Science.gov

Sample records for active optical components

  1. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. Thermal, mechanical, and structural considerations leading to the design of the tray hardware are discussed. In general, changes in the retested component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials, multilayer optical interference filters, and extreme-infrared reflectivity of black paints show unexpected changes.

  2. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1991-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six-inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. The experimental results for those component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials and extreme-infrared reflectivity of black paints show unexpected changes.

  3. Low-power MOEMS components for active optical systems

    NASA Astrophysics Data System (ADS)

    Castracane, James; Yan, Dong; Madison, Seth; Xu, Bai

    2004-01-01

    The eventual, widespread insertion of Micro-Opto-Electro-Mechanical Systems (MOEMS) into the marketplace rests fundamentally on the ability to produce viable components that maximize optical performance while minimizing power consumption and size. In addition, the incorporation of optical reconfigurability into custom MOEMS devices offers an extra degree of freedom not possible with conventional components. Active control of surface topology allows for one component to perform multiple functions thus reducing cost and complexity. This paper will focus on the current status of the MOEMS research program at the University at Albany Institute for Materials" (UAIM) NanoFab 200 with several examples described to illustrate component and system development. In particular, among the MOEMS research portfolio at UAIM, the development of selected MOEMS-based, active optics will be discussed. This active control of diffraction and reflection forms the basis for the utility of such devices. Leveraging the extensive research expertise on the patented MEMS Compound Grating (MCG), emphasis will be placed on the extension of the approach to novel designs, materials and fabrication methods to yield low power, high performance prototypes. The main focus of this paper is on the development of a polymer version (including sacrificial layer, in some designs) of the MCG which allows for ease of fabrication and a reduced electrostatic actuation voltage. Following a system design effort, several generations of the component were fabricated to optimize the process flow. Component metrology, electromechanical characterization and initial results of optical tests will be reported. A second example presented is the design and prototype fabrication of a spring micrograting using a customized SOI process. This highly flexible component builds on the MCG concept and yields an order of magnitude reduction in actuation voltage. These examples will be presented against a backdrop of the broad UAIM

  4. Optical communication components

    NASA Astrophysics Data System (ADS)

    Eldada, Louay

    2004-03-01

    We review and contrast key technologies developed to address the optical components market for communication applications. We first review the component requirements from a network perspective. We then look at different material systems, compare their properties, and describe the functions achieved to date in each of them. The material systems reviewed include silica fiber, silica on silicon, silicon on insulator, silicon oxynitride, sol-gels, polymers, thin-film dielectrics, lithium niobate, indium phosphide, gallium arsenide, magneto-optic materials, and birefringent crystals. We then describe the most commonly used classes of optical device technology and present their pros and cons as well as the functions achieved to date in each of them. The technologies reviewed include passive, actuation, and active technologies. The passive technologies described include fused fibers, dispersion-compensating fiber, beam steering, Bragg gratings, diffraction gratings, holographic elements, thin-film filters, photonic crystals, microrings, and birefringent elements. The actuation technologies include thermo-optics, electro-optics, acousto-optics, magneto-optics, electroabsorption, liquid crystals, total internal reflection technologies, and mechanical actuation. The active technologies include heterostructures, quantum wells, rare-earth doping, dye doping, Raman amplification, and semiconductor amplification. We also investigate the use of different material systems and device technologies to achieve building-block functions, including lasers, amplifiers, detectors, modulators, polarization controllers, couplers, filters, switches, attenuators, isolators, circulators, wavelength converters, chromatic dispersion compensators, and polarization mode dispersion compensators. Some of the technologies presented are well established in the industry and in some cases have reached the commodity stage, others have recently become ready for commercial introduction, while some others

  5. Revealing Optical Components

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Optical Vector Analyzer (OVA) 1550 significantly reduces the time and cost of testing sophisticated optical components. The technology grew from the research Luna Technologies' Dr. Mark Froggatt conducted on optical fiber strain measurement while working at Langley Research Center. Dr. Froggatt originally developed the technology for non- destructive evaluation testing at Langley. The new technique can provide 10,000 independent strain measurements while adding less than 10 grams to the weight of the vehicle. The OVA is capable of complete linear characterization of single-mode optical components used in high- bit-rate applications. The device can test most components over their full range in less than 30 seconds, compared to the more than 20 minutes required by other testing methods. The dramatically shortened measurement time results in increased efficiency in final acceptance tests of optical devices, and the comprehensive data produced by the instrument adds considerable value for component consumers. The device eliminates manufacturing bottlenecks, while reducing labor costs and wasted materials during production.

  6. Investigation of the effects of long duration space exposure on active optical system components

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1994-01-01

    This experiment was exposed to the space environment for 6 years on the Long Duration Exposure Facility (LDEF). It investigated quantitatively the effects of the long-duration space exposure on the relevant performance parameters of a representative set of electron-optic system components, including lasers, radiation detectors, filters, modulators, windows, and other related components. It evaluated the results and implications of the measurements indicating real or suspected degradation mechanisms. This information will be used to establish guidelines for the selection and use of components for space-based, electro-optic systems.

  7. Remote sensing reflectance model of optically active components of turbid waters

    NASA Astrophysics Data System (ADS)

    Kutser, Tiit; Arst, Helgi

    1994-12-01

    A mathematical model that simulates the spectral curves of remote sensing reflectance is developed. The model is compared to measurements obtained from research vessel or boat in the Baltic Sea and Estonian lakes. The model simulates the effects of light backscattering from water and suspended matter, and the effects of its absorption due to water, phytoplankton, suspended matter and yellow substance. Measured by remote sensing spectral curves are compared by multiple of spectra obtained from model calculations to find the theoretical spectrum which is closest to experimental. It is assumed that in case of coincidence of the spectral curves concentrations of optically active substances in the model correspond to real ones. Preliminary testing of the model demonstrates that this model is useful for estimation of concentration of optically active substances in the waters of the Baltic Sea and Estonian lakes.

  8. Diamond turning microstructure optical components

    NASA Astrophysics Data System (ADS)

    Jiang, Wenda

    2009-05-01

    Microstructure optical components in the form of Fresnel, TIR, microgroove, micro lens array provide a lot design freedom for high compact optical systems. It is a key factor which enables the cutting edge technology for telecommunication, surveillance and high-definition display system. Therefore, the demand of manufacturing such element is rapidly increasing. These elements usually contain high precision, tiny structure and complex form, which have posed many new challenges for tooling, programming as well as ultra-precision machining. To cope with the fast development of the technology and meet the increasing demand of the market, we have developed our own manufacturing process to fabricate microstructure optical components by way of Diamond tuning, Shaping, Raster cutting, Slow Slide Servo (SSS), Diamond milling and Post polishing. This paper is to focus on how we employed these methods to produce complex prototype of microstructure optical components and precision mold inserts which either contains aspheric lens array or freeform V grooves. The high quality finish of these surfaces meets application requirements. Measurement results are presented. Advantages and disadvantages of these methods are compared and discussed in the paper.

  9. Advanced micromoulding of optical components

    NASA Astrophysics Data System (ADS)

    Bauer, Hans-Dieter; Ehrfeld, Wolfgang; Paatzsch, Thomas; Smaglinski, Ingo; Weber, Lutz

    1999-09-01

    There is a growing need for micro-optical components in the field of tele- and datacom applications. Such components have to be very precise and should be available in reasonable numbers. Microtechnology provides manufacturing techniques that fulfill both requirements. Using micro electro discharge machining, laser micromachining, ultra precision milling and deep lithography with subsequent electroforming methods, complex tools for the replication of highly precise plastic parts have been manufactured. In many cases a combination of methods enumerated above gives a tool which shows both functionality and cost-efficiency. As examples we present the realization of integrated-optical components with passive fiber-waveguide coupling used as components in optical networks and as velocity sensors for two-phase flows, like liquids containing small gas bubbles or particles. In the first case multimode 4 X 4 star couplers have been manufactured in a pilot series that show excess loss values below 3 dB and a uniformity better than 3 dB at 830 nm. This performance becomes possible by using a compression molding process. By stamping the microstructured mold into a semifinished PMMA plate exact replication of the molds as well as very low surface roughness of the waveguide side walls could be observed. In the second case the waveguide channels of the flow sensors show dimensions of between 20 micrometer and 100 micrometer and an aspect ratio of about 20. These structures have been replicated by injection molding of PMMA using variotherm process treatment with a cycle time of about 2 - 3 min.

  10. Advances in telecom and datacom optical components

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2001-07-01

    We review and contrast key technologies developed to address the optical components market for telecom and datacom applications. We first look at different material systems, compare their properties, and describe the functions achieved to date in each of them. The material systems reviewed include glass fiber, silica on silicon, silicon on insulator, silicon oxynitride, sol-gels, polymers, thin film dielectrics, lithium niobate, indium phosphide, gallium arsenide, magneto-optic materials, and birefringent crystals. We then look at the most commonly used classes of technology and present their pros and cons as well as the functions achieved to date in each. The technologies reviewed include passive, actuation, and active technologies. The passive technologies described include fused fibers, dispersion-compensating fiber, beam steering (e.g., AWG), Bragg gratings, diffraction gratings, holographic elements, thin film filters, photonic crystals, microrings, and birefringent elements. The actuation technologies include thermo-optics, electro-optics, acousto- optics, magneto-optics, liquid crystals, total internal reflection technologies (e.g., bubble technology), and mechanical actuation (e.g., moving fibers and MEMS). We finally describe active technologies including heterostructures, quantum wells, rare earth doping, and semiconductor optical amplifiers. We also investigate the use of different material systems and technologies to achieve building block functions including lasers, amplifiers, detectors, modulators, polarization controllers, couplers, filters, switches, attenuators, nonreciprocal elements (Faraday rotators or nonreciprocal phase shifters) for isolators and circulators, wavelength converters, and dispersion compensators.

  11. Optical components damage parameters database system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong

    2012-10-01

    Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.

  12. Optical actuation of micromechanical components

    SciTech Connect

    Koehler, D.R.

    1997-09-01

    Electromagnetic momentum is a fundamental physical concept that has been demonstrated experimentally and incorporated theoretically in various areas of physics. In spite of the weak character of the electromagnetic momentum transfer process, the combination of latter-day, high-energy laser light sources and microminiature mechanical elements suggested the possibility of optical excitation of these structures. One outcome of the present theoretical analysis is the prediction of an optopiezic effect wherein electromagnetic momentum causes a mechanical stress on a dielectric layer. If this is a valid prediction, such an optically induced, expansional pressure effect could be utilized as an extensional optical-to-mechanical transduction means. {copyright} 1997 Optical Society of America

  13. Fabrication of an optical component

    DOEpatents

    Nichols, Michael A.; Aikens, David M.; Camp, David W.; Thomas, Ian M.; Kiikka, Craig; Sheehan, Lynn M.; Kozlowski, Mark R.

    2000-01-01

    A method for forming optical parts used in laser optical systems such as high energy lasers, high average power lasers, semiconductor capital equipment and medical devices. The optical parts will not damage during the operation of high power lasers in the ultra-violet light range. A blank is first ground using a fixed abrasive grinding method to remove the subsurface damage formed during the fabrication of the blank. The next step grinds and polishes the edges and forms bevels to reduce the amount of fused-glass contaminants in the subsequent steps. A loose abrasive grind removes the subsurface damage formed during the fixed abrasive or "blanchard" removal process. After repolishing the bevels and performing an optional fluoride etch, the surface of the blank is polished using a zirconia slurry. Any subsurface damage formed during the loose abrasive grind will be removed during this zirconia polish. A post polish etch may be performed to remove any redeposited contaminants. Another method uses a ceria polishing step to remove the subsurface damage formed during the loose abrasive grind. However, any residual ceria may interfere with the optical properties of the finished part. Therefore, the ceria and other contaminants are removed by performing either a zirconia polish after the ceria polish or a post ceria polish etch.

  14. Optical access: networks and components (overview)

    NASA Astrophysics Data System (ADS)

    Mynbaev, Djafar K.

    2004-09-01

    The exponential gtowth of traffic delivered to an individual customer both for business and personal needs puts tremendous pressure on the telecommunications networks. Because the development of the long-haul and metro networks has advanced rapidly and their capacity much eceeds demand, tremendous pressure now falls in the local networks to provide customers with access to the global telecom infrastructure. Building a broadband access network enabling fast delivery of high-volume traffic is the current task of network operators. A brief review of broadband access networks brings us to the conclusion that only wired optical networks can serve as an immediate and future solution to the "last-mile" problem. After discussin goptical access network classification, we focus mainly on passive optical networks (PON) because PON is a major technology today. From the network standpoint, we discuss the principle of PON operation, architectures, topologies, protocols and standards, design issues, and network management and services. We also discuss the main problems with PON and the use of WDM technology. From the hardware standpoint, we consider both active and passive components. We analyze the structure and elements of these components, including their technical characteristics.

  15. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  16. Two-Photon Compatibility and Single-Voxel, Single-Trial Detection of Subthreshold Neuronal Activity by a Two-Component Optical Voltage Sensor

    PubMed Central

    Fink, Ann E.; Bender, Kevin J.; Trussell, Laurence O.; Otis, Thomas S.; DiGregorio, David A.

    2012-01-01

    Minimally invasive measurements of neuronal activity are essential for understanding how signal processing is performed by neuronal networks. While optical strategies for making such measurements hold great promise, optical sensors generally lack the speed and sensitivity necessary to record neuronal activity on a single-trial, single-neuron basis. Here we present additional biophysical characterization and practical improvements of a two-component optical voltage sensor (2cVoS), comprised of the neuronal tracer dye, DiO, and dipicrylamine (DiO/DPA). Using laser spot illumination we demonstrate that membrane potential-dependent fluorescence changes can be obtained in a wide variety of cell types within brain slices. We show a correlation between membrane labeling and the sensitivity of the magnitude of fluorescence signal, such that neurons with the brightest membrane labeling yield the largest ΔF/F values per action potential (AP; ∼40%). By substituting a blue-shifted donor for DiO we confirm that DiO/DPA works, at least in part, via a Förster resonance energy transfer (FRET) mechanism. We also describe a straightforward iontophoretic method for labeling multiple neurons with DiO and show that DiO/DPA is compatible with two-photon (2P) imaging. Finally, exploiting the high sensitivity of DiO/DPA, we demonstrate AP-induced fluorescence transients (fAPs) recorded from single spines of hippocampal pyramidal neurons and single-trial measurements of subthreshold synaptic inputs to granule cell dendrites. Our findings suggest that the 2cVoS, DiO/DPA, enables optical measurements of trial-to-trial voltage fluctuations with very high spatial and temporal resolution, properties well suited for monitoring electrical signals from multiple neurons within intact neuronal networks. PMID:22870221

  17. Fabrication of Submillimeter Axisymmetric Optical Components

    NASA Technical Reports Server (NTRS)

    Grudinin, Ivan; Savchenkov, Anatoliy; Strekalov, Dmitry

    2007-01-01

    It is now possible to fashion transparent crystalline materials into axisymmetric optical components having diameters ranging from hundreds down to tens of micrometers, whereas previously, the smallest attainable diameter was 500 m. A major step in the fabrication process that makes this possible can be characterized as diamond turning or computer numerically controlled machining on an ultrahigh-precision lathe.

  18. Degradation of optical components in space

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    This report concerns two types of optical components: multilayer filters and mirrors, and self-scanned imaging arrays using charge coupled device (CCD) readouts. For the filters and mirrors, contamination produces a strong reduction in transmittance in the ultraviolet spectral region, but has little or no effect in the visible and infrared spectral regions. Soft substrates containing halides are unsatisfactory as windows or substrates. Materials choice for dielectric layers should also reflect such considerations. Best performance is also found for the harder materials. Compaction of the layers and interlayer diffusion causes a blue shift in center wavelength and loss of throughput. For sensors using CCD's, shifts in gate voltage and reductions in transfer efficiency occur. Such effects in CCD's are in accord with expectations of the effects of the radiation dose on the device. Except for optical fiber, degradation of CCD's represents the only ionizing-radiation induced effect on the Long Duration Exposure Facility (LDEF) optical systems components that has been observed.

  19. Plasma surface figuring of large optical components

    NASA Astrophysics Data System (ADS)

    Jourdain, R.; Castelli, M.; Morantz, P.; Shore, P.

    2012-04-01

    Fast figuring of large optical components is well known as a highly challenging manufacturing issue. Different manufacturing technologies including: magnetorheological finishing, loose abrasive polishing, ion beam figuring are presently employed. Yet, these technologies are slow and lead to expensive optics. This explains why plasma-based processes operating at atmospheric pressure have been researched as a cost effective means for figure correction of metre scale optical surfaces. In this paper, fast figure correction of a large optical surface is reported using the Reactive Atom Plasma (RAP) process. Achievements are shown following the scaling-up of the RAP figuring process to a 400 mm diameter area of a substrate made of Corning ULE®. The pre-processing spherical surface is characterized by a 3 metres radius of curvature, 2.3 μm PVr (373nm RMS), and 1.2 nm Sq nanometre roughness. The nanometre scale correction figuring system used for this research work is named the HELIOS 1200, and it is equipped with a unique plasma torch which is driven by a dedicated tool path algorithm. Topography map measurements were carried out using a vertical work station instrumented by a Zygo DynaFiz interferometer. Figuring results, together with the processing times, convergence levels and number of iterations, are reported. The results illustrate the significant potential and advantage of plasma processing for figuring correction of large silicon based optical components.

  20. Ion beam figuring of small optical components

    NASA Astrophysics Data System (ADS)

    Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.

    1995-12-01

    Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.

  1. Compact component for integrated quantum optic processing

    PubMed Central

    Sahu, Partha Pratim

    2015-01-01

    Quantum interference is indispensable to derive integrated quantum optic technologies (1–2). For further progress in large scale integration of quantum optic circuit, we have introduced first time two mode interference (TMI) coupler as an ultra compact component. The quantum interference varying with coupling length corresponding to the coupling ratio is studied and the larger HOM dip with peak visibility ~0.963 ± 0.009 is found at half coupling length of TMI coupler. Our results also demonstrate complex quantum interference with high fabrication tolerance and quantum visibility in TMI coupler. PMID:26584759

  2. Optical components for the Nova laser

    SciTech Connect

    Wallerstein, E.P.; Baker, P.C.; Brown, N.J.

    1982-05-17

    In addition to its other characteristics, the Nova Laser Fusion facility may well be the largest precision optical project ever undertaken. Moreover, during the course of construction, concurrent research and development has been successfully conducted, and has resulted in significant advances in various technical areas, including manufacturing efficiency. Although assembly of the first two beams of Nova is just commencing, the optical production, including construction of the special facilities required for many of the components, has been underway for over three years, and many phases of the optical manufacturing program for the first 10 beams will be completed within the next two years. On the other hand, new requirements for second and third harmonic generation have created the need to initiate new research and development. This work has been accomplished through the enormous cooperation DOE/LLNL has received from commercial industry on this project. In many cases, industry, where much of the optical component research and development and virtually all of the manufacturing is being done, has made substantial investment of its own funds in facilities, equipment, and research and development, in addition to those supplied by DOE/LLNL.

  3. Key optical components for spaceborne lasers

    NASA Astrophysics Data System (ADS)

    Löhring, J.; Winzen, M.; Faidel, H.; Miesner, J.; Plum, D.; Klein, J.; Fitzau, O.; Giesberts, M.; Brandenburg, W.; Seidel, A.; Schwanen, N.; Riesters, D.; Hengesbach, S.; Hoffmann, H.-D.

    2016-03-01

    Spaceborne lidar (light detection and ranging) systems have a large potential to become powerful instruments in the field of atmospheric research. Obviously, they have to be in operation for about three years without any maintenance like readjusting. Furthermore, they have to withstand strong temperature cycles typically in the range of -30 to +50 °C as well as mechanical shocks and vibrations, especially during launch. Additionally, the avoidance of any organic material inside the laser box is required, particularly in UV lasers. For atmospheric research pulses of about several 10 mJ at repetition rates of several 10 Hz are required in many cases. Those parameters are typically addressed by DPSSL that comprise components like: laser crystals, nonlinear crystals in pockels cells, faraday isolators and frequency converters, passive fibers, diode lasers and of course a lot of mirrors and lenses. In particular, some components have strong requirements regarding their tilt stability that is often in the 10 μrad range. In most of the cases components and packages that are used for industrial lasers do not fulfil all those requirements. Thus, the packaging of all these key components has been developed to meet those specifications only making use of metal and ceramics beside the optical component itself. All joints between the optical component and the laser baseplate are soldered or screwed. No clamps or adhesives are used. Most of the critical properties like tilting after temperature cycling have been proven in several tests. Currently, these components are used to build up first prototypes for spaceborne systems.

  4. Optical system components for navigation grade fiber optic gyroscopes

    NASA Astrophysics Data System (ADS)

    Heimann, Marcus; Liesegang, Maximilian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, Klaus-Dieter

    2013-10-01

    Interferometric fiber optic gyroscopes belong to the class of inertial sensors. Due to their high accuracy they are used for absolute position and rotation measurement in manned/unmanned vehicles, e.g. submarines, ground vehicles, aircraft or satellites. The important system components are the light source, the electro optical phase modulator, the optical fiber coil and the photodetector. This paper is focused on approaches to realize a stable light source and fiber coil. Superluminescent diode and erbium doped fiber laser were studied to realize an accurate and stable light source. Therefor the influence of the polarization grade of the source and the effects due to back reflections to the source were studied. During operation thermal working conditions severely affect accuracy and stability of the optical fiber coil, which is the sensor element. Thermal gradients that are applied to the fiber coil have large negative effects on the achievable system accuracy of the optic gyroscope. Therefore a way of calculating and compensating the rotation rate error of a fiber coil due to thermal change is introduced. A simplified 3 dimensional FEM of a quadrupole wound fiber coil is used to determine the build-up of thermal fields in the polarization maintaining fiber due to outside heating sources. The rotation rate error due to these sources is then calculated and compared to measurement data. A simple regression model is used to compensate the rotation rate error with temperature measurement at the outside of the fiber coil. To realize a compact and robust optical package for some of the relevant optical system components an approach based on ion exchanged waveguides in thin glass was developed. This waveguides are used to realize 1x2 and 1x4 splitter with fiber coupling interface or direct photodiode coupling.

  5. Quasi-optical components at submillimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Ediss, G. A.; Keen, N. J.; Mischerikow, K.-D.; Schulz, A.; Korn, A.

    1987-02-01

    Individual components of the Max-Planck-Institut fuer Radioastonomie 650 micron Schottky barrier diode waveguide mixer-receiver and their performance at 650 microns wavelength are reported on. Scalar, dual-mode, and pyramidal horns are considered, and attempts to measure insertion losses by comparing the gain of the horn with that of a fundamental moded waveguide lead to estimates of the upper limits for horn losses at 650 microns. Radiometric loss measurements of an 8-mm thick Teflon lens and a 5-mm thick Rexolite lens are both larger than would be expected from the material loss tangents, probably due to reflections. The performance of various diplexers is also considered. Performance of the present quasi-optical components at 650 and 172 microns is not found to be significantly worse than at 1300 microns wavelength, with the probable exception of horn insertion losses.

  6. Processing of Activated Core Components

    SciTech Connect

    Friske, A.; Gestermann, G.; Finkbeiner, R.

    2003-02-26

    Used activated components from the core of a NPP like control elements, water channels from a BWR, and others like in-core measurement devices need to be processed into waste forms suitable for interim storage, and for the final waste repository. Processing of the activated materials can be undertaken by underwater cutting and packaging or by cutting and high-pressure compaction in a hot cell. A hot cell is available in Germany as a joint investment between GNS and the Karlsruhe Research Center at the latter's site. Special transport equipment is available to transport the components ''as-is'' to the hot cell. Newly designed underwater processing equipment has been designed, constructed, and operated for the special application of NPP decommissioning. This equipment integrates an underwater cutting device with an 80 ton force underwater in-drum compactor.

  7. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOEpatents

    Kramer, Daniel P.

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements.

  8. Bulk Electro-Optical Polymer Component

    NASA Technical Reports Server (NTRS)

    Gottsche, Allan; Perry, Joseph W.; Perry, Kelly J.

    1992-01-01

    Polymer serves in high-voltage sensors and laser-beam modulators. Electro-optical polymer of relatively low cost formed as bulk specimen from azo dye 4-(4-nitrophenylazo)-N-ethyl, N-2-hydroxyethylaniline, also known as Disperse Red 1 or DR1, and transparent epoxy. More stable than prior electro-optical polymers based on DR1 and poly(methylmethacrylate). If polymer were sandwiched between electrodes, it provides direct measurement of high voltage via electro-optical effect. Has significant nonlinear optical properties. Material useful in microelectronics, micro-optics, integrated optics, and testing of materials. Polymer withstands electric fields up to 120 kV/cm.

  9. Integral window hermetic fiber optic components

    SciTech Connect

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1994-12-31

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  10. Advanced Integrated Optical Signal Processing Components.

    NASA Astrophysics Data System (ADS)

    Rastani, Kasra

    This research was aimed at the development of advanced integrated optical components suitable for devices capable of processing multi-dimensional inputs. In such processors, densely packed waveguide arrays with low crosstalk are needed to provide dissection of the information that has been partially processed. Waveguide arrays also expand the information in the plane of the processor while maintaining its coherence. Rib waveguide arrays with low loss, high mode confinement and highly uniform surface quality (660 elements, 8 μm wide, 1 μm high, and 1 cm long with 2 mu m separations) were fabricated on LiNbO _3 substrates through the ion beam milling technique. A novel feature of the multi-dimensional IO processor architecture proposed herein is the implementation of large area uniform outcoupling (with low to moderate outcoupling efficiencies) from rib waveguide arrays in order to access the third dimension of the processor structure. As a means of outcoupling, uniform surface gratings (2 μm and 4 μm grating periods, 0.05 μm high and 1 mm long) with low outcoupling efficiencies (of approximately 2-18%/mm) were fabricated on the nonuniform surface of the rib waveguide arrays. As a practical technique of modulating the low outcoupling efficiencies of the surface gratings, it was proposed to alter the period of the grating as a function of position along each waveguide. Large aperture (2.5 mm) integrated lenses with short positive focal lengths (1.2-2.5 cm) were developed through a modification of the titanium-indiffused proton exchanged (TIPE) technique. Such integrated lenses were fabricated by increasing the refractive index of the slab waveguides by the TIPE process while maintaining the refractive index of the lenses at the lower level of Ti:LiNbO _3 waveguide. By means of curvature reversal of the integrated lenses, positive focal length lenses have been fabricated while providing high mode confinement for the slab waveguide. The above elements performed as

  11. A final look at LDEF electro-optic systems components

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1995-01-01

    Postrecovery characteristics of LDEF electro-optic components from the GTRI tray are compared with their prelaunch characteristics and with the characteristics of similar components from related experiments. Components considered here include lasers, light-emitting diodes, semiconducting radiation detectors and arrays, optical substrates, filters, and mirrors, and specialized coatings. Our understanding of the physical effects resulting from low earth orbit are described, and guidelines and recommendations for component and materials choices are presented.

  12. Fiber optics wavelength division multiplexing(components)

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.

    1985-01-01

    The long term objectives are to develop optical multiplexers/demultiplexers, different wavelength and modulation stable semiconductor lasers and high data rate transceivers, as well as to test and evaluate fiber optic networks applicable to the Space Station. Progress in each of the above areas is briefly discussed.

  13. Electro-optic component mounting device

    DOEpatents

    Gruchalla, Michael E.

    1994-01-01

    A technique is provided for integrally mounting a device such as an electro-optic device (50) in a transmission line to avoid series resonant effects. A center conductor (52) of the transmission line has an aperture (58) formed therein for receiving the device (50). The aperture (58) splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface (54), which is spaced apart from the center conductor with a dielectric material (56). One set of electrodes formed on the surface of the electro-optic device (50) is directly connected to the center conductor 52 and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface (54). The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage ( 60) formed therein for passage of optical signals to an electro-optic device.

  14. Electro-optic component mounting device

    DOEpatents

    Gruchalla, M.E.

    1994-09-13

    A technique is provided for integrally mounting a device such as an electro-optic device in a transmission line to avoid series resonant effects. A center conductor of the transmission line has an aperture formed therein for receiving the device. The aperture splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface which is spaced apart from the center conductor with a dielectric material. One set of electrodes formed on the surface of the electro-optic device is directly connected to the center conductor and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface. The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage formed therein for passage of optical signals to an electro-optic device. 10 figs.

  15. Atom optics with permanent magnetic components

    NASA Astrophysics Data System (ADS)

    Meschede, Dieter; Bloch, Immanuel; Goepfert, A.; Haubrich, D.; Kreis, M.; Lison, F.; Schuetze, R.; Wynands, Robert

    1997-05-01

    We have fabricated and investigated efficient magnetic lenses, waveguides, and mirrors from rare earth permanent materials. They are affordable and maintenance free. In contrast to corresponding light force components they do not need any supplies, they have large apertures, high reflectivity, and there is no spontaneous emission. The cylindrical shape of magnetic components is furthermore well suited to steer atomic beams.

  16. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    SciTech Connect

    Kramer, D.P.

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.

  17. Optically active quantum dots

    NASA Astrophysics Data System (ADS)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  18. Improved evaluation of optical depth components from Langley plot data

    NASA Technical Reports Server (NTRS)

    Biggar, S. F.; Gellman, D. I.; Slater, P. N.

    1990-01-01

    A simple, iterative procedure to determine the optical depth components of the extinction optical depth measured by a solar radiometer is presented. Simulated data show that the iterative procedure improves the determination of the exponent of a Junge law particle size distribution. The determination of the optical depth due to aerosol scattering is improved as compared to a method which uses only two points from the extinction data. The iterative method was used to determine spectral optical depth components for June 11-13, 1988 during the MAC III experiment.

  19. Specification of optical components using the power spectral density function

    SciTech Connect

    Lawson, J.K.; Wolfe, C.R.; Manes, K.R.; Trenholme, J.B.; Aikens, D.M.; English, R.E. Jr.

    1995-06-20

    This paper describes the use of Fourier techniques to characterize the wavefront of optical components, specifically, the use of the power spectral density, (PSD), function. The PSDs of several precision optical components will be shown. Many of the optical components of interest to us have square, rectangular or irregularly shaped apertures with major dimensions up-to 800 mm. The wavefronts of components with non-circular apertures cannot be analyzed with Zernicke polynomials since these functions are an orthogonal set for circular apertures only. Furthermore, Zernicke analysis is limited to treating low frequency wavefront aberrations; mid-spatial scale and high frequency error are expressed only as ``residuals.`` A more complete and powerful representation of the optical wavefront can be obtained by Fourier analysis in 1 or 2 dimensions. The PSD is obtained from the amplitude of frequency components present in the Fourier spectrum. The PSD corresponds to the scattered intensity as a function of scattering angle in the wavefront and can be used to describe the intensity distribution at focus. The shape of a resultant wavefront or the focal spot of a complex multi-component laser system can be calculated and optimized using the PSDs of individual optical components which comprise it.

  20. Optical theorem detectors for active scatterers

    NASA Astrophysics Data System (ADS)

    Marengo, Edwin A.; Tu, Jing

    2015-10-01

    We develop a new theory of the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. It applies to arbitrary lossless backgrounds and quite general probing fields. The derived formulation holds for arbitrary passive scatterers, which can be dissipative, as well as for the more general class of active scatterers which are composed of a (passive) scatterer component and an active, radiating (antenna) component. The generalization of the optical theorem to active scatterers is relevant to many applications such as surveillance of active targets including certain cloaks and invisible scatterers and wireless communications. The derived theoretical framework includes the familiar real power optical theorem describing power extinction due to both dissipation and scattering as well as a novel reactive optical theorem related to the reactive power changes. The developed approach naturally leads to three optical theorem indicators or statistics which can be used to detect changes or targets in unknown complex media. The paper includes numerical simulation results that illustrate the application of the derived optical theorem results to change detection in complex and random media.

  1. Long-term stability of polymeric integrated optical components

    NASA Astrophysics Data System (ADS)

    Kwong, Wing-Ying

    2006-02-01

    Traditionally, glass has been a suitable waveguide material and passive integrated optical circuits in glass substrates are widely used as passive components. Long-term tests of optical glass flats with a high level of internal stress revealed gradual systematic-change with time to produce inconsistent results. Since long-term stability has been the primary concern for users of specific applications, investigations of instabilities in various optical materials have been carried out via measurements and tests. From the development of the integrated optical systems' point-of-view, polymers are promising candidates that possess excellent compatibility with all other materials and their associated processes. Polymeric materials offer large refractive-index contrasts, high performance, environmental stability, simple low-cost fabrication and may be processed by unconventional forming techniques. Polymer technologies can be designed to form stress-free films, so that stress-induced losses can be eliminated. Optical polymers may also be tailored to meet specific requirements for optical waveguide devices and can be highly transparent in such a way that they are not a limiting factor in components' lifetime. In this paper, tests results and characteristics of polymeric materials shall be reviewed; different types of polymer are detail-studied and a brief analysis shall be presented. Examples of passive polymeric integrated optical components are single-mode splitters, couplers, polarizers, routers, gratings, bend waveguides, power dividers, wavelength filters and wavelength multiplexers/de-multiplexers, which may find applications in the optical communication and the telecommunication industries.

  2. Optics activity for hospitalized children

    NASA Astrophysics Data System (ADS)

    Gargallo, Ana; Gómez-Varela, Ana I.; González-Nuñez, Hector; Delgado, Tamara; Almaguer, Citlalli; Cambronero, Ferran; Garcia-Sanchez, Angel; Flores-Arias, Maria T.

    2014-08-01

    USC-OSA is a student chapter whose objective is to bring Optics knowledge closer to the non-optics community. The activity developed at the Hospital school was one of the most important last year. It was consisted in a few Optics experiments and workshops with hospitalized children of different ages and pathologies. The experiments had to be adapted to their physical conditions with the aim of everyone could participate. We think this activity has several benefits including spreading Optics through children meanwhile they have fun and forget their illness for a while.

  3. Integrated optical components in thin films of polymers

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey; Abdeldayem, Hossin; Venkateswarlu, Putcha; Teague, Zedric

    1995-01-01

    /sq.cm pump power) demonstrated emission spectrum narrowing near 616 nm peak with 18% power conversion slope efficiency. In this case emission spectrum modification was caused by the enhanced light absorption along the direction of propagating waveguide modes. Changing length, thickness, and other morphlogical waveguide parameters one can modify emission spectrum in predictable direction. The results show that polymeric waveguides, especially based on high temperature polymers such as Pl, can be used to produce a varietiy of active and passive silicon compatible integrated optical components for aerospace applications.

  4. Characterization of optical components for use in harsh environments

    NASA Astrophysics Data System (ADS)

    Bright, Michelle; Morelli, Gregg

    2006-08-01

    The characterization of mounted and/or bonded optical assemblies for survivability in harsh environments is crucial for the development of robust laser-optical firing systems. Customized mounts, bonded assemblies and packaging strategies were utilized for each of the laser resonator optics with the goal of developing and fielding a reliable initiation system for use in extreme conditions. Specific components were selected for initial testing based on past experience, material properties and optical construction. Shock, vibration and temperature testing was performed on three mounted optical components; polarizing cube beam splitters, Q-switch assemblies and xenon flashlamps. Previously, flashlamps of a solder-sealed construction type were successfully tested and characterized. This test regiment characterized the more fragile glass-to-metal seal constructed flashlamps. Components were shock-tested to a maximum impulse level of 5700 G's with a 1.1 millisecond long pulse. Vibration tests were performed to a maximum level of 15.5 grms for forty seconds in each of three axes. During each test, components were functionally tested and visually inspected at a specified point to verify survival. Temperature tests were performed over a range extending from a maximum of 75 degrees C to a minimum of -55 degrees C, allowing for a two hour soak at each temperature set point. Experimental results obtained from these tests will be discussed as will their impact on future component mounting strategies.

  5. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks. PMID:25361349

  6. Manifestation of optical activity in different materials

    NASA Astrophysics Data System (ADS)

    Konstantinova, A. F.; Golovina, T. G.; Konstantinov, K. K.

    2014-07-01

    Various manifestations of optical activity (OA) in crystals and organic materials are considered. Examples of optically active enantiomorphic and nonenantiomorphic crystals of 18 symmetry classes are presented. The OA of enantiomorphic organic materials as components of living nature (amino acids, sugars, and proteins) is analyzed. Questions related to the origin of life on earth are considered. Examples of differences in the enantiomers of drugs are shown. The consequences of replacing conventional left-handed amino acids with additionally right-handed amino acids for living organisms are indicated.

  7. Low-power photonic components for optical interconnects

    NASA Astrophysics Data System (ADS)

    Dong, Po; Liao, Shirong; Liang, Hong; Feng, Ning-Ning; Qian, Wei; Shafiiha, Roshanak; Feng, Dazeng; Li, Guoliang; Zheng, Xuezhe; Cunningham, John E.; Krishnamoorthy, Ashok V.; Asghari, Mehdi

    2011-01-01

    Silicon-based optical interconnects are expected to provide high bandwidth and low power consumption solutions for chip-level communication applications, due to their electronics integration capability, proven manufacturing record and attractive price volume curve. In order to compete with electrical interconnects, the energy requirement is projected to be sub-pJ per bit for an optical link in chip to chip communication. Such low energies pose significant challenges for the optical components used in these applications. In this paper, we review several low power photonic components developed at Kotura for DARPA's Ultraperformance Nanophotonic Intrachip Communications (UNIC) project. These components include high speed silicon microring modulators, wavelength (de)multiplexers using silicon cascaded microrings, low power electro-optic silicon switches, low loss silicon routing waveguides, and low capacitance germanium photodetectors. Our microring modulators demonstrate an energy consumption of { 10 fJ per bit with a drive voltage of 1 V. Silicon routing waveguides have a propagation loss of < 0.3 dB/cm, enabling a propagation length of a few tens of centimeters. The germanium photodetectors can have a low device capacitance of a few fF, a high responsivity up to 1.1 A/W and a high speed of >30 GHz. These components are potentially sufficient to construct a full optical link with an energy consumption of less than 1 pJ per bit.

  8. Polyguide polymeric technology for optical interconnect circuits and components

    NASA Astrophysics Data System (ADS)

    Booth, Bruce L.; Marchegiano, Joseph E.; Chang, Catherine T.; Furmanak, Robert J.; Graham, Douglas M.; Wagner, Richard G.

    1997-04-01

    The expanding information revolution has been made possible by the development of optical communication technology. To meet the escalating demand for information transmitted and processed at high data rates and the need to circumvent the growing electronic circuit bottlenecks, mass deployment of not only optical fiber networks but manufacturable optical interconnect circuits, components and connectors for interfacing fibers and electronics that meet economic and performance constraints are absolutely necessary. Polymeric waveguide optical interconnection are considered increasingly important to meet these market needs. DuPont's polyguide polymeric integrated optic channel waveguide system is thought by many to have considerable potential for a broad range of passive optical interconnect applications. In this paper the recent advances, status, and unique attributes of the technology are reviewed. Product and technology developments currently in progress including parallel optical ink organization and polymer optical interconnect technology developments funded by DARPA are used as examples to describe polyguide breadth and potential for manufacture and deployment of optical interconnection products for single and multimode telecom and datacom waveguide applications.

  9. Low-temperature hermetic sealing of optical fiber components

    SciTech Connect

    Kramer, D.P.

    1995-12-31

    A method for manufacturing low-temperature hermetically sealed optical fiber components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber.

  10. Low-temperature hermetic sealing of optical fiber components

    DOEpatents

    Kramer, Daniel P.

    1996-10-22

    A method for manufacturing low-temperature hermetically sealed optical fi components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber.

  11. Low-temperature hermetic sealing of optical fiber components

    DOEpatents

    Kramer, D.P.

    1996-10-22

    A method for manufacturing low-temperature hermetically sealed optical fiber components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber. 5 figs.

  12. OPTOGELs: optically active xerogels

    NASA Astrophysics Data System (ADS)

    Canva, Michael; Georges, Patrick M.; Brun, Alain; Chaput, Frederic; Devreux, Francois; Boilot, Jean-Pierre

    1992-12-01

    Using the sol-gel process, we synthesized zirconia/silica matrices doped with different organic dyes (rhodamine 640, ...). These samples were used to perform optical Kerr effect experiments with sequences of ultrashort light pulses (100 fs, 620 nm, 1 (mu) J focused on 50 micrometers diameter) to induce refractive index changes. A permanent birefringence around 7 X 10-5 was obtained. By changing the direction of the polarization of the excitation pulses, we were able to locally control the directions of the neutral axes. We thus demonstrated the possibility of using this media as an all optical memory matrix and such doped xerogels will subsequently be referred to as OPTOGELS. We interpret our results as the possibility of locally controlling the orientation of the doping molecules encaged in the solid host matrix. The memory effect is probably due to links of hydrogen bond type between the organic molecules and the pore surface which prevent thermal reorientation. The electric field of the optical excitation pulses exerts a torque on the molecules. If this torque is greater than the energy linking the molecules to the pore surface, the molecules are temporarily released and aligned in the direction of the pulse polarization. Based on this interpretation, we have developed a model to explain the evolution of the birefringence as a function of the number of excitation pulses.

  13. Performance evaluation of fiber optic components in nuclear plant environments

    SciTech Connect

    Hastings, M.C.; Miller, D.W.; James, R.W.

    1996-03-01

    Over the past several years, the Electric Power Research Institute (EPRI) has funded several projects to evaluate the performance of commercially available fiber optic cables, connective devices, light sources, and light detectors under environmental conditions representative of normal and abnormal nuclear power plant operating conditions. Future projects are planned to evaluate commercially available fiber optic sensors and to install and evaluate performance of instrument loops comprised of fiber optic components in operating nuclear power plant applications. The objective of this research is to assess the viability of fiber optic components for replacement and upgrade of nuclear power plant instrument systems. Fiber optic instrument channels offer many potential advantages: commercial availability of parts and technical support, small physical size and weight, immunity to electromagnetic interference, relatively low power requirements, and high bandwidth capabilities. As existing nuclear power plants continue to replace and upgrade I&C systems, fiber optics will offer a low-cost alternative technology which also provides additional information processing capabilities. Results to date indicate that fiber optics are a viable technology for many nuclear applications, both inside and outside of containments. This work is funded and manage& under the Operations & Maintenance Cost Control research target of EPRI`s Nuclear Power Group. The work is being performed by faculty and students in the Mechanical and Nuclear Engineering Departments and the staff of the Nuclear Reactor Laboratory of the Ohio State University.

  14. Subwavelength-diameter silica wires for microscale optical components

    NASA Astrophysics Data System (ADS)

    Tong, Limin; Mazur, Eric

    2005-04-01

    Subwavelength-diameter silica wires fabricated using a taper-drawing approach exhibit excellent diameter uniformity and atomic-level smoothness, making them suitable for low-loss optical wave guiding from the UV to the near-infrared. Such air-clad silica wires can be used as single-mode waveguides; depending on wavelength and wire diameter, they either tightly confine the optical fields or leave a certain amount of guided energy outside the wire in the form of evanescent waves. Using these wire waveguides as building blocks we assembled microscale optical components such as linear waveguides, waveguide bends and branch couplers on a low-index, non-dissipative silica aerogel substrate. These components are much smaller than comparable existing devices and have low optical loss, indicating that the wire-assembly technique presented here has great potential for developing microphotonics devices for future applications in a variety of fields such as optical communication, optical sensing and high-density optical integration.

  15. Optical methods of stress analysis applied to cracked components

    NASA Technical Reports Server (NTRS)

    Smith, C. W.

    1991-01-01

    After briefly describing the principles of frozen stress photoelastic and moire interferometric analyses, and the corresponding algorithms for converting optical data from each method into stress intensity factors (SIF), the methods are applied to the determination of crack shapes, SIF determination, crack closure displacement fields, and pre-crack damage mechanisms in typical aircraft component configurations.

  16. Qualification and Lessons Learned with Space Flight Fiber Optic Components

    NASA Technical Reports Server (NTRS)

    Ott, Melanie

    2007-01-01

    This presentation covers lessons learned during the design, development, manufacturing and qualification of space flight fiber optic components. Changes at NASA, including short-term projects and decreased budgets have brought about changes to vendors and parts. Most photonics for NASA needs are now commercial off the shelf (COTS) products. The COTS Tecnology Assurance approach for space flight and qualification plans are outlined.

  17. Six Degree-of-Freedom Positioner for Optical Components

    NASA Astrophysics Data System (ADS)

    Gaunt, Robert; Roberts, Scott C.; Anthony, Andre

    2003-03-01

    The Six Degree-of-Freedom (6DOF) positioner was developed to position the four off-axis conic mirrors in Altair (Gemini** North's facility adaptive optics system). This positioner takes a unique approach to 6DOF positioning by combining two 3DOF parallel mechanisms in series to create a hybrid mechanism. The mechanism design provides a number of benefits including small size, simple adjustment, position locking, relatively simple kinematics and repeatable removal and replacement of optical components. The 6DOF positioner is capable of positioning optics at the micron level in translation and at the arcsecond level in rotation. It also maintains the position of the optics to a few microns with changing gravity vector. The position of an attached optical component can be adjusted using a computer program to provide precision adjustment about an arbitrary coordinate system. However, the arrangement of the adjustments are such that any desired motion can be made with a single actuator or with a sensible combination of actuators. This is unlike other 6DOF positioning solutions like a Stewart Platform in which all 6DOF are completely coupled making it impossible to move the platform in any desired direction without moving all six actuators. This paper will present the design of the positioner, a kinematic analysis of the mechanism and a discussion about the effectiveness of the positioner in the optical alignment of Altair.

  18. The design and fabrication of common optical components lithography lens

    NASA Astrophysics Data System (ADS)

    Huang, Jiun-Woei

    2015-07-01

    The design and fabrication of common optical components lithography Lens has been carried out for a 1 to 1 stepper. The specification of lens is fulfilled the 3-D lithography system as 2 micron in resolution for 1 inch x 2.8 inches system. The lens has been sophistically designed by dual path in a triplet to reduce the number of components. A single aspherical surface has been applied to reduce the aberration to diffraction limit in lens. The well-made shapes of lens have been suggested. Then, the fabrication of lens has been in the process. Finally, the optical axis of tolerance optical mechanical mountings for lens system in assembly has been analyzed, and valuable for assembly and fabrication.

  19. Hybrid optical (freeform) components--functionalization of nonplanar optical surfaces by direct picosecond laser ablation.

    PubMed

    Kleindienst, Roman; Kampmann, Ronald; Stoebenau, Sebastian; Sinzinger, Stefan

    2011-07-01

    The performance of optical systems is typically improved by increasing the number of conventionally fabricated optical components (spheres, aspheres, and gratings). This approach is automatically connected to a system enlargement, as well as potentially higher assembly and maintenance costs. Hybrid optical freeform components can help to overcome this trade-off. They merge several optical functions within fewer but more complex optical surfaces, e.g., elements comprising shallow refractive/reflective and high-frequency diffractive structures. However, providing the flexibility and precision essential for their realization is one of the major challenges in the field of optical component fabrication. In this article we present tailored integrated machining techniques suitable for rapid prototyping as well as the fabrication of molding tools for low-cost mass replication of hybrid optical freeform components. To produce the different feature sizes with optical surface quality, we successively combine mechanical machining modes (ultraprecision micromilling and fly cutting) with precisely aligned direct picosecond laser ablation in an integrated fabrication approach. The fabrication accuracy and surface quality achieved by our integrated fabrication approach are demonstrated with profilometric measurements and experimental investigations of the optical performance. PMID:21743521

  20. Analysis of adaptive laser scanning optical system with focus-tunable components

    NASA Astrophysics Data System (ADS)

    Pokorný, P.; Mikš, A.; Novák, J.; Novák, P.

    2015-05-01

    This work presents a primary analysis of an adaptive laser scanner based on two-mirror beam-steering device and focustunable components (lenses with tunable focal length). It is proposed an optical scheme of an adaptive laser scanner, which can focus the laser beam in a continuous way to a required spatial position using the lens with tunable focal length. This work focuses on a detailed analysis of the active optical or opto-mechanical components (e.g. focus-tunable lenses) mounted in the optical systems of laser scanners. The algebraic formulas are derived for ray tracing through different configurations of the scanning optical system and one can calculate angles of scanner mirrors and required focal length of the tunable-focus component provided that the position of the focused beam in 3D space is given with a required tolerance. Computer simulations of the proposed system are performed using MATLAB.

  1. 77 FR 65713 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... COMMISSION Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products... the United States after importation of certain optoelectronic devices for fiber optic communications... importation of certain optoelectronic devices for fiber optic communications, components thereof, and...

  2. Airborne molecular contamination: quality criterion for laser and optical components

    NASA Astrophysics Data System (ADS)

    Otto, Michael

    2015-02-01

    Airborne molecular contaminations (AMCs) have been recognized as a major problem in semiconductor fabrication. Enormous technical and financial efforts are made to remove or at least reduce these contaminations in production environments to increase yield and process stability. It can be shown that AMCs from various sources in laser devices have a negative impact on quality and lifetime of lasers and optical systems. Outgassing of organic compounds, especially condensable compounds were identified as the main source for deterioration of optics. These compounds can lead to hazing on surfaces of optics, degradation of coating, reducing the signal transmission or the laser signal itself and can enhance the probability of laser failure and damage. Sources of organic outgassing can be molding materials, resins, seals, circuit boards, cable insulation, coatings, paints and others. Critical compounds are siloxanes, aromatic amines and high boiling aromatic hydrocarbons like phthalates which are used as softeners in plastic materials. Nowadays all sensitive assembly steps are performed in controlled cleanroom environments to reduce risks of contamination. We will demonstrate a high efficient air filter concept to remove AMCs for production environments with special AMC filters and methods for the qualification and monitoring of these environments. Additionally, we show modern techniques and examples for the pre-qualification of materials. For assembled components, we provide sampling concepts for a routine measurement for process, component and product qualification. A careful selection of previously tested and certified materials and components is essential to guarantee the quality of lasers and optical devices.

  3. Direct-write diffracting tubular optical components using femtosecond lasers

    NASA Astrophysics Data System (ADS)

    McMillen, Ben; Bellouard, Yves

    2014-03-01

    Over the last decade, femtosecond lasers have been used extensively for the fabrication of optical elements via direct writing and in combination with chemical etching. These processes have been an enabling technology for manufacturing a variety of devices such as waveguides, fluidic channels, and mechanical components. Here, we present high quality micro-scale optical components buried inside various glass substrates such as soda-lime glass or fused silica. These components consist of high-precision, simple patterns with tubular shapes. Typical diameters range from a few microns to one hundred microns. With the aid of high-bandwidth, high acceleration flexure stages, we achieve highly symmetric pattern geometries, which are particularly important for achieving homogeneous stress distribution within the substrate. We model the optical properties of these structures using beam propagation simulation techniques and experimentally demonstrate that such components can be used as cost-effective, low-numerical aperture lenses. Additionally, we investigate their capability for studying the stress-distribution induced by the laser-affected zones and possible related densification effects.

  4. Highly precise and robust packaging of optical components

    NASA Astrophysics Data System (ADS)

    Leers, Michael; Winzen, Matthias; Liermann, Erik; Faidel, Heinrich; Westphalen, Thomas; Miesner, Jörn; Luttmann, Jörg; Hoffmann, Dieter

    2012-03-01

    In this paper we present the development of a compact, thermo-optically stable and vibration and mechanical shock resistant mounting technique by soldering of optical components. Based on this technique a new generation of laser sources for aerospace applications is designed. In these laser systems solder technique replaces the glued and bolted connections between optical component, mount and base plate. Alignment precision in the arc second range and realization of long term stability of every single part in the laser system is the main challenge. At the Fraunhofer Institute for Laser Technology ILT a soldering and mounting technique has been developed for high precision packaging. The specified environmental boundary conditions (e.g. a temperature range of -40 °C to +50 °C) and the required degrees of freedom for the alignment of the components have been taken into account for this technique. In general the advantage of soldering compared to gluing is that there is no outgassing. In addition no flux is needed in our special process. The joining process allows multiple alignments by remelting the solder. The alignment is done in the liquid phase of the solder by a 6 axis manipulator with a step width in the nm range and a tilt in the arc second range. In a next step the optical components have to pass the environmental tests. The total misalignment of the component to its adapter after the thermal cycle tests is less than 10 arc seconds. The mechanical stability tests regarding shear, vibration and shock behavior are well within the requirements.

  5. Antibacterial activity of essential oil components.

    PubMed

    Moleyar, V; Narasimham, P

    1992-08-01

    Antibacterial activity of fifteen essential oil components towards food borne Staphylococcus sp., Micrococcus sp., Bacillus sp. and Enterobacter sp. was studied by an agar plate technique. Cinnamic aldehyde was the most active compound followed by citral, geraniol, eugenol and menthol. At 500 micrograms/ml, cinnamic aldehyde completely inhibited the bacterial growth for more than 30 days at 30 degrees C that was comparable to 200 micrograms/ml of butylated hydroxy anisole (BHA). At lower temperatures, 25 and 20 degrees C, antibacterial activity of the five essential oil components increased. Addition of sodium chloride at 4% level (w/v) in the medium had no effect on the inhibitory activity of cinnamic aldehyde. In mixtures of cinnamic aldehyde and eugenol or BHA an additive effect was observed. PMID:1457292

  6. Degradation effects of optical components in the low orbit

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Ringel, Gabriele; Kratz, Frank; Neubauer, Rudolf; Swoboda, Helmut; Hampe, Jans

    1994-09-01

    Optical components which are being used for space instrumentation have been exposed to space conditions to examine degradation effects. The samples have been mounted into the SESAM (Surface Effects Sample Monitor) instrument which was integrated on the ASTRO-SPAS Satellite. Exposition occurred during the STS-51 mission. It was found out that especially supersmooth glass samples made of BK7 show damage effects which increase the roughness from i.e. 0.05 nm to 0.19 nm.

