Science.gov

Sample records for active optical control

  1. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  2. Active optics control development at the LBT

    NASA Astrophysics Data System (ADS)

    Ashby, David S.; Biddick, Christopher; Hill, John M.

    2014-07-01

    The Large Binocular Telescope (LBT) is built around two 8.4 m-diameter primary mirrors placed with a centerline separation of 14.4 m in a common altitude/azimuth mount. Each side of the telescope can utilize a deployable prime focus instrument; alternatively, the beam can be directed to a Gregorian instrument by utilizing a deployable secondary mirror. The direct-Gregorian beam can be intercepted and redirected to several bent-Gregorian instruments by utilizing a deployable tertiary mirror. Two of the available bent-Gregorian instruments are interferometers, capable of coherently combining the beams from the two sides of the telescope. Active optics can utilize as many as 26 linearly independent degrees of freedom to position the primary, secondary and tertiary mirrors to control optical collimation while the telescope operates in its numerous observing modes. Additionally, by applying differential forces at 160 locations on each primary mirror, active optics controls the primary mirror figure. The authors explore the challenges associated with collimation and primary mirror figure control at the LBT and outline the ongoing related development aimed at optimizing image quality and preparing the telescope for interferometric operations.

  3. Actively controlled thin-shell space optics

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Flint, Eric M.; Main, John A.; Lindler, Jason E.

    2003-08-01

    Increasingly, scientific and military missions require the use of space-based optical systems. For example, new capabilities are required for imaging terrestrial like planets, for surveillance, and for directed energy applications. Given the difficulties in producing and launching large optics, it is doubtful that refinements of conventional technology will meet future needs, particularly in a cost-effective manner. To meet this need, recent research has been investigating the feasibility of a new class of ultra-lightweight think-skin optical elements that combine recent advances in lightweight thermally formed materials, active materials, and novel sensing and control architectures. If successful, the approach may lead to an order of magnitude reduction in space optics areal density, improved large scale manufacturing capability, and dramatic reductions in manufacturing and launch costs. In a recent effort, a one meter thin-film mirror like structure was fabricated. This paper provides an overview of tools used to model and simulate this structure as well as results from structural dynamic testing. In addition, progress in the area of non-contact global shape control using smart materials is presented.

  4. Nanomechanics of Actively Controlled Deployable Optics

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.

    2000-01-01

    This document is the interim, annual report for the research grant entitled "Nanomechanics of Actively Controlled Deployed Optics." It is supported by NASA Langley Research Center Cooperative Agreement NCC-1 -281. Dr. Mark S. Lake is the technical monitor of the research program. This document reports activities for the year 1998, beginning 3/11/1998, and for the year 1999. The objective of this report is to summarize the results and the status of this research. This summary appears in Section 2.0. Complete details of the results of this research have been reported in several papers, publications and theses. Section 3.0 lists these publications and, when available, presents their abstracts. Each publication is available in electronic form from a web site identified in Section 3.0.

  5. Active optics control of VST telescope secondary mirror.

    PubMed

    Schipani, Pietro; D'Orsi, Sergio; Fierro, Davide; Marty, Laurent

    2010-06-01

    In telescopes based on active optics, defocus and coma are usually compensated for by secondary mirror movements. They are performed at the Very Large Telescope Survey Telescope (VST) with a hexapod--a parallel robot with six degrees of freedom positioning capability. We describe the application of the two-mirror telescope theory to the VST case and the solutions adopted for the hexapod control. We present the results of performance and reliability tests performed both in the laboratory and at the telescope.

  6. Sparse matrix approximation method for an active optical control system

    NASA Astrophysics Data System (ADS)

    Murphy, Timothy P.; Lyon, Richard G.; Dorband, John E.; Hollis, Jan M.

    2001-12-01

    We develop a sparse matrix approximation method to decompose a wave front into a basis set of actuator influence functions for an active optical system consisting of a deformable mirror and a segmented primary mirror. The wave front used is constructed by Zernike polynomials to simulate the output of a phase-retrieval algorithm. Results of a Monte Carlo simulation of the optical control loop are compared with the standard, nonsparse approach in terms of accuracy and precision, as well as computational speed and memory. The sparse matrix approximation method can yield more than a 50-fold increase in the speed and a 20-fold-reduction in matrix size and a commensurate decrease in required memory, with less than 10% degradation in solution accuracy. Our method is also shown to be better than when elements are selected for the sparse matrix on a magnitude basis alone. We show that the method developed is a viable alternative to use of the full control matrix in a phase-retrieval-based active optical control system.

  7. Sparse matrix approximation method for an active optical control system.

    PubMed

    Murphy, T P; Lyon, R G; Dorband, J E; Hollis, J M

    2001-12-10

    We develop a sparse matrix approximation method to decompose a wave front into a basis set of actuator influence functions for an active optical system consisting of a deformable mirror and a segmented primary mirror. The wave front used is constructed by Zernike polynomials to simulate the output of a phase-retrieval algorithm. Results of a Monte Carlo simulation of the optical control loop are compared with the standard, nonsparse approach in terms of accuracy and precision, as well as computational speed and memory. The sparse matrix approximation method can yield more than a 50-fold increase in the speed and a 20-fold reduction in matrix size and a commensurate decrease in required memory, with less than 10% degradation in solution accuracy. Our method is also shown to be better than when elements are selected for the sparse matrix on a magnitude basis alone. We show that the method developed is a viable alternative to use of the full control matrix in a phase-retrieval-based active optical control system. PMID:18364958

  8. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    PubMed

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-28

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  9. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    PubMed

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-01

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  10. Design of an Optically Controlled MR-Compatible Active Needle

    PubMed Central

    Ryu, Seok Chang; Quek, Zhan Fan; Koh, Je-Sung; Renaud, Pierre; Black, Richard J.; Moslehi, Behzad; Daniel, Bruce L.; Cho, Kyu-Jin; Cutkosky, Mark R.

    2015-01-01

    An active needle is proposed for the development of magnetic resonance imaging (MRI)-guided percutaneous procedures. The needle uses a low-transition-temperature shape memory alloy (LT SMA) wire actuator to produce bending in the distal section of the needle. Actuation is achieved with internal optical heating using laser light transported via optical fibers and side coupled to the LT SMA. A prototype, with a size equivalent to a standard 16-gauge biopsy needle, exhibits significant bending, with a tip deflection of more than 14° in air and 5° in hard tissue. A single-ended optical sensor with a gold-coated tip is developed to measure the curvature independently of temperature. The experimental results in tissue phantoms show that human tissue causes fast heat dissipation from the wire actuator; however, the active needle can compensate for typical targeting errors during prostate biopsy. PMID:26512231

  11. Active flutter suppression using optical output feedback digital controllers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A method for synthesizing digital active flutter suppression controllers using the concept of optimal output feedback is presented. A convergent algorithm is employed to determine constrained control law parameters that minimize an infinite time discrete quadratic performance index. Low order compensator dynamics are included in the control law and the compensator parameters are computed along with the output feedback gain as part of the optimization process. An input noise adjustment procedure is used to improve the stability margins of the digital active flutter controller. Sample rate variation, prefilter pole variation, control structure variation and gain scheduling are discussed. A digital control law which accommodates computation delay can stabilize the wing with reasonable rms performance and adequate stability margins.

  12. Active control of electromagnetic radiation through an enhanced thermo-optic effect.

    PubMed

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A

    2015-03-09

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved.

  13. Active control of electromagnetic radiation through an enhanced thermo-optic effect.

    PubMed

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A

    2015-01-01

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved. PMID:25746689

  14. Active magneto-optical control of spontaneous emission in graphene

    DOE PAGES

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; Pinheiro, F. A.; Rosa, F. S. S.; Peres, N. M. R.; Farina, C.

    2015-11-13

    In this study, we investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magneticmore » field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.« less

  15. Active magneto-optical control of spontaneous emission in graphene

    SciTech Connect

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; Pinheiro, F. A.; Rosa, F. S. S.; Peres, N. M. R.; Farina, C.

    2015-11-13

    In this study, we investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magnetic field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.

  16. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  17. Coherent phonon optics in a chip with an electrically controlled active device

    PubMed Central

    Poyser, Caroline L.; Akimov, Andrey V.; Campion, Richard P.; Kent, Anthony J.

    2015-01-01

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale. PMID:25652241

  18. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-01-01

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale. PMID:25652241

  19. Active disturbance rejection controller of fine tracking system for free space optical communication

    NASA Astrophysics Data System (ADS)

    Cui, Ning; Liu, Yang; Chen, Xinglin; Wang, Yan

    2013-08-01

    Free space optical communication is one of the best approaches in future communications. Laser beam's acquisition, pointing and tracking are crucial technologies of free space optical communication. Fine tracking system is important component of APT (acquisition, pointing and tracking) system. It cooperates with the coarse pointing system in executing the APT mission. Satellite platform vibration and disturbance, which reduce received optical power, increase bit error rate and affect seriously the natural performance of laser communication. For the characteristic of satellite platform, an active disturbance rejection controller was designed to reduce the vibration and disturbance. There are three major contributions in the paper. Firstly, the effects of vibration on the inter satellite optical communications were analyzed, and the reasons and characters of vibration of the satellite platform were summarized. The amplitude-frequency response of a filter was designed according to the power spectral density of platform vibration of SILEX (Semiconductor Inter-satellite Laser Experiment), and then the signals of platform vibration were generated by filtering white Gaussian noise using the filter. Secondly, the fast steering mirror is a key component of the fine tracking system for optical communication. The mechanical design and model analysis was made to the tip/tilt mirror driven by the piezoelectric actuator and transmitted by the flexure hinge. The transfer function of the fast steering mirror, camera, D/A data acquisition card was established, and the theory model of transfer function of this system was further obtained. Finally, an active disturbance rejection control method is developed, multiple parallel extended state observers were designed for estimation of unknown dynamics and external disturbance, and the estimated states were used for nonlinear feedback control and compensation to improve system performance. The simulation results show that the designed

  20. Active Figure Control Effects on Mounting Strategy for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery J.; Atkins, Carolyn; Roche, Jacqueline M.; ODell, Stephen L.; Ramsey, Brian D.; Elsner, Ronald F.; Weisskopf, Martin C.; Gubarev, Mikhail V.

    2014-01-01

    As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested xray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.

  1. Analysis of Active Figure Control Effects on Mounting Strategy for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffrey J.; Roche, Jacqueline M.; O'Dell, Stephen L.; Ramsey, Brian D.; Elsner, Ryan F.; Gubarev, Mikhail V.; Weisskopf, Martin C.

    2014-01-01

    As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested x-ray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.

  2. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    NASA Technical Reports Server (NTRS)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  3. A thin film active-lens with translational control for dynamically programmable optical zoom

    NASA Astrophysics Data System (ADS)

    Yun, Sungryul; Park, Suntak; Park, Bongje; Nam, Saekwang; Park, Seung Koo; Kyung, Ki-Uk

    2015-08-01

    We demonstrate a thin film active-lens for rapidly and dynamically controllable optical zoom. The active-lens is composed of a convex hemispherical polydimethylsiloxane (PDMS) lens structure working as an aperture and a dielectric elastomer (DE) membrane actuator, which is a combination of a thin DE layer made with PDMS and a compliant electrode pattern using silver-nanowires. The active-lens is capable of dynamically changing focal point of the soft aperture as high as 18.4% through its translational movement in vertical direction responding to electrically induced bulged-up deformation of the DE membrane actuator. Under operation with various sinusoidal voltage signals, the movement responses are fairly consistent with those estimated from numerical simulation. The responses are not only fast, fairly reversible, and highly durable during continuous cyclic operations, but also large enough to impart dynamic focus tunability for optical zoom in microscopic imaging devices with a light-weight and ultra-slim configuration.

  4. Phantoms for polarized light exhibiting controllable scattering, birefringence, and optical activity

    NASA Astrophysics Data System (ADS)

    Wood, Michael F. G.; Ghosh, Nirmalya; Guo, Xinxin; Vitkin, I. Alex

    2008-02-01

    Recently, the use of polarized light for medical diagnosis and therapeutic management has seen increased interest due the noninvasive nature of light-tissue interactions. Examples of the use of polarized light include polarization imaging to enhance spatial resolution in turbid media, selective imaging of polarized light to increase surface contrast in tissue, polarization-sensitive optical coherence tomography (PS-OCT), and glucose monitoring. With these emerging applications there is a need for controllable phantoms to validate the emerging techniques; however, this has been done only to a limited degree primarily due to the difficulty in creating controllable phantoms. The primary effects of tissue on the polarization of light are scattering, linear birefringence, and optical activity (circular birefringence). An ideal phantom would exhibit all these effects simultaneously in a controllable fashion. We have achieved this through the use of polyacrylamide gels with polystyrene microspheres added as scattering particles, strain applied to the gels to create birefringence, and sucrose added for optical activity. The phantom methodology has been validated using our polarimetry system. Currently, the phantom system is being used to extend our work in birefringence mapping of the myocardium and to further our work in characterizing tissue.

  5. Active control for vibration suppression in a flexible beam using a modal domain optical fiber sensor

    NASA Technical Reports Server (NTRS)

    Cox, D. E.; Lindner, D. K.

    1991-01-01

    An account is given of the use of a modal-domain (MD) fiber-optic sensor as an active control system component for vibration suppression, whose output is proportional to the integral of the axial strain along the optical fiber. When an MD sensor is attached to, or embedded in, a flexible structure, it senses the strain in the structure along its gage length. On the basis of the present integration of the sensor model into a flexible-structure model, it becomes possible to design a control system with a dynamic compensator which adds damping to the low-order modes of the flexible structure. This modeling procedure has been experimentally validated.

  6. How to control optical activity in organic-silver hybrid nanoparticles.

    PubMed

    Hidalgo, Francisco; Noguez, Cecilia

    2016-08-14

    The mechanisms that originate and control optical activity in organic-metal hybrid nanoparticles (NPs) are identified using a time-perturbed density functional theory. Electronic circular dichroism (CD) is studied in terms of the intrinsic chirality of the ligands, the number of ligands and the induced chirality by the arrangement of the ligands on the NP. Left-handed cysteine and achiral methylthio ligands adsorbed on an icosahedral silver NP are investigated. The analysis of CD allows the identification of the spectral regions when the induced chirality by the ligand array dominates over the intrinsic chirality of the ligands, determining conditions for CD control and enlargement. These results would be significant in the discussion of experimental CD spectra of organic-metal hybrid NPs, which might allow the development of new strategies to improve the sensitivity of chiroptical spectroscopies for the identification of bio and organic molecules. PMID:27406401

  7. How to control optical activity in organic-silver hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Hidalgo, Francisco; Noguez, Cecilia

    2016-07-01

    The mechanisms that originate and control optical activity in organic-metal hybrid nanoparticles (NPs) are identified using a time-perturbed density functional theory. Electronic circular dichroism (CD) is studied in terms of the intrinsic chirality of the ligands, the number of ligands and the induced chirality by the arrangement of the ligands on the NP. Left-handed cysteine and achiral methylthio ligands adsorbed on an icosahedral silver NP are investigated. The analysis of CD allows the identification of the spectral regions when the induced chirality by the ligand array dominates over the intrinsic chirality of the ligands, determining conditions for CD control and enlargement. These results would be significant in the discussion of experimental CD spectra of organic-metal hybrid NPs, which might allow the development of new strategies to improve the sensitivity of chiroptical spectroscopies for the identification of bio and organic molecules.The mechanisms that originate and control optical activity in organic-metal hybrid nanoparticles (NPs) are identified using a time-perturbed density functional theory. Electronic circular dichroism (CD) is studied in terms of the intrinsic chirality of the ligands, the number of ligands and the induced chirality by the arrangement of the ligands on the NP. Left-handed cysteine and achiral methylthio ligands adsorbed on an icosahedral silver NP are investigated. The analysis of CD allows the identification of the spectral regions when the induced chirality by the ligand array dominates over the intrinsic chirality of the ligands, determining conditions for CD control and enlargement. These results would be significant in the discussion of experimental CD spectra of organic-metal hybrid NPs, which might allow the development of new strategies to improve the sensitivity of chiroptical spectroscopies for the identification of bio and organic molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6

  8. Active vibration control using a modal-domain fiber optic sensor

    NASA Technical Reports Server (NTRS)

    Cox, David E.

    1992-01-01

    A closed-loop control experiment is described in which vibrations of a cantilevered beam are suppressed using measurements from a modal-domain fiber optic sensor. Modal-domain sensors are interference between the modes of a few-mode optical waveguide to detect strain. The fiber is bonded along the length of the beam and provides a measurement related to the strain distribution on the surface of the beam. A model for the fiber optic sensor is derived, and this model is integrated with the dynamic model of the beam. A piezoelectric actuator is also bonded to the beam and used to provide control forces. Control forces are obtained through dynamic compensation of the signal from the fiber optic sensor. The compensator is implemented with a real-time digital controller. Analytical models are verified by comparing simulations to experimental results for both open-loop and closed-loop configurations.

  9. Fiber optics for controls

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1987-11-01

    The challenge of those involved in control-system hardware development is to accommodate an ever-increasing complexity in aircraft control, while limiting the size and weight of the components and improving system reliability. A technology that displays promise towards this end is the area of fiber optics for controls. The primary advantages of employing optical fibers, passive optical sensors, and optically controlled actuators are weight and volume reduction, immunity from electromagnetic effects, superior bandwidth capabilities, and freedom from short circuits and sparking contacts. Since 1975, NASA Lewis has performed in-house, contract, and grant research in fiber optic sensors, high-temperature electro-optic switches, and fly-by-light control-system architecture. Passive optical sensor development is an essential yet challenging area of work and has therefore received much attention during this period. A major effort to develop fly-by-light control-system technology, known as the Fiber-Optic Control System Integration (FOCSI) program, was initiated in 1985 as a cooperative effort between NASA and DOD. Phase 1 of FOCSI, completed in 1986, was aimed at the design of a fiber-optic integrated propulsion/flight control system. Phase 2, yet to be initiated, will provide subcomponent and system development, and a system engine test. In addition to a summary of the benefits of fiber optics, the FOCSI program, sensor advances, and future directions in the NASA Lewis program will be discussed.

  10. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1987-01-01

    The challenge of those involved in control-system hardware development is to accommodate an ever-increasing complexity in aircraft control, while limiting the size and weight of the components and improving system reliability. A technology that displays promise towards this end is the area of fiber optics for controls. The primary advantages of employing optical fibers, passive optical sensors, and optically controlled actuators are weight and volume reduction, immunity from electromagnetic effects, superior bandwidth capabilities, and freedom from short circuits and sparking contacts. Since 1975, NASA Lewis has performed in-house, contract, and grant research in fiber optic sensors, high-temperature electro-optic switches, and fly-by-light control-system architecture. Passive optical sensor development is an essential yet challenging area of work and has therefore received much attention during this period. A major effort to develop fly-by-light control-system technology, known as the Fiber-Optic Control System Integration (FOCSI) program, was initiated in 1985 as a cooperative effort between NASA and DOD. Phase 1 of FOCSI, completed in 1986, was aimed at the design of a fiber-optic integrated propulsion/flight control system. Phase 2, yet to be initiated, will provide subcomponent and system development, and a system engine test. In addition to a summary of the benefits of fiber optics, the FOCSI program, sensor advances, and future directions in the NASA Lewis program will be discussed.

  11. Design of active disturbance rejection controller for space optical communication coarse tracking system

    NASA Astrophysics Data System (ADS)

    Gu, Jian; Ai, Yong

    2015-10-01

    In order to improve the dynamic tracking performance of coarse tracking system in space optical communication, a new control method based on active disturbance rejection controller (ADRC) is proposed. Firstly, based on the structure analysis of coarse tracking system, the simplified system model was obtained, and then the extended state observer was designed to calculate state variables and spot disturbance from the input and output signals. Finally, the ADRC controller of coarse tracking system is realized with the combination of nonlinear PID controller. The simulation experimental results show that compared with the PID method, this method can significantly reduce the step response overshoot and settling time. When the target angular velocity is120mrad/s, tracking error with ADRC method is 30μrad, which decreases 85% compared with the PID method. Meanwhile the disturbance rejection bandwidth is increased by 3 times with ADRC. This method can effectively improve the dynamic tracking performance of coarse tracking and disturbance rejection degree, with no need of hardware upgrade, and is of certain reference value to the wide range and high dynamic precision photoelectric tracking system.

  12. Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device

    PubMed Central

    Guo, Yanmeng; Song, Peipei; Zhang, Xiaohui; Zeng, Shaoqun; Wang, Zuoren

    2011-01-01

    Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision. PMID:22174813

  13. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.

  14. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  15. A Spaceflight Magnetic Bearing Equipped Optical Chopper with Six-Axis Active Control

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A.; Lee, Kenneth Y.; Schepis, Joseph P.

    1998-01-01

    This paper describes the development of an ETU (Engineering Test Unit) rotary optical chopper with magnetic bearings. An ETU is required to be both flight-like, nearly identical to a flight unit without the need for material certifications, and demonstrate structural and performance integrity. A prototype breadboard design previously demonstrated the feasibility of meeting flight performance requirements using magnetic bearings. The chopper mechanism is a critical component of the High Resolution Dynamics Limb Sounder (HIRDLS) which will be flown on EOS-CHEM (Earth Observing System-Chemistry). Particularly noteworthy are the science requirements which demand high precision positioning and minimal power consumption along with full redundancy of coils and sensors in a miniature, lightweight package. The magnetic bearings are unique in their pole design to minimize parasitic losses and utilize collocated optical sensing. The motor is of an unusual disk-type ironless stator design. The ETU design has evolved from the breadboard design. A number of improvements have been incorporated into the ETU design. Active thrust control has been added along with changes to improve sensor stability, motor efficiency, and touchdown and launch survivability. It was necessary to do all this while simultaneously reducing the mechanism volume. Flight-like electronics utilize a DSP (Digital Signal Processor) and contain all sensor electronics and drivers on a single five inch by nine inch circuit board. Performance test results are reported including magnetic bearing and motor rotational losses.

  16. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties

    PubMed Central

    Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.

    2015-01-01

    The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175

  17. Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas.

    PubMed

    DeRose, C T; Kekatpure, R D; Trotter, D C; Starbuck, A; Wendt, J R; Yaacobi, A; Watts, M R; Chettiar, U; Engheta, N; Davids, P S

    2013-02-25

    An optical phased array of nanoantenna fabricated in a CMOS compatible silicon photonics process is presented. The optical phased array is fed by low loss silicon waveguides with integrated ohmic thermo-optic phase shifters capable of 2π phase shift with ∼ 15 mW of applied electrical power. By controlling the electrical power to the individual integrated phase shifters fixed wavelength steering of the beam emitted normal to the surface of the wafer of 8° is demonstrated for 1 × 8 phased arrays with periods of both 6 and 9 μm. PMID:23482053

  18. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  19. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1990-01-01

    The design, development, and testing of a fiber optic integrated propulsion/flight control system for an advanced supersonic dash aircraft (flies at supersonic speeds for short periods of time) is the goal of the joint NASA/DOD Fiber Optic Control System Integration (FOCSI) program. Phase 1 provided a comparison of electronic and optical control systems, identified the status of current optical sensor technology, defined the aircraft sensor/actuator environment, proposed architectures for fully optical control systems, and provided schedules for development. Overall, it was determined that there are sufficient continued efforts to develop such a system. It was also determined that it is feasible to build a fiber optic control system for the development of a data base for this technology, but that further work is necessary in sensors, actuators, and components to develop an optimum design, fully fiber optic integrated control system compatible with advanced aircraft environments. Phase 2 is to design, construct, and ground test a fly by light control system. Its first task is to provide a detailed design of the electro-optic architecture.

  20. Active Gaze Control Improves Optic Flow-Based Segmentation and Steering

    PubMed Central

    Raudies, Florian; Mingolla, Ennio; Neumann, Heiko

    2012-01-01

    An observer traversing an environment actively relocates gaze to fixate objects. Evidence suggests that gaze is frequently directed toward the center of an object considered as target but more likely toward the edges of an object that appears as an obstacle. We suggest that this difference in gaze might be motivated by specific patterns of optic flow that are generated by either fixating the center or edge of an object. To support our suggestion we derive an analytical model that shows: Tangentially fixating the outer surface of an obstacle leads to strong flow discontinuities that can be used for flow-based segmentation. Fixation of the target center while gaze and heading are locked without head-, body-, or eye-rotations gives rise to a symmetric expansion flow with its center at the point being approached, which facilitates steering toward a target. We conclude that gaze control incorporates ecological constraints to improve the robustness of steering and collision avoidance by actively generating flows appropriate to solve the task. PMID:22719889

  1. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.

    PubMed

    Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2016-05-01

    We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.

  2. CFD-based aero-optical analysis of flow fields over two-dimensional cavities with active flow control

    NASA Astrophysics Data System (ADS)

    Tan, Yan

    Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical

  3. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Congjun; Ohodnicki, Paul R.; Su, Xin; Keller, Murphy; Brown, Thomas D.; Baltrus, John P.

    2015-01-01

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an

  4. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

    PubMed

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F

    2015-10-13

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies.

  5. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy

    PubMed Central

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F.

    2015-01-01

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies. PMID:26460719

  6. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices. PMID:25572664

  7. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  8. Active control of adaptive optics system in a large segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Nagashima, M.; Agrawal, B. N.

    2014-02-01

    For a large adaptive optics system such as a large segmented mirror telescope (SMT), it is often difficult, although not impossible, to directly apply common multi-input multi-output (MIMO) controller design methods due to the computational burden imposed by the large dimension of the system model. In this article, a practical controller design method is proposed which significantly reduces the system dimension for a system where the dimension required to represent the dynamics of the plant is much smaller than the dimension of the full plant model. The proposed method decouples the dynamic and static parts of the plant model by a modal decomposition technique to separately design a controller for each part. Two controllers are then combined using the so-called sensitivity decoupling method so that the resulting feedback loop becomes the superposition of the two individual feedback loops of the dynamic and static parts. A MIMO controller was designed by the proposed method using the H ∞ loop-shaping technique for an SMT model to be compared with other controllers proposed in the literature. Frequency-domain analysis and time-domain simulation results show the superior performance of the proposed controller.

  9. Active loaded plasmonic antennas at terahertz frequencies: Optical control of their capacitive-inductive coupling

    NASA Astrophysics Data System (ADS)

    Georgiou, G.; Tserkezis, C.; Schaafsma, M. C.; Aizpurua, J.; Gómez Rivas, J.

    2015-03-01

    We demonstrate the photogeneration of loaded dipole plasmonic antennas resonating at THz frequencies. This is achieved by the patterned optical illumination of a semiconductor surface using a spatial light modulator. Our experimental results indicate the existence of capacitive and inductive coupling of localized surface plasmon polaritons. By varying the load in the antenna gap we are able to switch between both coupling regimes. Furthermore, we determine experimentally the effective impedance of the antenna load and verify that this load can be effectively expressed as a LC resonance formed by a THz inductor and capacitor connected in a parallel circuit configuration. These findings are theoretically supported by full electrodynamic calculations and by simple concepts of lumped circuit theory. Our results open new possibilities for the design of active THz circuits for optoelectronic devices.

  10. Toward automated beam optics control

    SciTech Connect

    Silbar, R.R.; Schultz, D.E.

    1987-01-01

    We have begun a program aiming toward automatic control of charged-particle beam optics using artificial intelligence programming techniques. In developing our prototype, we are working with LISP machines and the KEE expert system shell. Our first goal was to develop a ''mouseable'' representation of a typical beam line. This responds actively to changes entered from the mouse or keyboard, giving an updated display of the beam line itself, its optical properties, and the instrumentation and control devices as seen by the operater. We have incorporated TRANSPORT, written in Fortran but running as a callable procedure in the LISP environment, for simulation of the beam-line optics. This paper describes the experience gained in meeting our first goal and discusses plans to extend the work so that it is usable, in realtime, on an operating beam line. 11 refs.

  11. Stochastic optical active rheology

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsuk; Shin, Yongdae; Kim, Sun Taek; Reinherz, Ellis L.; Lang, Matthew J.

    2012-07-01

    We demonstrate a stochastic based method for performing active rheology using optical tweezers. By monitoring the displacement of an embedded particle in response to stochastic optical forces, a rapid estimate of the frequency dependent shear moduli of a sample is achieved in the range of 10-1-103 Hz. We utilize the method to probe linear viscoelastic properties of hydrogels at varied cross-linker concentrations. Combined with fluorescence imaging, our method demonstrates non-linear changes of bond strength between T cell receptors and an antigenic peptide due to force-induced cell activation.

  12. Optical activity and evolution.

    PubMed

    Khasanov, M M; Gladyshev, G P

    1980-09-01

    It is noted that the chemical reactions occurring in rarefied cosmic clouds (molecular concentration less than or approximately to 10(2) cm-3) differ from similar laboratory reactions by the much greater effect on the outcome of external force fields. In this light it is hypothesized that the synthesis of optically active substances may occur in the outer space under the conjoint stereospecific effect of a magnetic and other molecule-orienting field. It is further conjectured that the optically active substances of the Solar System had been produced in the course of its formation out of the primal rarefield cloud.

  13. Parallel Optical Control of Spatiotemporal Neuronal Spike Activity Using High-Speed Digital Light Processing

    PubMed Central

    Jerome, Jason; Foehring, Robert C.; Armstrong, William E.; Spain, William J.; Heck, Detlef H.

    2011-01-01

    Neurons in the mammalian neocortex receive inputs from and communicate back to thousands of other neurons, creating complex spatiotemporal activity patterns. The experimental investigation of these parallel dynamic interactions has been limited due to the technical challenges of monitoring or manipulating neuronal activity at that level of complexity. Here we describe a new massively parallel photostimulation system that can be used to control action potential firing in in vitro brain slices with high spatial and temporal resolution while performing extracellular or intracellular electrophysiological measurements. The system uses digital light processing technology to generate 2-dimensional (2D) stimulus patterns with >780,000 independently controlled photostimulation sites that operate at high spatial (5.4 μm) and temporal (>13 kHz) resolution. Light is projected through the quartz–glass bottom of the perfusion chamber providing access to a large area (2.76 mm × 2.07 mm) of the slice preparation. This system has the unique capability to induce temporally precise action potential firing in large groups of neurons distributed over a wide area covering several cortical columns. Parallel photostimulation opens up new opportunities for the in vitro experimental investigation of spatiotemporal neuronal interactions at a broad range of anatomical scales. PMID:21904526

  14. Wide-range controllable n-doping of molybdenum disulfide (MoS2) through thermal and optical activation.

    PubMed

    Park, Hyung-Youl; Lim, Myung-Hoon; Jeon, Jeaho; Yoo, Gwangwe; Kang, Dong-Ho; Jang, Sung Kyu; Jeon, Min Hwan; Lee, Youngbin; Cho, Jeong Ho; Yeom, Geun Young; Jung, Woo-Shik; Lee, Jaeho; Park, Seongjun; Lee, Sungjoo; Park, Jin-Hong

    2015-03-24

    Despite growing interest in doping two-dimensional (2D) transition metal dichalcogenides (TMDs) for future layered semiconductor devices, controllability is currently limited to only heavy doping (degenerate regime). This causes 2D materials to act as metallic layers, and an ion implantation technique with precise doping controllability is not available for these materials (e.g., MoS2, MoSe2, WS2, WSe2, graphene). Since adjustment of the electrical and optical properties of 2D materials is possible within a light (nondegenerate) doping regime, a wide-range doping capability including nondegenerate and degenerate regimes is a critical aspect of the design and fabrication of 2D TMD-based electronic and optoelectronic devices. Here, we demonstrate a wide-range controllable n-doping method on a 2D TMD material (exfoliated trilayer and bulk MoS2) with the assistance of a phosphorus silicate glass (PSG) insulating layer, which has the broadest doping range among the results reported to date (between 3.6 × 10(10) and 8.3 × 10(12) cm(-2)) and is also applicable to other 2D semiconductors. This is achieved through (1) a three-step process consisting of, first, dopant out-diffusion between 700 and 900 °C, second, thermal activation at 500 °C, and, third, optical activation above 5 μW steps and (2) weight percentage adjustment of P atoms in PSG (2 and 5 wt %). We anticipate our widely controllable n-doping method to be a starting point for the successful integration of future layered semiconductor devices.

