optical correlation technique and development of multi-component nanoparticles using the reprecipitation method

    NASA Astrophysics Data System (ADS)

    Nishida, Maki

    The feasibility of Raman correlation spectroscopy (RCS) is investigated as a new temporal optical fluctuation spectroscopy in this dissertation. RCS analyzes the correlations of the intensity fluctuations of Raman scattering from particles in a suspension that undergo Brownian motion. Because each Raman emission line arises from a specific molecular bond, the RCS method could yield diffusion behavior of specific chemical species within a dispersion. Due to the nature of Raman scattering as a coherent process, RCS could provide similar information as acquired in dynamic light scattering (DLS) and be practical for various applications that requires the chemical specificity in dynamical information. The theoretical development is discussed, and four experimental implementations of this technique are explained. The autocorrelation of the intensity fluctuations from a beta-carotene solution is obtained using the some configurations; however, the difficulty in precise alignment and weak nature of Raman scattering prevented the achievement of high sensitivity and resolution. Possible fluctuations of the phase of Raman scattering could also be affecting the results. A possible explanation of the observed autocorrelation in terms of number fluctuations of particles is also examined to test the feasibility of RCS as a new optical characterization method. In order to investigate the complex systems for which RCS would be useful, strategies for the creation of a multicomponent nanoparticle system are also explored. Using regular solution theory along with the concept of Hansen solubility parameters, an analytical model is developed to predict whether two or more components will form single nanoparticles, and what effect various processing conditions would have. The reprecipitation method was used to demonstrate the formation of the multi-component system of the charge transfer complex perylene:TCNQ (tetracyanoquinodimethane) and the active pharmaceutical ingredient cocrystal

  12. Analysis of active components in Salvia miltiorrhiza injection based on vascular endothelial cell protection.

    PubMed

    Shen, Jie; Yang, Kai; Sun, Caihua; Zheng, Minxia

    2014-09-01

    Correlation analysis based on chromatograms and pharmacological activities is essential for understanding the effective components in complex herbal medicines. In this report, HPLC and measurement of antioxidant properties were used to describe the active ingredients of Salvia miltiorrhiza injection (SMI). HPLC results showed that tanshinol, protocatechuic aldehyde, rosmarinic acid, salvianolic acid B, protocatechuic acid and their metabolites in rat serum may contribute to the efficacy of SMI. Assessment of antioxidant properties indicated that differences in the composition of serum powder of SMI caused differences in vascular endothelial cell protection. When bivariate correlation was carried out it was found that salvianolic acid B, tanshinol and protocatechuic aldehyde were active components of SMI because they were correlated to antioxidant properties.

  13. Numerical investigation of acoustic field in enclosures: Evaluation of active and reactive components of sound intensity

    NASA Astrophysics Data System (ADS)

    Meissner, Mirosław

    2015-03-01

    The paper focuses on a theoretical description and numerical evaluation of active and reactive components of sound intensity in enclosed spaces. As the study was dedicated to low-frequency room responses, a modal expansion of the sound pressure was used. Numerical simulations have shown that the presence of energy vortices whose size and distribution depend on the character of the room response is a distinctive feature of the active intensity field. When several modes with frequencies close to a source frequency are excited, the vortices within the room are positioned irregularly. However, if the response is determined by one or two dominant modes, a regular distribution of vortices in the room can be observed. The irrotational component of the active intensity was found using the Helmholtz decomposition theorem. As was evidenced by numerical simulations, the suppression of the vortical flow of sound energy in the nearfield permits obtaining a clear image of the sound source.