  7. Free-form optical components in some early commercial products

    NASA Astrophysics Data System (ADS)

    Plummer, William T.

    2005-08-01

    In the period from 1973 through 1992, Polaroid introduced six different free-form aspheric optical surfaces in some unusually innovative instant photographic cameras, made in the millions. In each case these peculiar components were used to solve unusual problems of product size, shape, and function. This presentation relates how and why those surfaces were used and how they were tooled and manufactured with high quality.

  8. Laser damage testing of optical components under cryogenic conditions

    NASA Astrophysics Data System (ADS)

    Oulehla, Jindrich; Pokorný, Pavel; Lazar, Josef

    2012-11-01

    In this contribution we present a technology for deposition and testing of interference coatings for optical components designed to operate in power pulsed lasers. The aim of the technology is to prepare components for high power laser facilities such as ELI (Extreme Light Infrastructure) or HiLASE. ELI is a part of the European plan to build a new generation of large research facilities selected by the European Strategy Forum for Research Infrastructures (ESFRI). These facilities rely on the use of diode pumped solid state lasers (DPSSL). The choice of the material for the lasers' optical components is critical. Some of the most important properties include the ability to be antireflection and high reflection coated to reduce the energy losses and increase the overall efficiency. As large amounts of heat need to be dissipated during laser operation, cryogenic cooling is necessary. The conducted experiments served as preliminary tests of laser damage threshold measurement methodology that we plan to use in the future. We designed a special apparatus consisting of a vacuum chamber and a cooling system. The samples were placed into the vacuum chamber which was evacuated and then the samples were cooled down to approximately 120K and illuminated by a pulsed laser. Pulse duration was in the nanosecond region. Multiple test sites on the sample's surface were used for different laser pulse energies. We used optical and electron microscopy and spectrophotometer measurements for coating investigation after the conducted experiments.

  9. Optical activity of BL Lacertae

    NASA Astrophysics Data System (ADS)

    Larionov, V.; Blinov, D.; Konstantinova, T.

    2012-04-01

    We perform optical photometric and R-band polarimetric monitoring of BL Lac using 70-cm AZT-8 (CrAO, Ukraine) and 0.4-m LX-200 (St.Petersburg, Russia) telescopes, as a part of GASP project. As reported in Atel#4028, this blazar was found by Fermi LAT in active state on 2012 April 9. Our data show that a sharp optical maximum was reached on the date 2012-04-08UT02:20, R=13.10, while on 2012-04-11UT01:30 R=13.40.

  10. Degradation of electro-optic components aboard LDEF

    NASA Astrophysics Data System (ADS)

    Blue, M. D.

    1993-04-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  11. Degradation of electro-optic components aboard LDEF

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  12. Evaluation of systems and components for hybrid optical firing sets

    SciTech Connect

    Landry, M.J.; Rupert, J.W.; Mittas, A.

    1989-06-01

    High-energy density light appears to be a unique energy form that may be used to enhance the nuclear safety of weapon systems. Hybrid optical firing sets (HOFS) utilize the weak-link/strong-link exclusion region concept for nuclear safety; this method is similar to present systems, but uses light to transmit power across the exclusion region barrier. This report describes the assembling, operating, and testing of fourteen HOFS. These firing sets were required to charge a capacitor-discharge unit to 2.0 and 2.5 kV (100 mJ) in less than 1 s. First, we describe the components, the measurement techniques used to evaluate the components, and the different characteristics of the measured components. Second, we describe the HOFS studied, the setups used for evaluating them, and the resulting characteristics. Third, we make recommendations for improving the overall performance and suggest the best HOFS for packaging. 36 refs., 145 figs., 14 tabs.

  13. Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging.

    PubMed

    Lim, Yiheng; Hong, Young-Joo; Duan, Lian; Yamanari, Masahiro; Yasuno, Yoshiaki

    2012-06-01

    We present a fiber based multifunctional Jones matrix swept source optical coherence tomography (SS-OCT) system for Doppler and polarization imaging. Jones matrix measurement without using active components such as electro-optic modulators is realized by incident polarization multiplexing based on independent delay of two orthogonal polarization states and polarization diversity detection. In addition to polarization sensitivity, this system measures Doppler flow without extra hardware for phase stabilized SS-OCT detection. An eighth-wave plate was measured to demonstrate the polarization detection accuracy. The optic nerve head of a retina was measured in vivo. Detailed vasculature and birefringent structures were investigated simultaneously. PMID:22660086

  14. Optical Studies of Active Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    This grant was to support optical studies of comets close enough to the sun to be outgassing. The main focus of the observations was drawn to the two extraordinarily bright comets Hyakutake and Hale-Bopp, but other active comets were also studied in detail during the period of funding. Major findings (all fully published) under this grant include: (1) Combined optical and submillimeter observations of the comet/Centaur P/Schwassmann-Wachmann 1 were used to study the nature of mass loss from this object. The submillimeter observations show directly that the optically prominent dust coma is ejected by the sublimation of carbon monoxide. Simultaneous optical-submillimeter observations allowed us to test earlier determinations of the dust mass loss rate. (2) We modelled the rotation of cometary nuclei using time-resolved images of dust jets as the primary constraint. (3) We obtained broad-band optical images of several comets for which we subsequently attempted submillimeter observations, in order to test and update the cometary ephemerides. (4) Broad-band continuum images of a set of weakly active comets and, apparently, inactive asteroids were obtained in BVRI using the University of Hawaii 2.2-m telescope. These images were taken in support of a program to test the paradigm that many near-Earth asteroids might be dead or dormant comets. We measured coma vs. nucleus colors in active comets (finding that coma particle scattering is different from, and cannot be simply related to, nucleus color). We obtained spectroscopic observations of weakly active comets and other small bodies using the HIRES spectrograph on the Keck 10-m telescope. These observation place sensitive limits to outgassing from these bodies, aided by the high (40,000) spectral resolution of HIRES.

  15. Ageing of optical components under laser irradiation at 532nm

    NASA Astrophysics Data System (ADS)

    Becker, S.; Delrive, L.; Bouchut, P.; Andre, B.; Geffraye, F.

    2005-09-01

    The pulsed Laser Induced Damage Threshold (LIDT) of optical components usually reaches several hundreds of MW/cm2. When exposed to laser power several order of magnitude below their LIDT, the optical component lifetime is, by default, considered infinite. Under specific conditions, the accumulation of laser pulses may lead to a contamination of the surface and a degradation of its optical properties and LIDT. In the first order, these phenomena depend on the experimental conditions such as the irradiation time, the laser power, and the environment. In order to better understand the physics emphasizing this degradation, we developed an experimental cell with an in-situ spectroscopic ellipsometry diagnostic. The dry-pumped cell sheltering the sample is associated with a mass spectrometer that enables us to follow the environmental conditions in which we experiment the ageing. Anti-reflection coatings on fused silica were tested under 10 kHz-532 nm laser ageing. We present first results of degradation obtained in these conditions.

  16. Reduced cost and improved figure of sapphire optical components

    NASA Astrophysics Data System (ADS)

    Walters, Mark; Bartlett, Kevin; Brophy, Matthew R.; DeGroote Nelson, Jessica; Medicus, Kate

    2015-10-01

    Sapphire presents many challenges to optical manufacturers due to its high hardness and anisotropic properties. Long lead times and high prices are the typical result of such challenges. The cost of even a simple 'grind and shine' process can be prohibitive. The high precision surfaces required by optical sensor applications further exacerbate the challenge of processing sapphire thereby increasing cost further. Optimax has demonstrated a production process for such windows that delivers over 50% time reduction as compared to traditional manufacturing processes for sapphire, while producing windows with less than 1/5 wave rms figure error. Optimax's sapphire production process achieves significant improvement in cost by implementation of a controlled grinding process to present the best possible surface to the polishing equipment. Following the grinding process is a polishing process taking advantage of chemical interactions between slurry and substrate to deliver excellent removal rates and surface finish. Through experiments, the mechanics of the polishing process were also optimized to produce excellent optical figure. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. Through specially developed polishing slurries, the peak-to-valley figure error of spherical sapphire parts is reduced by over 80%.

  17. Research on ultrasonic cleaning technology of optical components

    NASA Astrophysics Data System (ADS)

    Jiao, Lingyan; Tong, Yi; Cui, Ying; Chen, Jianhua; Bai, Qingguang

    2014-08-01

    Along with the higher demand of super smooth optical surface, the cleaning technique that is the critical process to obtain super smooth surface has to meet even higher standards. In virtue of higher efficiency and better effect, the ultrasonic cleaning technology has been widely used in cleaning high-end optical lenses. This paper introduced the process, principle and method of the ultrasonic cleaning technology for a super smooth surface. The basis of determining the main technical parameters, such as the power and frequency of ultrasonic wave, the ultrasonic time, the components of cleaning agent and its operating temperature, were also discussed. In addition, the progress situations of ultrasonic cleaning technologies including the characteristics of complex frequency ultrasonic and megasonics cleaning technology and the removal mechanism of different granularity of dirt were analyzed. The mechanism of complex frequency ultrasound produces chemical process and the relationship between megasonics boundary layer and the particles removing were studied. Results showed that the chemical functions of complex frequency ultrasound and megasonics were better than that of single frequency ultrasound for the particles removal effect. Therefore, the new complex frequency ultrasonic and megasonic cleaning technologies are very necessary for cleaning optical components.

  18. Passive alignment and soldering technique for optical components

    NASA Astrophysics Data System (ADS)

    Faidel, Heinrich; Gronloh, Bastian; Winzen, Matthias; Liermann, Erik; Esser, Dominik; Morasch, Valentin; Luttmann, Jörg; Leers, Michael; Hoffmann, Dieter

    2012-03-01

    The passive-alignment-packaging technique presented in this work provides a method for mounting tolerance-insensitive optical components e.g. non-linear crystals by means of mechanical stops. The requested tolerances for the angle deviation are +/-100 μrad and for the position tolerance +/-100 μm. Only the angle tolerances were investigated, because they are more critical. The measurements were carried out with an autocollimator. Fused silica components were used for test series. A solder investigation was carried out. Different types of solder were tested. Due to good solderability on air and low induced stress in optical components, Sn based solders were indicated as the most suitable solders. In addition several concepts of reflow soldering configuration were realized. In the first iteration a system with only the alignment of the yaw angle was implemented. The deviation for all materials after the thermal and mechanical cycling was within the tolerances. The solderability of BBO and LBO crystals was investigated and concepts for mounting were developed.

  19. Holographic optical elements as laser irradiation sensor components

    NASA Astrophysics Data System (ADS)

    Leib, Kenneth G.; Pernick, Benjamin J.

    1991-12-01

    The use of holographic optical elements (HOEs) to discriminate between coherent irradiation and broadband, noncoherent light has been experimentally demonstrated under adverse scattering and attenuating conditions. As a passive sensor component in a laser irradiation detection system, an HOE can be used in several application areas, e.g., data transmission systems, aircraft warning system, underwater communications, and alignment systems, where wavelength and direction of arrival information can be used. The efficient concentration or focusing of laser light by an HOE onto a detector stage and, of equal importance, the ability to form bright, unique geometric patterns are characteristics that establish the HOE's use as a readily compatible irradiation sensor component. In addition, there is a considerable size and weight advantage over other functionally comparable optical components. Finally, as a passive element, an HOE can fmd use with CW or pulsed illumination. The properties and advantages, pros and cons, of the use of HOEs as sensor elements are discussed in the paper and illustrated in several laboratory experiments and a field test.

  20. Correlation of Test Data from Some NIF Small Optical Components

    SciTech Connect

    Chow, R; McBurney, M; Eickelberg, W K; Williams, W H; Thomas, M D

    2001-06-12

    The NIF injection laser system requires over 8000 precision optical components. Two special requirements for such optics are wavefront and laser damage threshold. Wavefront gradient is an important specification on the NIF ILS optics. The gradient affects the spot size and, in the second order, the contrast ratio of the laser beam. Wavefront errors are specified in terms of peak-to-valley, rms, and rms gradient, with filtering requirements. Typical values are lambda/8 PV, lambda/30 rms, and lambda/30/cm rms gradient determined after filtering for spatial periods greater than 2 mm. One objective of this study is to determine whether commercial software supplied with common phase measuring interferometers can filter, perform the gradient analysis, and produce numbers comparable to that by CVOS, the LLNL wavefront analysis application. Laser survivability of optics is another important specification for the operational longevity of the laser system. Another objective of this study is to find alternate laser damage test facilities. The addition of non-NIF testing would allow coating suppliers to optimize their processes according to their test plans and NIF integrators to validate the coatings from their sub-tiered suppliers. The maximum level required for anti-reflective, 45-degree high reflector, and polarizer coatings are 20, 30, and 5 J/cm{sup 2} (1064 nm, 3 ns pulse-width), respectively. The damage threshold correlation between a common set of samples tested by LLNL and a commercial test service is given.

  1. Thin film technologies for optoelectronic components in fiber optic communication

    NASA Astrophysics Data System (ADS)

    Perinati, Agostino

    1998-02-01

    will grow at an annual average rate of 22 percent from 1.3 million fiber-km in 1995 to 3.5 million fiber-km in 2000. The worldwide components market-cable, transceivers and connectors - 6.1 billion in 1994, is forecasted to grow and show a 19 percent combined annual growth rate through the year 2000 when is predicted to reach 17.38 billion. Fiber-in-the-loop and widespread use of switched digital services will dominate this scenario being the fiber the best medium for transmitting multimedia services. As long as communication will partially replace transportation, multimedia services will push forward technology for systems and related components not only for higher performances but for lower cost too in order to get the consumers wanting to buy the new services. In the long distance transmission area (trunk network) higher integration of electronic and optoelectronic functions are required for transmitter and receiver in order to allow for higher system speed, moving from 2.5 Gb/s to 5, 10, 40 Gb/s; narrow band wavelength division multiplexing (WDM) filters are required for higher transmission capacity through multiwavelength technique and for optical amplifier. In the access area (distribution network) passive components as splitters, couplers, filters are needed together with optical amplifiers and transceivers for point-to-multipoint optical signal distribution: main issue in this area is the total cost to be paid by the customer for basic and new services. Multimedia services evolution, through fiber to the home and to the desktop approach, will be mainly affected by the availability of technologies suitable for component consistent integration, high yield manufacturing processes and final low cost. In this paper some of the optoelectronic components and related thin film technologies expected to mainly affect the fiber optic transmission evolution, either for long distance telecommunication systems or for subscriber network, are presented.

  2. Degradation of optical components in a space environment

    NASA Technical Reports Server (NTRS)

    Dehainaut, Linda L.; Kenemuth, John; Tidler, Cynthia E.; Seegmiller, David W.

    1992-01-01

    The objective of the Phillips Laboratory (PL) Long Duration Exposure Facility (LDEF) experiment is to determine the adverse effects of the natural space environment on laser optical component and coating materials. The LDEF experiment provides a unique opportunity for the study of optical material response to an extended low earth orbit space exposure. The PL samples consist of 10 sets of the six materials each. The materials are uncoated fused silica, magnesium fluoride coated fused silica, uncoated molybdenum, molybdenum coated with chromium, silver and thorium fluoride, diamond turned copper, and diamond turned nickel plated copper. Performance degradation will be correlated to establish trends between sample location, duration of exposure, atomic oxygen exposure and other space environmental conditions. This paper discusses the results of the tests thus far performed on the LDEF samples and the plans for the future.

  3. Different ways to active optical frequency standards

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Zhang, Xiaogang; Chen, Jingbiao

    2016-06-01

    Active optical frequency standard, or active optical clock, is a new concept of optical frequency standard, where a weak feedback with phase coherence information in optical bad-cavity limitation is formed, and the continuous self-sustained coherent stimulated emission between two atomic transition levels with population inversion is realized. Through ten years of both theoretical and experimental exploration, the narrow linewidth and suppression of cavity pulling effect of active optical frequency standard have been initially proved. In this paper, after a simple review, we will mainly present the most recent experimental progresses of active optical frequency standards in Peking University, including 4-level cesium active optical frequency standards and active Faraday optical frequency standards. The future development of active optical frequency standards is also discussed.

  4. Optical positions of active galaxies

    NASA Astrophysics Data System (ADS)

    Meurs, E. J. A.

    1984-04-01

    Optical positions are calculated for 26 active galaxies (mainly Markarian dn Arakelian objects), using the plate-measuring apparatus at Leiden Observatory on the O plates of the Palomar Sky Survey and applying AGK-3 data in the reductions. The results are presented in a table and have accuracy 0.5 arcsec; a comparison with the positions determined by Clements (1981, 1983) for 19 objects reveals a possible offset of -0.28 arcsec in the right-ascension determinations.

  5. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  6. Neutron Activation of NIF Final Optics Assemblies

    SciTech Connect

    Sitaraman, S; Dauffy, L; Khater, H; Brereton, S

    2009-09-29

    Analyses were performed to characterize the radiation field in the vicinity of the Final Optics Assemblies (FOAs) at the National Ignition Facility (NIF) due to neutron activation following Deuterium-Deuterium (DD), Tritium-Hydrogen-Deuterium (THD), and Deuterium-Tritium (DT) shots associated with different phases of the NIF operations. The activation of the structural components of the FOAs produces one of the larger sources of gamma radiation and is a key factor in determining the stay out time between shots to ensure worker protection. This study provides estimates of effective dose rates in the vicinity of a single FOA and concludes that the DD and THD targets produce acceptable dose rates within 10 minutes following a shot while about 6-days of stay out time is suggested following DT shots. Studies are ongoing to determine the combined effects of multiple FOAs and other components present in the Target Bay on stay-out time and worker dose.

  7. Passive endoscopic polarization sensitive optical coherence tomography with completely fiber based optical components

    NASA Astrophysics Data System (ADS)

    Cahill, Lucas; Lee, Anthony M. D.; Pahlevaninezhad, Hamid; Ng, Samson; MacAulay, Calum E.; Poh, Catherine; Lane, Pierre

    2015-03-01

    Polarization Sensitive Optical Coherence Tomography (PSOCT) is a functional extension of Optical Coherence Tomography (OCT) that is sensitive to well-structured, birefringent tissue such as scars, smooth muscle and cartilage. In this work, we present a novel completely fiber based swept source PSOCT system using a fiber-optic rotary pullback catheter. This PSOCT implementation uses only passive optical components and requires no calibration while adding minimal additional cost to a standard structural OCT imaging system. Due to its complete fiber construction, the system can be made compact and robust, while the fiber-optic catheter allows access to most endoscopic imaging sites. The 1.5mm diameter endoscopic probe can capture 100 frames per second at pullback speeds up to 15 mm/s allowing rapid traversal of large imaging fields. We validate the PSOCT system with known birefringent tissues and demonstrate in vivo PSOCT imaging of human oral scar tissue.

  8. Picosecond laser welding of optical to metal components

    NASA Astrophysics Data System (ADS)

    Carter, Richard M.; Troughton, Michael; Chen, Jinanyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-03-01

    We report on practical, industrially relevant, welding of optical components to themselves and aluminum alloy components. Weld formation is achieved through the tight focusing of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. By selecting suitable surface preparation, clamping and laser parameters, the plasma can be confined, even with comparatively rough surfaces, by exploiting the melt properties of the glass. The short interaction time allows for a permanent weld to form between the two materials with heating limited to a region ~300 µm across. Practical application of these weld structures is typically limited due to the induced stress within the glass and, critically, the issues surrounding post-weld thermal expansion. We report on the measured strength of the weld, with a particular emphasis on laser parameters and surface preparation.

  9. Optical design and active optics methods in astronomy

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2013-03-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis.

  10. Validation of Commercial Fiber Optic Components for Aerospace Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2005-01-01

    Full qualification for commercial photonic parts as defined by the Military specification system in the past, is not feasible. Due to changes in the photonic components industry and the Military specification system that NASA had relied upon so heavily in the past, an approach to technology validation of commercial off the shelf parts had to be devised. This approach involves knowledge of system requirements, environmental requirements and failure modes of the particular components under consideration. Synthesizing the criteria together with the major known failure modes to formulate a test plan is an effective way of establishing knowledge based "qualification". Although this does not provide the type of reliability assurance that the Military specification system did in the past, it is an approach that allows for increased risk mitigation. The information presented will introduce the audience to the technology validation approach that is currently applied at NASA for the usage of commercial-off-the-shelf (COTS) fiber optic components for space flight environments. The focus will be on how to establish technology validation criteria for commercial fiber products such that continued reliable performance is assured under the harsh environmental conditions of typical missions. The goal of this presentation is to provide the audience with an approach to formulating a COTS qualification test plan for these devices. Examples from past NASA missions will be discussed.

  11. Universe Interactive: Static Displays with Active Components

    NASA Astrophysics Data System (ADS)

    Larson, Michelle B.

    2005-01-01

    As the World Year of Physics (WYP) approaches, the AAPT WYP Committee would like to encourage everyone to consider ways to engage those around us in celebrating the science that makes us the proud geeks we are. The geek sentiment is my own, and does not necessarily reflect the views and opinions of the committee. This paper offers simple and inexpensive astronomy-related ideas for a bulletin-board-type display. The particular ideas presented below are hands-on classroom activities that I've adapted for display purposes. The display is static in that once constructed it does not require a personal facilitator, but each component invites interaction. At the end of the paper I revisit the idea of building a sundial1 as a highly visible and artistic way to engage students and communities in physics. The activities presented here are available for use when constructing your own display. In addition, these examples are meant to illustrate how instructional products might be modified for display purposes, and I encourage others to consider their favorite activities for an interactive display.

  12. Performance and production requirements for the optical components in a high-average-power laser system

    SciTech Connect

    Chow, R.; Doss, F.W.; Taylor, J.R.; Wong, J.N.

    1999-07-02

    Optical components needed for high-average-power lasers, such as those developed for Atomic Vapor Laser Isotope Separation (AVLIS), require high levels of performance and reliability. Over the past two decades, optical component requirements for this purpose have been optimized and performance and reliability have been demonstrated. Many of the optical components that are exposed to the high power laser light affect the quality of the beam as it is transported through the system. The specifications for these optics are described including a few parameters not previously reported and some component manufacturing and testing experience. Key words: High-average-power laser, coating efficiency, absorption, optical components

  13. Penetrating radiation impact on NIF final optic components

    SciTech Connect

    Marshall, C.D.; Speth, J.A.; DeLoach, L.D.; Payne, S.A.

    1996-10-15

    Goal of the National Ignition Facility (NIF) is to achieve thermonuclear ignition in a laboratory environment in inertial confinement fusion (ICF). This will enable NIF to service the DOE stockpile stewardship management program, inertial fusion energy goals, and advance scientific frontiers. All of these applications will make use of the extreme conditions that the facility will create in the target chamber. In the case of a prospected 20 MJ yield scenario, NIF will produce 10{sup 19} neutrons with DT fusion 14 MeV energy per neutron. There will also be high-energy x rays as well as solid, liquid, and gaseous target debris produced either directly or indirectly by the inertial confinement fusion process. A critical design issue is the protection of the final optical components as well as sophisticated target diagnostics in such a harsh environment.

  14. Characterization of the optical parameters of high aspect ratio polymer micro-optical components

    NASA Astrophysics Data System (ADS)

    Krajewski, Rafal; Van Erps, Jurgen; Wissmann, Markus; Kujawinska, Malgorzata; Parriaux, Olivier; Tonchev, S.; Mohr, Jurgen; Thienpont, Hugo

    2008-04-01

    Over the last decades the significant grow of interest of photonics devices is observed in various fields of applications. Due to the market demands, the current research studies are focused on the technologies providing miniaturized, reliable low-cost micro-optical systems, particularly the ones featuring the fabrication of high aspect ratio structures. A high potential of these technologies comes from the fact that fabrication process is not limited to single optical components, but entire systems integrating sets of elements could be fabricated. This could in turn result in a significant saving on the assembly and packaging costs. We present a brief overview of the most common high aspect ratio fabrication technologies for micro-optical components followed by some characterization studies of these techniques. The sidewall quality and internal homogeneity will be considered as the most crucial parameters, having an impact on the wavefront propagation in the fabricated components. We show the characterization procedure and measurement results for components prototyped with Deep Proton Writing and glass micromachining technology replicated with Hot Embossing and Elastomeric Mould Vacuum Casting technology. We discuss the pros and cons for using these technologies for the production of miniaturized interferometers blocks. In this paper we present the status of our research on the new technology chain and we show the concept of microinterferometers to be fabricated within presented technology chain.

  15. Polarization optical components of the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Sueoka, Stacey Ritsuyo

    The Daniel K Inouye Solar Telescope (DKIST), when completed in 2019 will be the largest solar telescope built to date. DKIST will have a suite of first light polarimetric instrumentation requiring broadband polarization modulation and calibration optical elements. Compound crystalline retarders meet the design requirements for efficient modulators and achromatic calibration retarders. These retarders are the only possible large diameter optic that can survive the high flux, 5 arc minute field, and ultraviolet intense environment of a large aperture solar telescope at Gregorian focus. This dissertation presents work performed for the project. First, I measured birefringence of the candidate materials necessary to complete designs. Then, I modeled the polarization effects with three-dimensional ray-tracing codes as a function of angle of incidence and field of view. Through this analysis I learned that due to the incident converging F/13 beam on the calibration retarders, the previously assumed linear retarder model fails to account for effects above the project polarization specifications. I discuss modeling strategies such as Mueller matrix decompositions and simplifications of those strategies while still meeting fit error requirements. Finally, I present characterization techniques and how these were applied to prototype components.

  16. Automated packaging platform for low-cost high-performance optical components manufacturing

    NASA Astrophysics Data System (ADS)

    Ku, Robert T.

    2004-05-01

    Delivering high performance integrated optical components at low cost is critical to the continuing recovery and growth of the optical communications industry. In today's market, network equipment vendors need to provide their customers with new solutions that reduce operating expenses and enable new revenue generating IP services. They must depend on the availability of highly integrated optical modules exhibiting high performance, small package size, low power consumption, and most importantly, low cost. The cost of typical optical system hardware is dominated by linecards that are in turn cost-dominated by transmitters and receivers or transceivers and transponders. Cost effective packaging of optical components in these small size modules is becoming the biggest challenge to be addressed. For many traditional component suppliers in our industry, the combination of small size, high performance, and low cost appears to be in conflict and not feasible with conventional product design concepts and labor intensive manual assembly and test. With the advent of photonic integration, there are a variety of materials, optics, substrates, active/passive devices, and mechanical/RF piece parts to manage in manufacturing to achieve high performance at low cost. The use of automation has been demonstrated to surpass manual operation in cost (even with very low labor cost) as well as product uniformity and quality. In this paper, we will discuss the value of using an automated packaging platform.for the assembly and test of high performance active components, such as 2.5Gb/s and 10 Gb/s sources and receivers. Low cost, high performance manufacturing can best be achieved by leveraging a flexible packaging platform to address a multitude of laser and detector devices, integration of electronics and handle various package bodies and fiber configurations. This paper describes the operation and results of working robotic assemblers in the manufacture of a Laser Optical Subassembly

  17. 76 FR 66750 - Certain Projectors With Controlled-Angle Optical Retarders, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... COMMISSION Certain Projectors With Controlled-Angle Optical Retarders, Components Thereof, and Products... Optical Retarders, Components Thereof, And Products Containing Same, DN 2849; the Commission is soliciting... within the United States after importation of certain projectors with controlled-angle optical...

  18. Space Flight Requirements for Fiber Optic Components: Qualification Testing and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2006-01-01

    This viewgraph presentation reviews the qualification testing requirements for Fiber Optic Components used during space flight. Since most components for space flight fiber optic components are now commercial of the shelf (COTS) products, and the changes at Goddard Space Flight Center, such as short term projects, and low budgets and other changes, have made full qualification of Fiber Optic Components not only too expensive also impossible. This presentation reviews the environmental parameters, the testing and or testing requirements of some optical components on board some NASA satellites.

  19. Experiment system of LAMOST active optics

    NASA Astrophysics Data System (ADS)

    Cui, Xiangqun; Su, Ding; Li, Guoping; Yao, Zhengqiu; Zhang, Zhengcao; Li, Yeping; Zhang, Yong; Wang, You; Xu, Xinqi; Wang, Hai

    2004-10-01

    Active optics is the most difficult part in LAMOST project. Especially for the segmented reflecting Schmidt plate Ma, in which both segmented mirror active optics and thin mirror (or deformable mirror) active optics are applied. To test and optimize the thin mirror active optics of Ma, and to approach the reality of operating environment of the telescope, an outdoor experiment system has been established. This experiment system is also a `small LAMOST" with one sub-mirror of the primary mirror Mb and one sub-mirror of the Schmidt plate Ma, and with full scale in spacing (40 meters) between Ma and Mb. many parts of LAMOST were tested in the experiment system except segmented mirror active optics. Especially for force actuators, thin mirror support system, friction driving of the alt-azimuth mounting and its control system, wave front test along such a long optical path. This paper presents the experiment system, research and developments, and some experiment results.

  20. Devices, components, and applications of low cost using polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Lomer, Mauro; Baldwin-Olguin, Guillermo

    2004-10-01

    Low-cost optical devices, components a polymer optical fiber (POF) are demonstrated using technical of polished. Potentially low-cost components fabrication processes are described. Several components and devices are proposed for applications in comunications or industrial applications. Experimental results obtained with POF and diffraction grating are presented.

  1. Method of making an integral window hermetic fiber optic component

    DOEpatents

    Dalton, Rick D.; Kramer, Daniel P.; Massey, Richard T.; Waker, Damon A.

    1996-11-12

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  2. Method of making an integral window hermetic fiber optic component

    SciTech Connect

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1996-11-12

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam. 9 figs.

  3. Hybrid solar collector using nonimaging optics and photovoltaic components

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  4. Optical inspection of large-scale technical components

    NASA Astrophysics Data System (ADS)

    Jueptner, Werner P. O.; Osten, Wolfgang; Kalms, Michael K.

    1999-09-01

    Optical inspection is a well-known tool for scientific research and production control since long-time. In its form as visual inspection it is one of the main inspection tools since the beginning of technology. But the amount of data to be processed is very high in common, real time application under changing conditions is usually an industrial requirement, and last not least the recognition ability of human beings is hard to be matched. However, there is a dramatic change in the last one or two decades: the laser was developed to a reliable, easy to use and economical light source. Furthermore, the fast development in computer technology in the last decade opened applications for the improvement of products and production far beyond the possibilities of the first three quarters of this century. The methods can be described in a spanning tree of increasing specialization from the way of evaluation to the application task to be performed with this metrology method. However, all inspection methods follow a fundamental set-up scheme consisting of a loading, the object to be interacted with, the detector system and the evaluation. The approach to practical application will be reported by some example of large components.

  5. Achromatic registration of quadrature components of the optical spectrum in spectral domain optical coherence tomography

    SciTech Connect

    Shilyagin, P A; Gelikonov, G V; Gelikonov, V M; Moiseev, A A; Terpelov, D A

    2014-07-31

    We have thoroughly investigated the method of simultaneous reception of spectral components with the achromatised quadrature phase shift between two portions of a reference wave, designed for the effective suppression of the 'mirror' artefact in the resulting image obtained by means of spectral domain optical coherence tomography (SD OCT). We have developed and experimentally tested a phase-shifting element consisting of a beam divider, which splits the reference optical beam into the two beams, and of delay lines being individual for each beam, which create a mutual phase difference of π/2 in the double pass of the reference beam. The phase shift achromatism over a wide spectral range is achieved by using in the delay lines the individual elements with different dispersion characteristics. The ranges of admissible adjustment parameters of the achromatised delay line are estimated for exact and inexact conformity of the geometric characteristics of its components to those calculated. A possibility of simultaneous recording of the close-to-quadrature spectral components with a single linear photodetector element is experimentally confirmed. The suppression of the artefact mirror peak in the OCT-signal by an additional 9 dB relative to the level of its suppression is experimentally achieved when the air delay line is used. Two-dimensional images of the surface positioned at an angle to the axis of the probe beam are obtained with the correction of the 'mirror' artefact while maintaining the dynamic range of the image. (laser biophotonics)

  6. Measurement of optical activity of honey bee

    NASA Astrophysics Data System (ADS)

    Ortiz-Gutiérrez, Mauricio; Olivares-Pérez, Arturo; Salgado-Verduzco, Marco Antonio; Ibarra-Torres, Juan Carlos

    2016-03-01

    Optical activity of some substances, such as chiral molecules, often exhibits circular birefringence. Circular birefringence causes rotation of the vibration plane of the plane polarized light as it passes through the substance. In this work we present optical characterization of honey as function of the optical activity when it is placed in a polariscope that consists of a light source and properly arranged polarizing elements.

  7. Conceptual design of an on-board optical processor with components

    NASA Technical Reports Server (NTRS)

    Walsh, J. R.; Shackelford, R. G.

    1977-01-01

    The specification of components for a spacecraft on-board optical processor was investigated. A space oriented application of optical data processing and the investigation of certain aspects of optical correlators were examined. The investigation confirmed that real-time optical processing has made significant advances over the past few years, but that there are still critical components which will require further development for use in an on-board optical processor. The devices evaluated were the coherent light valve, the readout optical modulator, the liquid crystal modulator, and the image forming light modulator.

  8. All-optical active switching in individual semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Piccione, Brian; Cho, Chang-Hee; van Vugt, Lambert K.; Agarwal, Ritesh

    2012-10-01

    The imminent limitations of electronic integrated circuits are stimulating intense activity in the area of nanophotonics for the development of on-chip optical components, and solutions incorporating direct-bandgap semiconductors are important in achieving this end. Optical processing of data at the nanometre scale is promising for circumventing these limitations, but requires the development of a toolbox of components including emitters, detectors, modulators, waveguides and switches. In comparison to components fabricated using top-down methods, semiconductor nanowires offer superior surface properties and stronger optical confinement. They are therefore ideal candidates for nanoscale optical network components, as well as model systems for understanding optical confinement. Here, we demonstrate all-optical switching in individual CdS nanowire cavities with subwavelength dimensions through stimulated polariton scattering, as well as a functional NAND gate built from multiple switches. The device design exploits the strong light-matter coupling present in these nanowires, leading to footprints that are a fraction of those of comparable silicon-based dielectric contrast and photonic crystal devices.

  9. Gigabit optical interconnects: System and component analysis, design and development

    NASA Astrophysics Data System (ADS)

    Boncek, Raymond K.; Krol, Mark F.; Hayduk, Michael J.; Stacy, John L.; Johns, Steven T.

    1994-07-01

    This report describes the results of experiments performed in various areas of technology required to develop gigabit optical interconnects for communication at 1.3 micrometer wavelength. First, we will summarize the analysis of optical correlation switches (i.e. optical AND gates) for use in time-division optical interconnects. Next, we describe the design and characterization of an all-optical, 30db contrast ratio GaAlInAs multiple quantum well asymmetric reflection modulator. Then, we comment on the characterization of polarization-dependent, strained-layer InGaAs/GaAs materials useful for light emitters and modulators. Finally, we report on the development of an optically transparent ATM packet switch testbed operating at 1.24416 Gbit/s. This work is a continuation of in-house efforts begun under 62702F, JON 4600P201 and summarized in RL-TR-91-398.

  10. Optical packaging activities at Institute of Microelectronics (IME), Singapore

    NASA Astrophysics Data System (ADS)

    Teo, Keng-Hwa; Sudharsanam, Krishnamachari; Pamidighantam, Ramana V.; Yeo, Yongkee; Iyer, Mahadevan K.

    2002-08-01

    The development of optoelectronic components for gigabit Ethernet communications is converging towards access networks where the cost of device makes a significant impact on the market acceptance. Device fabrication and packaging cost have to be brought down with novel assembly and packaging methods. Singapore has established a reputation in semiconductor device development and fabrication with excellent process and packaging facilities. Institute of Microelectronics (IME) was founded in 1991 to add value to the Singapore electronics industry. IME is involved in the development of active and passive photonics components using Silicon and polymer materials. We present a brief report on the development activities taking place in the field of optical component packaging at IME in recent years. We present a review of our competence and some of the optical device packaging activities that are being undertaken.

  11. Overview of advanced components for fiber optic systems

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.; Stowe, David W.

    1986-01-01

    The basic operating principles and potential performance of several state-of-the-art fiber-optic devices are illustrated with diagrams and briefly characterized. Technologies examined include high-birefringence polarization-maintaining fibers and directional couplers, single-mode fiber polarizers and cut-off polarizers, optical-fiber modulators with radially poled piezoactive polymer (PVF2) jackets, and piezoelectric-squeezer polarization modulators. The need for improved manufacturing techniques to make such fiber-optic devices cost-competitive with their thin-film integrated-optics analogs is indicated.

  12. Coherent optical component technologies for WDM transmission systems

    NASA Astrophysics Data System (ADS)

    Mino, S.; Murata, K.; Saida, T.; Ogawa, I.

    2011-01-01

    We review our recent progress toward 100 Gbps and beyond, focusing on integrated optical devices. Topics include our recently developed integrated optical front-ends for 100 Gbps PDM-QPSK based on multi-channel micro collimator optics and hermetically sealed O/E converters, and PLC-LiNbO3 hybrid optical modulators for 100 Gbps PDM-QPSK. We also describe our recent work on exceeding 100 Gbps, including 64 QAM modulators, modulation-level-selectable modulators, and high-speed digital-analog converter ICs for future multi-level transmissions.

  13. Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials.

    PubMed

    Li, Guozhou; Li, Qiang; Yang, Lizhen; Wu, Lijun

    2016-07-01

    We investigate optical magnetism and optical activity in a simple planar metamolecule composed of double U-shaped metal split ring resonators (SRRs) twisted by 90° with respect to one another. Compared to a single SRR, the resonant energy levels are split and strong magnetic response can be observed due to inductive and conductive coupling. More interestingly, the nonchiral structures exhibit strong optical gyrotropy (1100°/λ) under oblique incidence, benefiting from the strong electromagnetic coupling. A chiral molecule model is proposed to shed light on the physical origin of optical activity. These artificial chiral metamaterials could be utilized to control the polarization of light and promise applications in enantiomer sensing-based medicine, biology, and drug development. PMID:27367063

  14. NASA SBIR Subtopic S2.04 "Advanced Optical Components"

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2009-01-01

    The primary purpose of this subtopic is to develop and demonstrate technologies to manufacture ultra-low-cost precision optical systems for very large x-ray, UV/optical or infrared telescopes. Potential solutions include but are not limited to direct precision machining, rapid optical fabrication, slumping or replication technologies to manufacture 1 to 2 meter (or larger) precision quality mirror or lens segments (either normal incidence for uv/optical/infrared or grazing incidence for x-ray). An additional key enabling technology for UV/optical telescopes is a broadband (from 100 nm to 2500 nm) high-reflectivity mirror coating with extremely uniform amplitude and polarization properties which can be deposited on 1 to 3 meter class mirror.

  15. Occupational Doses from the use of Thoriated Optical Components.

    PubMed

    Schirmer, Andreas; Kersting, Marc; Uschmann, Katja

    2016-08-01

    As a compound of high refractive optical glasses, thorium still is present in some professionally used systems-especially in optical equipment with military use. The possible exposure concerns the head and especially the eye lens, whose radiation sensitivity has been reevaluated. The dose rate measurements of the contribution of beta- and gamma-emission by the nuclei of the decay chain of Th are presented for isolated lenses and for the entire optical system, and the dose quantities H'(0.07) and H*(10) are identified. Exposure scenarios for optical technicians and users are evaluated separately. The levels of dose rates for the inspected optical systems are below those requiring radiation protection measures even for extended working time or unintentional use. PMID:27356053

  16. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated

  17. Cultural Components of Physically Active Schools

    ERIC Educational Resources Information Center

    Rickwood, Greg

    2015-01-01

    It is well known that a large majority of school-age children and adolescents are not active enough to gain the physical and psychological benefits associated with regular moderate-to-vigorous physical activity. Schools can play a pivotal role in reversing this trend due to the time students spend in this setting. The purpose of this article is to…

  18. 77 FR 68830 - Certain Projectors With Controlled-Angle Optical Retarders, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    .... Corporation of Phoenix, Arizona (collectively ``Compound Photonics''). 76 FR 72722-23 (Nov. 25, 2011). The... COMMISSION Certain Projectors With Controlled-Angle Optical Retarders, Components Thereof, and Products... importation of certain projectors with controlled- angle optical retarders, components thereof, and...

  19. 78 FR 16296 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... optic communications, components thereof, and products containing the same by reason of infringement of certain claims of U.S. Patent Nos. 6,947,456 and 5,596,595 (collectively, ``Asserted Patents''). 77 FR... COMMISSION Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and...

  20. Measurement of wavefront structure from large aperture optical components by phase shifting interferometry

    SciTech Connect

    Wolfe, C.R.; Lawson, J.K.; Kellam, M.; Maney, R.T.; Demiris, A.

    1995-05-12

    This paper discusses the results of high spatial resolution measurement of the transmitted or reflected wavefront of optical components using phase shifting interferometry with a wavelength of 6328 {angstrom}. The optical components studied range in size from approximately 50 mm {times} 100 mm to 400 mm {times} 750 mm. Wavefront data, in the form of 3-D phase maps, have been obtained for three regimes of scale length: ``micro roughness``, ``mid-spatial scale``, and ``optical figure/curvature.`` Repetitive wavefront structure has been observed with scale lengths from 10 mm to 100 mm. The amplitude of this structure is typically {lambda}/100 to {lambda}/20. Previously unobserved structure has been detected in optical materials and on the surfaces of components. We are using this data to assist in optimizing laser system design, to qualify optical components and fabrication processes under study in our component development program.

  1. NATO Radiation Effects Test Program For Optical Fibers And Components

    NASA Astrophysics Data System (ADS)

    Lyons, Peter B.; Barnes, C. A.; Friebele, E. J.; Gilbert, R.; Greenwell, R.; Henschel, H.; Johan, A.; Looney, L. D.; Wall, J. A.; Pamnalone, F.; Schneider, W.; Sigel, G.; Smith, D.; Spencer, A.; Taylor, E.; Turquet de Beauregard, G.

    1988-06-01

    Telecommunications has provided the primary impetus for the explosive growth in fiber-optics technologies over the last decade. However, although standard telecommunications is the largest volume-user of optical fibers, other applications that exploit the unique attributes of photonics systems are becoming increasingly prominent. Many of these systems require that the fiber properties remain acceptable while exposed to a challenging variety of adverse environments. Many of these environments include exposure to ionizing radiation. Radiation-induced modifications to optical materials have been studied for several decades, so it was to be anticipated that such effects would be present in optical fibers. Many papers and several comprehensive reviews",3,4 have been devoted to better understand-ing of such phenomena.

  2. Sampled MTF of fused fiber optic components and bonded assemblies

    NASA Astrophysics Data System (ADS)

    Carter, Thomas

    2013-05-01

    Fused fiber optic devices are bundles of glass optical fibers that have been successively bundled and drawn to smaller and smaller sizes, effectively creating a "zero optical path window". Due to the nature of fiber's clad and core design, pixelization or sampling of the resulting image occurs; this sampling fundamentally degrades the image. Degradation of a resulting image caused by an optical system can be quantified by way of its Modulation Transfer Function. However, since fused fiber optic devices first sample then effectively project the original image, they do not meet the Fourier transform's prerequisite conditions of being linear and isoplanatic. Current technologies at SCHOTT Lighting and Imaging have initiated a study to determine methodology for measuring the sampled modulation transfer function of bonded assemblies such as bonded Faceplate-to-OLED and Faceplate-tosensor assemblies. The use of randomly generated targets imaged through the bonded assemblies proved to be a useful tactic. This paper discusses the test methods developed and subsequent measurement of the sampled modulation transfer function of fused fiber optic bundles and bonded assemblies.

  3. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Dér, András; Fábián, László; Valkai, Sándor; Wolff, Elmar; Ramsden, Jeremy; Ormos, Pál

    2006-08-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in integrated optics, among which the bacterial chromoprotein, bacteriorhodopsin (bR) generated the most interest. bR undergoes enormous absorption and concomitant refractive index changes upon initiation of a cyclic series of photoreactions by a burst of actinic light. This effect can be exploited to create highly versatile all-optical logical elements. We demonstrate the potential of this approach by investigating the static and dynamic response of several basic elements of integrated optical devices. Our results show that, due to its relatively high refractive index changes, bR can be used as an active nonlinear optical material to produce a variety of integrated optical switching and modulation effects.

  4. Optical and quasi-optical analysis of system components for a far-infrared space interferometer

    NASA Astrophysics Data System (ADS)

    Bracken, C.; O'Sullivan, C.; Donohoe, A.; Murphy, A.; Savini, G.; Juanola-Parramon, R.; Baccichet, N.; Guisseau, A.; Ade, P.; Pascale, E.; Spencer, L.; Walker, I.; Dohlen, K.; Lightfoot, J.; Holland, W.; Jones, M.; Walker, D. D.; McMillan, A.

    2015-03-01

    Many important astrophysical processes occur at wavelengths that fall within the far-infrared band of the EM spectrum, and over distance scales that require sub-arc second spatial resolution. It is clear that in order to achieve sub-arc second resolution at these relatively long wavelengths (compared to optical/near-IR), which are strongly absorbed by the atmosphere, a space-based far-IR interferometer will be required. We present analysis of the optical system for a proposed spatial-spectral interferometer, discussing the challenges that arise when designing such a system and the simulation techniques employed that aim to resolve these issues. Many of these specific challenges relate to combining the beams from multiple telescopes where the wavelengths involved are relatively short (compared to radio interferometry), meaning that care must be taken with mirror surface quality, where surface form errors not only present potential degradation of the single system beams, but also serve to reduce fringe visibility when multiple telescope beams are combined. Also, the long baselines required for sub-arc second resolution present challenges when considering propagation of the relatively long wavelengths of the signal beam, where beam divergence becomes significant if the beam demagnification of the telescopes is not carefully considered. Furthermore, detection of the extremely weak far-IR signals demands ultra-sensitive detectors and instruments capable of operating at maximum efficiency. Thus, as will be shown, care must be taken when designing each component of such a complex quasioptical system.

  5. Arbitrary GRIN component fabrication in optically driven diffusive photopolymers.

    PubMed

    Urness, Adam C; Anderson, Ken; Ye, Chungfang; Wilson, William L; McLeod, Robert R

    2015-01-12

    We introduce a maskless lithography tool and optically-initiated diffusive photopolymer that enable arbitrary two-dimensional gradient index (GRIN) polymer lens profiles. The lithography tool uses a pulse-width modulated deformable mirror device (DMD) to control the 8-bit gray-scale intensity pattern on the material. The custom polymer responds with a self-developing refractive index profile that is non-linear with optical dose. We show that this nonlinear material response can be corrected with pre-compensation of the intensity pattern to yield high fidelity, optically induced index profiles. The process is demonstrated with quadratic, millimeter aperture GRIN lenses, Zernike polynomials and GRIN Fresnel lenses. PMID:25835673

  6. Entangling unstable optically active matter qubits

    SciTech Connect

    Matsuzaki, Yuichiro; Fitzsimons, Joseph; Benjamin, Simon C.

    2011-06-15

    In distributed quantum computation, small devices composed of a single or a few qubits are networked together to achieve a scalable machine. Typically, there is an optically active matter qubit at each node, so that photons are exploited to achieve remote entanglement. However, in many systems the optically active states are unstable or poorly defined. We report a scheme to perform a high-fidelity entanglement operation even given severe instability. The protocol exploits the existence of optically excited states for phase acquisition without actually exciting those states; it functions with or without cavities and does not require number-resolving detectors.

  7. Qualification of active mechanical components for nuclear power plants

    SciTech Connect

    Allen, R.D.; Mollerus, F.J.

    1983-11-01

    The Electric Power Research Institute has undertaken a study of active safety related mechanical components in domestic nuclear plants to determine what qualification information exists and to establish a plan for qualification of those components. Active safety related mechanical components are those which undergo mechanical motion to perform a safety function. The overall objective of the study is to recommend appropriate methods and realistic criteria for the environmental, seismic and dynamic qualification of active mechanical components. This paper presents the results of progress in this project through May 1983.

  8. Updated optical read/write memory system components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The fabrication of an updated block data composer and holographic storage array for a breadboard holographic read/write memory system is described. System considerations such as transform optics and controlled aberration lens design are described along with the block data composer, photoplastic recording materials, and material development.

  9. Diamond Machining And Mechanical Inspection Of Optical Components

    NASA Astrophysics Data System (ADS)

    Donaldson, R. R.; Patterson, S. R.; Thompson, D. C.

    1982-03-01

    Displacement measurement and motion control are discussed for rotary and linear axes of motion, as necessary for the dimensional measurement and diamond-tool machining of grazing incidence x-ray optics. Examples of available performance levels are drawn from measurements made on current developmental hardware, and are coupled with speculation on possible future extensions.

  10. Diamond machining and mechanical inspection of optical components

    NASA Astrophysics Data System (ADS)

    Donaldson, R. R.; Patterson, S. R.; Thompson, D. C.

    1981-11-01

    Displacement measurement and motion control are discussed for rotary and linear axes of motion, as necessary for the dimensional measurement and diamond-tool machining of grazing incidence X-ray optics. Examples of available performance levels are drawn from measurements made on current development hardware, and are coupled with speculation on possible future extensions.

  11. Chiral THz metamaterial with tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Taylor, Antoinette; O' Hara, John; Chowdhury, Roy; Zhao, Rongkuo; Soukoullis, Costas M

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  12. Thermo-optical pressure difference in one-component gas

    SciTech Connect

    Chermyaninov, I. V.; Chernyak, V. G.

    2014-09-15

    A new phenomenon—thermo-optical pressure difference in the gas (TOPD) is regarded. This effect is the steady state of the second order which arises in the gas located in a closed capillary in the presence of a fixed temperature gradient and a resonant optical radiation. TOPD is the result of imposition thermal transpiration and light-induced drift of gas in a capillary. The problem is solved on the basis of the linearized Boltzmann kinetic equations for excited and unexcited gaseous particles. Expressions for the kinetic coefficients and pressure drop in gas at the ends of the closed capillary are obtained. Possible cases of the steady state are regarded for atoms and molecules. Numerical estimates of this effect for atomic and molecular gases in the whole range of Knudsen numbers are given.

  13. Updated optical read/write memory system components

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A survey of the building blocks of the electro-optic read/write system was made. Critical areas and alternate paths are discussed. The latest PLZT block data composer is analyzed. Stricter controls in the production and fabrication of PLZT are implied by the performance of the BDC. A reverse charge before erase has eliminated several problems observed in the parallel plane charging process for photoconductor-thermoplastic hologram storage.

  14. Infrared transmission measurements of highly curved optical components

    NASA Astrophysics Data System (ADS)

    Tiszauer, Detlev H.; Morrow, Howard E.

    Fourier Transform Infrared Spectrometer (FTIR) measurements on flat witness samples are combined with ray trace results of transmission through a 1/8 inch, 12 mill focal length lens to estimate the net transmission of that lens as it is used in the Geostationary Operational Environmental Satellite (GOES I) Sounder optical train. The ray trace code uses a 'double random' ray method allowing radiometry to be done with a standard ray propagation algorithm.

  15. Geodesic Components Of Integrated Optics: Seeking For The Perfect Lens

    NASA Astrophysics Data System (ADS)

    Sochacki, Jacek

    1986-11-01

    The most recent formulation of the geodesic lens problem is briefly discussed and proved very useful in developing novel solutions. A new family of perfectly imaging lenses is presented, which lends itself extremely well to the integrated-optical circuits. These lenses possess smooth transition between the cyllindrically-symmetric depression profile and the flat guide. Moreover, the rounded section profile is characterized by non-vanishing local curvature radius. This should minimize radiation and scattering losses by the guided modes.

  16. Stem cell tracking with optically active nanoparticles

    PubMed Central

    Gao, Yu; Cui, Yan; Chan, Jerry KY; Xu, Chenjie

    2013-01-01

    Stem-cell-based therapies hold promise and potential to address many unmet clinical needs. Cell tracking with modern imaging modalities offers insight into the underlying biological process of the stem-cell-based therapies, with the goal to reveal cell survival, migration, homing, engraftment, differentiation, and functions. Adaptability, sensitivity, resolution, and non-invasiveness have contributed to the longstanding use of optical imaging for stem cell tracking and analysis. To identify transplanted stem cells from the host tissue, optically active probes are usually used to label stem cells before the administration. In comparison to the traditional fluorescent probes like fluorescent proteins and dyes, nanoparticle-based probes are advantageous in terms of the photo-stabilities and minimal changes to the cell phenotype. The main focus here is to overview the recent development of optically active nanoparticles for stem cells tracking. The related optical imaging modalities include fluorescence imaging, photoacoustic imaging, Raman and surface enhanced Raman spectroscopy imaging. PMID:23638335

  17. Specification of optical components for a high average-power laser environment

    SciTech Connect

    Taylor, J.R.; Chow, R.; Rinmdahl, K.A.; Willis, J.B.; Wong, J.N.