  15. Keck adaptive optics: control subsystem

    SciTech Connect

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval for the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.

  16. Control and network system of force actuators for deformable mirror active optics in LAMOST

    NASA Astrophysics Data System (ADS)

    Zhang, Shengtao; Zhang, Zhenchao; Wang, You

    2007-12-01

    The reflecting Schmidt plate M A of LAMOST consists of 24 segmented hexagonal sub-mirrors. Each sub-mirror is 25mm thick and 1.1m in diagonal. There are 34 force actuators on the back of one sub-mirror which need to be controlled to offer precise load to create correct mirror deformation. This paper presents the control method and network configuration of force actuators for one sub-mirror. Master computer running Windows NT operation system and slave controllers running DOS operation system are connected together via Ethernet local area network (ELAN) by means of TCP/IP protocol. Adopting five slave controllers, 34 force actuators are combined into a distributed system. Master computer controls five slave controllers and five slave controllers operate 34 force actuators. Master computer communicates with slave controllers normally, which receives state of each force actuator from slave controllers and sends instructions to slave controllers via Ethernet LAN. Each slave controller operates 8 force actuators to offer correct load. Axial load capacity of force actuator is +/-150N (pull and push) with accuracy RMS <=0.05N. Force sensor is used as close-loop feedback apparatus to detect the micro load of the actuator.

  17. Fiber optic control system integration

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.; Russell, J. C.

    1987-01-01

    A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.

  18. All-optical control of molecular fluorescence

    SciTech Connect

    Bradshaw, David S.; Andrews, David L.

    2010-01-15

    We present a quantum electrodynamical procedure to demonstrate the all-optical control of molecular fluorescence. The effect is achieved on passage of an off-resonant laser beam through an optically activated system; the presence of a surface is not required. Following the derivation and analysis of the all-optical control mechanism, calculations are given to quantify the significant modification of spontaneous fluorescent emission with input laser irradiance. Specific results are given for molecules whose electronic spectra are dominated by transitions between three electronic levels, and suitable laser experimental methods are proposed. It is also shown that the phenomenon is sensitive to the handedness of circularly polarized throughput, producing a conferred form of optical activity.

  19. An approach to optical structures control

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Benhabib, R. J.; Major, C. S.

    1988-01-01

    The stabilization of a large, spaceborne Cassegrain telescope is examined. Modal gain factors and known characteristics of disturbances are used to determine which structural model affect line of sight (LOS) the most and are candidates for active control. THe approach is to: (1) actively control and maintain alignment of optical components; (2) place structural control actuators for optimum impact on the selected modes for active vibration control; and (3) feed back the best available estimate of LOS error for direct LOS control. Local analog loops are used for lower bandwidth control and multivariable digital control for lower bandwidth control. The control law is synthesized in the frequency domain using the characteristic gain approach. Robustness is measured by employing conicity, which is an outgrowth of the positivity approach to robust feedback system design. The feasibility of the design approach will be demonstrated by conducting a lab experiment on a structure similar to a scaled version of the telescope.

  20. Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials.

    PubMed

    Li, Guozhou; Li, Qiang; Yang, Lizhen; Wu, Lijun

    2016-07-01

    We investigate optical magnetism and optical activity in a simple planar metamolecule composed of double U-shaped metal split ring resonators (SRRs) twisted by 90° with respect to one another. Compared to a single SRR, the resonant energy levels are split and strong magnetic response can be observed due to inductive and conductive coupling. More interestingly, the nonchiral structures exhibit strong optical gyrotropy (1100°/λ) under oblique incidence, benefiting from the strong electromagnetic coupling. A chiral molecule model is proposed to shed light on the physical origin of optical activity. These artificial chiral metamaterials could be utilized to control the polarization of light and promise applications in enantiomer sensing-based medicine, biology, and drug development.

  1. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks. PMID:25361349

  2. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  3. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity.

    PubMed

    Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L; De Vittorio, Massimo; Pisanello, Ferruccio

    2015-10-01

    Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber. PMID:26504650

  4. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity

    PubMed Central

    Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L.; De Vittorio, Massimo; Pisanello, Ferruccio

    2015-01-01

    Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello, Neuron 82, 1245 (2014)24881834]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber. PMID:26504650

  5. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity.

    PubMed

    Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L; De Vittorio, Massimo; Pisanello, Ferruccio

    2015-10-01

    Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber.

  6. Optical technology for flight control systems

    NASA Technical Reports Server (NTRS)

    Mayanagi, M.

    1986-01-01

    Optical applications to the flight control system including optical data bus, sensors, and transducers are analyzed. Examples of optical data bus include airborne light optical fiber technology (ALOFT), F-5E, YA-7D, MIL-STD-1553 fiber optic data bus and NAL-optic data bus. This NAL-optic data bus is applied to STOL, and its characteristics are stressed. Principles and advantages of optical pulse-digital transducers are discussed.

  7. Optically controllable molecular logic circuits

    SciTech Connect

    Nishimura, Takahiro Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-06

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  8. Investigating neuronal function with optically controllable proteins

    PubMed Central

    Zhou, Xin X.; Pan, Michael; Lin, Michael Z.

    2015-01-01

    In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain. PMID:26257603

  9. Chiral THz metamaterial with tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Taylor, Antoinette; O' Hara, John; Chowdhury, Roy; Zhao, Rongkuo; Soukoullis, Costas M

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  10. A new experiment to investigate the origin of optical activity using a low energy positron beam of controlled helicity. [molecular biology

    NASA Technical Reports Server (NTRS)

    Gidley, D. W.; Rich, A.; Van House, J. C.; Zitzewitz, P. W.

    1981-01-01

    Previous experiments undertaken in search of a correlation between the origin of optical activity in biological molecules and the helicity of beta particles emitted in nuclear beta decay have not provided any useful results. A description is presented of an experiment in which a low energy polarized positron beam of controlled helicity interacts with an optically active material to form positronium in vacuum. Advantages of the current study compared to the previous experiments are mainly related to a much greater sensitivity. Initially, it will be possible to detect a helicity-dependent asymmetry in triplet positronium formation of 1 part in 10,000. Improvements to better than 1 part in 100,000 should be attainable.

  11. Process control in optical fabrication

    NASA Astrophysics Data System (ADS)

    Faehnle, Oliver

    2015-09-01

    Predictable and stable fabrication processes are essential for reliable cost and quality management in optical fabrication technology. This paper reports on strategies to generate and control optimum sets of process parameters for e.g. sub-aperture polishing of small optics (featuring clear apertures smaller than 2 mm). Emphasis is placed to distinguish between machine and process optimization demonstrating, that e.g. it is possible setting up ductile mode grinding process by other means than controlling critical depth of cut. Finally, a recently developed in situ testing technique is applied to monitor surface quality on-machine while abrasively working the surface under test enabling an on-line optimization of polishing processes eventually minimizing polishing time and fabrication cost.

  12. Optically controllable THz chiral metamaterials.

    PubMed

    Kenanakis, G; Zhao, R; Katsarakis, N; Kafesaki, M; Soukoulis, C M; Economou, E N

    2014-05-19

    Switchable and tunable chiral metamaterial response is numerically demonstrated here in different uniaxial chiral metamaterial structures operating in the THz regime. The structures are based on the bi-layer conductor design and the tunable/switchable response is achieved by replacing parts of the metallic components of the structures by photoconducting Si, which can be transformed from an insulating to an almost conducting state through photoexcitation, achievable under external optical pumping. All the structures proposed and discussed here exhibit frequency regions with giant tunable circular dichroism, as well as regions with giant tunable optical activity, showing unique potential in the achievement of active THz polarization components, like tunable polarizers and polarization filters. PMID:24921336

  13. Selective optical control of synaptic transmission in the subcortical visual pathway by activation of viral vector-expressed halorhodopsin.

    PubMed

    Kaneda, Katsuyuki; Kasahara, Hironori; Matsui, Ryosuke; Katoh, Tomoko; Mizukami, Hiroaki; Ozawa, Keiya; Watanabe, Dai; Isa, Tadashi

    2011-01-01

    The superficial layer of the superior colliculus (sSC) receives visual inputs via two different pathways: from the retina and the primary visual cortex. However, the functional significance of each input for the operation of the sSC circuit remains to be identified. As a first step toward understanding the functional role of each of these inputs, we developed an optogenetic method to specifically suppress the synaptic transmission in the retino-tectal pathway. We introduced enhanced halorhodopsin (eNpHR), a yellow light-sensitive, membrane-targeting chloride pump, into mouse retinal ganglion cells (RGCs) by intravitreously injecting an adeno-associated virus serotype-2 vector carrying the CMV-eNpHR-EYFP construct. Several weeks after the injection, whole-cell recordings made from sSC neurons in slice preparations revealed that yellow laser illumination of the eNpHR-expressing retino-tectal axons, putatively synapsing onto the recorded cells, effectively inhibited EPSCs evoked by electrical stimulation of the optic nerve layer. We also showed that sSC spike activities elicited by visual stimulation were significantly reduced by laser illumination of the sSC in anesthetized mice. These results indicate that photo-activation of eNpHR expressed in RGC axons enables selective blockade of retino-tectal synaptic transmission. The method established here can most likely be applied to a variety of brain regions for studying the function of individual inputs to these regions. PMID:21483674

  14. ϒ-secretase and LARG mediate distinct RGMa activities to control appropriate layer targeting within the optic tectum

    PubMed Central

    Banerjee, P; Harada, H; Tassew, N G; Charish, J; Goldschneider, D; Wallace, V A; Sugita, S; Mehlen, P; Monnier, P P

    2016-01-01

    While a great deal of progress has been made in understanding the molecular mechanisms that regulate retino-tectal mapping, the determinants that target retinal projections to specific layers of the optic tectum remain elusive. Here we show that two independent RGMa-peptides, C- and N-RGMa, activate two distinct intracellular pathways to regulate axonal growth. C-RGMa utilizes a Leukemia-associated RhoGEF (LARG)/Rho/Rock pathway to inhibit axonal growth. N-RGMa on the other hand relies on ϒ-secretase cleavage of the intracellular portion of Neogenin to generate an intracellular domain (NeICD) that uses LIM-only protein 4 (LMO4) to block growth. In the developing tectum (E18), overexpression of C-RGMa and dominant-negative LARG (LARG-PDZ) induced overshoots in the superficial tectal layer but not in deeper tectal layers. In younger embryos (E12), C-RGMa and LARG-PDZ prevented ectopic projections toward deeper tectal layers, indicating that C-RGMa may act as a barrier to descending axons. In contrast both N-RGMa and NeICD overexpression resulted in aberrant axonal-paths, all of which suggests that it is a repulsive guidance molecule. Thus, two RGMa fragments activate distinct pathways resulting in different axonal responses. These data reveal how retinal projections are targeted to the appropriate layer in their target tissue. PMID:26292756

  15. Microelectromechanical (MEMS) optical beam control

    NASA Astrophysics Data System (ADS)

    Laurvick, Tod; Starman, LaVern; Coutu, Ronald, Jr.

    2009-08-01

    This experiment explores the manufacturability of controllable Micro-electromechanical (MEMS) mirrors to direct optical signals. Design includes four separate mirrors which independently control vertical displacement, horizontal displacement, vertical pitch and horizontal pitch. Such devices could be used for a variety of applications but were specifically intended for future use in communications between optical based circuits residing on separate chips. Prototype devices were built in PolyMUMPs to test the feasibility of this process for applications such as this, including a full outgoing beam path with mirror orientations and actuation designs to accomplish this. Several elements of this outgoing beam path were successful and those which needed improvement indicate a high probability of success with limited trials needed. Improvement recommendations on currently successful design elements which could still be improved within the scope of PolyMUMPs have been identified. Originally intended only to direct the outgoing beam, this design could be used on the incoming path as well. Such a design would ensure that the receiving device only requires a target location and not that a specific incoming vector be obtained. This would thus comprise all the elements needed for a prototype proof of concept device to be built. More sophisticated fabrication processes could provide drastic improvements to both transmission and reception beam paths and potentially allow for a variety of more sophisticated designs to improve compactness, controllability, tighten tolerances on moving parts, increase mirror quality, and improved productivity of large quantities of devices.

  16. Optical activity of BL Lacertae

    NASA Astrophysics Data System (ADS)

    Larionov, V.; Blinov, D.; Konstantinova, T.

    2012-04-01

    We perform optical photometric and R-band polarimetric monitoring of BL Lac using 70-cm AZT-8 (CrAO, Ukraine) and 0.4-m LX-200 (St.Petersburg, Russia) telescopes, as a part of GASP project. As reported in Atel#4028, this blazar was found by Fermi LAT in active state on 2012 April 9. Our data show that a sharp optical maximum was reached on the date 2012-04-08UT02:20, R=13.10, while on 2012-04-11UT01:30 R=13.40.

  17. Optical Studies of Active Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    This grant was to support optical studies of comets close enough to the sun to be outgassing. The main focus of the observations was drawn to the two extraordinarily bright comets Hyakutake and Hale-Bopp, but other active comets were also studied in detail during the period of funding. Major findings (all fully published) under this grant include: (1) Combined optical and submillimeter observations of the comet/Centaur P/Schwassmann-Wachmann 1 were used to study the nature of mass loss from this object. The submillimeter observations show directly that the optically prominent dust coma is ejected by the sublimation of carbon monoxide. Simultaneous optical-submillimeter observations allowed us to test earlier determinations of the dust mass loss rate. (2) We modelled the rotation of cometary nuclei using time-resolved images of dust jets as the primary constraint. (3) We obtained broad-band optical images of several comets for which we subsequently attempted submillimeter observations, in order to test and update the cometary ephemerides. (4) Broad-band continuum images of a set of weakly active comets and, apparently, inactive asteroids were obtained in BVRI using the University of Hawaii 2.2-m telescope. These images were taken in support of a program to test the paradigm that many near-Earth asteroids might be dead or dormant comets. We measured coma vs. nucleus colors in active comets (finding that coma particle scattering is different from, and cannot be simply related to, nucleus color). We obtained spectroscopic observations of weakly active comets and other small bodies using the HIRES spectrograph on the Keck 10-m telescope. These observation place sensitive limits to outgassing from these bodies, aided by the high (40,000) spectral resolution of HIRES.

  18. Optically-controlled coplanar waveguide phase shifters

    NASA Astrophysics Data System (ADS)

    Neikirk, Dean P.; Cheung, Philip; Islam, M. Saiful; Itoh, Tatsuo

    1989-12-01

    This paper discusses the principles of optically-controlled phase shifters, with particular attention given to the design tradeoffs associated with optically-controlled coplanar waveguide (CPW) phase shifters. Experimental results from several different structures are presented. It is concluded that the coplanar waveguide transmission lines on semiconductor substrates, while structurally suited for optical control of the slow wave factor, might not be practical for MMIC applications, because they require very high optical illumination intensities to produce useful phase shifts. However, by combining a reverse-biased, Schottky barrier-contacted CPW with controlled optical illumination, large phase shifts at very low intensities can be achieved.

  19. Different ways to active optical frequency standards

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Zhang, Xiaogang; Chen, Jingbiao

    2016-06-01

    Active optical frequency standard, or active optical clock, is a new concept of optical frequency standard, where a weak feedback with phase coherence information in optical bad-cavity limitation is formed, and the continuous self-sustained coherent stimulated emission between two atomic transition levels with population inversion is realized. Through ten years of both theoretical and experimental exploration, the narrow linewidth and suppression of cavity pulling effect of active optical frequency standard have been initially proved. In this paper, after a simple review, we will mainly present the most recent experimental progresses of active optical frequency standards in Peking University, including 4-level cesium active optical frequency standards and active Faraday optical frequency standards. The future development of active optical frequency standards is also discussed.

  20. Optical control of MMIC-based T/R modules

    NASA Astrophysics Data System (ADS)

    Herczfeld, P. R.; Paolella, A.; Daryoush, A. S.; Jemison, W.; Rosen, A.

    1988-05-01

    Some of the basic issues of optical control and interconnects of MMICs are discussed with special consideration given to the application of optical technology to the new generation of phased-array antennas utilizing a very large number of individually controlled MMIC T/R modules. In these antennas, the fiber optic links are used to achieve synchronization of the T/R modules and signal coding; in optical beamforming in the microwave domain, where the control elements, such as microwave phase shifters and attennuators are activated by control signals transmitted via optical fibers; and in beamforming in the optical domain. Optial fibers are also used in control of passive microwave components such as microstrip lines and dielectric resonators.

  1. Optical pulse shaping approaches to coherent control

    NASA Astrophysics Data System (ADS)

    Goswami, Debabrata

    2003-02-01

    The last part of the twentieth century has experienced a huge resurge of activity in the field of coherent light-matter interaction, more so in attempting to exert control over such interactions. Birth of coherent control was originally spurred by the theoretical understanding of the quantum interferences that lead to energy randomization and experimental developments in ultrafast laser spectroscopy. The theoretical predictions on control of reaction channels or energy randomization processes are still more dramatic than the experimental demonstrations, though this gap between the two is consistently reducing over the recent years with realistic theoretical models and technological developments. Experimental demonstrations of arbitrary optical pulse shaping have made some of the previously impracticable theoretical predictions possible to implement. Starting with the simple laser modulation schemes to provide proof-of-the-principle demonstrations, feedback loop pulse shaping systems have been developed that can actively manipulate some atomic and molecular processes. This tremendous experimental boost of optical pulse shaping developments has prospects and implications into many more new directions, such as quantum computing and terabit/sec data communications. This review captures certain aspects and impacts of optical pulse shaping into the fast developing areas of coherent control and other related fields. Currently available reviews focus on one or the other detailed aspects of coherent control, and the reader will be referred to such details as and when necessary for issues that are dealt in brief here. We will focus on the current issues including control of intramolecular dynamics and make connections to the future concepts, such as, quantum computation, biomedical applications, etc.

  2. Feedback controlled optics with wavefront compensation

    NASA Technical Reports Server (NTRS)

    Breckenridge, William G. (Inventor); Redding, David C. (Inventor)

    1993-01-01

    The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.

  3. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert

    1991-01-01

    The current Fiber Optic Control System Integration (FOCSI) program is reviewed and the potential role of IOCs in FOCSI applications is described. The program is intended for building, environmentally testing, and demonstrating operation in piggyback flight tests (no active control with optical sensors) of a representative sensor system for propulsion and flight control. The optical sensor systems are to be designed to fit alongside the bill-of-materials sensors for comparison. The sensors are to be connected to electrooptic architecture cards which will contain the optical sources and detectors to recover and process the modulated optical signals. The FOCSI program is to collect data on the behavior of passive optical sensor systems in a flight environment and provide valuable information on installation amd maintenance problems for this technology, as well as component survivability (light sources, connectors, optical fibers, etc.).

  4. Optical design and active optics methods in astronomy

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2013-03-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis.

  5. Optically controlled quadrature coupler on silicon substrate

    NASA Astrophysics Data System (ADS)

    Bhadauria, Avanish; Sharma, Sonia; Sonania, Shikha; Akhtar, Jamil

    2016-03-01

    In this paper, we have proposed and studied an optically controlled quadrature coupler fabricated on silicon substrate. The optically controlled quadrature coupler can be realized by terminating its coupled or through ports by optically induced load. Simulation and experimental results show that by varying optical intensity, we can control the phase and amplitude of output RF signal and can realize optically controlled reflection type attenuator, reflection type phase-shifter and ultrafast switches. The new kind of proposed device can be useful for ultra-fast signal processing and modulation schemes in high speed communication especially in QPSK modulation. The optical control has several advantages over conventional techniques such as MEMS and other semiconductor switching, which have several inherent disadvantages and limitations like low response time, low power handling capacity, device parasitic and non-linearity.

  6. Optically Controlled Signal Amplification for DNA Computation.

    PubMed

    Prokup, Alexander; Hemphill, James; Liu, Qingyang; Deiters, Alexander

    2015-10-16

    The hybridization chain reaction (HCR) and fuel-catalyst cycles have been applied to address the problem of signal amplification in DNA-based computation circuits. While they function efficiently, these signal amplifiers cannot be switched ON or OFF quickly and noninvasively. To overcome these limitations, a light-activated initiator strand for the HCR, which enabled fast optical OFF → ON switching, was developed. Similarly, when a light-activated version of the catalyst strand or the inhibitor strand of a fuel-catalyst cycle was applied, the cycle could be optically switched from OFF → ON or ON → OFF, respectively. To move the capabilities of these devices beyond solution-based operations, the components were embedded in agarose gels. Irradiation with customizable light patterns and at different time points demonstrated both spatial and temporal control. The addition of a translator gate enabled a spatially activated signal to travel along a predefined path, akin to a chemical wire. Overall, the addition of small light-cleavable photocaging groups to DNA signal amplification circuits enabled conditional control as well as fast photocontrol of signal amplification. PMID:25621535

  7. Terahertz chiral metamaterials with giant and dynamically tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Chowdhury, Dibakar Roy; Zhao, Rongkuo; Azad, Abul K.; Chen, Hou-Tong; Soukoulis, Costas M.; Taylor, Antoinette J.; O'Hara, John F.

    2012-07-27

    We demonstrated giant optical activity using a chiral metamaterial composed of an array of conjugated bilayer metal structures. The chiral metamaterials were further integrated with photoactive inclusions to accomplish a wide tuning range of the optical activity through illumination with near-infrared light. The strong chirality observed in our metamaterials results in a negative refractive index, which can also be well controlled by the near-infrared optical excitation.

  8. Controllable decay in an optical waveguide system

    NASA Astrophysics Data System (ADS)

    Zhao, G. L.; Zhao, T.; Xiao, H. F.; Liu, Z. L.; Yang, J. H.; Tian, Y. H.

    2016-09-01

    The optical waveguide arrays can be employed to simulate the unstable quantum systems when the light propagates in them, which can present the optical Zeno and anti-Zeno effects. In this paper, we propose the scheme of periodic modulation of the coupling coefficient based on the coupling between the straight and cosine bend optical waveguides, which can realize the controllable optical Zeno and anti-Zeno effects. Based on the special decay law, the decay of light intensity in the straight waveguide can be freely controlled by selecting the appropriate observation positions.

  9. Plasmonic Biofoam: A Versatile Optically Active Material.

    PubMed

    Tian, Limei; Luan, Jingyi; Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2016-01-13

    Owing to their ability to confine and manipulate light at the nanoscale, plasmonic nanostructures are highly attractive for a broad range of applications. While tremendous progress has been made in the synthesis of size- and shape-controlled plasmonic nanostructures, their integration with other materials and application in solid-state is primarily through their assembly on rigid two-dimensional (2D) substrates, which limits the plasmonically active space to a few nanometers above the substrate. In this work, we demonstrate a simple method to create plasmonically active three-dimensional biofoams by integrating plasmonic nanostructures with highly porous biomaterial aerogels. We demonstrate that plasmonic biofoam is a versatile optically active platform that can be harnessed for numerous applications including (i) ultrasensitive chemical detection using surface-enhanced Raman scattering; (ii) highly efficient energy harvesting and steam generation through plasmonic photothermal heating; and (iii) optical control of enzymatic activity by triggered release of biomolecules encapsulated within the aerogel. Our results demonstrate that 3D plasmonic biofoam exhibits significantly higher sensing, photothermal, and loading efficiency compared to conventional 2D counterparts. The design principles and processing methodology of plasmonic aerogels demonstrated here can be broadly applied in the fabrication of other functional foams. PMID:26630376

  10. Optical control of biological processes by light-switchable proteins

    PubMed Central

    Fan, Linlin Z.; Lin, Michael Z.

    2015-01-01

    Cellular processes such as proliferation, differentiation, or migration depend on precise spatiotemporal coordination of protein activities. Correspondingly, reaching a quantitative understanding of cellular behavior requires experimental approaches that enable spatial and temporal modulation of protein activity. Recently, a variety of light-sensitive protein domains have been engineered as optogenetic actuators to spatiotemporally control protein activity. In the present review, we discuss the principle of these optical control methods and examples of their applications in modulating signalling pathways. By controlling protein activity with spatiotemporal specificity, tunable dynamics, and quantitative control, light-controllable proteins promise to accelerate our understanding of cellular and organismal biology. PMID:25858669

  11. Direct Optical Ice Sensing and Closed-Loop Controller Design for Active De-icing of Wind Turbines Using Distributed Heating

    NASA Astrophysics Data System (ADS)

    Shajiee, Shervin

    Ice accumulation on wind turbines operating in cold regions reduces power generation by degrading aerodynamic efficiency and causes mass imbalance and fatigue loads on the blades. Due to blade rotation and variation of the pitch angle, different locations on the blade experience large variations of Reynolds number, Nusselt number, heat loss, and non-uniform ice distribution. Hence, applying different amounts of heat flux in different blade locations can provide more effective de-icing for the same total power consumption. This large variation of required heat flux motivates using distributed resistive heating, with the capability of locally adjusting thermal power as a function of location on the blade. The main contributions of this research are developing the experimental feasibility of direct ice sensing using an optical sensing technique as well as development of a computational framework for implementation of closed-loop localized active de-icing using distributed sensing. A script-base module was developed in a commercial finite-element software (ANSYS) which provides the capability of (i) Closed-loop de-icing simulations for a distributed network of sensors and actuators, (ii) investigating different closed-loop thermal control schemes and their de-icing efficiency (iii) optimizing thermal actuation for a distributed resistive heating, and (iv) analyzing different faulty scenarios for sensors and thermal actuators under known faults in the network. Different surrogate models were used to enhance the computational efficiency of this approach. The results showed that optimal value of control parameters in a distributed network of heaters depends on convective heat transfer characteristics, layout of heaters and type of closed-loop controller scheme used for thermal actuation. Furthermore, It was shown that closed-loop control provides much faster de-icing than the open-loop constant heat flux thermal actuation. It was observed both experimentally and

  12. Incorporation of Photosynthetic Reaction Centers in the Membrane of Human Cells: Toward a New Tool for Optical Control of Cell Activity

    SciTech Connect

    Pennisi, Cristian P.; Jensen, Poul Erik; Zachar, Vladimir; Greenbaum, Elias; Yoshida, Ken

    2009-01-01

    The Photosystem I (PSI) reaction center is a photosynthetic membrane complex in which light-induced charge separation is accompanied by the generation of an electric potential. It has been recently proposed as a means to confer light sensitivity to cells possessing voltage-activated ion channels, but the feasibility of heterologous incorporation has not been demonstrated. In this work, methods of delivery and detection of PSI in the membrane of human cells are presented. Purified fractions of PSI were reconstituted in proteoliposomes that were used as vehicles for the membrane incorporation. A fluorescent impermeable dye was entrapped in the vesicles to qualitatively analyze the nature of the vesicle cell interaction. After incorporation, the localization and orientation of the complexes in the membrane was studied using immuno-fluorescence microscopy. The results showed complexes oriented as in native membranes, which were randomly distributed in clusters over the entire surface of the cell. Additionally, analysis of cell viability showed that the incorporation process does not damage the cell membrane. Taken together, the results of this work suggest that the mammalian cellular membrane is a reasonable environment for the incorporation of PSI complexes, which opens the possibility of using these molecular photovoltaic structures for optical control of cell activity.

  13. Nondispersive optical activity of meshed helical metamaterials.

    PubMed

    Park, Hyun Sung; Kim, Teun-Teun; Kim, Hyeon-Don; Kim, Kyungjin; Min, Bumki

    2014-11-17

    Extreme optical properties can be realized by the strong resonant response of metamaterials consisting of subwavelength-scale metallic resonators. However, highly dispersive optical properties resulting from strong resonances have impeded the broadband operation required for frequency-independent optical components or devices. Here we demonstrate that strong, flat broadband optical activity with high transparency can be obtained with meshed helical metamaterials in which metallic helical structures are networked and arranged to have fourfold rotational symmetry around the propagation axis. This nondispersive optical activity originates from the Drude-like response as well as the fourfold rotational symmetry of the meshed helical metamaterials. The theoretical concept is validated in a microwave experiment in which flat broadband optical activity with a designed magnitude of 45° per layer of metamaterial is measured. The broadband capabilities of chiral metamaterials may provide opportunities in the design of various broadband optical systems and applications.

  14. Solar optical telescope primary mirror controller

    NASA Technical Reports Server (NTRS)

    Brown, R. J.; Liu, D.

    1980-01-01

    The development of a technique to control the articulated primary mirror (APM) of the solar optical telescope (SOT) is discussed. Program results indicate that a single, all digital controller has sufficient capability to totally handle the computational requirements for control of the SOT APM.

  15. Quality Control Using Optical Probe Arrays

    NASA Astrophysics Data System (ADS)

    Stewart, Robert M.

    1989-01-01

    Low cost, optical probes, can be combined into an inspection array, and the go/no-go outputs can be analyzed by a high speed programmable logic controller (PLC). The PLC can be remotely addressed to change the desired level of quality control. The PLC can provide on-line data for blow-by-blow statistical process control (SPC).

  16. Spaceborne optical disk controller development

    NASA Technical Reports Server (NTRS)

    Shull, Thomas A.; Conway, Bruce A.

    1986-01-01

    The current status and potential applications of an optical-disk buffer (ODB) memory system being developed by an interagency consortium including NASA and the USAF are reviewed. The design goals for the ODB include usable capacity 1 Tb, maximum data rate 1.6 Gb/s, read error rate less than 10 to the -12th, time to initial access less than 100 ms, and unlimited read/write cycles. Present efforts focus on a brassboard ODB which employs 12 14-inch magnetooptic disks and 24 nine-diode read/write heads. A typical space application of an optical disk mass memory system (ODMMS) is discussed: as communications buffer, temporary storage, and/or multiuser I/O buffer for data management on the Space Station Earth Observing System. Environmental, operational, system-architecture, and functional-separation factors; critical design issues; and standardization questions for spaceborne ODMMSs are examined in detail.

  17. Measurement of optical activity of honey bee

    NASA Astrophysics Data System (ADS)

    Ortiz-Gutiérrez, Mauricio; Olivares-Pérez, Arturo; Salgado-Verduzco, Marco Antonio; Ibarra-Torres, Juan Carlos

    2016-03-01

    Optical activity of some substances, such as chiral molecules, often exhibits circular birefringence. Circular birefringence causes rotation of the vibration plane of the plane polarized light as it passes through the substance. In this work we present optical characterization of honey as function of the optical activity when it is placed in a polariscope that consists of a light source and properly arranged polarizing elements.

  18. Test Bed For Control Of Optical-Path Lengths

    NASA Technical Reports Server (NTRS)

    O'Neal, Michael C.; Eldred, Daniel D.; Liu, Dankai; Redding, David C.

    1994-01-01

    Truss structure and ancillary equipment constitute test bed for experiments in methods of controlling lengths of optical paths under conditions of structural vibration and deformation. Accommodates both passive and active methods of control. Experimental control system reduces millimeter-level disturbances in optical path length to nanometers. Developed for control, alignment, and aiming of distributed optical systems on large flexible structures. Test bed includes tower 2.5 meters high with two horizontal arms extending at right angles from its top. Rigidly mounted on massive steel block providing measure of isolation from ground vibrations. Optical motion-compensation system similar to one described previously in NASA Tech Briefs enclosed in flexure-mounted frame, called "trolley," at end of longer horizontal arm.

  19. Active microstructured x-ray optical arrays

    NASA Astrophysics Data System (ADS)

    Michette, Alan G.; Pfauntsch, Slawka J.; Sahraei, Shahin; Shand, Matthew; Morrison, Graeme R.; Hart, David; Vojnovic, Boris; Stevenson, Tom; Parkes, William; Dunare, Camelia; Willingale, Richard; Feldman, Charlotte H.; Button, Tim W.; Zhang, Dou; Rodriguez-Sanmartin, Daniel; Wang, Hongchang; Smith, Andy D.