  14. Identification of volatile components in Phyllanthus emblica L. and their antimicrobial activity.

    PubMed

    Liu, Xiaoli; Zhao, Mouming; Luo, Wei; Yang, Bao; Jiang, Yueming

    2009-04-01

    The volatile components and in vitro antimicrobial activities of Emblica (Phyllanthus emblica L.) essential oils (EOs) obtained by hydrodistillation (HD-EO) and supercritical fluid extraction (SFE-EO) were investigated. The compositions of volatile compounds in these oils were tentatively determined by gas chromatography-mass spectrometry. The antimicrobial activites of these two extracts were investigated with microbiological tests against Gram-positive and Gram-negative bacteria and three pathogenic fungi. The main components of both oils were beta-caryophyllene, beta-bourbonene, 1-octen-3-ol, thymol, and methyleugenol. Both essential oils showed a broad spectrum of antimicrobial activity against all the tested microorganisms. Gram-positive bacteria were more sensitive to the investigated oils than Gram-negative bacteria. SFE-EO exhibited a higher antifungal activity compared to HD-EO.

  15. Rapid optical determination of β-lactamase and antibiotic activity

    PubMed Central

    2014-01-01

    Background The absence of rapid tests evaluating antibiotic susceptibility results in the empirical prescription of antibiotics. This can lead to treatment failures due to escalating antibiotic resistance, and also furthers the emergence of drug-resistant bacteria. This study reports a rapid optical method to detect β-lactamase and thereby assess activity of β-lactam antibiotics, which could provide an approach for targeted prescription of antibiotics. The methodology is centred on a fluorescence quenching based probe (β-LEAF – β-Lactamase Enzyme Activated Fluorophore) that mimics the structure of β-lactam antibiotics. Results The β-LEAF assay was performed for rapid determination of β-lactamase production and activity of β-lactam antibiotic (cefazolin) on a panel of Staphylococcus aureus ATCC strains and clinical isolates. Four of the clinical isolates were determined to be lactamase producers, with the capacity to inactivate cefazolin, out of the twenty-five isolates tested. These results were compared against gold standard methods, nitrocefin disk test for β-lactamase detection and disk diffusion for antibiotic susceptibility, showing results to be largely consistent. Furthermore, in the sub-set of β-lactamase producers, it was demonstrated and validated that multiple antibiotics (cefazolin, cefoxitin, cefepime) could be assessed simultaneously to predict the antibiotic that would be most active for a given bacterial isolate. Conclusions The study establishes the rapid β-LEAF assay for β-lactamase detection and prediction of antibiotic activity using S. aureus clinical isolates. Although the focus in the current study is β-lactamase-based resistance, the overall approach represents a broad diagnostic platform. In the long-term, these studies form the basis for the development of assays utilizing a broader variety of targets, pathogens and drugs. PMID:24708478

  16. Drug target identification using network analysis: Taking active components in Sini decoction as an example.

    PubMed

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-20

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  17. Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction

    PubMed Central

    Kaul, Sunil C.; Wadhwa, Renu; Yanagisawa, Masashi; Urade, Yoshihiro

    2017-01-01

    Insomnia is the most common sleep complaint which occurs due to difficulty in falling asleep or maintaining it. Most of currently available drugs for insomnia develop dependency and/or adverse effects. Hence natural therapies could be an alternative choice of treatment for insomnia. The root or whole plant extract of Ashwagandha (Withania somnifera) has been used to induce sleep in Indian system of traditional home medicine, Ayurveda. However, its active somnogenic components remain unidentified. We investigated the effect of various components of Ashwagandha leaf on sleep regulation by oral administration in mice. We found that the alcoholic extract that contained high amount of active withanolides was ineffective to induce sleep in mice. However, the water extract which contain triethylene glycol as a major component induced significant amount of non-rapid eye movement sleep with slight change in rapid eye movement sleep. Commercially available triethylene glycol also increased non-rapid eye movement sleep in mice in a dose-dependent (10–30 mg/mouse) manner. These results clearly demonstrated that triethylene glycol is an active sleep-inducing component of Ashwagandha leaves and could potentially be useful for insomnia therapy. PMID:28207892

  18. Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction.