    1997-06-25

    Optical component specifications for the high-average-power lasers and transport system used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant must address demanding system performance requirements. The need for high performance optics has to be balanced against the practical desire to reduce the supply risks of cost and schedule. This is addressed in optical system design, careful planning with the optical industry, demonstration of plant quality parts, qualification of optical suppliers and processes, comprehensive procedures for evaluation and test, and a plan for corrective action.

  18. Hard plastic cladding fiber (HPCF) based optical components for high speed short reach optical communications

    NASA Astrophysics Data System (ADS)

    Kim, Jun Ki; Kim, Dong Uk; Kim, Tae Young; Park, Chang Soo; Oh, Kyunghwan

    2006-09-01

    We developed the primary components applicable to HPCF links for short reach (SR) and very short reach (VSR) data communication systems. We fabricated 4x4 HPCF fused taper splitter, HPCF pigtailed VCSEL and PIN photodiode for high speed short reach communications and characterized back to back transmission performance of the link composed of these components by measuring eye diagrams and jitters. Adapting the fusion-tapering technique for glass optical fiber, we successfully fabricated a 4x4 HPCF fused taper coupler. The HPCF with a core diameter of 200μm and an outer diameter of 230μm had step refractive index of 1.45 and 1.40 for the core and the clad. The optimized fusion length and tapering waist which make minimum insertion loss of about 7dB and uniform output power splitting ratio with less than 0.5dB are 13mm and 150µm, respectively. As a light source for VSR networks, we chose a vertical cavity surface emitting laser (VCSEL) and developed a package with a HPCF pigtail. After positioning VCSEL and HPCF that made a minimum coupling loss, we glued the HPCF inside ceramic ferrule housing. In HPCF-PIN PD packaging, we added a micro polymer lens tip onto the HPCF ends to match the mode field area to the sensitive area of GaAs or InGaAs PIN PD. Coupling between a PIN PD chip and the lensed HPCF was optimized with the radius of curvature of 156µm with a low coupling loss of 0.3dB, which is compatible to conventional MMF-PD packaging. For 1.25 Gbps data rate, the eyes adequate to eye mask in gigabit Ethernet were wide open after all HPCF transmission link and no significant power penalty was observed.

  19. Photovoltaic concentrator assembly with optically active cover

    DOEpatents

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  20. Recent optical activity of Mrk 421

    NASA Astrophysics Data System (ADS)

    Semkov, E.; Bachev, R.; Strigachev, A.; Ibryamov, S.; Peneva, S.; Gupta, A. C.

    2013-04-01

    Our BVRI optical observations of Mrk 421 were performed within the multiwavelength international campaign (December 2012-June 2013), with the participation of GASP-WEBT, Swift, MAGIC, VLBA, NuSTAR, Fermi, VERITAS, F-GAMMA and other collaborations. Following the reports of enhanced X-ray and gamma activity of Mrk 421 (ATel #4978, ATel #4977, ATel #4976, ATel #4974, ATel #4918), we observed this blazar with the optical telescopes of the National Astronomical Observatory Rozhen and the Astronomical Observatory Belogradchik, Bulgaria.

  1. Design of a multi-channel free space optical interconnection component

    NASA Astrophysics Data System (ADS)

    Jia, Da-Gong; Zhang, Pei-Song; Jing, Wen-Cai; Tan, Jun; Zhang, Hong-Xia; Zhang, Yi-Mo

    2008-11-01

    A multi-channel free space optical interconnection component, fiber optic rotary joint, was designed using a Dove prism. When the Dove prism is rotated an angle of α around the longitudinal axis, the image rotates an angle of 2 α. The optical interconnection component consists of the signal transmission system, Dove prim and driving mechanism. The planetary gears are used to achieve the speed ratio of 2:1 between the total optical interconnection component and the Dove prism. The C-lenses are employed to couple different optical signals in the signal transmission system. The coupling loss between the receiving fiber of stationary part and the transmitting fiber of rotary part is measured.

  2. The optical immersion effect in disperse systems with supercritical components

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Yuvchenko, S. A.; Ushakova, O. V.; Tyagnibedin, D. A.; Bagratashvili, V. N.

    2015-04-01

    The method of optical immersion of randomly inhomogeneous media with porous structures into a supercritical fluid (SCF) is considered. Growth in the fluid density upon isothermal increase in the pressure leads to growth in the refractive index and, accordingly, in diffuse transmission of light through a layer of immersed medium. Experimental data on the small-angle diffuse transmission of a model scattering medium (filter paper, PTFE ribbon) are presented for various SCF pressures. Values of the transport length of laser radiation in these media are recovered as dependent on the SCF refractive index.

  3. Susceptibility of electro-optic components to degradation in a space environment.

    PubMed

    Blue, M D

    1996-11-01

    Possible causes of degradation of electro-optic systems operating in a space environment include not only the effects of radiation but also the effects of temperature, temperature cycling, atomic oxygen effects (for low-Earth orbits), micrometeoroid impacts, and contamination effects. For the majority of electro-optic components, the radiation environment in space does not present a significant problem. For a few components, or for electro-optic systems that must operate in a high radiation environment, special precautions must be observed. The effects of radiation, as well as other problems of the space environment, on electro-optic components, including recent results from the LDEF satellite experiments and some later measurements, are reviewed. Guidelines for materials and component selection shielding are presented. PMID:11540513

  4. The effects of ionizing radiation on fiber optic systems and components for use in mobile platforms

    NASA Astrophysics Data System (ADS)

    Reddy, Mahesh; Krinsky, Jeff

    1991-02-01

    Many applications for fiber optic components and systems exist in mobile platforms. Some of the mobile platforms will be expected to operate through or survive exposure to ionizing radiation. Construction of systems that can survive the required radiation environments requires special design considerations. This paper describes the effects of ionizing radiation on some fiber optic components and systems for use in mobile platforms, and an example of transient radiation test data on a prototype analog two wavelength referenced system is presented.

  5. Compatibility between active components of a commercial drug.

    PubMed

    Rodante, Fabrizio; Vecchio, Stefano; Catalani, Giovanni; Tomassetti, Mauro

    2002-10-01

    A thermal and a kinetic analysis on the decomposition processes of a commercial drug named diamplicil (AD), obtained by an antibiotic combination of ampicillin (A) and dicloxacillin (D), have been carried out to find their thermal stability. The DSC/TG curves of this commercial drug were compared with those of its active components and an excipient, the magnesium stearate (M). Kinetic study was carried out using both isothermal and dynamic TG curves. Decomposition mechanisms for both active components and commercial drug tested were not found. The kinetic data obtained by the non-isothermal isoconversional method showed that D component causes a decrease of the kinetic stability of the active A component. Additive magnesium stearate does not decrease the stability of the two components. Moreover, storage time values at room temperature were calculated. PMID:12420879

  6. 76 FR 72722 - Certain Projectors With Controlled-Angle Optical Retarders, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... COMMISSION Certain Projectors With Controlled-Angle Optical Retarders, Components Thereof, and Products... within the United States after importation of certain projectors with controlled-angle optical retarders...; Sony Corporation of America, 550 Madison Avenue, New York, NY 10022; Sony Electronics Inc., 16530...

  7. Modern trends in industrial technology of production of optical polymeric components for night vision devices

    NASA Astrophysics Data System (ADS)

    Goev, A. I.; Knyazeva, N. A.; Potelov, V. V.; Senik, B. N.

    2005-06-01

    The present paper represents in detail the complex approach to creating industrial technology of production of polymeric optical components: information has been given on optical polymeric materials, automatic machines for injection moulding, the possibilities of the Moldflow system (the AB "Universal" company) used for mathematical simulation of the technological process of injection moulding and making the moulds.

  8. Semantic-Aware Components and Services of ActiveMath

    ERIC Educational Resources Information Center

    Melis, Erica; Goguadze, Giorgi; Homik, Martin; Libbrecht, Paul; Ullrich, Carsten; Winterstein, Stefan

    2006-01-01

    ActiveMath is a complex web-based adaptive learning environment with a number of components and interactive learning tools. The basis for handling semantics of learning content is provided by its semantic (mathematics) content markup, which is additionally annotated with educational metadata. Several components, tools and external services can…

  9. Improvement in the performance of laser based optical rotational sensor by reducing the stress co-efficient of optical component

    NASA Astrophysics Data System (ADS)

    Rasheed, I. Abdul; Naidu, V. Atchaiah; Gupta, Mahender Kumar; Chhabra, Inder Mohan; Karthikeyan, B.

    2016-05-01

    Laser based optical rotational sensors are used as an inertial rotation sensor for navigation purpose. The life time of the rotational sensor wholly depend on the type / quality of the optical components that are used. While developing the rotational sensors, based on the total internal reflection techniques, the laser is passing through the glass material. As the glass is having a high verdant constant the laser gets affected and suffers from the rotation of polarization. This phenomenon still gets enhanced if the components which are optically bonded are having a high order of non - uniformity. It creates the stress onto the prism as well on the Optical block and gives rise to a varying amount of stress induced Birefringes. Because of this observation, the performance of the rotational sensor gets deteriorated. This paper will present the techniques used for producing the highly flat surface, which will reduce the stress Birefringes and in turn improve the performance of the rotational sensor.

  10. Influence of optical activity on rogue waves propagating in chiral optical fibers

    NASA Astrophysics Data System (ADS)

    Temgoua, D. D. Estelle; Kofane, T. C.

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  11. Event-related fast optical signal in a rapid object recognition task: improving detection by the Independent Component Analysis

    PubMed Central

    Medvedev, Andrei V.; Kainerstorfer, Jana; Borisov, Sergey V.; Barbour, Randall L.; VanMeter, John

    2008-01-01

    Noninvasive recording of fast optical signals presumably reflecting neuronal activity is a challenging task because of a relatively low signal-to-noise ratio. To improve detection of those signals in rapid object recognition tasks, we used the Independent Component Analysis (ICA) to reduce “global interference” (heartbeat and contribution of superficial layers). We recorded optical signals from the left prefrontal cortex in 10 right-handed participants with a continuous-wave instrument (DYNOT, NIRx, Brooklyn, NY). Visual stimuli were pictures of urban, landscape and seashore scenes with various vehicles as targets (target-to-non-target ratio 1:6) presented at ISI = 166 ms or 250 ms. Subjects mentally counted targets. Data were filtered at 2–30 Hz and artifactual components were identified visually (for heartbeat) and using the ICA weight matrix (for superficial layers). Optical signals were restored from the ICA components with artifactual components removed and then averaged over target and non-target epochs. After ICA processing, the event-related response was detected in 70–100% of subjects. The refined signal showed a significant decrease from baseline within 200–300 ms after targets and a slight increase after non-targets. The temporal profile of the optical signal corresponded well to the profile of a “differential ERP response”, the difference between targets and non-targets which peaks at 200 ms in similar object detection tasks. These results demonstrate that the detection of fast optical responses with continuous-wave instruments can be improved through the ICA method capable to remove noise, global interference and the activity of superficial layers. Fast optical signals may provide further information on brain processing during higher-order cognitive tasks such as rapid categorization of objects. PMID:18725213

  12. Membrane optical activity: some facts and fallacies.

    PubMed

    Wallach, D F; Low, D A; Bertland, A V

    1973-11-01

    The circular dichroism of hypothetical, water-filled, spherical shells, 75-3500 nm in radius, with walls 7.5 nm thick, composed of poly(L-lysine) in various conformational proportions, and suspended in water, were computed from the known optical properties of this polypeptide by classical general light-scattering theory (Mie theory). Comparison of the computed curves of circular dichroism spectra with those of diverse membranes reveals large discrepancies below 215 nm and shows that light scattering does not adequately account for the optical activity of membranes containing appreciable proportions of nonhelical conformation. However, turbidity effects can explain the anomalies of membrane optical rotatory dispersion near 233 nm, if not uniquely so. We conclude that the optical activity of neither most soluble proteins nor membrane proteins can provide accurate conformational information when synthetic polypeptides are used as standards and list the reasons for this argument. We also show that present techniques to "correct" membrane optical activity are likely to produce additional artifact. PMID:4522300

  13. Experimental Set-Up to Evaluate the Degradation of the Optical Components of a CPV Module

    NASA Astrophysics Data System (ADS)

    Bengoechea, Jaione; Ezquer, Mikel; Petrina, Iñigo; Lagunas, Ana Rosa

    2011-12-01

    The efficiency of CPV modules strongly depends on the characteristics and performance of the optical components. Therefore, the complete characterization of the optical components and their evolution during the module lifetime becomes an important issue to correctly estimate the energy supplied by the CPV systems along the time. Due to the series electrical connection of the multi-junction solar cells, the spectral distribution of the light after the optical components plays a key role in the energy production. A spectrally resolved characterization of the light is hence desirable. In this paper, an indoor set-up to study the degradation of optical components of CPV modules is presented. The first part of the experimental set-up consists of a collimated Xe lamp, a diaphragm, and a spectroradiometer. With this set-up information about the variation of the light spectrum spatial distribution due to the CPV optical component is obtained. The second part of the experimental set-up is based on a combination of Deuterium and Halogen lamps and an integrating sphere. This set-up allows the detection of changes in the optical properties of the material through the measurement of the global spectral transmittance and reflectance.

  14. Fiber optic gyroscope using an eight-component LiNbO3 integrated optic circuit

    NASA Technical Reports Server (NTRS)

    Minford, W. J.; Stone, F. T.; Youmans, B. R.; Bartman, R. K.

    1990-01-01

    A LiNbO3 integrated optic circuit (IOC) containing eight optical functions has been successfully incorporated into an interferometric fiber optic gyroscope. The IOC has the minimum configuration optical functions (a phase modulator, a polarizer, and two beam splitters) and Jet Propulsion Laboratory's novel beat detection circuit (a phase modulator, two optical taps, and a beam splitter) which provides a means of directly reading angular position and rotation rate. The optical subsystem consisting of the fiber-pigtailed IOC and a sensing coil of 945 meters of polarization-maintaining fiber has a loss of 18.7dB, which includes 9dB due to the architecture and unpolarized source. A random walk coefficient was measured using an edge-emitting LED as the source.

  15. Independent Components of Neural Activity Carry Information on Individual Populations

    PubMed Central

    Głąbska, Helena; Potworowski, Jan; Łęski, Szymon; Wójcik, Daniel K.

    2014-01-01

    Local field potential (LFP), the low-frequency part of the potential recorded extracellularly in the brain, reflects neural activity at the population level. The interpretation of LFP is complicated because it can mix activity from remote cells, on the order of millimeters from the electrode. To understand better the relation between the recordings and the local activity of cells we used a large-scale network thalamocortical model to compute simultaneous LFP, transmembrane currents, and spiking activity. We used this model to study the information contained in independent components obtained from the reconstructed Current Source Density (CSD), which smooths transmembrane currents, decomposed further with Independent Component Analysis (ICA). We found that the three most robust components matched well the activity of two dominating cell populations: superior pyramidal cells in layer 2/3 (rhythmic spiking) and tufted pyramids from layer 5 (intrinsically bursting). The pyramidal population from layer 2/3 could not be well described as a product of spatial profile and temporal activation, but by a sum of two such products which we recovered in two of the ICA components in our analysis, which correspond to the two first principal components of PCA decomposition of layer 2/3 population activity. At low noise one more cell population could be discerned but it is unlikely that it could be recovered in experiment given typical noise ranges. PMID:25153730

  16. Design of pitch conversion component for formation of multibeam optical recording head

    NASA Astrophysics Data System (ADS)

    Sasaki, Kentaro; Kawamura, Norikazu; Tokumaru, Haruki

    2008-04-01

    We describe a design of a planar lightwave circuit for parallel information processing using visible light. The circuit serves as a pitch conversion component (PCC) that can align multiple beams close together and easily composes a compact optical system that can project optical spots at a narrow pitch on a certain small plane. From the viewpoint of its application to optical recording, a PCC is designed to have over 50 waveguides according to the fabrication of waveguides for a blue-violet beam. It is analytically confirmed that a PCC contributes to the formation of a multibeam optical recording head with numerous beams.

  17. Design of pitch conversion component for formation of multibeam optical recording head.

    PubMed

    Sasaki, Kentaro; Kawamura, Norikazu; Tokumaru, Haruki

    2008-04-10

    We describe a design of a planar lightwave circuit for parallel information processing using visible light. The circuit serves as a pitch conversion component (PCC) that can align multiple beams close together and easily composes a compact optical system that can project optical spots at a narrow pitch on a certain small plane. From the viewpoint of its application to optical recording, a PCC is designed to have over 50 waveguides according to the fabrication of waveguides for a blue-violet beam. It is analytically confirmed that a PCC contributes to the formation of a multibeam optical recording head with numerous beams. PMID:18404179

  18. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  19. Specular optical activity of achiral metasurfaces

    NASA Astrophysics Data System (ADS)

    Plum, Eric; Fedotov, Vassili A.; Zheludev, Nikolay I.

    2016-04-01

    Optical activity in 3D-chiral media in the form of circular dichroism and birefringence is a fundamental phenomenon that serves as evidence of life forms and is widely used in spectroscopy. Even in 3D-chiral media exhibiting strong transmission optical activity, the reflective effect is weak and sometimes undetectable. Here, we report that specular optical activity at structured interfaces can be very strong. Resonant polarization rotation reaching 25 ° and reflectivity contrast exceeding 50% for oppositely circularly polarized waves are observed for microwaves reflected by a metasurface with structural elements lacking two-fold rotational symmetry. The effect arises at oblique incidence from a 3D-chiral arrangement of the wave's direction and the metasurface's structure that itself does not possess chiral elements. Specular optical activity of such magnitude is unprecedented. It is fundamentally different from the polarization effects occurring upon scattering, reflection, and transmission from surfaces with 2D-chiral patterns. The scale of the effect allows applications in polarization sensitive devices and surface spectroscopies.

  20. An Overhead Projection Demonstration of Optical Activity

    ERIC Educational Resources Information Center

    Hill, John W.

    1973-01-01

    Describes the use of two polarizing lenses, a yellow filter, an oatmeal bos, a piece of cardboard, a 1,000 ml beaker, and an overhead projector to demonstrate compound optical activity to large classes. Indicates the presence of an accuracy within 1-2 degrees of usually acceptable data. (CC)

  1. Railway track component condition monitoring using optical fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Buggy, S. J.; James, S. W.; Staines, S.; Carroll, R.; Kitson, P.; Farrington, D.; Drewett, L.; Jaiswal, J.; Tatam, R. P.

    2016-05-01

    The use of optical fibre Bragg grating (FBG) strain sensors to monitor the condition of safety critical rail components is investigated. Fishplates, switchblades and stretcher bars on the Stagecoach Supertram tramway in Sheffield in the UK have been instrumented with arrays of FBG sensors. The dynamic strain signatures induced by the passage of a tram over the instrumented components have been analysed to identify features indicative of changes in the condition of the components.

  2. Principal Component Analysis Studies of Turbulence in Optically Thick Gas

    NASA Astrophysics Data System (ADS)

    Correia, C.; Lazarian, A.; Burkhart, B.; Pogosyan, D.; De Medeiros, J. R.

    2016-02-01

    In this work we investigate the sensitivity of principal component analysis (PCA) to the velocity power spectrum in high-opacity regimes of the interstellar medium (ISM). For our analysis we use synthetic position-position-velocity (PPV) cubes of fractional Brownian motion and magnetohydrodynamics (MHD) simulations, post-processed to include radiative transfer effects from CO. We find that PCA analysis is very different from the tools based on the traditional power spectrum of PPV data cubes. Our major finding is that PCA is also sensitive to the phase information of PPV cubes and this allows PCA to detect the changes of the underlying velocity and density spectra at high opacities, where the spectral analysis of the maps provides the universal -3 spectrum in accordance with the predictions of the Lazarian & Pogosyan theory. This makes PCA a potentially valuable tool for studies of turbulence at high opacities, provided that proper gauging of the PCA index is made. However, we found the latter to not be easy, as the PCA results change in an irregular way for data with high sonic Mach numbers. This is in contrast to synthetic Brownian noise data used for velocity and density fields that show monotonic PCA behavior. We attribute this difference to the PCA's sensitivity to Fourier phase information.

  3. The Adaptive Optics Summer School Laboratory Activities

    NASA Astrophysics Data System (ADS)

    Ammons, S. M.; Severson, S.; Armstrong, J. D.; Crossfield, I.; Do, T.; Fitzgerald, M.; Harrington, D.; Hickenbotham, A.; Hunter, J.; Johnson, J.; Johnson, L.; Li, K.; Lu, J.; Maness, H.; Morzinski, K.; Norton, A.; Putnam, N.; Roorda, A.; Rossi, E.; Yelda, S.

    2010-12-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO systems as a research tool. The activities are divided into three stations: Vision Science, Fourier Optics, and the AO Demonstrator. We briefly overview these activities, which are described fully in other articles in these conference proceedings (Putnam et al., Do et al., and Harrington et al., respectively). We devote attention to the unique challenges encountered in the design of these activities, including the marriage of inquiry-like investigation techniques with complex content and the need to tune depth to a graduate- and PhD-level audience. According to before-after surveys conducted in 2008, the vast majority of participants found that all activities were valuable to their careers, although direct experience with integrated, functional AO systems was particularly beneficial.

  4. A Large Aperture, High Energy Laser System for Optics and Optical Component Testing

    SciTech Connect

    Nostrand, M C; Weiland, T L; Luthi, R L; Vickers, J L; Sell, W D; Stanley, J A; Honig, J; Auerbach, J; Hackel, R P; Wegner, P J

    2003-11-01

    A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm{sup 2} high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics.

  5. Summary of the effects of radiation upon the passive optical components of the Versatile Link

    NASA Astrophysics Data System (ADS)

    Huffman, B. T.; Weidberg, A.

    2014-01-01

    The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC) will require high-speed optical links to read out data from its detectors. The ATLAS and CMS experiments in collaboration with CERN have developed the Versatile Link in order to address the technical issues of optical data transmission within the harsh radiation environment experienced by any experiment within the HL-LHC. Passive optical components can suffer damage in the form of reduced optical transparency (radiation induced absorption or RIA), reduced bandwidth, and mechanical damage to the components themselves and their connection hardware. This paper summarizes the results of the optical and mechanical tests that have been performed on the Versatile Link's passive optical components. The authors conclude that two single mode and two multimode fibres, as well as standard connector components, can be qualified for use in the HL-LHC environment. The qualifying fibers are: Corning SMF-28e, DrakaElite® SRH-SMF, Corning Clearcurve® OM4 multimode graded index, and DrakaElite® SRH-MMF.

  6. Optical fiber sensor having an active core

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.

  7. Fault analysis and detection in large active optical systems

    NASA Astrophysics Data System (ADS)

    Cox, Charles D.; Furber, Mark E.; Jordan, David C.; Blaszak, David D.

    1995-05-01

    Active optical systems are complex systems that may be expected to operate in hostile environments such as space. The ability of such a system either to tolerate failures of components or to reconfigure to accommodate failed components could significantly increase the useful lifetime of the system. Active optical systems often contain hundreds of actuators and sensor channels but have an inherent redundancy, i.e., more actuators or sensor channels than the minimum needed to achieve the required performance. A failure detection and isolation system can be used to find and accommodate failures. One type of failure is the failure of an actuator. The effect of actuator failure on the ability of a deformable mirror to correct aberrations is analyzed using a finite-element model of the deformable mirror, and a general analytical procedure for determining the effect of actuator failures on system performance is given. The application of model-based failure detection, isolation and identification algorithms to active optical systems is outlined.

  8. Towards do-it-yourself planar optical components using plasmon-assisted etching

    PubMed Central

    Chen, Hao; Bhuiya, Abdul M.; Ding, Qing; Johnson, Harley T.; Toussaint Jr, Kimani C.

    2016-01-01

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter—all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown. PMID:26814026

  9. Towards do-it-yourself planar optical components using plasmon-assisted etching.

    PubMed

    Chen, Hao; Bhuiya, Abdul M; Ding, Qing; Johnson, Harley T; Toussaint, Kimani C

    2016-01-01

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter--all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown. PMID:26814026

  10. Towards do-it-yourself planar optical components using plasmon-assisted etching

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Bhuiya, Abdul M.; Ding, Qing; Johnson, Harley T.; Toussaint, Kimani C., Jr.

    2016-01-01

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter--all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown.

  11. Flexible, non-contact and high-precision measurements of optical components

    NASA Astrophysics Data System (ADS)

    Beutler, A.

    2016-06-01

    A high-accuracy cylindrical coordinate measuring instrument developed for the measurement of optical components is presented. It is equipped with an optical point sensor system including a high aperture probe. This setup allows measurements to be performed with high accuracy in a flexible way. Applications include the measurement of the topography of high-precision aspheric and freeform lenses and diffractive structures. High measuring speeds guarantee the implementation in a closed-loop production process.

  12. Analysis of exposure due to work on activated components

    SciTech Connect

    Cossairt, J.D.

    1987-09-01

    In this brief note the author summarized analysis of the exposure incurred in various maintenance jobs involving activated accelerator and beam line components at Fermilab. A tabulation was made of parameters associated with each job. Included are rather terse descriptions of the various tasks. The author presented various plots of the quantities in the table. All exposure rates are mR/hr while all exposures accumulated are mR. The exposure rates were generally measured at the Fermilab standard one foot distance from the activated component. Accumulated exposures are taken from the self-reading pocket dosimeter records maintained by the radiation control technicians.

  13. Target for optically activated seekers and trackers

    NASA Astrophysics Data System (ADS)

    Lakin, C. T.; Willett, N. F.

    1984-05-01

    This abstract discloses a target for optically activated seekers and trackers (TOAST) which provides for calibrated and variable target characteristics such as size, intensity, spatial position, color and interfering background. The TOAST has a first ilumination system providing a target light beam through an adjustable iris which controls image size. The target beam passes through a collimator lens which focuses the light at infinity. With the target beam focused at infinity, the motion of an elevation plate lengthens or shortens the distance from the collimator lens to a one motion mirror. The target beam is attenuated by a variable filter driven by a servo-motor, and a color selection process is provided by passing the beam through spectral filters. A background light beam with background imagery is provided to the beamsplitter mirror and mixed with the target image so as to simulate the target environment encountered by an operating optically activated seeker and tracker.

  14. Optically active particles of chiral polymers.

    PubMed

    Song, Ci; Liu, Xuan; Liu, Dong; Ren, Chonglei; Yang, Wantai; Deng, Jianping

    2013-09-01

    Particles constructed by chiral polymers (defined as PCPs) have emerged as a rapidly expanding research field in recent years because of their potentially wide-ranging applications in asymmetric catalysis, enantioselective crystallization, enantioselective release, amongst many others. The particles show considerable optical activity, due to the chirality of the corresponding polymers from which the particles are derived. This review article presents an overview on PCPs with emphasis on our group's recent achievements in the preparation of PCPs derived from optically active helical polymers and their applications. PCPs can be prepared via emulsion polymerization, precipitation polymerization, and suspension polymerization by starting from monomers. Emulsification of preformed chiral polymers and self-assembly approaches also can lead to PCPs. Chiral polymer-based core/shell particles, hollow particles, and magnetic particles are also covered because of their remarkable properties and significant potential applications. PMID:24030962

  15. Integrated device with diffractive polarization components for a magneto-optical disk head

    NASA Technical Reports Server (NTRS)

    Haggans, Charles W.; Fujita, Teruo; Kostuk, Raymond K.

    1992-01-01

    The optical components in the detection train of a conventional magneto-optical (MO) disk head include a half-wave plate and a polarization beamsplitter. These polarization components are bulky and require specialized mounting hardware. In order to realize a more compact head, we propose that these elements be replaced by an integrated device composed of cascaded volume and surface-relief gratings. Herein, the proposed system is described in detail for the individual elements, theoretical and prototype element performance are compared, and the operational tolerances of these elements are discussed.

  16. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing

    PubMed Central

    Wang, Pengfei; Bo, Lin; Semenova, Yuliya; Farrell, Gerald; Brambilla, Gilberto

    2015-01-01

    Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres. PMID:26287252

  17. Optical activity of chirally distorted nanocrystals

    NASA Astrophysics Data System (ADS)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2016-05-01

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.

  18. Antioxidant activity of minor components of tree nut oils.

    PubMed

    Miraliakbari, H; Shahidi, F

    2008-11-15

    The antioxidative components of tree nut oils were extracted using a solvent stripping process. Tree nut oil extracts contained phospholipids, sphingolipids, sterols and tocopherols. The chloroform/methanol extracted oils had higher amounts of phenolic compounds than their hexane extracted counterparts. The antioxidant activity of tree nut oil minor component extracts were assessed using the 2,2-azino-bis (3-ethylbenzthiazoline sulphonate) (ABTS) radical scavenging activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity, β-carotene bleaching test, oxygen radical absorbance capacity (ORAC) and photochemiluminescence inhibition assays. Results of these studies demonstrated that extracts of chloroform/methanol extracted oils possessed higher antioxidant activities than extracts of their hexane extracted counterparts. Meanwhile the extract of chloroform/methanol extracted pecan oil possessed the highest antioxidant activity. PMID:26047445

  19. Optically Active Porphyrin and Phthalocyanine Systems.

    PubMed

    Lu, Hua; Kobayashi, Nagao

    2016-05-25

    This review highlights and summarizes various optically active porphyrin and phthalocyanine molecules prepared using a wide range of structural modification methods to improve the design of novel structures and their applications. The induced chirality of some illustrative achiral bis-porphyrins with a chiral guest molecule is introduced because these systems are ideal for the identification and separation of chiral biologically active substrates. In addition, the relationship between CD signal and the absolute configuration of the molecule is analyzed through an analysis of the results of molecular modeling calculations. Possible future research directions are also discussed. PMID:27186902

  20. Cleaning Process Versus Laser-Damage Threshold of Coated Optical Components

    SciTech Connect

    Rigatti, A.L.

    2005-03-31

    The cleaning of optical surfaces is important in the manufacture of high-laser-damage-threshold coatings, which are a key component on peak-power laser systems such as OMEGA located at the Laboratory for Laser Energetics (LLE). Since cleaning adds time, labor, and ultimately cost to the final coated component, this experiment was designed to determine the impact of different cleaning protocols on the measured laser-damage performance.

  1. Actively controlled thin-shell space optics

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Flint, Eric M.; Main, John A.; Lindler, Jason E.

    2003-08-01

    Increasingly, scientific and military missions require the use of space-based optical systems. For example, new capabilities are required for imaging terrestrial like planets, for surveillance, and for directed energy applications. Given the difficulties in producing and launching large optics, it is doubtful that refinements of conventional technology will meet future needs, particularly in a cost-effective manner. To meet this need, recent research has been investigating the feasibility of a new class of ultra-lightweight think-skin optical elements that combine recent advances in lightweight thermally formed materials, active materials, and novel sensing and control architectures. If successful, the approach may lead to an order of magnitude reduction in space optics areal density, improved large scale manufacturing capability, and dramatic reductions in manufacturing and launch costs. In a recent effort, a one meter thin-film mirror like structure was fabricated. This paper provides an overview of tools used to model and simulate this structure as well as results from structural dynamic testing. In addition, progress in the area of non-contact global shape control using smart materials is presented.

  2. Deep proton writing: a powerful rapid prototyping technology for various micro-optical components

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Debaes, Christof; Ottevaere, Heidi; Van Overmeire, Sara; Hermanne, Alex; Thienpont, Hugo

    2010-05-01

    One of the important challenges for the deployment of the emerging breed of nanotechnology components is interfacing them with the external world, preferably accomplished with low-cost micro-optical devices. For the fabrication of this kind of micro-optical modules, we make use of deep proton writing (DPW) as a generic rapid prototyping technology. DPW consists of bombarding polymer samples with swift protons, which results after chemical processing steps in high quality micro-optical components. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we give an overview of the process steps of the technology and we present several examples of micro-optical and micro-mechanical components, fabricated through DPW, targeting applications in optical interconnections and in bio-photonics. These include: high-precision 2-D fiber connectors, out-of-plane coupling structures featuring high-quality 45° and curved micro-mirrors, arrays of high aspect ratio micro-pillars, and fluorescence and absorption detection bio-photonics modules. While DPW is clearly not a mass fabrication technique as such, one of its assets is that once the master component has been prototyped, a metal mould can be generated from the DPW master by applying electroplating. After removal of the plastic master, this metal mould can be used as a shim in a final microinjection moulding or hot embossing step. This way, the master component can be mass-produced at low cost in a wide variety of high-tech plastics.

  3. Optical pumping of generalized laser active materials.

    PubMed

    Fry, F H

    1967-11-01

    Results are presented of a computer-based study on the rate of excitation in the active cores of two types of optically pumped lasers as a function of a number of parameters of the active core. The absorption bands of the active materials are generated by Lorentzian and Gaussian functions. The excitation rate of the active core is proportional to the width of the absorption band at all depths of penetration. The plots of excitation rate as a function of frequency show curves similar to line reversal spectra and emphasize the importance of excitation some distance from the center of the absorption band in the slab model. In the cylindrical model, this wing pumping is even more important due to focusing. The effect of refractive index on the excitation rate is also described. PMID:20062337

  4. ESTIMATION OF INHERENT OPTICAL PROPERTIES AND THE WATER QUALITY COMPONENTS IN THE NEUSE RIVER-PAMLICO SOUND ESTUARINE SYSTEM

    EPA Science Inventory

    Field observations carried out in the Neuse River-Pamlico Sound Estuarine System (NRE-PS), North Carolina, USA were used to develop optical algorithms for assessing inherent optical properties, IOPs (absorption and backscattering) associated with water quality components (WQC).

  5. Fabrication of micro-optical components by high-precision embossing

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Schubert, Andreas; Boehm, Juliana; Gessner, Thomas

    2000-08-01

    Optical components, such as miniature spectrometer gratings working in the infrared range for environmental monitoring or physical analytics, contribute appeciably to the price of Micro Electro Opto Mechanical Systems (MOEMS). These optical components could be a part of a miniature functional package produced with an alternative fabrication technology based on cold forming metals. The cost-efficient fabrication of these components, for example by implementation of forming technology, appears promising. With this technology, high quality embossing of optical structures for high precision requirements in a batch process is possible. In this way the system costs can be reduced. In this paper aluminum forming by cold embossed grating for the fabrication of gratings was investigated. Experiments with different geometries of the embossed grating were carried out. The quality of the embossed structures is primarily determined by the precision and surface quality of the die. Therefore we used a single crystalline silicon tool made by etching as a die. Quality criteria for the review of the formed optical grating were the geometry of surfaces and the surface roughness as well as optical properties of the total structure.

  6. A viscoplastic model for the active component in cardiac muscle.

    PubMed

    Rubin, M B

    2016-08-01

    The HMK model (Hunter et al. in Prog Biophys Mol Biol 69:289-331, 1998) proposes mechanobiological equations for the influence of intracellular calcium concentration [Formula: see text] on the evolution of bound calcium concentration [Formula: see text] and the tropomyosin kinetics parameter z, which model processes in the active component of the tension in cardiac muscle. The inelastic response due to actin-myosin crossbridge kinetics is modeled in the HMK model with a function Q that depends on the history of the rate of total stretch of the muscle fiber. Here, an alternative model is proposed which models the active component of the muscle fiber as a viscoplastic material. In particular, an evolution equation is proposed for the elastic stretch [Formula: see text] in the active component. Specific forms of the constitutive equations are proposed and used to match experimental data. The proposed viscoplastic formulation allows for separate modeling of three processes: the high rate deactivation of crossbridges causing rapid reduction in active tension; the high but lower rate reactivation of crossbridges causing recovery of active tension; and the low rate relaxation effects characterizing the Hill model of muscles. PMID:26476735

  7. Dielectric prisms would improve performance of quasi-optical microwave components

    NASA Technical Reports Server (NTRS)

    Carson, J. W.

    1967-01-01

    Properties of the Brewster angle and internal reflection in a dielectric prism are proposed as the basis of a new type of element for use in oversize waveguide in quasi-optical microwave components. Waveguide loss is reduced and precision broadband attenuators, phase shifters, and directional couplers can be constructed on the basis of the properties.

  8. 78 FR 77166 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products Containing the Same; Notice of Request for Statements on the Public Interest AGENCY: U.S. International...

  9. Solar cyclic tests of optical fiber components working in ammonia and high temperatures

    NASA Astrophysics Data System (ADS)

    Fidelus, Janusz D.; Stańczyk, Tomasz; Wysokiński, Karol; Lipiński, Stanisław; Tenderenda, Tadeusz; Rodriguez Garcia, José; Canadas Martinez, Inmaculada; Nasiłowski, Tomasz

    2015-12-01

    The paper reports on the metal (Cu, Ni, Au)-coated fibers annealed under concentrated solar radiation in ammonia and N2/H2 atmospheres at temperatures up to 580 °C. Tensile strength of the annealed fiber components was studied from the point of view of their possible application as a fiber optic sensors in urea chemical synthesis process control.

  10. Plasmonic Biofoam: A Versatile Optically Active Material.

    PubMed

    Tian, Limei; Luan, Jingyi; Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2016-01-13

    Owing to their ability to confine and manipulate light at the nanoscale, plasmonic nanostructures are highly attractive for a broad range of applications. While tremendous progress has been made in the synthesis of size- and shape-controlled plasmonic nanostructures, their integration with other materials and application in solid-state is primarily through their assembly on rigid two-dimensional (2D) substrates, which limits the plasmonically active space to a few nanometers above the substrate. In this work, we demonstrate a simple method to create plasmonically active three-dimensional biofoams by integrating plasmonic nanostructures with highly porous biomaterial aerogels. We demonstrate that plasmonic biofoam is a versatile optically active platform that can be harnessed for numerous applications including (i) ultrasensitive chemical detection using surface-enhanced Raman scattering; (ii) highly efficient energy harvesting and steam generation through plasmonic photothermal heating; and (iii) optical control of enzymatic activity by triggered release of biomolecules encapsulated within the aerogel. Our results demonstrate that 3D plasmonic biofoam exhibits significantly higher sensing, photothermal, and loading efficiency compared to conventional 2D counterparts. The design principles and processing methodology of plasmonic aerogels demonstrated here can be broadly applied in the fabrication of other functional foams. PMID:26630376

  11. A Sensing System for Simultaneous Detection of Urine and its Components Using Plastic Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ejaz, Tahseen; Takemae, Tadashi; Egami, Chikara; Tsuboi, Naoyuki

    A sensing system using plastic optical fibers and reagent papers was developed for the detection of urine and abnormal level of its components simultaneously. Among several components of urine the detection of two main components namely, protein and glucose was confirmed experimentally. Three states of the papers namely dry and wet with and without change in color, were taken into consideration. These three states were divided by setting the lower and upper threshold voltages at 2.2 V and 5.5 V, respectively. This system is considered to be simple in construction, easy to operate and cost-efficient.

  12. Testing the large aperture optical components by the sub-aperture stitching interferometer

    NASA Astrophysics Data System (ADS)

    He, Yong; Wang, Zhao-xuan; Wang, Qing; Ji, Bo

    2008-03-01

    Nowadays many large aperture optical components are widely used in the high-tech area, how to test them become more and more important. Here describes a new method to test the large aperture optical components using the small aperture interferometer, deduce how to get the aperture number and the concrete process of the stitching parameter in a systematic way, finally get the best plan to choose the sub-aperture of the square and circular optical plane. To specify the stability of the method we operate an experiment, the result shows that the stitching accuracy can reach λ/10, it meet the need of the inertia constraint fusion etc, that is good enough to be used in the high-tech area.

  13. Optical Activity of Anisotropic Achiral Surfaces

    SciTech Connect

    Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoons, A. |

    1996-08-01

    Anisotropic achiral surfaces respond differently to left- and right-hand circularly polarized light. This occurs when the orientation of the surface with respect to an otherwise achiral experimental setup makes the total geometry chiral. Such optical activity is demonstrated in second-harmonic generation from an anisotropic thin molecular film. The circular-difference response reverses sign as the handedness of the geometry is reversed and vanishes when the setup possesses a mirror plane. The results are explained within the electric-dipole-allowed second-order surface nonlinearity. {copyright} {ital 1996 The American Physical Society.}

  14. Diamond optical components for high-power and high-energy laser applications

    NASA Astrophysics Data System (ADS)

    Anoikin, Eugene; Muhr, Alexander; Bennett, Andrew; Twitchen, Daniel; de Wit, Henk

    2015-02-01

    High-power and high-energy laser systems have firmly established their industrial presence with applications that span materials processing; high - precision and high - throughput manufacturing; semiconductors, and defense. Along with high average power CO2 lasers operating at wavelengths of ~ 10 microns, solid state lasers and fiber lasers operating at ~ 1 micron wavelength are now increasingly being used, both in the high average power and high energy pulse regimes. In recent years, polycrystalline diamond has become the material of choice when it comes to making optical components for multi-kilowatt CO2 lasers at 10 micron, outperforming ZnSe due to its superior thermo-mechanical characteristics. For 1 micron laser systems, fused silica has to date been the most popular optical material owing to its outstanding optical properties. This paper characterizes high - power / high - energy performance of anti-reflection coated optical windows made of different grades of diamond (single crystal, polycrystalline) and of fused silica. Thermo-optical modeling results are also presented for water cooled mounted optical windows. Laser - induced damage threshold tests are performed and analyzed. It is concluded that diamond is a superior optical material for working with extremely high-power and high-energy laser beams at 1 micron wavelength.

  15. Free Radical Scavenging and Antioxidant Activities of Silymarin Components

    PubMed Central

    Anthony, Kevin P.; Saleh, Mahmoud A.

    2013-01-01

    Silymarin is an over the counter food supplement that is sold as a liver enhancement and liver protection preparation. It is a major constituent of the seeds of Silybum marianum which is composed of a mixture of seven major components and several minor compounds. The seven major components: taxifolin, silychristin, silydianin, silybin A, silybin B, iso-silybin A and iso-silybin B were isolated and purified from the crude mixture of silymarin using preparative high performance liquid chromatography to determine which were the most effective for liver protection. Free radical scavenging, hydroxyl radical antioxidant capacity, oxygen radical antioxidant capacity, trolox-equivalent antioxidant capacity and total antioxidant capacity antioxidant activities were determined for each of the individual purified components as well as the crude silymarin mixture. Taxifolin was the most effective component for scavenging free radicals in the DPPH assay with an EC50 of 32 µM far more effective than all other components which showed EC50 ranging from 115 to 855 µM. Taxifolin was also found to be the most effective antioxidant in the oxygen radical antioxidant capacity (ORAC) assay with a trolox equivalent of 2.43 and the second most effective in the hydroxyl radical antioxidant capacity (HORAC) assay with a gallic acid equivalent of 0.57. Other antioxidants assays did not show significant differences between samples. PMID:26784472

  16. Excitations of the quantum phases of a two-component Bose gas in an optical lattice

    NASA Astrophysics Data System (ADS)

    Luxat, David L.

    2004-03-01

    We consider the dynamics of a two-component Bose gas in an optical lattice at T=0. As shown recently, the phase diagram has several quantum phase transitions, which arise because of intra-component correlations. We focus on the two-component Mott insulating (2MI) and the xy-ferromagnetic or super-counter-fluid (SCF) phases. Starting from the two-component Bose-Hubbard model, an effective Hamiltonian is used to study the excitations and collective modes of these two quantum phases. The two-particle excitations associated with the intra-component or spin dynamics are markedly different in these two phases, exhibiting a Goldstone mode in the SCF phase. These collective modes are the poles of the intra-component two-particle correlation function or transverse spin susceptibility. We show how this intra-component two-particle correlation function, and thus the two-particle excitation spectrum, may be measured using a two-photon Raman probe that couples the two components. We also show how a Raman probe may be used to study the single-particle excitations when it couples one of the components to another hyperfine state. This could provide a direct measure of the Mott insulating gap.

  17. Plant active components - a resource for antiparasitic agents?

    PubMed

    Anthony, Jean-Paul; Fyfe, Lorna; Smith, Huw

    2005-10-01

    Plant essential oils (and/or active components) can be used as alternatives or adjuncts to current antiparasitic therapies. Garlic oil has broad-spectrum activity against Trypanosoma, Plasmodium, Giardia and Leishmania, and Cochlospermum planchonii and Croton cajucara oils specifically inhibit Plasmodium falciparum and Leishmania amazonensis, respectively. Some plant oils have immunomodulatory effects that could modify host-parasite immunobiology, and the lipid solubility of plant oils might offer alternative, transcutaneous delivery routes. The emergence of parasites resistant to current chemotherapies highlights the importance of plant essential oils as novel antiparasitic agents. PMID:16099722

  18. Testing of optical components to assure performance in a high acerage power environment

    SciTech Connect

    Chow, R.; Taylor, J.R.; Eickelberg, W.K.; Primdahl, K.A.

    1997-06-24

    Evaluation and testing of the optical components used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant is critical for qualification of suppliers, development of new optical multilayer designs and monufacturing processes, and assurance of performance in the production cycle. The range of specifications requires development of specialized test equipment and methods which are not routine or readily available in industry. Specifications are given on material characteristics such as index homogeneity, subsurface damage left after polishing, microscopic surface defects and contamination, coating absorption, and high average power laser damage. The approach to testing these performance characteristics and assuring the quality throughout the production cycle is described.

  19. Active polarimeter optical system laser hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-07-01

    A laser hazard analysis was performed for the SNL Active Polarimeter Optical System based on the ANSI Standard Z136.1-2000, American National Standard for Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for Safe Use of Lasers Outdoors. The Active Polarimeter Optical System (APOS) uses a pulsed, near-infrared, chromium doped lithium strontium aluminum fluoride (Cr:LiSAF) crystal laser in conjunction with a holographic diffuser and lens to illuminate a scene of interest. The APOS is intended for outdoor operations. The system is mounted on a height adjustable platform (6 feet to 40 feet) and sits atop a tripod that points the beam downward. The beam can be pointed from nadir to as much as 60 degrees off of nadir producing an illuminating spot geometry that can vary from circular (at nadir) to elliptical in shape (off of nadir). The JP Innovations crystal Cr:LiSAF laser parameters are presented in section II. The illuminating laser spot size is variable and can be adjusted by adjusting the separation distance between the lens and the holographic diffuser. The system is adjusted while platform is at the lowest level. The laser spot is adjusted for a particular spot size at a particular distance (elevation) from the laser by adjusting the separation distance (d{sub diffuser}) to predetermined values. The downward pointing angle is also adjusted before the platform is raised to the selected operation elevation.

  20. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  1. Comparative defect evaluation of aircraft components by active thermography

    NASA Astrophysics Data System (ADS)

    Zauner, G.; Mayr, G.; Hendorfer, G.

    2009-02-01

    Active Thermography has become a powerful tool in the field of non-destructive testing (NDT) in recent years. This infrared thermal imaging technique is used for non-contact inspection of materials and components by visualizing thermal surface contrasts after a thermal excitation. The imaging modality combined with the possibility of detecting and characterizing flaws as well as determining material properties makes Active Thermography a fast and robust testing method even in industrial-/production environments. Nevertheless, depending on the kind of defect (thermal properties, size, depth) and sample material (CFRP carbon fiber reinforced plastics, metal, glass fiber) or sample structure (honeycomb, composite layers, foam), active thermography can sometimes produce equivocal results or completely fails in certain test situations. The aim of this paper is to present examples of results of Active Thermography methods conducted on aircraft components compared to various other (imaging) NDT techniques, namely digital shearography, industrial x-ray imaging and 3D-computed tomography. In particular we focus on detection limits of thermal methods compared to the above-mentioned NDT methods with regard to: porosity characterization in CFRP, detection of delamination, detection of inclusions and characterization of glass fiber distributions.

  2. The whispering gallery as an optical component in the X-ray region

    SciTech Connect

    Howells, M.R.

    1995-08-01

    The whispering gallery phenomenon in acoustics has been known and studied for more than a century, and the same effect has been observed to take place with waves other than sound waves. In this paper we review the theoretical basis and attractive features of the whispering gallery as a soft x-ray optical component and indicate some of its potential applications. We then describe what may be its most unique capability which, in favorable cases, is to provide a way. to manipulate the phase difference between the s and p polarization components and thus to generate circularly or elliptically polarized soft x-rays.

  3. Optical imaging of fast light-evoked fast neural activation in amphibian retina

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; George, John S.

    2006-02-01

    High performance functional imaging is needed for dynamic measurements of neural processing in retina. Emerging techniques of visual prosthesis also require advanced methodology for reliable validation of electromagnetic stimulation of the retina. Imaging of fast intrinsic optical responses associated with neural activation promises a variety of technical advantages over traditional single and multi-channel electrophysiological techniques for these purposes, but the application of fast optical signals for neural imaging has been limited by low signal to noise ratio and high background light intensity. However, using optimized near infrared probe light and improved optical systems, we have improved the optical signals substantially, allowing single pass measurements. Fast photodiode measurements typically disclose dynamic transmitted light changes of whole retina at the level of 10 -4 dI/I, where dI is the dynamic optical change and I is the baseline light intensity. Using a fast high performance CCD, we imaged fast intrinsic optical responses from isolated retina activated by a visible light flash. Fast, high resolution imaging disclosed larger local optical responses, and showed evidence of multiple response components with both negative- and positive-going signals, on different timescales. Darkfield imaging techniques further enhanced the sensitivity of optical measurements. At single cell resolution, brightfield imaging disclosed maxima of optical responses ~5% dI/I, while darkfield imaging showed maxima of optical responses exceeding 10% dI/I. In comparison with simultaneous electrophysiological recording, optical imaging provided much better localized patterns of response over the activated area of the retina.

  4. Characterization of the optical components fabricated by femtosecond pulses in transparent materials

    NASA Astrophysics Data System (ADS)

    Mazule, Lina; Liukaityte, Simona; Sabonis, Vytautas; Gertus, Titas; Mikutis, Mindaugas; Paipulas, Domas; Puodziunas, Tomas; Sirutkaitis, Valdas

    2013-09-01

    We report optical characterization of the different optical components fabricated in transparent materials by bulk refractive index modification or surface ablation by femtosecond pulses. The methods used for characterization of the components with refractive index modification fabricated in fused silica by high repetition rate femtosecond KGW:Yb laser were transmission and diffraction measurements at 532 and 632.8 nm wavelengths, and total integrated scattering (TIS) at 532 mn wavelength. The combined characterization methods were sufficient for modification process optimization and allowed creation of the Bragg gratings with diffraction efficiency in range from 55 to 90% and low scattering losses. The forward and backward TIS measurements of the radial polarization converter showed that forward scattering is more than five times as high as backward scattering. Solar cells with modified surface by femtosecond pulse ablation were investigated by TIS and Volt-Ampere measurements. The current increase is registered with growth of the scattering loses in the solar cells.

  5. Three dimensional measurement of micro-optical components using digital holography and pattern recognition

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyung; Jeon, Sungbin; Cho, Janghyun; Lim, Geon; Park, No-Cheol; Park, Young-Pil

    2015-09-01

    This paper proposes a method for inspecting transparent micro-optical components that combines digital holography and pattern recognition. As many micro-optical components have array structures with numerous elements, the uniformity of each element is important. Consequently, an effective inspection requires simultaneous measurement of these elements. Pattern recognition is used to solve this issue and can be adopted effectively using the unique characteristics of digital holography to obtain both amplitude and phase information on the object. To verify this approach, an experimental demonstration was performed with a micro-lens array using a circle-detection algorithm based on the Hough Transform. As an experimental results 30 micro-lenses are detected and measured simultaneously by using proposed inspection method.

  6. Sub-picosecond laser induced damage test facility for petawatt reflective optical components characterizations

    NASA Astrophysics Data System (ADS)

    Sozet, Martin; Néauport, Jérôme; Lavastre, Eric; Roquin, Nadja; Gallais, Laurent; Lamaignère, Laurent

    2015-05-01

    While considering long pulse or short pulse high power laser facilities, optical components performances and in particular laser damage resistance are always factors limiting the overall system performances. Consequently, getting a detailed knowledge of the behavior of these optical components under irradiations with large beam in short pulse range is of major importance. In this context, a Laser Induced Damage Threshold test facility called DERIC has been developed at the Commissariat à l'Energie Atomique et aux Energies Alternatives, Bordeaux. It uses an Amplitude Systemes laser source which delivers Gaussian pulses of 500 fs at 1053 nm. 1-on-1, S-on-1 and RasterScan test procedures are implemented to study the behavior of monolayer and multilayer dielectric coatings.

  7. A database of wavefront measurements for laser system modeling, optical component development and fabrication process qualification

    SciTech Connect

    Wolfe, C.R.; Lawson, J.K.; Aikens, D.M.; English, R.E.