    2009-05-01

    The UK Smart X-Ray Optics consortium is developing novel reflective adaptive/active x-ray optics for small-scale laboratory applications, including studies of radiation-induced damage to biological material. The optics work on the same principle as polycapillaries, using configured arrays of channels etched into thin silicon, such that each x-ray photon reflects at most once off a channel wall. Using two arrays in succession provides two reflections and thus the Abbe sine condition can be approximately satisfied, reducing aberrations. Adaptivity is achieved by flexing one or both arrays using piezo actuation, which can provide further reduction of aberrations as well as controllable focal lengths. Modelling of such arrays for used on an x-ray microprobe, based on a microfocus source with an emitting region approximately 1μm in diameter, shows that a focused flux approximately two orders of magnitude greater than possible with a zone plate of comparable focal length is possible, assuming that the channel wall roughness is less than about 2nm.

  20. Fiber optics for propulsion control systems

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1985-01-01

    In aircraft systems with digital controls, fiberoptics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiberoptics may also be used for controlling actuators on engine and airframe. In this application, the optical fibers, connectors, etc. will be subjected to high temperature and vibrations. This paper discussed the use of fiberoptics in aircraft propulsion systems together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiberoptics offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiberoptics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate.

  1. Coherent control of optical polarization effects in metamaterials.

    PubMed

    Mousavi, Seyedmohammad A; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I

    2015-01-01

    Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071

  2. Tilt control in optical tweezers.

    PubMed

    Ichikawa, Masatoshi; Kubo, Koji; Yoshikawa, Kenichi; Kimura, Yasuyuki

    2008-01-01

    Laser trapping of micrometer-sized objects floating in water is investigated through the use of a tilted laser beam. With a change in the tilt direction, the orientation of the trapped object can be easily controlled when the object has an asymmetric body or nonuniform refractive index, such as nanowires, living cells, and so on. The method enables efficient orientation control under laser trapping through a simple setup. This method for tilt control may be useful for high-performance laser trapping in bioengineering and microsurgery in single living cells.

  3. Frequency shift by optical coherent control

    SciTech Connect

    Ignesti, Emilio; Buffa, Roberto; Fini, Lorenzo; Sali, Emiliano; Cavalieri, Stefano; Tognetti, Marco V.

    2010-02-15

    We report the experimental observation of an optically controllable shift of the central frequency of a laser pulse, using a scheme based on dynamical electromagnetically induced transparency. This is evidence of frequency shift controllable by a coherent process. Original theoretical results are in agreement with the experimental data.

  4. Control of optical solitons by light waves.

    PubMed

    Grigoryan, V S; Hasegawa, A; Maruta, A

    1995-04-15

    A new method of controlling optical solitons by means of light wave(s) in fibers is presented. By a proper choice of light wave(s), parametric four-wave mixing can control the soliton shape as well as the soliton parameters (amplitude, frequency, velocity, and position).

  5. Interactive approach to optical tweezers control

    SciTech Connect

    Leach, Jonathan; Wulff, Kurt; Sinclair, Gavin; Jordan, Pamela; Courtial, Johannes; Thomson, Laura; Gibson, Graham; Karunwi, Kayode; Cooper, Jon; Laczik, Zsolt John; Padgett, Miles

    2006-02-10

    We have developed software with an interactive user interface that can be used to generate phase holograms for use with spatial light modulators. The program utilizes different hologram design techniques, allowing the user to select an appropriate algorithm. The program can be used to generate multiple beams and can be used for beam steering. We see a major application of the program to be in optical tweezers to control the position, number, and type of optical traps.

  6. Novel pH control strategy for efficient production of optically active l-lactic acid from kitchen refuse using a mixed culture system.

    PubMed

    Tashiro, Yukihiro; Inokuchi, Shota; Poudel, Pramod; Okugawa, Yuki; Miyamoto, Hirokuni; Miayamoto, Hisashi; Sakai, Kenji

    2016-09-01

    Uninvestigated control factors of meta-fermentation, the fermentative production of pure chemicals and fuels in a mixed culture system, were examined for production of optically pure l-lactic acid (LA) from food waste. In meta-fermentations by pH swing control, l-LA production with 100% optical purity (OPl-LA) was achieved even using unsterilized model kitchen refuse medium with preferential proliferation of l-LA-producing Bacillus coagulans, a minor member in the seed, whereas agitation decreased OPl-LA drastically. pH constant control shortened the fermentation time but decreased OPl-LA and LA selectivity (SLA) by stimulating growth of heterofermentative Bacillus thermoamylovorans. Deliberately switching from pH swing control to constant control exhibited the best performance for l-LA production: maximum accumulation, 39.2gL(-1); OPl-LA, 100%; SLA, 96.6%; productivity, 1.09gL(-1)h(-1). These results present a novel pH control strategy for efficient l-LA production in meta-fermentation based on a concept different from that of pure culture systems. PMID:27233097

  7. Novel pH control strategy for efficient production of optically active l-lactic acid from kitchen refuse using a mixed culture system.

    PubMed

    Tashiro, Yukihiro; Inokuchi, Shota; Poudel, Pramod; Okugawa, Yuki; Miyamoto, Hirokuni; Miayamoto, Hisashi; Sakai, Kenji

    2016-09-01

    Uninvestigated control factors of meta-fermentation, the fermentative production of pure chemicals and fuels in a mixed culture system, were examined for production of optically pure l-lactic acid (LA) from food waste. In meta-fermentations by pH swing control, l-LA production with 100% optical purity (OPl-LA) was achieved even using unsterilized model kitchen refuse medium with preferential proliferation of l-LA-producing Bacillus coagulans, a minor member in the seed, whereas agitation decreased OPl-LA drastically. pH constant control shortened the fermentation time but decreased OPl-LA and LA selectivity (SLA) by stimulating growth of heterofermentative Bacillus thermoamylovorans. Deliberately switching from pH swing control to constant control exhibited the best performance for l-LA production: maximum accumulation, 39.2gL(-1); OPl-LA, 100%; SLA, 96.6%; productivity, 1.09gL(-1)h(-1). These results present a novel pH control strategy for efficient l-LA production in meta-fermentation based on a concept different from that of pure culture systems.

  8. Active reflective components for adaptive optical zoom systems

    NASA Astrophysics Data System (ADS)

    Jungwirth, Matthew Edward Lewis

    This dissertation presents the theoretical and experimental exploration of active reflective components specifically for large-aperture adaptive optical zoom systems. An active reflective component can change its focal length by physically deforming its reflecting surface. Adaptive optical zoom (AOZ) utilizes active components in order to change magnification and achieve optical zoom, as opposed to traditional zooming systems that move elements along the optical axis. AOZ systems are theoretically examined using a novel optical design theory that enables a full-scale tradespace analysis, where optical design begins from a broad perspective and optimizes to a particular system. The theory applies existing strategies for telescope design and aberration simulation to AOZ, culminating in the design of a Cassegrain objective with a 3.3X zoom ratio and a 375mm entrance aperture. AOZ systems are experimentally examined with the development of a large-aperture active mirror constructed of a composite material called carbon fiber reinforced polymer (CFRP). The active CFRP mirror uses a novel actuation method to change radius of curvature, where actuators press against two annular rings placed on the mirror's back. This method enables the radius of curvature to increase from 2000mm to 2010mm. Closed-loop control maintains good optical performance of 1.05 waves peak-to-valley (with respect to a HeNe laser) when the active CFRP mirror is used in conjunction with a commercial deformable mirror.

  9. Active optics, adaptive optics, and laser guide stars.

    PubMed

    Hubin, N; Noethe, L

    1993-11-26

    Optical astronomy is crucial to our understanding of the universe, but the capabilities of ground-based telescopes are severely limited by the effects of telescope errors and of the atmosphere on the passage of light. Recently, it has become possible to construct inbuilt corrective devices that can compensate for both types of degradations as observations are conducted. For full use of the newly emerged class of 8-meter telescopes, such active corrective capabilities, known as active and adaptive optics, are essential. Some physical limitations in the adaptive optics field can be overcome by artificially created reference stars, called laser guide stars. These new technologies have lately been applied with success to some medium and very large telescopes. PMID:17736819

  10. Controlling carbon nanodot fluorescence for optical biosensing.

    PubMed

    Buiculescu, Raluca; Stefanakis, Dimitrios; Androulidaki, Maria; Ghanotakis, Demetrios; Chaniotakis, Nikos A

    2016-06-20

    In this work we report on the optical properties of specific synthetic carbon nano-dots (CDs) and their suitability for the development of optical biosensors. We examine the photoluminescence behavior of these CDs under different conditions, in their native form, as well as when conjugated to the catalytic protein glucose oxidase (GOx) for the construction of optical glucose biosensors. The effect of pH and hydrogen peroxide on the observed spectra is examined as the basis for the biosensor development. The CDs examined here have inherent surface amino functional groups which allow for easy conjugation to biomolecules via EDC-NHS, providing a well defined platform for biosensing applications. We conclude that the well controlled, stable, and highly efficient fluorescence behavior of the CDs in solution or in conjugate, provides the grounds for this class of materials to be used in a variety of arrangements for the development of optical and optoelectrochemical detection systems. PMID:27170233

  11. Optical Control of Peroxisomal Trafficking.

    PubMed

    Spiltoir, Jessica I; Strickland, Devin; Glotzer, Michael; Tucker, Chandra L

    2016-07-15

    The blue-light-responsive LOV2 domain of Avena sativa phototropin1 (AsLOV2) has been used to regulate activity and binding of diverse protein targets with light. Here, we used AsLOV2 to photocage a peroxisomal targeting sequence, allowing light regulation of peroxisomal protein import. We generated a protein tag, LOV-PTS1, that can be appended to proteins of interest to direct their import to the peroxisome with light. This method provides a means to inducibly trigger peroxisomal protein trafficking in specific cells at user-defined times. PMID:26513473

  12. Laser and optics activities at CREOL

    SciTech Connect

    Stickley, C.M.

    1995-06-01

    CREOL is an interdisciplinary institute with a mission to foster and support research and education in the optical and laser sciences and engineering. CREOL`s principal members are its 21-strong faculty. The faculty are encouraged and supported in developing, maintaining, and expanding innovative and sponsored research programs, especially ones that are coupled to industry`s needs. The CREOL Director and Assistant Director, through empowerment by the CREOL faculty, coordinate and oversee the interactive, interdisciplinary projects of the faculty, the 85 graduate students and the 39 research staff. CREOL integrates these research efforts with the general educational mission and goals of the university, develops comprehensive course work in the optical and laser sciences and engineering, provides guidance and instruction to graduate students, administers MS and PhD programs, and provides facilities, funds, and administrative support to assist the faculty in carrying out CREOL`s mission and obtaining financial support for the research projects. CREOL`s specific areas of research activity include the following: IR systems; nonlinear optics; crystal growth; nonlinear integrated optics; new solid-state lasers; tunable far-infrared lasers; thin-film optics; theory; semiconductor lasers; x-ray/optical scattering; laser-induced damage; free-electron lasers; solid-state spectroscopy; x-ray sources and applications; laser propagation; laser processing of materials; optical design; optical limiting/sensor protection; diffractive optics; quantum well optoelectronics; dense plasmas/high-field physics; laser radar and remote sensing; diode-based lasers; and glass science.

  13. Controllable parabolic-cylinder optical rogue wave.

    PubMed

    Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola

    2014-10-01

    We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.

  14. Autocollimating compensator for controlling aspheric optical surfaces

    NASA Astrophysics Data System (ADS)

    Terebizh, V. Yu.

    2014-05-01

    A compensator (null-corrector) for testing aspheric optical surfaces is proposed, which enables (i) independent verification of optical elements and assembling of the compensator itself, and (ii) ascertaining the compensator position in a control layout for a specified aspheric surface. The compensator consists of three spherical lenses made of the same glass. In this paper, the scope of the compensator expanded to a surface speed ˜f/2.3; a conceptual example for a nominal primary of Hubble Space Telescope is given. The autocollimating design allows significant reducing difficulties associated with practical use of lens compensators.

  15. Stem cell tracking with optically active nanoparticles

    PubMed Central

    Gao, Yu; Cui, Yan; Chan, Jerry KY; Xu, Chenjie

    2013-01-01

    Stem-cell-based therapies hold promise and potential to address many unmet clinical needs. Cell tracking with modern imaging modalities offers insight into the underlying biological process of the stem-cell-based therapies, with the goal to reveal cell survival, migration, homing, engraftment, differentiation, and functions. Adaptability, sensitivity, resolution, and non-invasiveness have contributed to the longstanding use of optical imaging for stem cell tracking and analysis. To identify transplanted stem cells from the host tissue, optically active probes are usually used to label stem cells before the administration. In comparison to the traditional fluorescent probes like fluorescent proteins and dyes, nanoparticle-based probes are advantageous in terms of the photo-stabilities and minimal changes to the cell phenotype. The main focus here is to overview the recent development of optically active nanoparticles for stem cells tracking. The related optical imaging modalities include fluorescence imaging, photoacoustic imaging, Raman and surface enhanced Raman spectroscopy imaging. PMID:23638335

  16. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, A.M.

    1998-04-28

    An aspheric optical element is disclosed formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin ({approx}100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application. 4 figs.

  17. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, Andrew M.

    1998-01-01

    An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.

  18. Recent optical activity of Mrk 421

    NASA Astrophysics Data System (ADS)

    Semkov, E.; Bachev, R.; Strigachev, A.; Ibryamov, S.; Peneva, S.; Gupta, A. C.

    2013-04-01

    Our BVRI optical observations of Mrk 421 were performed within the multiwavelength international campaign (December 2012-June 2013), with the participation of GASP-WEBT, Swift, MAGIC, VLBA, NuSTAR, Fermi, VERITAS, F-GAMMA and other collaborations. Following the reports of enhanced X-ray and gamma activity of Mrk 421 (ATel #4978, ATel #4977, ATel #4976, ATel #4974, ATel #4918), we observed this blazar with the optical telescopes of the National Astronomical Observatory Rozhen and the Astronomical Observatory Belogradchik, Bulgaria.

  19. Photovoltaic concentrator assembly with optically active cover

    DOEpatents

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  20. Control techniques for millimeter-wave active arrays

    SciTech Connect

    Sjogren, L.B.; Liu, H.L.; Liu, T.; Wang, F.; Domier, C.W.; Luhmann, N.C. Jr. )

    1993-06-01

    Control techniques for millimeter-wave active arrays are considered. In addition to voltage control, optical and quasi-optical approaches are discussed as analog control techniques. Digital control techniques discussed include on/off switching arrays and designs with superimposed device and/or grid structures for multi-bit capability. A quasi-optical Q switch, capable of high peak power pulse generation, is discussed as an example application of these techniques. 31 refs., 7 figs.

  1. Nocturnal insects use optic flow for flight control.

    PubMed

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-08-23

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects.

  2. Durham adaptive optics real-time controller.

    PubMed

    Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy

    2010-11-10

    The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems.

  3. Optical Control Panel For Automotive Applications

    NASA Astrophysics Data System (ADS)

    Sultan, Michel F.; O'Rourke, Michael J.

    1990-02-01

    This paper describes a new type of optical control panel that eliminates any electrical contacts and mechanically moving parts. It has potential for low cost, improved reliability, and diagnosability. In its simplest form, the control panel consists of an optically lossy plastic strip that is illuminated from the back side, and that runs parallel to a segmented screen on the front side. Each of the backlit segments acts as a switch. Normally all switches are in the OFF mode. OFF to ON switching is obtained by bringing a finger or reflector close to a segment so as to reflect and couple light into the strip. The back-coupled light divides into two guided waves that attenuate as they propagate towards the extremities of the strip. Two photodetectors detect these attenuated signals. Switch position is inferred from the ratio of the two detected signals. Three early prototypes were tested, each consisting of seven 5 by 15 millimeter switching segments. In all three cases, switch position was inferred without any ambiguity. This type of optical control panel is easy to incorporate in a display.

  4. Manifestation of optical activity in different materials

    NASA Astrophysics Data System (ADS)

    Konstantinova, A. F.; Golovina, T. G.; Konstantinov, K. K.

    2014-07-01

    Various manifestations of optical activity (OA) in crystals and organic materials are considered. Examples of optically active enantiomorphic and nonenantiomorphic crystals of 18 symmetry classes are presented. The OA of enantiomorphic organic materials as components of living nature (amino acids, sugars, and proteins) is analyzed. Questions related to the origin of life on earth are considered. Examples of differences in the enantiomers of drugs are shown. The consequences of replacing conventional left-handed amino acids with additionally right-handed amino acids for living organisms are indicated.

  5. Photonic muscle active optics for space telescopes (active optics with 1023 actuators)

    NASA Astrophysics Data System (ADS)

    Ritter, Joe

    2009-08-01

    Presented is a novel optical system using Cis-Trans photoisomerization where nearly every molecule of a mirror substrate is itself an optically powered actuator. Primary mirrors require sub-wavelength figure (shape) error in order to achieve acceptable Strehl ratios. Traditional telescopy methods require rigid and therefore heavy mirrors and reaction structures as well as proportionally heavy and expensive spacecraft busses and launch vehicles. Areal density can be reduced by increasing actuation density. Making every molecule of a substrate an actuator approaches the limit of the areal density vs actuation design trade space. Cis-Trans photoisomerization, a reversible reorganization of molecular structure induced by light, causes a change in the shape and volume of azobenzene based molecules. Induced strain in these "photonic muscles" can be over 40%. Forces are pico-newtons/molecule. Although this molecular limit is not typically multiplied in aggregate materials we have made, considering the large number of molecules in a mole, future optimized systems may approach this limit In some π-π* mixed valence azo-polymer membranes we have made photoisomerization causes a highly controllable change in macroscopic dimension with application of light. Using different wavelengths and polarizations provides the capability to actively reversibly and remotely control membrane mirror shape and dynamics using low power lasers, instead of bulky actuators and wires, thus allowing the substitution of optically induced control for rigidity and mass. Areal densities of our photonic muscle mirrors are approximately 100 g/m2. This includes the substrate and actuators (which are of course the same). These materials are thin and flexible (similar to saran wrap) so high packing ratios are possible, suggesting the possibility of deployable JWST size mirrors weighing 6 kilograms, and the possibility of ultralightweight space telescopes the size of a football field. Photons weigh nothing

  6. Spacecraft optical disk recorder memory buffer control

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1992-01-01

    The goal of this project is to develop an Application Specific Integrated Circuit (ASIC) for use in the control electronics of the Spacecraft Optical Disk Recorder (SODR). Specifically, this project is to design an extendable memory buffer controller ASIC for rate matching between a system Input/Output port and the SODR's device interface. The aforementioned goal can be partitioned into the following sub-goals: (1) completion of ASIC design and simulation (on-going via ASEE fellowship); (2) ASIC Fabrication (at ASIC manufacturer); and (3) ASIC Testing (NASA/LaRC, Christopher Newport University).

  7. Role of optical computers in aeronautical control applications

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    The role that optical computers play in aircraft control is determined. The optical computer has the potential high speed capability required, especially for matrix/matrix operations. The optical computer also has the potential for handling nonlinear simulations in real time. They are also more compatible with fiber optic signal transmission. Optics also permit the use of passive sensors to measure process variables. No electrical energy need be supplied to the sensor. Complex interfacing between optical sensors and the optical computer is avoided if the optical sensor outputs can be directly processed by the optical computer.

  8. An Overhead Projection Demonstration of Optical Activity

    ERIC Educational Resources Information Center

    Hill, John W.

    1973-01-01

    Describes the use of two polarizing lenses, a yellow filter, an oatmeal bos, a piece of cardboard, a 1,000 ml beaker, and an overhead projector to demonstrate compound optical activity to large classes. Indicates the presence of an accuracy within 1-2 degrees of usually acceptable data. (CC)

  9. Fiber optic chemical microsensors employing optically active silica microspheres

    NASA Astrophysics Data System (ADS)

    Pope, Edward J. A.

    1995-05-01

    Dye-doped porous silica microspheres can be prepared from liquid solution at temperatures near ambient. Microsphere diameter can be controlled between approximately 5.0 microns to in excess of a millimeter. The resulting microspheres can be attached to the distal end of an optical fiber in which the proximal end is attached to a spectrophotometer. Depending upon the organic species doped into the microsphere, a wide variety of sensing functions are possible. In this paper, the use of microsensors for measuring pH, temperature, and solvent content of aqueous solutions is demonstrated. Potential utility of this type of sensor to heavy metals detection and biomedical diagnostics is also discussed.

  10. Controllable Dispersion in an Optical Laser Gyroscope

    NASA Astrophysics Data System (ADS)

    Wolfe, Owen; Du, Shuangli; Rochester, Simon; Budker, Dmitry; Novikova, Irina; Mikhailov, Eugeniy

    2016-05-01

    Optical gyroscopes use Sagnac interferometry to make precise measurements of angular velocity. Increased gyroscope sensitivity will allow for more accurate control of aerospace systems and allow for more precise measurements of the Earth's rotation. Severalfold improvements to optical gyroscope sensitivity were predicted for fast light regimes (ng < 1). We evaluated the feasibility of these improvements in the N-bar dual pump scheme in 87 Rb vapor. We were able to modify the stimulated gyroscope response via tuning the experimental parameters. Gyroscope sensitivity was shown to be dependent on several parameters including pump power, pump detunning, and vapor density. This work was supported by the NSF and Naval Air Warfare Center STTR program N68335-11-C-0428.

  11. Electrical control of optical plasmon resonance with graphene.

    PubMed

    Kim, Jonghwan; Son, Hyungmok; Cho, David J; Geng, Baisong; Regan, Will; Shi, Sufei; Kim, Kwanpyo; Zettl, Alex; Shen, Yuen-Ron; Wang, Feng

    2012-11-14

    Surface plasmon has the unique capability to concentrate light into subwavelength volume. Active plasmon devices using electrostatic gating can enable flexible control of the plasmon excitations, which has been demonstrated recently in terahertz plasmonic structures. Controlling plasmon resonance at optical frequencies, however, remains a significant challenge because gate-induced free electrons have very weak responses at optical frequencies. Here we achieve efficient control of near-infrared plasmon resonance in a hybrid graphene-gold nanorod system. Exploiting the uniquely strong and gate-tunable optical transitions of graphene, we are able to significantly modulate both the resonance frequency and quality factor of gold nanorod plasmon. Our analysis shows that the plasmon-graphene coupling is remarkably strong: even a single electron in graphene at the plasmonic hotspot could have an observable effect on plasmon scattering intensity. Such hybrid graphene-nanometallic structure provides a powerful way for electrical control of plasmon resonances at optical frequencies and could enable novel plasmonic sensing down to single charge transfer events.

  12. Kalman filter based control for Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry

    2004-12-01

    Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.

  13. Optical fiber sensor having an active core

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.

  14. 200-kV active optical fiber voltage transformer

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Luo, Sunan; Ye, Miaoyuan

    1999-02-01

    The report describes a 220kV Active Optical Fiber Voltage Transformer (AOVT). The transformer is different from the passive optical fiber voltage transformer, for no optical crystal is used in the 220kV AOVT. Its principle is that a low voltage is divided for the 220kV high voltage by a capacitive divider and then is converted into a digital signal. The optical fiber is used to transfer the measured digital signal and control signal. The 220kV AOVT consists of an outdoors-high voltage measurement unit and an indoors low voltage metering and controlling unit. The optical fiber connects these units. The low voltage is effectively isolated from the high voltage by means of the optical fiber and a special power supply method which is specially designed for the outdoor high voltage unit. As a result, the safe protection is reliable for the indoor low voltage equipment and the operation staff. Compared to the conventional voltage transformer, the advantages of the 220kV AOVT are high accuracy, low cost, excellent dynamic characteristics and immunity from electromagnetic interference. The 220kV AOVT has been tested, and its accuracy could achieve +/- 0.2 percent.

  15. Influence of optical activity on rogue waves propagating in chiral optical fibers

    NASA Astrophysics Data System (ADS)

    Temgoua, D. D. Estelle; Kofane, T. C.

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  16. Influence of optical activity on rogue waves propagating in chiral optical fibers.

    PubMed

    Temgoua, D D Estelle; Kofane, T C

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems. PMID:27415269

  17. Laser optical disk position encoder with active heads

    NASA Astrophysics Data System (ADS)

    Osborne, Eric P.

    1992-04-01

    An angular position encoder is provided that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads which incorporate beam steering optics with the ability to actively track the disk in directions along the disk radius and normal to its surface. The device adapts features prevalent in optical disk technology toward the application of angular position sensing. A reflective disk and the principles of interferometry are employed. The servo-controlled steering optics move so as to acquire a track on the disk lying at a predetermined radius and distance below the head, and then adjust position and orientation in order to maintain the view of the disk track as required. Thus, the device is actively self-aligning.

  18. Laser optical disk position encoder with active heads

    NASA Astrophysics Data System (ADS)

    Osborne, Eric P.

    1990-03-01

    An angular position encoder is provided that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads which incorporate beam steering optics with the ability to actively track the disk in directions along the disk radius and normal to its surface. The device adapts features prevalent in optical disk technology toward the application of angular position sensing. A reflective disk and the principles of interferometry are employed. The servo-controlled steering optics move so as to acquire a track on the disk lying at a predetermined radius and distance below the head, and then adjust position and orientation in order to maintain the view of the disk track as required. Thus, the device is actively self-aligning.

  19. Figure Control of Lightweight Optical Structures

    NASA Technical Reports Server (NTRS)

    Main, John A.; Song, Haiping

    2005-01-01

    The goal of this paper is to demonstrate the use of fuzzy logic controllers in modifying the figure of a piezoceramic bimorph mirror. Non-contact electron actuation technology is used to actively control a bimorph mirror comprised two PZT-5H wafers by varying the electron flux and electron voltages. Due to electron blooming generated by the electron flux, it is difficult to develop an accurate control model for the bimorph mirror through theoretical analysis alone. The non-contact shape control system with electron flux blooming can be approximately described with a heuristic model based on experimental data. Two fuzzy logic feedback controllers are developed to control the shape of the bimorph mirror according to heuristic fuzzy inference rules generated from previous experimental results. Validation of the proposed fuzzy logic controllers is also discussed.

  20. Active Optics for a Segmented Primary Mirror on a Deep-Space Optical Receiver Antenna (DSORA)

    NASA Technical Reports Server (NTRS)

    Clymer, B. D.

    1990-01-01

    This article investigates the active optical control of segments in the primary mirror to correct for wavefront errors in the Deep-Space Optical Receiver Antenna (DSORA). Although an exact assessment of improvement in signal blur radius cannot be made until a more detailed preliminary structural design is completed, analytical tools are identified for a time when such designs become available. A brief survey of appropriate sensing approaches is given. Since the choice of control algorithm and architecture depends on the particular sensing system used, typical control systems, estimated complexities, and the type of equipment required are discussed. Once specific sensor and actuator systems are chosen, the overall control system can be optimized using methods identified in the literature.

  1. Wavefront Control for Extreme Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2003-07-16

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  2. Pattern matching based active optical sorting of colloids/cells

    NASA Astrophysics Data System (ADS)

    Verma, R. S.; Dasgupta, R.; Ahlawat, S.; Kumar, N.; Uppal, A.; Gupta, P. K.

    2013-08-01

    We report active optical sorting of colloids/cells by employing a cross correlation based pattern matching technique for selection of the desired objects and thereafter sorting using dynamically controllable holographic optical traps. The problem of possible collision between the different sets of objects during sorting was avoided by raising one set of particles to a different plane. We also present the results obtained on using this approach for some representative applications such as sorting of silica particles of two different sizes, of closely packed colloids and of white blood cells and red blood cells from a mixture of the two.

  3. Active Star Architectures For Fiber Optics Ethernet

    NASA Astrophysics Data System (ADS)

    Linde, Yoseph L.

    1988-12-01

    Ethernet, and the closely related IEEE 802.3 CSMA/CD standard (Carrier Sense Multiple Access with Collision Detection), is probably the widest used method for high speed Local Area Networks (LANs). The original Ethernet medium was baseband coax but the wide acceptance of the system necessitated the ability to use Ethernet on a variety of media. So far the use of Ethernet on Thin Coax (CheaperNet), Twisted Pair (StarLan) and Broadband Coax has been standardized. Recently, an increased interest in Fiber Optic based LANs resulted in a formation of an IEEE group whose charter is to recommend approaches for Active and Passive Fiber Optic Ethernet systems. The various approaches which are being considered are described in this paper with an emphasis on Active Star based systems.

  4. Optical activity of chirally distorted nanocrystals

    NASA Astrophysics Data System (ADS)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2016-05-01

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.

  5. Optically Active Porphyrin and Phthalocyanine Systems.

    PubMed

    Lu, Hua; Kobayashi, Nagao

    2016-05-25

    This review highlights and summarizes various optically active porphyrin and phthalocyanine molecules prepared using a wide range of structural modification methods to improve the design of novel structures and their applications. The induced chirality of some illustrative achiral bis-porphyrins with a chiral guest molecule is introduced because these systems are ideal for the identification and separation of chiral biologically active substrates. In addition, the relationship between CD signal and the absolute configuration of the molecule is analyzed through an analysis of the results of molecular modeling calculations. Possible future research directions are also discussed. PMID:27186902

  6. Optogenetics Based Rat-Robot Control: Optical Stimulation Encodes "Stop" and "Escape" Commands.

    PubMed

    Chen, SiCong; Zhou, Hong; Guo, SongChao; Zhang, JiaCheng; Qu, Yi; Feng, ZhouYan; Xu, KeDi; Zheng, XiaoXiang

    2015-08-01

    Electric brain stimulation is frequently used in bio-robot control. However, one possible limitation of electric stimulation is the resultant wide range of influences that may lead to unexpected side-effects. Although there has been prior research done towards optogenetics based brain activation, there has not been much development regarding the comparisons between electric and optical methods of brain activation. In this study, we first encode "Stop" and "Escape" commands by optical stimulation in the dorsal periaqueductal grey (dPAG). The rats behavioral comparisons are then noted down under these two methods. The dPAG neural activity recorded during optical stimulation suggests rate and temporal coding mechanisms in behavioral control. The behavioral comparisons show that rats exhibit anxiety under the "Stop" command conveyed through both optical and electric methods. However, rats are able to recover more quickly from freezing only under optical "Stop" command. Under "Escape" commands, also conveyed through optical means, the rat would move with lessened urgency but the results are more stable. Moreover, c-Fos study shows the optical stimulation activates restricted range in midbrain: the optical stimulation affected only dPAG and its downstreams but electric stimulation activates both the upstream and downstream circuits, in which the glutamatergic neurons are largely occupied and play important role in "Stop" and "Escape" behavior controls. We conclude that optical stimulation is more suited for encoding "Stop" and "Escape" commands for rat-robot control.

  7. Optogenetic feedback control of neural activity

    PubMed Central

    Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M

    2015-01-01

    Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329

  8. Final Report: Imaging of Buried Nanoscale Optically Active Materials

    SciTech Connect

    Appelbaum, Ian

    2011-07-05

    This is a final report covering work done at University of Maryland to develop a Ballistic Electron Emission Luminescence (BEEL) microscope. This technique was intended to examine the carrier transport and photon emission in deeply buried optically-active layers and thereby provide a means for materials science to unmask the detailed consequences of experimentally controllable growth parameters, such as quantum dot size, statistics and orientation, and defect density and charge recombination pathways.

  9. What Controls Cirrus Cloud Optical Depth Distributions?

    NASA Astrophysics Data System (ADS)

    Kay, J. E.; Baker, M.; Hegg, D.; Turner, D.