    PubMed

    Kaushik, Mahesh K; Kaul, Sunil C; Wadhwa, Renu; Yanagisawa, Masashi; Urade, Yoshihiro

    2017-01-01

    Insomnia is the most common sleep complaint which occurs due to difficulty in falling asleep or maintaining it. Most of currently available drugs for insomnia develop dependency and/or adverse effects. Hence natural therapies could be an alternative choice of treatment for insomnia. The root or whole plant extract of Ashwagandha (Withania somnifera) has been used to induce sleep in Indian system of traditional home medicine, Ayurveda. However, its active somnogenic components remain unidentified. We investigated the effect of various components of Ashwagandha leaf on sleep regulation by oral administration in mice. We found that the alcoholic extract that contained high amount of active withanolides was ineffective to induce sleep in mice. However, the water extract which contain triethylene glycol as a major component induced significant amount of non-rapid eye movement sleep with slight change in rapid eye movement sleep. Commercially available triethylene glycol also increased non-rapid eye movement sleep in mice in a dose-dependent (10-30 mg/mouse) manner. These results clearly demonstrated that triethylene glycol is an active sleep-inducing component of Ashwagandha leaves and could potentially be useful for insomnia therapy.

  19. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    NASA Astrophysics Data System (ADS)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  20. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  1. To ~P or Not to ~P? Non-canonical activation by two-component response regulators

    PubMed Central

    Desai, Stuti K.; Kenney, Linda J.

    2016-01-01

    Summary Bacteria sense and respond to their environment through the use of two-component regulatory systems. The ability to adapt to a wide range of environmental stresses is directly related to the number of two-component systems an organism possesses. Recent advances in this area have identified numerous variations on the archetype systems that employ a sensor kinase and a response regulator. It is now evident that many orphan regulators that lack cognate kinases do not rely on phosphorylation for activation and new roles for unphosphorylated response regulators have been identified. The significance of recent findings and suggestions for further research are discussed. PMID:27656860

  2. Anticancer activity of essential oils and their chemical components - a review

    PubMed Central

    Bayala, Bagora; Bassole, Imaël HN; Scifo, Riccardo; Gnoula, Charlemagne; Morel, Laurent; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    Essential oils are widely used in pharmaceutical, sanitary, cosmetic, agriculture and food industries for their bactericidal, virucidal, fungicidal, antiparasitical and insecticidal properties. Their anticancer activity is well documented. Over a hundred essential oils from more than twenty plant families have been tested on more than twenty types of cancers in last past ten years. This review is focused on the activity of essential oils and their components on various types of cancers. For some of them the mechanisms involved in their anticancer activities have been carried out. PMID:25520854

  3. Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania, their mitochondria and other microorganisms.

    PubMed

    Monzote, Lianet; García, Marley; Pastor, Jacinta; Gil, Lizette; Scull, Ramón; Maes, Louis; Cos, Paul; Gille, Lars

    2014-01-01

    Chenopodium ambrosioides is an aromatic herb used by native people to treat parasitic diseases. The aim of this work is to compare the in vitro anti-leishmanial activity of the essential oil (EO) from C. ambrosioides and its major components (ascaridole, carvacrol and caryophyllene oxide) and study their mechanism of action and activity against a panel of microorganism. Antileishmanial activity and cytotoxicity of the EO and major components was study. In addition, experiments to elucidate the mechanism of action were perform and activities against other microorganisms (bacteria, fungi and protozoa) were evaluate. All products were active against promastigote and amastigote forms of Leishmania. Ascaridole exhibited the better antileishmanial activity and the EO the highest selectivity index. The exploration of the mechanism suggests that the products cause a breakdown of mitochondrial membrane potential and a modification of redox indexes. Only EO showed antiprotozoal effect against Plasmodium falciparum and Trypanosoma brucei; while no activity against bacteria and fungi was observed. Our results demonstrate the potentialities of EO in cellular and molecular system, which could be consider in future studies to develop new antileishmanial drugs with a wide anti-parasitic spectrum.