    1995-04-12

    In the second half of the 1990`s, LLNL and others anticipate designing and beginning construction of the National Ignition Facility (NIF). The NIF will be capable of producing the worlds first laboratory scale fusion ignition and bum reaction by imploding a small target. The NIF will utilize approximately 192 simultaneous laser beams for this purpose. The laser will be capable of producing a shaped energy pulse of at least 1.8 million joules (MJ) with peak power of at least 500 trillion watts (TV). In total, the facility will require more than 7,000 large optical components. The performance of a high power laser of this kind can be seriously degraded by the presence of low amplitude, periodic modulations in the surface and transmitted wavefronts of the optics used. At high peak power, these phase modulations can convert into large intensity modulations by non-linear optical processes. This in turn can lead to loss in energy on target via many well known mechanisms. In some cases laser damage to the optics downstream of the source of the phase modulation can occur. The database described here contains wavefront phase maps of early prototype optical components for the NIF. It has only recently become possible to map the wavefront of these large aperture components with high spatial resolution. Modem large aperture static fringe and phase shifting interferometers equipped with large area solid state detectors have made this possible. In a series of measurements with these instruments, wide spatial bandwidth can be detected in the wavefront.

  8. Achromatic flat optical components via compensation between structure and material dispersions

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang

    2016-01-01

    Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems.

  9. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  10. High-stability optical components for semiconductor laser intersatellite link experiment (SILEX) project

    NASA Astrophysics Data System (ADS)

    Lepretre, Francois

    1994-09-01

    Within the framework of a MATRA MARCONI SPACE FRANC contract for the European Space Agency, MATRA DEFENSE - DOD/UAO have developed, produced and tested 9 laser diode collimators, 52 optical components (anamorphoser, mirrors, dichroic splitters, redundancy module) and 9 interferential filters. All these space equipments must be integrated into the optical head of the SILEX (Semi-conductor Laser Intersatellite Link Experiment) bench. The SILEX experiment consists in transferring data from a low altitude satellite (SPOT 4) to a satellite in geostationary orbit (ARTEMIS) via beam generated by a laser diode (60 mW Cw). Very low emitted flux and long distance between the two satellites gives rise to the following technical difficulties: high angular (1 (mu) rad) and transverse stability requirements, requirement for high transmission and high rejection narrow band filters, in order to differentiate the transmit and receive channels, necessity of a very good optical wavefront, wavelength range 815-825 nm, 843-853 nm.

  11. Analysis of Photosynthetic Rate and Bio-Optical Components from Ocean Color Imagery

    NASA Technical Reports Server (NTRS)

    Kiefer, Dale A.; Stramski, Dariusz

    1997-01-01

    Our research over the last 5 years indicates that the successful transformation of ocean color imagery into maps of bio-optical properties will require continued development and testing of algorithms. In particular improvements in the accuracy of predicting from ocean color imagery the concentration of the bio-optical components of sea as well as the rate of photosynthesis will require progress in at least three areas: (1) we must improve mathematical models of the growth and physiological acclimation of phytoplankton; (2) we must better understand the sources of variability in the absorption and backscattering properties of phytoplankton and associated microparticles; and (3) we must better understand how the radiance distribution just below the sea surface varies as a function sun and sky conditions and inherent optical properties.

  12. Relations between ac-dc components and optical path length in photoplethysmography

    NASA Astrophysics Data System (ADS)

    Lee, Chungkeun; Sik Shin, Hang; Lee, Myoungho

    2011-07-01

    Photoplethysmography is used in various areas such as vital sign measurement, vascular characteristics analysis, and autonomic nervous system assessment. Photoplethysmographic signals are composed of ac and dc, but it is difficult to find research about the interaction of photoplethysmographic components. This study suggested a model equation combining two Lambert-Beer equations at the onset and peak points of photoplethysmography to evaluate ac characteristics, and verified the model equation through simulation and experiment. In the suggested equation, ac was dependent on dc and optical path length. In the simulation, dc was inversely proportionate to ac sensitivity (slope), and ac and optical path length were proportionate. When dc increased from 10% to 90%, stabilized ac decreased from 1 to 0.89 +/- 0.21, and when optical path length increased from 10% to 90%, stabilized ac increased from 1 to 1.53 +/- 0.40.

  13. Achromatic flat optical components via compensation between structure and material dispersions

    PubMed Central

    Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang

    2016-01-01

    Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems. PMID:26794855

  14. Achromatic flat optical components via compensation between structure and material dispersions.

    PubMed

    Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang

    2016-01-01

    Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems. PMID:26794855

  15. Optical and electrical properties of composites based on functional components of an electroluminescent layer

    NASA Astrophysics Data System (ADS)

    Avanesyan, V. T.; Rakina, A. V.; Sychov, M. M.; Vasina, E. S.

    2016-07-01

    Optical and electrical properties of cyanoethyl ether of polyvinyl alcohol with filling of barium titanate BaTiO3 modified by shungite carbon nanoparticles are studied. It is found that the modification affects the diffuse reflectance spectra and dispersion characteristics of the impedance components due to a change in the nature of interfacial interactions in the system. The values of the forbidden band width for various modifier and filler concentrations are determined.

  16. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  17. New light-trapping concept by means of several optical components applied to compact holographic 3D concentration solar module

    NASA Astrophysics Data System (ADS)

    Villamarín Villegas, Ayalid M.; Pérez López, Francisco J.; Calo López, Antonio; Rodríguez San Segundo, Hugo-José

    2014-05-01

    A new light-trapping concept is presented, which joins broad bandwidth volume phase reflection holograms (VPRH) working together with three other optical components: specifically designed three-dimensional (3D) cavities, Total Internal Reflection (TIR) within an optical medium, and specular reflection by means of a highly reflective surface. This concept is applied to the design and development of both low concentration photovoltaic (LCPV) and solar thermal modules reaching a concentration factor of up to 3X. Higher concentrations are feasible for use in concentrated solar power (CSP) devices. The whole system is entirely made of polymeric materials (except for the solar cells or fluid carrying pipes), thus reducing cost by up to 40%. The module concentrates solar light onto solar cells - or fluid carrying pipes - with no need for active tracking of the sun, covering the whole seasonal and daily incident angle spectrum while it also minimizes optical losses. In this work we analyze the first experimentally measured optical characteristics and performance of VPRH in dichromated gelatin film (DCG) in our concept. The VPRH can reach high diffraction efficiencies (˜98%, ignoring Fresnel reflection losses). Thanks to specifically designed raw material, coating and developing process specifications, also very broad selective spectral (higher than 300 nm) and angular bandwidths (˜+20º) per grating are achieved. The VPRH was optimized to use silicon solar cells, but designs for other semiconductor devices or for fluid heating are feasible. The 3D shape, the hologram's and reflective surface's optical quality, the TIR effect and the correct coupling of all the components are key to high performance of the concentration solar module.

  18. High-resolution dual-trap optical tweezers with differential detection: alignment of instrument components.

    PubMed

    Bustamante, Carlos; Chemla, Yann R; Moffitt, Jeffrey R

    2009-10-01

    Optical traps or "optical tweezers" have become an indispensable tool in understanding fundamental biological processes. Using our design, a dual-trap optical tweezers with differential detection, we can detect length changes to a DNA molecule tethering the trapped beads of 1 bp. By forming two traps from the same laser and maximizing the common optical paths of the two trapping beams, we decouple the instrument from many sources of environmental and instrumental noise that typically limit spatial resolution. The performance of a high-resolution instrument--the formation of strong traps, the minimization of background signals from trap movements, or the mitigation of the axial coupling, for example--can be greatly improved through careful alignment. This procedure, which is described in this article, starts from the laser and advances through the instrument, component by component. Alignment is complicated by the fact that the trapping light is in the near infrared (NIR) spectrum. Standard infrared viewing cards are commonly used to locate the beam, but unfortunately, bleach quickly. As an alternative, we use an IR-viewing charge-coupled device (CCD) camera equipped with a C-mount telephoto lens and display its image on a monitor. By visualizing the scattered light on a pair of irises of identical height separated by >12 in., the beam direction can be set very accurately along a fixed axis. PMID:20147041

  19. Mineral components and anti-oxidant activities of tropical seaweeds

    NASA Astrophysics Data System (ADS)

    Takeshi, Suzuki; Yumiko, Yoshie-Stark; Joko, Santoso

    2005-07-01

    Seaweeds are known to hold substances of high nutritional value; they are the richest resources of minerals important to the biochemical reactions in the human body. Seaweeds also hold non-nutrient compounds like dietary fiber and polyphenols. However, there is not enough information on the mineral compounds of tropical seaweeds. Also we are interested in the antioxidant activities of seaweeds, especially those in the tropical area. In this study, Indonesian green, brown and red algae were used as experimental materials with their mineral components analyzed by using an atomic absorption spectrophotometer. The catechins and flavonoids of these seaweeds were extracted with methanol and analyzed by high performance liquid chromatography (HPLC); the antioxidant activities of these seaweeds were evaluated in a fish oil emulsion system. The mineral components of tropical seaweeds are dominated by calcium, potassium and sodium, as well as small amounts of copper, iron and zinc. A green alga usually contains epigallocatechin, gallocatechin, epigallocatechin gallate and catechin. However, catechin and its isomers are not found in some green and red algae. In the presence of a ferrous ion catalyst, all the methanol extracts from the seaweeds show significantly lower peroxide values of the emulsion than the control, and that of a green alga shows the strongest antioxidant activity. The highest chelation on ferrous ions is also found in the extract of this alga, which is significantly different from the other methanol extracts in both 3 and 24 h incubations.

  20. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    PubMed

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-01

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  1. Polymer optical fiber grating as water activity sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Webb, David J.

    2014-05-01

    Controlling the water content within a product has long been required in the chemical processing, agriculture, food storage, paper manufacturing, semiconductor, pharmaceutical and fuel industries. The limitations of water content measurement as an indicator of safety and quality are attributed to differences in the strength with which water associates with other components in the product. Water activity indicates how tightly water is "bound," structurally or chemically, in products. Water absorption introduces changes in the volume and refractive index of poly(methyl methacrylate) PMMA. Therefore for a grating made in PMMA based optical fiber, its wavelength is an indicator of water absorption and PMMA thus can be used as a water activity sensor. In this work we have investigated the performance of a PMMA based optical fiber grating as a water activity sensor in sugar solution, saline solution and Jet A-1 aviation fuel. Samples of sugar solution with sugar concentration from 0 to 8%, saline solution with concentration from 0 to 22%, and dried (10ppm), ambient (39ppm) and wet (68ppm) aviation fuels were used in experiments. The corresponding water activities are measured as 1.0 to 0.99 for sugar solution, 1.0 to 0.86 for saline solution, and 0.15, 0.57 and 1.0 for the aviation fuel samples. The water content in the measured samples ranges from 100% (pure water) to 10 ppm (dried aviation fuel). The PMMA based optical fiber grating exhibits good sensitivity and consistent response, and Bragg wavelength shifts as large as 3.4 nm when the sensor is transferred from dry fuel to wet fuel.

  2. Active optics with a minimum number of actuators

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2014-06-01

    Optics for astronomy implies powerful developments of active and adaptive optics methods applied to instrumentation from X-rays to the near infrared for the design of telescopes, spectrographs, and coronagraph planet finders. This presentation particularly emphasizes the development of active optics methods. Highly accurate and remarkably smooth surfaces from active optics methods allow new optical systems that use highly aspheric and non-axisymmetric - freeform - surfaces. Depending on the goal and performance required for a deformable optical surface, elasticity theory analysis is carried out either with small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, or the weakly conical shell theory. A mirror thickness distribution is then determined as a function of associated bending actuators and boundary conditions. For a given optical shape to generate, one searches for optical solutions with a minimum number of actuators.

  3. Sub-wavelength grating components for integrated optics applications on SOI chips.

    PubMed

    Donzella, Valentina; Sherwali, Ahmed; Flueckiger, Jonas; Talebi Fard, Sahba; Grist, Samantha M; Chrostowski, Lukas

    2014-08-25

    In this paper we demonstrate silicon on insulator (SOI) sub-wavelength grating (SWG) optical components for integrated optics and sensing. Light propagation in SWG devices is studied and realized with no cladding on top of the waveguide. In particular, we focused on SWG bends, tapers and directional couplers, all realized with compatible geometries in order to be used as building blocks for more complex integrated optics devices (interferometers, switches, resonators, etc.). Fabricated SWG tapers for TE and TM polarizations are described; they allow for connecting SWG devices to regular strip waveguides with loss lower than 1 dB per taper. Our SWG directional coupler presents a very compact design and a negligible wavelength dependence of its crossover length (and as a consequence of its coupling coefficient, κ), over a 40 nm bandwidth. This wavelength flatten response represents a bandwidth enhancement with respect to standard directional couplers (made using strip or rib waveguides), in particular for the TE mode. SWG bends are demonstrated, their loss dependence on radius is analyzed, and fabricated bends have a loss in the range 0.8-1.6 dB per 90 degrees bend. Simulated and measured results show promise for large-scale fabrication of complex optical devices and high sensitivity sensors based on SWG waveguides with engineered optical properties, tailored to specific applications. PMID:25321304

  4. Application of Optical Biosensors in Small-Molecule Screening Activities

    PubMed Central

    Geschwindner, Stefan; Carlsson, Johan F.; Knecht, Wolfgang

    2012-01-01

    The last two decades have seen remarkable progress and improvements in optical biosensor systems such that those are currently seen as an important and value-adding component of modern drug screening activities. In particular the introduction of microplate-based biosensor systems holds the promise to match the required throughput without compromising on data quality thus representing a sought-after complement to traditional fluidic systems. This article aims to highlight the application of the two most prominent optical biosensor technologies, namely surface plasmon resonance (SPR) and optical waveguide grating (OWG), in small-molecule screening and will present, review and discuss the advantages and disadvantages of different assay formats on these platforms. A particular focus will be on the specific advantages of the inhibition in solution assay (ISA) format in contrast to traditional direct binding assays (DBA). Furthermore we will discuss different application areas for both fluidic as well as plate-based biosensor systems by considering the individual strength of the platforms. PMID:22666031

  5. Biochemical component identification by light scattering techniques in whispering gallery mode optical resonance based sensor

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-03-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins (albumin, interferon, C reactive protein), microelements (Na+, Ca+), antibiotic of different generations, in both single and multi component solutions under varied in wide range concentration are represented. Analysis has been performed on the light scattering parameters of whispering gallery mode (WGM) optical resonance based sensor with dielectric microspheres from glass and PMMA as sensitive elements fixed by spin - coating techniques in adhesive layer on the surface of substrate or directly on the coupling element. Sensitive layer was integrated into developed fluidic cell with a digital syringe. Light from tuneable laser strict focusing on and scattered by the single microsphere was detected by a CMOS camera. The image was filtered for noise reduction and integrated on two coordinates for evaluation of integrated energy of a measured signal. As the entrance data following signal parameters were used: relative (to a free spectral range) spectral shift of frequency of WGM optical resonance in microsphere and relative efficiency of WGM excitation obtained within a free spectral range which depended on both type and concentration of investigated agents. Multiplexing on parameters and components has been realized using spatial and spectral parameters of scattered by microsphere light with developed data processing. Biochemical component classification and identification of agents under investigation has been performed by network analysis techniques based on probabilistic network and multilayer perceptron. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis.

  6. High quality actively cooled plasma facing components for fusion

    SciTech Connect

    Nygren, R.

    1993-12-31

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra`s Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed.

  7. Radiation studies of optical and electronic components used in astronomical satellite studies

    NASA Technical Reports Server (NTRS)

    Becher, J.; Kernell, R. L.

    1981-01-01

    The synchronous orbit of the IUE carries the satellite through Earth's outer electron belt. A 40 mCi Sr90 source was used to simulate these electrons. A 5 mCi source of Co60 was used to simulate bremmstrahlung. A 10 MeV electron Linac and a 1.7 MeV electron Van de Graaf wer used to investigate the energy dependence of radiation effects and to perform radiations at a high flux rate. A 100 MeV proton cyclotron was used to simulate cosmic rays. Results are presented for three instrument systems of the IUE and measurements for specific components are reported. The three instrument systems were the ultraviolet converter, the fine error sensor (FES), and the SEC vidicon camera tube. The components were optical glasses, electronic components, silicon photodiodes, and UV window materials.

  8. Degradation of electro-optic components aboard LDEF. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    Re-measurement of the properties of a set of electro-optic components exposed to the low earth orbital environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, LED's, filter, mirrors, and black paints will be presented. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens. We find plastics and multi-layer dielectric coatings to be potentially unstable. Semiconductor devices, metal, and glass are more likely to be stable.

  9. Extrinsic chirality: Tunable optically active reflectors and perfect absorbers

    NASA Astrophysics Data System (ADS)

    Plum, Eric

    2016-06-01

    Conventional three-dimensional (3D) chiral media can exhibit optical activity for transmitted waves, but optical activity for reflected waves is negligible. This work shows that mirror asymmetry of the experimental arrangement—extrinsic 3D chirality—leads to giant optical activity for reflected waves with fundamentally different characteristics. It is demonstrated experimentally that extrinsically 3D-chiral illumination of a lossy metasurface backed by a mirror enables tunable circular dichroism and circular birefringence as well as perfect absorption of circularly polarized waves. In contrast, such polarization phenomena vanish for conventional optically active media backed by a mirror.

  10. Measurement of the components of nonexercise activity thermogenesis.

    PubMed

    Levine, J; Melanson, E L; Westerterp, K R; Hill, J O

    2001-10-01

    Nonexercise activity thermogenesis (NEAT) accounts for the vast majority of nonresting metabolic rate and changes in NEAT-predicted susceptibility to fat gain with overfeeding. Measuring physical activity and its components in free-living humans has been a long-standing challenge. In this study, we combine information about lightweight sensors that capture data on body position and motion with laboratory measures of energy expenditure to calculate nonfidgeting NEAT. This measurement of nonfidgeting NEAT was compared with total NEAT measured in a room calorimeter in 11 healthy subjects. The measurement of nonfidgeting NEAT accounted for 85 +/- 9% of total NEAT measured in the room calorimeter. The intraclass correlation coefficient for the two methods was 0.86 (95% confidence interval 0.56, 0.96; P < 0.05). This suggests that 86% of the variance is attributable to between-subject variance and 14% to between-method disagreement. These instruments are applicable to free-living subjects; they are stand-alone, are lightweight, and allow normal daily activities. This novel technology has potential application for not only assessing NEAT but also tracking physical activity in free-living humans. PMID:11551842

  11. An overview of micro-optical components and system technology: bulk, planar, and thin-film for laser initiated devices

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    There are a number of attractive micro optical elements or combinations of elements that are currently used or could be employed in optically initiated ordnance systems. When taking a broad-spectrum examination of optically initiated devices, the required key parameters become obviously straightforward for micro optics. Plainly stated, micro optics need to be simple, inexpensive, reliable, robust and compatible within their operational environment. This presentation focuses on the variety of optical elements and components available in the market place today that could be used to realize micro-optical beam shaping and delivery systems for optically initiated devices. A number of micro optical elements will be presented with specific bulk, planar optical and thin film optical devices, such as diffractive optics, micro prisms, axicons, waveguides, micro lenses, beam splitters and gratings. Further descriptions will be presented on the subject of coupling light from a laser beam into a multimode optical fiber. The use of micro optics for collimation of the laser source and conditioning of the laser beam to achieve the highest efficiency and matching the optical fiber NA will be explained. An emphasis on making these optical assemblies compact and rugged will be highlighted.

  12. A new generation active arrays for optical flexibility in astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Kroes, G.; Jaskó, A.; Pragt, J. H.; Venema, L.; De Haan, M.

    2012-09-01

    Throughout the history of telescopes and astronomical instrumentation, new ways were found to open up unexplored possibilities in fundamental astronomical research by increasing the telescope size and instrumentation complexity. The ever demanding requirements on instrument performance pushes instrument complexity to the edge. In order to take the next leap forward in instrument development the optical design freedom needs to be increased drastically. The use of more complex and more accurate optics allows for shorter optical trains with smaller sizes, smaller number of components and reduced fabrication and alignment verification time and costs. Current optics fabrication is limited in surface form complexity and/or accuracy. Traditional active and adaptive optics lack the needed intrinsic long term stability and simplicity in design, manufacturing, verification and control. This paper explains how and why active arrays literally provide a flexible but stable basis for the next generation optical instruments. Combing active arrays with optically high quality face sheets more complex and accurate optical surface forms can be provided including extreme a-spherical (freeform) surfaces and thus allow for optical train optimization and even instrument reconfiguration. A zero based design strategy is adopted for the development of the active arrays addressing fundamental issues in opto-mechanical engineering. The various choices are investigated by prototypes and Finite Element Analysis. Finally an engineering concept will be presented following a highly stable adjustment strategy allowing simple verification and control. The Optimization metrology is described in an additional paper for this conference by T. Agócs et al.

  13. Ultrafast optical pulse interactions in active disordered condensed matter

    NASA Astrophysics Data System (ADS)

    Siddique, Masood

    2005-07-01

    The goal of this research is to better understand the basic physics that governs the behavior of short-pulsed light propagating in scattering media where either the host medium or the scattering particles exhibit emission or absorption interact with the incident light in form of absorption or stimulated emission. The temporal and spectral dynamics from the interactions of optically active disordered-media with ultrashort optical pulses is the focus of the research performed in this thesis. The interaction processes studied are optical gain, spectral narrowing, fluorescence and pulse lifetime reduction and transport of ultrashort optical pulses in disordered media containing optically active discrete scattering particles. Linear and nonlinear effects are presented where the propagation of picosecond and femtosecond laser pulses in active disordered media is measured experimentally and compared with the theories of Boltzmann radiative transport and diffusive propagation of radiation in disordered media. Active media can be involved in optical processes in disordered media where either the propagation of optical radiation can result in gain or absorption upon optical excitation. A study of optical scattering in non-discrete media such as the biological heterogeneously-continuous scattering tissues is carried out as well. Lasing in random media is one of the outcomes of these results. The optical gain of optically excited active media is divided into clear subdivisions of Amplified Spontaneous Emission, Stimulated Emission and Laser Emission by characterizing them by their temporal and spectral emission.

  14. Optical component performance for the Ocean Radiometer for Carbon Assessment (ORCA)

    NASA Astrophysics Data System (ADS)

    Quijada, Manuel A.; Wilson, Mark; Waluschka, Eugene; McClain, Charles R.

    2011-10-01

    The Ocean Radiometer for Carbon Assessment (ORCA) is a new design for the next generation remote sensing of ocean biology and biogeochemistry. ORCA is configured to meet all the measurement requirements of the Decadal Survey Aerosol, Cloud, and Ecology (ACE ), the Ocean Ecosystem (OES) radiometer and the Pre-ACE climate data continuity mission (PACE). Under the auspices of a 2007 grant from NASA Research Opportunity in Space and Earth Science (ROSES) and the Instrument Incubator Program (IIP) , a team at the Goddard Space Flight Center (GSFC) has been working on a functional prototype with flightlike fore and aft optics and scan mechanisms. As part of the development efforts to bring ORCA closer to a flight configuration, we have conducted component-level optical testing using standard spectrophometers and system-level characterizations using nonflight commercial off-the-shelf (COTS) focal plane array detectors. Although these arrays would not be able to handle flight data rates, they are adequate for optical alignment and performance testing. The purpose of this presentation is to describe the results of this testing performed at GSFC and the National Institute of Standards and Technology (NIST) at the component and system level. Specifically, we show results for ORCA's spectral calibration ranging from the near UV, visible, and near-infrared spectral regions.

  15. Temporally-stable active precision mount for large optics.

    PubMed

    Reinlein, Claudia; Damm, Christoph; Lange, Nicolas; Kamm, Andreas; Mohaupt, Matthias; Brady, Aoife; Goy, Matthias; Leonhard, Nina; Eberhardt, Ramona; Zeitner, Uwe; Tünnermann, Andreas

    2016-06-13

    We present a temporally-stable active mount to compensate for manufacturing-induced deformations of reflective optical components. In this paper, we introduce the design of the active mount, and its evaluation results for two sample mirrors: a quarter mirror of 115 × 105 × 9 mm3, and a full mirror of 228 × 210 × 9 mm3. The quarter mirror with 20 actuators shows a best wavefront error rms of 10 nm. Its installation position depending deformations are addressed by long-time measurements over 14 weeks indicating no significance of the orientation. Size-induced differences of the mount are studied by a full mirror with 80 manual actuators arranged in the same actuator pattern as the quarter mirror. This sample shows a wavefront error rms of (27±2) nm over a measurement period of 46 days. We conclude that the developed mount is suitable to compensate for manufacturing-induced deformations of large reflective optics, and likely to be included in the overall systems alignment procedure. PMID:27410369

  16. Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    SciTech Connect

    N. Lybeck; B. Pham; M. Tawfik; J. B. Coble; R. M. Meyer; P. Ramuhalli; L. J. Bond

    2011-08-01

    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure, and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and

  17. Morphology evolution of fused silica surface during ion beam figuring of high-slope optical components.

    PubMed

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin

    2013-06-01

    Ultra-precision and ultra-smooth surfaces are vitally important for some high performance optical systems. Ion beam figuring (IBF) is a well-established, highly deterministic method for the final precision figuring of extremely high quality optical surfaces, whereas ion sputtering induced smoothing, or roughening for nanoscale surface morphology, strongly depends on the processing conditions. Usually, an improper machining method would arouse the production of nanoscale patterns leading to the coarsening of the optical surface. In this paper, the morphology evolution mechanism on a fused silica surface during IBF of high-slope optical components has been investigated by means of atomic force microscopy. Figuring experiments are implemented on two convex spherical surfaces by using different IBF methods. Both of their surface errors are rapidly reduced to 1.2 nm root mean square (RMS) after removing similar deep material, but their surfaces are characterized with obviously different nanoscale morphologies. The experimental results indicate that the ion incidence angle dominates the microscopic morphology during the IBF process. At near-normal incidence, fused silica achieves an ultra-smooth surface with an RMS roughness value R(q) down to 0.1 nm, whereas nanoscale ripple patterns are observed at a large incidence angle with an R(q) value increasing to more than 0.9 nm. Additionally, the difference of incidence angles on various machined areas would influence the uniformity of surface quality, resulting from the interplay between the smoothing and roughening effects induced by ion sputtering. PMID:23736325

  18. Complement activating factor(s) of Trypanosoma lewisi: some physiochemical characteristics of the active components.

    PubMed Central

    Nielsen, K; Sheppard, J; Tizard, I; Holmes, W

    1978-01-01

    Of the complement activating factors present in Trypanosoma lewisi, the major component, a carbohydrate containing substance was further investigated. This component was found to have a lag time of complete activation of 2 CH50 units of bovine complement of approximately 15 minutes while 1% trypsin (a known activator of complement, used as a control system) was capable of instant consumption of a similar quantity of complement. In addition, the complement activating factor of trypanosomes was observed to be stable at 100 degrees C for 15 minutes and over a pH range of 3.0 to 11.0. Thin layer chromatography studies suggested that at least part of the active component contained lipid, perhaps indicating that it may be glycolipid in nature. PMID:25701

  19. Neuroprotective Activity of Hypericum perforatum and Its Major Components

    PubMed Central

    Oliveira, Ana I.; Pinho, Cláudia; Sarmento, Bruno; Dias, Alberto C. P.

    2016-01-01

    Hypericum perforatum is a perennial plant, with worldwide distribution, commonly known as St. John’s wort. It has been used for centuries in traditional medicine for the treatment of several disorders, such as minor burns, anxiety, and mild to moderate depression. In the past years, its antidepressant properties have been extensively studied. Despite that, other H. perforatum biological activities, as its neuroprotective properties have also been evaluated. The present review aims to provide a comprehensive summary of the main biologically active compounds of H. perforatum, as for its chemistry, pharmacological activities, drug interactions and adverse reactions and gather scattered information about its neuroprotective abilities. As for this, it has been demonstrated that H. perforatum extracts and several of its major molecular components have the ability to protect against toxic insults, either directly, through neuroprotective mechanisms, or indirectly, through is antioxidant properties. H. perforatum has therefore the potential to become an effective neuroprotective therapeutic agent, despite further studies that need to be carried out. PMID:27462333

  20. Neuroprotective Activity of Hypericum perforatum and Its Major Components.

    PubMed

    Oliveira, Ana I; Pinho, Cláudia; Sarmento, Bruno; Dias, Alberto C P

    2016-01-01

    Hypericum perforatum is a perennial plant, with worldwide distribution, commonly known as St. John's wort. It has been used for centuries in traditional medicine for the treatment of several disorders, such as minor burns, anxiety, and mild to moderate depression. In the past years, its antidepressant properties have been extensively studied. Despite that, other H. perforatum biological activities, as its neuroprotective properties have also been evaluated. The present review aims to provide a comprehensive summary of the main biologically active compounds of H. perforatum, as for its chemistry, pharmacological activities, drug interactions and adverse reactions and gather scattered information about its neuroprotective abilities. As for this, it has been demonstrated that H. perforatum extracts and several of its major molecular components have the ability to protect against toxic insults, either directly, through neuroprotective mechanisms, or indirectly, through is antioxidant properties. H. perforatum has therefore the potential to become an effective neuroprotective therapeutic agent, despite further studies that need to be carried out. PMID:27462333

  1. Optically active metasurface with non-chiral plasmonic nanoantennas.

    PubMed

    Shaltout, Amr; Liu, Jingjing; Shalaev, Vladimir M; Kildishev, Alexander V

    2014-08-13

    We design, fabricate, and experimentally demonstrate an optically active metasurface of λ/50 thickness that rotates linearly polarized light by 45° over a broadband wavelength range in the near IR region. The rotation is achieved through the use of a planar array of plasmonic nanoantennas, which generates a fixed phase-shift between the left circular polarized and right circular polarized components of the incident light. Our approach is built on a new supercell metasurface design methodology: by judiciously designing the location and orientation of individual antennas in the structural supercells, we achieve an effective chiral metasurface through a collective operation of nonchiral antennas. This approach simplifies the overall structure when compared to designs with chiral antennas and also enables a chiral effect which quantitatively depends solely on the supercell geometry. This allows for greater tolerance against fabrication and temperature effects. PMID:25051158

  2. Reinvestigation of the proteolytically active components of Bromelia pinguin fruit.

    PubMed

    Payrol, Juan Abreu; Obregón, Walter D; Natalucci, Claudia L; Caffini, Néstor O

    2005-09-01

    Pinguinain is the name given to a proteolytic enzyme preparation obtained from Bromelia pinguin fruits that has been scarcely studied. The present paper deals on the reexamination of the proteases present in fruits of B. pinguin grown in Cienfuegos, Cuba. The preparation (partially purified pinguinain, PPP) showed the main characteristics of the cysteine proteases, i.e., optimum pH within alkaline range (pH 7.2-8.8), inhibition of proteolytic activity by thiol blocking reagents, which is usually reverted by addition of cysteine, a remarkable thermal stability and notable stability at high ionic strength values. Isoelectric focusing and zymogram of PPP revealed the presence of several proteolytic components between pI 4.6 and 8.1. Preliminary peptidase purification by cationic exchange chromatography showed the presence of two main proteolytic fractions with molecular masses of approximately 20.0 kDa, according to SDS-PAGE. PMID:15978746

  3. Comparison of Materials for Use in the Precision Grinding of Optical Components

    SciTech Connect

    Evans, Boyd M. III; Miller, Arthur C. Jr.; Egert, Charles M.

    1997-12-31

    Precision grinding of optical components is becoming an accepted practice for rapidly and deterministically fabrication optical surfaces to final or near-final surface finish and figure. In this paper, a comparison of grinding techniques and materials is performed. Flat and spherical surfaces were ground in three different substrate materials: BK7 glass, chemical vapor deposited (CVD) silicon carbide ceramic, and sapphire. Spherical surfaces were used to determine the contouring capacity of the process, and flat surfaces were used for surface finish measurements. The recently developed Precitech Optimum 2800 diamond turning and grinding platform was used to grind surfaces in 40mm diameter substrates sapphire and silicon carbide substrates and 200 mm BK7 glass substrates using diamond grinding wheels. The results of this study compare the surface finish and figure for the three materials.

  4. On-line monitoring of one-step laser fabrication of micro-optical components.

    PubMed

    Juliá, J E; Soriano, J C

    2001-07-01

    The use of an on-line monitoring method based on photoelasticity techniques for the fabrication of micro-optical components by means of controlled laser heating is described. From this description it is possible to show in real time the mechanical stresses that form the microelement. A new parameter, stressed area, is introduced that quantifies the stresses of a microelement during its fabrication, facilitating a deeper understanding of the physical phenomena involved in the process as well as being a useful test of quality. It also permits the stress produced in the manufacturing process and the optical properties of the final microelement to be correlated. The results for several microlenses monitored with this technique are presented. PMID:11958263

  5. Three-component all polarization-maintaining optical fiber vector hydrophone

    NASA Astrophysics Data System (ADS)

    Wang, Jianfei; Luo, Hong; Meng, Zhou; Hu, Yongming

    2011-05-01

    This paper reports a new-style all polarization maintaining optical fiber vector hydrophone which is orthogonal and unitized in three components. The signal fading caused by random phase-shift in the interferometer is eliminated by phase generated carrier (PGC) technology. The sensitivity and frequency band of the sensor is increased by optimizing the structure. Experimental results indicate that the acceleration sensitivity reaches 33dB and the fluctuation is less than 1dB over the frequency range of 20~2000Hz. The phase sensitivity is -155dB at 1000Hz. The optical vector hydrophone has an excellent directivity. The maximum asymmetric index is less than 0.4dB, while the directivity index is greater than 45dB.

  6. Laser machining of sensing components on the end of optical fibres

    NASA Astrophysics Data System (ADS)

    Albri, Frank; Li, Jun; Maier, Robert R. J.; MacPherson, William N.; Hand, Duncan P.

    2013-04-01

    Micro-cantilevers play a major role in sensing, especially since the invention of the atomic force microscope. Applications range from surface profiling to bio-medical sensing enabled through coating-activated cantilevers. Current readout methods are based on either optical deflection (of a laser beam reflected from the cantilever surface) or piezo-resistive response (of piezo-electric elements bonded to the cantilever surface). The first of these approaches requires significant space whilst the second is sensitive to electromagnetic effects. An alternative solution is to manufacture a cantilever onto the end of an optical fibre and use interferometry to monitor its deflection; in this paper we describe the development and application of a picosecond-laser machining process to fabricate such a device. The development of techniques to avoid cracking and debris re-deposition during this machining process is described, and a cantilever sensor with excellent optical performance is demonstrated and tested.

  7. Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam

    2007-01-01

    "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the

  8. Polarization ray tracing in anisotropic optically active media

    NASA Technical Reports Server (NTRS)

    Mcclain, Stephen C.; Chipman, Russell A.

    1992-01-01

    Procedures for performing polarization ray tracing through birefringent media are presented in a form compatible with the standard methods of geometric ray tracing. The birefringent materials treated include the following: anisotropic optically active materials such as quartz, non-optically active uniaxial materials such as calcite, and isotropic optically active materials such as mercury sulfide or organic liquids. Refraction and reflection algorithms are presented which compute both ray directions and wave directions. Methods for computing polarization modes, refractive indices, optical path lengths, and Fresnel transmission and reflection coefficients are also specified.

  9. Steady-state heating of active fibres under optical pumping

    SciTech Connect

    Gainov, V V; Shaidullin, R I; Ryabushkin, Oleg A

    2011-07-31

    We have measured the temperature in the core of rare-earth-doped optical fibres under lasing conditions at high optical pump powers using a fibre Mach - Zehnder interferometer and probe light of wavelength far away from the absorption bands of the active ions. From the observed heating kinetics of the active medium, the heat transfer coefficient on the polymer cladding - air interface has been estimated. The temperature of the active medium is shown to depend on the thermal and optical properties of the polymer cladding. (fiber and integrated optics)

  10. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components

    NASA Astrophysics Data System (ADS)

    Yan, Beizhan; Kennedy, Daniel; Miller, Rachel L.; Cowin, James P.; Jung, Kyung-hwa; Perzanowski, Matt; Balletta, Marco; Perera, Federica P.; Kinney, Patrick L.; Chillrud, Steven N.

    2011-12-01

    Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM 2.5 filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R2 = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at

  11. Cleaning of optical components for high-power laser-based firing systems

    SciTech Connect

    Sparrow, B.D.; Hendrix, J.L.

    1993-08-01

    This report discusses the progress of AlliedSignal Inc., Kansas City Division (KCD), in addressing the issues of cleaning of hardware and optical components for laser-based firing sets. These issues are acceptability of cleaning processes and techniques of other government programs to the quality, reliability, performance, stockpile life, materials compatibility issues, and, perhaps most important, environmentally conscious manufacturing requirements of the Department of Energy (DOE). A review of ``previous cleaning art`` is presented using Military Standards (MIL STDs) and Military Interim Specifications (MISs) as well as empirical data compiled by the authors. Observations on processes and techniques used in building prototype hardware and plans for future work are presented.

  12. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components

    PubMed Central

    Yan, Beizhan; Kennedy, Daniel; Miller, Rachel L.; Cowin, James P.; Jung, Kyung-hwa; Perzanowski, Matt; Balletta, Marco; Perera, Federica P.; Kinney, Patrick L.; Chillrud, Steven N.

    2011-01-01

    Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM2.5 filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R2 = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at

  13. New light sources and sensors for active optical 3D inspection

    NASA Astrophysics Data System (ADS)

    Osten, Wolfgang; Jueptner, Werner P. O.

    1999-11-01

    The implementation of active processing strategies in optical 3D-inspection needs the availability of flexible hardware solutions. The system components illumination and sensor/detector are actively involved in the processing chain by a feedback loop that is controlled by the evaluation process. Therefore this article deals with new light sources and sensor which appeared recently on the market and can be applied successfully for the implementation of active processing principles. Some applications where such new components are used to implement an active measurement strategy are presented.

  14. Active Learning Environment with Lenses in Geometric Optics

    ERIC Educational Resources Information Center

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  15. Characterization of Optical Components for the Cosmology Large Angular Scale Surveyor (CLASS)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuo; Essinger-Hileman, Thomas; Xu, Zhilei; Marriage, Tobias

    2016-06-01

    Inflation theory posits a rapid expansion at the beginning of the universe that explains the homogeneity, isotropy and flatness of our universe. The theory postulates perturbations to space-time with both scalar and tensor components, the latter of which would give rise to a "B-mode" polarization in the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS), with its broadband frequency coverage and rapid front-end modulation, has the unique ability to map the entire B-mode angular power spectrum where there the inflationary signal is expected to dominate. In this poster, I give an overview of CLASS and present work on the characterization of CLASS optical components, including infrared filters, using a custom Fourier Transform Interferometer.

  16. Packaging-induced failure of semiconductor lasers and optical telecommunications components

    SciTech Connect

    Sharps, J.A.

    1996-12-31

    Telecommunications equipment for field deployment generally have specified lifetimes of > 100,000 hr. To achieve this high reliability, it is common practice to package sensitive components in hermetic, inert gas environments. The intent is to protect components from particulate and organic contamination, oxidation, and moisture. However, for high power density 980 nm diode lasers used in optical amplifiers, the authors found that hermetic, inert gas packaging induced a failure mode not observed in similar, unpackaged lasers. They refer to this failure mode as packaging-induced failure, or PIF. PIF is caused by nanomole amounts of organic contamination which interact with high intensity 980 nm light to form solid deposits over the emitting regions of the lasers. These deposits absorb 980 nm light, causing heating of the laser, narrowing of the band gap, and eventual thermal runaway. The authors have found PIF is averted by packaging with free O{sub 2} and/or a getter material that sequesters organics.

  17. Vortices of a rotating two-component dipolar Bose-Einstein condensate in an optical lattice

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Xue; Dong, Biao; Chen, Guang-Ping; Han, Wei; Zhang, Shou-Gang; Shi, Yu-Ren; Zhang, Xiao-Fei

    2016-01-01

    We consider a two-component Bose-Einstein condensate, which consists of both dipolar and scalar bosonic atoms, in a confinement that is composed of a harmonic oscillator and an underlying optical lattice set rotation. When the dipoles are polarized along the symmetry axis of the harmonic potential, the ground-state density distributions of such a system are investigated as a function of the relative strength between the dipolar and contact interactions, and of the rotation frequency. Our results show that the number of vortices and its related vortex structures of such a system depend strongly on such system parameters. The special two-component system considered here opens up alternate ways for exploring the rich physics of dipolar quantum gases.

  18. Superfluid state of repulsively interacting three-component fermionic atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Suga, Sei-Ichiro; Inaba, Kensuke

    2013-03-01

    We investigate the superfluid state of repulsively interacting three-component (color) fermionic atoms in optical lattices using Feynman diagrammatic approaches and the dynamical mean field theory. When the anisotropy of the three repulsive interactions is strong, atoms of two of the three colors form Cooper pairs and atoms of the third color remain a Fermi liquid. This superfluid emerges close to half filling at which the Mott insulating state characteristic of the three-component repulsive fermions appears. An effective attractive interaction is induced by density fluctuations of the third-color atoms. The superfluid state is stable against the phase separation that occurs in the strongly repulsive region. We determine the phase diagrams in terms of temperature, filling, and the anisotropy of the repulsive interactions. This work was supported by Grant-in-Aid for Scientific Research (C) (No. 23540467) from the Japan Society for the Promotion of Science.

  19. An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models

    SciTech Connect

    Kinne, Stefan; Schulz, M.; Textor, C.; Guibert, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, Olivier; Chin, M.; Collins, W.; Dentener, F.; Diehl, T.; Easter, Richard C.; Feichter, H.; Fillmore, D.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Grini, A.; Hendricks, J.; Herzog, M.; Horrowitz, L.; Isaksen, I.; Iversen, T.; Kirkevag, A.; Kloster, S.; Koch, D.; Kristjansson, J. E.; Krol, M.; Lauer, A.; Lamarque, J. F.; Lesins, G.; Liu, Xiaohong; Lohmann, U.; Montanaro, V.; Myhre, G.; Penner, Joyce E.; Pitari, G.; Reddy, S.; Seland, O.; Stier, P.; Takemura, T.; Tie, X.

    2006-05-29

    The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment global fields for mass and for mid-visible aerosol optical thickness (aot) were compared among aerosol component modules of 21 different global models. There is general agreement among models for the annual global mean of component combined aot. At 0.12 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca 0.14) and space (MODIS-MISR composite ca 0.16). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture have remained. Of particular concern is the large model diversity for contributions by dust and carbon, because it leads to significant uncertainty in aerosol absorption (aab). Since not only aot but also aab influence the aerosol impact on the radiative energy-balance, aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) and space (e.g. correlations between retrieved aerosol and cloud properties).

  20. Lightweight, Active Optics for Space and Near Space

    NASA Astrophysics Data System (ADS)

    Wick, D.; Bagwell, B.; Martinez, T.; Payne, D.; Restaino, S.; Romeo, R.

    Size, weight, and a lack of adaptability currently hinder the effectiveness of conventional imaging sensors in a number of military applications, including space-based space situational awareness (SSA), intelligence, surveillance, and reconnaissance (ISR), and missile tracking. The development of sensors that are smaller, lighter weight, adaptive, and use less power is critical for the success of future military initiatives. Threat detection systems need the flexibility of a wide FOV for surveillance and situational awareness while simultaneously maintaining high-resolution for target identification and precision tracking from a single, nonmechanical imaging system. Sandia National Laboratories, the Naval Research Laboratory, Narrascape, Inc., and Composite Mirror Applications, Inc. are at the forefront of active optics research, leading the development of active systems for foveated imaging, nonmechanical zoom, phase diversity, and actively enhanced multi-spectral imaging. Increasing the field-of-view, spatial resolution, spectral capability and system magnification have all been demonstrated with active optics. Adding active components to existing systems should significantly enhance capability in a number of military applications, including night vision, remote sensing and surveillance, chemical/biological detection, and large aperture, space-based systems. Deployment costs of large aperture systems in space or near-space are directly related to the weight of the system. In order to minimize the weight of conventional primary mirrors and simultaneously achieve an agile system that is capable of true optical zoom without macroscopic moving parts, we are proposing a revolutionary alternative to conventional telescopes where moving lenses/mirrors and gimbals are replaced with lightweight carbon fiber reinforced polymer (CFRP) variable radius-of-curvature mirrors (VRMs) and MEMS deformable mirrors (DMs). CFRP and MEMS DMs can provide a variable effective focal

  1. An Exploration of Professional Culture Differentials and Their Potential Impact on the Information Assurance Component of Optical Transmission Networks Design

    ERIC Educational Resources Information Center

    Cuthrell, Michael Gerard

    2011-01-01

    Optical transmission networks are an integral component of the critical infrastructures for many nations. Many people believe that optical transmission networks are impenetrable. In actuality, these networks possess weaknesses that can be exploited to bring about harm. An emerging Information Assurance (IA) industry has as its goals: to…

  2. Inverse calculation of position and tilt errors of optical components from wavefront data

    NASA Astrophysics Data System (ADS)

    Gilbergs, H.; Wengert, N.; Frenner, K.; Eberhard, P.; Osten, W.

    2011-05-01

    High performance optical systems pose very strict limits to positioning errors of the optical components inside the system. Identification and suppression of static and dynamic errors, like alignment errors due to drift or structural vibrations, can lead to superior imaging quality. A concept is presented that allows for intra process monitoring of deviations of a lens from its ideal position. It can track the movement of a lens by illumination through the rim such that the light reflects of the optical surfaces of the lens by total internal reflection before exiting the lens on the opposite side. A Shack-Hartmann wavefront sensor is applied to detect the wavefront. The wavefront-error caused by decenter or tilt of the lens is used for the reconstruction of the geometrical perturbations. Two approaches for the reconstruction of the geometrical properties from forward calculation data (model-based and regularization methods) are compared. Different light sources and geometrical setups can have an effect on the wavefront properties. A comparison is made to investigate their influence on the reconstruction quality. As the measurement principle does not interfere with the imaging process of the system, the method should be able to monitor the system during operation. This could enable real time tracking of errors up to the sampling rate of the detector making the method suitable for measurements of system dynamics. The method can potentially be enhanced to detect some lens deformations in combination with mechanical finite element simulation.

  3. Embedded fiber optic sensors for monitoring processing, quality and structural health of resin transfer molded components

    NASA Astrophysics Data System (ADS)

    Keulen, C.; Rocha, B.; Yildiz, M.; Suleman, A.

    2011-07-01

    Due to their small size and flexibility fiber optics can be embedded into composite materials with little negative effect on strength and reliability of the host material. Fiber optic sensors such as Fiber Bragg Gratings (FBG) or Etched Fiber Sensors (EFS) can be used to detect a number of relevant parameters such as flow, degree of cure, quality and structural health throughout the life of a composite component. With a detection algorithm these embedded sensors can be used to detect damage in real time while the component remains in service. This paper presents the research being conducted on the use of fiber optic sensors for process and Structural Health Monitoring (SHM) of Resin Transfer Molded (RTM) composite structures. Fiber optic sensors are used at all life stages of an RTM composite panel. A laboratory scale RTM apparatus was developed with the capability of visually monitoring the resin filling process. A technique for embedding fiber optic sensors with this apparatus has also been developed. Both FBGs and EFSs have been embedded in composite panels using the apparatus. EFSs to monitor the fabrication process, specifically resin flow have been embedded and shown to be capable of detecting the presence of resin at various locations as it is injected into the mold. Simultaneously these sensors were multiplexed on the same fiber with FBGs, which have the ability to measure strain. Since multiple sensors can be multiplexed on a single fiber the number of ingress/egress locations required per sensor can be significantly reduced. To characterize the FBGs for strain detection tensile test specimens with embedded FBG sensors have been produced. These specimens have been instrumented with a resistive strain gauge for benchmarking. Both specimens and embedded sensors were characterized through tensile testing. Furthermore FBGs have been embedded into composite panels in a manner that is conducive to detection of Lamb waves generated with a centrally located PZT

  4. Aroma-active components of nonfat dry milk.

    PubMed

    Karagül-Yüceer, Y; Drake, M A; Cadwallader, K R

    2001-06-01

    Application of aroma extract dilution analysis (AEDA) on the volatile components of low-, medium-, and high-heat-treated nonfat dry milks (NDM) revealed aroma-active compounds in the log(3) flavor dilution (log(3) FD) factor range of 1 to 6. The following compounds contributed the highest log(3) FD factors to overall NDM flavor: 2,5-dimethyl-4-hydroxy-3(2H)-furanone [(Furaneol), burnt sugar-like]; butanoic acid (rancid); 3-(methylthio)propanal [(methional), boiled potato-like]; o-aminoacetophenone (grape-like); delta-decalactone (sweet); (E)-4,5-epoxy-(E)-2-decenal (metallic); pentanoic acid (sweaty); 4,5-dimethyl-3-hydroxy-2(5H)-furanone [(sotolon), curry]; 3-methoxy-4-hydroxybenzaldehyde [(vanillin), vanilla]; 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline (popcorn-like); hexanoic acid (vinegar-like); phenylacetic acid (rose-like); octanoic acid (waxy); nonanal (fatty); and 1-octen-3-one (mushroom-like). The odor intensities of Furaneol, butanoic acid, methional, o-aminoacetophenone, sotolon, vanillin, (E)-4,5-epoxy-(E)-2-decenal, and phenylacetic acid were higher in high-heat-treated samples than others. However, the odor intensities of lactones, 2-acetyl-1-pyrroline, and 2-acetyl-2-thiazoline were not affected by heat treatment. Sensory evaluation results also revealed that heat-generated flavors have a major impact on the flavor profile of NDM. PMID:11409991

  5. Comparative activities of milk components in reversing chronic colitis.

    PubMed

    Kanwar, J R; Kanwar, R K; Stathopoulos, S; Haggarty, N W; MacGibbon, A K H; Palmano, K P; Roy, K; Rowan, A; Krissansen, G W

    2016-04-01

    Inflammatory bowel disease (IBD) is a poorly understood chronic immune disorder for which there is no medical cure. Milk and colostrum are rich sources of bioactives with immunomodulatory properties. Here we compared the therapeutic effects of oral delivery of bovine milk-derived iron-saturated lactoferrin (Fe-bLF), angiogenin, osteopontin (OPN), colostrum whey protein, Modulen IBD (Nestle Healthsciences, Rhodes, Australia), and cis-9,trans-11 conjugated linoleic acid (CLA)-enriched milk fat in a mouse model of dextran sulfate-induced colitis. The CLA-enriched milk fat significantly increased mouse body weights after 24d of treatment, reduced epithelium damage, and downregulated the expression of proinflammatory cytokines and nitrous oxide. Modulen IBD most effectively decreased the clinical score at d 12, and Modulen IBD and OPN most effectively lowered the inflammatory score. Myeloperoxidase activity that denotes neutrophil infiltration was significantly lower in mice fed Modulen IBD, OPN, angiogenin, and Fe-bLF. A significant decrease in the numbers of T cells, natural killer cells, dendritic cells, and a significant decrease in cytokine expression were observed in mice fed the treatment diets compared with dextran sulfate administered mice. The Fe-bLF, CLA-enriched milk fat, and Modulen IBD inhibited intestinal angiogenesis. In summary, each of the milk components attenuated IBD in mice, but with differing effectiveness against specific disease parameters. PMID:26805965

  6. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    NASA Astrophysics Data System (ADS)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  7. Active learning in optics and photonics: Fraunhofer diffraction

    NASA Astrophysics Data System (ADS)

    Ghalila, H.; Ben Lakhdar, Z.; Lahmar, S.; Dhouaidi, Z.; Majdi, Y.

    2014-07-01

    "Active Learning in Optics and Photonics" (ALOP), funded by UNESCO within its Physics Program framework with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE (Society of Photo-Optical Instrumentation Engineers), aimed to helps and promotes a friendly and interactive method in teaching optics using simple and inexpensive equipment. Many workshops were organized since 2005 the year when Z. BenLakhdar, whom is part of the creators of ALOP, proposed this project to STO (Société Tunisienne d'Optique). These workshops address several issues in optics, covering geometrical optics, wave optics, optical communication and they are dedicated to both teachers and students. We focus this lecture on Fraunhofer diffraction emphasizing the facility to achieve this mechanism in classroom, using small laser and operating a slit in a sheet of paper. We accompany this demonstration using mobile phone and numerical modeling to assist in the analysis of the diffraction pattern figure.

  8. Optical sensor technology for a noninvasive continuous monitoring of blood components

    NASA Astrophysics Data System (ADS)

    Kraitl, Jens; Timm, Ulrich; Lewis, Elfed; Ewald, Hartmut

    2010-02-01

    NIR-spectroscopy and Photoplethysmography (PPG) is used for a measurement of blood components. The absorptioncoefficient of blood differs at different wavelengths. This fact is used to calculate the optical absorbability characteristics of blood which is yielding information about blood components like hemoglobin (Hb), carboxyhemoglobin (CoHb) and arterial oxygen saturation (SpO2). The measured PPG time signals and the ratio between the peak to peak pulse amplitudes are used for a measurement of these parameters. Hemoglobin is the main component of red blood cells. The primary function of Hb is the transport of oxygen from the lungs to the tissue and carbon dioxide back to the lungs. The Hb concentration in human blood is an important parameter in evaluating the physiological status of an individual and an essential parameter in every blood count. Currently, invasive methods are used to measure the Hb concentration, whereby blood is taken from the patient and subsequently analyzed. Apart from the discomfort of drawing blood samples, an added disadvantage of this method is the delay between the blood collection and its analysis, which does not allow real time patient monitoring in critical situations. A noninvasive method allows pain free continuous on-line patient monitoring with minimum risk of infection and facilitates real time data monitoring allowing immediate clinical reaction to the measured data.