    2005-12-01

    Understanding the controls on cirrus cloud optical depth distributions [P(σ)] is critical for calculating cirrus cloud radiative impacts. Using an adiabatic parcel model with binned ice microphysics, we assess the influence of microphysical (nucleation, growth and fallout) and dynamical (constant updraft, idealized waves) processes on P(σ). For various sets of model initial conditions, we find P(σ) shape depends primarily on the ice crystal fallout timescale. At small updraft velocities, short fallout timescales allow ice crystals to fall out before depleting the ice super-saturation (Si). Thus, regardless of the ice nuclei (IN) concentration, high Si persists and multiple homogeneous nucleation events occur. In this fallout-dominated regime, P(σ) has a monotonically decreasing shape. In contrast, at large updraft velocities, long fallout timescales resulting from large homogeneous nucleation rates allow complete depletion of the Si and limited ice crystal fallout. In this limited-fallout regime, P(σ) has a skewed peak at high optical depth values. When glaciated IN are added to the limited-fallout regime evolution, they do not inhibit homogeneous nucleation, but they can reduce the maximum Si and number concentration of ice crystals. The limited-fallout P(σ) with glaciated IN has an additional monotonically decreasing tail at low optical depth values. Superimposed oscillations in vertical velocity can broaden P(σ) for limited-fallout regime cirrus. With large temperature displacements, vertical velocity waves can also generate the high Si required for new homogeneous nucleation events that influence P(σ). To complement our parcel model results, we calculate cirrus timescales, thicknesses, and P(σ) using 4000+ hours of raman lidar depolarization and optical depth observations from Lamont, OK (USA). Preliminary results indicate modeled P(σ) resemble P(σ) observations, suggesting P(σ) shapes can be explained in terms of microphysical and dynamical

  10. Spacecraft optical disk recorder memory buffer control

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1993-01-01

    This paper discusses the research completed under the NASA-ASEE summer faculty fellowship program. The project involves development of an Application Specific Integrated Circuit (ASIC) to be used as a Memory Buffer Controller (MBC) in the Spacecraft Optical Disk System (SODR). The SODR system has demanding capacity and data rate specifications requiring specialized electronics to meet processing demands. The system is being designed to support Gigabit transfer rates with Terabit storage capability. The complete SODR system is designed to exceed the capability of all existing mass storage systems today. The ASIC development for SODR consist of developing a 144 pin CMOS device to perform format conversion and data buffering. The final simulations of the MBC were completed during this summer's NASA-ASEE fellowship along with design preparations for fabrication to be performed by an ASIC manufacturer.

  11. Graphene-controlled fiber Bragg grating and enabled optical bistability.

    PubMed

    Gan, Xuetao; Wang, Yadong; Zhang, Fanlu; Zhao, Chenyang; Jiang, Biqiang; Fang, Liang; Li, Dongying; Wu, Hao; Ren, Zhaoyu; Zhao, Jianlin

    2016-02-01

    We report a graphene-assisted all-optical control of a fiber Bragg grating (FBG), which enables in-fiber optical bistability and switching. With an optical pump, a micro-FBG wrapped by graphene evolves into chirped and phase-shifted FBGs, whose characteristic wavelengths and bandwidths could be controlled by the pump power. Optical bistability and multistability are achieved in the controlled FBG based on a shifted Bragg reflection or Fabry-Perot-type resonance, which allow the implementation of optical switching with an extinction ratio exceeding 20 dB and a response time in tens of milliseconds. PMID:26907434

  12. Surface figure control for coated optics

    DOEpatents

    Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  13. Passive and Active Fiber Optic Components

    NASA Astrophysics Data System (ADS)

    Digonnet, Michel Jean-Francois

    This thesis is concerned with the development and characterization of both passive and active fiber-optic components for applications in single-mode fiber systems, in particular in the new technology of fiber sensors and signal processors. These components include single-mode fiber directional couplers, vital to many optical fiber systems, all-fiber wavelength multiplexers, with potential applications in communication systems and active fiber devices, and single-crystal fiber lasers and amplifiers as miniature light sources and signal regenerators. The fiber directional couplers involved in this work, fabricated by a polishing process, are described in detail. Experimental characterization of their coupling, loss and unique tuning properties, and their respective dependence on the coupler geometrical parameters, are reported. A theoretical model of fiber-to-fiber coupling is also developed and shown to be a very useful and accurate tool in the design and study of this type of fiber couplers. The dependence of the coupling properties of fiber couplers on the signal wavelength is studied both theoretically and experimentally for applications in wavelength division multiplexing. All-fiber multiplexers exhibiting a good wavelength selectivity and unique tunability are described and shown to operate according to the coupler model. Work on active fiber devices explores the potential of the new technology of single-crystal fibers grown by the laser-heated floating-zone technique. The status of crystal fiber growth is reported, together with the basic physical and optical characteristics of these fibers. A theoretical model of the effects of fiber model structure on the gain and laser operation of active fibers is also developed to predict the performance of lasers and amplifiers in a fiber form. Several conceptual pumping schemes are described which offer solutions to the difficult problem of optically pumping small diameter fiber amplifiers. The experimental

  14. Active control of convection

    SciTech Connect

    Bau, H.H.

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  15. A high-speed GaAs MESFET optical controller

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.; Richard, M.; Bendett, M.; Gustafson, G.

    1989-01-01

    Optical interconnects are being considered for control signal distribution in phased array antennas. A packaged hybrid GaAs optical controller with a 1:16 demultiplexed output that is suitable for this application is described. The controller, which was fabricated using enhancement/depletion mode MESFET technology, operates at demultiplexer-limited input data rates up to 305 Mb/s and requires less than 200 microW optical input power.

  16. Computer-controlled optical scanning tile microscope.

    PubMed

    Wang, C; Shumyatsky, P; Zeng, F; Zevallos, M; Alfano, R R

    2006-02-20

    A new type of computer-controlled optical scanning, high-magnification imaging system with a large field of view is described that overcomes the commonly believed incompatibility of achieving both high magnification and a large field of view. The new system incorporates galvanometer scanners, a CCD camera, and a high-brightness LED source for the fast acquisition of a large number of a high-resolution segmented tile images with a magnification of 800x for each tile. The captured segmented tile images are combined to create an effective enlarged view of a target totaling 1.6 mm x 1.2 mm in area. The speed and sensitivity of the system make it suitable for high-resolution imaging and monitoring of a small segmented area of 320 microm x 240 microm with 4 microm resolution. Each tile segment of the target can be zoomed up without loss of the high resolution. This new microscope imaging system gives both high magnification and a large field of view. This microscope can be utilized in medicine, biology, semiconductor inspection, device analysis, and quality control. PMID:16523776

  17. Algorithm for predictive control implementation on fiber optic transmission lines

    NASA Astrophysics Data System (ADS)

    Andreev, Vladimir A.; Burdin, Vladimir A.; Voronkov, Andrey A.

    2014-04-01

    This paper presents the algorithm for predictive control implementation on fiber-optic transmission lines. In order to improve the maintenance of fiber optic communication lines, the algorithm prediction uptime optic communication cables have been worked out. It considers the results of scheduled preventive maintenance and database of various works on the track cable line during maintenance.

  18. Optical activity and Alfred Werner's coordination chemistry.

    PubMed

    Ernst, Karl-Heinz; Berke, Heinz

    2011-03-01

    It is widely accepted, that Pasteur's seminal discovery of the opposite optical activity of ammonium sodium tartrate enantiomorphs in solution gave the spark to organic stereochemistry and led to the development of the tetrahedron model by van't Hoff and Le Bel. The proof that chirality is inherently connected to octahedral coordination chemistry fostered greatly Werner's spatial views of metal complexes and his coordination theory. The actual proof of principle was established via separation of diastereomeric camphor sulfonate salts of racemic metal complexes. PMID:20928897

  19. Vibrational Raman optical activity of biological molecules

    NASA Astrophysics Data System (ADS)

    Barron, L. D.; Gargaro, A. R.; Hecht, Lutz; Wen, Z. Q.; Hug, W.

    1991-05-01

    Advances in Raman optical activity (ROA) instrumentation based on the employment of a backscattering geometry together with a cooled CCD detector have now enhanced the sensitivity to the level necessary to provide vibrational ROA spectra of biological molecules in aqueous solution. Preliminary results on peptides and proteins show features originating in coupled Ca-H and N-H deformations of the peptide backbone which appear to be sensitive to the secondary conformation. Also carbohydrates show many features that appear to be characteristic of the central aspects of carbohydrate architecture with effects from the glycosidic link in di- and oligosaccharides particularly prominent. 1.

  20. Active microring based tunable optical power splitters

    NASA Astrophysics Data System (ADS)

    Peter, Eldhose; Thomas, Arun; Dhawan, Anuj; Sarangi, Smruti R.

    2016-01-01

    In this paper we propose a set of novel tunable optical power splitters based on active microring resonators. They work by operating ring resonators in the transient zone between full resonance and off-resonance states for a specific wavelength. We can achieve different split ratios by either varying the bias voltage, or by selectively enabling a given resonator with a specific split ratio among an array of ring resonators. We take 500 ps to tune the resonator, which is at least 10× better that competing designs. Its split ratio varies from 0.4 to 1.8 for an applied voltage range of 0-5 V.

  1. Optical Activity of Anisotropic Achiral Surfaces

    SciTech Connect

    Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoons, A. |

    1996-08-01

    Anisotropic achiral surfaces respond differently to left- and right-hand circularly polarized light. This occurs when the orientation of the surface with respect to an otherwise achiral experimental setup makes the total geometry chiral. Such optical activity is demonstrated in second-harmonic generation from an anisotropic thin molecular film. The circular-difference response reverses sign as the handedness of the geometry is reversed and vanishes when the setup possesses a mirror plane. The results are explained within the electric-dipole-allowed second-order surface nonlinearity. {copyright} {ital 1996 The American Physical Society.}

  2. Controlling the localization and migration of optical excitation

    NASA Astrophysics Data System (ADS)

    Andrews, David L.; Bradshaw, David S.

    2012-09-01

    In the nanoscale structure of a wide variety of material systems, a close juxtaposition of optically responsive components can lead to the absorption of light by one species producing fluorescence that is clearly attributable to another. The effect is generally evident in systems comprising two or more light-absorbing components (molecules, chromophores or quantum dots) with well-characterised fluorescence bands at similar, differentiable wavelengths. This enables the fluorescence associated with transferred energy to be discriminated against fluorescence from an initially excited component. The fundamental mechanism at the heart of the phenomenon, molecular (resonance) energy transfer, also operates in systems where the product of optical absorption is optical frequency up-conversion. In contrast to random media, structurally organised materials offer the possibility of pre-configured control over the delocalization of energy, through molecular energy transfer following optical excitation. The Förster mechanism that conveys energy between molecular-scale components is strongly sensitive to specific forms of correlation between the involved components, in terms of position, spectroscopic character, and orientation; one key factor is a spectroscopic gradient. Suitably designed materials offer a broad scope for the widespread exploitation of such features, in applications ranging from chemical and biological sensing to the detection of nanoscale motion or molecular conformations. Recently, attention has turned to the prospect of actively controlling the process of energy migration, for example by changing the relative efficiencies of fluorescence and molecular energy transfer. On application of static electric fields or off-resonant laser light - just two of the possibilities - each represents a means for achieving active control with ultrafast response, in suitably configured systems. As the principles are established and the theory is developed, a range of new

  3. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  4. EDITORIAL: Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems

    NASA Astrophysics Data System (ADS)

    Denz, Cornelia; Simoni, Francesco

    2009-03-01

    collaborating in this network. The editors are grateful for the active participation of all colleagues in this network, in the network meeting, and in making this special issue a success. We also extend our thanks to a great Journal of Optics A staff that have supported the editing of this special issue, especially the Publishing Editor, Julia Dickinson. Among the active colleagues in our network was also Associate Professor Erik Fällman, Umea University, Sweden. It was with great sadness that we learnt of the death of our colleague and friend in June 2008. We dedicate this special issue to his memory, and the active and always engaged contribution he made both to our conference and to the field of optical micromanipulation and optical control. Erik will be particularly remembered for his applications of optical force measurements on bacterial pili adhesion, which has stimulated a worldwide experimental and theoretical interest in this field.

  5. Subtractive 3D printing of optically active diamond structures.

    PubMed

    Martin, Aiden A; Toth, Milos; Aharonovich, Igor

    2014-05-21

    Controlled fabrication of semiconductor nanostructures is an essential step in engineering of high performance photonic and optoelectronic devices. Diamond in particular has recently attracted considerable attention as a promising platform for quantum technologies, photonics and high resolution sensing applications. Here we demonstrate the fabrication of optically active, functional diamond structures using gas-mediated electron beam induced etching (EBIE). The technique achieves dry chemical etching at room temperature through the dissociation of surface-adsorbed H2O molecules by energetic electrons in a water vapor environment. Parallel processing is possible by electron flood exposure and the use of an etch mask, while high resolution, mask-free, iterative editing is demonstrated by direct write etching of inclined facets of diamond microparticles. The realized structures demonstrate the potential of EBIE for the fabrication of optically active structures in diamond.

  6. Active polarimeter optical system laser hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-07-01

    A laser hazard analysis was performed for the SNL Active Polarimeter Optical System based on the ANSI Standard Z136.1-2000, American National Standard for Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for Safe Use of Lasers Outdoors. The Active Polarimeter Optical System (APOS) uses a pulsed, near-infrared, chromium doped lithium strontium aluminum fluoride (Cr:LiSAF) crystal laser in conjunction with a holographic diffuser and lens to illuminate a scene of interest. The APOS is intended for outdoor operations. The system is mounted on a height adjustable platform (6 feet to 40 feet) and sits atop a tripod that points the beam downward. The beam can be pointed from nadir to as much as 60 degrees off of nadir producing an illuminating spot geometry that can vary from circular (at nadir) to elliptical in shape (off of nadir). The JP Innovations crystal Cr:LiSAF laser parameters are presented in section II. The illuminating laser spot size is variable and can be adjusted by adjusting the separation distance between the lens and the holographic diffuser. The system is adjusted while platform is at the lowest level. The laser spot is adjusted for a particular spot size at a particular distance (elevation) from the laser by adjusting the separation distance (d{sub diffuser}) to predetermined values. The downward pointing angle is also adjusted before the platform is raised to the selected operation elevation.

  7. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal.

    PubMed

    Dickson, Wayne; Wurtz, Gregory A; Evans, Paul R; Pollard, Robert J; Zayats, Anatoly V

    2008-01-01

    The enhanced optical properties of metal films periodically perforated with an array of sub-wavelength size holes have recently been widely studied in the field of surface plasmon optics. The ability to design the optical transmission of such nanostructures, which act as plasmonic crystals, by varying their geometrical parameters gives them great flexibility for numerous applications in photonics, opto-electronics, and sensing. Transforming these passive optical elements into devices that may be actively controlled has presented a new challenge. Here, we report on the realization of an electrically controlled nanostructured optical system based on the unique properties of surface plasmon polaritonic crystals in contact with a liquid crystal (LC) layer. We discuss the effect of LC layer modulation on the surface plasmon dispersion, the related optical transmission and the underlying mechanism. The reported effect may be used to achieve active spectral tuneability and switching in a wide range of applications.

  8. Neutron activation of NIF Final Optics Assemblies

    NASA Astrophysics Data System (ADS)

    Sitaraman, S.; Dauffy, L.; Khater, H.; Brereton, S.

    2010-08-01

    Analyses were performed to characterize the radiation field in the vicinity of the Final Optics Assemblies (FOAs) at the National Ignition Facility (NIF) due to neutron activation following Deuterium-Deuterium (DD), Tritium-Hydrogen-Deuterium (THD), and Deuterium-Tritium (DT) shots associated with different phases of the NIF operations. The activation of the structural components of the FOAs produces one of the larger sources of gamma radiation and is a key factor in determining the stay out time between shots to ensure worker protection. This study provides estimates of effective dose rates in the vicinity of a single FOA and concludes that the DD and THD targets produce acceptable dose rates within10 minutes following a shot while about 6-days of stay out time is suggested following DT shots. Studies are ongoing to determine the combined effects of multiple FOAs and other components present in the Target Bay on stay-out time and worker dose.

  9. Fiber optics for aircraft engine/inlet control

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    NASA programs that focus on the use of fiber optics for aircraft engine/inlet control are reviewed. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible by eliminating the need for electrical wires to be connected between sensors and computers. Using low-level optical signals to control actuators is also feasible when power is generated at the actuator. Each application of fiber optics for aircraft control has different requirements for both the optical cables and the optical connectors. Sensors that measure position and speed by using slotted plates can use lossy cables and bundle connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed, cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cables and the optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically switched actuators that operate at 250 C is also described.

  10. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  11. Optical pathlength control experiment on JPL phase B testbed

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul H.; Spanos, John T.; O'Brien, John; Chu, Chengchin

    1993-01-01

    An experimental implementation of a nanometer level optical pathlength control for large baseline space interferometry is presented. The pathlength compensation system is installed on a large flexible experimental truss, thus structural motions play a dominant role in the control system design. The associated control structure interaction problem is addressed to maintain the optical pathlength within the prescribed variation of 10-15 nanometer rms. By a successful blend of a structural control for damping augmentation and a direct pathlength control for the pathlength compensation, the optical pathlength variation has been maintained with 6 nanometer rms under the laboratory ambient disturbance and within 9 nanometer rms under a severe forced resonant disturbance.

  12. Human psychophysiological activity monitoring methods using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  13. Optical pathlength control on the JPL Phase B interferometer testbed

    NASA Technical Reports Server (NTRS)

    Spanos, John T.; Rahman, Zahidul H.

    1993-01-01

    Design and implementation of a controller for optical pathlength compensation on a flexible structure is presented. Nanometer level pathlength control is demonstrated in the laboratory. The experimental results are in close agreement with performance predictions.

  14. Insect behaviour: controlling flight altitude with optic flow.

    PubMed

    Webb, Barbara

    2007-02-20

    Insects can smoothly control their height while flying by adjusting lift to maintain a set-point in the ventral optic flow. The efficacy of this simple flight-control mechanism has been demonstrated using a robot helicopter.

  15. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Petrucco, Louis Jacob (Inventor); Daum, Wolfgang (Inventor)

    2005-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  16. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    1999-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  17. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    2003-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  18. Active optics with a minimum number of actuators

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2014-06-01

    Optics for astronomy implies powerful developments of active and adaptive optics methods applied to instrumentation from X-rays to the near infrared for the design of telescopes, spectrographs, and coronagraph planet finders. This presentation particularly emphasizes the development of active optics methods. Highly accurate and remarkably smooth surfaces from active optics methods allow new optical systems that use highly aspheric and non-axisymmetric - freeform - surfaces. Depending on the goal and performance required for a deformable optical surface, elasticity theory analysis is carried out either with small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, or the weakly conical shell theory. A mirror thickness distribution is then determined as a function of associated bending actuators and boundary conditions. For a given optical shape to generate, one searches for optical solutions with a minimum number of actuators.

  19. Active Control of Environmental Noise

    NASA Astrophysics Data System (ADS)

    Wright, S. E.; Vuksanovic, B.

    1996-02-01

    Most of the current research on active noise control is confined to restricted spaces such as earphones, active silencers, air-conditioning ducts, truck cabins and aircraft fuselages. In this paper the basic concepts of environmental noise reduction by using active noise control in unconfined spaces are explored. The approach is to develop a controlled acoustic shadow, generated by a wall of secondary sources, to reduce unwanted sound in the direction of a complaint area. The basic acoustic theory is considered, followed by computer modelling, and some results to show the effectiveness of the approach. EA Technology and Yorkshire electric in the United Kingdom are supporting this work.

  20. Vibrational Raman optical activity of biological molecules

    NASA Astrophysics Data System (ADS)

    Barron, L. D.; Hecht, Lutz; Wen, Z. Q.; Ford, Steven J.; Bell, A. F.

    1993-06-01

    Advances in Raman optical activity (ROA) instrumentation based on the employment of a backscattering geometry together with a cooled backthinned CCD detector, a holographic notch filter, and a high-efficiency single-grating spectrograph have now enhanced the sensitivity to the level necessary to provide vibrational ROA spectra of most biological molecules in aqueous solution. Results on peptides and proteins show features originating in coupled C(alpha )-H and N-H deformations of the peptide backbone which appear to be sensitive to the secondary conformation including loop and turn structures. Also carbohydrates show many features characteristic of the central aspects of carbohydrate architecture, with effects from the glycosidic link in oligosaccharides particularly prominent. Preliminary ROA spectra of pyrimidine nucleosides appear to reflect the mutual orientation of the sugar and base rings and the dominant furanose conformations.

  1. Vibrational Raman optical activity of ketose monosaccharides

    NASA Astrophysics Data System (ADS)

    Bell, Alasdair F.; Hecht, Lutz; Barron, Laurence D.

    1995-07-01

    The vibrational Raman optical activity (ROA) spectra of the four ketose sugars D-fructose, L-sorbose, D-tagatose and D-psicose in aqueous solution, which have been measured in backscattering in the range ≈250-1500 cm -1, are reported. These results are combined with those from a previous ROA study of aldose and pentose sugars in an attempt to establish new vibrational assignments and to verify old ones. The high information content of these spectra provides a new perspective on all the central features of monosaccharide stereochemistry including dominant anomeric configuration, ring conformation, exocyclic CH 2OH group conformation and relative disposition of the hydroxyl groups around the ring.

  2. Disulfide chromophore and its optical activity.

    PubMed

    Maloň, Petr; Bednárová, Lucie; Straka, Michal; Krejčí, Lucie; Kumprecht, Lukáš; Kraus, Tomáš; Kubáňová, Markéta; Baumruk, Vladimír

    2010-01-01

    The compounds I-IV derived from α-D-cyclodextrin moiety by bridging and/or interconnecting with various patterns of disulfide bonds were chosen as models for the spectroscopic study of conformation of the disulfide bridge. The energy gap between the disulfide and cyclodextrin's electronic transitions allows us to investigate absorption and electronic circular dichroism spectra without disturbing spectral overlaps with amides or aromatic amino acids in peptides or proteins. Raman optical activity (ROA) spectra were measured and the bands due to S-S and C-S stretching motion identified. Comparison with the quantum mechanical calculations of simple models indicates that sense of disulfide twist follows sign of the measured S-S ROA band.

  3. Optical control of fluorescence through plasmonic eigenmode extinction.

    PubMed

    Xu, Xiaoying; Lin, Shih-Che; Li, Quanshui; Zhang, Zhili; Ivanov, Ilia N; Li, Yuan; Wang, Wenbin; Gu, Baohua; Zhang, Zhenyu; Hsueh, Chun-Hway; Snijders, Paul C; Seal, Katyayani

    2015-01-01

    We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.

  4. Optical Control of Fluorescence through plasmonic eigenmode extinction

    SciTech Connect

    Xu, Xiaoying; Lin, Shih-Che; Li, Quanshui; Zhang, Zhili; Ivanov, Ilia N.; Li, Yuan; Wang, Wenbin; Gu, Baohua; Zhang, Zhenyu; Hsueh, C. H.; Snijders, Paul C.; Seal, Katyayani

    2015-04-30

    We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.

  5. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  6. Controls Considerations for Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2004-01-01

    This presentation discusses active control of turbine tip clearance from a control systems perspective. It is a subset of charts that were presented at the 2003 meeting of the International Society of Air Breathing Engines which was held August 31 through September 5 in Cleveland, Ohio. The associated reference paper is cited at the end of the presentation. The presentation describes active tip clearance control research being conducted by NASA to improve turbine engine systems. The target application for this effort is commercial aircraft engines. However, it is believed that the technologies developed as part of this research will benefit a broad spectrum of current and future turbomachinery. The first part of the presentation discusses the concept of tip clearance, problems associated with it, and the benefits of controlling it. It lays out a framework for implementing tip clearance controls that enables the implementation to progress from purely analytical to hardware-in-the-loop to fully experimental. And it briefly discusses how the technologies developed will be married to the previously described ACC Test Rig for hardware-in-the-loop demonstrations. The final portion of the presentation, describes one of the key technologies in some detail by presenting equations and results for a functional dynamic model of the tip clearance phenomena. As shown, the model exhibits many of the clearance dynamics found in commercial gas turbine engines. However, initial attempts to validate the model identified limitations that are being addressed to make the model more realistic.

  7. Microwave characteristics of an optically controlled GaAs MESFET

    NASA Astrophysics Data System (ADS)

    Mizuno, H.

    1983-07-01

    This paper presents the results of an experimental investigation of microwave characteristics of a GaAs MESFET under optically direct-controlled conditions. The gain, drain current, and S-parameters were measured under various optical conditions in the frequency region from 3.0 GHz to 8.0 GHz., and it was found that they can be controlled by varying the incident light intensity in the same manner as when varying the gate bias voltage. As applications of this phenomenon, optical/microwave transformers and an optically switched amplifiers were investigated.

  8. Large-aperture active optical carbon fiber reinforced polymer mirror

    NASA Astrophysics Data System (ADS)

    Jungwirth, Matthew E. L.; Wilcox, Christopher C.; Wick, David V.; Baker, Michael S.; Hobart, Clinton G.; Milinazzo, Jared J.; Robichaud, Joseph; Romeo, Robert C.; Martin, Robert N.; Ballesta, Jerome; Lavergne, Emeric; Dereniak, Eustace L.

    2013-05-01

    An active reflective component can change its focal length by physically deforming its reflecting surface. Such elements exist at small apertures, but have yet to be fully realized at larger apertures. This paper presents the design and initial results of a large-aperture active mirror constructed of a composite material called carbon fiber reinforced polymer (CFRP). The active CFRP mirror uses a novel actuation method to change radius of curvature, where actuators press against two annular rings placed on the mirror's back. This method enables the radius of curvature to increase from 2000mm to 2010mm. Closed-loop control maintains good optical performance of 1.05 waves peak-to-valley (with respect to a HeNe laser) when the active CFRP mirror is used in conjunction with a commercial deformable mirror.

  9. Demonstration of optically controlled data routing with the use of multiple-quantum-well bistable and electro-optical devices

    NASA Astrophysics Data System (ADS)

    Koppa, P.; Chavel, P.; Oudar, J. L.; Kuszelewicz, R.; Schnell, J. P.; Pocholle, J. P.

    1997-08-01

    We present experimental results on a 1-to-64-channel free-space photonic switching demonstration system based on GaAs GaAlAs multiple-quantum-well active device arrays. Two control schemes are demonstrated: data transparent optical self-routing usable in a packet-switching environment and direct optical control with potential signal amplification for circuit switching. The self-routing operation relies on the optical recognition of the binary destination address coded in each packet header. Address decoding is implemented with elementary optical bistable devices and modulator pixels as all-optical latches and electro-optical and gates, respectively. All 60 defect-free channels of the system could be operated one by one, but the simultaneous operation of only three channels could be achieved mainly because of the spatial nonhomogeneities of the devices. Direct-control operation is based on directly setting the bistable device reflectivity with a variable-control beam power. This working mode turned out to be much more tolerant of spatial noises: 37 channels of the system could be operated simultaneously. Further development of the system to a crossbar of N inputs and M outputs and system miniaturization are also considered.

  10. Active phase compensation system for fiber optic holography

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1988-01-01

    Fiber optic delivery systems promise to extend the application of holography to severe environments by simplifying test configurations and permitting the laser to be remotely placed in a more benign location. However, the introduction of optical fiber leads to phase stability problems. Environmental effects cause the pathlengths of the fibers to change randomly, preventing the formation of stationary interference patterns which are required for holography. An active phase control system has been designed and used with an all-fiber optical system to stabilize the phase difference between light emitted from two fibers, and to step the phase difference by 90 deg without applying any constraints on the placement of the fibers. The accuracy of the phase steps is shown to be better than 0.02 deg., and a stable phase difference can be maintained for 30 min. This system can be applied to both conventional and electro-optic holography, as well as to any system where the maintenance of an accurate phase difference between two coherent beams is required.

  11. Extrinsic chirality: Tunable optically active reflectors and perfect absorbers

    NASA Astrophysics Data System (ADS)

    Plum, Eric

    2016-06-01

    Conventional three-dimensional (3D) chiral media can exhibit optical activity for transmitted waves, but optical activity for reflected waves is negligible. This work shows that mirror asymmetry of the experimental arrangement—extrinsic 3D chirality—leads to giant optical activity for reflected waves with fundamentally different characteristics. It is demonstrated experimentally that extrinsically 3D-chiral illumination of a lossy metasurface backed by a mirror enables tunable circular dichroism and circular birefringence as well as perfect absorption of circularly polarized waves. In contrast, such polarization phenomena vanish for conventional optically active media backed by a mirror.

  12. Optical implementation of fuzzy-logic-based controllers

    NASA Astrophysics Data System (ADS)

    Mendlovic, David; Zalevsky, Zeev; Gur, Eran

    2000-10-01

    State of the art fuzzy-logic based control is mainly implemented using electronic hardware or computer software. This requires interpretation of fuzzy logic concepts such as membership functions and fuzzy based rules, all of which have been thoroughly studied. However, the 2-D light-speed abilities of optical processing enables direct implementation of dual-input fuzzy logic inference engines. The optical equivalent of the membership function is generated in a straightforward manner and the same applies to rule tables and combination rules. Diffractive optical elements allow these optical inference engines to be compact in size and high on efficiency. This is done by binary optics and phase-only elements. Using the 2-D work-plane of optics, the ability of simple control over the wavelength and the polarization of light and the properties of diffractive elements, such an engine can deal with higher order data and lead the way to fast and dynamic fuzzy inferencing.

  13. Dispersionless optical activity based on novel windmill-shaped chiral metamaterial

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolong; Xiao, Zhongyin; Liu, Dejun; Wang, Lei; Xu, Kai; Tang, Jingyao; Wang, Zihua

    2016-01-01

    In this paper, the optical properties of the novel windmill-shaped chiral metamaterial (CMM) with low ellipticity have been studied numerically in THz band. The dispersionless optical activity can be achieved in a wide frequency range (i.e. from 1.7 THz to 2.7 THz). The dependence of CMM’s optical properties on the structural parameters is studied systematically and the frequency range of low ellipticity can be controlled dynamically through adjusting the width of the metal. The excitation mechanism of optical activity based on the current distribution is also analyzed in detail.

  14. All-optical control of ferromagnetic thin films and nanostructures.

    PubMed

    Lambert, C-H; Mangin, S; Varaprasad, B S D Ch S; Takahashi, Y K; Hehn, M; Cinchetti, M; Malinowski, G; Hono, K; Fainman, Y; Aeschlimann, M; Fullerton, E E

    2014-09-12

    The interplay of light and magnetism allowed light to be used as a probe of magnetic materials. Now the focus has shifted to use polarized light to alter or manipulate magnetism. Here, we demonstrate optical control of ferromagnetic materials ranging from magnetic thin films to multilayers and even granular films being explored for ultra-high-density magnetic recording. Our finding shows that optical control of magnetic materials is a much more general phenomenon than previously assumed and may have a major impact on data memory and storage industries through the integration of optical control of ferromagnetic bits.

  15. Experimental verification of nanometer level optical pathlength control on a flexible structure

    NASA Technical Reports Server (NTRS)

    O'Neal, Michael; Eldred, Daniel; Liu, Dankai; Redding, David

    1991-01-01

    This paper describes an experimental facility being developed for demonstration and validation of control concepts arising out of NASA's Control Structure Interaction program. The facility is meant to be a ground testbed with relevance to a broad class of precision optical space systems. The objective of the experimental program is to investigate a multilayer control approach to the maintenance of nanometer-level optical pathlength stability in the presence of external disturbances and multiple structural resonances. The facility is designed to explore the effect of applying, separately and in combinations, structural vibration suppression, vibration isolation, and active optical articulation. This paper describes the testbed facility, the structure, optics, sensors, actuators, and real-time computer and program development environment. Initial optical articulation experimental results are presented.