  4. Active components of common traditional Chinese medicine decoctions have antioxidant functions.

    PubMed

    Guo, K J; Xu, S F; Yin, P; Wang, W; Song, X Z; Liu, F H; Xu, J Q; Zoccarato, I

    2011-10-01

    Many traditional Chinese medicine (TCM) decoctions are proven to have multiple functions in animal production. These decoctions are seldom recognized by the international scientific community because the mechanisms of action are not clearly elucidated. According to TCM theory, Cortex Phellodendri (COP), Rhizoma Atractylodes (RA), Agastache Rugosa (AR), and Gypsum Fibrosum (GF) can be used to formulate a medicinal compound that prevents or cures animal disease caused by heat stress. The aim of this research was to study the regulatory functions of the active components of TCM and to elucidate the effects of different TCM decoctions on antioxidant activity and lipid peroxide content, using in vitro and in vivo models of heat stress. For in vitro experiments, intestinal crypt-like epithelial cell line-6 (IEC-6) cells were employed to evaluate the effects of the active components of COP, RA, AR, and GF. For in vivo experiments, forty-eight 2-mo-old Chinese experimental mini-pigs (7.20 ± 0.02 kg) were randomly assigned to 4 groups: a normal-temperature group (NTG); a high-temperature group (HTG); HTG treated with COP, RA, AR, and GF (1:1:1:1, TCM1); and HTG treated with COP, RA, AR, and GF (1:1:1:0.5, TCM2). Results showed that the active components of the COP, RA, AR, and GF increased (P < 0.05) the proliferation and viability of heat-stressed IEC-6 cells and that the most effective treatment doses of COP alkaloid, RA Aetherolea, Herba Agastachis Aetherolea, and GF water extract were 200, 100, 100, and 200 µg/mL, respectively. All 4 active components increased (P < 0.05) superoxide dismutase, glutathione peroxidase activities, and glutathione content, and decreased (P < 0.05) malondialdehyde content with respect to the heat-stressed group to concentrations similar to those seen in NTG. In vivo experiments demonstrated that TCM1 and TCM2 improved (P < 0.05) the poor growth performance seen in HTG pigs. The superoxide dismutase, glutathione peroxidase activities, and

  5. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria.

    PubMed

    Shan, Bin; Cai, Yi-Zhong; Brooks, John D; Corke, Harold

    2007-07-11

    Cinnamomum burmannii Blume (cinnamon stick) from Indonesia is a little-investigated spice. In this study, the antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of cinnamon stick extract were evaluated against five common foodborne pathogenic bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella anatum). Cinnamon stick extract exhibited significant antibacterial properties. Major compounds in cinnamon stick were tentatively identified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC-MS) as a predominant volatile oil component ((E)-cinnamaldehyde) and several polyphenols (mainly proanthocyanidins and (epi)catechins). Both (E)-cinnamaldehyde and proanthocyanidins significantly contributed to the antibacterial properties. Additionally, scanning electron microscopy was used to observe morphological changes of bacteria treated with the crude extract of cinnamon stick and its major components. This study suggests that cinnamon stick and its bioactive components have potential for application as natural food preservatives.

  6. Multilayer Active Control For Structural Damping And Optical-Path Regulation

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul H.; Spanos, John T.; Fanson, James L.

    1995-01-01

    Two active-control concepts incorporated into system for suppression of vibrations in truss structure and regulation of length of optical path on structure to nanometer level. Optical-path-length-control subsystem contains two feedback control loops to obtain active damping in wide amplitude-and-frequency range. Concept described in more detail in number of previous articles, including "Stabilizing Optical-Path Length on a Vibrating Structure" (NPO-19040), "Controllable Optical Delay Line for Stellar Interferometry" (NPO-18686), "Test Bed for Control of Optical-Path Lengths" (NPO-18487).

  7. The Effects of Training on the Time Components of the Left Ventricle, and Cardiac Time Components: Sedentary versus Active Individuals.

    ERIC Educational Resources Information Center

    Plowman, Sharon Ann

    A review of previous research was completed to determine (a) the response of the cardiac time components of the left ventricle to varying types and intensities of training programs, (b) the probable physiological explanations for these responses, and (c) the significance of the changes which did or did not occur. It was found that, at rest,…

  8. The Splitting of Double-component Active Asteroid P/2016 J1 (PANSTARRS)

    NASA Astrophysics Data System (ADS)