  9. Integrated optical components using hybrid organic-inorganic materials prepared by sol-gel technology

    NASA Astrophysics Data System (ADS)

    Mishechkin, Oleg Viktorovich

    2003-10-01

    A technological platform based on low-temperature hybrid sol-gel method for fabrication of optical waveguides and integrated optical components has been developed. The developed chemistry for doping incorporation in the host network provides a range of refractive indexes (1.444--1.51) critical for device optimization. A passivation method for improving long-term stability of organic-inorganic sol-gel material is reported. The degradation of waveguide loss over time due to moisture adsorption from the atmosphere is drastically suppressed by coating the material with a protective thin SiO2 film. The results indicate a long-term optical loss below 0.3 dB/cm for protected waveguides. The theory of multimode interference couplers employing self-imaging effect is described. A novel approach for design of high-performance MMI devices in low-contrast material is proposed. The design method is based on optimization of refractive index contrast and width of a multimode waveguide (the body of MMI couplers) to achieve a maximum number of constructively interfering modes resulting to the best self-imaging. This optimization is carried out using 3D BPM simulations. This method was applied to design 1 x 4, 1 x 12, and 4 x 4 MMI couplers and led to a superior performance in excess loss, power imbalance in output ports, and polarization sensitivity. Taking advantage of the inherent input-output phase relations in a 4 x 4 MMI coupler, an optical 90° hybrid is realized by incorporation a Y-junction to coherently excite two ports of the coupler. A series of MMI couplers were fabricated and characterized. The experimental results are in good agreement with the design. Measured performance of the sol-gel derived MMI components was compared to analogues fabricated by other technologies. The comparison demonstrates the superior performance of the sol-gel devices. The polarization sensitivity of all fabricated couplers is below 0.05 dB.

  10. Active Optics Modernization of the AEOS Telescope

    NASA Astrophysics Data System (ADS)

    Greenwald, D.

    2012-09-01

    Since first light in 1997, the Advanced Electro-Optical System (AEOS) telescope at the Maui Space Surveillance Site has used an active system for figure control that applies forces on the primary mirror and positions the secondary mirror to minimize wavefront aberrations. Periodically a wavefront optimization loop is closed with a Shack-Hartmann WaveFront Sensor (WFS), 84 primary mirror force actuators and three secondary mirror translation actuators. This optimization loop is used with a series of stellar targets to find coefficients for each force or position in a sine and cosine of elevation model. During normal telescope operation when the WFS is not in use, this elevation angle dependant model is used to control the primary mirror forces and secondary mirror positions. Recently the system was upgraded with new computers, electronics and algorithms. The primary goal of the upgrade was to replace obsolete and no longer maintainable hardware with secondary goals of reducing the effort required to update the wavefront model, and improving the final operational wavefront performance. This paper discusses the algorithms implemented to achieve the secondary goals and initial performance results. In order to eliminate erroneous data from the WFS, the processing algorithms were modified to dynamically assign pixels on the WFS camera to lenslets, and closed loop tracking of the gimbal was implemented using a camera that shares the focal plane with the WFS. These changes permit the elimination of human operator review from the wavefront optimization loop. The original system collected data for either a single star or a series of stars and then replaced either the constant or the complete model at the end of a data collection session. In the revised system, each wavefront measurement is used for a Kalman update to the model. Operationally, the Kalman updates allow data to be collected intermittently as time is available between other telescope tasks. By combining the

  11. Active Correction of Aberrations of Low-Quality Telescope Optics

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Yijian

    2007-01-01

    A system of active optics that includes a wavefront sensor and a deformable mirror has been demonstrated to be an effective means of partly correcting wavefront aberrations introduced by fixed optics (lenses and mirrors) in telescopes. It is envisioned that after further development, active optics would be used to reduce wavefront aberrations of about one wave or less in telescopes having aperture diameters of the order of meters or tens of meters. Although this remaining amount of aberration would be considered excessive in scientific applications in which diffraction-limited performance is required, it would be acceptable for free-space optical- communication applications at wavelengths of the order of 1 m. To prevent misunderstanding, it is important to state the following: The technological discipline of active optics, in which the primary or secondary mirror of a telescope is directly and dynamically tilted, distorted, and/or otherwise varied to reduce wavefront aberrations, has existed for decades. The term active optics does not necessarily mean the same thing as does adaptive optics, even though active optics and adaptive optics are related. The term "adaptive optics" is often used to refer to wavefront correction at speeds characterized by frequencies ranging up to between hundreds of hertz and several kilohertz high enough to enable mitigation of adverse effects of fluctuations in atmospheric refraction upon propagation of light beams. The term active optics usually appears in reference to wavefront correction at significantly lower speeds, characterized by times ranging from about 1 second to as long as minutes. Hence, the novelty of the present development lies, not in the basic concept of active or adaptive optics, but in the envisioned application of active optics in conjunction with a deformable mirror to achieve acceptably small wavefront errors in free-space optical communication systems that include multi-meter-diameter telescope mirrors that are

  12. THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared M.; Taniguchi, Yoshi; Nagao, Tohru; Shioya, Yasuhiro; Brusa, Marcella; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Huchra, John P.; Jahnke, Knud; Koekemoer, Anton M.; Salvato, Mara; Capak, Peter; Scoville, Nick Z.; Kartaltepe, Jeyhan S.; Lanzuisi, Giorgio; McCarthy, Patrick J.; Maineri, Vincenzo

    2009-11-20

    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull active galactic nuclei (AGNs) in the COSMOS field. These objects exhibit the X-ray luminosity of an AGN but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to approx70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining approx30% of optically dull AGNs have anomalously high f{sub X} /f{sub O} ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.

  13. Crocetin from saffron: an active component of an ancient spice.

    PubMed

    Giaccio, Mario

    2004-01-01

    The known properties of saffron (Crocus sativus, L.) and its components have been examined. Recently, hormone like effects in green algae and the anti-cancerogenic and anti-toxic effects, have been observed. In particular, the effects of crocetin, a carotenoids (8,8'-diapo-8,8'-carotenoic acid) present in saffron and characterized by a diterpenic and symmetrical structure with seven double bonds and four methyl groups, have been taken into consideration. It has been found that this compound enhances the oxygen diffusivity through liquids, such as plasma. As a consequence of this property, it has been observed that crocetin increases alveolar oxygen transport and enhances pulmonary oxygenation. It improves cerebral oxygenation in hemorrhaged rats and positively acts in the atherosclerosis and arthritis treatment. It inhibits skin tumor promotion in mice (i.e., with benzo(a)pyrene); it has an inhibitory effect on intracellular nucleic acid and protein synthesis in malignant cells, as well as on protein-kinase-C and prorooncogene in INNIH/3T3 cells. This is most likely due to its anti-oxidant activity. Furthermore, crocetin protects against oxidative damage in rat primary hepatocytes. It also suppresses aflatoxin B1-induced hepatotoxic lesions and has a modulatory effect on aflatoxin, B1 cytotoxicity, and DNA adduct formation on C3H10/T1/2 fibroblast cells. It also has a protective effect on the bladder toxicity, induced by cyclophosphamide. The experiments reported in the scientific literature and the interesting results obtained have been carried out in vitro or on laboratory animals, but not yet on man. PMID:15239370

  14. Quasi-optical solid-state power combining for millimeter-wave active seeker applications

    NASA Astrophysics Data System (ADS)

    Halladay, R. H.; Terrill, S. D.; Bowling, D. R.; Gagnon, D. R.

    1992-05-01

    Consideration is given to quasi-optical power combining techniques, state-of-the-art demonstrated performance, and system issues as they apply to endoatmospheric homing seeker insertion. Quasi-optical power combining is based on combining microwave and millimeter-wave solid-state device power in space through the use of antennas and lenses. It is concluded that quasi-optical power combining meets the severe electrical requirements and packaging constraints of active MMW seekers for endoatmospheric hit-to-kill missiles. The approach provides the possibility of wafer-scale integration of major components for low cost production and offers high reliability. Critical issues include thermal loading and system integration, which must be resolved before the quasi-optical power combining technology will be applied to an active MMW seeker.

  15. Quasi-optical solid-state power combining for millimeter-wave active seeker applications

    SciTech Connect

    Halladay, R.H.; Terrill, S.D.; Bowling, D.R.; Gagnon, D.R. U.S. Navy, Naval Air Warfare Center, China Lake, CA )

    1992-05-01

    Consideration is given to quasi-optical power combining techniques, state-of-the-art demonstrated performance, and system issues as they apply to endoatmospheric homing seeker insertion. Quasi-optical power combining is based on combining microwave and millimeter-wave solid-state device power in space through the use of antennas and lenses. It is concluded that quasi-optical power combining meets the severe electrical requirements and packaging constraints of active MMW seekers for endoatmospheric hit-to-kill missiles. The approach provides the possibility of wafer-scale integration of major components for low cost production and offers high reliability. Critical issues include thermal loading and system integration, which must be resolved before the quasi-optical power combining technology will be applied to an active MMW seeker. 18 refs.

  16. All-Optical Sensing of the Components of the Internal Local Electric Field in Proteins

    PubMed Central

    Drobizhev, M.; Scott, J. N.; Callis, P. R.; Rebane, A.

    2014-01-01

    Here, we present a new all-optical method of interrogation of the internal electric field vector inside proteins. The method is based on experimental evaluation of the permanent dipole moment change upon excitation and the pure electronic transition frequency of a fluorophore embedded in a protein matrix. The permanent dipole moment change can be obtained from two-photon absorption measurements. In addition, permanent dipole moment change, tensor of polarizability change, and transition frequency for the free chromophore should be calculated quantum–mechanically. This allows obtaining the components of the electric field by considering the second-order Stark shift. We use the fluorescent protein mCherry as an example to demonstrate the applicability of the method. PMID:25419440

  17. All-Optical Sensing of the Components of the Internal Local Electric Field in Proteins.

    PubMed

    Drobizhev, M; Scott, J N; Callis, P R; Rebane, A

    2012-10-01

    Here, we present a new all-optical method of interrogation of the internal electric field vector inside proteins. The method is based on experimental evaluation of the permanent dipole moment change upon excitation and the pure electronic transition frequency of a fluorophore embedded in a protein matrix. The permanent dipole moment change can be obtained from two-photon absorption measurements. In addition, permanent dipole moment change, tensor of polarizability change, and transition frequency for the free chromophore should be calculated quantum-mechanically. This allows obtaining the components of the electric field by considering the second-order Stark shift. We use the fluorescent protein mCherry as an example to demonstrate the applicability of the method. PMID:25419440

  18. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    SciTech Connect

    Contalbrigo, M; Baltzell, N; Benmokhtar, F; Barion, L; Cisbani, E; El Alaoui, A; Hafidi, K; Hoek, M; Kubarovsky, V; Lagamba, L; Lucherini, V; Malaguti, R; Mirazita, M; Montgomery, R; Movsisyan, A; Musico, P; Orecchini, D; Orlandi, A; Pappalardo, L L; Pereira, S; Perrino, R; Phillips, J; Pisano, S; Rossi, P; Squerzanti, S; Tomassini, S; Turisini, M; Viticchiè, A

    2014-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.

  19. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    NASA Astrophysics Data System (ADS)

    Contalbrigo, M.; Baltzell, N.; Benmokhtar, F.; Barion, L.; Cisbani, E.; El Alaoui, A.; Hafidi, K.; Hoek, M.; Kubarovsky, V.; Lagamba, L.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Montgomery, R.; Movsisyan, A.; Musico, P.; Orecchini, D.; Orlandi, A.; Pappalardo, L. L.; Pereira, S.; Perrino, R.; Phillips, J.; Pisano, S.; Rossi, P.; Squerzanti, S.; Tomassini, S.; Turisini, M.; Viticchiè, A.

    2014-12-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.

  20. Hybrid plasmonic lattices with tunable magneto-optical activity.

    PubMed

    Kataja, Mikko; Pourjamal, Sara; Maccaferri, Nicolò; Vavassori, Paolo; Hakala, Tommi K; Huttunen, Mikko J; Törmä, Päivi; van Dijken, Sebastiaan

    2016-02-22

    We report on the optical and magneto-optical response of hybrid plasmonic lattices that consist of pure nickel and gold nanoparticles in a checkerboard arrangement. Diffractive far-field coupling between the individual emitters of the lattices results in the excitation of two orthogonal surface lattice resonance modes. Local analyses of the radiation fields indicate that both the nickel and gold nanoparticles contribute to these collective resonances and, thereby, to the magneto-optical activity of the hybrid arrays. The strong effect of noble metal nanoparticles on the magneto-optical response of hybrid lattices opens up new avenues for the realization of sensitive and tunable magneto-plasmonic nanostructures. PMID:26907022

  1. Fabrication of a hybrid optical micro-component with a thermosetting polymer and glass

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yao; Chen, Chun-Chieh; Chang, Keng-Souo; Chou, Hsiao-Yu; Hsu, Wei-Yao; Lee, Tsung-Xian

    2013-06-01

    This research develops a precise hybrid optical micro-component (PHOMC) that includes polymer and glass materials. Although glass offers better anti-thermal, anti-environmental, anti-scraped, anti-corrosive, and optical properties than polymer materials do, glass materials are difficult to fabricate for microstructures. This research describes the fabrication of a PHOMC, which retains the advantages of glass materials; in addition, the cost of microstructure polymers is lower than for glass. In this study, polymers with micro sine waves can change the spot light intensity from a Gaussian distribution to a line with uniform distribution. The glass base can protect the PHOMC to avoid damage from the environment. First, the sine wave was designed using optical design software to change the light profile. A precise diamond-turning technique was used to fabricate a mold with a sine-wave profile. A glass plate was used for the base of the PHOMC. During the heating process, a thermosetting polymer was formed to match the sine-wave profile, and covered the glass base. The PHOMC is 10 mm in diameter, and a sine wave with 100 μm in amplitude and 6.283 in angular frequency was obtained. The surface profile of the PHOMC was evaluated using an ultra-precise laser confocal microscope. Processing parameters, such as the forming temperature, are discussed in this paper. The PHOMC with the sine wave that was developed in this study can generate a reference straight line for use in alignment, machine vision systems, construction, and process control.

  2. Three-Dimensional Optical Memory Systems Based on 2-PHOTON Excitation: System Studies and Component Design.

    NASA Astrophysics Data System (ADS)

    Hunter, Susan

    The computational power of current high-performance computers is increasingly limited by data storage and retrieval rates. No existing memory technology has the combination of fast access and large data capacity that is needed for high-performance computing application. There are several new approaches to data storage that use additional degrees of freedom to increase the memory capacity, reduce the access time and provide parallel access to large arrays of information. These new technologies are typically called 3D memories and take advantage of the fact that optics can store data throughout a volume or by multiplexing information with wavelength, electric field or time. The majority of the dissertation focuses on the phenomenon of two-photon absorption in photochromic materials. Memory systems based on these materials are shown to have many advantages over other 3D memory approaches because they (1) operate at room temperature, (2) have a potential data density of 10^{12} bits/cm ^3 and (3) are relatively inexpensive to fabricate. Several architecture issues are included and the trade-offs between access time, capacity and bandwidth are discussed. In addition, two critical components for the volume memory system designs have been built and tested: the Holographic Dynamic Focusing Lens and the Optical Pulse Delay.

  3. Selection of independent components based on cortical mapping of electromagnetic activity

    NASA Astrophysics Data System (ADS)

    Chan, Hui-Ling; Chen, Yong-Sheng; Chen, Li-Fen

    2012-10-01

    Independent component analysis (ICA) has been widely used to attenuate interference caused by noise components from the electromagnetic recordings of brain activity. However, the scalp topographies and associated temporal waveforms provided by ICA may be insufficient to distinguish functional components from artifactual ones. In this work, we proposed two component selection methods, both of which first estimate the cortical distribution of the brain activity for each component, and then determine the functional components based on the parcellation of brain activity mapped onto the cortical surface. Among all independent components, the first method can identify the dominant components, which have strong activity in the selected dominant brain regions, whereas the second method can identify those inter-regional associating components, which have similar component spectra between a pair of regions. For a targeted region, its component spectrum enumerates the amplitudes of its parceled brain activity across all components. The selected functional components can be remixed to reconstruct the focused electromagnetic signals for further analysis, such as source estimation. Moreover, the inter-regional associating components can be used to estimate the functional brain network. The accuracy of the cortical activation estimation was evaluated on the data from simulation studies, whereas the usefulness and feasibility of the component selection methods were demonstrated on the magnetoencephalography data recorded from a gender discrimination study.

  4. Optical activity of chitosan films with induced anisotropy

    NASA Astrophysics Data System (ADS)

    Gegel, Natalia O.; Shipovskaya, Anna B.

    2016-04-01

    The optical anisotropy and optical activity of salt and basic chitosan films, both initial and modified in formic acid vapor were studied. The modification of such films was found to be accompanied by induced time-stable optical anisotropy, by varying the values of specific optical rotation [α] and an inversion of the sign of [α]. The angular dependences (indicatrices) of the specific optical rotation of films on the orientation angle of the sample relative to the direction of the polarization vector of the incident light beam in a plane perpendicular to the beam were obtained. The indicatrices of the initial chitosan films have an almost symmetrical character while those of the films modified in formic acid vapor are irregular. It is concluded of the formation of a vitrified cholesteric mesophase in the chitosan films with induced optical anisotropy.

  5. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers.

    PubMed

    Cai, Chen; Stewart, David J; Reid, Jonathan P; Zhang, Yun-hong; Ohm, Peter; Dutcher, Cari S; Clegg, Simon L

    2015-01-29

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments. PMID:25522920

  6. Development of optical components for in-vessel viewing systems used for fusion experimental reactor

    NASA Astrophysics Data System (ADS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi; Tada, Eisuke; Morita, Yosuke; Seki, Masahiro

    1994-12-01

    Optical components including imagefiber, periscope, glass, reflecting mirror and adhesive for lens are essential elements of in-vessel viewing system use for fusion experimental reactor and extensive of gamma irradiation tests have been conducted. These components were irradiated in the range of 1 MGy - 100 MGy under the average exposure dose rate of 1 X 106 R/h. As a result, the observation limit of the imagefiber specially fabricated for radiation hard is obtained to be 12 MGy at a illuminance of 8500 lx. Deterioration of transmissivity of three kinds of glass (alkaline barium glass, lead glass and synthetic quartz glass) is small compared with standard glass for commercial periscope. A periscope which was made of these glasses is visible even after 20 MGy at 8500 lx and in case of the standard periscope, the observation limit is 1 kGy at 8500 lx. Decrease in the reflectance on chromium nitride coated reflecting mirror is extremely small than aluminum coated and platinum coated mirrors at accumulated dose of 100 MGy. Two types of adhesive made of polyester resin and epoxy resin became discolored and exfoliated after 50 MGy.

  7. Advancement of Optical Component Control for an Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.

    2009-01-01

    Risk mitigation activities associated with a prototype imaging Fabry-Perot Interferometer (FPI) system are continuing at the NASA Langley Research Center. The system concept and technology center about enabling and improving future space-based atmospheric composition missions, with a current focus on observing tropospheric ozone around 9.6 micron, while having applicability toward measurement in different spectral regions and other applications. Recent activities have focused on improving an optical element control subsystem to enable precise and accurate positioning and control of etalon plates; this is needed to provide high system spectral fidelity critical for enabling the required ability to spectrally-resolve atmospheric line structure. The latest results pertaining to methodology enhancements, system implementation, and laboratory characterization testing will be reported

  8. Disk+Jet Quasars: Separating the Components with Optical/Infrared Variability

    NASA Astrophysics Data System (ADS)

    Kadowaki, Jennifer; Malkan, Matthew Arnold

    2015-01-01

    Flat Spectrum Radio Quasar (FSRQ) is a subclass of active galactic nuclei with aligned relativistic jets. The mechanism relating the FSRQ's accretion disk activity to its rapidly varying, non-thermal jet radiation is not well understood, motivating a monitoring campaign for 15 gamma-ray loud FSRQs with big blue bumps at z≈1. Selected quasars were observed in the optical, infrared, and gamma-ray energy bands using Lick Observatory's 40-inch Nickel Telescope, Kitt Peak National Observatory's 2.1 meter Telescope, Smithsonian Astrophysical Observatory's Peters Automated Infrared Imaging Telescope, and NASA's Fermi Gamma-ray Space Telescope for roughly 20 nights over a 12 month period. Differential photometry on a half dozen bright stars in each field yielded measurements with 1-2% level precision. Jets generally dominate the redder emission spectrum due to non-thermal synchrotron radiation and Compton scattering of gamma-rays off high energy electrons, while accretion disks dominate the bluer emission spectrum with rest frame ~2000 Angstroms. Most of the targeted FSRQs varied significantly over the 12 month monitoring period, with increased levels of fluctuation at longer wavelengths. Some correlations between gamma-ray and optical wavelengths were observed.

  9. Active optics: variable curvature mirrors for ELT laser guide star refocusing systems

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel

    2011-10-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.

  10. A Krebs Cycle Component Limits Caspase Activation Rate through Mitochondrial Surface Restriction of CRL Activation.

    PubMed

    Aram, Lior; Braun, Tslil; Braverman, Carmel; Kaplan, Yosef; Ravid, Liat; Levin-Zaidman, Smadar; Arama, Eli

    2016-04-01

    How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sβ and the GTP-specific SCSβ (G-Sβ), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sβ in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation. PMID:27052834

  11. Active stabilization of a fiber-optic two-photon interferometer using continuous optical length control.

    PubMed

    Cho, Seok-Beom; Kim, Heonoh

    2016-05-16

    The practical realization of long-distance entanglement-based quantum communication systems strongly rely on the observation of highly stable quantum interference between correlated single photons. This task must accompany active stabilization of the optical path lengths within the single-photon coherence length. Here, we provide two-step interferometer stabilization methods employing continuous optical length control and experimentally demonstrate two-photon quantum interference using an actively stabilized 6-km-long fiber-optic Hong-Ou-Mandel interferometer. The two-step active control techniques are applied for measuring highly stable two-photon interference fringes by scanning the optical path-length difference. The obtained two-photon interference visibilities with and without accidental subtraction are found to be approximately 90.7% and 65.4%, respectively. PMID:27409920

  12. XUV synchrotron optical components for the Advanced Light Source: Summary of the requirements and the developmental program

    SciTech Connect

    McKinney, W.; Irick, S.; Lunt, D.

    1992-07-01

    We give a brief summary of the requirements for water cooled optical components for the Advanced Light Source (ALS), a third generation synchrotron radiation source under construction at Lawrence Berkeley Laboratory (LBL). Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from a finished water cooled copper alloy mirror will be used to demonstrate the state of the art in optical metrology with the Takacs Long Trace Profiler (LTP II).

  13. On the characterization of ultra-precise X-ray optical components: advances and challenges in ex situ metrology.

    PubMed

    Siewert, F; Buchheim, J; Zeschke, T; Störmer, M; Falkenberg, G; Sankari, R

    2014-09-01

    To fully exploit the ultimate source properties of the next-generation light sources, such as free-electron lasers (FELs) and diffraction-limited storage rings (DLSRs), the quality requirements for gratings and reflective synchrotron optics, especially mirrors, have significantly increased. These coherence-preserving optical components for high-brightness sources will feature nanoscopic shape accuracies over macroscopic length scales up to 1000 mm. To enable high efficiency in terms of photon flux, such optics will be coated with application-tailored single or multilayer coatings. Advanced thin-film fabrication of today enables the synthesis of layers on the sub-nanometre precision level over a deposition length of up to 1500 mm. Specifically dedicated metrology instrumentation of comparable accuracy has been developed to characterize such optical elements. Second-generation slope-measuring profilers like the nanometre optical component measuring machine (NOM) at the BESSY-II Optics laboratory allow the inspection of up to 1500 mm-long reflective optical components with an accuracy better than 50 nrad r.m.s. Besides measuring the shape on top of the coated mirror, it is of particular interest to characterize the internal material properties of the mirror coating, which is the domain of X-rays. Layer thickness, density and interface roughness of single and multilayer coatings are investigated by means of X-ray reflectometry. In this publication recent achievements in the field of slope measuring metrology are shown and the characterization of different types of mirror coating demonstrated. Furthermore, upcoming challenges to the inspection of ultra-precise optical components designed to be used in future FEL and DLSR beamlines are discussed. PMID:25177985

  14. Pressure activated interconnection of micro transfer printed components

    NASA Astrophysics Data System (ADS)

    Prevatte, Carl; Guven, Ibrahim; Ghosal, Kanchan; Gomez, David; Moore, Tanya; Bonafede, Salvatore; Raymond, Brook; Trindade, António Jose; Fecioru, Alin; Kneeburg, David; Meitl, Matthew A.; Bower, Christopher A.

    2016-05-01

    Micro transfer printing and other forms of micro assembly deterministically produce heterogeneously integrated systems of miniaturized components on non-native substrates. Most micro assembled systems include electrical interconnections to the miniaturized components, typically accomplished by metal wires formed on the non-native substrate after the assembly operation. An alternative scheme establishing interconnections during the assembly operation is a cost-effective manufacturing method for producing heterogeneous microsystems, and facilitates the repair of integrated microsystems, such as displays, by ex post facto addition of components to correct defects after system-level tests. This letter describes pressure-concentrating conductor structures formed on silicon (1 0 0) wafers to establish connections to preexisting conductive traces on glass and plastic substrates during micro transfer printing with an elastomer stamp. The pressure concentrators penetrate a polymer layer to form the connection, and reflow of the polymer layer bonds the components securely to the target substrate. The experimental yield of series-connected test systems with >1000 electrical connections demonstrates the suitability of the process for manufacturing, and robustness of the test systems against exposure to thermal shock, damp heat, and mechanical flexure shows reliability of the resulting bonds.

  15. Double-Knudsen-Cell Apparatus Measures Alloy-Component Activities

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Moore, Warren A.

    1995-01-01

    Double-Knudsen-cell apparatus provides molecular beam from selected one of two Knudsen cells. Both cells maintained at same temperature. Molecular beam directed into mass spectrometer for measurement of vapor pressure of selected material component. Designed to minimize undesired thermal gradients, provides appropriate translation to place selected cell in position for sampling, and minimizes mixing of molecular beams from cells.

  16. Modeling injection molding of net-shape active ceramic components.

    SciTech Connect

    Baer, Tomas; Cote, Raymond O.; Grillet, Anne Mary; Yang, Pin; Hopkins, Matthew Morgan; Noble, David R.; Notz, Patrick K.; Rao, Rekha Ranjana; Halbleib, Laura L.; Castaneda, Jaime N.; Burns, George Robert; Mondy, Lisa Ann; Brooks, Carlton, F.

    2006-11-01

    To reduce costs and hazardous wastes associated with the production of lead-based active ceramic components, an injection molding process is being investigated to replace the current machining process. Here, lead zirconate titanate (PZT) ceramic particles are suspended in a thermoplastic resin and are injected into a mold and allowed to cool. The part is then bisque fired and sintered to complete the densification process. To help design this new process we use a finite element model to describe the injection molding of the ceramic paste. Flow solutions are obtained using a coupled, finite-element based, Newton-Raphson numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. Thermal, rheological, and wetting properties of the PZT paste are measured for use as input to the model. The viscosity of the PZT is highly dependent both on temperature and shear rate. One challenge in modeling the injection process is coming up with appropriate constitutive equations that capture relevant phenomenology without being too computationally complex. For this reason we model the material as a Carreau fluid and a WLF temperature dependence. Two-dimensional (2D) modeling is performed to explore the effects of the shear in isothermal conditions. Results indicate that very low viscosity regions exist near walls and that these results look similar in terms of meniscus shape and fill times to a simple Newtonian constitutive equation at the shear-thinned viscosity for the paste. These results allow us to pick a representative viscosity to use in fully three-dimensional (3D) simulation, which because of numerical complexities are restricted to using a Newtonian constitutive equation. Further 2D modeling at nonisothermal conditions shows that the choice of

  17. Non-mechanical scanning laser Doppler velocimetry with sensitivity to direction of transverse velocity component using optical serrodyne frequency shifting

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Watanabe, Kento

    2014-05-01

    This paper proposes a non-mechanical axial scanning laser Doppler velocimeter (LDV) with sensitivity to the direction of the transverse velocity component using optical serrodyne frequency shifting. Serrodyne modulation via the electro-optic effect of a LiNbO3 (LN) phase shifter is employed to discriminate the direction of the transverse velocity component. The measurement position is scanned without any moving mechanism in the probe by changing the wavelength of the light input to the probe. The experimental results using a sensor probe setup indicate that both the scan of the measurement position and the introduction of directional sensitivity are successfully demonstrated.

  18. Punicalagin, an active component in pomegranate, ameliorates cardiac mitochondrial impairment in obese rats via AMPK activation

    PubMed Central

    Cao, Ke; Xu, Jie; Pu, Wenjun; Dong, Zhizhong; Sun, Lei; Zang, Weijin; Gao, Feng; Zhang, Yong; Feng, Zhihui; Liu, Jiankang

    2015-01-01

    Obesity is associated with an increasing prevalence of cardiovascular diseases and metabolic syndrome. It is of paramount importance to reduce obesity-associated cardiac dysfunction and impaired energy metabolism. In this study, the activation of the AMP-activated protein kinase (AMPK) pathway by punicalagin (PU), a major ellagitannin in pomegranate was investigated in the heart of a rat obesity model. In male SD rats, eight-week administration of 150 mg/kg pomegranate extract (PE) containing 40% punicalagin sufficiently prevented high-fat diet (HFD)-induced obesity associated accumulation of cardiac triglyceride and cholesterol as well as myocardial damage. Concomitantly, the AMPK pathway was activated, which may account for prevention of mitochondrial loss via upregulating mitochondrial biogenesis and amelioration of oxidative stress via enhancing phase II enzymes in the hearts of HFD rats. Together with the normalized expression of uncoupling proteins and mitochondrial dynamic regulators, PE significantly prevented HFD-induced cardiac ATP loss. Through in vitro cultures, we showed that punicalagin was the predominant component that activated AMPK by quickly decreasing the cellular ATP/ADP ratio specifically in cardiomyocytes. Our findings demonstrated that punicalagin, the major active component in PE, could modulate mitochondria and phase II enzymes through AMPK pathway to prevent HFD-induced cardiac metabolic disorders. PMID:26369619

  19. Standardization in fiber-optic sensing for structural safety: activities in the ISHMII and IEC

    NASA Astrophysics Data System (ADS)

    Habel, Wolfgang R.; Krebber, K.; Daum, W.

    2015-03-01

    Fiber-optic sensors are increasingly established in the sensor market. Their advantages have unquestionably been verified by numerous demonstrations to enhance the operational performance of aged structures or to monitor the structural behavior of safety-relevant structures or their components. However, there are some barriers in use due to a lack of extensive standardization of fiber-optic sensors. This leads very often to restraints in the user's community. The paper shows the status in international standardization of fiber-optic sensors as well as current activities in leading institutions such as IEC and ISHMII and others with the purpose of providing relevant standards for a broader use of selected fiber-optic sensor technologies.

  20. Incident diagnoses of cancers in the active component and cancer-related deaths in the active and reserve components, U.S. Armed Forces, 2005-2014.

    PubMed

    Lee, Terrence; Williams, Valerie F; Clark, Leslie L

    2016-07-01

    Cancer is the second leading cause of death in the U.S., surpassed only by heart disease. It is estimated that approximately one of every four deaths in the U.S. is due to cancer. Between 2005 and 2014 among active component service members in the U.S. military, crude incidence rates of most cancer diagnoses have remained relatively stable. During this period, 8,973 active component members were diagnosed with at least one of the cancers of interest and no specific increasing or decreasing trends were evident. Cancers accounted for 1,054 deaths of service members on active duty during the 10-year surveillance period; this included 727 service members in the active component and 327 in the reserve component. PMID:27501939

  1. Label-free optical activation of astrocyte in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Yoon, Jonghee; Ku, Taeyun; Choi, Kyungsun; Choi, Chulhee

    2011-07-01

    As the most abundant cell type in the central nervous system, astrocyte has been one of main research topics in neuroscience. Although various tools have been developed, at present, there is no tool that allows noninvasive activation of astrocyte in vivo without genetic or pharmacological perturbation. Here we report a noninvasive label-free optical method for physiological astrocyte activation in vivo using a femtosecond pulsed laser. We showed the laser stimulation robustly induced astrocytic calcium activation in vivo and further verified physiological relevance of the calcium increase by demonstrating astrocyte mediated vasodilation in the brain. This novel optical method will facilitate noninvasive physiological study on astrocyte function.

  2. Optical response and activity of ultrathin films of topological insulators

    NASA Astrophysics Data System (ADS)

    Parhizgar, Fariborz; Moghaddam, Ali G.; Asgari, Reza

    2015-07-01

    We investigate the optical properties of ultrathin film of a topological insulator in the presence of an in-plane magnetic field. We show that due to the combination of the overlap between the surface states of the two layers and the magnetic field, the optical conductivity can show strong anisotropy. This leads to the effective optical activity of the ultrathin film by influencing the circularly polarized incident light. Intriguingly, for a range of magnetic fields, the reflected and transmitted lights exhibit elliptic character. Even for certain values almost linear polarizations are obtained, indicating that the thin film can act as a polaroid in reflection. All these features are discussed in the context of the time-reversal symmetry breaking as one of the key ingredients for the optical activity.

  3. Active Learning Strategies for Introductory Light and Optics

    ERIC Educational Resources Information Center

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…

  4. Magneto-Optical Activity in High Index Dielectric Nanoantennas.

    PubMed

    de Sousa, N; Froufe-Pérez, L S; Sáenz, J J; García-Martín, A

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones. PMID:27488903

  5. Magneto-Optical Activity in High Index Dielectric Nanoantennas

    NASA Astrophysics Data System (ADS)

    de Sousa, N.; Froufe-Pérez, L. S.; Sáenz, J. J.; García-Martín, A.

    2016-08-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones.

  6. Magneto-Optical Activity in High Index Dielectric Nanoantennas

    PubMed Central

    de Sousa, N.; Froufe-Pérez, L. S.; Sáenz, J. J.; García-Martín, A.

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones. PMID:27488903

  7. Optical coherence tomography imaging of structural components of the respiratory tract

    NASA Astrophysics Data System (ADS)

    Whiteman, Suzanne C.; Yang, Ying; Gey van Pittius, D.; He, Yonghong; Spiteri, M. A.; Wang, Ruikang K.

    2004-07-01

    For optimal curative treatment and the prevention of metastasis, it is critical that premalignant lesions are detected as early as possible. However, current diagnostic methods for human airways do not possess sufficient resolution and tissue penetration depth to detect these aberrations. Therefore it is necessary to develop safe, reproducible imaging techniques with high spatial resolution. In this study, optical coherence tomography (OCT) was used to obtain cross sectional images of porcine respiratory tract tissue. OCT images were compared to parallel conventional histological sections. Our objective was to establish whether OCT differentiates the microstructural layers of the respiratory tract. These data demonstrate that OCT can characterize the multilayered structure of the airways, with a depth of up to 2 mm and a 10 μm spatial resolution. The subtle structural differences between trachea, main bronchus and tertiary bronchus were clearly identifiable. The epithelium, sub-epithelial tissues and cartilage were individually defined. In addition, the relative thickness of the structural components was comparable to histological sections. These data suggest that OCT is a highly feasible diagnostic tool, which requires further exploration for early detection of human airway pathology.

  8. Highly reproducible quasi-mosaic crystals as optical components for a Laue lens

    NASA Astrophysics Data System (ADS)

    Camattari, Riccardo; Battelli, Alessandro; Bellucci, Valerio; Guidi, Vincenzo

    2014-02-01

    The realization of a Laue lens for astronomical purposes involves the mass production of a series of crystalline tiles as optical components, allowing high-efficiency diffraction and high-resolution focusing of photons. Crystals with self-standing curved diffraction planes is a valid and promising solution. Exploiting the quasi-mosaic effect, it turns out to be possible to diffract radiation at higher resolution. In this paper we present the realization of 150 quasi-mosaic Ge samples, bent by grooving one of their largest surface. We show that grooving method is a viable technique to manufacture such crystals in a simple and very reproducible way, thus compatible with mass production. Realized samples present very homogenous curvature. Furthermore, with a specific chemical etch, it is possible to fine adjust one by one the radius of curvature of the grooved samples. Realized crystals was selected for the ASI's Laue project, that involves the implementation of a prototype of a Laue lens for hard X- and soft γ-ray astronomy.

  9. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    NASA Astrophysics Data System (ADS)

    Malkov, Serghei; Shepherd, John

    2014-02-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  10. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    PubMed Central

    Malkov, Serghei; Shepherd, John

    2014-01-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed. PMID:25083118

  11. Research on a simulation system for diamond turning of optical components with micro-structured surfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Jingbo; Sun, Tao; Wang, Xiaohui

    2010-10-01

    Ultra-precision machine with a fast tool servo (FTS) can fabricate many kinds of optical components with complex micro-structured surfaces, achieving sub-micrometer form accuracy and nanometer surface finish without any subsequent processing. However, it is difficult to meet the ultimate processing requirements only by operators' experience due to the complicate numerical control (NC) programs and various machining parameters. To verify the NC programs, guarantee the processing quality and improve the efficiency, a simulation system is established according to the real micro-structured surface turning system. This system includes cutting force model, platform movement model, fast tool servo model, spindle movement model, vibration model and the surface topography model. Then some simulation results as the motion locus of the tool tip, three-dimensional microstructure morphology and the surface roughness are obtained. By comparing the simulated and actual results, it can be seen that this system can simulate the actual processing, predict the final machining results and has the guidance meaning for the machining of the microstructured surfaces.

  12. Optical coating performance for heat reflectors of JWST-ISIM electronic component

    NASA Astrophysics Data System (ADS)

    Quijada, Manuel A.; Bousquet, Robert; Garrison, Matt; Perrygo, Chuck; Threat, Felix; Rashford, Robert

    2008-07-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling reflector.

  13. A new active solder for joining electronic components

    SciTech Connect

    SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.; LUGSCHEIDER,E.; RASS,I.; HILLEN,F.

    2000-05-11

    Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.

  14. Active stabilization of the optical part in fiber optic quantum cryptography

    NASA Astrophysics Data System (ADS)

    Balygin, K. A.; Klimov, A. N.; Kulik, S. P.; Molotkov, S. N.

    2016-03-01

    The method of active stabilization of the polarization and other parameters of the optical part of a two-pass fiber optic quantum cryptography has been proposed and implemented. The method allows the completely automated maintenance of the visibility of interference close to an ideal value ( V ≥ 0.99) and the reduction of the instrumental contribution to the error in primary keys (QBER) to 0.5%.

  15. Improved Convergence for Two-Component Activity Expansions

    SciTech Connect

    DeWitt, H E; Rogers, F J; Sonnad, V

    2007-03-06

    It is well known that an activity expansion of the grand canonical partition function works well for attractive interactions, but works poorly for repulsive interactions, such as occur between atoms and molecules. The virial expansion of the canonical partition function shows just the opposite behavior. This poses a problem for applications that involve both types of interactions, such as occur in the outer layers of low-mass stars. We show that it is possible to obtain expansions for repulsive systems that convert the poorly performing Mayer activity expansion into a series of rational polynomials that converge uniformly to the virial expansion. In the current work we limit our discussion to the second virial approximation. In contrast to the Mayer activity expansion the activity expansion presented herein converges for both attractive and repulsive systems.

  16. Chemical Components and Cardiovascular Activities of Valeriana spp.

    PubMed Central

    Chen, Heng-Wen; Wei, Ben-Jun; He, Xuan-Hui; Liu, Yan; Wang, Jie

    2015-01-01

    Valeriana spp. is a flowering plant that is well known for its essential oils, iridoid compounds such as monoterpenes and sesquiterpenes, flavonoids, alkaloids, amino acids, and lignanoids. Valeriana spp. exhibits a wide range of biological activities such as lowering blood pressure and heart rate, antimyocardial ischemia reperfusion injury, antiarrhythmia, and regulation of blood lipid levels. This review focuses on the chemical constituents and cardiovascular activities of Valeriana spp. PMID:26788113

  17. Do energy drinks contain active components other than caffeine?

    PubMed

    McLellan, Tom M; Lieberman, Harris R

    2012-12-01

    Energy drinks (EDs) contain caffeine and are a new, popular category of beverage. It has been suggested that EDs enhance physical and cognitive performance; however, it is unclear whether the claimed benefits are attributable to components other than caffeine. A typical 235 mL ED provides between 40 and 250 mg of caffeine, equating to doses that improve cognitive and, at the higher levels, physical performance. EDs often contain taurine, guaraná, ginseng, glucuronolactone, B-vitamins, and other compounds. A literature search using PubMed, Psych Info, and Google Scholar identified 32 articles that examined the effects of ED ingredients alone and/or in combination with caffeine on physical or cognitive performance. A systematic evaluation of the evidence-based findings in these articles was then conducted. With the exception of some weak evidence for glucose and guaraná extract, there is an overwhelming lack of evidence to substantiate claims that components of EDs, other than caffeine, contribute to the enhancement of physical or cognitive performance. Additional well-designed, randomized, placebo-controlled studies replicated across laboratories are needed in order to assess claims made for these products. PMID:23206286

  18. The triple binary star EQ Tau with an active component

    SciTech Connect

    Li, K.; Hu, S.-M.; Qian, S.-B.; He, J.-J. E-mail: likai@ynao.ac.cn

    2014-05-01

    New photometric data of EQ Tau observed in 2010 and 2013 are presented. Light curves obtained in 2000 and 2004 by Yuan and Qian and 2001 by Yang and Liu, together with our two newly determined sets of light curves, were analyzed using the Wilson-Devinney code. The five sets of light curves exhibit very obvious variations, implying that the light curves of EQ Tau show a strong O'Connell effect. We found that EQ Tau is an A-type shallow contact binary with a contact degree of f = 11.8%; variable dark spots on the primary component of EQ Tau were also observed. Using 10 new times of minimum light, together with those collected from the literature, the orbital period change of EQ Tau was analyzed. We found that its orbital period includes a secular decrease (dP/dt = –3.63 × 10{sup –8} days yr{sup –1}) and a cyclic oscillation (A {sub 3} = 0.0058 days and P {sub 3} = 22.7 yr). The secular increase of the period can be explained by mass transfer from the more massive component to the less massive one or/and angular momentum loss due to a magnetic stellar wind. The Applegate mechanism cannot explain the cyclic orbital period change. A probable transit-like event was observed in 2010. Therefore, the cyclic orbital period change of EQ Tau may be due to the light time effect of a third body.

  19. SIRT1 Activation Confers Neuroprotection in Experimental Optic Neuritis

    PubMed Central

    Shindler, Kenneth S.; Ventura, Elvira; Rex, Tonia S.; Elliott, Peter; Rostami, Abdolmohamad

    2007-01-01

    Purpose Axonal damage and loss of neurons correlate with permanent vision loss and neurologic disability in patients with optic neuritis and multiple sclerosis (MS). Current therapies involve immunomodulation, with limited effects on neuronal damage. The authors examined potential neuroprotective effects in optic neuritis by SRT647 and SRT501, two structurally and mechanistically distinct activators of SIRT1, an enzyme involved in cellular stress resistance and survival. Methods Experimental autoimmune encephalomyelitis (EAE), an animal model of MS, was induced by immunization with proteolipid protein peptide in SJL/J mice. Optic neuritis developed in two thirds of eyes with significant retinal ganglion cell (RGC) loss detected 14 days after immunization. RGCs were labeled in a retrograde fashion with fluorogold by injection into superior colliculi. Optic neuritis was detected by inflammatory cell infiltration of the optic nerve. Results Intravitreal injection of SIRT1 activators 0, 3, 7, and 11 days after immunization significantly attenuated RGC loss in a dose-dependent manner. This neuroprotective effect was blocked by sirtinol, a SIRT1 inhibitor. Treatment with either SIRT1 activator did not prevent EAE or optic nerve inflammation. A single dose of SRT501 on day 11 was sufficient to limit RGC loss and to preserve axon function. Conclusions SIRT1 activators provide an important potential therapy to prevent the neuronal damage that leads to permanent neurologic disability in optic neuritis and MS patients. Intravitreal administration of SIRT1 activators does not suppress inflammation in this model, suggesting that their neuroprotective effects will be additive or synergistic with current immunomodulatory therapies. PMID:17652729

  20. Application of independent component analysis method in real-time spectral analysis of gaseous mixtures for acousto-optical spectrometers based on differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fadeyev, A. V.; Pozhar, V. E.

    2012-10-01

    It is discussed the reliability problem of time-optimized method for remote optical spectral analysis of gas-polluted ambient air. The method based on differential optical absorption spectroscopy (DOAS) enables fragmentary spectrum registration (FSR) and is suitable for random-spectral-access (RSA) optical spectrometers like acousto-optical (AO) ones. Here, it is proposed the algorithm based on statistical method of independent component analysis (ICA) for estimation of a correctness of absorption spectral lines selection for FSR-method. Implementations of ICA method for RSA-based real-time adaptive systems are considered. Numerical simulations are presented with use of real spectra detected by the trace gas monitoring system GAOS based on AO spectrometer.

  1. Deep Proton Writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Ottevaere, Heidi; Hermanne, Alex; Thienpont, Hugo

    2013-07-01

    The use of photonics in data communication and numerous other industrial applications brought plenty of prospects for innovation and opened up different unexplored market opportunities. This is a major driving force for the fabrication of micro-optical and micro-mechanical structures and their accurate alignment and integration into opto-mechanical modules and systems. To this end, we present Deep Proton Writing (DPW) as a powerful rapid prototyping technology for such micro-components. The DPW process consists of bombarding polymer samples (PMMA or SU-8) with swift protons, which results after chemical processing steps in high-quality micro-optical components. One of the strengths of the DPW micro-fabrication technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we comment on how we shifted from using 8.3 to 16.5 MeV protons for DPW and give some examples of micro-optical and micro-mechanical components recently fabricated through DPW, targeting applications in optical interconnections and in optofluidics.

  2. Novel implementations of optical switch control module and 3D-CSP for 10 Gbps active optical access system

    NASA Astrophysics Data System (ADS)

    Wakayama, Koji; Okuno, Michitaka; Matsuoka, Yasunobu; Hosomi, Kazuhiko; Sagawa, Misuzu; Sugawara, Toshiki

    2009-11-01

    We propose an optical switch control procedure for high-performance and cost-effective 10 Gbps Active Optical Access System (AOAS) in which optical switches are used instead of optical splitters in PON (Passive Optical Network). We demonstrate the implemented optical switch control module on Optical Switching Unit (OSW) with logic circuits works effectively. We also propose a compact optical 3D-CSP (Chip Scale Package) to achieve the high performance of AOAS without losing cost advantage of PON. We demonstrate the implemented 3D-CSP works effectively.

  3. Low cost, small form factor, and integration as the key features for the optical component industry takeoff

    NASA Astrophysics Data System (ADS)

    Schiattone, Francesco; Bonino, Stefano; Gobbi, Luigi; Groppi, Angelamaria; Marazzi, Marco; Musio, Maurizio

    2003-04-01

    In the past the optical component market has been mainly driven by performances. Today, as the number of competitors has drastically increased, the system integrators have a wide range of possible suppliers and solutions giving them the possibility to be more focused on cost and also on footprint reduction. So, if performances are still essential, low cost and Small Form Factor issues are becoming more and more crucial in selecting components. Another evolution in the market is the current request of the optical system companies to simplify the supply chain in order to reduce the assembling and testing steps at system level. This corresponds to a growing demand in providing subassemblies, modules or hybrid integrated components: that means also Integration will be an issue in which all the optical component companies will compete to gain market shares. As we can see looking several examples offered by electronic market, to combine low cost and SFF is a very challenging task but Integration can help in achieving both features. In this work we present how these issues could be approached giving examples of some advanced solutions applied to LiNbO3 modulators. In particular we describe the progress made on automation, new materials and low cost fabrication methods for the parts. We also introduce an approach in integrating optical and electrical functionality on LiNbO3 modulators including RF driver, bias control loop, attenuator and photodiode integrated in a single device.

  4. High-density active optical cable: from a new concept to a prototype

    NASA Astrophysics Data System (ADS)

    Wohlfeld, Denis; Lemke, Frank; Froening, Holger; Schenk, Sven; Bruening, Ulrich

    2011-01-01

    Evolution in high performance computing (HPC) leads to increasing demands on bandwidth, connectivity and flexibility. Active optical cables (AOC) are of special interest, combining the benefits of electrical connectors and optical transmission. Optimization and development of AOC solutions requires enhancements concerning different technology barriers. Area and volume occupied by connectors is of special interest within HPC networks. This led to the development of a 12x AOC for the mini-HT connector creating the densest AOC available. In order to integrate electrical optical conversion into a module not higher than 3 mm, a new concept of coupling fibers to VCSELs or photodiodes had to be developed. This unique concept is based on a direct replication process of an integrated fiber coupler consisting of a 90° light deflecting and focusing mirror, a fiber guiding structure, and a fiber funnel. The integrated fiber coupler is directly replicated on top of active components, reducing the distance between active components and fibers to a minimum, thus providing a highly efficient light coupling. As AOC prototype, multi-chipmodules (MCM) including the complete electrical to optical conversion for send and receive connected by two 12x fiber ribbons have been developed. The paper presents the integrated fiber coupling technique and also design and measurement data of the prototype.

  5. Synthesis and biological evaluation of optically active Ki16425.

    PubMed

    Sato, Takanao; Sugimoto, Kenji; Inoue, Asuka; Okudaira, Shinichi; Aoki, Junken; Tokuyama, Hidetoshi

    2012-07-01

    An enantionselective synthesis of both enantiomers of Ki16425, which possesses selective LPA antagonistic activity, was achieved. The isoxazole core was constructed by a 1,3-dipolar cycloaddition of nitrile oxide with alkyne and condensation with the optically active α-phenethyl alcohol segment, which was prepared by an enantioselective reduction of arylmethylketone. Biological evaluation of both enantiomers of Ki16425 revealed that the (R)-isomer showed much higher antagonistic activity for LPA(1) and LPA(3) receptors. PMID:22658556

  6. Alignment of optical system components using an ADM beam through a null assembly

    NASA Technical Reports Server (NTRS)

    Hayden, Joseph E. (Inventor); Olczak, Eugene G. (Inventor)

    2010-01-01

    A system for testing an optical surface includes a rangefinder configured to emit a light beam and a null assembly located between the rangefinder and the optical surface. The null assembly is configured to receive and to reflect the emitted light beam toward the optical surface. The light beam reflected from the null assembly is further reflected back from the optical surface toward the null assembly as a return light beam. The rangefinder is configured to measure a distance to the optical surface using the return light beam.

  7. Polarized Raman optical activity of menthol and related molecules

    NASA Astrophysics Data System (ADS)

    Barron, L. D.; Hecht, L.; Blyth, S. M.

    1989-01-01

    Polarized and depolarized Raman optical activity spectra of menthol, menthyl chloride, neomenthol and neothiomenthol from 800 to 1500 cm -1 are reported. Despite axial symmetry in all the bonds, the presence of the heteroatoms O or S seems to induce large deviations from the expected ratio of 2:1 between the polarized and depolarized Raman optical activity intensities, but Cl does not. These deviations might originate in large electric quadrupole contributions induced by excited state interactions involving O or S Rydberg p orbitals and valence orbitals on other parts of the molecule. Such interactions appear to undermine the bond polarizability theory of Raman intensities.

  8. Active optics for space applications: an ESA perspective

    NASA Astrophysics Data System (ADS)

    Zuccaro Marchi, Alessandro; Hallibert, Pascal; Pereira do Carmo, Joao; Wille, Eric

    2014-07-01

    Active optics for Space is relatively new field that takes advantage of lessons learnt on ground, and together with the tighter constrains of space environment it allows operation of larger mirrors apertures for space telescopes and better image quality. Technical developments are crucial to guarantee proper technological readiness for applications on new missions whose performance can be driven also by these novelties. This paper describes the philosophy pursued at ESA, providing an overview of the activities run within the Agency, as well as perspectives for new developments. The Optics Section of the Directorate of Technical and Quality Management of ESA/ESTEC is currently running three projects. Two examples are here addressed.