  16. Experimental verification of nanometer level optical pathlength control on a flexible structure

    NASA Astrophysics Data System (ADS)

    O'Neal, Michael; Eldred, Daniel; Liu, Dankai; Redding, David

    This paper describes an experimental facility being developed for demonstration and validation of control concepts arising out of NASA's Control Structure Interaction program. The facility is meant to be a ground testbed with relevance to a broad class of precision optical space systems. The objective of the experimental program is to investigate a multilayer control approach to the maintenance of nanometer-level optical pathlength stability in the presence of external disturbances and multiple structural resonances. The facility is designed to explore the effect of applying, separately and in combinations, structural vibration suppression, vibration isolation, and active optical articulation. This paper describes the testbed facility, the structure, optics, sensors, actuators, and real-time computer and program development environment. Initial optical articulation experimental results are presented.

  17. Optical Closed-Loop Propulsion Control System Development

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1998-01-01

    The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.

  18. Autocollimating compensator for controlling aspheric optical surfaces. I

    NASA Astrophysics Data System (ADS)

    Terebizh, V. Yu.

    2014-06-01

    A compensator (null-corrector) for testing aspheric optical surfaces is proposed, which enables (1) independent verification of optical elements and assembling of the compensator itself, and (2) ascertaining the compensator position in a control layout for a specified aspheric surface. The autocollimating design allows significant reducing difficulties associated with practical use of lens compensators.

  19. A new generation active arrays for optical flexibility in astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Kroes, G.; Jaskó, A.; Pragt, J. H.; Venema, L.; De Haan, M.

    2012-09-01

    Throughout the history of telescopes and astronomical instrumentation, new ways were found to open up unexplored possibilities in fundamental astronomical research by increasing the telescope size and instrumentation complexity. The ever demanding requirements on instrument performance pushes instrument complexity to the edge. In order to take the next leap forward in instrument development the optical design freedom needs to be increased drastically. The use of more complex and more accurate optics allows for shorter optical trains with smaller sizes, smaller number of components and reduced fabrication and alignment verification time and costs. Current optics fabrication is limited in surface form complexity and/or accuracy. Traditional active and adaptive optics lack the needed intrinsic long term stability and simplicity in design, manufacturing, verification and control. This paper explains how and why active arrays literally provide a flexible but stable basis for the next generation optical instruments. Combing active arrays with optically high quality face sheets more complex and accurate optical surface forms can be provided including extreme a-spherical (freeform) surfaces and thus allow for optical train optimization and even instrument reconfiguration. A zero based design strategy is adopted for the development of the active arrays addressing fundamental issues in opto-mechanical engineering. The various choices are investigated by prototypes and Finite Element Analysis. Finally an engineering concept will be presented following a highly stable adjustment strategy allowing simple verification and control. The Optimization metrology is described in an additional paper for this conference by T. Agócs et al.

  20. Implementation, Control and Programming of Digital Optical Systems

    NASA Astrophysics Data System (ADS)

    Craig, Robert George Alexander

    Available from UMI in association with The British Library. Optical technology is playing an increasingly important role in modern computer systems including such areas as communications via fiber optic systems and data storage in the form of the optical compact disk (CD-ROM's). One of the aims of research into this technology has been to extend and enhance existing electronic computing systems. This thesis represents work carried out on the implementation of one particular form of parallel digital optical computing architecture known as the optical cellular logic image processor. This architecture performs the information processing all-optically and in parallel while making use of electronic technology for timing and control. One particular component required in this architecture is some form of programmable processing unit. Experimental studies involving the construction of single channel optical processing units were successfully completed. These units had multi-function capability and could be programmed optically under electronic control. Expansion upon one of these basic units to include iterative feedback resulted in the successful implementation of a single channel of the cellular logic image processor architecture. It allowed eight functions to be programmed in real time and demonstrated some of the world's first all-optical digital processing of arbitrary optical data. Further expansion of the system to include 256 simultaneous processing channels using similar technology was also partially completed. A full description is presented of the design concepts, components and the systems that have been developed. Attention is also given to both the hardware and software aspects related to electronic control of the optical systems. Finally, limitations associated with present optical technology are discussed and future possibilities suggested.

  1. Actively Controlled Components. Chapter 2

    NASA Technical Reports Server (NTRS)

    Horn, W.; Hiller, S.-J.; Pfoertner, H.; Schadow, K.; Rosenfeld, T.; Garg, S.

    2009-01-01

    Active Control can help to meet future engine requirements by an active improvement of the component characteristics. The concept is based on an intelligent control logic, which senses actual operating conditions and reacts with adequate actuator action. This approach can directly improve engine characteristics as performance, operability, durability and emissions on the one hand. On the other hand active control addresses the design constrains imposed by unsteady phenomena like inlet distortion, compressor surge, combustion instability, flow separations, vibration and noise, which only occur during exceptional operating conditions. The feasibility and effectiveness of active control technologies have been demonstrated in lab-scale tests. This chapter describes a broad range of promising applications for each engine component. Significant efforts in research and development remain to implement these technologies in engine rig and finally production engines and to demonstrate today s engine generation airworthiness, safety, reliability, and durability requirements. Active control applications are in particular limited by the gap between available and advanced sensors and actuators, which allow an operation in the harsh environment in an aero engine. The operating and performance requirements for actuators and sensors are outlined for each of the gas turbine sections from inlet to nozzle.

  2. Demonstration of Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  3. Polarization ray tracing in anisotropic optically active media

    NASA Technical Reports Server (NTRS)

    Mcclain, Stephen C.; Chipman, Russell A.

    1992-01-01

    Procedures for performing polarization ray tracing through birefringent media are presented in a form compatible with the standard methods of geometric ray tracing. The birefringent materials treated include the following: anisotropic optically active materials such as quartz, non-optically active uniaxial materials such as calcite, and isotropic optically active materials such as mercury sulfide or organic liquids. Refraction and reflection algorithms are presented which compute both ray directions and wave directions. Methods for computing polarization modes, refractive indices, optical path lengths, and Fresnel transmission and reflection coefficients are also specified.

  4. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  5. Optical control of excitation waves in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Burton, Rebecca A. B.; Klimas, Aleksandra; Ambrosi, Christina M.; Tomek, Jakub; Corbett, Alex; Entcheva, Emilia; Bub, Gil

    2015-12-01

    In nature, macroscopic excitation waves are found in a diverse range of settings including chemical reactions, metal rust, yeast, amoeba and the heart and brain. In the case of living biological tissue, the spatiotemporal patterns formed by these excitation waves are different in healthy and diseased states. Current electrical and pharmacological methods for wave modulation lack the spatiotemporal precision needed to control these patterns. Optical methods have the potential to overcome these limitations, but to date have only been demonstrated in simple systems, such as the Belousov-Zhabotinsky chemical reaction. Here, we combine dye-free optical imaging with optogenetic actuation to achieve dynamic control of cardiac excitation waves. Illumination with patterned light is demonstrated to optically control the direction, speed and spiral chirality of such waves in cardiac tissue. This all-optical approach offers a new experimental platform for the study and control of pattern formation in complex biological excitable systems.

  6. Status of the Fiber Optic Control System Integration (FOCSI) program

    NASA Astrophysics Data System (ADS)

    Baumbick, Robert J.

    1993-05-01

    This report presents a discussion of the progress made in the NASA/NAVY Fiber Optic Control System Integration (FOCSI) program. This program will culminate in open-loop flight tests of passive optical sensors and associated electro-optics on an F-18 aircraft. Currently, the program is in the final stages of hardware fabrication and environmental testing of the passive optical sensors and electro-optics. This program is a foundation for future Fly-by-Light (FBL) programs. The term Fly-by-Light is used to describe the utilization of passive optical sensors and fiber optic data links for monitoring and control of aircraft in which sensor and actuation signals are transmitted optically. The benefits of this technology for advanced aircraft include the following: improved reliability and reduced certification cost due to greater immunity to EME (electromagnetic effects); reduced harness volume and weight; elimination of short circuits and sparking in wiring due to insulation deterioration; lower maintenance costs (fewer components); greater flexibility in data bus protocol and architecture; absence of ground loops; and higher operating temperatures for electrically passive optical sensors.

  7. Status of the Fiber Optic Control System Integration (FOCSI) program

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1993-01-01

    This report presents a discussion of the progress made in the NASA/NAVY Fiber Optic Control System Integration (FOCSI) program. This program will culminate in open-loop flight tests of passive optical sensors and associated electro-optics on an F-18 aircraft. Currently, the program is in the final stages of hardware fabrication and environmental testing of the passive optical sensors and electro-optics. This program is a foundation for future Fly-by-Light (FBL) programs. The term Fly-by-Light is used to describe the utilization of passive optical sensors and fiber optic data links for monitoring and control of aircraft in which sensor and actuation signals are transmitted optically. The benefits of this technology for advanced aircraft include the following: improved reliability and reduced certification cost due to greater immunity to EME (electromagnetic effects); reduced harness volume and weight; elimination of short circuits and sparking in wiring due to insulation deterioration; lower maintenance costs (fewer components); greater flexibility in data bus protocol and architecture; absence of ground loops; and higher operating temperatures for electrically passive optical sensors.

  8. Towards Depth-Resolved Optical Imaging of Cardiac Electrical Activity.

    PubMed

    Walton, Richard D; Bernus, Olivier

    2015-01-01

    The spatiotemporal dynamics of arrhythmias are likely to be complex three-dimensional phenomena. Yet, the lack of high-resolution three-dimensional imaging techniques, both in the clinic and the experimental lab, limits our ability to better understand the mechanisms of such arrhythmias. Optical mapping using voltage-sensitive dyes is a widely used tool in experimental electrophysiology. It has been known for decades that even in its most basic application, epi-fluorescence, the optical signal contains information from within a certain intramural volume. Understanding of this fundamental property of optical signals has paved the way towards novel three-dimensional optical imaging techniques. Here, we review our current understanding of the three-dimensional nature of optical signals; how penetration depths of cardiac optical imaging can be improved by using novel imaging modalities and finally, we highlight new techniques inspired from optical tomography and aiming at full depth-resolved optical mapping of cardiac electrical activity. PMID:26238062

  9. Phase and gain control of GaAs MMIC transmit-receive modules by optical means

    NASA Astrophysics Data System (ADS)

    Herczfeld, P. R.; Daryoush, A.; Jemison, W.; Rosen, Arye; Paolella, A.

    The authors report on the optical phase and gain control of GaAs microwave monolithic integrated-circuit (MMIC) transmit-receive modules with applications for active phased-array antennas. Phase shifts of 45 degrees were obtained with 50 mW of optical power, and amplifier gain was controlled 15 dB with 250 mW of light intensity. It is concluded that this approach can be extended to the millimeter wave range, is compatible with GaAs MMICs, has potential for fast response, is cost effective, and is compatible with parallel optical processing.

  10. Active Learning Environment with Lenses in Geometric Optics

    ERIC Educational Resources Information Center

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  11. Multiple-channel, total-reflection optic with controllable divergence

    DOEpatents

    Gibson, David M.; Downing, Robert G.

    1997-01-01

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence.

  12. Multiple-channel, total-reflection optic with controllable divergence

    DOEpatents

    Gibson, D.M.; Downing, R.G.

    1997-02-18

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence. 11 figs.

  13. Polymer optical fiber grating as water activity sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Webb, David J.

    2014-05-01

    Controlling the water content within a product has long been required in the chemical processing, agriculture, food storage, paper manufacturing, semiconductor, pharmaceutical and fuel industries. The limitations of water content measurement as an indicator of safety and quality are attributed to differences in the strength with which water associates with other components in the product. Water activity indicates how tightly water is "bound," structurally or chemically, in products. Water absorption introduces changes in the volume and refractive index of poly(methyl methacrylate) PMMA. Therefore for a grating made in PMMA based optical fiber, its wavelength is an indicator of water absorption and PMMA thus can be used as a water activity sensor. In this work we have investigated the performance of a PMMA based optical fiber grating as a water activity sensor in sugar solution, saline solution and Jet A-1 aviation fuel. Samples of sugar solution with sugar concentration from 0 to 8%, saline solution with concentration from 0 to 22%, and dried (10ppm), ambient (39ppm) and wet (68ppm) aviation fuels were used in experiments. The corresponding water activities are measured as 1.0 to 0.99 for sugar solution, 1.0 to 0.86 for saline solution, and 0.15, 0.57 and 1.0 for the aviation fuel samples. The water content in the measured samples ranges from 100% (pure water) to 10 ppm (dried aviation fuel). The PMMA based optical fiber grating exhibits good sensitivity and consistent response, and Bragg wavelength shifts as large as 3.4 nm when the sensor is transferred from dry fuel to wet fuel.

  14. All-optical control of microfiber resonator by graphene's photothermal effect

    NASA Astrophysics Data System (ADS)

    Wang, Yadong; Gan, Xuetao; Zhao, Chenyang; Fang, Liang; Mao, Dong; Xu, Yiping; Zhang, Fanlu; Xi, Teli; Ren, Liyong; Zhao, Jianlin

    2016-04-01

    We demonstrate an efficient all-optical control of microfiber resonator assisted by graphene's photothermal effect. Wrapping graphene onto a microfiber resonator, the light-graphene interaction can be strongly enhanced via the resonantly circulating light, which enables a significant modulation of the resonance with a resonant wavelength shift rate of 71 pm/mW when pumped by a 1540 nm laser. The optically controlled resonator enables the implementation of low threshold optical bistability and switching with an extinction ratio exceeding 13 dB. The thin and compact structure promises a fast response speed of the control, with a rise (fall) time of 294.7 μs (212.2 μs) following the 10%-90% rule. The proposed device, with the advantages of compact structure, all-optical control, and low power acquirement, offers great potential in the miniaturization of active in-fiber photonic devices.

  15. All-optical flip-flop and control methods thereof

    SciTech Connect

    Maywar, Drew; Agrawal, Govind P.

    2010-03-23

    Embodiments of the invention pertain to remote optical control of holding beam-type, optical flip-flop devices, as well as to the devices themselves. All-optical SET and RE-SET control signals operate on a cw holding beam in a remote manner to vary the power of the holding beam between threshold switching values to enable flip-flop operation. Cross-gain modulation and cross-polarization modulation processes can be used to change the power of the holding beam.

  16. Integrated Modeling Activities for the James Webb Space Telescope: Optical Jitter Analysis

    NASA Technical Reports Server (NTRS)

    Hyde, T. Tupper; Ha, Kong Q.; Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.

    2004-01-01

    This is a continuation of a series of papers on the integrated modeling activities for the James Webb Space Telescope(JWST). Starting with the linear optical model discussed in part one, and using the optical sensitivities developed in part two, we now assess the optical image motion and wavefront errors from the structural dynamics. This is often referred to as "jitter: analysis. The optical model is combined with the structural model and the control models to create a linear structural/optical/control model. The largest jitter is due to spacecraft reaction wheel assembly disturbances which are harmonic in nature and will excite spacecraft and telescope structural. The structural/optic response causes image quality degradation due to image motion (centroid error) as well as dynamic wavefront error. Jitter analysis results are used to predict imaging performance, improve the structural design, and evaluate the operational impact of the disturbance sources.

  17. Giant nonlinear optical activity in a plasmonic metamaterial

    NASA Astrophysics Data System (ADS)

    Ren, Mengxin; Plum, Eric; Xu, Jingjun; Zheludev, Nikolay I.

    2012-05-01

    In 1950, a quarter of a century after his first-ever nonlinear optical experiment when intensity-dependent absorption was observed in uranium-doped glass, Sergey Vavilov predicted that birefringence, dichroism and polarization rotatory power should be dependent on light intensity. It required the invention of the laser to observe the barely detectable effect of light intensity on the polarization rotatory power of the optically active lithium iodate crystal, the phenomenon now known as the nonlinear optical activity, a high-intensity counterpart of the fundamental optical effect of polarization rotation in chiral media. Here we report that a plasmonic metamaterial exhibits nonlinear optical activity 30 million times stronger than lithium iodate crystals, thus transforming this fundamental phenomenon of polarization nonlinear optics from an esoteric phenomenon into a major effect of nonlinear plasmonics with potential for practical applications.

  18. Optical control of NMDA receptors with a diffusible photoswitch.

    PubMed

    Laprell, Laura; Repak, Emilienne; Franckevicius, Vilius; Hartrampf, Felix; Terhag, Jan; Hollmann, Michael; Sumser, Martin; Rebola, Nelson; DiGregorio, David A; Trauner, Dirk

    2015-01-01

    N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity, learning and memory, and are implicated in various neuronal disorders. We synthesized a diffusible photochromic glutamate analogue, azobenzene-triazole-glutamate (ATG), which is specific for NMDARs and functions as a photoswitchable agonist. ATG is inactive in its dark-adapted trans-isoform, but can be converted into its active cis-isoform using one-photon (near UV) or two-photon (740 nm) excitation. Irradiation with violet light photo-inactivates ATG within milliseconds, allowing agonist removal on the timescale of NMDAR deactivation. ATG is compatible with Ca(2+) imaging and can be used to optically mimic synaptic coincidence detection protocols. Thus, ATG can be used like traditional caged glutamate compounds, but with the added advantages of NMDAR specificity, low antagonism of GABAR-mediated currents, and precise temporal control of agonist delivery. PMID:26311290

  19. Optical control of NMDA receptors with a diffusible photoswitch

    PubMed Central

    Laprell, Laura; Repak, Emilienne; Franckevicius, Vilius; Hartrampf, Felix; Terhag, Jan; Hollmann, Michael; Sumser, Martin; Rebola, Nelson; DiGregorio, David A.; Trauner, Dirk

    2015-01-01

    N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity, learning and memory, and are implicated in various neuronal disorders. We synthesized a diffusible photochromic glutamate analogue, azobenzene-triazole-glutamate (ATG), which is specific for NMDARs and functions as a photoswitchable agonist. ATG is inactive in its dark-adapted trans-isoform, but can be converted into its active cis-isoform using one-photon (near UV) or two-photon (740 nm) excitation. Irradiation with violet light photo-inactivates ATG within milliseconds, allowing agonist removal on the timescale of NMDAR deactivation. ATG is compatible with Ca2+ imaging and can be used to optically mimic synaptic coincidence detection protocols. Thus, ATG can be used like traditional caged glutamate compounds, but with the added advantages of NMDAR specificity, low antagonism of GABAR-mediated currents, and precise temporal control of agonist delivery. PMID:26311290

  20. Electronic system for optical shutter control

    NASA Technical Reports Server (NTRS)

    Viljoen, H. C.; Gaylord, T. K.

    1976-01-01

    The paper describes a precise and versatile electronic system for shutter control in light beam experiments. Digital and analog circuitry is used to provide automatic timing, exposure control, manual operation, and remote programmability. A block diagram of the system is presented and the individual circuits - the timer control circuit, the clock control circuit, the comparator circuit, the exposure (integrator) circuit, and the shutter drive circuit are discussed in detail and diagrams are provided.

  1. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2014-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  2. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  3. Extended active disturbance rejection controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2012-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  4. Controllable optical black hole in left-handed materials.

    PubMed

    Bai, Qiang; Chen, Jing; Shen, Nian-Hai; Cheng, Chen; Wang, Hui-Tian

    2010-02-01

    Halting and storing light by infinitely decelerating its speed, in the absence of any form of external control, is extremely di+/-cult to imagine. Here we present a theoretical prediction of a controllable optical black hole composed of a planar left-handed material slab. We reveal a criterion that the effective round-trip propagation length in one zigzag path is zero, which brings light to a complete standstill. Both theory and ab initio simulation demonstrate that this optical black hole has degrees flexible controllability for the speed of light. Surprisingly, the ab initio simulations reveal that our scheme has degrees flexible controllability for swallowing, holding, and releasing light. PMID:20174039

  5. Robust control of a bimorph mirror for adaptive optics systems.

    PubMed

    Baudouin, Lucie; Prieur, Christophe; Guignard, Fabien; Arzelier, Denis

    2008-07-10

    We apply robust control techniques to an adaptive optics system including a dynamic model of the deformable mirror. The dynamic model of the mirror is a modification of the usual plate equation. We propose also a state-space approach to model the turbulent phase. A continuous time control of our model is suggested, taking into account the frequential behavior of the turbulent phase. An H(infinity) controller is designed in an infinite-dimensional setting. Because of the multivariable nature of the control problem involved in adaptive optics systems, a significant improvement is obtained with respect to traditional single input-single output methods.

  6. Optogenetics: optical control of a photoactivatable Rac in living cells.

    PubMed

    Yin, Taofei; Wu, Yi I

    2015-01-01

    Recent developments in optogenetics have extended optical control of signaling to intracellular proteins, including Rac, a small G protein in the Rho family. A blue light-sensing LOV (light, oxygen, or voltage) domain derived from Avena sativa (oat) phototropin was fused to the N-terminus of a constitutively active mutant of Rac, via an α-helix (Jα) that is conserved among plant phototropins. The fused LOV domain occluded binding of downstream effectors to Rac in the dark. Exposure to blue light caused a conformational change of the LOV domain and unwinding of the Jα helix, relieving steric inhibition. The LOV domain incorporates a flavin as the photon-absorbing cofactor and can be activated by light in a reversible and repeatable fashion. In cultured cells, global illumination with blue light rapidly activated Rac and led to cell spreading and membrane ruffling. Localized and pulsed illumination generated a gradient of Rac activity and induced directional migration. In this chapter, we will describe the techniques in detail and present some examples of applications of using photoactivatable Rac (PA-Rac) in living cells.

  7. Dynamic Control of Optical Response in Layered Metal Chalcogenide Nanoplates.

    PubMed

    Liu, Yanping; Tom, Kyle; Wang, Xi; Huang, Chunming; Yuan, Hongtao; Ding, Hong; Ko, Changhyun; Suh, Joonki; Pan, Lawrence; Persson, Kristin A; Yao, Jie

    2016-01-13

    Tunable optical transitions in ultrathin layered 2-dimensional (2D) materials unveil the electronic structures of materials and provide exciting prospects for potential applications in optics and photonics. Here, we present our realization of dynamic optical modulation of layered metal chalcogenide nanoplates using ionic liquid (IL) gating over a wide spectral range. The IL gating significantly increased the tuning range of the Fermi level and, as a result, substantially altered the optical transitions in the nanoplates. Using heavily n-doped Bi2Se3 nanoplates, we substantially modulated the light transmission through the ultrathin layer. A tunable, high-transmission spectral window in the visible to near-infrared region has been observed due to simultaneous shifts of both the plasma edge and absorption edge of the material. On the other hand, optical response of multilayer MoSe2 flakes gated by IL has shown enhanced transmission in both positive and negative biases, which is consistent with their ambipolar electrical behavior. The electrically controlled optical property tuning in metal chalcogenide material systems provides new opportunities for potential applications, such as wide spectral range optical modulators, optical filters, and electrically controlled smart windows with extremely low material consumption.

  8. Dynamic Control of Optical Response in Layered Metal Chalcogenide Nanoplates.

    PubMed

    Liu, Yanping; Tom, Kyle; Wang, Xi; Huang, Chunming; Yuan, Hongtao; Ding, Hong; Ko, Changhyun; Suh, Joonki; Pan, Lawrence; Persson, Kristin A; Yao, Jie

    2016-01-13

    Tunable optical transitions in ultrathin layered 2-dimensional (2D) materials unveil the electronic structures of materials and provide exciting prospects for potential applications in optics and photonics. Here, we present our realization of dynamic optical modulation of layered metal chalcogenide nanoplates using ionic liquid (IL) gating over a wide spectral range. The IL gating significantly increased the tuning range of the Fermi level and, as a result, substantially altered the optical transitions in the nanoplates. Using heavily n-doped Bi2Se3 nanoplates, we substantially modulated the light transmission through the ultrathin layer. A tunable, high-transmission spectral window in the visible to near-infrared region has been observed due to simultaneous shifts of both the plasma edge and absorption edge of the material. On the other hand, optical response of multilayer MoSe2 flakes gated by IL has shown enhanced transmission in both positive and negative biases, which is consistent with their ambipolar electrical behavior. The electrically controlled optical property tuning in metal chalcogenide material systems provides new opportunities for potential applications, such as wide spectral range optical modulators, optical filters, and electrically controlled smart windows with extremely low material consumption. PMID:26599063

  9. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  10. Ultrafast optics. Ultrafast optical control by few photons in engineered fiber.

    PubMed

    Nissim, R; Pejkic, A; Myslivets, E; Kuo, B P; Alic, N; Radic, S

    2014-07-25

    Fast control of a strong optical beam by a few photons is an outstanding challenge that limits the performance of quantum sensors and optical processing devices. We report that a fast and efficient optical gate can be realized in an optical fiber that has been engineered with molecular-scale accuracy. Highly efficient, distributed phase-matched photon-photon interaction was achieved in the fiber with locally controlled, nanometer-scale core variations. A three-photon input was used to manipulate a Watt-scale beam at a speed exceeding 500 gigahertz. In addition to very fast beam control, the results provide a path to developing a new class of sensitive receivers capable of operating at very high rates.

  11. Active learning in optics and photonics: Fraunhofer diffraction

    NASA Astrophysics Data System (ADS)

    Ghalila, H.; Ben Lakhdar, Z.; Lahmar, S.; Dhouaidi, Z.; Majdi, Y.

    2014-07-01

    "Active Learning in Optics and Photonics" (ALOP), funded by UNESCO within its Physics Program framework with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE (Society of Photo-Optical Instrumentation Engineers), aimed to helps and promotes a friendly and interactive method in teaching optics using simple and inexpensive equipment. Many workshops were organized since 2005 the year when Z. BenLakhdar, whom is part of the creators of ALOP, proposed this project to STO (Société Tunisienne d'Optique). These workshops address several issues in optics, covering geometrical optics, wave optics, optical communication and they are dedicated to both teachers and students. We focus this lecture on Fraunhofer diffraction emphasizing the facility to achieve this mechanism in classroom, using small laser and operating a slit in a sheet of paper. We accompany this demonstration using mobile phone and numerical modeling to assist in the analysis of the diffraction pattern figure.

  12. Optimum optical structures for active control

    NASA Astrophysics Data System (ADS)

    Shannon, R. R.; Richard, R. M.; Hansen, J. G. R.

    1980-01-01

    A NASTRAN structural analysis of a lightweight mirror structure has been completed and is compared with previous experimental measurements. A preliminary design for a 4 meter aperture, 6 meter focal length primary mirror is presented.

  13. Optical Mode Control by Geometric Phase in Quasicrystal Metasurface

    NASA Astrophysics Data System (ADS)

    Yulevich, Igor; Maguid, Elhanan; Shitrit, Nir; Veksler, Dekel; Kleiner, Vladimir; Hasman, Erez

    2015-11-01

    We report on the observation of optical spin-controlled modes from a quasicrystalline metasurface as a result of an aperiodic geometric phase induced by anisotropic subwavelength structure. When geometric phase defects are introduced in the aperiodic structured surface, the modes exhibit polarization helicity dependence resulting in the optical spin-Hall effect. The radiative thermal dispersion bands from a quasicrystal structure are studied where the observed bands arise from the optical spin-orbit interaction induced by the aperiodic space-variant orientations of anisotropic antennas. The optical spin-flip behavior of the revealed modes that arise from the geometric phase pickup is experimentally observed within the visible spectrum by measuring the spin-projected diffraction patterns. The introduced ability to manipulate the light-matter interaction of quasicrystals in a spin-dependent manner provides the route for molding light via spin-optical aperiodic artificial planar surfaces.

  14. Optical Mode Control by Geometric Phase in Quasicrystal Metasurface.

    PubMed

    Yulevich, Igor; Maguid, Elhanan; Shitrit, Nir; Veksler, Dekel; Kleiner, Vladimir; Hasman, Erez

    2015-11-13

    We report on the observation of optical spin-controlled modes from a quasicrystalline metasurface as a result of an aperiodic geometric phase induced by anisotropic subwavelength structure. When geometric phase defects are introduced in the aperiodic structured surface, the modes exhibit polarization helicity dependence resulting in the optical spin-Hall effect. The radiative thermal dispersion bands from a quasicrystal structure are studied where the observed bands arise from the optical spin-orbit interaction induced by the aperiodic space-variant orientations of anisotropic antennas. The optical spin-flip behavior of the revealed modes that arise from the geometric phase pickup is experimentally observed within the visible spectrum by measuring the spin-projected diffraction patterns. The introduced ability to manipulate the light-matter interaction of quasicrystals in a spin-dependent manner provides the route for molding light via spin-optical aperiodic artificial planar surfaces.

  15. Review of active optics methods in astronomy from x-rays to the infrared

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gérard R.

    2010-09-01

    This review on Active Optics Methods presents various concepts of deformable uv, visible and ir telescope optics which have been mainly developed at the Marseille Observatory - for now 40 years - and other institutes. An optical surface generated by active optics and spherical figuring is free from high spatial frequency errors i.e. ripple errors. Active Optics allows applications of new concepts as: stress figuring aspherization processes, variable curvature mirrors, in situ stressing aspherization processes, under stress replications to generate corrected diffraction gratings, multimode deformable compensators, and situ control of large telescope optics. X-ray telescope mirrors could also benefit soon from the enhanced imaging performances of active optics. The 0.5- 1 arcsec spatial resolution of Chandra should be followed up by increased resolution space telescopes. This requires constructing new grazing-incidence telescopes which will strictly satisfy Abbe's sine condition, i.e. a Chase-VanSpeybroeck design for the two-mirror case. The recent elaboration of an elasticity theory of weakly conical shells allows reviewing some potential innovative concepts for the active figuring and in situ control of either monolithic or segmented telescope mirrors for x-ray astronomy.

  16. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  17. Note: Computer controlled rotation mount for large diameter optics

    NASA Astrophysics Data System (ADS)

    Rakonjac, Ana; Roberts, Kris O.; Deb, Amita B.; Kjærgaard, Niels

    2013-02-01

    We describe the construction of a motorized optical rotation mount with a 40 mm clear aperture. The device is used to remotely control the power of large diameter laser beams for a magneto-optical trap. A piezo-electric ultrasonic motor on a printed circuit board provides rotation with a precision better than 0.03° and allows for a very compact design. The rotation unit is controlled from a computer via serial communication, making integration into most software control platforms straightforward.

  18. Concepts for optical control of diffuse discharge opening switches

    SciTech Connect

    Schoenbach, K.H.; Guenther, A.H.; Hatfield, L.L.; Kristiansen, M.; Schaefer, G.

    1982-12-01

    Optical control of diffuse discharges is discussed as opening mechanism for rep-rated switches. Diffuse discharges can be sustained or terminated by making use of optogalvanic effects, that means resonant interaction of laser radiation with diffuse plasma. Independent of control mechanisms, the performance of diffuse discharge opening switches is strongly affected by such fill gas properties as attachment and electron mobility.

  19. Electrokinetic and optical control of bacterial microrobots

    NASA Astrophysics Data System (ADS)

    Steager, Edward B.; Selman Sakar, Mahmut; Kim, Dal Hyung; Kumar, Vijay; Pappas, George J.; Kim, Min Jun

    2011-03-01

    One of the great challenges in microscale science and engineering is the independent manipulation of cells and man-made objects on the micron scale. For such work, motile microorganisms are integrated with engineered systems to construct microbiorobots (MBRs). MBRs are negative photosensitive epoxy (SU-8) microfabricated structures with typical feature sizes ranging from 1 to 100 µm coated with a monolayer of swarmer cells of the bacterium Serratia marcescens. The adherent cells naturally coordinate to propel the microstructures in fluidic environments. In this study, ultraviolet light is used to control rotational motion and direct current electric fields are used to control the two-dimensional movement of MBRs. They are steered in a fully automated fashion using computer-controlled visual servoing, used to transport and manipulate micron-sized objects, and employed as cell-based biosensors. This work is a step toward in vitro mechanical or chemical manipulation of cells as well as controlled assembly of microcomponents.

  20. THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared M.; Taniguchi, Yoshi; Nagao, Tohru; Shioya, Yasuhiro; Brusa, Marcella; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Huchra, John P.; Jahnke, Knud; Koekemoer, Anton M.; Salvato, Mara; Capak, Peter; Scoville, Nick Z.; Kartaltepe, Jeyhan S.; Lanzuisi, Giorgio; McCarthy, Patrick J.; Maineri, Vincenzo

    2009-11-20

    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull active galactic nuclei (AGNs) in the COSMOS field. These objects exhibit the X-ray luminosity of an AGN but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to approx70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining approx30% of optically dull AGNs have anomalously high f{sub X} /f{sub O} ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.