    Moreno, F.; Pozuelos, F. J.; Novaković, B.; Licandro, J.; Cabrera-Lavers, A.; Bolin, Bryce; Jedicke, Robert; Gladman, Brett J.; Bannister, Michele T.; Gwyn, Stephen D. J.; Vereš, Peter; Chambers, Kenneth; Chastel, Serge; Denneau, Larry; Flewelling, Heather; Huber, Mark; Schunová-Lilly, Eva; Magnier, Eugene; Wainscoat, Richard; Waters, Christopher; Weryk, Robert; Farnocchia, Davide; Micheli, Marco

    2017-03-01

    We present deep imaging observations, orbital dynamics, and dust-tail model analyses of the double-component asteroid P/2016 J1 (J1-A and J1-B). The observations were acquired at the Gran Telescopio Canarias (GTC) and the Canada–France–Hawaii Telescope (CFHT) from mid-March to late July of 2016. A statistical analysis of backward-in-time integrations of the orbits of a large sample of clone objects of P/2016 J1-A and J1-B shows that the minimum separation between them occurred most likely ∼2300 days prior to the current perihelion passage, i.e., during the previous orbit near perihelion. This closest approach was probably linked to a fragmentation event of their parent body. Monte Carlo dust-tail models show that those two components became active simultaneously ∼250 days before the current perihelion, with comparable maximum loss rates of ∼0.7 and ∼0.5 kg s‑1, and total ejected masses of 8 × 106 and 6 × 106 kg for fragments J1-A and J1-B, respectively. Consequently, the fragmentation event and the present dust activity are unrelated. The simultaneous activation times of the two components and the fact that the activity lasted 6–9 months or longer, strongly indicate ice sublimation as the most likely mechanism involved in the dust emission process.

  9. Osteoblasts Proliferation and Differentiation Stimulating Activities of the Main Components of Epimedii folium

    PubMed Central

    Liu, Mingming; Xu, Haiyan; Ma, Yong; Cheng, Jian; Hua, Zhen; Huang, Guicheng

    2017-01-01

    Background: Osteoporosis is a disease of bones that leads to an increased risk of fracture. Epimedii Folium is commonly used for treating bone fractures and joint diseases for thousands of years in China. Methods: This study was aimed to screen active components, which might have the potency to stimulate osteoblasts proliferation and differentiation in Epimedii Folium. An HPLC method was established to analyze the main components in Epimedii Folium. The MTT and ALP methods were utilized for the assay of osteoblasts proliferation and differentiation activity. Bavachin, a flavonoid compound was treated as the positive control. Results: Totally eight compounds have been identified by comparing their retention time with correspondent standard substances. Icariside I and icariside II significantly stimulated cell proliferation and osteoblasts differentiation. All these compounds were found with a characterized flavonoid structure in each of their molecule backbones. Conclusion: These results lead to a hypothesis that flavonoid monoglycoside structure might be crucial to exhibit the activity. The structure–effect relationship of these compounds with flavonoid monoglycoside structure in mouse primary calvarial osteoblasts needs to be explored in further research. SUMMARY Eight compounds were identified by comparing their retention time with correspondent standard substances.Icariside I and icariside II significantly stimulated cell proliferation and osteoblasts differentiation.Flavonoid monoglycoside structure might be crucial to exhibit the osteoblasts proliferation and differentiation activity. Effects of the main components of Epimedii Folium on osteoblasts proliferation after treating 48 h. Abbreviations used: HPLC: High performance liquid chromatography, MTT: Methylthiazolyldiphenyl - tetrazolium bromide, ALP: Alkaline phosphatase PMID:28216889

  10. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam

    SciTech Connect

    Khonina, S. N. Savelyev, D. A.

    2013-10-15

    Diffraction of uniformly polarized laser beams with vortex phase singularity is theoretically analyzed using the plane wave expansion. It is shown that for a high numerical aperture, an intense longitudinal electric field component is formed on the optical axis in this case. It is numerically demonstrated that an analogous effect is ensured for diffraction of a conventional Gaussian beam from asymmetric binary axicons. The field intensity on the optical axis can be varied either by rotating the optical element or by changing the direction of polarization of radiation.

  11. Optical selection, manipulation, trapping, and activation of a microgear structure for applications in micro-optical-electromechanical systems.