  9. Giant optical activity of sugar in thin soap films.

    PubMed

    Emile, Janine; Emile, Olivier; Ghoufi, Aziz; Moréac, Alain; Casanova, Federico; Ding, Minxia; Houizot, Patrick

    2013-10-15

    We report on enhanced experimental optical activity measurements of thin soap films in the presence of sugar. This unusual optical activity is linked to the intramolecular chiral conformation of the glucose molecules at the air/liquid interface. Choosing sodium dodecylsulfate (SDS) as a model surfactant and glucose as model sugar, favorable interactions between the anionic group -OSO3(-)- and the glucose molecules are highlighted. This induces an interfacial anchoring of glucose molecules leading to a perturbing influence of the asymmetric chiral environment. PMID:23932406

  10. The relationship between variable and polarized optical spectral components of luminous type 1 non-blazar quasars

    NASA Astrophysics Data System (ADS)

    Kokubo, Mitsuru

    2016-06-01

    Optical spectropolarimetry by Kishimoto et al. (2004, MNRAS, 354, 1065) has shown that several luminous type 1 quasars show a strong decrease of the polarized continuum flux in the rest-frame near-ultraviolet (UV) wavelengths of λ < 4000 Å. In the literature, this spectral feature is interpreted as evidence of the broadened hydrogen Balmer absorption edge imprinted on the accretion disk thermal emission due to the disk atmospheric opacity effect. On the other hand, quasar flux variability studies have shown that the variable continuum component in UV-optical spectra of quasars, which is considered to be a good indicator of the intrinsic spectral shape of the accretion disk emission, generally has a significantly flat spectral shape throughout the near-UV to optical spectral range. To examine whether the disk continuum spectral shapes revealed as the polarized flux and as the variable component spectra are consistent with each other, we carry out multi-band photometric monitoring observations for a sample of four polarization-decreasing quasars of Kishimoto et al.'s (4C 09.72, 3C 323.1, Ton 202, and B2 1208+32) to derive the variable component spectra and compare the spectral shape of them with that of the polarized flux spectra. Contrary to expectation, we confirm that the two spectral components of these quasars have totally different spectral shapes, in that the variable component spectra are significantly bluer compared to the polarized flux spectra. This discrepancy between two spectrals shape may imply either (1) the decrease of polarization degree in the rest-frame UV wavelengths is not indicating the Balmer absorption edge feature but is induced by some unknown (de)polarization mechanisms, or (2) the UV-optical flux variability is occurring preferentially at the hot inner radii of the accretion disk and thus the variable component spectra do not reflect the whole accretion disk emission.

  11. The relationship between variable and polarized optical spectral components of luminous type 1 non-blazar quasars

    NASA Astrophysics Data System (ADS)

    Kokubo, Mitsuru

    2016-08-01

    Optical spectropolarimetry by Kishimoto et al. (2004, MNRAS, 354, 1065) has shown that several luminous type 1 quasars show a strong decrease of the polarized continuum flux in the rest-frame near-ultraviolet (UV) wavelengths of λ < 4000 Å. In the literature, this spectral feature is interpreted as evidence of the broadened hydrogen Balmer absorption edge imprinted on the accretion disk thermal emission due to the disk atmospheric opacity effect. On the other hand, quasar flux variability studies have shown that the variable continuum component in UV-optical spectra of quasars, which is considered to be a good indicator of the intrinsic spectral shape of the accretion disk emission, generally has a significantly flat spectral shape throughout the near-UV to optical spectral range. To examine whether the disk continuum spectral shapes revealed as the polarized flux and as the variable component spectra are consistent with each other, we carry out multi-band photometric monitoring observations for a sample of four polarization-decreasing quasars of Kishimoto et al.'s (4C 09.72, 3C 323.1, Ton 202, and B2 1208+32) to derive the variable component spectra and compare the spectral shape of them with that of the polarized flux spectra. Contrary to expectation, we confirm that the two spectral components of these quasars have totally different spectral shapes, in that the variable component spectra are significantly bluer compared to the polarized flux spectra. This discrepancy between two spectral shapes may imply either (1) the decrease of polarization degree in the rest-frame UV wavelengths is not indicating the Balmer absorption edge feature but is induced by some unknown (de)polarization mechanisms, or (2) the UV-optical flux variability is occurring preferentially at the hot inner radii of the accretion disk and thus the variable component spectra do not reflect the whole accretion disk emission.

  12. A review of DOE HEPA filter component test activities

    SciTech Connect

    Slawski, J.W.; Bresson, J.F.; Scripsick, R.C.

    1997-08-01

    All HEPA filters purchased for installation in DOE nuclear facilities are required to be tested at a Filter Test Facility (FTF) prior to installation. The number of HEPA filters purchased by DOE has been reduced so much that the Hanford FTF was closed. From Fiscal Year (FY) 1992 to 1994, funding was not provided to the FTF Technical Support Group (TSG) at the Los Alamos National Laboratory. As a consequence, Round Robin Tests (RRTs), performed twice each year by the FTFs to assess constituency of test results among the FTFs, were not performed in FY 1992 and FY 1993. The Annual Reports of FTF test activities were not prepared for FY 1992 - 1995. Technical support provided to the FTFs was minimal. There is talk of closing a second FTF, and ongoing discussions as to whether DOE will continue to fund operation of the FTFs. In FY 1994, DOE Defense Programs commenced funding the TSG. RRT data for FY 1994 and 1995 have been entered into the database; the FY 1994 RRT report has been issued; and the FY 1995 RRT report is in progress. Data from semiannual reports have been retrieved and entered into the database. Standards related to HEPA filter test and procurement activities are now scheduled for issuance by FY 1996. Continuation of these activities depends on whether DOE will continue to support the HEPA filter test program. The history and activities of the FTFs and the TSG at Los Alamos have been reported at previous Air Cleaning Conferences. Data from the FY 1991 Annual Report of FTF activities was presented at the 1992 Air Cleaning Conference. Preparation of the Annual Reports was temporarily suspended in 1992. However, all of the FTF Semiannual report data have been retrieved and entered into the data base. This paper focuses primarily on the results of HEPA filter tests conducted by FTFs during FY 1992 - FY 1995, and the possible effects of the DOE program uncertainties on the quality of HEPA filters for installation at the DOE sites. 15 refs., 13 tabs.

  13. Spectral variability of the IR source IRAS 01005+7910 optical component

    NASA Astrophysics Data System (ADS)

    Klochkova, V. G.; Chentsov, E. L.; Panchuk, V. E.; Sendzikas, E. G.; Yushkin, M. V.

    2014-10-01

    High-resolution optical spectra of the IR source IRAS01005+7910 are used to determine the spectral type of its central star, B1.5±0.3, identify the spectral features, and analyze their profile and radial-velocity variations. The systemic velocity V sys = -50.5 km s-1 is determined from the positions of the symmetric and stable profiles of the forbidden [NI], [N II], [OI], [S II], and [Fe II] emission lines. The presence of the [NII] and [SII] forbidden emissions indicates the onset of the ionization of the circumstellar envelope and the fact that the star is very close to undergoing the planetary nebula stage. The broad range of radial velocity V r estimates based on the line cores, which amounts to about 34 km s-1, is partly due to the deformations of the profiles caused by variable emissions. The variations of the V r in the line wings are smaller, about 23 km s-1, and may be due to pulsations and/or hidden binarity of the star. The deformations of the profiles of absorption-emission lines may result from variations of their absorption components caused by the variations of the geometry and kinematics in the wind base. The H α lines exhibit PCyg III type wind profiles. Deviations of the wind from spherical symmetry are shown to be small. The relatively low wind velocity (27-74 km s-1 from different observations) and the strong intensity of the red emission (it exceeds the continuum level by up to a factor of seven) are typical for hypergiants rather than the classical supergiants. IRAS01005 is an example of spectral mimicry of a low-mass post-AGB star masquerading as a massive hypergiant.

  14. Building blocks for actively-aligned micro-optical systems in rapid prototyping and small series production

    NASA Astrophysics Data System (ADS)

    Böttger, Gunnar; Queisser, Marco; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, K.-D.

    2015-03-01

    In recent years there has been considerable progress in utilizing fully automated machines for the assembly of microoptical systems. Such systems integrate laser sources, optical elements and detectors into tight packages, and efficiently couple light to free space beams, waveguides in optical backplanes, or optical fibers for longer reach transmission. The required electrical-optical and optical components are placed and aligned actively in more than one respect. For one, all active components are actually operated in the alignment process, and, more importantly, the placing of all components is controlled actively by camera systems and power detectors with live feedback for an optimal coupling efficiency. The total number of optical components typically is in the range of 5 to 50, whereas the number of actors with gripping tools for the actual handling and aligning is limited, with little flexibility in the gripping width. The assembly process therefore is strictly sequential and, given that an automated tool changing has not been established in this class of machines yet, there are either limitations in the geometries of components that may be used, or time-consuming interaction by human operators is needed. As a solution we propose and present lasered glass building blocks with standardized gripping geometries that enclose optical elements of various shapes and functionalities. These are cut as free form geometries with green short pulse and CO2 lasers. What seems to add cost at first rather increases freedom of design and adds an economical flexibility to create very hybrid assemblies of various micro-optical assemblies also in small numbers.

  15. Use of component analyses to identify active variables in treatment packages for children with feeding disorders.

    PubMed Central

    Cooper, L J; Wacker, D P; McComas, J J; Brown, K; Peck, S M; Richman, D; Drew, J; Frischmeyer, P; Millard, T

    1995-01-01

    We evaluated the separate components in treatment packages for food refusal of 4 young children. First, treatment packages were implemented until food acceptance improved. Next, a component analysis was conducted within a multielement or reversal design to identify the active components that facilitated food acceptance. The results indicated that escape extinction was always identified as an active variable when assessed; however, other variables, including positive reinforcement and noncontingent play, were also identified as active variables for 2 of the children. The results suggest that the component analysis was useful for identifying variables that affected food acceptance. PMID:7601802

  16. Design of an Optically Controlled MR-Compatible Active Needle

    PubMed Central

    Ryu, Seok Chang; Quek, Zhan Fan; Koh, Je-Sung; Renaud, Pierre; Black, Richard J.; Moslehi, Behzad; Daniel, Bruce L.; Cho, Kyu-Jin; Cutkosky, Mark R.

    2015-01-01

    An active needle is proposed for the development of magnetic resonance imaging (MRI)-guided percutaneous procedures. The needle uses a low-transition-temperature shape memory alloy (LT SMA) wire actuator to produce bending in the distal section of the needle. Actuation is achieved with internal optical heating using laser light transported via optical fibers and side coupled to the LT SMA. A prototype, with a size equivalent to a standard 16-gauge biopsy needle, exhibits significant bending, with a tip deflection of more than 14° in air and 5° in hard tissue. A single-ended optical sensor with a gold-coated tip is developed to measure the curvature independently of temperature. The experimental results in tissue phantoms show that human tissue causes fast heat dissipation from the wire actuator; however, the active needle can compensate for typical targeting errors during prostate biopsy. PMID:26512231

  17. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  18. Independent component analysis for the detection of in vivo intrinsic signals from an optical imager of retinal function

    NASA Astrophysics Data System (ADS)

    Barriga, Eduardo S.; Pattichis, Marios; Abramoff, Michael; T'so, Dan; Kwon, Young; Kardon, Randy; Soliz, Peter

    2007-02-01

    To overcome the difficulty in detection of loss of retinal activity, a functional-Retinal Imaging Device (f-RID) was developed. The device, which is based on a modified fundus camera, seeks to detect changes in optical signals that reflect functional changes in the retina. Measured changes in reflectance in response to the visual stimulus are on the order of 0.1% to 1% of the total reflected intensity level, which makes the functional signal difficult to detect by standard methods because it is masked by other physiological signals and by noise. In this paper, we present a new Independent Component Analysis (ICA) algorithm used to analyze the video sequences from a set of experiments with different patterned stimuli from cats and humans. The ICA algorithm with priors (ICA-P) uses information about the stimulation paradigms to increase the signal detection thresholds when compared to traditional ICA algorithms. The results of the analysis show that we can detect signal levels as low as 0.01% of the total reflected intensity. Also, improvement of up to 30dB in signal detection over traditional ICA algorithms is achieved. The study found that in more than 80% of the in-vivo experiments the patterned stimuli effects on the retina can be detected and extracted.

  19. Genetically encoded optical activation of DNA recombination in human cells.

    PubMed

    Luo, J; Arbely, E; Zhang, J; Chou, C; Uprety, R; Chin, J W; Deiters, A

    2016-06-30

    We developed two tightly regulated, light-activated Cre recombinase enzymes through site-specific incorporation of two genetically-encoded photocaged amino acids in human cells. Excellent optical off to on switching of DNA recombination was achieved. Furthermore, we demonstrated precise spatial control of Cre recombinase through patterned illumination. PMID:27277957

  20. Multicolour Optical Photometry of Active Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Jolley, A.; Wade, G.; Bedard, D.

    Although broadband photometry has been used to infer information about artificial satellites since soon after the launch of Sputnik 1, the development of photometric techniques for non-resolved space object identification or characterisation has been hampered by the large number of variables involved. Many individual studies, and some long ongoing experiments, have used costly metre-class telescopes to obtain data despite other experiments demonstrating that much more flexible and affordable small aperture telescopes may be suitable for the task. In addition, due to the highly time consuming and weather dependent nature of obtaining photometric observations, many studies have suffered from data sets of limited size, or relied upon simulations to support their claims. With this in mind, an experiment was conducted with the aim of determining the utility of small aperture telescopes for conducting broadband photometry of satellites for the purpose of non-resolved space object identification and characterisation. A 14 inch Celestron CG-14 telescope was used to gain multiple night-long, high temporal resolution data sets of six active geostationary satellites. The results of the experiment cast doubt on the efficacy of some of the previous approaches to obtaining and analysing photometric data. It was discovered that geostationary satellite lightcurves can vary to a greater degree than has generally been recognised, and colour ratios vary considerably with changes in the illumination/observation geometry, making it difficult to use colour for satellite discrimination. Evidence was also detected of variations in the spectral energy distribution of sunlight reflected off satellite surface materials, which could have implications for surface material characterisation and techniques that aim to separate satellite body and solar panel contributions to the total observed spectra.

  1. Differences in associations between active transportation and built environmental exposures when expressed using different components of individual activity spaces.

    PubMed

    van Heeswijck, Torbjorn; Paquet, Catherine; Kestens, Yan; Thierry, Benoit; Morency, Catherine; Daniel, Mark

    2015-05-01

    This study assessed relationships between built environmental exposures measured within components of individual activity spaces (i.e., travel origins, destinations and paths in-between), and use of active transportation in a metropolitan setting. Individuals (n=37,165) were categorised as using active or sedentary transportation based on travel survey data. Generalised Estimating Equations analysis was used to test relationships with active transportation. Strength and significance of relationships between exposures and active transportation varied for different components of the activity space. Associations were strongest when including travel paths in expression of the built environment. Land use mix and greenness were negatively related to active transportation. PMID:25862996

  2. Low-complexity optical phase noise suppression in CO-OFDM system using recursive principal components elimination.

    PubMed

    Hong, Xiaojian; Hong, Xuezhi; He, Sailing

    2015-09-01

    A low-complexity optical phase noise suppression approach based on recursive principal components elimination, R-PCE, is proposed and theoretically derived for CO-OFDM systems. Through frequency domain principal components estimation and elimination, signal distortion caused by optical phase noise is mitigated by R-PCE. Since matrix inversion and domain transformation are completely avoided, compared with the case of the orthogonal basis expansion algorithm (L = 3) that offers a similar laser linewidth tolerance, the computational complexities of multiple principal components estimation are drastically reduced in the R-PCE by factors of about 7 and 5 for q = 3 and 4, respectively. The feasibility of optical phase noise suppression with the R-PCE and its decision-aided version (DA-R-PCE) in the QPSK/16QAM CO-OFDM system are demonstrated by Monte-Carlo simulations, which verify that R-PCE with only a few number of principal components q ( = 3) provides a significantly larger laser linewidth tolerance than conventional algorithms, including the common phase error compensation algorithm and linear interpolation algorithm. Numerical results show that the optimal performance of R-PCE and DA-R-PCE can be achieved with a moderate q, which is beneficial for low-complexity hardware implementation. PMID:26368499

  3. Surface characterization of micro-optical components by Foucault's knife-edge method: the case of a micromirror array.

    PubMed

    Zamkotsian, F; Dohlen, K

    1999-11-01

    As micro-optical components are introduced into optical systems, accurate surface characterization becomes important. We describe a method for quantitative evaluation of surface deformations based on Foucault's knife-edge test. By measurement of local slopes, the surface shape of each mirror in a micromirror array has been reconstructed with a subnanometer accuracy. In addition to low-order deformation (tilt, curvature, astigmatism), each mirror is seen to be palm-tree shaped. This may be explained by strain relaxation in the fabrication process. Measurement on a conventional concave mirror confirms our method. PMID:18324186

  4. Extremely aspheric mirrors: prototype development of an innovative manufacturing process based on active optics

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Ferrari, Marc; Le Merrer, Joël.; Le Mignant, David; Cuby, Jean-Gabriel

    2012-09-01

    The next generation of focal-plane astronomical instruments requires technological breakthroughs to reduce their system complexity while increasing their scientific performances. Applied to the optical systems, recent studies show that the use of freeform reflective optics allows competitive compact systems with less optical components. In this context, our challenge is to supply an active freeform mirror system, using a combination of different active optics techniques. The optical shape will be provided during the fabrication using the mechanical property of metals to plasticize and will be coupled with a specific actuator system to compensate for the residual form errors, during the instrument operation phase. We present in this article the development of an innovative manufacturing process based on cold hydro-forming method, with the aim to adapt it for VIS/NIR requirements in terms of optical surface quality. It can operate on thin and flat polished initial substrates. The realization of a first prototype for a 100 mm optical diameter mirror is in progress, to compare the mechanical behaviours obtained by tests and by Finite Element Analysis (FEA), for different materials. Then, the formed samples will be characterized optically. The opto-mechanical results will allow a fine tuning of FEA parameters to optimize the residual form errors obtained through this process. It concerns the microstructure considerations, the springback effects and the work hardening evolutions of the samples, depending on the initial substrate properties and the boundary conditions applied. Modeling and tests have started with axi-symmetric spherical and aspherical shapes and will continue with highly aspherics and freeforms.

  5. [Disturbance of active sleep components in neonates with congenital hypothyroidism].

    PubMed

    Araki, S; Toyoura, T; Kohyama, J; Shimohira, M; Iwakawa, Y

    1996-11-01

    In order to investigate the effect of hypothyroidism during the early development on the functional brainstem maturation, polysomnograms were recorded on 7 patients with congenital hypothyroidism detected by neonatal screening before treatment. The following two sleep indices for phasic muscle activity during rapid eye movement (REM) sleep were evaluated: dissociation index (DI) and % body movements in REMs burst (% BM). The DI is defined as the ratio of the number of twitch movements (TMs) during REM sleep to the sum of TMs and localized movements (LMs) during REM sleep. The % BM is the percentage of TMs and LMs which occur during bursts of REMs in relation to the sum of TMs and LMs during REM sleep. The DI and % BM can reflect maturation of the tonic and phasic inhibitory system functioning during REM sleep, respectively. In congenital hypothyroidism, DI was lower than that in controls, while % BM was identical. The tonic inhibitory system was specifically involved, whereas the phasic one was preserved. It is suggested that thyroid hormone could play an important role on the functional brainstem maturation. We propose to investigate their neuropsychological development over the long term to elucidate the influence of hypothyroidism. PMID:8940874

  6. Optical materials for astronomy from SCHOTT: the quality of large components

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Hengst, Joachim; Elsmann, Frank; Lemke, Christian; Döhring, Thorsten; Hartmann, Peter

    2008-07-01

    The new generation of survey telescopes and future giant observatories such as E-ELT or TMT do not only require very fast or very large mirrors, but also high sophisticated instruments with the need of large optical materials in outstanding quality. The huge variety of modern optical materials from SCHOTT covers almost all areas of specification needs of optical designers. Even if many interesting optical materials are restricted in size and/or quality, there is a variety of optical materials that can be produced in large sizes, with excellent optical homogeneity, and a low level of stress birefringence. Some actual examples are high homogeneous N-BK7 blanks with a diameter of up to 1000 mm, CaF2 blanks as large as 300 mm which are useable for IR applications, Fused Silica (LITHOSIL®) with dimensions up to 700 mm which are used for visible applications, and other optical glasses like FK5, LLF1 and F2 in large formats. In this presentation the latest inspection results of large optical materials will be presented, showing the advances in production and measurement technology.

  7. Optical imaging of neural and hemodynamic brain activity

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  8. Origin of optical activity in the purple bacterial photoreaction center

    SciTech Connect

    Mar, T.; Gingras, G.

    1995-07-18

    The photoreaction center (RC) of purple bacteria contains four bacteriochlorophyll (Bph) and two bacteriopheophytin (Bph) molecules as prosthetic groups. Their optical activity, as measured by circular dichroism (CD) spectroscopy, is largely increased in situ as compared to organic solutions. The all-exciton hypothesis posits that this enhanced optical activity is entirely due to excitonic interactions between the electronic transitions of all six bacteriochlorin molecules. Using the simple exciton theory, this model predicts that the near-infrared CD spectra should be conservative. The fact that they are not, whether the special pair of Bch (SP) that constitutes the primary electron donor is reduced or oxidized, has been explained by hyperchromic effects. The present work tests this hypothesis by successively eliminating the absorption and, therefore, the optical activity of the Bphs and of the non-special-pair (non-SP) Bchs. This was accomplished by trapping these pigments in their reduced state. RC preparations with the four non-SP bacteriochlorins trapped in their reduced state and, therefore, with an intact SP displayed conservative CD spectra. RC preparations with only the electronic transitions of SP and of one non-SP Bch also showed conservative CD spectra. These conservative CD spectra and their corresponding absorption spectra were simulated using simple exciton theory without assuming hyperchromic effects. Bleaching half of the 755-nm absorption band by phototrapping one of the two Bph molecules led to the complete disappearance of the corresponding CD band. This cannot be explained by the all-exciton hypothesis. These results suggest that the optical activity of the SP alone, or with one non-SP Bch, is due to excitonic interactions. They also suggest that the optical activity of the other three bacteriochlorins is due to other factors, such as pigment-protein interaction. 32 refs., 9 figs., 2 tabs.

  9. Active disturbance rejection controller of fine tracking system for free space optical communication

    NASA Astrophysics Data System (ADS)

    Cui, Ning; Liu, Yang; Chen, Xinglin; Wang, Yan

    2013-08-01

    Free space optical communication is one of the best approaches in future communications. Laser beam's acquisition, pointing and tracking are crucial technologies of free space optical communication. Fine tracking system is important component of APT (acquisition, pointing and tracking) system. It cooperates with the coarse pointing system in executing the APT mission. Satellite platform vibration and disturbance, which reduce received optical power, increase bit error rate and affect seriously the natural performance of laser communication. For the characteristic of satellite platform, an active disturbance rejection controller was designed to reduce the vibration and disturbance. There are three major contributions in the paper. Firstly, the effects of vibration on the inter satellite optical communications were analyzed, and the reasons and characters of vibration of the satellite platform were summarized. The amplitude-frequency response of a filter was designed according to the power spectral density of platform vibration of SILEX (Semiconductor Inter-satellite Laser Experiment), and then the signals of platform vibration were generated by filtering white Gaussian noise using the filter. Secondly, the fast steering mirror is a key component of the fine tracking system for optical communication. The mechanical design and model analysis was made to the tip/tilt mirror driven by the piezoelectric actuator and transmitted by the flexure hinge. The transfer function of the fast steering mirror, camera, D/A data acquisition card was established, and the theory model of transfer function of this system was further obtained. Finally, an active disturbance rejection control method is developed, multiple parallel extended state observers were designed for estimation of unknown dynamics and external disturbance, and the estimated states were used for nonlinear feedback control and compensation to improve system performance. The simulation results show that the designed

  10. BROAD COMPONENTS IN OPTICAL EMISSION LINES FROM THE ULTRA-LUMINOUS X-RAY SOURCE NGC 5408 X-1

    SciTech Connect

    Cseh, D.; Corbel, S.

    2011-02-10

    High-resolution optical spectra of the ultra-luminous X-ray source (ULX) NGC 5408 X-1 show a broad component with a width of {approx}750 km s{sup -1} in the He II and H{beta} lines in addition to the narrow component observed in these lines and [O III]. Reanalysis of moderate-resolution spectra shows a similar broad component in the He II line. The broad component likely originates in the ULX system itself, probably in the accretion disk. The central wavelength of the broad He II line is shifted by 252 {+-} 47 km s{sup -1} between the two observations. If this shift represents motion of the compact object, then its mass is less than {approx}1800 M{sub sun}.

  11. Optical studies of X-ray peculiar chromosphereically active stars

    NASA Astrophysics Data System (ADS)

    Pandey, J. C.

    2006-02-01

    A multiwavelength study of the late-type active stars, selected on the basis of their X-ray and radio luminosities is presented in this thesis. For FR Cnc, a photometric period 0.8267 +/- 0.0004 d has been established. The strong variation in the phase and amplitude of the FR Cnc light curves when folded on this period implies the presence of evolving and migrating spots or spot groups on its surface. A photometric period of 18.802 +/- 0.074 has been discovered in the star HD 81032. The shape and amplitude of the photometric light curves of FR Cnc, HD 81032, HD 95559 and LO Peg are observed to be changing from one epoch to another. The change in the amplitude is mainly due to a change in the minimum of the light curve, and this May be due to a change in the spot coverage. This indicates that photometric variability is due to the presence of dark spots on the surface of active star. Two groups of spots are identified for FR Cnc and LO Peg. The spots are found to migrate, and migration periods of 0.97 year and 0.93 year are determined from the 4 years of data. A migration period of 1.12 years for one group of spots in LO Peg is also determined. Formation of a new group of spots in the star HD 95559 was also seen during our observations. A single large group of spots is found to migrate, and a migration period of 7.32 +/- 0.04 years is determined for HD 81032. The stars FR Cnc, HD 81032, HD 160934 and LO Peg are seen to be redder at the light minimum and we interpret this is due to the relatively cooler temperature of the darker regions present in the visible hemisphere. We find the lack of color-brightness correlation in the star HD 95559 and this May be due to the presence of bright faculae and plages like regions accompanied by dark spots in any one component of the this binary system. The optical spectroscopy of FR Cnc and HD 81032 carried out during 2002-2003, reveals the presence of strong and variable Ca II H and K, Halpha and Hbeta emission features indicative

  12. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  13. Active radiation hardening technology for fiber-optic source

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhong; Suo, Xinxin; Yang, Mingwei

    2013-09-01

    We demonstrated an active radiation hardening technology for fiber optic source developed for high performance fiber optic gyroscope. The radiation characteristic of erbium-doped fiber was studied experimentally. The radiation induced attenuation (RIA) at 980nm pump light was identified to be the main reason for the degradation and there was photo-bleaching effect in EDF too. A variable parameters control technology was proposed and taken to keep the 980nm and 1550nm light energy stable and high stability and radiation-resistance fiber source with gauss profile spectrum was realized .The source can stand against more than 50 krad (Si) total radiation dose.

  14. Strong optical activity from twisted-cross photonic metamaterials.

    PubMed

    Decker, M; Ruther, M; Kriegler, C E; Zhou, J; Soukoulis, C M; Linden, S; Wegener, M

    2009-08-15

    Following a recent theoretical suggestion and microwave experiments, we fabricate photonic metamaterials composed of pairs of twisted gold crosses using two successive electron-beam-lithography steps and intermediate planarization via a spin-on dielectric. The resulting two effective resonances of the coupled system lie in the 1-2 microm wavelength regime and exhibit pronounced circular dichroism, while the circular polarization conversion is very small. In between the two resonances, we find a fairly broad spectral regime with strong optical activity, i.e., with a pure rotation of incident linear polarization. The measured optical transmittance spectra agree well with theory. PMID:19684829

  15. Optical activity in planar chiral metamaterials: Theoretical study

    SciTech Connect

    Bai, Benfeng; Svirko, Yuri; Turunen, Jari; Vallius, Tuomas

    2007-08-15

    A thorough theoretical study of the optical activity in planar chiral metamaterial (PCM) structures, made of both dielectric and metallic media, is conducted by the analysis of gammadion-shaped nanoparticle arrays. The general polarization properties are first analyzed from an effective-medium perspective, by analogy with natural optical activity, and then verified by rigorous numerical simulation, some of which are corroborated by previous experimental results. The numerical analysis suggests that giant polarization rotation (tens of degrees) may be achieved in the PCM structures with a thickness of only hundreds of nanometers. The artificial optical activity arises from circular birefringence induced by the structural chirality and is enhanced by the guided-mode or surface-plasmon resonances taking place in the structures. There are two polarization conversion types in the dielectric PCMs, whereas only one type in the metallic ones. Many intriguing features of the polarization property of PCMs are also revealed and explained: the polarization effect is reciprocal and vanishes in the symmetrically layered structures; the effect occurs only in the transmitted field, but not in the reflected field; and the polarization spectra of two enantiomeric PCM structures are mirror symmetric to each other. These remarkable properties pave the way for the PCMs to be used as polarization elements in new-generation integrated optical systems.

  16. The orbit of Phi Cygni measured with long-baseline optical interferometry - Component masses and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, J. T.; Hummel, C. A.; Quirrenbach, A.; Buscher, D. F.; Mozurkewich, D.; Vivekanand, M.; Simon, R. S.; Denison, C. S.; Johnston, K. J.; Pan, X.-P.

    1992-01-01

    The orbit of the double-lined spectroscopic binary Phi Cygni, the distance to the system, and the masses and absolute magnitudes of its components are presented via measurements with the Mar III Optical Interferometer. On the basis of a reexamination of the spectroscopic data of Rach & Herbig (1961), the values and uncertainties are adopted for the period and the projected semimajor axes from the present fit to the spectroscopic data and the values of the remaining elements from the present fit to the Mark III data. The elements of the true orbit are derived, and the masses and absolute magnitudes of the components, and the distance to the system are calculated.

  17. Photopolarimetric Monitoring of the Blazar BL Lac in the Optical and Near-Infrared Bands: Decay of the Long-Lived Component

    NASA Astrophysics Data System (ADS)

    Sakimoto, Kiyoshi; Uemura, Makoto; Sasada, Mahito; Kawabata, Koji S.; Fukazawa, Yasushi; Yamanaka, Masayuki; Itoh, Ryosuke; Ohsugi, Takashi; Yoshida, Michitoshi; Akitaya, Hiroshi; Sato, Shuji; Kino, Masaru

    2013-04-01

    We report on the results of optical-near-infrared photopolarimetric observations of BL Lac conducted from 2008 to 2011. Our observations are consistent with past studies in which the behavior of the polarization of BL Lac could be understood with two components: short flares whose polarization angles randomly change, and a long-lived component. In addition, we detected a gradually decreasing trend in the total flux, the polarized flux, and the polarization degree without a large variation in the polarization angle from 2008 to mid-2009. These results suggest that the long-lived component decayed from 2008 to mid-2009. We propose that the long-lived component is not stationary, but is probably variable with a time-scale of years. We found no change in the activity of the short flares in 2008 and 2009, when the long-lived component was strong and weak, respectively. Furthermore, there were no clear differences in the mean color and the distribution of the polarization angle of the short flares from 2008 to 2009. These facts indicate that the emitting region of the long-term component was physically disconnected to that of the short flares. The color of the long-term component was bluer than that of the short flares, indicating a higher synchrotron peak-frequency. This could be due to a low efficiency of synchrotron and/or Compton cooling in the emitting region of the long-lived component. The long-term component is possibly originated from a relatively downstream region in the jet where the electron density is low, or the external radiation field is weak.

  18. Identification of Optical Component of North Toroidal Source of Sporadic Meteors and its Origin

    NASA Technical Reports Server (NTRS)

    Hashimoto, T.; Watanabe, J.; Sato, M.; Ishiguro, M.

    2011-01-01

    We succeeded to identify the North Toroidal source by optical observations performed by the SonotaCo Network, which is a TV observation network coordinated by Japanese amateurs. This source has been known only for radar observations until now. The orbits of the optical meteors in the North Toroidal source are relatively large eccentricity and semi-major axis, compared with those of the radar meteors. In this paper, we report the characteristics of this North Toroidal source detected by optical observations, and discuss the possible origin and evolution of this source.

  19. Optically active surfaces formed by ion implantation and thermal treatment

    SciTech Connect

    Gea, L.A.; Boatner, L.A.; Evans, H.M.; Zuhr, R.

    1996-08-01

    Embedded VO{sub 2} precipitates have been formed in single-crystal sapphire by the ion co-implantation of vanadium and oxygen and subsequent thermal annealing. The embedded VO{sub 2} particles have been shown to exhibit an optical switching behavior that is comparable to that of continuous thin films. In this work, the mechanisms of formation of these optically active particles are investigated. It is shown that precipitation of the vanadium dioxide phase is favored when the thermal treatment is performed on an ion-damaged but still crystalline (rather than amorphized) Al{sub 2}O{sub 3} substrate. The best optical switching behavior is observed in this case, and this behavior is apparently correlated with a more-favorable dispersion of VO{sub 2} small particles inside the matrix.

  20. Optical ordnance system for use in explosive ordnance disposal activities

    NASA Technical Reports Server (NTRS)

    Merson, J. A.; Salas, F. J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt(III) perchlorate (CP) as the DDT column and the explosive Octahydro- 1,3,5,7 - tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  1. Optical ordance system for use in explosive ordnance disposal activities

    SciTech Connect

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt III perchlorate (CP) as the DDT column and the explosive Octahydro 1, 3, 5, 7 -- tetranitro -- 1, 3, 5, 7 -- tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  2. Neural nets for aligning optical components in harsh environments: Beam smoothing spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.

    1991-01-01

    The goal is to develop an approach to automating the alignment and adjustment of optical measurement, visualization, inspection, and control systems. Classical controls, expert systems, and neural networks are three approaches to automating the alignment of an optical system. Neural networks were chosen for this project and the judgements that led to this decision are presented. Neural networks were used to automate the alignment of the ubiquitous laser-beam-smoothing spatial filter. The results and future plans of the project are presented.

  3. Can a Double Component Outflow Explain the X-Ray and Optical Lightcurves of Swift Gamma-Ray Bursts?

    NASA Technical Reports Server (NTRS)

    De Pasquale, Massimiliano; Evans, P.; Oates, S.; Page, M.; Zane, S.; Schady, P.; Breeveld, A.; Holland, S.; Still, M.

    2011-01-01

    An increasing sample of Gamma-Ray Bursts (GRBs) observed by Swift show evidence of 'chromatic breaks', i.e. breaks that are present in the X-ray but not in the optical. We find that in a significant fraction of these GRB afterglows the X-ray and the optical emission cannot be produced by the same component. We propose that these afterglow lightcurves are the result of a two-component jet, in which both components undergo energy injection for the whole observation and the X-ray break is due to a jet break in the narrow outflow. Bursts with chromatic breaks also explain another surprising finding, the paucity of late achromatic breaks. We propose a model that may explain the behaviour of GRB emission in both X-ray and optical bands. This model can be a radical and noteworthy alternative to the current interpretation for the 'canonical' XRT and UVOT lightcurves, and it bears fundamental implications for GRB physics.

  4. Caffeic acid phenethyl ester (CAPE), an active component of propolis, inhibits Helicobacter pylori peptide deformylase activity.

    PubMed

    Cui, Kunqiang; Lu, Weiqiang; Zhu, Lili; Shen, Xu; Huang, Jin

    2013-05-31

    Helicobacter pylori (H. pylori) is a major causative factor for gastrointestinal illnesses, H. pylori peptide deformylase (HpPDF) catalyzes the removal of formyl group from the N-terminus of nascent polypeptide chains, which is essential for H. pylori survival and is considered as a promising drug target for anti-H. pylori therapy. Propolis, a natural antibiotic from honeybees, is reported to have an inhibitory effect on the growth of H. pylori in vitro. In addition, previous studies suggest that the main active constituents in the propolis are phenolic compounds. Therefore, we evaluated a collection of phenolic compounds derived from propolis for enzyme inhibition against HpPDF. Our study results show that Caffeic acid phenethyl ester (CAPE), one of the main medicinal components of propolis, is a competitive inhibitor against HpPDF, with an IC50 value of 4.02 μM. Furthermore, absorption spectra and crystal structural characterization revealed that different from most well known PDF inhibitors, CAPE block the substrate entrance, preventing substrate from approaching the active site, but CAPE does not have chelate interaction with HpPDF and does not disrupt the metal-dependent catalysis. Our study provides valuable information for understanding the potential anti-H. pylori mechanism of propolis, and CAPE could be served as a lead compound for further anti-H. pylori drug discovery. PMID:23611786

  5. Active Optical Control of Quasi-Static Aberrations for ATST

    NASA Astrophysics Data System (ADS)

    Johnson, L. C.; Upton, R.; Rimmele, T. R.; Hubbard, R.; Barden, S. C.

    2012-12-01

    The Advanced Technology Solar Telescope (ATST) requires active control of quasi-static telescope aberrations in order to achieve the image quality set by its science requirements. Four active mirrors will be used to compensate for optical misalignments induced by changing gravitational forces and thermal gradients. These misalignments manifest themselves primarily as low-order wavefront aberrations that will be measured by a Shack-Hartmann wavefront sensor. When operating in closed-loop with the wavefront sensor, the active optics control algorithm uses a linear least-squares reconstructor incorporating force constraints to limit force applied to the primary mirror while also incorporating a neutral-point constraint on the secondary mirror to limit pointing errors. The resulting system compensates for astigmatism and defocus with rigid-body motion of the secondary mirror and higher-order aberrations with primary mirror bending modes. We demonstrate this reconstruction method and present simulation results that apply the active optics correction to aberrations generated by finite-element modeling of thermal and gravitational effects over a typical day of ATST operation. Quasi-static wavefront errors are corrected to within limits set by wavefront sensor noise in all cases with very little force applied to the primary mirror surface and minimal pointing correction needed.

  6. Brain activation during immediate and delayed reaching in optic ataxia.

    PubMed

    Himmelbach, Marc; Nau, Marion; Zündorf, Ida; Erb, Michael; Perenin, Marie-Therese; Karnath, Hans-Otto

    2009-05-01

    Patients with optic ataxia after lesions of the occipito-parietal cortex demonstrate gross deviations of movements to visual targets in their peripheral visual field. When the same patients point to remembered target locations their accuracy improves considerably. Taking into account opposite findings in a single patient suffering from visual form agnosia due to bilateral occipito-temporal lesions (D.F.), this paradoxical improvement was attributed to brain structures outside the dorsal stream, and supposed to be specifically associated with delayed movement execution. This conclusion was based on the still unverified assumption that the dorsal system is almost completely lacking any localization function in patients with optic ataxia who demonstrate the paradoxical delay effect. We thus investigated brain activity associated with immediately executed and delayed movements in a patient with optic ataxia due to extensive bilateral lesions (I.G.) and in 16 healthy subjects using functional magnetic resonance imaging. Our analysis revealed robust and indistinguishable activation of intact dorsal occipital and parietal areas adjacent to the patient's lesions for both types of movements. In healthy subjects, we found the same visuomotor network activated during immediate and delayed movements as well as additionally higher signal increases for movements to visible targets than for delayed movements in bilateral occipito-parietal and occipito-temporal areas. Our results suggest that in healthy subjects as well as in the optic ataxia patient I.G. dorsal areas are not only involved in immediate but also in delayed reaching. This observation questions the hypothesis that residual visuospatial abilities in patients with optic ataxia could only be mediated by a system outside of the dorsal stream. PMID:19428407

  7. Diffuse optical imaging of brain activation to joint attention experience.

    PubMed

    Zhu, Banghe; Yadav, Nitin; Rey, Gustavo; Godavarty, Anuradha

    2009-08-24

    In the early development of social cognition and language, infants tend to participate in face-to-face interactions engaging in joint attention exchanges. Joint attention is vital to social competence at all ages, lacking which is a primary feature to distinguish autistic from non-autistic population. In this study, diffuse optical imaging is used for the first time to investigate the joint attention experience in normal adults. Imaging studies were performed in the frontal regions of the brain (BA9 and BA10) in order to study the differences in the brain activation in response to video clips corresponding to joint attention based skills. The frontal regions of the brain were non-invasively imaged using a novel optical cap coupled to a frequency-domain optical imaging system. The statistical analysis from 11 normal adult subjects, with three repetitions from each subject, indicated that the averaged changes in the cerebral blood oxygenation levels were different under the joint and non-joint attention based stimulus. The preliminary studies demonstrate the feasibility of implementing diffuse optical imaging towards autism-related research to study the brain activation in response to socio-communication skills. PMID:19447278

  8. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, R.B.

    1991-09-10

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch. 11 figures.

  9. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, Russell B.

    1991-01-01

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch.

  10. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    PubMed Central

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-01-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm−1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue. PMID:26926272

  11. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    NASA Astrophysics Data System (ADS)

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-03-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm-1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue.

  12. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties.

    PubMed

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-01-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm(-1). The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue. PMID:26926272

  13. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques. PMID:27304296

  14. Diamagnetic Raman Optical Activity of Chlorine, Bromine, and Iodine Gases.

    PubMed

    Šebestík, Jaroslav; Kapitán, Josef; Pačes, Ondřej; Bouř, Petr

    2016-03-01

    Magnetic Raman optical activity of gases provides unique information about their electric and magnetic properties. Magnetic Raman optical activity has recently been observed in a paramagnetic gas (Angew. Chem. Int. Ed. 2012, 51, 11058; Angew. Chem. 2012, 124, 11220). In diamagnetic molecules, it has been considered too weak to be measurable. However, in chlorine, bromine and iodine vapors, we could detect a significant signal as well. Zeeman splitting of electronic ground-state energy levels cannot rationalize the observed circular intensity difference (CID) values of about 10(-4) . These are explicable by participation of paramagnetic excited electronic states. Then a simple model including one electronic excited state provides reasonable spectral intensities. The results suggest that this kind of scattering by diamagnetic molecules is a general event observable under resonance conditions. The phenomenon sheds new light on the role of excited states in the Raman scattering, and may be used to probe molecular geometry and electronic structure. PMID:26845382

  15. Hemodynamic responses to functional activation accessed by optical imaging

    NASA Astrophysics Data System (ADS)

    Ni, Songlin; Li, Pengcheng; Yang, Yuanyuan; Lv, Xiaohua; Luo, Qingming

    2006-01-01

    A multi-wavelength light-emitting diode (LED) and laser diode (LD) based optical imaging system was developed to visualize the changes in cerebral blood flow, oxygenation following functional activation simultaneously in rodent cortex. The 2-D blood flow image was accessed by laser speckle contrast imaging, and the spectroscopic imaging of intrinsic signal was used for the calculation of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) concentration. The combination of spectroscopic imaging and laser speckle contrast imaging provides the capability to simultaneously investigate the spatial and temporal blood flow and hemoglobin concentration changes with high resolution, which may lead to a better understanding of the coupling between neuronal activation and vascular responses. The optical imaging system been built is compact and convenient to investigators. And it is reliable to acquire raw data. In present study, the hemodynamic responses to cortical spreading depression (CSD) in parietal cortex of ~-chloralose/urethan anesthetized rats were demonstrated.

  16. Status of optical model activities at Los Alamos National Laboratory

    SciTech Connect

    Young, P.G.

    1995-12-01

    An update will be given of activities at Los Alamos National Laboratory aimed at developing optical model potentials for applied calculations. Recent work on a coupled-channels potential for neutron reactions on {sup 241,243}Am and spherical neutron potential updates for {sup 56}Fe and {sup 59}Co will be presented, together with examples of their application in nuclear reaction calculations with the GNASH code system. New potentials utilized in evaluations at Livermore for {sup 12}C, {sup 14}N and {sup 16}O are described and additional potentials from earlier analyses at Los Alamos of Ti, V, and Ni data are made available for possible inclusion in the Reference Input Parameter Library (RIPL) for nuclear model calculations of nuclear data. Specific activities directed at development of the optical potential segment of the RIPL will be summarized.

  17. Active optics system of the VLT Survey Telescope.

    PubMed

    Schipani, Pietro; Noethe, Lothar; Magrin, Demetrio; Kuijken, Konrad; Arcidiacono, Carmelo; Argomedo, Javier; Capaccioli, Massimo; Dall'Ora, Massimo; D'Orsi, Sergio; Farinato, Jacopo; Fierro, Davide; Holzlöhner, Ronald; Marty, Laurent; Molfese, Cesare; Perrotta, Francesco; Ragazzoni, Roberto; Savarese, Salvatore; Rakich, Andrew; Umbriaco, Gabriele

    2016-03-01

    This paper describes the active optics system of the VLT Survey Telescope, the 2.6-m survey telescope designed for visible wavelengths of the European Southern Observatory at Cerro Paranal, in the Atacama desert. The telescope is characterized by a wide field of view (1.42 deg diameter), leading to tighter active optics than in conventional telescopes, in particular for the alignment requirements. We discuss the effects of typical error sources on the image quality and present the specific solutions adopted for wavefront sensing and correction of the aberrations, which are based on the shaping of a monolithic primary mirror and the positioning of the secondary in five degrees of freedom. PMID:26974616

  18. Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

    2006-01-01

    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

  19. Odour-evoked responses to queen pheromone components and to plant odours using optical imaging in the antennal lobe of the honey bee drone Apis mellifera L.

    PubMed

    Sandoz, Jean-Christophe

    2006-09-01

    The primordial functional role of honey bee males (drones) is to mate with virgin queens, a behaviour relying heavily on the olfactory detection of queen pheromone. In the present work I studied olfactory processing in the drone antennal lobe (AL), the primary olfactory centre of the insect brain. In drones, the AL consists of about 103 ordinary glomeruli and four enlarged glomeruli, the macroglomeruli (MG). Two macroglomeruli (MG1 and MG2) and approximately 20 ordinary glomeruli occupy the anterior surface of the antennal lobe and are thus accessible to optical recordings. Calcium imaging was used to measure odour-evoked responses to queen pheromonal components and plant odours. MG2 responded specifically to the main component of the queen mandibular pheromone, 9-ODA. The secondary components HOB and HVA each triggered activity in one, but not the same, ordinary glomerulus. MG1 did not respond to any of the tested stimuli. Plant odours induced signals only in ordinary glomeruli in a combinatorial manner, as in workers. This study thus shows that the major queen pheromonal component is processed in the most voluminous macroglomerulus of the drone antennal lobe, and that plant odours, as well as some queen pheromonal components, are processed in ordinary glomeruli. PMID:16943499

  20. Selectivity of the optical-absorption method based on an instrumental pick out of Fourier components in the absorption spectrum

    NASA Astrophysics Data System (ADS)

    Pisarevsky, Yu. V.; Kolesnikov, S. A.; Kolesnikova, E. S.; Turutin, Yu. A.; Konopelko, L. A.; Shor, N. B.

    2016-06-01

    The introduction of interference-polarization filters (IPFs) in the structure of an optical-absorption analyzer makes it possible to pick out a harmonic (a Fourier component of the absorption spectrum) providing measurement with the highest sensitivity. The selectivity of such a method of analysis is determined by overlapping the oscillations of the measured and interfering components. By the example of measurement in benzene in the presence of an interfering component (toluene), the possibility is considered for the optimization of selectivity due to the variation of the path-difference dispersion for ordinary and extraordinary interfering rays. The metrological characteristics of the interference-polarization analyzer of C6H6 confirming the results of calculations are given.

  1. INHIBITION OF RETINOID ACTIVITY BY COMPONENTS OF A PAPER MILL EFFLUENT

    EPA Science Inventory

    A cell line stably transfected with reporter genes activated by retinoic acid was used to test a paper mill effluent for the presence of retinoids or components that interfere with retinoic acid-stimulated gene transcription.

  2. Optical Neural Interfaces

    PubMed Central

    Warden, Melissa R.; Cardin, Jessica A.; Deisseroth, Karl

    2014-01-01

    Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals. PMID:25014785

  3. Final Report: Imaging of Buried Nanoscale Optically Active Materials

    SciTech Connect

    Appelbaum, Ian

    2011-07-05

    This is a final report covering work done at University of Maryland to develop a Ballistic Electron Emission Luminescence (BEEL) microscope. This technique was intended to examine the carrier transport and photon emission in deeply buried optically-active layers and thereby provide a means for materials science to unmask the detailed consequences of experimentally controllable growth parameters, such as quantum dot size, statistics and orientation, and defect density and charge recombination pathways.

  4. Demonstrating Optical Activity Using an iPad

    ERIC Educational Resources Information Center

    Schwartz, Pauline M.; Lepore, Dante M.; Morneau, Brandy N.; Barratt, Carl

    2011-01-01

    Optical activity using an iPad as a source of polarized light is demonstrated. A sample crystal or solution can be placed on the iPad running a white screen app. The sample is viewed through a polarized filter that can be rotated. This setup can be used in the laboratory or with a document camera to easily project in a large lecture hall.…

  5. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes.

    PubMed

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique; Osakada, Kohtaro; Takeuchi, Daisuke

    2016-07-11

    Cationic Pd(II) monophosphine complexes derived from α- and β-cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to (13) C NMR studies with (13) C-enriched CO, both complexes catalyze the formation of CO-free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer. PMID:27218801

  6. The antimicrobial activity of essential oils and essential oil components towards oral bacteria.

    PubMed

    Shapiro, S; Meier, A; Guggenheim, B

    1994-08-01

    A method for reproducibly determining minimal inhibitory concentrations and minimal bactericidal concentrations of plant extracts towards fastidiously and facultatively anaerobic oral bacteria, predicated upon measurements of optical densities in microtitre plate wells, was devised. The antimicrobial properties of some botanical oils were surveyed; of these, Australian tea tree oil, peppermint oil, and sage oil proved to be the most potent essential oils, whereas thymol and eugenol were potent essential oil components. PMID:7478759

  7. LDEF (Postflight), S0050 : Investigation of the Effects of Long-Duration Exposure on Active Optical

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), S0050 : Investigation of the Effects of Long-Duration Exposure on Active Optical System Components, Tray E05 The postflight photograph was taken in SAEF II at KSC after the experiment tray was removed from the LDEF and the sun screens removed. The Active Optical System Component Experiment (S0050) contained 136 test specimen located in a six (6) inch deep LDEF peripheral experiment tray. The complement of specimen included optical and electro-optical components, glasses and samples of various surface finishes. The experiment tray was divided into six sections, each consisting of a 1/4 inch thick chromic anodized aluminum base plate and a 1/16th inch thick aluminum hat shaped structure for mounting the test specimen. The test specimen were typically placed in fiberglass-epoxy retainer strip assemblies prior to installation on the hat shaped mounting structure. Five of the six sections were covered by a 1/8 inch thick anodized aluminum sun screen with openings that allowed 56 percent transmission over the central region. Two sub-experiments, The Optical Materials and UV Detectors Experiment (S0050-01) consist of 15 optical windows, filters and detectors and occupies one of the trays six sub-sections and The Optical Substrates and Coatings Experiment (S0050-02 ) that includes 12 substrates and coatings and two secondary experiments,The Holographic Data Storage Experiment (AO044) consisting of four crystals of lithium niobate and ThePyroelectric Infrared Detectors Experiment (AO135) with twenty detectors, are also mounted in the integrated tray. The experiment structure was assembled with non-magnetic stainless steel fasteners. The experiment hardware appears to be intact with no apparent damage. A brown discoloration is clearly visible on the tray flanges. The location of experiment test specimen and their mountings are shown in this photograph. The fiberglass-epoxy mounting strip colors vary from the typical greenish-gray to a slate gray in

  8. Characteristics of Noise and Photon Statistics of Fiber Components in Electro-Optical Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng

    This thesis presents a comprehensive study of the role of the fiber replicator in electro-optical systems. In the all fiber optical diagnostic system for the National Ignition Facility's DANTE data acquisition system running at 1550nm, the 8x fiber replicator was used to increase the SNR (Signal to Noise Ratio) of single-shot, electrical pulse measurements. In the system, Mach-Zehnder modulators were used to convert the electrical signals into optical signals. The fiber replicator was used to create identical copies of the optical signals. A High SNR was achieved through the averaging of these duplicated signals. Erbium-doped fiber amplifiers (EDFAs) were built to amplify the optical signals after the fiber replicator. The EDFAs applied in the DANTEEO system should have high gain, low noise, low background signals and high pulse-shape fidelity. In this thesis, we discussed the effect of different configurations and the type of Er-doped fibers on the gain and noise performance of EDFAs. We also used a simplified model for dynamic gain in EDFAs to explore the effect of the EDFA on the shape of the amplified pulse. Based on this model, the calculated pulse-shape distortions were found to be dependent on the EDFA configuration and the optical gain. We also investigated the photon statistics with the fiber replicator in a photon entanglement system. The entangled photons were created through the up-conversion and down-conversion of a Q-switch laser beam running at 1053nm. The different behavior between entangled photon and non-entangled single photons in the system with the fiber replicator are discussed.

  9. Puckering Energetics and Optical Activities of [7]Circulene Conformers.

    PubMed

    Hatanaka, Masashi

    2016-02-25

    The structural preference of [7]circulene is analyzed by taking into account vibronic interactions. DFT calculations reveal that pseudo-Jahn-Teller effects cause the D7h-symmetry structure to relax to C2- and Cs-symmetry structures, which are both ca. 9 kcal/mol lower in energy than the D7h structure. In energy terms, the C2-symmetry structure is 0.05 kcal/mol lower than that of the Cs-symmetry. The active vibrations are attributed to low-frequency puckering modes that are coupled with π-σ excitation states. The optical activities of the C2-symmetry structure were simulated by configuration interaction calculations, and the simulated CD/ORD spectra were reasonable and consistent with the experimental data. The optical rotatory strengths obeyed the helix rule; that is, the left-handed helix shows negative Cotton effects through the antisymmetric excited states. The calculated spectra will serve as a foundation for further investigation of optical activities of negatively curved structures. PMID:26829071

  10. The Fiber Optic Subsystem Components on Express Logistics Carrier for International Space Station

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Switzer, Robert; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; Day, Lance

    2009-01-01

    ISS SSP 50184 HRDL optical fiber communication subsystem, has system level requirements that were changed to accommodate large loss optical fiber links previously installed. SSQ22680 design is difficult to implement, no metal shell over socket/pin combination to protect the weak part of the pin. Additions to ISS are planned for the future. AVIM still used for interconnection in space flight applications without incident. Thermal cycling resulted in less than 0.25 dB max change in Insertion Loss for all types during cycling, nominal as compared to the AVIM. Vibration testing results conclusion; no significant changes, nominal as compared to AVIM.