  1. Asymmetric fishnet metamaterials with strong optical activity.

    PubMed

    Zhang, Yong-Liang; Jin, Wei; Dong, Xian-Zi; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2012-05-01

    We investigate the optical properties of mono- and double-layer asymmetric fishnet metamaterials with orientated elliptical holes, which exhibit exotic spectral and polarization rotating characteristics in the visible spectral range. Our results show that nontrivial orientations of the holes with respect to the reciprocal lattice vectors of the periodic lattice in both systems produce strong polarization rotation as well as additional enhanced optical transmission peaks. Analysis of the electromagnetic field distribution shows the unusual effect is produced by the spinning localized surface plasmon resonances due to the asymmetric geometry. High sensitivity of the hybridized mode on the dielectric spacing, the aspect ratio of the holes and the embedding media in double-layer structure is also observed. The dependence of spectral and polarization response on the orientation of the holes and the embedding media is useful for design of chiral metamaterials at optical frequencies and tailoring the polarization behavior of the metallic nano-structures.

  2. Controlling local temperature in water using femtosecond optical tweezer

    PubMed Central

    Mondal, Dipankar; Goswami, Debabrata

    2015-01-01

    A novel method of directly observing the effect of temperature rise in water at the vicinity of optical trap center is presented. Our approach relies on changed values of corner frequency of the optical trap that, in turn, is realized from its power spectra. Our two color experiment is a unique combination of a non-heating femtosecond trapping laser at 780 nm, coupled to a femtosecond infrared heating laser at 1560 nm, which precisely controls temperature at focal volume of the trap center using low powers (100-800 µW) at high repetition rate. The geometric ray optics model quantitatively supports our experimental data. PMID:26417491

  3. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  4. Photo-induced optical activity in phase-change memory materials.

    PubMed

    Borisenko, Konstantin B; Shanmugam, Janaki; Williams, Benjamin A O; Ewart, Paul; Gholipour, Behrad; Hewak, Daniel W; Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano; Kirkland, Angus I

    2015-03-05

    We demonstrate that optical activity in amorphous isotropic thin films of pure Ge2Sb2Te5 and N-doped Ge2Sb2Te5N phase-change memory materials can be induced using rapid photo crystallisation with circularly polarised laser light. The new anisotropic phase transition has been confirmed by circular dichroism measurements. This opens up the possibility of controlled induction of optical activity at the nanosecond time scale for exploitation in a new generation of high-density optical memory, fast chiroptical switches and chiral metamaterials.

  5. Laser optical disk position encoder with active heads

    NASA Technical Reports Server (NTRS)

    Osborne, Eric P.

    1991-01-01

    An angular position encoder that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads with beam steering optics that actively track the disk in directions along the disk radius and normal to its surface is discussed. The device adapts features prevalent in optical disk technology to the application of angular position sensing.

  6. Laser optical disk position encoder with active heads

    NASA Astrophysics Data System (ADS)

    Osborne, Eric P.

    An angular position encoder that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads with beam steering optics that actively track the disk in directions along the disk radius and normal to its surface is discussed. The device adapts features prevalent in optical disk technology to the application of angular position sensing.

  7. Active controls for ride smoothing

    NASA Technical Reports Server (NTRS)

    Conner, D. W.; Thompson, G. O.

    1976-01-01

    Active controls technology offers great promise for significantly smoothing the ride, and thus improving public and air carrier acceptance, of certain types of transport aircraft. Recent findings which support this promise are presented in the following three pertinent areas: (1) Ride quality versus degree of traveler satisfaction; (2) significant findings from a feasibility study of a ride smoothing system; and (3) potential ride problems identified for several advanced transport concepts.

  8. Imaging control functions of optical scanners

    NASA Astrophysics Data System (ADS)

    Nishinaga, Hisashi; Hirayama, Toru; Fujii, Daiyu; Yamamoto, Hajime; Irihama, Hiroshi; Ogata, Taro; Koizumi, Yukio; Suzuki, Kenta; Fujishima, Yohei; Matsuyama, Tomoyuki; Kawaguchi, Ryoichi

    2014-03-01

    For future printing based on multiple patterning and directed self-assembly, critical dimension and overlay requirements become tighter for immersion lithography. Thermal impact of exposure to both the projection lens and reticle expansion becomes the dominant factor for high volume production. A new procedure to tune the thermal control function is needed to maintain the tool conditions to obtain high productivity and accuracy. Additionally, new functions of both hardware and software are used to improve the imaging performance even during exposure with high-dose conditions. In this paper, we describe the procedure to tune the thermal control parameters which indicate the response of projection lens aberration and reticle expansion separately. As new functionalities to control the thermal lens aberration, wavefront-based lens control software and reticle bending hardware are introduced. By applying these functions, thermal focus control can be improved drastically. Further, the capability of prediction of reticle expansion is discussed, including experimental data from overlay exposure and aerial image sensor results.

  9. Hybrid plasmonic lattices with tunable magneto-optical activity.

    PubMed

    Kataja, Mikko; Pourjamal, Sara; Maccaferri, Nicolò; Vavassori, Paolo; Hakala, Tommi K; Huttunen, Mikko J; Törmä, Päivi; van Dijken, Sebastiaan

    2016-02-22

    We report on the optical and magneto-optical response of hybrid plasmonic lattices that consist of pure nickel and gold nanoparticles in a checkerboard arrangement. Diffractive far-field coupling between the individual emitters of the lattices results in the excitation of two orthogonal surface lattice resonance modes. Local analyses of the radiation fields indicate that both the nickel and gold nanoparticles contribute to these collective resonances and, thereby, to the magneto-optical activity of the hybrid arrays. The strong effect of noble metal nanoparticles on the magneto-optical response of hybrid lattices opens up new avenues for the realization of sensitive and tunable magneto-plasmonic nanostructures. PMID:26907022

  10. Compact triple coupled quantum well system for electrical/optical control of optical bi/multistability.

    PubMed

    Sattari, Hamed; Sahrai, Mostafa; Ebadollahi-Bakhtevar, Solmaz

    2015-03-20

    Optical bistability (OB) and optical multistability (OM) are investigated in a triple coupled quantum wells system inside a semiconductor cavity sandwiched by distributed Bragg reflector mirrors. By proper manipulation of the optical and electrical parameters, the behaviors of OB and OM can be efficiently controlled. We show that, by tuning the tunneling rates between the quantum wells, the threshold and hysteresis cycle of OB and OM can be engineered. The effect of the incoherent pump field as well as the cooperation parameter on creation of OB is also discussed. PMID:25968535

  11. Improved control and characterization of adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Allured, Ryan; Ben-Ami, Sagi; Cotroneo, Vincenzo; Marquez, Vanessa; McMuldroch, Stuart; Reid, Paul B.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Vikhlinin, Alexey A.; Wallace, Margeaux L.

    2015-09-01

    We report on improvements in our efforts to control and characterize piezoelectrically adjustable, thin glass optics. In the past, an optical profilometer and a Shack-Hartmann wavefront sensor have been used to measure influence functions for a at adjustable mirror. An electronics system has since been developed to control > 100 actuator cells and has been used in a full calibration of a high-yield at adjustable mirror. The calibrated influence functions have been used to induce a pre-determined figure change to the mirror, representing our first attempt at figure control of a full mirror. Furthermore, we have adapted our metrology systems for cylindrical optics, allowing characterization of Wolter-type mirrors. We plan to use this metrology to perform the first piezoelectric figure correction of a cylindrical mirror over the next year.

  12. Optical control system for high-voltage terminals

    DOEpatents

    Bicek, John J.

    1978-01-01

    An optical control system for the control of devices in the terminal of an electrostatic accelerator includes a laser that is modulated by a series of preselected codes produced by an encoder. A photodiode receiver is placed in the laser beam at the high-voltage terminal of an electrostatic accelerator. A decoder connected to the photodiode decodes the signals to provide control impulses for a plurality of devices at the high voltage of the terminal.

  13. Optical activity of chitosan films with induced anisotropy

    NASA Astrophysics Data System (ADS)

    Gegel, Natalia O.; Shipovskaya, Anna B.

    2016-04-01

    The optical anisotropy and optical activity of salt and basic chitosan films, both initial and modified in formic acid vapor were studied. The modification of such films was found to be accompanied by induced time-stable optical anisotropy, by varying the values of specific optical rotation [α] and an inversion of the sign of [α]. The angular dependences (indicatrices) of the specific optical rotation of films on the orientation angle of the sample relative to the direction of the polarization vector of the incident light beam in a plane perpendicular to the beam were obtained. The indicatrices of the initial chitosan films have an almost symmetrical character while those of the films modified in formic acid vapor are irregular. It is concluded of the formation of a vitrified cholesteric mesophase in the chitosan films with induced optical anisotropy.

  14. Trifluoromethyl nitrones: from fluoral to optically active hydroxylamines.

    PubMed

    Milcent, Thierry; Hinks, Nathan; Bonnet-Delpon, Danièle; Crousse, Benoit

    2010-06-28

    Trifluoromethyl nitrones were obtained in high yields by condensation of various hydroxylamines with trifluoroacetaldehyde hydrate. The nucleophilic diastereoselective additions of organometallic reagents to these nitrones afforded the corresponding optically active trifluoroethyl hydroxylamines in good yields. PMID:20458418

  15. Optical Control of Mammalian Endogenous Transcription and Epigenetic States

    PubMed Central

    Trevino, Alexandro; Hsu, Patrick D.; Heidenreich, Matthias; Cong, Le; Platt, Randall J.; Scott, David A.; Church, George M.; Zhang, Feng

    2013-01-01

    The dynamic nature of gene expression enables cellular programming, homeostasis, and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high precision spatiotemporal control of many cellular functions1-11. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here, we describe the development of Light-Inducible Transcriptional Effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain12-14 with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical co-factors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility3,4,6,7,15. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of awake mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states. PMID:23877069

  16. Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2

    PubMed Central

    Liske, Holly; Qian, Xiang; Anikeeva, Polina; Deisseroth, Karl; Delp, Scott

    2013-01-01

    The effect of electrical stimulation on neuronal membrane potential is frequency dependent. Low frequency electrical stimulation can evoke action potentials, whereas high frequency stimulation can inhibit action potential transmission. Optical stimulation of channelrhodopsin-2 (ChR2) expressed in neuronal membranes can also excite action potentials. However, it is unknown whether optical stimulation of ChR2-expressing neurons produces a transition from excitation to inhibition with increasing light pulse frequencies. Here we report optical inhibition of motor neuron and muscle activity in vivo in the cooled sciatic nerves of Thy1-ChR2-EYFP mice. We also demonstrate all-optical single-wavelength control of neuronal excitation and inhibition without co-expression of inhibitory and excitatory opsins. This all-optical system is free from stimulation-induced electrical artifacts and thus provides a new approach to investigate mechanisms of high frequency inhibition in neuronal circuits in vivo and in vitro. PMID:24173561

  17. Reflector adjustment for a large radio telescope based on active optics

    NASA Astrophysics Data System (ADS)

    Li, Tongying; Zhang, Zhenchao; Li, Aihua; Wang, You

    2012-09-01

    The reflector deformation caused by gravity, temperature, humidity, wind loading and so on can reduce the global performance of a large radio telescope. In this paper, considering the characteristics of the primary reflector of a 13.7 m millimeter-wave telescope a novel reflector adjustment method based on active optics has therefore been proposed to control the active surface of the reflector through the communication between the active surface computer and embedded intelligent controller with a large quantity of displacement actuators, in which the active surface computer estimates and controls the real time active surface figure at any elevation angle, reduces or eliminates the adverse effects of the reflector deformation to increase the resolution and sensitivity of the radio telescope due to the more radio signals collected. A Controller Area Network /Ethernet protocol converter is designed for the communication between the active surface control computer as a host computer in Ethernet and the displacement actuator controller in Controller Area Network. The displacement actuator is driven by a stepper motor and controlled by an intelligent controller with the data from the active surface computer. The closed-loop control of the stepper motor improves the control accuracy greatly through the feedback link based on the optical encoder.

  18. 2-D scalable optical controlled phased-array antenna system

    NASA Astrophysics Data System (ADS)

    Chen, Maggie Yihong; Howley, Brie; Wang, Xiaolong; Basile, Panoutsopoulos; Chen, Ray T.

    2006-02-01

    A novel optoelectronically-controlled wideband 2-D phased-array antenna system is demonstrated. The inclusion of WDM devices makes a highly scalable system structure. Only (M+N) delay lines are required to control a M×N array. The optical true-time delay lines are combination of polymer waveguides and optical switches, using a single polymeric platform and are monolithically integrated on a single substrate. The 16 time delays generated by the device are measured to range from 0 to 175 ps in 11.6 ps. Far-field patterns at different steering angles in X-band are measured.

  19. Polarization-controlled optical ring cavity (PORC) tunable pulse stretcher

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew P.; Kiefer, Johannes

    2016-08-01

    A new concept and a theoretical approach for modeling a tunable polarization-controlled optical ring cavity pulse stretcher is demonstrated. The technique discussed herein permits highly simplified and flexible tuning of the temporal shape of nanosecond duration pulses. Using half-wave plates positioned extra- and intracavity, transmission to reflection ratios across both input faces of a polarization beam splitter can easily be controlled. The resulting models indicate a further reduction in peak intensity of 30%, with respect to conventional dielectric beam splitting optical ring cavities, when configured under equivalent and optimized cavity settings.

  20. Storage and control of optical photons using Rydberg polaritons.

    PubMed

    Maxwell, D; Szwer, D J; Paredes-Barato, D; Busche, H; Pritchard, J D; Gauguet, A; Weatherill, K J; Jones, M P A; Adams, C S

    2013-03-01

    We use a microwave field to control the quantum state of optical photons stored in a cold atomic cloud. The photons are stored in highly excited collective states (Rydberg polaritons) enabling both fast qubit rotations and control of photon-photon interactions. Through the collective read-out of these pseudospin rotations it is shown that the microwave field modifies the long-range interactions between polaritons. This technique provides a powerful interface between the microwave and optical domains, with applications in quantum simulations of spin liquids, quantum metrology and quantum networks.

  1. Neuronal activity controls transsynaptic geometry

    PubMed Central

    Glebov, Oleg O.; Cox, Susan; Humphreys, Lawrence; Burrone, Juan

    2016-01-01

    The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792

  2. Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction

    PubMed Central

    Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-01-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952

  3. Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction.

    PubMed

    Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-01-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials' refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952

  4. Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction

    NASA Astrophysics Data System (ADS)

    Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-07-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science.

  5. Active load control using microtabs

    NASA Astrophysics Data System (ADS)

    Yen, Dora Te-Lun

    2001-11-01

    Micro-electro-mechanical (MEM) translational tabs are introduced for enhancing and controlling the aerodynamic loading on lifting surfaces. These microtabs are mounted near the trailing edge of lifting surfaces, retract and extend approximately normal to the surface and have a maximum deployment height on the order of the boundary-layer thickness. Deployment of the device effectively modifies the camber distribution of the lifting surface and hence, the lift generated. The effect of the microtabs on lift is shown to be as powerful as conventional control surfaces with lift changes of 30%--50% in the linear range of the lift curve using a tab with a height of 1% of airfoil chord placed at 5% of chord upstream of the trailing edge on the lower surface. A multi-disciplinary approach incorporating aspects of experimental and computational aerodynamics, mechanical design and microfabrication techniques has been taken to develop and test a "proof of concept" model. Flow simulations, using a Reynolds-averaged Navier Stokes solver, have been conducted to optimize the size and placement of the devices based on trailing edge volume constraints. Numerical and experimental wind tunnel results are in good agreement, and both confirm that these micro-scale devices create macro-scale changes in aerodynamic loading. Application of this rather simple but innovative lift control system based on microfabrication techniques introduces a robust, dynamic control device and will allow for the miniaturization of conventional high lift and control systems. The result is a significant reduction in typical control system weight, complexity and cost. Also due to the minute size of these tabs, their activation and response times are much faster than that of conventional trailing edge devices. The "proof of concept" tab design, fabrication techniques, computational and experimental setup, and test results using a representative airfoil are presented in this research. (For more information, see

  6. Adaptive Quality of Transmission Control in Elastic Optical Network

    NASA Astrophysics Data System (ADS)

    Cai, Xinran

    Optical fiber communication is becoming increasingly important due to the burgeoning demand in the internet capacity. However, traditional wavelength division multiplexing (WDM) technique fails to address such demand because of its inefficient spectral utilization. As a result, elastic optical networking (EON) has been under extensive investigation recently. Such network allows sub-wavelength and super-wavelength channel accommodation, and mitigates the stranded bandwidth problem in the WDM network. In addition, elastic optical network is also able to dynamically allocate the spectral resources of the network based on channel conditions and impairments, and adaptively control the quality of transmission of a channel. This application requires two aspects to be investigated: an efficient optical performance monitoring scheme and networking control and management algorithms to reconfigure the network in a dynamic fashion. This thesis focuses on the two aspects discussed above about adaptive QoT control. We demonstrated a supervisory channel method for optical signal to noise ratio (OSNR) and chromatic dispersion (CD) monitoring. In addition, our proof-of-principle testbed experiments show successful impairment aware reconfiguration of the network with modulation format switching (MFS) only and MFS combined with lightpath rerouting (LR) for hundred-GHz QPSK superchannels undergoing time-varying OSNR impairment.

  7. Ciliary motility activity measurement using a dense optical flow algorithm.

    PubMed

    Parrilla, Eduardo; Armengot, Miguel; Mata, Manuel; Cortijo, Julio; Riera, Jaime; Hueso, José L; Moratal, David

    2013-01-01

    Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. In this study, an automatic method has been established to determine the ciliary motility activity from cell cultures by means of optical flow computation, and has been applied to 136 control cultures and to 144 RSV-infected cultures. The control group presented an average of cell surface with cilia motility per field of 41 ± 15 % (mean ± standard deviation), while the infected group presented a 11 ± 5 %, t-Student p<0.001. The cutoff value to classify a infected specimen was <17.89 % (sensitivity 0.94, specificity 0.93). This methodology has proved to be a robust technique to evaluate cilia motility in cell cultures. PMID:24110720

  8. Nano-antenna elements for controlling optical phase

    NASA Astrophysics Data System (ADS)

    Yifat, Yuval; Eitan, Michal; Iluz, Zeev; Boag, Amir; Hanein, Yael; Scheuer, Jacob

    2014-02-01

    We demonstrate the use of nano-antenna unit cells composed of coupled dipole and patch elements over a reflective back plane, which are designed to control the phase of a reflected optical beam. The antennas were studied both numerically and experimentally and allow exact control over the output phase in the range of 00-3600. Several diffractive optical applications are shown numerically and experimentally: Blazed gratings which allow deflection of the output beam to high reflection angles show very high diffraction efficiency, and arbitrary wave shapes such as computer generated holograms can be formed with very high efficiency and large angles relative to the incident beam. The optical conversion efficiency was measured to be above 40% for all applications.

  9. Microscale fluid transport using optically controlled marangoni effect

    DOEpatents

    Thundat, Thomas G; Passian, Ali; Farahi, Rubye H

    2011-05-10

    Low energy light illumination and either a doped semiconductor surface or a surface-plasmon supporting surface are used in combination for manipulating a fluid on the surface in the absence of any applied electric fields or flow channels. Precise control of fluid flow is achieved by applying focused or tightly collimated low energy light to the surface-fluid interface. In the first embodiment, with an appropriate dopant level in the semiconductor substrate, optically excited charge carriers are made to move to the surface when illuminated. In a second embodiment, with a thin-film noble metal surface on a dispersive substrate, optically excited surface plasmons are created for fluid manipulation. This electrode-less optical control of the Marangoni effect provides re-configurable manipulations of fluid flow, thereby paving the way for reprogrammable microfluidic devices.

  10. Formation metrology and control for large separated optics space telescopes

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Quadrelli, M.; Breckenridge, W.

    2002-01-01

    In this paper we present formation flying performance analysis initial results for a representative large space telescope composed of separated optical elements [Mett 02]. A virtual-structure construct (an equivalent rigid body) is created by unique metrology and control that combines both centralized and decentralized methods. The formation may be in orbit at GEO for super-resolution Earth observation, as in the case of Figure 1, or it may be in an Earth-trailing orbit for astrophysics, Figure 2. Extended applications are envisioned for exo-solar planet interferometric imaging by a formation of very large separated optics telescopes, Figure 3. Space telescopes, with such large apertures and f/10 to f/100 optics, are not feasible if connected by massive metering structures. Instead, the new virtual-structure paradigm of information and control connectivity between the formation elements provides the necessary spatial rigidity and alignment precision for the telescope.

  11. Multi-functional optical signal processing using optical spectrum control circuit

    NASA Astrophysics Data System (ADS)

    Hayashi, Shuhei; Ikeda, Tatsuhiko; Mizuno, Takayuki; Takahashi, Hiroshi; Tsuda, Hiroyuki

    2015-02-01

    Processing ultra-fast optical signals without optical/electronic conversion is in demand and time-to-space conversion has been proposed as an effective solution. We have designed and fabricated an arrayed-waveguide grating (AWG) based optical spectrum control circuit (OSCC) using silica planar lightwave circuit (PLC) technology. This device is composed of an AWG, tunable phase shifters and a mirror. The principle of signal processing is to spatially decompose the signal's frequency components by using the AWG. Then, the phase of each frequency component is controlled by the tunable phase shifters. Finally, the light is reflected back to the AWG by the mirror and synthesized. Amplitude of each frequency component can be controlled by distributing the power to high diffraction order light. The spectral controlling range of the OSCC is 100 GHz and its resolution is 1.67 GHz. This paper describes equipping the OSCC with optical coded division multiplex (OCDM) encoder/decoder functionality. The encoding principle is to apply certain phase patterns to the signal's frequency components and intentionally disperse the signal. The decoding principle is also to apply certain phase patterns to the frequency components at the receiving side. If the applied phase pattern compensates the intentional dispersion, the waveform is regenerated, but if the pattern is not appropriate, the waveform remains dispersed. We also propose an arbitrary filter function by exploiting the OSCC's amplitude and phase control attributes. For example, a filtered optical signal transmitted through multiple optical nodes that use the wavelength multiplexer/demultiplexer can be equalized.

  12. The feasibility and design of optical sensors for modal control

    NASA Technical Reports Server (NTRS)

    Lundquist, Charles A.

    1987-01-01

    The feasibility of optical type sensors for control of flexible bodies was examined. The accuracies of such systems were determined via simulation and the sources of potential errors were designated. An initial laboratory design was effected and preliminary results obtained. These results are discussed critically with applications to future studies and system designs.

  13. Robotic Gripper With Force Control And Optical Sensors

    NASA Technical Reports Server (NTRS)

    Montgomery, James L.

    1992-01-01

    Robotic gripper locates, measures, recognizes and manipulates objects in assembly-line setting. Fiber-optic sensors in fingertips help locate and identify object. Gripper grasps object and determines size from finger-position feedback, while grasped under force control. Prototype handles geranium cuttings in commercial greenhouse, basic concept and design modified for other objects (rods or nuts), including sorting to size.

  14. Controllable motion of optical vortex arrays using electromagnetically induced transparency.

    PubMed

    Shwa, David; Shtranvasser, Evgeny; Shalibo, Yoni; Katz, Nadav

    2012-10-22

    We demonstrate control of the collective motion of an optical vortex array using an electromagnetically induced transparency media. Scanning the frequency detuning between the pump and probe fields changes the susceptibility of the media, producing a unique effective diffraction of the vortex array for each detuning. We measure several experimental configurations and compare them to numerical simulations.

  15. Controlled crumpling of graphene oxide films for tunable optical transmittance.

    PubMed

    Thomas, Abhay V; Andow, Brandon C; Suresh, Shravan; Eksik, Osman; Yin, Jie; Dyson, Anna H; Koratkar, Nikhil

    2015-06-01

    The delamination buckling approach provides a facile means to dynamically control the optical transmittance of extremely flexible and stretchable graphene oxide coatings with fast response time. Such graphene oxide coatings can be deposited by scalable solution-processing methods for potential applications in dynamic glazing.

  16. Controlled crumpling of graphene oxide films for tunable optical transmittance.

    PubMed

    Thomas, Abhay V; Andow, Brandon C; Suresh, Shravan; Eksik, Osman; Yin, Jie; Dyson, Anna H; Koratkar, Nikhil

    2015-06-01

    The delamination buckling approach provides a facile means to dynamically control the optical transmittance of extremely flexible and stretchable graphene oxide coatings with fast response time. Such graphene oxide coatings can be deposited by scalable solution-processing methods for potential applications in dynamic glazing. PMID:25899342

  17. Optically powered active sensing system for Internet Of Things

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Wang, Jin; Yin, Long; Yang, Jing; Jiang, Jian; Wan, Hongdan

    2014-10-01

    Internet Of Things (IOT) drives a significant increase in the extent and type of sensing technology and equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such sensing systems will all require to be powered. Conventionally, electrical powering is supplied by batteries or/and electric power cables. The power supply by batteries usually has a limited lifetime, while the electric power cables are susceptible to electromagnetic interference. In fact, the electromagnetic interference is the key issue limiting the power supply in the strong electromagnetic radiation area and other extreme environments. The novel alternative method of power supply is power over fiber (PoF) technique. As fibers are used as power supply lines instead, the delivery of the power is inherently immune to electromagnetic radiation, and avoids cumbersome shielding of power lines. Such a safer power supply mode would be a promising candidate for applications in IOT. In this work, we built up optically powered active sensing system, supplying uninterrupted power for the remote active sensors and communication modules. Also, we proposed a novel maximum power point tracking technique for photovoltaic power convertors. In our system, the actual output efficiency greater than 40% within 1W laser power. After 1km fiber transmission and opto-electric power conversion, a stable electric power of 210mW was obtained, which is sufficient for operating an active sensing system.

  18. Optical delay control of large-spectral-bandwidth laser pulses

    SciTech Connect

    Ignesti, E.; Tognetti, M. V.; Buffa, R.; Cavalieri, S.; Fini, L.; Sali, E.; Eramo, R.

    2009-07-15

    In this Rapid Communication we report an experimental observation of temporal delay control of large-spectral-bandwidth multimode laser pulses by means of electromagnetically induced transparency. We achieved optically controllable retardation of laser pulses with an input spectral bandwidth of 3.3 GHz with limited temporal distortion and excellent values of the delay-bandwidth product. The experimental results compare favorably with a theoretical analysis.

  19. Controling the scattering of Intralipid by using optical clearing agents

    NASA Astrophysics Data System (ADS)

    Wen, Xiang; Tuchin, Valery V.; Luo, Qingming; Zhu, Dan

    2009-11-01

    Optical clearing agents (OCAs) with high refractive indices and hyperosmolarity can enhance the penetration of light in tissues by reducing scattering in tissues. However, the mechanism of tissue optical clearing is not much clear for the complex interaction between tissues and OCAs. In this work, Intralipid was mixed with different concentrations of OCAs, i.e. dimethyl sulfoxide (DMSO), glycerol, 1,4-butanediol, 1,2-propanediol, poly-ethylene glycol 200 (PEG200) and poly-ethylene glycol 400 (PEG400). Except for PEG200 and PEG400 that make aggregation of particles, the others kept the mixture uniform. The reduced scattering coefficients of uniform mixtures were predicted with Mie theory and measured by a commercially available spectrophotometer with an integrating sphere. The results show that all of the OCAs used enhance the optical clearing effect of Intralipid. If OCAs do not change the structure of Intralipid, Mie theory prediction matches well with the measurements. And the higher the refractive index of OCA, the smaller the reduced scattering coefficient. A simple formula deduced can quantitatively predict the optical clearing effect caused by OCAs. This work is helpful for clarifying the mechanism of tissue optical clearing, which will make the effect of optical clearing of tissue predictable and controllable.

  20. Free-space optical wireless links with topology control

    NASA Astrophysics Data System (ADS)

    Milner, Stuart D.; Ho, Tzung-Hsien; Smolyaninov, Igor I.; Trisno, Sugianto; Davis, Christopher C.

    2002-12-01

    The worldwide demand for broadband communications is being met in many places through the use of installed single-mode fiber networks. However, there is still a significant 'first-mile' problem, which seriously limits the availability of broadband Internet access. Free-space optical wireless communication has emerged as a technique of choice for bridging gaps in the existing high data rate communication networks, and as a backbone for rapidly deployable mobile wireless communication infrastructure. Because free space laser communication links can be easily and rapidly redirected, optical wireless networks can be autonomously reconfigured in a multiple-connected topology to provide improved network performance. In this paper we describe research designed to improve the performance of such networks. Using topology control algorithms, we have demonstrated that multiply-connected, rapidly reconfigurable optical wireless networks can provide robust performance, and a high quality of service at high data rates (up to and beyond 1 Gbps). These systems are also very cost-effective. We have designed and tested on the University of Maryland campus a prototype four-node optical wireless network, where each node could be connected to the others via steerable optical wireless links. The design and performance of this network and the topology control is discussed.

  1. Application of optical controlling methods for plants under external influence

    NASA Astrophysics Data System (ADS)

    Timchenko, E. V.; Taskina, L. A.

    2012-10-01

    The experimental study results of spectral characteristic change of different types of plants influenced by external factors (synthetic superficially active substances, salts of heavy metals and nitrate fertilizers) are presented. Differential optical factor was used as the monitored optical parameter that characterizes the chlorophyll concentration change. The differential backscatter method which has high test-sensitivity and provides with the most complete information on the plant condition was the main optical monitoring method. For understanding the mechanisms of external factor accumulation and influence on plants the confocal fluorescent microscopy method providing contrast micrographs of high resolution was used for microscopic analysis in the study. It was revealed that synthetic superficially active substances and heavy metal presence lead to quasilinear decrease of differential backscatter factor with time. It was shown that the presence of salts of heavy metals in a water solution leads to chlorophyll "binding" which is microscopically shown as their «adhesion» near the cell membranes. On the contrary, the presence of synthetic superficially active substances maintains the uniformity of chlorophyll distribution in a cell, but its concentration falls with increasing the concentration in a major emission. The latter depends on the fact that synthetic superficially active substances solubilize the cell membrane proteins, increasing its penetrability. It causes pigment release ("washing away") from a plant, thereby leading to differential optical factor change. It was shown that nitrate fertilizer presence leads to increase of differential backscatter factor with time which is microscopically connected to increase in chlorophyll concentration.

  2. Label-free optical activation of astrocyte in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Yoon, Jonghee; Ku, Taeyun; Choi, Kyungsun; Choi, Chulhee

    2011-07-01

    As the most abundant cell type in the central nervous system, astrocyte has been one of main research topics in neuroscience. Although various tools have been developed, at present, there is no tool that allows noninvasive activation of astrocyte in vivo without genetic or pharmacological perturbation. Here we report a noninvasive label-free optical method for physiological astrocyte activation in vivo using a femtosecond pulsed laser. We showed the laser stimulation robustly induced astrocytic calcium activation in vivo and further verified physiological relevance of the calcium increase by demonstrating astrocyte mediated vasodilation in the brain. This novel optical method will facilitate noninvasive physiological study on astrocyte function.

  3. Magneto-Optical Activity in High Index Dielectric Nanoantennas

    PubMed Central

    de Sousa, N.; Froufe-Pérez, L. S.; Sáenz, J. J.; García-Martín, A.

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones. PMID:27488903

  4. Magneto-Optical Activity in High Index Dielectric Nanoantennas.

    PubMed

    de Sousa, N; Froufe-Pérez, L S; Sáenz, J J; García-Martín, A

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones.

  5. Magneto-Optical Activity in High Index Dielectric Nanoantennas

    NASA Astrophysics Data System (ADS)

    de Sousa, N.; Froufe-Pérez, L. S.; Sáenz, J. J.; García-Martín, A.