    PubMed

    Gauthier, R C; Tait, R N; Mende, H; Pawlowicz, C

    2001-02-20

    The optical processes involved in laser trapping and optical manipulation are explored theoretically and experimentally as a means of activating a micrometer-size gear structure. We modeled the structure by using an enhanced ray-optics technique, and results indicate that the torque present on the gear can induce the gear to rotate about the gear-arm plane center with light as the driving energy source. We confirmed these findings experimentally by using gears manufactured with conventional semiconductor techniques and from a layer of polyimide. It is expected that such a simple gear design activated by use of light could lead to an entire new class of micro-optical-electromechanical systems.

  12. Algorithms and uncertainties for the determination of multispectral irradiance components and aerosol optical depth from a shipborne rotating shadowband radiometer

    NASA Astrophysics Data System (ADS)

    Witthuhn, Jonas; Deneke, Hartwig; Macke, Andreas; Bernhard, Germar

    2017-03-01

    The 19-channel rotating shadowband radiometer GUVis-3511 built by Biospherical Instruments provides automated shipborne measurements of the direct, diffuse and global spectral irradiance components without a requirement for platform stabilization. Several direct sun products, including spectral direct beam transmittance, aerosol optical depth, Ångström exponent and precipitable water, can be derived from these observations. The individual steps of the data analysis are described, and the different sources of uncertainty are discussed. The total uncertainty of the observed direct beam transmittances is estimated to be about 4 % for most channels within a 95 % confidence interval for shipborne operation. The calibration is identified as the dominating contribution to the total uncertainty. A comparison of direct beam transmittance with those obtained from a Cimel sunphotometer at a land site and a manually operated Microtops II sunphotometer on a ship is presented. Measurements deviate by less than 3 and 4 % on land and on ship, respectively, for most channels and in agreement with our previous uncertainty estimate. These numbers demonstrate that the instrument is well suited for shipborne operation, and the applied methods for motion correction work accurately. Based on spectral direct beam transmittance, aerosol optical depth can be retrieved with an uncertainty of 0.02 for all channels within a 95 % confidence interval. The different methods to account for Rayleigh scattering and gas absorption in our scheme and in the Aerosol Robotic Network processing for Cimel sunphotometers lead to minor deviations. Relying on the cross calibration of the 940 nm water vapor channel with the Cimel sunphotometer, the column amount of precipitable water can be estimated with an uncertainty of ±0.034 cm.

  13. Active alignment and vibration control system for a large airborne optical system

    NASA Astrophysics Data System (ADS)

    Kienholz, David A.

    2000-04-01

    Airborne optical or electro-optical systems may be too large for all elements to be mounted on a single integrating structure, other than the aircraft fuselage itself. An active system must then be used to maintain the required alignment between elements. However the various smaller integrating structures (benches) must still be isolated from high- frequency airframe disturbances that could excite resonances outside the bandwidth of the alignment control system. The combined active alignment and vibration isolation functions must be performed by flight-weight components, which may have to operate in vacuum. A testbed system developed for the Air Force Airborne Laser program is described. The payload, a full-scale 1650-lb simulated bench, is mounted in six degrees- of-freedom to a vibrating platform by a set of isolator- actuators. The mounts utilize a combination of pneumatics and magnetics to perform the dual functions of low-frequency alignment and high-frequency isolation. Test results are given and future directions for development are described.

  14. Antiadhesion and antibiofilm activities of high molecular weight coffee components against Streptococcus mutans.

    PubMed

    Stauder, Monica; Papetti, Adele; Mascherpa, Dora; Schito, Anna Maria; Gazzani, Gabriella; Pruzzo, Carla; Daglia, Maria