  11. Estimating Brain Network Activity through Back-Projection of ICA Components to GLM Maps

    PubMed Central

    James, G. Andrew; Tripathi, Shanti Prakash; Kilts, Clinton D.

    2014-01-01

    Independent component analysis (ICA) is a data-driven approach frequently used in neuroimaging to model functional brain networks. Despite ICA’s increasing popularity, methods for replicating published ICA components across independent datasets have been underemphasized. Traditionally, the task-dependent activation of a component is evaluated by first back-projecting the component to a functional MRI (fMRI) dataset, then performing general linear modeling (GLM) on the resulting timecourse. We propose the alternative approach of back-projecting the component directly to univariate GLM results. Using a sample of 37 participants performing the Multi-Source Interference Task, we demonstrate these two approaches to yield identical results. Furthermore, while replicating an ICA component requires back-projection of component beta-values (βs), components are typically depicted only by t-scores. We show that while back-projection of component βs and t-scores yielded highly correlated results (ρ=0.95), group-level statistics differed between the two methods. We conclude by stressing the importance of reporting ICA component βs so – rather than component t-scores – so that functional networks may be independently replicated across datasets. PMID:24513233

  12. Design of a micro lapping system based on double-feedback control algorithm for manufacturing optical micro components

    NASA Astrophysics Data System (ADS)

    Che, Lin; Li, Guo; Wang, Bo; Ding, Fei; Mao, Xing; Dong, Wenxia

    2014-08-01

    This paper presents a micro lapping machine tool, which is dedicated for manufacturing the high-precision optical micro components with 3-D micro structures. And it can remove the damaged surface layer efficiently.In order to control machining process precisely, a double-feedback control system strategy is proposed and implemented. Lapping force signal from the clamp feeds back at the same time with position signal from grating scale close-looped devices. With the function of position keeping , a dual-stage drive micro-displacement servo system is used to provide the desired performance in the vertical feeding direction. Random lapping trace is formed with combinations of two mutually-perpendicular horizontal liner motion. A clamp with the function of micro force detection is designed to monitor the machining process and control the lapping force. Based on force feedback, a tool auto-checking strategy is conducted to realize the tool checking in limited tiny space. Corresponding experiments are undertaken to test the properties of the machine tool.And, the optical micro components are manufactured successfully. The optical components are measured and analysised before and after processing. The experimental results show that the position-keeping accuracy of the dual-stage feed drive system can reach to ±0.02μm, the resolution of motion control can reach to 20nm.The Sa value of the processed component can reach 0.0882um. Surface quality can be improved obviously and the damaged surface layer is removed efficiently.The theoretical and experimental results show the validity of the machine tool and the control algorithm.

  13. The role of lanthanides in optical materials

    SciTech Connect

    Weber, M.J.

    1995-05-01

    A survey is presented of the use of the lanthanides as chemical components in transmitting optical materials and as activators in materials for luminescent, electro-optic, magneto-optic, and various photosensitive applications.

  14. Designs for optical components related to the Los Alamos Free-Electron Laser

    SciTech Connect

    Byrd, D.A.; Bender, S.C.

    1993-07-01

    Several optomechanical tasks for the Los Alamos National Laboratory`s (LANL) Free-Electron Laser (FEL) were set by the envisioned project goals as early as 1988. Unfortunately, the FEL project has been set aside due to funding constraints. The tasks reported on here required extensive modeling for final adaptability into the FEL environment. The systems to be described are best identified as (1) a Brewster attenuation device, (2) an optical mode relay lens system, (3) a spectral harmonics band-filtering system, (4) a 25-nm micropulse spectrometer system, (5) a 12.5-nm micropulse spectrometer system, (6) a 0.6-nm micropulse spectrometer system, and (7) a reflective mode profile rotator. The Brewster attenuation device was successfully used inside the FEL resonator. The optical mode relay lens system, spectral harmonics band filtering system, and reflective mode profile rotator were completed but never used. The 25-nm micropulse spectrometer was optically and mechanically completed, but the detector electronics were never finished. The 12.5- and 0.6-nm micropulse spectrometers were never assembled, due to hardware that was common to the 25-nm system. These systems will be described in the order listed above. The nominal wavelength of operation for the listed systems is 3.0 {mu}m, except for the harmonics filtering which works on the subharmonics of 3.0 {mu}m. All of these systems were operated remotely due to the harsh radioactive/x-ray optical environment during FEL operation.

  15. Optical concept for an active headlamp with a DMD array

    NASA Astrophysics Data System (ADS)

    Günther, A.

    2008-04-01

    Present car-headlamps can adapt their light distribution to the traffic situation only in a predefined way. The next generation of headlamps will offer a more flexible adaptation of their light distribution like an adaptive Cut-Off-Line in "Advanced Frontlighting Systems" (AFS). Addressable light sources in future active headlamps enable functions like glare free high beam or marking light. There are several possibilities to design such an addressable light source. In this contribution one solution using a digital micro mirror device (DMD) is presented. With this device an adaptive light distribution can be generated by modulating every pixel of the DMD individually. For the design of an optical system for a DMD headlamp a DMD-Projector was analyzed. The procedure of generating a light distribution can be divided into two processes: a.) illumination of DMD b.) projecting the image of the DMD on the street. In a DMD projector the illumination of a DMD is a very complex optical system with many optical elements. Some of these optical elements are not necessary for a car headlamp because of different requirements for car headlamps and DMD projectors. The illumination system can be simplified if these elements are eliminated. Also the aspect ratio of the imaging system for the DMD has to change 4:3 (DMD) to 7:2 (light distribution on the street).

  16. Active phase compensation system for fiber optic holography

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1989-01-01

    Fiber optic delivery systems promise to extend the application of holography to severe environments by simplifying test configurations and permitting the laser to be remotely placed in a more benign location. However, the introduction of optical fiber leads to phase stability problems. Environmental effects cause the pathlengths of the fibers to change randomly, preventing the formation of stationary interference patterns which are required for holography. An active phase control system has been designed and used with an all-fiber optical system to stabilize the phase difference between light emitted from two fibers, and to step the phase difference by 90 deg without applying any constraints on the placement of the fibers. The accuracy of the phase steps is shown to be better than 0.02 deg., and a stable phase difference can be maintained for 30 min. This system can be applied to both conventional and electro-optic holography, as well as to any system where the maintenance of an accurate phase difference between two coherent beams is required.

  17. Active phase compensation system for fiber optic holography

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1988-01-01

    Fiber optic delivery systems promise to extend the application of holography to severe environments by simplifying test configurations and permitting the laser to be remotely placed in a more benign location. However, the introduction of optical fiber leads to phase stability problems. Environmental effects cause the pathlengths of the fibers to change randomly, preventing the formation of stationary interference patterns which are required for holography. An active phase control system has been designed and used with an all-fiber optical system to stabilize the phase difference between light emitted from two fibers, and to step the phase difference by 90 deg without applying any constraints on the placement of the fibers. The accuracy of the phase steps is shown to be better than 0.02 deg., and a stable phase difference can be maintained for 30 min. This system can be applied to both conventional and electro-optic holography, as well as to any system where the maintenance of an accurate phase difference between two coherent beams is required.

  18. Bioactive Components of Chinese Propolis Water Extract on Antitumor Activity and Quality Control.

    PubMed

    Xuan, Hongzhuan; Wang, Yuehua; Li, Aifeng; Fu, Chongluo; Wang, Yuanjun; Peng, Wenjun

    2016-01-01

    To understand the material basis of antitumor activity of Chinese propolis water extract (CPWE), we developed a simple and efficient method using macroporous absorptive resin coupled with preparative high performance liquid chromatography and separated and purified eleven chemical components (caffeic acid, ferulic acid, isoferulic acid, 3,4-dimethoxycinnamic acid, pinobanksin, caffeic acid benzyl ester, caffeic acid phenethyl ester, apigenin, pinocembrin, chrysin, and galangin) from CPWE; then we tested the antitumor activities of these eleven components using different human tumor cell lines (MCF-7, MDA-MB-231, HeLa, and A549). Furthermore, cell migration, procaspase 3 level, and reactive oxygen species (ROS) of effective components from CPWE were investigated. Our data showed that antitumor activities of the eleven components from CPWE were different from each other. CPWE and its effective components induced apoptosis by inhibiting tumor cell migration, activating caspase 3, and promoting ROS production. It can be deduced that the antitumor effects of propolis did not depend on a single component, and there must exist "bioactive components," which also provides a new idea for Chinese propolis quality control. PMID:27123037

  19. Bioactive Components of Chinese Propolis Water Extract on Antitumor Activity and Quality Control

    PubMed Central

    Xuan, Hongzhuan; Wang, Yuehua; Li, Aifeng; Fu, Chongluo; Wang, Yuanjun; Peng, Wenjun

    2016-01-01

    To understand the material basis of antitumor activity of Chinese propolis water extract (CPWE), we developed a simple and efficient method using macroporous absorptive resin coupled with preparative high performance liquid chromatography and separated and purified eleven chemical components (caffeic acid, ferulic acid, isoferulic acid, 3,4-dimethoxycinnamic acid, pinobanksin, caffeic acid benzyl ester, caffeic acid phenethyl ester, apigenin, pinocembrin, chrysin, and galangin) from CPWE; then we tested the antitumor activities of these eleven components using different human tumor cell lines (MCF-7, MDA-MB-231, HeLa, and A549). Furthermore, cell migration, procaspase 3 level, and reactive oxygen species (ROS) of effective components from CPWE were investigated. Our data showed that antitumor activities of the eleven components from CPWE were different from each other. CPWE and its effective components induced apoptosis by inhibiting tumor cell migration, activating caspase 3, and promoting ROS production. It can be deduced that the antitumor effects of propolis did not depend on a single component, and there must exist “bioactive components,” which also provides a new idea for Chinese propolis quality control. PMID:27123037

  20. Variation in contents of main active components and antioxidant activity in leaves of different pigeon pea cultivars during growth.

    PubMed

    Wei, Zuo-Fu; Jin, Shuang; Luo, Meng; Pan, You-Zhi; Li, Ting-Ting; Qi, Xiao-Lin; Efferth, Thomas; Fu, Yu-Jie; Zu, Yuan-Gang

    2013-10-23

    Pigeon pea is an important and multiuse grain legume crop, and its leaves are a very valuable natural resource. To obtain a high-quality biological resource, it is necessary to choose the excellent cultivar and determine the appropriate harvest time. In this study, the variation in contents of main active components and antioxidant activity in leaves of six pigeon pea cultivars during growth were investigated. The level of each individual active component significantly varied during growth, but with a different pattern, and this variation was different among cultivars. Flavonoid glycosides orientin, vitexin, and apigenin-6,8-di-C-α-L-arabinopyranoside showed two peak values at mid-late and final stages of growth in most cases. Pinostrobin chalcone, longistyline C, and cajaninstilbene acid showed remarkablely higher values at the mid-late stage of growth than at other stages. Pinostrobin had an extremely different variation pattern compared to other active components. Its content was the highest at the earlier stage of growth. Principal component analysis (PCA) revealed that vitexin and apigenin-6,8-di-C-α-L-arabinopyranoside were mainly responsible for distinguishing cultivars analyzed. In a comprehensive consideration, the leaves should preferentially be harvested at the 135th day after sowing when the level of active components and antioxidant activity reached higher values. Cultivars ICP 13092, ICPL 87091, and ICPL 96053 were considered to be excellent cultivars with high antioxidant activity. Our findings can provide valuable information for producing a high-quality pigeon pea resource. PMID:24066714

  1. Nanoparticles as contrast-enhancing agents in optical coherence tomography imaging of the structural components of skin: Quantitative evaluation

    SciTech Connect

    Kirillin, M Yu; Agrba, P D; Kamenskii, V A; Sirotkina, M A; Shiryamova, M V; Zagainova, E V

    2010-08-27

    This work examines the effect of gold nanoshells and titania nanoparticles on the imaging contrast of structural components of skin in optical coherence tomography (OCT). Experimental data are compared to Monte Carlo (MC) simulation results. In experiments with pig skin in vivo, the epidermis - dermis contrast is improved from 0.78 {+-} 0.03 to 0.92 {+-} 0.04 by gold nanoshells applied to the skin surface and from 0.78 {+-} 0.03 to 0.86 {+-} 0.04 by titania nanoparticles. The contrast of glands is enhanced by titania from 0.68 {+-} 0.12 to 0.84 {+-} 0.07. The highest contrast is reached 120 - 150 min after applying gold nanoshells and 160 - 200 min after applying titania. According to the MC simulation results, the contrast of inclusions increases from zero to 0.85 and 0.65, respectively. (optical tomography)

  2. Advanced matrix-based algorithm for ion-beam milling of optical components

    NASA Astrophysics Data System (ADS)

    Carnal, Charles L.; Egert, Charles M.; Hylton, Kathy W.

    1992-12-01

    Control of an ion beam for milling optical surfaces is a nontrivial problem in two-dimensional deconvolution. The ion milling operation is performed by moving an ion beam gun through a grid of points over the surface of an optical workpiece. The control problem is to determine the amount of time to dwell at each point in the grid to obtain a desired surface profile. This research treats the problem in linear algebra terms. The required dwell times are the solutions to a large, sparse system of linear equations. Traditional factorization methods such as Gaussian elimination cannot be used because the linear equations are severely ill conditioned. Theoretically, a least-squares solution to this problem exists. Practical approaches to finding a minimal least-squares solution are discussed.

  3. Replicated, high-aspect-ratio micro-optical components fabricated from inorganic solgel materials.

    PubMed

    Krause, Holger; Mönch, Wolfgang; Zappe, Hans

    2006-07-10

    A replication process for the fabrication of refractive microlenses from a purely inorganic solgel material based on tetraethoxysilane is presented. The geometrical dimensions and optical properties of the inorganic microlenses are characterized and compared with those of microlenses replicated in a hybrid xerogel containing organic additives. By a reduced solvent content in the sol composition, together with modifications in the replication process, it was possible to obtain inorganic xerogel lenses with exceptionally high sagittal height values of as much as 28 microm. Compared with the hybrid xerogel, the inorganic xerogel has the advantage of an absorption coefficient that is five times lower in the visible spectral range and exhibits optical transparency in the near-ultraviolet range for wavelengths down to 200 nm. PMID:16807590

  4. Replicated, high-aspect-ratio micro-optical components fabricated from inorganic solgel materials

    NASA Astrophysics Data System (ADS)

    Krause, Holger; Mönch, Wolfgang; Zappe, Hans

    2006-07-01

    A replication process for the fabrication of refractive microlenses from a purely inorganic solgel material based on tetraethoxysilane is presented. The geometrical dimensions and optical properties of the inorganic microlenses are characterized and compared with those of microlenses replicated in a hybrid xerogel containing organic additives. By a reduced solvent content in the sol composition, together with modifications in the replication process, it was possible to obtain inorganic xerogel lenses with exceptionally high sagittal height values of as much as 28 μm. Compared with the hybrid xerogel, the inorganic xerogel has the advantage of an absorption coefficient that is five times lower in the visible spectral range and exhibits optical transparency in the near-ultraviolet range for wavelengths down to 200 nm.

  5. KEPLER OBSERVATIONS OF RAPID OPTICAL VARIABILITY IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W.

    2011-12-10

    Over three quarters in 2010-2011, Kepler monitored optical emission from four active galactic nuclei (AGNs) with {approx}30 minute sampling, >90% duty cycle, and {approx}<0.1% repeatability. These data determined the AGN optical fluctuation power spectral density (PSD) functions over a wide range in temporal frequency. Fits to these PSDs yielded power-law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGNs exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first-order magnetorotational instability theoretical calculations of accretion disk fluctuations.

  6. Active terahertz device based on optically controlled organometal halide perovskite

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Lv, Longfeng; He, Ting; Chen, Tianji; Zang, Mengdi; Zhong, Liang; Wang, Xinke; Shen, Jingling; Hou, Yanbing

    2015-08-01

    An active all-optical high-efficiency broadband terahertz device based on an organometal halide perovskite (CH3NH3PbI3, MAPbI3)/inorganic (Si) structure is investigated. Spectrally broadband modulation of the THz transmission is obtained in the frequency range from 0.2 to 2.6 THz, and a modulation depth of nearly 100% can be achieved with a low-level photoexcitation power (˜0.4 W/cm2). Both THz transmission and reflection were suppressed in the MAPbI3/Si structure by an external continuous-wave (CW) laser. Enhancement of the charge carrier density at the MAPbI3/Si interface is crucial for photo-induced absorption. The results show that the proposed high-efficiency broadband optically controlled terahertz device based on the MAPbI3/Si structure has been realized.

  7. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components.

    PubMed

    Weeratunga, Prasanna; Uddin, Md Bashir; Kim, Myun Soo; Lee, Byeong-Hoon; Kim, Tae-Hwan; Yoon, Ji-Eun; Ma, Jin Yeul; Kim, Hongik; Lee, Jong-Soo

    2016-01-01

    Angelica tenuissima Nakai is a widely used commodity in traditional medicine. Nevertheless, no study has been conducted on the antiviral and immune-modulatory properties of an aqueous extract of Angelica tenuissima Nakai. In the present study, we evaluated the antiviral activities and the mechanism of action of an aqueous extract of Angelica tenuissima Nakai both in vitro and in vivo. In vitro, an effective dose of Angelica tenuissima Nakai markedly inhibited the replication of Influenza A virus (PR8), Vesicular stomatitis virus (VSV), Herpes simplex virus (HSV), Coxsackie virus, and Enterovirus (EV-71) on epithelial (HEK293T/HeLa) and immune (RAW264.7) cells. Such inhibition can be described by the induction of the antiviral state in cells by antiviral, IFNrelated gene induction and secretion of IFNs and pro-inflammatory cytokines. In vivo, Angelica tenuissima Nakai treated BALB/c mice displayed higher survivability and lower lung viral titers when challenged with lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3, and H9N2). We also found that Angelica tenuissima Nakai can induce the secretion of IL-6, IFN-λ, and local IgA in bronchoalveolar lavage fluid (BALF) of Angelica tenuissima Nakai treated mice, which correlating with the observed prophylactic effects. In HPLC analysis, we found the presence of several compounds in the aqueous fraction and among them; we evaluated antiviral properties of ferulic acid. Therefore, an extract of Angelica tenuissima Nakai and its components, including ferulic acid, play roles as immunomodulators and may be potential candidates for novel anti-viral/anti-influenza agents. PMID:26727903

  8. Using Indices of Fidelity to Intervention Core Components to Identify Program Active Ingredients

    ERIC Educational Resources Information Center

    Abry, Tashia; Hulleman, Chris S.; Rimm-Kaufman, Sara E.

    2015-01-01

    Identifying the active ingredients of an intervention--intervention-specific components serving as key levers of change--is crucial for unpacking the intervention black box. Measures of intervention fidelity can be used to identify specific active ingredients, yet such applications are rare. We illustrate how fidelity measures can be used to…

  9. Geometry Effects on Multipole Components and Beam Optics in High-Velocity Multi-Spoke Cavities

    SciTech Connect

    Hopper, Christopher S.; Deitrick, Kirsten E.; Delayen, Jean R.

    2013-12-01

    Velocity-of-light, multi-spoke cavities are being proposed to accelerate electrons in a compact light-source. There are strict requirements on the beam quality which require that the linac have only small non-uniformities in the accelerating field. Beam dynamics simulations have uncovered varying levels of focusing and defocusing in the proposed cavities, which is dependent on the geometry of the spoke in the vicinity of the beam path. Here we present results for the influence different spoke geometries have on the multipole components of the accelerating field and how these components, in turn, impact the simulated beam properties.

  10. Active Optics for a Segmented Primary Mirror on a Deep-Space Optical Receiver Antenna (DSORA)

    NASA Technical Reports Server (NTRS)

    Clymer, B. D.

    1990-01-01

    This article investigates the active optical control of segments in the primary mirror to correct for wavefront errors in the Deep-Space Optical Receiver Antenna (DSORA). Although an exact assessment of improvement in signal blur radius cannot be made until a more detailed preliminary structural design is completed, analytical tools are identified for a time when such designs become available. A brief survey of appropriate sensing approaches is given. Since the choice of control algorithm and architecture depends on the particular sensing system used, typical control systems, estimated complexities, and the type of equipment required are discussed. Once specific sensor and actuator systems are chosen, the overall control system can be optimized using methods identified in the literature.

  11. Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display

    NASA Astrophysics Data System (ADS)

    Nordin, Gregory P.; Jones, Michael W.; Kulick, Jeffrey H.; Lindquist, Robert G.; Kowel, Stephen T.

    1996-12-01

    We describe the design, construction, and performance of the first real-time autostereoscopic 3D display based on the partial pixel 3D display architecture. The primary optical components of the 3D display are an active-matrix liquid crystal display and a diffractive optical element (DOE). The display operates at video frame rates and is driven with a conventional VGA signal. 3D animations with horizontal motion parallax are readily viewable as sets of stereo images. Formation of the virtual viewing slits by diffraction from the partial pixel apertures is experimentally verified. The measured contrast and perceived brightness of the display are excellent, but there are minor flaws in image quality due to secondary images. The source of these images and how they may be eliminated is discussed. The effects of manufacturing-related systematic errors in the DOE are also analyzed.

  12. Active control for vibration suppression in a flexible beam using a modal domain optical fiber sensor

    NASA Technical Reports Server (NTRS)

    Cox, D. E.; Lindner, D. K.

    1991-01-01

    An account is given of the use of a modal-domain (MD) fiber-optic sensor as an active control system component for vibration suppression, whose output is proportional to the integral of the axial strain along the optical fiber. When an MD sensor is attached to, or embedded in, a flexible structure, it senses the strain in the structure along its gage length. On the basis of the present integration of the sensor model into a flexible-structure model, it becomes possible to design a control system with a dynamic compensator which adds damping to the low-order modes of the flexible structure. This modeling procedure has been experimentally validated.

  13. Optical impedance spectroscopy with single-mode electro-active-integrated optical waveguides.

    PubMed

    Han, Xue; Mendes, Sergio B

    2014-02-01

    An optical impedance spectroscopy (OIS) technique based on a single-mode electro-active-integrated optical waveguide (EA-IOW) was developed to investigate electron-transfer processes of redox adsorbates. A highly sensitive single-mode EA-IOW device was used to optically follow the time-dependent faradaic current originated from a submonolayer of cytochrome c undergoing redox exchanges driven by a harmonic modulation of the electric potential at several dc bias potentials and at several frequencies. To properly retrieve the faradaic current density from the ac-modulated optical signal, we introduce here a mathematical formalism that (i) accounts for intrinsic changes that invariably occur in the optical baseline of the EA-IOW device during potential modulation and (ii) provides accurate results for the electro-chemical parameters. We are able to optically reconstruct the faradaic current density profile against the dc bias potential in the working electrode, identify the formal potential, and determine the energy-width of the electron-transfer process. In addition, by combining the optically reconstructed faradaic signal with simple electrical measurements of impedance across the whole electrochemical cell and the capacitance of the electric double-layer, we are able to determine the time-constant connected to the redox reaction of the adsorbed protein assembly. For cytochrome c directly immobilized onto the indium tin oxide (ITO) surface, we measured a reaction rate constant of 26.5 s(-1). Finally, we calculate the charge-transfer resistance and pseudocapacitance associated with the electron-transfer process and show that the frequency dependence of the redox reaction of the protein submonolayer follows as expected the electrical equivalent of an RC-series admittance diagram. Above all, we show here that OIS with single-mode EA-IOW's provide strong analytical signals that can be readily monitored even for small surface-densities of species involved in the redox

  14. Optical Impedance Spectroscopy with Single-Mode Electro-Active-Integrated Optical Waveguides

    PubMed Central

    2015-01-01

    An optical impedance spectroscopy (OIS) technique based on a single-mode electro-active-integrated optical waveguide (EA-IOW) was developed to investigate electron-transfer processes of redox adsorbates. A highly sensitive single-mode EA-IOW device was used to optically follow the time-dependent faradaic current originated from a submonolayer of cytochrome c undergoing redox exchanges driven by a harmonic modulation of the electric potential at several dc bias potentials and at several frequencies. To properly retrieve the faradaic current density from the ac-modulated optical signal, we introduce here a mathematical formalism that (i) accounts for intrinsic changes that invariably occur in the optical baseline of the EA-IOW device during potential modulation and (ii) provides accurate results for the electro-chemical parameters. We are able to optically reconstruct the faradaic current density profile against the dc bias potential in the working electrode, identify the formal potential, and determine the energy-width of the electron-transfer process. In addition, by combining the optically reconstructed faradaic signal with simple electrical measurements of impedance across the whole electrochemical cell and the capacitance of the electric double-layer, we are able to determine the time-constant connected to the redox reaction of the adsorbed protein assembly. For cytochrome c directly immobilized onto the indium tin oxide (ITO) surface, we measured a reaction rate constant of 26.5 s–1. Finally, we calculate the charge-transfer resistance and pseudocapacitance associated with the electron-transfer process and show that the frequency dependence of the redox reaction of the protein submonolayer follows as expected the electrical equivalent of an RC-series admittance diagram. Above all, we show here that OIS with single-mode EA-IOW’s provide strong analytical signals that can be readily monitored even for small surface-densities of species involved in the redox

  15. A COMPREHENSIVE STUDY OF GAMMA-RAY BURST OPTICAL EMISSION. II. AFTERGLOW ONSET AND LATE RE-BRIGHTENING COMPONENTS

    SciTech Connect

    Liang Enwei; Li Liang; Liang Yunfeng; Tang Qingwen; Chen Jiemin; Lu Ruijing; Lue Lianzhong; Gao He; Zhang, Bing; Lue Houjun; Wu Xuefeng; Yi Shuangxi; Dai Zigao; Zhang Jin; Wei Jianyan E-mail: zhang@physics.unlv.edu

    2013-09-01

    We continue our systematic statistical study of various components of gamma-ray burst (GRB) optical light curves. We decompose the early onset bump and the late re-brightening bump with empirical fits and analyze their statistical properties. Among the 146 GRBs that have well-sampled optical light curves, the onset and re-brightening bumps are observed in 38 and 26 GRBs, respectively. It is found that the typical rising and decaying slopes for both the onset and re-brightening bumps are {approx}1.5 and {approx} - 1.15, respectively. No early onset bumps in the X-ray band are detected to be associated with the optical onset bumps, while an X-ray re-brightening bump is detected for half of the re-brightening optical bumps. The peak luminosity is anti-correlated with the peak time L{sub p}{proportional_to}t{sub p}{sup -1.81{+-}0.32} for the onset bumps and L{sub p}{proportional_to}t{sub p}{sup -0.83{+-}0.17} for the re-brightening bumps. Both L{sub p} and the isotropic energy release of the onset bumps are correlated with E{sub {gamma},iso}, whereas no similar correlation is found for the re-brightening bumps. These results suggest that the afterglow onset bumps are likely due to the deceleration of the GRB fireballs. Taking the onset bumps as probes for the properties of the fireballs and their ambient medium, we find that the typical power-law index of the relativistic electrons is 2.5 and the medium density profile behaves as n{proportional_to}r {sup -1} within the framework of the synchrotron external shock models. With the medium density profile obtained from our analysis, we also confirm the correlation between the initial Lorentz factor ({Gamma}{sub 0}) and E{sub iso,{gamma}} in our previous work. The jet component that produces the re-brightening bump seems to be on-axis and independent of the prompt emission jet component. Its typical kinetic energy budget would be about one order of magnitude larger than the prompt emission component, but with a lower {Gamma

  16. Ship-borne rotating shadowband radiometer observations for determination of components of spectral irradiance and aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Walther, Jonas; Deneke, Hartwig; Macke, Andreas; Bernhard, Germar

    2015-04-01

    The Maritime Aerosol Network (MAN) has been established as a sub-project of AERONET and a long-term program to collect ship-borne aerosol optical depth measurements over ocean. Its purpose is to serve as reliable reference database for the evaluation of models and satellite products. Data are currently collected by handheld Microtops II photometers, as the automated acquisition of data from sun photometers on stabilized platforms is so far too expensive for wide-spread use. A promising alternative to the sun photometer is the rotating shadowband radiometer, whose principle of operation allows the determination of the direct-beam component of solar radiation without stabilizing the instrument, if the orientation of the detector horizontal is known. OCEANET, a project to investigate the exchange fluxes of energy and matter between the atmosphere and ocean, has contributed aerosol observations to MAN on several of its cruises on RV Polarstern during the transit between the hemispheres. On the recent cruise (PS 83) from Cape Town to Bremerhaven, TROPOS has operated for the first time a 19 channel rotating shadowband radiometer (GUVis-3511) built by the company Biospherical, as a possible means to provide automated irradiance and aerosol optical depth measurements. Calibration and processing of the raw data will be described, and an initial evaluation of the instrumental performance will be given. Aerosol optical depths derived from Microtops II measurements and the rotating shadowband radiometer will be compared. We show that the standard deviation of Aerosol optical depths observed with Microtops II and the shadowband radiometer is about 0.02 for matching channels, and an aerosol type classification based on Angstrom exponent shows good agreement. Also the influence of ship smoke and ocean swell is studied. The suitability of the instrument to automate MAN observations is discussed, and an outlook to the use of the instrument to also derive cloud optical properties is

  17. Using DFT Methods to Study Activators in Optical Materials

    DOE PAGESBeta

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials.more » DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less

  18. Using DFT Methods to Study Activators in Optical Materials

    SciTech Connect

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials. DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.

  19. Default-Mode Network Activity Identified by Group Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Conghui; Zhuang, Jie; Peng, Danling; Yu, Guoliang; Yang, Yanhui

    Default-mode network activity refers to some regional increase in blood oxygenation level-dependent (BOLD) signal during baseline than cognitive tasks. Recent functional imaging studies have found co-activation in a distributed network of cortical regions, including ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PPC) that characterize the default mode of human brain. In this study, general linear model and group independent component analysis (ICA) were utilized to analyze the fMRI data obtained from two language tasks. Both methods yielded similar, but not identical results and detected a resting deactivation network at some midline regions including anterior and posterior cingulate cortex and precuneus. Particularly, the group ICA method segregated functional elements into two separate maps and identified ventral cingulate component and fronto-parietal component. These results suggest that these two components might be linked to different mental function during "resting" baseline.

  20. Pointing, acquisition and tracking (PAT) subsystems and components for optical space communication systems

    NASA Astrophysics Data System (ADS)

    Kern, R. H.; Kugel, U.

    1989-10-01

    The pointing, acquisition, and tracking (PAT) subsystem that will be incorporated by optical space communications transceivers must furnish very precise beam steering due to the highly collimated nature of the laser beams employed. The PAT subsystem must also be able to cover an angular rate of more than a full hemisphere, if it is intended for use on a LEO satellite which communicates with another in GEO. The present PAT is composed of a coarse-pointing assembly, a fine-pointing assembly, and a point-ahead assembly; their interactive operation is managed by a control law electronics unit. A CO2 laser is assumed to be the transmitter.

  1. Fiber Optic Sensor Components and Systems for Smart Materials and Structures

    NASA Technical Reports Server (NTRS)

    Lyons, R.

    1999-01-01

    The general objective of the funded research effort has been the development of discrete and distributed fiber sensors and fiber optic centered opto-electronic networks for the intelligent monitoring of phenomena in various aerospace structures related to NASA Marshall specific applications. In particular, we have proposed and have been developing technologies that we believe to be readily transferrable and which involve new fabrication techniques. The associated sensors developed can be incorporated into the matrix or on the surfaces of structures for the purpose of sensing stress, strain, temperature-both low and high, pressure field variations, phase changes, and the presence of various chemical constituents.

  2. Use of rigorous vector coupled-wave theory for designing and tolerancing surface-relief diffractive components for magneto-optical heads

    NASA Technical Reports Server (NTRS)

    Haggans, Charles W.; Kostuk, Raymond K.

    1991-01-01

    A rigorous coupled wave model is presented, experimentally validated, and used for tolerancing surface relief diffractive elements. Applications of the model in the design and tolerancing of components for magneto optical (M-O) data storage heads are investigated.

  3. Physical Activity and Sedentary Behavior Associated with Components of Metabolic Syndrome among People in Rural China

    PubMed Central

    Xiao, Jing; Shen, Chong; Chu, Min J.; Gao, Yue X.; Xu, Guang F.; Huang, Jian P.; Xu, Qiong Q.; Cai, Hui

    2016-01-01

    Background Metabolic syndrome is prevalent worldwide and its prevalence is related to physical activity, race, and lifestyle. Little data is available for people living in rural areas of China. In this study we examined associations of physical activity and sedentary behaviors with metabolic syndrome components among people in rural China. Methods The Nantong Metabolic Syndrome Study recruited 13,505 female and 6,997 male participants between 2007 and 2008. Data of socio-demographic characteristics and lifestyle were collected. The associations of physical activity and sedentary behaviors with metabolic syndrome components were analyzed. Results Prevalence of metabolic syndrome was 21.6%. It was significantly lower in men than in women. Low risks of metabolic syndrome were observed in those who did less sitting and engaged in more vigorous physical activity. The highest tertile of vigorous physical activity was associated with 15–40% decreased odds of metabolic syndrome and all of its components, except for low high-density lipoprotein cholesterol in men. Women with the highest tertile of moderate physical activity had 15–30% lower odds of central obesity, high glucose, and high triglycerides compared with those in the lowest tertile. Sitting time >42 hours per week had a 4%-12% attributable risk of metabolic syndrome, central obesity, and high triglycerides in both genders, and abnormal glucose and diastolic blood pressure in women. Sleeping for more than 8 hours per day was associated with risk of high serum glucose and lipids. Conclusions Our data suggested that physical activity has a preventive effect against metabolic syndrome and all its abnormal components, and that longer sitting time and sleep duration are associated with an increased risk of metabolic syndrome components, including central obesity and high triglycerides, glucose, and diastolic blood pressure. This study could provide information for future investigation into these associations. Also

  4. Zeno inhibition of polarization rotation in an optically active medium

    NASA Astrophysics Data System (ADS)

    Gonzalo, Isabel; Porras, Miguel A.; Luis, Alfredo

    2015-07-01

    We describe an experiment in which the rotation of the polarization of light propagating in an optically active water solution of D-fructose tends to be inhibited by frequent monitoring whether the polarization remains unchanged. This is an example of the Zeno effect that has remarkable pedagogical interest because of its conceptual simplicity, easy implementation, low cost, and because the same the Zeno effect holds at classical and quantum levels. An added value is the demonstration of the Zeno effect beyond typical idealized assumptions in a practical setting with real polarizers.

  5. Active optics control of VST telescope secondary mirror.

    PubMed

    Schipani, Pietro; D'Orsi, Sergio; Fierro, Davide; Marty, Laurent

    2010-06-01

    In telescopes based on active optics, defocus and coma are usually compensated for by secondary mirror movements. They are performed at the Very Large Telescope Survey Telescope (VST) with a hexapod--a parallel robot with six degrees of freedom positioning capability. We describe the application of the two-mirror telescope theory to the VST case and the solutions adopted for the hexapod control. We present the results of performance and reliability tests performed both in the laboratory and at the telescope. PMID:20517391

  6. Multistate transitions and quantum oscillations of optical activity

    NASA Astrophysics Data System (ADS)

    Blanco, Celia; Hochberg, David

    2012-02-01

    We consider the effects of multistate transitions on the tunneling racemization of chiral molecules. This requires going beyond simple two-state models of enantiomers and to include transitions within a multiple-level quantum-mechanical system. We derive an effective two-level description which accounts for transitions from the enantiomers to an arbitrary number of excited states as an application of the Weisskopf-Wigner approximation scheme. Modifications to the optical activity from these additional states are considered in general terms under the assumption of CPT invariance and then under T invariance. Some formal dynamical analogies between enantiomers and the neutral K-meson system are discussed.

  7. (Bio)hybrid materials based on optically active particles

    NASA Astrophysics Data System (ADS)

    Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg

    2014-03-01

    In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.

  8. Spatial correspondence of brain alpha activity component in fMRI and EEG

    NASA Astrophysics Data System (ADS)

    Jeong, Jeong-Won; Kim, Sung-Heon; Singh, Manbir

    2005-04-01

    This paper presents a new approach to investigate the spatial correlation of brain alpha activity in functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). To avoid potential problems of simultaneous fMRI and EEG acquisitions in imaging brain alpha activity, data from each modality were acquired separately under a "three conditions" setup where one of the conditions involved closing eyes and relaxing, thus making it conducive to generation of alpha activity. The other two conditions -- eyes open in a lighted room or engaged in a mental arithmetic task, were designed to attenuate alpha activity. Using the Mixture Density Independent Component Analysis (MD-ICA) that incorporates flexible non-linearity functions into the conventional ICA framework, we could identify the spatiotemporal components of fMRI activations and EEG activities associated with the alpha rhythm. The sources of the individual EEG alpha activity component were localized by a Maximum Entropy (ME) method that solves an inverse problem in the framework of a classical four-sphere head model. The resulting dipole sources of EEG alpha activity were spatially transformed to 3D MRIs of the subject and compared to fMRI ICA-determined alpha activity maps.

  9. Experience of handling beryllium, tritium and activated components from JET ITER like wall

    NASA Astrophysics Data System (ADS)

    Widdowson, A.; Baron-Wiechec, A.; Batistoni, P.; Belonohy, E.; Coad, J. P.; Dinca, P.; Flammini, D.; Fox, F.; Heinola, K.; Jepu, I.; Likonen, J.; Lilley, S.; Lungu, C. P.; Matthews, G. F.; Naish, J.; Pompilian, O.; Porosnicu, C.; Rubel, M.; Villari, R.; Contributors, JET

    2016-02-01

    JET components are removed periodically for surface analysis to assess material migration and fuel retention. This paper describes issues related to handling JET components and procedures for preparing samples for analysis; in particular a newly developed procedure for cutting beryllium tiles is presented. Consideration is also given to the hazards likely due to increased tritium inventory and material activation from 14 MeV neutrons following the planned TT and DT operations (DTE2) in 2017. Conclusions are drawn as to the feasibility of handling components from JET post DTE2.

  10. Subsurface damage of optical components and the influence on scattering properties

    NASA Astrophysics Data System (ADS)

    Draheim, Falk; Harnisch, Bernd; Weigel, Thomas

    1994-09-01

    The influence ofsurface damage under smooth optical surfaces on the scattering properties was investigated. Usually thissurface damage is filled and covered by a polishing layer. Thereforesurface damage does not contribute to the micro roughness of the surface. Three glasses, SF3, BK7, and SUPRASIL, with different Knoop hardness and related differentsurface damage density were chosen for the measurements. Three samples of each glass were polished with increasing polishing time in order to reduce the layer which contains thesurface damage. Beside the extensive measurements of the scatter behavior the samples were also investigated by means of microscopy (Nomarski, darkfield, cross polarization) and optical profilometry. The stray light was detected in the case of reflection (back scatter), transmission (forward scatter) and total reflection. In the case of totalreflection the scattered light behind the reflection surface was investigated. The detected scatter light was integrated over the measurement range and the resulting value was compared with the polishing time. Additional investigations were carried out to determine the influence on the light polarization.

  11. Surface particulate contamination of the LIL optical components and their evolution under laser irradiation

    NASA Astrophysics Data System (ADS)

    Palmier, S.; Garcia, S.; Lamaignère, L.; Loiseau, M.; Donval, T.; Rullier, J. L.; Tovena, I.; Servant, L.

    2007-01-01

    To evaluate the impact of particulate contamination in laser induced damage of optical material, an experimental program is established. The first step consists in the Ligne d'Integration Laser (LIL) particle contamination sampling. Carbonated cellophane tapes, antireflection coated and uncoated silica samples were inserted in the LIL laser chain, in six different zones to collect particles. The second step is the pollution characterization. Polluted cellophane tapes are analysed by Scanning Electron Microscopy and Energy Dispersive Spectrometry. The density and the nature of particles collected in the Amplification Section are found to be homogenous throughout this section. The pollution collected in the Frequency Conversion and Focusing system is more complex. One of its features is a larger proportion of silica particles. The last step consists in the silica samples irradiation. Antireflection coated and uncoated silica samples are examined by optical microscopy, then irradiated at 1064 nm or 355 nm and examined again. No damage growing under several irradiations is observed. We show a cleaning effect efficient for particles larger than 20 microns.

  12. Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials

    PubMed Central

    Naik, Gururaj V.; Saha, Bivas; Liu, Jing; Saber, Sammy M.; Stach, Eric A.; Irudayaraj, Joseph M. K.; Sands, Timothy D.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2014-01-01

    Titanium nitride (TiN) is a plasmonic material having optical properties resembling gold. Unlike gold, however, TiN is complementary metal oxide semiconductor-compatible, mechanically strong, and thermally stable at higher temperatures. Additionally, TiN exhibits low-index surfaces with surface energies that are lower than those of the noble metals which facilitates the growth of smooth, ultrathin crystalline films. Such films are crucial in constructing low-loss, high-performance plasmonic and metamaterial devices including hyperbolic metamaterials (HMMs). HMMs have been shown to exhibit exotic optical properties, including extremely high broadband photonic densities of states (PDOS), which are useful in quantum plasmonic applications. However, the extent to which the exotic properties of HMMs can be realized has been seriously limited by fabrication constraints and material properties. Here, we address these issues by realizing an epitaxial superlattice as an HMM. The superlattice consists of ultrasmooth layers as thin as 5 nm and exhibits sharp interfaces which are essential for high-quality HMM devices. Our study reveals that such a TiN-based superlattice HMM provides a higher PDOS enhancement than gold- or silver-based HMMs. PMID:24821762

  13. All-optical video-image encryption with enforced security level using independent component analysis

    NASA Astrophysics Data System (ADS)

    Alfalou, A.; Mansour, A.

    2007-10-01

    In the last two decades, wireless communications have been introduced in various applications. However, the transmitted data can be, at any moment, intercepted by non-authorized people. That could explain why data encryption and secure transmission have gained enormous popularity. In order to secure data transmission, we should pay attention to two aspects: transmission rate and encryption security level. In this paper, we address these two aspects by proposing a new video-image transmission scheme. This new system consists in using the advantage of optical high transmission rate and some powerful signal processing tools to secure the transmitted data. The main idea of our approach is to secure transmitted information at two levels: at the classical level by using an adaptation of standard optical techniques and at a second level (spatial diversity) by using independent transmitters. In the second level, a hacker would need to intercept not only one channel but all of them in order to retrieve information. At the receiver, we can easily apply ICA algorithms to decrypt the received signals and retrieve information.

  14. New components for fiber-optic thin-layer chromatography including fluorescence

    NASA Astrophysics Data System (ADS)

    Bleichert, Michaela; Eckhardt, Hanns Simon; Klein, Karl-Friedrich; Spangenberg, Bernd; Hillrichs, Georg; Mannhardt, Joachim

    2007-02-01

    In thin-layer chromatography, fiber-bundle arrays have been introduced for spectral absorption measurements in the UV-region. Using all-silica fiber bundles, the exciting light will be detected after re-emission on the plate with a fiberoptic spectrometer. In addition, fluorescence light can be detected which will be masked by the re-emitted light. Therefore, it is helpful to separate the absorption and fluorescence on the TLC-plate. A modified three-array assembly has been developed: using one array for detection, the two others are used for excitation with broadband band deuterium-light and with UV-LEDs adjusted to the substances under test. As an example, the quantification of glucosamine in nutritional supplements or spinach leaf extract will be described. Using simply heating of the amino-plate for derivation, the reaction product of Glucosamine can be detected sensitively either by light absorption or by fluorescence, using the new fiber-optic assembly. In addition, the properties of the new 3-row fiber-optic array and the commercially available UV-LEDs will be shown, in the interesting wavelength region for excitation of fluorescence, from 260 nm to 360 nm. The squint angle having an influence on coupling efficiency and spatial resolution will be measured with the inverse farfield method. Some properties of UV-LEDs for analytical applications will be described and discussed, too.

  15. Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials.

    PubMed

    Naik, Gururaj V; Saha, Bivas; Liu, Jing; Saber, Sammy M; Stach, Eric A; Irudayaraj, Joseph M K; Sands, Timothy D; Shalaev, Vladimir M; Boltasseva, Alexandra

    2014-05-27

    Titanium nitride (TiN) is a plasmonic material having optical properties resembling gold. Unlike gold, however, TiN is complementary metal oxide semiconductor-compatible, mechanically strong, and thermally stable at higher temperatures. Additionally, TiN exhibits low-index surfaces with surface energies that are lower than those of the noble metals which facilitates the growth of smooth, ultrathin crystalline films. Such films are crucial in constructing low-loss, high-performance plasmonic and metamaterial devices including hyperbolic metamaterials (HMMs). HMMs have been shown to exhibit exotic optical properties, including extremely high broadband photonic densities of states (PDOS), which are useful in quantum plasmonic applications. However, the extent to which the exotic properties of HMMs can be realized has been seriously limited by fabrication constraints and material properties. Here, we address these issues by realizing an epitaxial superlattice as an HMM. The superlattice consists of ultrasmooth layers as thin as 5 nm and exhibits sharp interfaces which are essential for high-quality HMM devices. Our study reveals that such a TiN-based superlattice HMM provides a higher PDOS enhancement than gold- or silver-based HMMs. PMID:24821762

  16. Finite Temperature Properties of Three-Component Fermion Systems in Optical Lattice

    NASA Astrophysics Data System (ADS)

    Yanatori, Hiromasa; Koga, Akihisa

    2016-01-01

    We investigate finite temperature properties in the half-filled three-component (colors) fermion systems. It is clarified that a color density-wave (CDW) state is more stable than a color-selective "antiferromagnetic" (CSAF) state against thermal fluctuations. The reentrant behavior in the phase boundary for the CSAF state is found. We also address the maximum critical temperature of the translational symmetry breaking states in the multicomponent fermionic systems.

  17. Calculation of optical second-harmonic susceptibilities and optical activity for crystals

    SciTech Connect

    Levine, Z.H.

    1994-12-31

    A new generation of nearly first-principles calculations predicts both the linear and second-harmonic susceptibilities for a variety of insulating crystals, including GaAs, GaP, AlAs, AlP, Se, {alpha}-quartz, and c-urea. The results are typically in agreement with experimental measurements. The calculations have been extended to optical activity, with somewhat less success to date. The theory, based on a simple self-energy correction to the local density approximation, and results are reviewed herein.

  18. Brain activations during bimodal dual tasks depend on the nature and combination of component tasks.

    PubMed

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2015-01-01

    We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley's model "modality atypical," that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks. PMID:25767443

  19. Brain activations during bimodal dual tasks depend on the nature and combination of component tasks

    PubMed Central

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2015-01-01

    We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or “simple” (speaker-gender or font-shade) discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley's model “modality atypical,” that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks. PMID:25767443

  20. Enhancement of neutralizing activity of influenza virus-specific antibodies by serum components.

    PubMed

    Mozdzanowska, Krystyna; Feng, Jingqi; Eid, Mark; Zharikova, Darya; Gerhard, Walter

    2006-09-01

    The role of serum components in enhancing virus neutralizing (VN) activity of influenza virus A/PR/8/34 hemagglutinin (HA)-specific MAbs in vitro was investigated. The degree of enhancement depended on the MAb's fine specificity and heavy chain isotype and on type of serum. Greatest enhancement (>100-fold) was seen with sera from immunodeficient mice that lacked serum immunoglobulin. At least two serum components were involved: C1q and a heat-resistant factor. C1q was mandatory for enhancement, and other components of the complement system were not required. C1q appeared to operate by improving MAb-mediated inhibition of virus attachment to host cells and was most effective with MAbs that inhibited virus attachment poorly on their own. The heat-resistant factor enhanced VN activity only in the presence of C1q and appeared to operate by enhancing VN activity at a post-attachment stage. PMID:16777168

  1. A low-luminosity type-1 QSO sample. III. Optical spectroscopic properties and activity classification

    NASA Astrophysics Data System (ADS)

    Tremou, E.; Garcia-Marin, M.; Zuther, J.; Eckart, A.; Valencia-Schneider, M.; Vitale, M.; Shan, C.

    2015-08-01

    Context. We report on the optical spectroscopic analysis of a sample of 99 low-luminosity quasi-stellar objects (LLQSOs) at z ≤ 0.06 base the Hamburg/ESO QSO Survey (HES). To better relate the low-redshift active galactic nucleus (AGN) to the QSO population it is important to study samples of the latter type at a level of detail similar to that of the low-redshift AGN. Powerful QSOs, however, are absent at low redshifts due to evolutionary effects and their small space density. Our understanding of the (distant) QSO population is, therefore, significantly limited by angular resolution and sensitivity. The LLQSOs presented here offer the possibility of studying the faint end of this population at smaller cosmological distances and, therefore, in greater detail. Aims: In comparing two spectroscopic methods, we aim to establish a reliable activity classification scheme of the LLQSOs sample. Our goal is to enrich our systematic multiwavelength analysis of the AGN/starburst relation in these systems and give a complementary information on this particular sample of LLQSOs from the Hamburg ESO survey. Methods: Here, we present results of the analysis of visible wavelength spectroscopy provided by the HES and the 6 Degree Field Galaxy Survey (6dFGS). These surveys use different spectroscopic techniques, long-slit and circular fiber, respectively. These allow us to assess the influence of different apertures on the activity of the LLQSOs using classical optical diagnostic diagrams. We perform a Gaussian fitting of strong optical emission lines and decompose narrow and broad Balmer components. Results: A small number of our LLQSO present no broad component, which is likely to be present but buried in the noise. Two sources show double broad components, whereas six comply with the classic NLS1 requiremnts. As expected in NLR of broad line AGNs, the [Sii]-based electron density values range between 100 and 1000 Ne/cm3. Using the optical characteristics of Populations A and B

  2. Radical scavenging and antioxidant activities of essential oil components--an experimental and computational investigation.

    PubMed

    Sharopov, Farukh S; Wink, Michael; Setzer, William N

    2015-01-01

    The antioxidant activities of eighteen different essential oil components have been determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay, the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation assay, and the ferric reducing antioxidant power (FRAP) assay. The phenolic compounds, carvacrol, thymol, and eugenol, showed the best antioxidant activities, while camphor, menthol, and menthone were the least active. The structural and electronic properties of the essential oil components were assessed using density functional theory (DFT) at the B3LYP/6-311++G** level. Correlations between calculated electronic properties and antioxidant activities were generally poor, but bond-dissociation energies (BDEs) seem to correlate with DPPH radical-scavenging activities, and the ferric reducing antioxidant power (FRAP) assay correlated with vertical ionization potentials calculated at the Hartree-Fock/6-311++G** level. PMID:25920239

  3. Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces.

    PubMed

    Chen, Jianwei; Gu, Chenglin; Lin, Hui; Chen, Shih-Chi

    2015-08-10

    Patterning micro- and nano-scale optical elements on nonplanar substrates has been technically challenging and prohibitively expensive via conventional processes. A low-cost, high-precision fabrication process is thus highly desired and can have significant impact on manufacturing that leads to wider applications. In this paper, we present a new hot embossing process that enables high-resolution patterning of micro- and nano-structures on non-planar substrates. In this process, a flexible elastomer stamp, i.e., PDMS, was used as a mold to perform hot-embossing on substrates of arbitrary curvatures. The new process was optimized through the development of an automated vacuum thermal imprinting system that allows non-clean room operation as well as precise control of all process parameters, e.g., pressure, temperature and time. Surface profiles and optical properties of the fabricated components, including micro-lens array and optical gratings, were characterized quantitatively, e.g., RMS ~λ/30 for a micro-lens, and proved to be comparable with high cost conventional precision processes such as laser lithographic fabrication. PMID:26367950

  4. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    NASA Technical Reports Server (NTRS)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  5. Calculating the shrapnel generation and subsequent damage to first wall and optics components for the National Ignition Facility

    SciTech Connect

    Tokheim, R.E.; Seaman, L.; Cooper, T.; Lew, B.; Curran, D.R.; Sanchez, J.; Anderson, A.; Tobin, M.

    1996-08-06

    The purpose of this work is to computationally assess the threat from shrapnel generation on the National Ignition Facility (NIF) first wall, final optics, and ultimately other target chamber components. Shrapnel is defined as material.that is in a solid, liquid, or clustered-vapor phase with sufficient velocity to become a threat to exposed surfaces as a consequence of its impact. Typical NIF experiments will be of two types, low neutron yield shots in which the capsule is not cryogenically cooled, and high yield shots for which cryogenic cooling of the capsule is required. For non-cryogenic shots, shrapnel would be produced by spaIIing, melting and vaporizing of ``shine shields`` by absorption and shock wave loading following 1-{omega} and 2-{omega} laser radiation. For cryogenic shots, shrapnel would be generated through shock wave splitting, spalling, and droplet formation of the cryogenic tubes following neutron energy deposition. Motion of the shrapnel is determined not only by particle velocities resulting from the neutron deposition, but also by both x-ray and debris loading arising from explosion of the hohlraum. Material responses of different target area components are computed from one- dimensional and two-dimensional stress wave propagation codes. Well developed rate-dependent spall computational models are used for stainless steel spall and splitting,. Severe cell distortion is accounted for in shine-shield and hohlraum-loading computations. Resulting distributions of shrapnel particles are traced to the first wall and optics and damage is estimated for candidate materials. First wall and optical material damage from shrapnel includes crater formation and associated extended cracking.