    2016-08-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones.

  6. Magneto-Optical Activity in High Index Dielectric Nanoantennas.

    PubMed

    de Sousa, N; Froufe-Pérez, L S; Sáenz, J J; García-Martín, A

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones. PMID:27488903

  7. Plastic optical fibre sensor for quality control in food industry

    NASA Astrophysics Data System (ADS)

    Novo, C.; Bilro, L.; Ferreira, R.; Alberto, N.; Antunes, P.; Leitão, C.; Nogueira, R.; Pinto, J. L.

    2013-05-01

    The present work addresses the need for new devices felt in the context of quality control, especially in the food industry. Due to the spectral dependence of the attenuation coefficient, a novel dual-parameter sensor for colour and refractive index was developed and tested. The sensor employs plastic optical fibres to measure the transmitted optical power in three measurement cells each with a different incident wavelength. The performance of the sensor was tested using several dyes at different concentrations and aqueous solutions of glycerine and ethanol. Results show that this technique allows the monitoring of refractive index and colour without cross-sensitivity.

  8. Active Learning Strategies for Introductory Light and Optics

    ERIC Educational Resources Information Center

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…

  9. Active stabilization of the optical part in fiber optic quantum cryptography

    NASA Astrophysics Data System (ADS)

    Balygin, K. A.; Klimov, A. N.; Kulik, S. P.; Molotkov, S. N.

    2016-03-01

    The method of active stabilization of the polarization and other parameters of the optical part of a two-pass fiber optic quantum cryptography has been proposed and implemented. The method allows the completely automated maintenance of the visibility of interference close to an ideal value ( V ≥ 0.99) and the reduction of the instrumental contribution to the error in primary keys (QBER) to 0.5%.

  10. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell.

    PubMed

    Buchnev, O; Ou, J Y; Kaczmarek, M; Zheludev, N I; Fedotov, V A

    2013-01-28

    We experimentally demonstrate efficient electro-optical control in an active nano-structured plasmonic metamaterial hybridised with a liquid-crystal cell. The hybridisation was achieved by simultaneously replacing the polarizer, transparent electrode and molecular alignment layer of the liquid-crystal cell with the metamaterial nano-structure. With the control signal of only 7 V we have achieved a fivefold hysteresis-free modulation of metamaterial transmission at the wavelength of 1.55 µm.

  11. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell.

    PubMed

    Buchnev, O; Ou, J Y; Kaczmarek, M; Zheludev, N I; Fedotov, V A

    2013-01-28

    We experimentally demonstrate efficient electro-optical control in an active nano-structured plasmonic metamaterial hybridised with a liquid-crystal cell. The hybridisation was achieved by simultaneously replacing the polarizer, transparent electrode and molecular alignment layer of the liquid-crystal cell with the metamaterial nano-structure. With the control signal of only 7 V we have achieved a fivefold hysteresis-free modulation of metamaterial transmission at the wavelength of 1.55 µm. PMID:23389148

  12. Super-resolved optical lithography with phase controlled source

    NASA Astrophysics Data System (ADS)

    Hong, Peilong; Zhang, Guoquan

    2015-05-01

    Recently, we have demonstrated that second-order subwavelength interference could be realized in an optical lithography scheme with an effective entangled source [P. Hong and G. Zhang, Phys. Rev. A 88, 043838 (2013), 10.1103/PhysRevA.88.043838]. In this paper, by considering the correlation function in both the source plane and observation plane, we show how the coherence property of such a source is controlled via introduction of random-phase correlation, which finally affects the two-photon interference effect observed in the far-field plane. Furthermore, by introducing different but similar random-phase correlations, we generalize the phase controlled source with particular high-order coherence properties to obtain higher-order subwavelength interference, i.e., high-order super-resolved optical lithography. These results show the importance of phase control in generating a light field with particular high-order coherence properties.

  13. All-optical control and metrology of electron pulses.

    PubMed

    Kealhofer, C; Schneider, W; Ehberger, D; Ryabov, A; Krausz, F; Baum, P

    2016-04-22

    Short electron pulses are central to time-resolved atomic-scale diffraction and electron microscopy, streak cameras, and free-electron lasers. We demonstrate phase-space control and characterization of 5-picometer electron pulses using few-cycle terahertz radiation, extending concepts of microwave electron pulse compression and streaking to terahertz frequencies. Optical-field control of electron pulses provides synchronism to laser pulses and offers a temporal resolution that is ultimately limited by the rise-time of the optical fields applied. We used few-cycle waveforms carried at 0.3 terahertz to compress electron pulses by a factor of 12 with a timing stability of <4 femtoseconds (root mean square) and measure them by means of field-induced beam deflection (streaking). Scaling the concept toward multiterahertz control fields holds promise for approaching the electronic time scale in time-resolved electron diffraction and microscopy. PMID:27102476

  14. Active Spacecraft Potential Control Investigation

    NASA Astrophysics Data System (ADS)

    Torkar, K.; Nakamura, R.; Tajmar, M.; Scharlemann, C.; Jeszenszky, H.; Laky, G.; Fremuth, G.; Escoubet, C. P.; Svenes, K.

    2016-03-01

    In tenuous plasma the floating potential of sunlit spacecraft reaches tens of volts, positive. The corresponding field disturbs measurements of the ambient plasma by electron and ion sensors and can reduce micro-channel plate lifetime in electron detectors owing to large fluxes of attracted photoelectrons. Also the accuracy of electric field measurements may suffer from a high spacecraft potential. The Active Spacecraft Potential Control (ASPOC) neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for the Magnetospheric Multiscale (MMS) mission includes new developments in the design of the emitters and the electronics. New features include the use of capillaries instead of needles, new materials for the emitters and their internal thermal insulators, an extended voltage and current range of the electronics, both for ion emission and heating purposes, and a more capable control software. This enables lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Results from on-ground testing demonstrate compliance with requirements. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. Finally, the various operating modes to adapt to changing boundary conditions are described along with the main data products.

  15. Controlling formation and suppression of fiber-optical rogue waves.

    PubMed

    Brée, Carsten; Steinmeyer, Günter; Babushkin, Ihar; Morgner, Uwe; Demircan, Ayhan

    2016-08-01

    Fiber-optical rogue waves appear as rare but extreme events during optical supercontinuum generation in photonic crystal fibers. This process is typically initiated by the decay of a high-order fundamental soliton into fundamental solitons. Collisions between these solitons as well as with dispersive radiation affect the soliton trajectory in frequency and time upon further propagation. Launching an additional dispersive wave at carefully chosen delay and wavelength enables statistical manipulation of the soliton trajectory in such a way that the probability of rogue wave formation is either enhanced or reduced. To enable efficient control, parameters of the dispersive wave have to be chosen to allow trapping of dispersive radiation in the nonlinear index depression created by the soliton. Under certain conditions, direct manipulation of soliton properties is possible by the dispersive wave. In other more complex scenarios, control is possible via increasing or decreasing the number of intersoliton collisions. The control mechanism reaches a remarkable efficiency, enabling control of relatively large soliton energies. This scenario appears promising for highly dynamic all-optical control of supercontinua. PMID:27472607

  16. Control of the optical and crystalline properties of TiO{sub 2} in visible-light active TiO{sub 2}/TiN bi-layer thin-film stacks

    SciTech Connect

    Smith, Wilson; Fakhouri, Houssam; Pulpytel, Jerome; Arefi-Khonsari, Farzaneh

    2012-01-15

    Multi-layered thin films of TiO{sub 2} and TiN were created by rf reactive magnetron sputtering, and their crystalline, optical, and photoelectrochemical properties were measured. The overall composition of the films (TiO{sub 2}-to-TiN ratio) was kept constant with the height of each film. The number of layers and thickness of each layer was controlled to create bi-layer thin films that were composed of: 9 bi-layers, 18 bi-layers, 27 bi-layers, 36 bi-layers, and 45 bi-layers. XRD patterns were observed for each film after annealing to measure the grain size and composition of anatase and rutile as a function of temperature. It was found that the phase-transition temperature is able to be substantially controlled (between 550 deg. C and 850 deg. C) for the anatase to rutile transition by varying the number of layers/thickness of each layer. In addition, bi-layer stacking significantly affected the film's optical properties by lowering the bandgap into the visible-light region, and also showed up to three times the improvement in photoelectrochemical performance under uv and visible irradiation. Overall, bi-layer stacking of TiO{sub 2}/TiN films has shown a unique and highly desirable control over several important physical characteristics that can be beneficial for many applications, such as high-temperature sensors and optoelectronic devices.

  17. Beaconless adaptive-optics technique for HEL beam control

    NASA Astrophysics Data System (ADS)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  18. Optical control of charged exciton states in tungsten disulfide

    SciTech Connect

    Currie, M.; Hanbicki, A. T.; Jonker, B. T.; Kioseoglou, G.

    2015-05-18

    A method is presented for optically preparing WS{sub 2} monolayers to luminescence from only the charged exciton (trion) state–completely suppressing the neutral exciton. When isolating the trion state, we observed changes in the Raman A{sub 1g} intensity and an enhanced feature on the low energy side of the E{sup 1}{sub 2g} peak. Photoluminescence and optical reflectivity measurements confirm the existence of the prepared trion state. This technique also prepares intermediate regimes with controlled luminescence amplitudes of the neutral and charged exciton. This effect is reversible by exposing the sample to air, indicating the change is mitigated by surface interactions with the ambient environment. This method provides a tool to modify optical emission energy and to isolate physical processes in this and other two-dimensional materials.

  19. Synthetic electrophysiology: optically controlled oscillators in an engineered bioelectric tissue

    NASA Astrophysics Data System (ADS)

    McNamara, Harold; Zhang, Hongkang; Werley, Christopher; Cohen, Adam

    Multicellular electrical dynamics underlie crucial physiological functions, but the complexity of natural bioelectricity can obscure the relation of individual components (proteins, cells) to emergent system-level dynamics. Here we introduce optopatch-spiking HEK(OS-HEK) tissue, a minimal synthetic bioelectric tissue with 4 transgenic components that supports optical initiation of propagating electrical waves as well direct optical voltage readout. In conjunction with a home-built inverted microscope capable of patterned illumination, we use this tissue to probe the biophysical attributes of this excitable bioelectric medium, including dispersion relations, curvature-dependent wavefront propagation, electrotonic coupling, and effects of boundaries. We then used chemical patterning to define cellular circuits that support controllable oscillations and which retain memory for more than 2 hours (corresponding to 104 oscillations), constituting a substrate for binary bioelectric data storage. Finally, we use optical patterning of boundary conditions in a physically homogeneous tissue to design dynamically reconfigurable oscillators.

  20. Fiber-Optical Switch Controlled by a Single Atom

    NASA Astrophysics Data System (ADS)

    O'Shea, Danny; Junge, Christian; Volz, Jürgen; Rauschenbeutel, Arno

    2013-11-01

    We demonstrate highly efficient switching of optical signals between two optical fibers controlled by a single atom. The key element of our experiment is a whispering-gallery-mode bottle microresonator, which is coupled to a single atom and interfaced by two tapered fiber couplers. This system reaches the strong coupling regime of cavity quantum electrodynamics, leading to a vacuum Rabi splitting in the excitation spectrum. We systematically investigate the switching efficiency of our system, i.e., the probability that the fiber-optical switch redirects the light into the desired output. We obtain a large redirection efficiency reaching a raw fidelity of more than 60% without postselection. Moreover, by measuring the second-order correlation functions of the output fields, we show that our switch exhibits a photon-number-dependent routing capability.

  1. Anomalous nonlinear absorption in epsilon-near-zero materials: optical limiting and all-optical control.

    PubMed

    Vincenti, M A; de Ceglia, D; Scalora, Michael

    2016-08-01

    We investigate nonlinear absorption in films of epsilon-near-zero materials. The combination of large local electric fields at the fundamental frequency and material losses at the harmonic frequencies induce unusual intensity-dependent phenomena. We predict that the second-order nonlinearity of a low-damping, epsilon-near-zero slab produces an optical limiting effect that mimics a two-photon absorption process. Anomalous absorption profiles that depend on low permittivity values at the pump frequency are also predicted for third-order nonlinearities. These findings suggest new opportunities for all-optical light control and novel ways to design reconfigurable and tunable nonlinear devices.

  2. Fiber optic sensor: Feedback control design and implementation

    SciTech Connect

    Tung, D.; Bertram, L.; Hillaire, R.; Anderson, S.; Leonard, S.; Marburger, S.

    1997-07-01

    Digital feedback control of Gas Tungsten Arc Welding (GTAW) has been demonstrated on a tube sample of stainless steel and titanium alloy. A fiber optic sensor returns a signal proportional to backside radiance from the workpiece; that signal is used by the controller to compute a compensation weld current. The controller executes 10 times a second on an Intel 486 chip. For travel speeds of 3 to 6 inches per minute and thicknesses between 0.025 and 0.10 inches, constant backside bead width was maintained within 0.02 inches, from startup to tie-in.

  3. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    PubMed

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing.

  4. Application of network control systems for adaptive optics

    NASA Astrophysics Data System (ADS)

    Eager, Robert J.

    2008-04-01

    The communication architecture for most pointing, tracking, and high order adaptive optics control systems has been based on a centralized point-to-point and bus based approach. With the increased use of larger arrays and multiple sensors, actuators and processing nodes, these evolving systems require decentralized control, modularity, flexibility redundancy, integrated diagnostics, dynamic resource allocation, and ease of maintenance to support a wide range of experiments. Network control systems provide all of these critical functionalities. This paper begins with a quick overview of adaptive optics as a control system and communication architecture. It then provides an introduction to network control systems, identifying the key design areas that impact system performance. The paper then discusses the performance test results of a fielded network control system used to implement an adaptive optics system comprised of: a 10KHz, 32x32 spatial selfreferencing interferometer wave front sensor, a 705 channel "Tweeter" deformable mirror, a 177 channel "Woofer" deformable mirror, ten processing nodes, and six data acquisition nodes. The reconstructor algorithm utilized a modulo-2pi wave front phase measurement and a least-squares phase un-wrapper with branch point correction. The servo control algorithm is a hybrid of exponential and infinite impulse response controllers, with tweeter-to-woofer saturation offloading. This system achieved a first-pixel-out to last-mirror-voltage latency of 86 microseconds, with the network accounting for 4 microseconds of the measured latency. Finally, the extensibility of this architecture will be illustrated, by detailing the integration of a tracking sub-system into the existing network.

  5. Programmable logic controller optical fibre sensor interface module

    NASA Astrophysics Data System (ADS)

    Allwood, Gary; Wild, Graham; Hinckley, Steven

    2011-12-01

    Most automated industrial processes use Distributed Control Systems (DCSs) or Programmable Logic Controllers (PLCs) for automated control. PLCs tend to be more common as they have much of the functionality of DCSs, although they are generally cheaper to install and maintain. PLCs in conjunction with a human machine interface form the basis of Supervisory Control And Data Acquisition (SCADA) systems, combined with communication infrastructure and Remote Terminal Units (RTUs). RTU's basically convert different sensor measurands in to digital data that is sent back to the PLC or supervisory system. Optical fibre sensors are becoming more common in industrial processes because of their many advantageous properties. Being small, lightweight, highly sensitive, and immune to electromagnetic interference, means they are an ideal solution for a variety of diverse sensing applications. Here, we have developed a PLC Optical Fibre Sensor Interface Module (OFSIM), in which an optical fibre is connected directly to the OFSIM located next to the PLC. The embedded fibre Bragg grating sensors, are highly sensitive and can detect a number of different measurands such as temperature, pressure and strain without the need for a power supply.

  6. Temperature control system for optical elements in astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  7. Development of graphene oxide materials with controllably modified optical properties

    NASA Astrophysics Data System (ADS)

    Naumov, Anton; Galande, Charudatta; Mohite, Aditya; Ajayan, Pulickel; Weisman, R. Bruce

    2015-03-01

    One of the major current goals in graphene research is modifying its optical and electronic properties through controllable generation of band gaps. To achieve this, we have studied the changes in optical properties of reduced graphene oxide (RGO) in water suspension upon the exposure to ozone. Ozonation for the periods of 5 to 35 minutes has caused a dramatic bleaching of its absorption and the concurrent appearance of strong visible fluorescence in previously nonemissive samples. These observed spectral changes suggest a functionalization-induced band gap opening. The sample fluorescence induced by ozonation was found to be highly pH-dependent: sharp and structured emission features resembling the spectra of molecular fluorophores were present at basic pH values, but this emission reversibly broadened and red-shifted in acidic conditions. These findings are consistent with excited state protonation of the emitting species in acidic media. Oxygen-containing addends resulting from the ozonation were detected by XPS and FTIR spectroscopy and related to optical transitions in localized graphene oxide fluorophores by computational modeling. Further research will be directed toward producing graphene-based optoelectronic devices with tailored and controllable optical properties.

  8. Giant optical activity of sugar in thin soap films.

    PubMed

    Emile, Janine; Emile, Olivier; Ghoufi, Aziz; Moréac, Alain; Casanova, Federico; Ding, Minxia; Houizot, Patrick

    2013-10-15

    We report on enhanced experimental optical activity measurements of thin soap films in the presence of sugar. This unusual optical activity is linked to the intramolecular chiral conformation of the glucose molecules at the air/liquid interface. Choosing sodium dodecylsulfate (SDS) as a model surfactant and glucose as model sugar, favorable interactions between the anionic group -OSO3(-)- and the glucose molecules are highlighted. This induces an interfacial anchoring of glucose molecules leading to a perturbing influence of the asymmetric chiral environment. PMID:23932406

  9. Active optics system of the VLT Survey Telescope.

    PubMed

    Schipani, Pietro; Noethe, Lothar; Magrin, Demetrio; Kuijken, Konrad; Arcidiacono, Carmelo; Argomedo, Javier; Capaccioli, Massimo; Dall'Ora, Massimo; D'Orsi, Sergio; Farinato, Jacopo; Fierro, Davide; Holzlöhner, Ronald; Marty, Laurent; Molfese, Cesare; Perrotta, Francesco; Ragazzoni, Roberto; Savarese, Salvatore; Rakich, Andrew; Umbriaco, Gabriele

    2016-03-01

    This paper describes the active optics system of the VLT Survey Telescope, the 2.6-m survey telescope designed for visible wavelengths of the European Southern Observatory at Cerro Paranal, in the Atacama desert. The telescope is characterized by a wide field of view (1.42 deg diameter), leading to tighter active optics than in conventional telescopes, in particular for the alignment requirements. We discuss the effects of typical error sources on the image quality and present the specific solutions adopted for wavefront sensing and correction of the aberrations, which are based on the shaping of a monolithic primary mirror and the positioning of the secondary in five degrees of freedom.

  10. Neurophotonics: optical methods to study and control the brain

    NASA Astrophysics Data System (ADS)

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2015-04-01

    Methods of optical physics offer unique opportunities for the investigation of brain and higher nervous activity. The integration of cutting-edge laser technologies and advanced neurobiology opens a new cross-disciplinary area of natural sciences - neurophotonics - focusing on the development of a vast arsenal of tools for functional brain diagnostics, stimulation of individual neurons and neural networks, and the molecular engineering of brain cells aimed at the diagnosis and therapy of neurodegenerative and psychic diseases. Optical fibers help to confront the most challenging problems in brain research, including the analysis of molecular-cellular mechanisms of the formation of memory and behavior. New generation optical fibers provide new solutions for the development of fundamentally new, unique tools for neurophotonics and laser neuroengineering - fiber-optic neuroendoscopes and neurointerfaces. These instruments broaden research horizons when investigating the most complex brain functions, enabling a long-term multiplex detection of fluorescent protein markers, as well as photostimulation of neuronal activity in deep brain areas in living, freely moving animals with an unprecedented spatial resolution and minimal invasiveness. This emerging technology opens new horizons for understanding learning and long-term memory through experiments with living, freely moving mammals. Here, we present a brief review of this rapidly growing field of research.

  11. Coherent control of plasmonic nanoantennas using optical eigenmodes

    PubMed Central

    Kosmeier, Sebastian; De Luca, Anna Chiara; Zolotovskaya, Svetlana; Di Falco, Andrea; Dholakia, Kishan; Mazilu, Michael

    2013-01-01

    The last decade has seen subwavelength focusing of the electromagnetic field in the proximity of nanoplasmonic structures with various designs. However, a shared issue is the spatial confinement of the field, which is mostly inflexible and limited to fixed locations determined by the geometry of the nanostructures, which hampers many applications. Here, we coherently address numerically and experimentally single and multiple plasmonic nanostructures chosen from a given array, resorting to the principle of optical eigenmodes. By decomposing the light field into optical eigenmodes, specifically tailored to the nanostructure, we create a subwavelength, selective and dynamic control of the incident light. The coherent control of plasmonic nanoantennas using this approach shows an almost zero crosstalk. This approach is applicable even in the presence of large transmission aberrations, such as present in holographic diffusers and multimode fibres. The method presents a paradigm shift for the addressing of plasmonic nanostructures by light. PMID:23657743

  12. Optically controlled multiple switching operations of DNA biopolymer devices

    SciTech Connect

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu; Fruk, Ljiljana; Hung, Yu-Chueh

    2015-12-21

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  13. Optically controlled multiple switching operations of DNA biopolymer devices

    NASA Astrophysics Data System (ADS)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu; Fruk, Ljiljana; Hung, Yu-Chueh

    2015-12-01

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  14. Electro-Optical Modulator Bias Control Using Bipolar Pulses

    NASA Technical Reports Server (NTRS)

    Farr, William; Kovalik, Joseph

    2007-01-01

    An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulse-position modulation (PPM) optical data-communication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an "on" period and the power transmitted during an "off" period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal. The upper part of Figure 1 schematically depicts a Mach-Zehnder modulator. The signal applied to the electro-optical crystal consists of a radio-frequency modulating pulse signal, VRF, superimposed on a DC bias Vbias. Maximum extinction occurs during the off (VRF = 0) period if Vbias is set at a value that makes the two optical paths differ by an odd integer multiple of a half wavelength so that the beams traveling along the two paths interfere destructively at the output beam splitter. Assuming that the modulating pulse signal VRF has a rectangular waveform, maximum transmission occurs during the "on" period if the amplitude of VRF is set to a value, V , that shifts the length of the affected optical path by a half wavelength so that now the two beams interfere constructively at the output beam splitter. The modulating pulse signal is AC-coupled from an amplifier to the electro-optical crystal. Sometimes, two successive pulses occur so close in time that the operating point of the amplifier drifts, one result being that there is not enough time for the signal level to return to ground between pulses. Also, the

  15. Active control of combustion instability

    SciTech Connect

    Lang, W.; Poinsot, T.; Candel, S.

    1987-12-01

    The principle of 'antisound' is used to construct a method for the suppression of combustion instabilities. This active instability control (AIC) method uses external acoustic excitation by a loudspeaker to suppress the oscillations of a flame. The excitation signal is provided by a microphone located upstream of the flame. This signal is filtered, processed, amplified, and sent to the loudspeaker. The AIC method is validated on a laboratory combustor. It allows the suppression of all unstable modes of the burner for any operating ratio. The influence of the microphone and loudspeaker locations on the performance of the AIC system is described. For a given configuration, domains of stability, i.e., domains where the AIC system parameters provide suppression of the oscillation, are investigated. Measurements of the electric input of the loudspeaker show that the energy consumption of the AIC system is almost negligible and suggest that this method could be used for industrial combustor stabilization. Finally, a simple model describing the effects of the AIC system is developed and its results compared to the experiment.

  16. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  17. Formation and all-optical control of optical patterns in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Binder, R.; Tsang, C. Y.; Tse, Y. C.; Luk, M. H.; Kwong, N. H.; Chan, Chris K. P.; Leung, P. T.; Lewandowski, P.; Schumacher, Stefan; Lafont, O.; Baudin, E.; Tignon, J.

    2016-05-01

    Semiconductor microcavities offer a unique way to combine transient all-optical manipulation of GaAs quantum wells with the benefits of structural advantages of microcavities. In these systems, exciton-polaritons have dispersion relations with very small effective masses. This has enabled prominent effects, for example polaritonic Bose condensation, but it can also be exploited for the design of all-optical communication devices. The latter involves non-equilibrium phase transitions in the spatial arrangement of exciton-polaritons. We consider the case of optical pumping with normal incidence, yielding a spatially homogeneous distribution of exciton-polaritons in optical cavities containing the quantum wells. Exciton-exciton interactions can trigger instabilities if certain threshold behavior requirements are met. Such instabilities can lead, for example, to the spontaneous formation of hexagonal polariton lattices (corresponding to six-spot patterns in the far field), or to rolls (corresponding to two-spot far field patterns). The competition among these patterns can be controlled to a certain degree by applying control beams. In this paper, we summarize the theory of pattern formation and election in microcavities and illustrate the switching between patterns via simulation results.

  18. Optical Sensors for Use in Propulsion Control Systems

    NASA Technical Reports Server (NTRS)

    Fritsch, Klaus

    1997-01-01

    This final technical report describes the results of a cooperative effort which was originally established between John Carroll University and the Instrumentation and Control Technology Division at NASA Lewis Research Center on November, 1982, and then continued with the Engine Sensor Technology Branch at NASA Lewis until March, 1995. All work at John Carroll University was directed by the principal investigator of this grant, Klaus Fritsch, Ph.D. For the first two years of this grant this effort was supervised at NASA by Mr. Robert J. Baumbick and for the remainder of the grant by Dr. Glenn M. Beheim. All research was carried out in close cooperation with Dr. Beheim. Electrically passive optical sensors for measurands such as pressure, temperature, position, and rotational speed are required for aircraft engine control in fly-by-light digital aircraft control systems. Fiberoptic data links and optical multiplexing techniques should be used for combining and processing the outputs from several sensors, sharing as many optical end electronic parts as possible. The overall objective of this grant was to explore techniques for designing and constructing such electrically passive optical sensors for measuring physical parameters in jet aircraft engines and for use in aircraft control systems. We have concentrated our efforts on pressure, temperature, and position sensors employing techniques which are relatively immune to transmissivity variations of the fiber links and to variations in intensity of the light source. Infrared light-emitting diodes are employed because of their longevity and immunity to vibration. We have also studied a number of multiplexing techniques. On the following pages I will give thumbnail sketches of the projects carried out under this grant and provide references to publications and John Carroll M.S. theses which resulted directly from this work and which describe these projects in greater detail.

  19. Single-Fiber Optical Link For Video And Control

    NASA Technical Reports Server (NTRS)

    Galloway, F. Houston

    1993-01-01

    Single optical fiber carries control signals to remote television cameras and video signals from cameras. Fiber replaces multiconductor copper cable, with consequent reduction in size. Repeaters not needed. System works with either multimode- or single-mode fiber types. Nonmetallic fiber provides immunity to electromagnetic interference at suboptical frequencies and much less vulnerable to electronic eavesdropping and lightning strikes. Multigigahertz bandwidth more than adequate for high-resolution television signals.

  20. Controlling neural activity in Caenorhabditis elegans to evoke chemotactic behavior

    NASA Astrophysics Data System (ADS)

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V.; Ramanathan, Sharad

    2013-03-01

    Animals locate and track chemoattractive gradients in the environment to find food. With its simple nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behavior. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behavior. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behavior. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair was sufficient to force the animal to locate, turn towards and track virtual light gradients.

  1. An active thermal control surfaces experiment. [spacecraft temperature determination

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Brown, M. J.

    1979-01-01

    An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.

  2. Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour.

    PubMed

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V; Ramanathan, Sharad

    2012-10-11

    Animals locate and track chemoattractive gradients in the environment to find food. With its small nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behaviour. Extensive work on the nematode has identified the neurons that are necessary for the different locomotory behaviours underlying chemotaxis through the use of laser ablation, activity recording in immobilized animals and the study of mutants. However, we do not know the neural activity patterns in C. elegans that are sufficient to control its complex chemotactic behaviour. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behaviour. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behaviour. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair (AIY) was sufficient to force the animal to locate, turn towards and track virtual light gradients. Two distinct activity patterns triggered in AIY as the animal moved through the gradient controlled reversals and gradual turns to drive chemotactic behaviour. Because AIY neurons are post-synaptic to most chemosensory and thermosensory neurons, it is probable that these activity patterns in AIY have an important role in controlling and coordinating different taxis behaviours of the animal. PMID:23000898

  3. Optically controlled spherical liquid-crystal lens: theory and experiment

    SciTech Connect

    Gural'nik, I R; Samagin, S A

    2003-05-31

    A liquid-crystal lens with the focal distance depending on the transmitted light intensity is proposed and studied. A theoretical model is developed which adequately describes the wave-front formation by the lens. The results of visualisation of the wave-front control in a setup with crossed Polaroids and the intensity distributions, which characterise the focusing properties of the lens, are presented. To illustrate the application of the lens, an adaptive-optics system is built for stabilisation of radiation power on a 1-mm diaphragm, which reduces the power fluctuations by a factor of 30. (control of laser radiation parameters)

  4. Spin-controlled plasmonics via optical Rashba effect

    SciTech Connect

    Shitrit, Nir; Yulevich, Igor; Kleiner, Vladimir; Hasman, Erez

    2013-11-18

    Observation of the optical Rashba effect in plasmonics is reported. Polarization helicity degeneracy removal, associated with the inversion symmetry violation, is attributed to the surface symmetry design via anisotropic nanoantennas with space-variant orientations. By utilizing the Rashba-induced momentum in a nanoscale kagome metastructure, we demonstrated a spin-based surface plasmon multidirectional excitation under a normal-incidence illumination. The spin-controlled plasmonics via spinoptical metasurfaces provides a route for spin-based surface-integrated photonic nanodevices and light-matter interaction control, extending the light manipulation capabilities.

  5. New Submerged-Robot Control Optical Fiber Cable With Small-Diameter, High-Strength Frp Covered Optical Fiber

    NASA Astrophysics Data System (ADS)

    Fuse, K.; Shirasaka, Y.; Yanagawa, H.

    1984-10-01

    Of natural resources on the earth, the utilization of the oceans has the oldest history, and the development of them has been delayed most. However, hot expectation is being placed on the development of the oceans. The element that obstructs the acceleration of such development is the sea itself. From a technical viewpoint, the means to explore the oceans have not been developed sufficiently, and equipment such as special large vehicles and ships has been bulky, requiring a very large sum of money to prepare them. These have been part of the reasons why the development of the oceans has been delayed. For this reason, a large number of exploratory systems will be studied as the ocean development becomes active in the near future. A single optical fiber cable has been considered as a cable for control of an ocean exploratory robot, which weighs approximately 30 to 40 kg at most in air requiring no power feeding to the drive section inside the vehicle and running by self on a built-in battery, as well as for data transfer. This cable is believed most suitable in terms of high speed mobility, transmission characteristics, and system cost. The mode (system) of pay off of the cable paid off by the ship loading such a cable becomes very important in the design of optical fiber cables for control of ocean exploratory robots. This paper introduces a new FRP covered optical fiber cable developed as an optical fiber cable for control of ocean exploratory robots with a small diameter and rotating motion. This cable is considered most suitable for the pay off-system which is simple and offers the highest space utility. The paper describes a basic study made prior to an actual performance test in the sea, as well as its design and characteristics.

  6. Controllably Inducing and Modeling Optical Response from Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Lombardo, Nicholas; Naumov, Anton

    Graphene, a novel 2-dimensional sp2-hybridized allotrope of Carbon, has unique electrical and mechanical properties. While it is naturally a highly conductive zero band gap semiconductor, graphene does not exhibit optical emission. It has been shown that functionalization with oxygen-containing groups elicits an opening of band gap in graphene. In this work, we aim to induce an optical response in graphene via controlled oxidation, and then explore potential origins of its photoluminescence through mathematical modeling. We employ timed ozone treatment of initially non-fluorescent reduced graphene oxide (RGO) to produce graphene oxide (GO) with specific optical properties. Oxidized material exhibits substantial changes in the absorption spectra and a broad photoluminescence feature, centered at 532 nm, which suggests the appearance of a band gap. We then explore a number of possible mechanisms for the origin of GO photoluminescence via PM3 and ab initio calculations on a functionalized single sheet of graphene. By adjusting modeling parameters to fit experimentally obtained optical transition energies we estimate the size of the sp2 graphitic regions in GO and the arrangement of functional groups that could be responsible for the observed emission.