    2010-11-24

    In previous studies we demonstrated that green and roasted coffee contains low molecular weight (LMW) compounds capable of inhibiting the ability of Streptococcus mutans, the major causative agent of human dental caries, to adhere to hydroxyapatite (HA) beads. This study addressed the ability of the whole high molecular weight coffee fraction (cHMW) and of its melanoidin and non-melanoidin components (GFC1-5), applied at concentrations that occur in coffee beverages, to (i) inhibit S. mutans growth; (ii) affect S. mutans sucrose-dependent adhesion to and detachment from saliva-coated HA beads (sHA); and (iii) inhibit biofilm development on microtiter plates. The results indicated that only cHMW is endowed with antimicrobial activity. The cHMW fraction and each of the five GFC components inhibited S. mutans adhesion, the strongest effect being exerted by cHMW (91%) and GFC1 (88%). S. mutans detachment from sHA was four times greater (∼20%) with cHMW and the GFC1 and GFC4 melanoidins than with controls. Finally, biofilm production by S. mutans was completely abolished by cHMW and was reduced by 20% by the melanoidin components GFC2 and GFC4 and by the non-melanoidin component GFC5 compared with controls. Altogether these findings show that coffee beverage contains both LMW compounds and HMW melanoidin and non-melanoidin components with a strong ability to interfere in vitro with the S. mutans traits relevant for cariogenesis.

  15. Ulysses observations of electron and proton components in a magnetic cloud and related wave activity

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Fainberg, J.; Stone, R. G.; MacDowall, R. J.; Phillips, J. L.; Balogh, A.

    1995-01-01

    In addition to a smooth rotation of the magnetic field vector, magnetic clouds have a low proton temperature T(sub p). Their expansion in the solar wind leads to depletion and therefore the ion component cools down. It has been shown recently that the electron component in magnetic clouds behaves differently: when the cloud expands, electron temperature Te anti correlates with density and therefore Te increases in the cloud, creating favorable conditions for the rise of ion-acoustic waves. For the magnetic cloud observed by Ulysses on June 10 - 12, 1993 at 4.64 AU at S 32.5 deg, we present observations for both electron and proton components and related plasma wave activity. Our results confirm the anti correlation between T(sub e) and electron density and also exhibit a high ratio of T(sub e)/T(sub P) in the cloud. Since Landau damping is not effective for T(sub e)/T(sub p) much greater than 1, Doppler shifted ion acoustic waves are expected in the cloud. Calculation of ion acoustic wave frequencies in the cloud and comparison with observed wave activity confirm this expectation. As in our previous work, we show that the electron component in the cloud obeys a polytropic law with gamma is less than 1 (gamma approximately equals 0.3-0.4). The dynamics of the magnetic cloud are determined to a large degree by the dominating electron pressure.

  16. The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity

    PubMed Central

    Yang, Hye Jin; Weon, Jin Bae; Lee, Bohyoung; Ma, Choong Je

    2011-01-01

    Background: Hwangryunhaedok-tang is a traditional herbal prescription that has sedative activity, hypotensive and anti-bacterial effects. Objective: In this study, we investigated the alteration of contents of components in Hwangryunhaedok-tang, antioxidant activity and neuroprotective activity by fermentation with Lactobacillus acidophilus KFRI 128. Materials and Methods: Contents of three marker compounds (geniposide, berberine and palmatine) and unknown compounds in the Hwangryunhaedok-tang (HR) and the fermented Hwangryunhaedok-tang (FHR) were measured and compared using the established high-performance liqued chromatograph coupled with a photodiode (HPLC-DAD) method. The antioxidant activity of HR and FHR were determined by DPPH free radical and hydrogen peroxide (H2O2) scavenging assay. Also, the neuroprotective activities of HR and FHR against glutamate-induced oxidative stress in a mouse hippocampal cell line (HT22) were evaluated by MTT assay. Results: The contents of geniposide and palmatine were decreased but the content of berberine was increased in the FHR. And the contents of unknown compounds (1), (2), (3), (4) and (5) in the HR were altered by fermentation. Electron donating activity (EDA, %) value of FHR was higher than HR for DPPH radical scavenging activity and H2O2 scavenging activity, respectively. In the MTT assay, FHR showed more potent neuroprotective activity than HR by 513.90%. Conclusion: The FHR using microorganism could convert compounds in HR and enhance the antioxidant and neuroprotective activity. PMID:21969791