  6. The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change

    PubMed Central

    Yang, Hongli; Ren, Ruojin; Lockwood, Howard; Williams, Galen; Libertiaux, Vincent; Downs, Crawford; Gardiner, Stuart K.; Burgoyne, Claude F.

    2015-01-01

    Purpose To characterize optic nerve head (ONH) connective tissue change within 21 monkey experimental glaucoma (EG) eyes, so as to identify its principal components. Methods Animals were imaged three to five times at baseline then every 2 weeks following chronic unilateral IOP elevation, and euthanized early through end-stage confocal scanning laser tomographic change. Optic nerve heads were serial-sectioned, three-dimensionally (3D) reconstructed, delineated, and quantified. Overall EG versus control eye differences were assessed by general estimating equations (GEE). Significant, animal-specific, EG eye change was required to exceed the maximum physiologic intereye differences in six healthy animals. Results Overall EG eye change was significant (P < 0.0026) and animal-specific EG eye change most frequent, for five phenomena (number of EG eyes and range of animal-specific change): posterior laminar deformation (21, −29 to −437 μm), laminar thickening (11, 20–73 μm) and thinning (3, −23 to −31 μm), scleral canal expansion (17, 20–139 μm), outward anterior (16, −16 to −124 μm) and posterior (17, −22 to −279 μm) laminar insertion migration, and peripapillary scleral bowing (11, 21–77 μm). Experimental glaucoma versus control eye laminar thickness differences were bimodal in behavior, being thickened in most EG eyes demonstrating the least deformation and less thickened or thinned in most EG eyes demonstrating the greatest deformation. Conclusions Our postmortem studies retrospectively identify five connective tissue components of ONH “cupping” in monkey EG which serve as targets for longitudinally staging and phenotyping ONH connective tissue alteration within all forms of monkey and human optic neuropathy. PMID:26641545

  7. Optical test bench for high precision metrology and alignment of zoom sub-assembly components

    NASA Astrophysics Data System (ADS)

    Leprêtre, F.; Levillain, E.; Wattellier, B.; Delage, P.; Brahmi, D.; Gascon, A.

    2013-09-01

    Thales Angénieux (TAGX) designs and manufactures zoom lens assemblies for cinema applications. These objectives are made of mobile lens assemblies. These need to be precisely characterized to detect alignment, polishing or glass index homogeneity errors, which amplitude may range to a few hundreds of nanometers. However these assemblies are highly aberrated with mainly spherical aberration (>30 μm PV). PHASICS and TAGX developed a solution based on the use of a PHASICS SID4HR wave front sensor. This is based on quadri-wave lateral shearing interferometry, a technology known for its high dynamic range. A 100-mm diameter He:Ne source illuminates the lens assembly entrance pupil. The transmitted wave front is then directly measured by the SID4- HR. The measured wave front (WFmeas) is then compared to a simulation from the lens sub-assembly optical design (WFdesign). We obtain a residual wave front error (WFmanufactured), which reveals lens imperfections due to its manufacturing. WFmeas=WFdesign+(WFEradius+WFEglass+WFEpolish)=WF design + WFmanufactured The optical test bench was designed so that this residual wave front is measured with a precision below 100 nm PV. The measurement of fast F-Number lenses (F/2) with aberrations up to 30 μm, with a precision of 100 nm PV was demonstrated. This bench detects mismatches in sub-assemblies before the final integration step in the zoom. Pre-alignment is also performed in order to overpass the mechanical tolerances. This facilitates the completed zoom alignment. In final, productivity gains are expected due to alignment and mounting time savings.

  8. Design of software and hardware components for a six-degrees of freedom optical position sensor

    SciTech Connect

    Garcia, F.N.

    1997-06-01

    This report summarizes the evaluation of a fully compatible and operational data acquisition system for a six-degrees of freedom optical sensor (SixDOF). The SixDOF, developed at Lawrence Livermore National Laboratory by Charles Vann, is capable of tracking an object`s position in all its six degrees of freedom without any datum specification by means of two reflective surfaces mounted on the object. To make the SixDOF operational and thus validate its underlying physics, a signal processing system has been designed so that information from the sensor is transferred accurately and efficiently to a computer. In addition, a six-degrees of freedom positioning stage has been built in efforts to calibrate the sensor in real time. A crucial design constraint is the necessity to build the complete data acquisition system so that it be small and most importantly portable. The prototype of the SixDOF system proved to be capable of crudely detecting changes in the position of an object in all six spatial degrees of freedom. An accuracy of around 0.5 mm is estimated presently even though the position of the two reflectors on the object is seen to significantly influence the accuracy of the sensor. The resolution of the sensor is not quite understood yet because of uncertainties in the actual spot size of the laser, however, field of the view has been seen to increase as the resolution decreases. The decoupling (calibration) of the sensor data proved to be rather successful although some coupling still exists. This coupling, however, is almost certain to come from the crudeness in the alignment of the optics within the sensor.

  9. Tea and human health: biomedical functions of tea active components and current issues.

    PubMed

    Chen, Zong-mao; Lin, Zhi

    2015-02-01

    Originating in China, tea and tea planting have spread throughout the world since the middle of the Tang dynasty. Now people from 160 countries in the world are accustomed to tea drinking. A brief history of tea's medicinal role in China and its spread to the world are introduced. The effectiveness of tea active components and tea drinking on major human diseases, including cancer, metabolic syndrome, cardiovascular disease, and neurodegenerative diseases, is discussed. Also presented are some related issues, such as the bioavailability of tea active components, the new formulations of tea polyphenols, and the safety for consumers of dietary supplements containing tea polyphenols. PMID:25644464

  10. Tea and human health: biomedical functions of tea active components and current issues*

    PubMed Central

    Chen, Zong-mao; Lin, Zhi

    2015-01-01

    Originating in China, tea and tea planting have spread throughout the world since the middle of the Tang dynasty. Now people from 160 countries in the world are accustomed to tea drinking. A brief history of tea’s medicinal role in China and its spread to the world are introduced. The effectiveness of tea active components and tea drinking on major human diseases, including cancer, metabolic syndrome, cardiovascular disease, and neurodegenerative diseases, is discussed. Also presented are some related issues, such as the bioavailability of tea active components, the new formulations of tea polyphenols, and the safety for consumers of dietary supplements containing tea polyphenols. PMID:25644464

  11. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  12. Ultrasensitive detection of mode splitting in active optical microcavities

    SciTech Connect

    He, Lina; Oezdemir, Sahin Kaya; Zhu Jiangang; Yang Lan

    2010-11-15

    Scattering-induced mode splitting in active microcavities is demonstrated. Below the lasing threshold, quality factor enhancement by optical gain allows resolving, in the wavelength-scanning transmission spectrum, of resonance dips of the split modes which otherwise would not be detected in a passive resonator. In the lasing regime, mode splitting manifests itself as two lasing modes with extremely narrow linewidths. Mixing these lasing modes in a detector leads to a heterodyne beat signal whose frequency corresponds to the mode-splitting amount. Lasing regime not only allows ultra-high sensitivity for mode-splitting measurements but also provides an easily accessible scheme by eliminating the need for wavelength scanning around resonant modes. Mode splitting in active microcavities has an immediate impact in enhancing the sensitivity of subwavelength scatterer detection and in studying light-matter interactions in a strong-coupling regime.

  13. Active Learning Strategies for Introductory Light and Optics

    NASA Astrophysics Data System (ADS)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.

  14. Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components.

    PubMed

    Escobar, Patricia; Milena Leal, Sandra; Herrera, Laura Viviana; Martinez, Jairo Rene; Stashenko, Elena

    2010-03-01

    The chemical composition and biological activities of 19 essential oils and seven of their major components were tested against free and intracellular forms of Leishmania chagasi and Trypanosoma cruzi parasites as well as Vero and THP-1 mammalian cell lines. The essential oils were obtained from different species of Lippia, a widely distributed genus of Colombian plants. They were extracted by microwave radiation-assisted hydro-distillation and characterised by GC-FID and GC-MS. The major components were geranial, neral, limonene, nerol, carvacrol, p-cymene, gamma-terpinene, carvone and thymol. The essential oil of Lippia alba exhibited the highest activity against T. cruzi epimastigotes and intracellular amastigotes with an IC50 of 5.5 microg/mL and 12.2 microg/mL, respectively. The essential oil of Lippia origanoides had an IC50 of 4.4 microg/mL in L. chagasi promastigotes and exhibited no toxicity in mammalian cells. Thymol (IC50 3.2 +/- 0.4 microg/mL) and S-carvone (IC50 6.1 +/- 2.2 microg/mL), two of the major components of the active essential oils, were active on intracellular amastigotes of T. cruziinfected Vero cells, with a selective index greater than 10. None of the essential oils or major components tested in this study was active on amastigotes of L. chagasi infected THP-1 cells. PMID:20428679

  15. Progress on the development of active micro-structured optical arrays for x-ray optics

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanmartin, Daniel; Zhang, Dou; Button, Tim; Atkins, Carolyn; Doel, Peter; Wang, Hongchang; Brooks, David; Feldman, Charlotte; Willingale, Richard; Michette, Alan; Pfauntsch, Slawka; Sahraei, Shahin; Shand, Matthew; James, Ady; Dunare, Camelia; Stevenson, Tom; Parkes, William; Smith, Andy

    2009-08-01

    The Smart X-Ray Optics (SXO) project comprises a U.K.-based consortium developing active/adaptive micro-structured optical arrays (MOAs). These devices are designed to focus X-rays using grazing incidence reflection through consecutive aligned arrays of microscopic channels etched in silicon. The silicon channels have been produced both by dry and wet etching, the latter providing smoother channel walls. Adaptability is achieved using piezoelectric actuators, which bend the device and therefore change its focal distance. We aim to achieve a 5 cm radius of curvature which can provide a suitable focal length using a tandem pair MOA configuration. Finite Element Analysis (FEA) modelling has been carried out for the optimization of the MOA device design, consider different types of actuators (unimorph, bimorph and active fibre composites), and different Si/piezoelectric absolute and relative thicknesses. Prototype devices have been manufactured using a Viscous Plastic Processing Process for the piezoelectric actuators and dry etched silicon channels, bonded together using a low shrinkage adhesive. Characterisation techniques have been developed in order to evaluate the device performance in terms of the bending of the MOA channels produced by the actuators. This paper evaluates the progress to date on the actuation of the MOAs, comparing FEA modelling with the results obtained for different prototype structures.

  16. Assessment Of Mold-Design Dependent Textures In CIM-Components By Polarized Light Optical Texture Analysis (PLOTA)

    SciTech Connect

    Kern, Frank; Rauch, Johannes; Gadow, Rainer

    2007-04-07

    By thermoplastic ceramic injection moulding (CIM) ceramic components of high complexity can be produced in a large number of items at low dimensional tolerances. The cost advantage by the high degree of automation leads to an economical mass-production. The structure of injection-moulded components is determined by the form filling behaviour and viscosity of the feedstock, the machine parameters, the design of the mold and the gate design. With an adapted mold- and gate-design CIM-components without textures are possible. The ''Polarized Light Optical Texture analysis'' (PLOTA) makes it possible to inspect the components and detect and quantify the textures produced by a new mold. Based on the work of R. Fischer (2004) the PLOTA procedure was improved by including the possibility to measure the inclination angle and thus describe the orientation of the grains in three dimensions. Sampled thin sections of ceramic components are analysed under the polarization microscope and are brought in diagonal position. Pictures are taken with a digital camera. The pictures are converted in the L*a*b*- colour space and the crystals color values a* and b* in the picture are measured. The color values are compared with the values of a quartz wedge, which serves as universal standard. From the received values the inclination angle can be calculated relative to the microscope axis. It is possible to use the received data quantitatively e.g. for the FEM supported simulation of texture-conditioned divergences of mechanical values. Thus the injection molding parameters can be optimized to obtain improved mechanical properties.

  17. Assessment Of Mold-Design Dependent Textures In CIM-Components By Polarized Light Optical Texture Analysis (PLOTA)

    NASA Astrophysics Data System (ADS)

    Kern, Frank; Rauch, Johannes; Gadow, Rainer

    2007-04-01

    By thermoplastic ceramic injection moulding (CIM) ceramic components of high complexity can be produced in a large number of items at low dimensional tolerances. The cost advantage by the high degree of automation leads to an economical mass-production. The structure of injection-moulded components is determined by the form filling behaviour and viscosity of the feedstock, the machine parameters, the design of the mold and the gate design. With an adapted mold- and gate-design CIM-components without textures are possible. The "Polarized Light Optical Texture analysis" (PLOTA) makes it possible to inspect the components and detect and quantify the textures produced by a new mold. Based on the work of R. Fischer (2004) the PLOTA procedure was improved by including the possibility to measure the inclination angle and thus describe the orientation of the grains in three dimensions. Sampled thin sections of ceramic components are analysed under the polarization microscope and are brought in diagonal position. Pictures are taken with a digital camera. The pictures are converted in the L*a*b*- colour space and the crystals color values a* and b* in the picture are measured. The color values are compared with the values of a quartz wedge, which serves as universal standard. From the received values the inclination angle can be calculated relative to the microscope axis. It is possible to use the received data quantitatively e.g. for the FEM supported simulation of texture-conditioned divergences of mechanical values. Thus the injection molding parameters can be optimized to obtain improved mechanical properties.

  18. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride.

    PubMed Central

    Sternweis, P C; Gilman, A G

    1982-01-01

    Activation of the purified guanine nucleotide-binding regulatory component (G/F) of adenylate cyclase by F- requires the presence of Mg2+ and another factor. This factor, which contaminates commercial preparations of various nucleotides and disposable glass test tubes, has been identified as Al3+. In the presence of 10 mM Mg2+ and 5 mM F-, AlCl3 causes activation of G/F with an apparent activation constant of approximately 1-5 muM. The requirement for Al3+ is highly specific; of 28 other metals tested, only Be2+ promoted activation of G/F by F-. PMID:6289322

  19. Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components.

    PubMed

    De Martino, Laura; De Feo, Vincenzo; Fratianni, Florinda; Nazzaro, Filomena

    2009-12-01

    The present paper reports the chemical composition, antioxidant and antibacterial activities of several essential oils and their components. Analysis showed that three oils (Carum carvi L., Verbena officinalis L. and Majorana hortensis L.) contained predominantly oxygenated monoterpenes, while others studied (Pimpinella anisum L., Foeniculum vulgare Mill.) mainly contained anethole. C. carvi, V. officinalis and M. hortensis oils exhibited the most potent antioxidant activity, due their contents of carvacrol, anethole and estragol. Antibacterial action was assessed against a range of pathogenic and useful bacteria and fungi of agro-food interest. V. officinalis and C. carvi oils proved the most effective, in particular against Bacillus cereus and Pseudomonas aeruginosa. Carvacrol proved most active against Escherichia coli, and completely inhibited the growth of Penicillium citrinum. The oils proved inactive towards some Lactobacilli strains, whereas single components showed an appreciable activity. These results may be important for use of the essential oils as natural preservatives for food products. PMID:20120118

  20. LONG-TERM OPTICAL CONTINUUM COLOR VARIABILITY OF NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Sakata, Yu; Minezaki, Takeo; Yoshii, Yuzuru; Uchimoto, Yuka Katsuno; Sugawara, Shota; Kobayashi, Yukiyasu; Koshida, Shintaro; Aoki, Tsutomu; Tomita, Hiroyuki; Enya, Keigo; Suganuma, Masahiro

    2010-03-01

    We examine whether the spectral energy distribution of optical continuum emission of active galactic nuclei (AGNs) changes during flux variation, based on accurate and frequent monitoring observations of 11 nearby Seyfert galaxies and QSOs carried out in the B, V, and I bands for seven years by the MAGNUM telescope. The multi-epoch flux data in any two different bands obtained on the same night show a very tight linear flux-to-flux relationship for all target AGNs. The flux of the host galaxy within the photometric aperture is carefully estimated by surface brightness fitting to available high-resolution Hubble Space Telescope images and MAGNUM images. The flux of narrow emission lines in the photometric bands is also estimated from available spectroscopic data. We find that the non-variable component of the host galaxy plus narrow emission lines for all target AGNs is located on the fainter extension of the linear regression line of multi-epoch flux data in the flux-to-flux diagram. This result strongly indicates that the spectral shape of AGN continuum emission in the optical region ({approx}4400-7900 A) does not systematically change during flux variation. The trend of spectral hardening that optical continuum emission becomes bluer as it becomes brighter, which has been reported by many studies, is therefore interpreted as the domination of the variable component of the nearly constant spectral shape of an AGN as it brightens over the non-variable component of the host galaxy plus narrow lines, which is usually redder than AGN continuum emission.

  1. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  2. Multi-function optical characterization and inspection of MEMS components using stroboscopic coherence scanning interferometry

    NASA Astrophysics Data System (ADS)

    Tapilouw, Abraham Mario; Chen, Liang-Chia; Xuan-Loc, Nguyen; Chen, Jin-Liang

    2014-08-01

    A Micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive industries. However, effective inspection systems are also needed to ensure the functional reliability of MEMS. This study developed a stroboscopic coherence scanning Interferometry (SCSI) technique for measuring key characteristics typically used as criteria in MEMS inspections. Surface profiles of MEMS both static and dynamic conditions were measured by means of coherence scanning Interferometry (CSI). Resonant frequencies of vibrating MEMS were measured by deformation of interferogram fringes for out-of-plane vibration and by image correlation for in-plane vibration. The measurement bandwidth of the developed system can be tuned up to three megahertz or higher for both in-plane and out-of-plane measurement of MEMS.

  3. Thermal-contact-conductance measurement for high-heat-load optics components at SPring-8

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Tanaka, M.; Senba, Y.; Ohashi, H.; Goto, S.

    2011-09-01

    Thermal contact in water-cooling or cryogenic cooling-cooling condition is used for forming a high-heat-load component at the synchrotron radiation beamline. In SPring-8, for example, cryogenic cooling is used for silicon monochromator crystal with an indium insertion metal at the interface between a copper block and a silicon crystal. To reduce the strain on the silicon crystal with a low contact pressure and a high thermal conductivity, we require a silicon-indium-copper system and an alternative insertion material such as a graphite foil. To measure the thermal contact conductance in a quick measurement cycle under various thermal-contact conditions, we improve the thermal-contact-conductance measurement system in terms of the setup facilitation, precise temperature measurement, and thermal insulation around a sample.

  4. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  5. Optical Characterization of Component Wear and Near-Field Plasma of the Hermes Thruster

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Kamhawi, Hani

    2015-01-01

    Optical emission spectral (OES) data are presented which correlate trends in sputtered species and the near-field plasma with the Hall-Effect Rocket with Magnetic Shielding (HERMeS) thruster operating condition. The relative density of singly-ionized xenon (Xe II) is estimated using a collisional-radiative model. OES data were collected at three radial and several axial locations downstream of the thruster's exit plane. These data were deconvolved to show the structure for the near-field plasma as a function of thruster operating condition. The magnetic field is shown to have a much greater affect on plasma structure than the discharge voltage with the primary ionization/acceleration zone boundary being similar for all nominal operating voltages at constant power. OES measurement of sputtered boron shows that the HERMeS thruster is magnetically shielded across its operating envelope. Preliminary assessment of carbon sputtered from the keeper face suggest it increases significantly with operating voltage, but the uncertainty associated with these measurements is very high.

  6. Experimental validation and testing of components for active damping control for micromachined mechanical vibration isolation filters using electrostatic actuation

    NASA Astrophysics Data System (ADS)

    Dean, Robert; Flowers, George; Sanders, Nicole; Horvath, Roland; Johnson, Wayne; Kranz, Michael; Whitley, Michael

    2006-03-01

    Missiles, rockets and certain types of industrial machinery are exposed extreme vibration environments, with high frequency/amplitude mechanical vibrations which may be detrimental to components that are sensitive to these high frequency mechanical vibrations, such as MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure to high frequency mechanical vibrations can lead to a variety of problems, from reduced sensitivity and an increased noise floor to the outright mechanical failure of the device. One approach to mitigate such effects is to package the sensitive device on a micromachined vibration isolator tuned to the frequency range of concern. In this regard, passive micromachined silicon lowpass filter structures (spring-mass-damper) have been developed and demonstrated. However, low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication has limited the effectiveness and general applicability of such systems. Through the integration of a electrostatic actuator, a relative velocity sensor and the passive filter structure, an active micromachined mechanical lowpass vibration isolation filter can be realized where the damping and resonant frequency can be tuned. This paper presents the development and validation of a key component of the micromachined active filter, a sensor for measuring the relative velocity between micromachined structures.

  7. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    NASA Astrophysics Data System (ADS)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  8. Antimicrobial activity of volatile components and various extracts of the red alga Jania rubens.

    PubMed

    Karabay-Yavasoglu, N Ulku; Sukatar, Atakan; Ozdemir, Guven; Horzum, Zerrin

    2007-02-01

    The methanol, dichloromethane, hexane, chloroform and volatile oil extracts of the red alga Jania rubens were tested in vitro for their antimicrobial activity (five Gram-positive, four Gram-negative bacteria and Candida albicans ATCC 10239). GC-MS analysis of the volatile components of J. rubens identified 40 compounds which constituted 77.53% of the total. The volatile components of J. rubens consisted of n-docosane (6.35%), n-eicosane (5.77%) and n-tetratriacontane (5.58%) as major components. The methanol and chloroform extracts (4 mg/disc) showed more potent antimicrobial activity than the hexane and dichloromethane extracts and the volatile oil of J. rubens. PMID:17128433

  9. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-22

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form. PMID:24164775

  10. Meaningful Components of Exercise and Active Recreation for Spinal Cord Injuries.

    PubMed

    Luchauer, Bryna; Shurtleff, Timothy

    2015-10-01

    This qualitative study used focus groups to identify meaningful components of exercise and active recreation (E/AR) related to consistent participation for those with spinal cord injury (SCI). Transcripts from each focus group were analyzed with classical content analysis, grounded theory coding, and meaning condensation using the International Classification of Function, Disability and Health (ICF). Variables within each of the ICF domains (body structures and functions, activities/participation, and environment) were indicated as meaningful components leading to increased participation, independence, and reasons why people consistently participated in E/AR. Occupational therapists can utilize these components to implement therapeutic intervisions, which provide clients with a sense of purpose and being, thus improving outcomes in meaningful occupations. PMID:27505903

  11. ALTERATION OF CARDIAC ELECTRICAL ACTIVITY BY WATER-LEACHABLE COMPONENTS OF RESIDUAL OIL FLY ASH (ROFA)

    EPA Science Inventory

    Alteration of cardiac electrical activity by water-leachable components
    of residual oil fly ash (ROFA)

    Desuo Wang, Yuh-Chin T. Huang*, An Xie, Ting Wang

    *Human Studies Division, NHEERL, US EPA
    104 Mason Farm Road, Chapel Hill, NC 27599
    Department of Basic ...

  12. The Components of Effective Professional Development Activities in Terms of Teachers' Perspective

    ERIC Educational Resources Information Center

    Bayar, Adem

    2014-01-01

    Teacher preparedness is linked to student achievement, yet regularly teachers are entering the profession unprepared. In-service training, or professional development activities, are increasingly being used to remedy this situation. There is little agreement regarding exactly what key components should be included in an effective professional…

  13. Suicide Risk by Military Occupation in the DoD Active Component Population

    ERIC Educational Resources Information Center

    Trofimovich, Lily; Reger, Mark A.; Luxton, David D.; Oetjen-Gerdes, Lynne A.

    2013-01-01

    Suicide risk based on occupational cohorts within the U.S. military was investigated. Rates of suicide based on military occupational categories were computed for the Department of Defense (DoD) active component population between 2001 and 2010. The combined infantry, gun crews, and seamanship specialist group was at increased risk of suicide…

  14. Optical imaging of the prefrontal activity in joint attention experience

    PubMed Central

    Qiu, Lina; Zhang, Xiao; Li, Jun

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) was used to measure the prefrontal activity in joint attention experience. 16 healthy adults participated in the experiment in which 42 optical channels were fixed over the anterior prefrontal cortex (aPFC), dorsolateral prefrontal cortex (DLPFC), inferior frontal gyrus (IFG) and a small anterior portion of the superior temporal gyrus (STG). Video stimuli were used to engender joint or non-joint attention experience in observers. Cortical hemodynamic response and functional connectivity were measured and averaged across all subjects for each stimulus condition. Our data showed the activation in joint attention located in the aPFC and DLPFC bilaterally, but dominantly in the left hemisphere. This observation, together with the previous findings on infants and children, provides a clear developmental scenario on the prefrontal activation associated with joint attention process. In the case of non-joint attention condition, only a small region of the right DLPFC was activated. Functional connectivity was observed to be enhanced, but differently in joint and non-joint attention condition. PMID:26417513

  15. Optimization of surface-mount-device light-emitting diode packaging: investigation of effects of component optical properties on light extraction efficiency

    NASA Astrophysics Data System (ADS)

    Kashiwao, Tomoaki; Hiura, Mayu; Lim, Yee Yan; Bahadori, Alireza; Ikeda, Kenji; Deguchi, Mikio

    2016-02-01

    An investigation of the effects of the optical properties of surface-mount-device (SMD) light-emitting diode (LED) (side-view and top-view LEDs) packaging (PKG) components on the light extraction efficiency ηPKG using ray-tracing simulations is presented. In particular, it is found that the optical properties of the PKG resin and the lead-frame (L/F) silver-plating significantly affect ηPKG. Thus, the effects of the surface reflection methods of these components are investigated in order to optimize the optical design of the LED PKG. It is shown that there exists peak extraction efficiency for each PKG, and the cavity angle formed by the cavity wall is important to the optical design. In addition, the effect of phosphor present in the mold resin is examined using a Mie scattering simulation. Finally, an SMD LED PKG optical design method is proposed on the basis of the simulation results.

  16. Optical Coating Performance for Heat Reflectors of the JWST-ISIM Electronic Component

    NASA Technical Reports Server (NTRS)

    Rashford, Robert A.; Perrygo, Charles M.; Garrison, Matthew B.; White, Bryant K.; Threat, Felix T.; Quijada, Manuel A.; Jeans, James W.; Huber, Frank K.; Bousquet, Robert R.; Shaw, Dave

    2011-01-01

    A document discusses a thermal radiator design consisting of lightweight composite materials and low-emittance metal coatings for use on the James Webb Space Telescope (JWST) structure. The structure will have a Thermal Subsystem unit to provide passive cooling to the Integrated Science Instrument Module (ISIM) control electronics. The ISIM, in the JWST observatory, is the platform that provides the mounting surfaces for the instrument control electronics. Dissipating the control electronic generated-heat away from JWST is of paramount importance so that the spacecraft s own heat does not interfere with the infrared-light gathering of distant cosmic sources. The need to have lateral control in the emission direction of the IEC (ISIM Electronics Compartment) radiators led to the development of a directional baffle design that uses multiple curved mirrorlike surfaces. This concept started out from the so-called Winston non-imaging optical concentrators that use opposing parabolic reflector surfaces, where each parabola has its focus at the opposite edge of the exit aperture. For this reason they are often known as compound parabolic concentrators or CPCs. This radiator system with the circular section was chosen for the IEC reflectors because it offers two advantages over other designs. The first is that the area of the reflector strips for a given radiator area is less, which results in a lower mass baffle assembly. Secondly, the fraction of energy emitted by the radiator strips and subsequently reflected by the baffle is less. These fewer reflections reduced the amount of energy that is absorbed and eventually re-emitted, typically in a direction outside the design emission range angle. A baffle frame holds the mirrors in position above a radiator panel on the IEC. Together, these will direct the majority of the heat from the IEC above the sunshield away towards empty space.

  17. Polyazomethine as a component of solar cells-theoretical and optical study

    NASA Astrophysics Data System (ADS)

    Korona, K. P.; Korona, T.; Rutkowska-Zbik, D.; Grankowska-Ciechanowicz, S.; Iwan, A.; Kamińska, M.

    2015-11-01

    A recently synthesized 25Th-cardo polyazomethine (PAZ) and its photocurrent generating junction with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) have been examined as possible materials for construction of new-generation solar cells. Properties of a 25Th-cardo/PCBM system, where PAZ and PCBM act as donor and acceptor materials, respectively, have been studied theoretically by time-dependent density-functional theory (TD-DFT) and experimentally by means of optical absorption, photocurrent spectroscopy (PCS), and time-resolved luminescence (TRPL). Theoretical calculations show that highest occupied molecular orbital (HOMO) energy levels of PAZ and PCBM are almost equal (values of -6.01 and -5.98 eV were obtained with the B3LYP functional and the def2-TZVP orbital basis for PAZ and PCBM, respectively), what suggests a possibility of charge transfer in both directions for this system. The shape of the calculated absorption spectrum is in a qualitative agreement with the experiment. The PCS measurements of the new material show that the external quantum efficiency is the highest (about 0.3%) in the near UV range. The TRPL studies reveal a fast decay of a Langevin type (in picosecond range) of the PAZ-related photoluminescence, which accelerates in presence of PCBM, probably due to the charge transfer to PCBM. In addition, our measurements document a usually neglected process of the hole transfer from a donor to an acceptor. A leakage of holes from PAZ to PCBM is supported by a small energy difference of the HOMO energies, as predicted by theory.

  18. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  19. Fabrication of optically active nanostructures by chemical methods

    NASA Astrophysics Data System (ADS)

    Moran, Cristin Erin

    A new method of fabricating long-range, planar arrays of discrete, submicron metal structures on glass or SiO2/Si surfaces has been developed without the use of resist masks or chemical etching. The approach combines microcontact printing and electroless plating for the controlled deposition of islands or lines of gold or silver. The metallic structures are varied in size, separation and shape by using a variety of commercial diffraction gratings to mold the polydimethylsiloxane (PDMS) elastomer stamps. An assortment of distinct geometrical patterns have been fabricated and imaged on a range of length scales using scanning probe, scanning electron, and optical microscopies. Additionally, the same chemical techniques can be used to pattern surfaces with biomolecules and ordered arrays of metal nanoshells. These arrays of metal nanostructures support surface plasmon propagation and also show plasmon-plasmon interactions dependent on the geometry of the metal features. These structures were used to investigate the effects of molecular functionalization on the excitation and propagation properties of the surface plasmons that are supported by this geometry. Distinct variations in the dispersion and energy gaps of surface plasmons on these structures due to chemical functionalization of the metal structures is observed. A second type of optically active structure, rare-earth doped silica particles, has been synthesized using wet chemistry. The polydispersity of the particles can be controlled by changing the concentration of dopant salt. These particles may be useful for microlaser or display technologies.

  20. Optical Properties of Anisotropic Polycrystalline Ce+3 activated LSO

    PubMed Central

    Roy, Sudesna; Lingertat, Helmut; Brecher, Charles; Sarin, Vinod

    2012-01-01

    Polycrystalline cerium activated lutetium oxyorthosilicate (LSO:Ce) is highly desirable technique to make cost effective and highly reproducible radiation detectors for medical imaging. In this article methods to improve transparency in polycrystalline LSO:Ce were explored. Two commercially available powders of different particulate sizes (average particle size 30 and 1500 nm) were evaluated for producing dense LSO:Ce by pressure assisted densification routes, such as hot pressing and hot isostatic pressing. Consolidation of the powders at optimum conditions produced three polycrystalline ceramics with average grain sizes of 500 nm, 700 and 2000 nm. Microstructural evolution studies showed that for grain sizes larger than 1 µm, anisotropy in thermal expansion coefficient and elastic constants of LSO, resulted in residual stress at grain boundaries and triple points that led to intragranular microcracking. However, reducing the grain size below 1 µm effectively avoids microcracking, leading to more favorable optical properties. The optical scattering profiles generated by a Stover scatterometer, measured by a He-Ne laser of wavelength 633 nm, showed that by reducing the grain size from 2 µm to 500 nm, the in-line transmission increased by a factor of 103. Although these values were encouraging and showed that small changes in grain size could increase transmission by almost 3 orders of magnitude, even smaller grain sizes need to be achieved in order to get truly transparent material with high in-line transmission. PMID:23505329

  1. Application of independent component analysis to ac dipole based optics measurement and correction at the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Shen, X.; Lee, S. Y.; Bai, M.; White, S.; Robert-Demolaize, G.; Luo, Y.; Marusic, A.; Tomás, R.

    2013-11-01

    Correction of beta-beat is of great importance for performance improvement of high energy accelerators, like the Relativistic Hadron Ion Collider (RHIC). At RHIC, using the independent component analysis method, linear optical functions are extracted from the turn by turn beam position data of the ac dipole driven betatron oscillation. Despite the constraint of a limited number of available quadrupole correctors at RHIC, a global beta-beat correction scheme using a beta-beat response matrix method was developed and experimentally demonstrated. In both rings, a factor of 2 or better reduction of beta-beat was achieved within available beam time. At the same time, a new scheme of using horizontal closed orbit bump at sextupoles to correct beta-beat in the arcs was demonstrated in the Yellow ring of RHIC at beam energy of 255 GeV, and a peak beta-beat of approximately 7% was achieved.

  2. The First Component of the Adaptive Optics Facility Enters Operations: The Laser Traffic Control System on Paranal

    NASA Astrophysics Data System (ADS)

    Amico, P.; Santos, P.; Summers, D.; Duhoux, Ph.; Arsenault, R.; Bierwirth, Th.; Kuntschner, H.; Madec, P.-Y.; Prümm, M.; Rejkuba, M.

    2015-12-01

    The Laser Traffic Control System (LTCS) entered routine operations on 1 October 2015 at the Paranal Observatory as the first component of the Adaptive Optics Facility (AOF). LTCS allows the night operators to plan and execute the observations without having to worry about possible collisions between the AOF's powerful laser beams and other telescopes with laser-sensitive instruments. LTCS provides observers with real-time information about ongoing collisions, predictive information for possible collisions and priority resolution between telescope pairs, where at least one telescope is operating a laser. LTCS is now deployed and embedded in the observatory's operational environment, supporting high configurability of telescopes and instruments, right-of-way priority rules and interfacing with ESO's observing tools for Service and Visitor Mode observations.

  3. Fluence Thresholds for Laser-Induced Damage of Optical Components in the Injector Laser of the SSRL Gun Test Facility

    SciTech Connect

    Boton, P

    2005-01-31

    Damage threshold fluences for several optical components were measured at three wavelengths using the injector laser at SSRL's Gun Test Facility. Measurements were conducted using the fundamental ir wavelength at 1053 nanometers and harmonics at 526 nm and 263 nm with 3.4ps pulses (1/e{sup 2} full width intensity); ir measurements were also conducted with 850 ps pulses. Practical surfaces relevant to the laser system performance are emphasized. Damage onset was evidenced by an alteration of the specular reflection of a cw probe laser (650 nm) from the irradiated region of the target surface. For the case of stretched ir pulses, damage to a Nd:glass rod was observed to begin at a site within the bulk material and to progress back toward the incident surface.

  4. External Perturbation of the Trunk in Standing Humans Differentially Activates Components of the Medial Back Muscles

    PubMed Central

    Moseley, G Lorimer; Hodges, Paul W; Gandevia, S C

    2003-01-01

    During voluntary arm movements, the medial back muscles are differentially active. It is not known whether differential activity also occurs when the trunk is perturbed unpredictably, when the earliest responses are initiated by short-latency spinal mechanisms rather than voluntary commands. To assess this, in unpredictable and self-initiated conditions, a weight was dropped into a bucket that was held by the standing subject (n= 7). EMG activity was recorded from the deep (Deep MF), superficial (Sup MF) and lateral (Lat MF) lumbar multifidus, the thoracic erector spinae (ES) and the biceps brachii. With unpredictable perturbations, EMG activity was first noted in the biceps brachii, then the thoracic ES, followed synchronously in the components of the multifidus. During self-initiated perturbations, background EMG in the Deep MF increased two- to threefold, and the latency of the loading response decreased in six out of the seven subjects. In Sup MF and Lat MF, this increase in background EMG was not observed, and the latency of the loading response was increased. Short-latency reflex mechanisms do not cause differential action of the medial back muscles when the trunk is loaded. However, during voluntary tasks the central nervous system exerts a ‘tuned response’, which involves discrete activity in the deep and superficial components of the medial lumbar muscles in a way that varies according to the biomechanical action of the muscle component. PMID:12562944

  5. Condensed tannins. Optically active diastereoisomers of (+)-mollisacacidin by epimerization

    PubMed Central

    Drewes, S. E.; Roux, D. G.

    1965-01-01

    1. (+)-Mollisacacidin [(+)-3′,4′,7-trihydroxy-2,3-trans-flavan-3,4-trans- diol] is converted by autoclaving into the optically active free phenolic 2,3-trans-3-4-cis (12% yield), 2,3-cis-3,4-trans (11%) and 2,3-cis-3,4-cis (2·8%) diastereoisomers through epimerization at C-2 and C-4. 2. The relative configurations of the epimeric forms were determined by nuclear-magnetic-resonance spectrometry and paper ionophoresis in comparison with synthetic reference compounds, and was confirmed by chemical interconversions. 3. From this a scheme of epimerization is inferred and their absolute configurations are assigned as (2R:3S:4S), (2S:3S:4R) and (2S:3S:4S) respectively from the known absolute configuration (2R:3S:4R) of (+)-mollisacacidin. PMID:14348209

  6. Analysis of active components in Salvia miltiorrhiza injection based on vascular endothelial cell protection.

    PubMed

    Shen, Jie; Yang, Kai; Sun, Caihua; Zheng, Minxia

    2014-09-01

    Correlation analysis based on chromatograms and pharmacological activities is essential for understanding the effective components in complex herbal medicines. In this report, HPLC and measurement of antioxidant properties were used to describe the active ingredients of Salvia miltiorrhiza injection (SMI). HPLC results showed that tanshinol, protocatechuic aldehyde, rosmarinic acid, salvianolic acid B, protocatechuic acid and their metabolites in rat serum may contribute to the efficacy of SMI. Assessment of antioxidant properties indicated that differences in the composition of serum powder of SMI caused differences in vascular endothelial cell protection. When bivariate correlation was carried out it was found that salvianolic acid B, tanshinol and protocatechuic aldehyde were active components of SMI because they were correlated to antioxidant properties. PMID:25296678

  7. Anticancer activity of essential oils and their chemical components - a review

    PubMed Central

    Bayala, Bagora; Bassole, Imaël HN; Scifo, Riccardo; Gnoula, Charlemagne; Morel, Laurent; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    Essential oils are widely used in pharmaceutical, sanitary, cosmetic, agriculture and food industries for their bactericidal, virucidal, fungicidal, antiparasitical and insecticidal properties. Their anticancer activity is well documented. Over a hundred essential oils from more than twenty plant families have been tested on more than twenty types of cancers in last past ten years. This review is focused on the activity of essential oils and their components on various types of cancers. For some of them the mechanisms involved in their anticancer activities have been carried out. PMID:25520854

  8. Phase matching of four-wave interactions of SRS components in birefringent SRS-active crystals

    SciTech Connect

    Smetanin, Sergei N; Basiev, Tasoltan T

    2012-03-31

    A new method has been proposed for achieving wave vector matching in four-wave interactions of frequency components upon SRS in birefringent SRS-active crystals. The method ensures anti-Stokes wave generation and enables a substantial reduction in higher order Stokes SRS generation thresholds. Phase matching directions in BaWO{sub 4} SRS-active negative uniaxial crystals and SrWO{sub 4} SRS-active positive uniaxial crystals have been found in the wavelength range 0.4 - 0.7 {mu}m.

  9. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  10. Drug target identification using network analysis: Taking active components in Sini decoction as an example.

    PubMed

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  11. Optically powered active sensing system for Internet Of Things

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Wang, Jin; Yin, Long; Yang, Jing; Jiang, Jian; Wan, Hongdan

    2014-10-01

    Internet Of Things (IOT) drives a significant increase in the extent and type of sensing technology and equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such sensing systems will all require to be powered. Conventionally, electrical powering is supplied by batteries or/and electric power cables. The power supply by batteries usually has a limited lifetime, while the electric power cables are susceptible to electromagnetic interference. In fact, the electromagnetic interference is the key issue limiting the power supply in the strong electromagnetic radiation area and other extreme environments. The novel alternative method of power supply is power over fiber (PoF) technique. As fibers are used as power supply lines instead, the delivery of the power is inherently immune to electromagnetic radiation, and avoids cumbersome shielding of power lines. Such a safer power supply mode would be a promising candidate for applications in IOT. In this work, we built up optically powered active sensing system, supplying uninterrupted power for the remote active sensors and communication modules. Also, we proposed a novel maximum power point tracking technique for photovoltaic power convertors. In our system, the actual output efficiency greater than 40% within 1W laser power. After 1km fiber transmission and opto-electric power conversion, a stable electric power of 210mW was obtained, which is sufficient for operating an active sensing system.

  12. Active fiber optic technologies used as tamper-indicating devices

    SciTech Connect

    Horton, P.R.V.; Waddoups, I.G.

    1995-11-01

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.

  13. Comparative pharmacological activity of optical isomers of phenibut.

    PubMed

    Dambrova, Maija; Zvejniece, Liga; Liepinsh, Edgars; Cirule, Helena; Zharkova, Olga; Veinberg, Grigory; Kalvinsh, Ivars

    2008-03-31

    Phenibut (3-phenyl-4-aminobutyric acid) is a GABA (gamma-aminobutyric acid)-mimetic psychotropic drug which is clinically used in its racemic form. The aim of the present study was to compare the effects of racemic phenibut and its optical isomers in pharmacological tests and GABAB receptor binding studies. In pharmacological tests of locomotor activity, antidepressant and pain effects, S-phenibut was inactive in doses up to 500 mg/kg. In contrast, R-phenibut turned out to be two times more potent than racemic phenibut in most of the tests. In the forced swimming test, at a dose of 100 mg/kg only R-phenibut significantly decreased immobility time. Both R-phenibut and racemic phenibut showed analgesic activity in the tail-flick test with R-phenibut being slightly more active. An GABAB receptor-selective antagonist (3-aminopropyl)(diethoxymethyl)phosphinic acid (CGP35348) inhibited the antidepressant and antinociceptive effects of R-phenibut, as well as locomotor depressing activity of R-phenibut in open field test in vivo. The radioligand binding experiments using a selective GABAB receptor antagonist [3H]CGP54626 revealed that affinity constants for racemic phenibut, R-phenibut and reference GABA-mimetic baclofen were 177+/-2, 92+/-3, 6.0+/-1 microM, respectively. We conclude that the pharmacological activity of racemic phenibut relies on R-phenibut and this correlates to the binding affinity of enantiomers of phenibut to the GABAB receptor. PMID:18275958

  14. Rapid optical determination of β-lactamase and antibiotic activity

    PubMed Central

    2014-01-01

    Background The absence of rapid tests evaluating antibiotic susceptibility results in the empirical prescription of antibiotics. This can lead to treatment failures due to escalating antibiotic resistance, and also furthers the emergence of drug-resistant bacteria. This study reports a rapid optical method to detect β-lactamase and thereby assess activity of β-lactam antibiotics, which could provide an approach for targeted prescription of antibiotics. The methodology is centred on a fluorescence quenching based probe (β-LEAF – β-Lactamase Enzyme Activated Fluorophore) that mimics the structure of β-lactam antibiotics. Results The β-LEAF assay was performed for rapid determination of β-lactamase production and activity of β-lactam antibiotic (cefazolin) on a panel of Staphylococcus aureus ATCC strains and clinical isolates. Four of the clinical isolates were determined to be lactamase producers, with the capacity to inactivate cefazolin, out of the twenty-five isolates tested. These results were compared against gold standard methods, nitrocefin disk test for β-lactamase detection and disk diffusion for antibiotic susceptibility, showing results to be largely consistent. Furthermore, in the sub-set of β-lactamase producers, it was demonstrated and validated that multiple antibiotics (cefazolin, cefoxitin, cefepime) could be assessed simultaneously to predict the antibiotic that would be most active for a given bacterial isolate. Conclusions The study establishes the rapid β-LEAF assay for β-lactamase detection and prediction of antibiotic activity using S. aureus clinical isolates. Although the focus in the current study is β-lactamase-based resistance, the overall approach represents a broad diagnostic platform. In the long-term, these studies form the basis for the development of assays utilizing a broader variety of targets, pathogens and drugs. PMID:24708478

  15. Design, Analysis, and Characterization of Metamaterial Quasi-Optical Components for Millimeter-Wave Automotive Radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Vinh Ngoc

    Since their introduction by Mercedes Benz in the late 1990s, W-band radars operating at 76-77 GHz have found their way into more and more passenger cars. These automotive radars are typically used in adaptive cruise control, pre-collision sensing, and other driver assistance systems. While these systems are usually only about the size of two stacked cigarette packs, system size, and weight remains a concern for many automotive manufacturers. In this dissertation, I discuss how artificially structured metamaterials can be used to improve lens-based automotive radar systems. Metamaterials allow the fabrication of smaller and lighter systems, while still meeting the frequency, high gain, and cost requirements of this application. In particular, I focus on the development of planar artificial dielectric lenses suitable for use in place of the injection-molded lenses now used in many automotive radar systems. I begin by using analytic and numerical ray-tracing to compare the performance of planar metamaterial GRIN lenses to equivalent aspheric refractive lenses. I do this to determine whether metamaterials are best employed in GRIN or refractive automotive radar lenses. Through this study I find that planar GRIN lenses with the large refractive index ranges enabled by metamaterials have approximately optically equivalent performance to equivalent refractive lenses for fields of view approaching +/-20°. I also find that the uniaxial nature of most planar metamaterials does not negatively impact planar GRIN lens performance. I then turn my attention to implementing these planar GRIN lenses at W-band automotive radar frequencies. I begin by designing uniform sheets of W-band electrically-coupled LC resonator-based metamaterials. These metamaterial samples were fabricated by the Jokerst research group on glass and liquid crystal polymer (LCP) substrates and tested at Toyota Research Institute- North America (TRI-NA). When characterized at W-band frequencies, these

  16. Optical observations of comet 67P/Churyumov-Gerasimenko with the Nordic Optical Telescope. Comet activity before the solar conjunction

    NASA Astrophysics Data System (ADS)

    Zaprudin, B.; Lehto, H. J.; Nilsson, K.; Pursimo, T.; Somero, A.; Snodgrass, C.; Schulz, R.

    2015-11-01

    Context. 67P/Churyumov-Gerasimenko (67P) is a short-period Jupiter-family comet that was chosen as a target for the Rosetta mission by the European Space Agency (ESA). Monitoring of 67P with the Nordic Optical Telescope (NOT; La Palma, Spain) intends to aid this mission by providing ground-based reference information about the overall activity of the target and its astrometric position before the rendezvous. One motivation for our observations was to monitor sudden major increases in activity because they might have affected the Rosetta mission planning. None were observed. Ground-based photometric observations register the global activity of the comet, while the Rosetta spacecraft mostly measures local events. These data combined can lead to new insights into the comet behavior. Aims: The aim of this work is to perform the photometric and the astrometric monitoring of comet 67P with the NOT and to compare the results with the latest predictions for its position and activity. A new method of fitting extended-source components to the target surface brightness distribution was developed and applied to the data to estimate the size and contribution of the coma to the total brightness of the target. Methods: Comet 67P was monitored by the NOT in service mode during the period between 12.5.2013 and 11.11.2014. The very first observations were performed in the V band alone, but in the latest observations, the R band was used as well to estimate the color and nature of activity of the target. We applied a new method for estimating the coma size by deconvolving the point spread function profile from the image, which used Markov chain Monte Carlo and Bayesian statistics. This method will also be used for coma size estimations in further observations after the solar conjunction of 67P. Results: Photometric magnitudes in two colors were monitored during the period of observations. At the end of April 2014, the beginning of activity was observed. In late September 2014, a

  17. Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania, their mitochondria and other microorganisms.

    PubMed

    Monzote, Lianet; García, Marley; Pastor, Jacinta; Gil, Lizette; Scull, Ramón; Maes, Louis; Cos, Paul; Gille, Lars

    2014-01-01

    Chenopodium ambrosioides is an aromatic herb used by native people to treat parasitic diseases. The aim of this work is to compare the in vitro anti-leishmanial activity of the essential oil (EO) from C. ambrosioides and its major components (ascaridole, carvacrol and caryophyllene oxide) and study their mechanism of action and activity against a panel of microorganism. Antileishmanial activity and cytotoxicity of the EO and major components was study. In addition, experiments to elucidate the mechanism of action were perform and activities against other microorganisms (bacteria, fungi and protozoa) were evaluate. All products were active against promastigote and amastigote forms of Leishmania. Ascaridole exhibited the better antileishmanial activity and the EO the highest selectivity index. The exploration of the mechanism suggests that the products cause a breakdown of mitochondrial membrane potential and a modification of redox indexes. Only EO showed antiprotozoal effect against Plasmodium falciparum and Trypanosoma brucei; while no activity against bacteria and fungi was observed. Our results demonstrate the potentialities of EO in cellular and molecular system, which could be consider in future studies to develop new antileishmanial drugs with a wide anti-parasitic spectrum. PMID:24184772

  18. Spectroscopic sensing of reflection optical activity in achiral AgGaS₂.

    PubMed

    Arteaga, Oriol

    2015-09-15

    Optical activity is a fundamental effect of electrodynamics that was discovered more than 200 years ago. While optical activity is typically recognized by the rotation of the polarization of light as it propagates through a bulk medium, in certain configurations, the specular reflection of light on the surface of a material is also sensitive to its optical activity. Here, we show that the ellipsometric analysis of the light reflected at the surface of a gyrotropic but achiral crystal of AgGaS(2) allows the spectroscopic determination of its optical activity above the bandgap, where transmission methods are not applicable. This is the first clear spectroscopic determination of reflection optical activity in a crystal, and the values obtained are, to the best of our knowledge, the largest ever reported for a natural material. We also demonstrate that normal incidence transmission and reflection measurements probe different aspects of optical activity. PMID:26371915

  19. Antidiabetic Effect of an Active Components Group from Ilex kudingcha and Its Chemical Composition

    PubMed Central

    Song, Chengwu; Xie, Chao; Zhou, Zhiwen; Yu, Shanggong; Fang, Nianbai

    2012-01-01

    The leaves of Ilex kudingcha are used as an ethnomedicine in the treatment of symptoms related with diabetes mellitus and obesity throughout the centuries in China. The present study investigated the antidiabetic activities of an active components group (ACG) obtained from Ilex kudingcha in alloxan-induced type 2 diabetic mice. ACG significantly reduced the elevated levels of serum glycaemic and lipids in type 2 diabetic mice. 3-Hydroxy-3-methylglutaryl coenzyme A reductase and glucokinase were upregulated significantly, while fatty acid synthetase, glucose-6-phosphatase catalytic enzyme was downregulated in diabetic mice after treatment of ACG. These findings clearly provided evidences regarding the antidiabetic potentials of ACG from Ilex kudingcha. Using LC-DAD/HR-ESI-TOF-MS, six major components were identified in ACG. They are three dicaffeoylquinic acids that have been reported previously, and three new triterpenoid saponins, which were the first time to be identified in Ilex kudingcha. It is reasonable to assume that antidiabetic activity of Ilex kudingcha against hyperglycemia resulted from these six major components. Also, synergistic effects among their compounds may exist in the antidiabetic activity of Ilex kudingcha. PMID:22474502

  20. Local Relationship between Global-Flash Multifocal Electroretinogram Optic Nerve Head Components and Visual Field Defects in Patients with Glaucoma

    PubMed Central

    Moon, Chan Hee; Han, Jungwoo; Ohn, Young-Hoon; Park, Tae Kwann

    2015-01-01

    Purpose. To investigate the local relationship between quantified global-flash multifocal electroretinogram (mfERG) optic nerve head component (ONHC) and visual field defects in patients with glaucoma. Methods. Thirty-nine patients with glaucoma and 30 normal controls were enrolled. The ONHC amplitude was measured from the baseline to the peak of the second positive deflection of the induced component. The ONHC amplitude was normalized by dividing ONHC amplitude by the average of seven largest ONHC amplitudes. The ONHC amplitude ratio map and ONHC deficiency map were constructed. The local relationship between the ONHC measurements and visual field defects was evaluated by calculating the overlap between the ONHC deficiency maps and visual field defect plots. Results. The mean ONHC amplitude measurements of patients with glaucoma (6.01 ± 1.91 nV/deg2) were significantly lower than those of the normal controls (10.29 ± 0.94 nV/deg2) (P < 0.001). The average overlap between the ONHC deficiency map and visual field defect plot was 71.4%. The highest overlap (75.0%) was between the ONHC ratios less than 0.5 and the total deviations less than 5%. Conclusions. The ONHC amplitude was reduced in patients with glaucoma compared to that in normal controls. Loss of the ONHC amplitude from the global-flash mfERG showed a high local agreement with visual field defects in patients with glaucoma. PMID:26697210