  17. Quinic acid is a biologically active component of the Uncaria tomentosa extract C-Med 100.

    PubMed

    Akesson, Christina; Lindgren, Hanna; Pero, Ronald W; Leanderson, Tomas; Ivars, Fredrik

    2005-01-01

    We have previously reported that the C-Med 100 extract of the plant Uncaria tomentosa induces prolonged lymphocyte half life and hence increased spleen cell number in mice receiving the extract in their drinking water. Further, the extract induces cell proliferation arrest and inhibits activation of the transcriptional regulator nuclear factor kappaB (NF-kappaB) in vitro. We now report that mice exposed to quinic acid (QA), a component of this extract, had significantly increased number of spleen cells, thus recapitulating the in vivo biological effect of C-Med 100 exposure. Commercially supplied QA (H(+) form) did not, however, inhibit cell proliferation in vitro, while the ammonia-treated QA (QAA) was a potent inhibitor. Both QA and QAA inhibited NF-kappaB activity in exposed cells at similar concentrations. Thus, our present data identify QA as a candidate component for both in vivo and in vitro biological effects of the C-Med 100 extract.

  18. [Preliminary study on molluscicidal effect of active components from Centipeda minima].

    PubMed

    Ni, Hong; Ma, An-Ning; Zhang, Yun; Geng, Peng

    2009-08-01

    The active components from Centipeda minima were extracted by water or ethanol, and identified by FTIR spectroscopy and UV-visible spectrophotometer. The molluscicidal effect of aqueous extract and ethanol extract from Centipeda minima against Oncomelania hupensis was determined as referring to the WHO guidelines for laboratory molluscicidal test. Treated with over 2.0 g/L aqueous extract and ethanol extract for five days, the mortality of O. hupensis was up to 100%, and their LC50, for snails was 0.50 g/L and 0.62 g/L, respectively. The molluscicidal activity of aqueous extract was higher than that of ethanol extract. The main components of aqueous extract and ethanol extract were sesquiterpenes lactones and sterols.

  19. Principal component analysis of Birkeland currents determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Carter, J. A.; Korth, H.; Anderson, B. J.

    2015-12-01

    Principal component analysis is performed on Birkeland or field-aligned current (FAC) measurements from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. Principal component analysis (PCA) identifies the patterns in the FACs that respond coherently to different aspects of geomagnetic activity. The regions 1 and 2 current system is shown to be the most reproducible feature of the currents, followed by cusp currents associated with magnetic tension forces on newly reconnected field lines. The cusp currents are strongly modulated by season, indicating that their strength is regulated by the ionospheric conductance at the foot of the field lines. PCA does not identify a pattern that is clearly characteristic of a substorm current wedge. Rather, a superposed epoch analysis of the currents associated with substorms demonstrates that there is not a single mode of response, but a complicated and subtle mixture of different patterns.

  20. Application of chromatography technology in the separation of active components from nature derived drugs.

    PubMed

    Zhao, H-Y; Jiang, J-G

    2010-11-01

    Chromatography technology has been widely applied in various aspects of the pharmacy research on traditional Chinese medicine (TCM). This paper reviews literatures, published in the past decades, on the separation of active component from TCM using chromatography technology. Ultra-performance liquid chromatography (UPLC), high-speed counter-current chromatography (HSCCC), rapid resolution liquid chromatography (RRLC), supercritical fluid chromatography (SFC), affinity chromatography (AC), and bio-chromatography (BC) are introduced in detail. Compared to high performance of high-performance liquid chromatography (HPLC), analysis time and solvent loss are significantly reduced by UPLC with increase in resolution and sensitivity. Some ingredients from nature derived drugs can be separated more completely by HSCCC, which has remarkable characteristics such as low cost, simple operation and no pollution. Trace components from complex systems can be selectively and efficiently separated and purified by AC, This feature makes it effective in isolation and identification of active components of Chinese herbs. Interference of some impurities could be excluded by BC. Active ingredients that are difficult to be separated by normal method can be acquired by SFC. Currently, application of novel chromatography techniques in TCM is still in the exploratory stage and many problems, such as preparation of stationary phase and detection, need to be solved.