  7. Optical Breath Gas Sensor for Extravehicular Activity Application

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  8. Interferometer-Controlled Optical Tweezers Constructed for Nanotechnology and Biotechnology

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2002-01-01

    A new method to control microparticles was developed in-house at the NASA Glenn Research Center in support of the nanotechnology project under NASA's Aerospace Propulsion and Power Base Research Program. A prototype interferometer-controlled optical tweezers was constructed to manipulate scanning probe microscope (SPM) tips. A laser beam passed through a Mach-Zehnder interferometer, and a microscope objective then produced an optical trap from the coaxial beams. The trap levitated and generated the coarse motion of a 10-mm polystyrene sphere used to simulate a SPM tip. The interference between the beams provided fine control of the forces and moments on the sphere. The interferometer included a piezoelectric-scanned mirror to modulate the interference pattern. The 10-mm sphere was observed to oscillate about 1 mm as the mirror and fringe pattern oscillated. The prototype tweezers proved the feasibility of constructing a more sophisticated interferometer tweezers to hold and manipulate SPM tips. The SPM tips are intended to interrogate and manipulate nanostructures. A more powerful laser will be used to generate multiple traps to hold nanostructures and SPM tips. The vibrating mirror in the interferometer will be replaced with a spatial light modulator. The modulator will allow the optical phase distribution in one leg of the interferometer to be programmed independently at 640 by 480 points for detailed control of the forces and moments. The interference patterns will be monitored to measure the motion of the SPM tips. Neuralnetwork technology will provide fast analysis of the interference patterns for diagnostic purposes and for local or remote feedback control of the tips. This effort also requires theoretical and modeling support in the form of scattering calculations for twin coherent beams from nonspherical particles.

  9. Optically controllable dual-gate organic transistor produced via phase separation between polymer semiconductor and photochromic spiropyran molecules.

    PubMed

    Ishiguro, Yasushi; Hayakawa, Ryoma; Chikyow, Toyohiro; Wakayama, Yutaka

    2014-07-01

    We produced an optically controllable dual-gate organic field-effect transistor by a simple one-step spin-coating of a mixed solution of photochromic spiropyran (SP) and poly(3-hexylthiophene) (P3HT). Postannealing enhanced polymer chain ordering of P3HT to induce phase separation into an SP-rich lower layer and an SP-free upper layer. These layers worked independently as transistor channels with distinct optical responsivity. The top channel was optically inactive, but the bottom channel was optically active, because of the photoisomerization of SP. These results demonstrate the potential of our technique to produce a multifunctional photoactive organic transistor by a simple process.

  10. Fast control of trapped ion qubits using shaped optical pulses

    NASA Astrophysics Data System (ADS)

    Rangan, Chitra; Monroe, C. R.; Bucksbaum, P. H.; Bloch, A. M.

    2003-05-01

    We present a fast control scheme for producing arbitrary states of trapped ion qubits via shaped optical pulses. When the atomic wavepacket is not localized to under a wavelength (beyond the Lamb-Dicke limit), we show that, we show that the Hilbert space of the qubit-harmonic oscillator can be made finite, and the Schrödinger equation controllable. We then implement an optimal control formalism to determine the pulse shapes that can drive the system to any desired state. This process is faster than using sequential single-frequency laser fields to achieve the same final state. We discuss control schemes for producing entangled states of two qubits. We show progress towards achieving decoherence-free subspaces that could be used in error correction schemes.

  11. 3D Printing Optical Engine for Controlling Material Microstructure

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Chang, Kuang-Po; Wu, Ping-Han; Wu, Chih-Hsien; Lin, Ching-Chih; Chuang, Chuan-Sheng; Lin, De-Yau; Liu, Sung-Ho; Horng, Ji-Bin; Tsau, Fang-Hei

    Controlling the cooling rate of alloy during melting and resolidification is the most commonly used method for varying the material microstructure and consequently the resuling property. However, the cooling rate of a selective laser melting (SLM) production is restricted by a preset optimal parameter of a good dense product. The head room for locally manipulating material property in a process is marginal. In this study, we invent an Optical Engine for locally controlling material microstructure in a SLM process. It develops an invovative method to control and adjust thermal history of the solidification process to gain desired material microstucture and consequently drastically improving the quality. Process parameters selected locally for specific materials requirement according to designed characteristics by using thermal dynamic principles of solidification process. It utilize a technique of complex laser beam shape of adaptive irradiation profile to permit local control of material characteristics as desired. This technology could be useful for industrial application of medical implant, aerospace and automobile industries.

  12. Multicolour Optical Photometry of Active Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Jolley, A.; Wade, G.; Bedard, D.

    Although broadband photometry has been used to infer information about artificial satellites since soon after the launch of Sputnik 1, the development of photometric techniques for non-resolved space object identification or characterisation has been hampered by the large number of variables involved. Many individual studies, and some long ongoing experiments, have used costly metre-class telescopes to obtain data despite other experiments demonstrating that much more flexible and affordable small aperture telescopes may be suitable for the task. In addition, due to the highly time consuming and weather dependent nature of obtaining photometric observations, many studies have suffered from data sets of limited size, or relied upon simulations to support their claims. With this in mind, an experiment was conducted with the aim of determining the utility of small aperture telescopes for conducting broadband photometry of satellites for the purpose of non-resolved space object identification and characterisation. A 14 inch Celestron CG-14 telescope was used to gain multiple night-long, high temporal resolution data sets of six active geostationary satellites. The results of the experiment cast doubt on the efficacy of some of the previous approaches to obtaining and analysing photometric data. It was discovered that geostationary satellite lightcurves can vary to a greater degree than has generally been recognised, and colour ratios vary considerably with changes in the illumination/observation geometry, making it difficult to use colour for satellite discrimination. Evidence was also detected of variations in the spectral energy distribution of sunlight reflected off satellite surface materials, which could have implications for surface material characterisation and techniques that aim to separate satellite body and solar panel contributions to the total observed spectra.

  13. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    NASA Astrophysics Data System (ADS)

    Azad, Abul K.; Chen, Hou-Tong; Taylor, Antoinette J.; Zhang, Weili; O'Hara, John F.

    2011-02-01

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate ultrafast optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a thin conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of ~10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor hole arrays. Optically pumping the semiconductor hole arrays favors excitation of surface plasmon resonance. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stop-band to a pass-band and up to π/ 2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz

  14. Pulley With Active Antifriction Actuator And Control

    NASA Technical Reports Server (NTRS)

    Ih, Che-Hang C.; Vivian, Howard C.

    1994-01-01

    Torque actuator and associated control system minimizes effective friction of rotary bearing. Motor exerts compensating torque in response to feedback from external optical sensor. Compensation torque nearly cancels frictional torque of shaft bearings. Also useful in reducing bearing friction in gyro-scopes, galvanometers, torquemeters, accelerometers, earth-motion detectors, and balances.

  15. An Optically Controlled Microscale Elevator Using Plasmonic Janus Particles

    PubMed Central

    2015-01-01

    In this article, we report how Janus particles, composed of a silica sphere with a gold half-shell, can be not only stably trapped by optical tweezers but also displaced controllably along the axis of the laser beam through a complex interplay between optical and thermal forces. Scattering forces orient the asymmetric particle, while strong absorption on the metal side induces a thermal gradient, resulting in particle motion. An increase in the laser power leads to an upward motion of the particle, while a decrease leads to a downward motion. We study this reversible axial displacement, including a hysteretic jump in the particle position that is a result of the complex pattern of a tightly focused laser beam structure above the focal plane. As a first application we simultaneously trap a spherical gold nanoparticle and show that we can control the distance between the two particles inside the trap. This photonic micron-scale “elevator” is a promising tool for thermal force studies, remote sensing, and optical and thermal micromanipulation experiments. PMID:25950013

  16. Optical imaging of neural and hemodynamic brain activity

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  17. Experimental evaluation of active-member control of precision structures

    NASA Technical Reports Server (NTRS)

    Fanson, James; Blackwood, Gary; Chu, Cheng-Chih

    1989-01-01

    The results of closed loop experiments that use piezoelectric active-members to control the flexible motion of a precision truss structure are described. These experiments are directed toward the development of high-performance structural systems as part of the Control/Structure Interaction (CSI) program at JPL. The focus of CSI activity at JPL is to develop the technology necessary to accurately control both the shape and vibration levels in the precision structures from which proposed large space-based observatories will be built. Structural error budgets for these types of structures will likely be in the sub-micron regime; optical tolerances will be even tighter. In order to achieve system level stability and local positioning at this level, it is generally expected that some form of active control will be required.

  18. Closed-Loop and Activity-Guided Optogenetic Control

    PubMed Central

    Grosenick, Logan; Marshel, James H.; Deisseroth, Karl

    2016-01-01

    Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490

  19. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  20. Low-cost active optical system for fire surveillance

    NASA Astrophysics Data System (ADS)

    Utkin, A. B.; Lavrov, A. V.; Vilar, R. M.

    2009-06-01

    Detection of smoke plumes using active optical sensors provides many advantages with respect to passive methods of fire surveillance. However, the price of these sensors is often too high as compared to passive fire detection instruments, such as infrared and video cameras. This article describes robust and cost effective diode-laser optical sensor for automatic fire surveillance in industrial environment. Physical aspects of the sensing process allowing to simplify the hardware and software design, eventually leading to significant reduction of manufacturing and maintenance costs, are discussed.

  1. Fiber-optic control and thermometry of single-cell thermosensation logic.

    PubMed

    Fedotov, I V; Safronov, N A; Ermakova, Yu G; Matlashov, M E; Sidorov-Biryukov, D A; Fedotov, A B; Belousov, V V; Zheltikov, A M

    2015-11-13

    Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture, enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature measurements are performed by using the temperature-dependent frequency shift of optically detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave transmission line, to nitrogen--vacancy centers in the diamond microcrystal. Activation of TRP channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in the calcium flow through activated TRP channels.

  2. Fiber-optic control and thermometry of single-cell thermosensation logic

    PubMed Central

    Fedotov, I.V.; Safronov, N.A.; Ermakova, Yu.G.; Matlashov, M.E.; Sidorov-Biryukov, D.A.; Fedotov, A.B.; Belousov, V.V.; Zheltikov, A.M.

    2015-01-01

    Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture, enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature measurements are performed by using the temperature-dependent frequency shift of optically detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave transmission line, to nitrogen—vacancy centers in the diamond microcrystal. Activation of TRP channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in the calcium flow through activated TRP channels. PMID:26563494

  3. Fiber-optic control and thermometry of single-cell thermosensation logic.

    PubMed

    Fedotov, I V; Safronov, N A; Ermakova, Yu G; Matlashov, M E; Sidorov-Biryukov, D A; Fedotov, A B; Belousov, V V; Zheltikov, A M

    2015-01-01

    Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture, enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature measurements are performed by using the temperature-dependent frequency shift of optically detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave transmission line, to nitrogen--vacancy centers in the diamond microcrystal. Activation of TRP channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in the calcium flow through activated TRP channels. PMID:26563494

  4. Fiber-optic control and thermometry of single-cell thermosensation logic

    NASA Astrophysics Data System (ADS)

    Fedotov, I. V.; Safronov, N. A.; Ermakova, Yu. G.; Matlashov, M. E.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Belousov, V. V.; Zheltikov, A. M.

    2015-11-01

    Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture, enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature measurements are performed by using the temperature-dependent frequency shift of optically detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave transmission line, to nitrogen—vacancy centers in the diamond microcrystal. Activation of TRP channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in the calcium flow through activated TRP channels.

  5. Optical activity in planar chiral metamaterials: Theoretical study

    SciTech Connect

    Bai, Benfeng; Svirko, Yuri; Turunen, Jari; Vallius, Tuomas

    2007-08-15

    A thorough theoretical study of the optical activity in planar chiral metamaterial (PCM) structures, made of both dielectric and metallic media, is conducted by the analysis of gammadion-shaped nanoparticle arrays. The general polarization properties are first analyzed from an effective-medium perspective, by analogy with natural optical activity, and then verified by rigorous numerical simulation, some of which are corroborated by previous experimental results. The numerical analysis suggests that giant polarization rotation (tens of degrees) may be achieved in the PCM structures with a thickness of only hundreds of nanometers. The artificial optical activity arises from circular birefringence induced by the structural chirality and is enhanced by the guided-mode or surface-plasmon resonances taking place in the structures. There are two polarization conversion types in the dielectric PCMs, whereas only one type in the metallic ones. Many intriguing features of the polarization property of PCMs are also revealed and explained: the polarization effect is reciprocal and vanishes in the symmetrically layered structures; the effect occurs only in the transmitted field, but not in the reflected field; and the polarization spectra of two enantiomeric PCM structures are mirror symmetric to each other. These remarkable properties pave the way for the PCMs to be used as polarization elements in new-generation integrated optical systems.

  6. Developing Internal Controls through Activities

    ERIC Educational Resources Information Center

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  7. Optical packaging activities at Institute of Microelectronics (IME), Singapore

    NASA Astrophysics Data System (ADS)

    Teo, Keng-Hwa; Sudharsanam, Krishnamachari; Pamidighantam, Ramana V.; Yeo, Yongkee; Iyer, Mahadevan K.

    2002-08-01

    The development of optoelectronic components for gigabit Ethernet communications is converging towards access networks where the cost of device makes a significant impact on the market acceptance. Device fabrication and packaging cost have to be brought down with novel assembly and packaging methods. Singapore has established a reputation in semiconductor device development and fabrication with excellent process and packaging facilities. Institute of Microelectronics (IME) was founded in 1991 to add value to the Singapore electronics industry. IME is involved in the development of active and passive photonics components using Silicon and polymer materials. We present a brief report on the development activities taking place in the field of optical component packaging at IME in recent years. We present a review of our competence and some of the optical device packaging activities that are being undertaken.

  8. High-power fiber optic cable with integrated active sensors for live process monitoring

    NASA Astrophysics Data System (ADS)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  9. ReflectoActive{trademark} Seals for Materials Control and Accountability

    SciTech Connect

    Richardson, G.D.; Younkin, J.R.; Bell, Z.W.

    2002-01-01

    The ReflectoActive{trademark} Seals system, a continuously monitored fiber optic, active seal technology, provides real-time tamper indication for large arrays of storage containers. The system includes a PC running the RFAS software, an Immediate Detection Unit (IDU), an Optical Time Domain Reflectometer (OTDR), links of fiber optic cable, and the methods and devices used to attach the fiber optic cable to the containers. When a breach on any of the attached fiber optic cable loops occurs, the IDU immediately signals the connected computer to control the operations of an OTDR to seek the breach location. The ReflectoActive{trademark} Seals System can be adapted for various types of container closure designs and implemented in almost any container configuration. This automatic protection of valued assets can significantly decrease the time and money required for surveillance. The RFAS software is the multi-threaded, client-server application that monitors and controls the components of the system. The software administers the security measures such as a two-person rule as well as continuous event logging. Additionally the software's architecture provides a secure method by which local or remote clients monitor the system and perform administrative tasks. These features provide the user with a robust system to meet today's material control and accountability needs. A brief overview of the hardware, and different hardware configurations will be given. The architecture of the system software, and its benefits will then be discussed. Finally, the features to be implemented in future versions of the system will be presented.

  10. Optical ordnance system for use in explosive ordnance disposal activities

    NASA Technical Reports Server (NTRS)

    Merson, J. A.; Salas, F. J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt(III) perchlorate (CP) as the DDT column and the explosive Octahydro- 1,3,5,7 - tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  11. Optical ordance system for use in explosive ordnance disposal activities

    SciTech Connect

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt III perchlorate (CP) as the DDT column and the explosive Octahydro 1, 3, 5, 7 -- tetranitro -- 1, 3, 5, 7 -- tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  12. Centrally controlled self-healing wavelength division multiplexing passive optical network based on optical carrier suppression technique

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Zhang, Jiao; Sun, Xiaohan

    2015-12-01

    We proposed and demonstrated a centrally controlled and self-healing wavelength division multiplexing passive optical network with colorless optical network units (ONUs) based on optical carrier suppression technique. By switching the affected data in the OCS signal sideband to an alternate protection path, only one optical switch is provisioned at the optical line terminal, which is controlled by a logic control circuit upon monitoring of power outage on the working path. The proposed scheme can reliably protect against both distribution and feeder fiber failures. Moreover, gain-saturated reflective semiconductor optical amplifiers are used as colorless transmitters in ONUs. The protection scheme feasibility and system performances are experimentally verified with 10 Gb/s downstream and 1.25 Gb/s upstream data in both working and protection modes. The protection switching time was measured to be around 1 ms.

  13. A Wirelessly Powered and Controlled Device for Optical Neural Control of Freely-Behaving Animals

    PubMed Central

    Wentz, Christian T.; Bernstein, Jacob G.; Monahan, Patrick; Guerra, Alexander; Rodriguez, Alex; Boyden, Edward S.

    2011-01-01

    Optogenetics, the ability to use light to activate and silence specific neuron types within neural networks in vivo and in vitro, is revolutionizing neuroscientists’ capacity to understand how defined neural circuit elements contribute to normal and pathological brain functions. Typically awake behaving experiments are conducted by inserting an optical fiber into the brain, tethered to a remote laser, or by utilizing an implanted LED, tethered to a remote power source. A fully wireless system would enable chronic or longitudinal experiments where long duration tethering is impractical, and would also support high-throughput experimentation. However, the high power requirements of light sources (LEDs, lasers), especially in the context of the high-frequency pulse trains often desired in experiments, precludes battery-powered approaches from being widely applicable. We have developed a headborne device weighing 2 grams capable of wirelessly receiving power using a resonant RF power link and storing the energy in an adaptive supercapacitor circuit, which can algorithmically control one or more headborne LEDs via a microcontroller. The device can deliver approximately 2W of power to the LEDs in steady state, and 4.3W in bursts. We also present an optional radio transceiver module (1 gram) which, when added to the base headborne device, enables real-time updating of light delivery protocols; dozens of devices can be simultaneously controlled from one computer. We demonstrate use of the technology to wirelessly drive cortical control of movement in mice. These devices may serve as prototypes for clinical ultra-precise neural prosthetics that use light as the modality of biological control. PMID:21701058

  14. A wirelessly powered and controlled device for optical neural control of freely-behaving animals

    NASA Astrophysics Data System (ADS)

    Wentz, Christian T.; Bernstein, Jacob G.; Monahan, Patrick; Guerra, Alexander; Rodriguez, Alex; Boyden, Edward S.

    2011-08-01

    Optogenetics, the ability to use light to activate and silence specific neuron types within neural networks in vivo and in vitro, is revolutionizing neuroscientists' capacity to understand how defined neural circuit elements contribute to normal and pathological brain functions. Typically, awake behaving experiments are conducted by inserting an optical fiber into the brain, tethered to a remote laser, or by utilizing an implanted light-emitting diode (LED), tethered to a remote power source. A fully wireless system would enable chronic or longitudinal experiments where long duration tethering is impractical, and would also support high-throughput experimentation. However, the high power requirements of light sources (LEDs, lasers), especially in the context of the extended illumination periods often desired in experiments, precludes battery-powered approaches from being widely applicable. We have developed a headborne device weighing 2 g capable of wirelessly receiving power using a resonant RF power link and storing the energy in an adaptive supercapacitor circuit, which can algorithmically control one or more headborne LEDs via a microcontroller. The device can deliver approximately 2 W of power to the LEDs in steady state, and 4.3 W in bursts. We also present an optional radio transceiver module (1 g) which, when added to the base headborne device, enables real-time updating of light delivery protocols; dozens of devices can be controlled simultaneously from one computer. We demonstrate use of the technology to wirelessly drive cortical control of movement in mice. These devices may serve as prototypes for clinical ultra-precise neural prosthetics that use light as the modality of biological control.

  15. Electrochromic-photovoltaic film for light-sensitive control of optical transmittance

    DOEpatents

    Branz, H.M.; Crandall, R.S.; Tracy, C.E.

    1994-12-27

    A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer. 5 figures.

  16. Electrochromic-photovoltaic film for light-sensitive control of optical transmittance

    DOEpatents

    Branz, Howard M.; Crandall, Richard S.; Tracy, C. Edwin

    1994-01-01

    A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer.

  17. Photoswitchable diacylglycerols enable optical control of protein kinase C.

    PubMed

    Frank, James Allen; Yushchenko, Dmytro A; Hodson, David J; Lipstein, Noa; Nagpal, Jatin; Rutter, Guy A; Rhee, Jeong-Seop; Gottschalk, Alexander; Brose, Nils; Schultz, Carsten; Trauner, Dirk

    2016-09-01

    Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling. PMID:27454932

  18. Control and Manipulation of Nano Cracks Mimicking Optical Wave

    PubMed Central

    Suh, Young D.; Yeo, Junyeob; Lee, Habeom; Hong, Sukjoon; Kwon, Jinhyeong; Kim, Kyunkyu; Ko, Seung Hwan

    2015-01-01

    Generally, a fracture is considered as an uncontrollable thus useless phenomenon due to its highly random nature. The aim of this study is to investigate highly ordered cracks such as oscillatory cracks and to manipulate via elaborate control of mechanical properties of the cracking medium including thickness, geometry, and elastic mismatch. Specific thin film with micro-sized notches was fabricated on a silicon based substrate in order to controllably generate self-propagating cracks in large area. Interestingly, various nano-cracks behaved similar to optical wave including refraction, total internal reflection and evanescent wave. This novel phenomena of controlled cracking was used to fabricate sophisticated nano/micro patterns in large area which cannot be obtained even with conventional nanofabrication methods. We also have showed that the cracks are directly implementable into a nano/micro-channel application since the cracks naturally have a form of channel-like shape. PMID:26612107

  19. Preliminary software development for optical mirror figure control

    NASA Technical Reports Server (NTRS)

    Mackinnon, D.

    1970-01-01

    The maintenance of accurate primary mirror figure in the face of environmental disturbances is the key to the achievement of diffraction-limited performance in a large space telescope. In order to develop the concepts of optical mirror figure control, an experimental program was initiated. A major component in this experiment will be an XDS Sigma 5.7 digital computer which will realize the control algorithm. A software package is described which realizes linear optimal, simplified linear, and iterative optimal control algorithms. The software, in addition, provides for interactive communication between the operator and the computer, and interaction between the computer and the experimental hardware elements. A brief description of a small hybrid computer system is also presented.

  20. High-Resolution CRT Optical Film Recorder Incorporating an Optical Feedback Exposure Control.

    PubMed

    Nix, L A; Ley, G S

    1972-05-01

    A high-resolution CRT optical film recorder incorporating an optical exposure control system is described. The recorder incorporates provisions for a highly nonlinear writing rate of up to 7 to 1 that make it uniquely suited for such applications as side-look radar or sonar. Provisions are made for spot shaping permitting line fill-in between scan lines spaced up to ten spot sizes apart. The recorder achieves a linear gray scale having sixteen equal density steps for a wide range of sweep times by means of a brightness feedback loop that automatically corrects for such problems as phosphor saturation, phosphor noise, nonlinear CRT grid transfer characteristics, variation in cathode emission, and tube aging in conjunction with film gamma correction circuitry.

  1. Orbiter active thermal control system description

    NASA Technical Reports Server (NTRS)

    Laubach, G. E.

    1975-01-01

    A brief description of the Orbiter Active Thermal Control System (ATCS) including (1) major functional requirements of heat load, temperature control and heat sink utilization, (2) the overall system arrangement, and (3) detailed description of the elements of the ATCS.

  2. Continued education and experimental activities for optics education

    NASA Astrophysics Data System (ADS)

    Shinomiya, George K.; Muramatsu, Mikiya

    2001-08-01

    Of the evidence that the optics knowledge is practically unknown for the pupils who complete Basic Education, we initiate, in 1998, a project involving teachers of the Public Network and University teachers with the objective to change this situation. The main cause of this abandonment of optics is the bad understanding by the teachers of the optic phenomena, result of their bad initial formation. Based on this situation, we developed a series of simple experimental activities that demonstrate the main concepts of optics in the program. After that, we elaborate courses of university extension, destined to the teachers of Basic Education, giving emphasis to the experimentation, using kits and demonstrations, complemented by texts, videos and group works. From 98 until now, more than 200 teachers had participated of our course, and they made a sufficiently positive evaluation of these works pointing not only the including of the optics, but also a significant change in its strategies of education, going of meeting to the new parameters of our basic education.

  3. Time-multiplexed chromatic-controlled axial diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Martínez-García, Antonio

    2010-07-01

    Programmable diffractive optical elements (DOEs) with axial response have many interesting applications, including diffractive lenses, axicons, and optical tweezers. In all these cases, it is essential to properly select the modulation configuration of the spatial light modulator (SLM) where the DOE is displayed, in order to avoid the undiffracted zero order component that appears on axis and overlaps the desired axial response. However, in general, the chromatic dispersion in liquid crystal SLMs prevents the cancellation of the zero order for a broadband light source, thus limiting the possibilities for polychromatic programmable axial DOEs. We operate a ferroelectric liquid crystal on silicon display with polychromatic illumination and with a specific polarization configuration that provides binary π-phase modulation for all wavelengths. Since this type of modulation cancels the undiffracted zero order, we use this SLM to display DOEs with axial response. Moreover, chromatic control is achieved by time-multiplexing sequences of properly scaled DOEs with the corresponding selection of the input wavelength by means of an electronically controlled color-filter wheel. The presented experimental results include wavelength-controlled diffraction gratings, axicons, and vortex-producing lenses.

  4. Optical control of Magnetic Feshbach Resonances using Closed Channel EIT

    NASA Astrophysics Data System (ADS)

    Jagannathan, Arunkumar; Arunkumar, Nithya; Joseph, James; Thomas, John

    2016-05-01

    Optical techniques can provide rapid temporal control and high-resolution spatial control of interactions in cold gases enabling the study of non-equilibrium strongly interacting Fermi gases. We use electromagnetically induced transparency (EIT) in the closed channel to control magnetic Feshbach resonances in an optically-trapped mixture of the two lowest hyperfine states of a 6 Li Fermi gas. In our experiments, the narrow Feshbach resonance is tuned by up to 3 G. For the broad resonance, the spontaneous lifetime is increased to 0.4 s at the dark state resonance, compared to 0.5 ms for single field tuning. We present a new model of light-induced loss spectra, employing continuum-dressed basis states, that agrees in shape and magnitude with loss measurements for both broad and narrow resonances. Using this model, we predict the trade-off between tunability and loss for the broad resonance in 6 Li, showing that our two-field method substantially reduces the two-body loss rate compared to single field methods for same tuning range. This research is supported by AFOSR, NSF, ARO, and DOE.

  5. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1992-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: program objectives; program features; flight experiment features; current activities; MACE development model lab testing; MACE test article deployed on STS middeck; and development model testing.

  6. The Age of Enlightenment: Evolving Opportunities in Brain Research Through Optical Manipulation of Neuronal Activity

    PubMed Central

    Jerome, Jason; Heck, Detlef H.

    2011-01-01

    Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments. PMID:22275886

  7. Controlling Cherenkov Radiation with Transformation-Optical Metamaterials

    NASA Astrophysics Data System (ADS)

    Ginis, Vincent; Danckaert, Jan; Veretennicoff, Irina; Tassin, Philippe

    2014-10-01

    In high energy physics, unknown particles are identified by determining their mass from the Cherenkov radiation cone that is emitted as they pass through the detector apparatus. However, at higher particle momentum, the angle of the Cherenkov cone saturates to a value independent of the mass of the generating particle, making it difficult to effectively distinguish between different particles. Here, we show how the geometric formalism of transformation optics can be applied to describe the Cherenkov cone in an arbitrary anisotropic medium. On the basis of these results, we propose a specific anisotropic metamaterial to control Cherenkov radiation, leading to enhanced sensitivity for particle identification at higher momentum.

  8. Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields.

    PubMed

    Cai, Meng-Qiang; Li, Ping-Ping; Feng, Dan; Pan, Yue; Qian, Sheng-Xia; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-04-01

    We have presented and demonstrated a method for the fabrication of various complicated microstructures based on dynamically controlled patterned vector optical fields (PVOFs). We design and generate dynamic PVOFs by loading patterned holograms displayed on the spatial light modulator and moving traces of focuses with different patterns. We experimentally fabricate the various microstructures in z-cut lithium niobate plates. The method we present has some benefits such as no motion of the fabricated samples and high efficiency due to its parallel feature. Moreover, our approach is able to fabricate three-dimensional microstructures. PMID:27192265

  9. Integrated-optic polarization controllers incorporating polymer waveguide birefringence modulators.

    PubMed

    Kim, Jun-Whee; Park, Su-Hyun; Chu, Woo-Sung; Oh, Min-Cheol

    2012-05-21

    Polarization controllers based on polymer waveguide technology are demonstrated by incorporating thermo-optic birefringence modulators (BMs) and thin-film wave plates. Highly birefringent polymer materials are used to increase the efficiency of birefringence modulation in proportion to the heating power. Thin-film quarter-wave plates are fabricated by using a crosslinkable liquid crystal, reactive mesogen, and inserted between the BMs to produce static phase retardation and polarization coupling. By applying a triangular AC signal to one BM and a DC signal to another, the polarization states of the output light are modulated to cover the entire surface of the Poincaré sphere. PMID:22714231

  10. Electron spin control of optically levitated nanodiamonds in vacuum

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-05-01

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect.

  11. Recent advances in active noise control

    NASA Astrophysics Data System (ADS)

    Guicking, D.

    Advances in the field of active noise control over the last few years are reviewed. Some commercially available products and their technical applications are described, with particular attention given to broadband duct noise silencers, broadband active headphones, waveform synthesis, and LMS controllers. Recent theoretical and experimental research activities are then reviewed. These activities are concerned with duct noise, structural sound, interior spaces, algorithms, echo cancellation, and miscellaneous applications.

  12. Optical Sensing with Simultaneous Electrochemical Control in Metal Nanowire Arrays

    PubMed Central

    MacKenzie, Robert; Fraschina, Corrado; Sannomiya, Takumi; Auzelyte, Vaida; Vörös, Janos

    2010-01-01

    This work explores the alternative use of noble metal nanowire systems in large-scale array configurations to exploit both the nanowires’ conductive nature and localized surface plasmon resonance (LSPR). The first known nanowire-based system has been constructed, with which optical signals are influenced by the simultaneous application of electrochemical potentials. Optical characterization of nanowire arrays was performed by measuring the bulk refractive index sensitivity and the limit of detection. The formation of an electrical double layer was controlled in NaCl solutions to study the effect of local refractive index changes on the spectral response. Resonance peak shifts of over 4 nm, a bulk refractive index sensitivity up to 115 nm/RIU and a limit of detection as low as 4.5 × 10−4 RIU were obtained for gold nanowire arrays. Simulations with the Multiple Multipole Program (MMP) confirm such bulk refractive index sensitivities. Initial experiments demonstrated successful optical biosensing using a novel form of particle-based nanowire arrays. In addition, the formation of an ionic layer (Stern-layer) upon applying an electrochemical potential was also monitored by the shift of the plasmon resonance. PMID:22163441

  13. Measurements of optical underwater turbulence under controlled conditions

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.; Gladysz, S.; Almeida de Sá Barros, R.; Matt, S.; Nootz, G. A.; Josset, D. B.; Hou, W.

    2016-05-01

    Laser beam propagation underwater is becoming an important research topic because of high demand for its potential applications. Namely, ability to image underwater at long distances is highly desired for scientific and military purposes, including submarine awareness, diver visibility, and mine detection. Optical communication in the ocean can provide covert data transmission with much higher rates than that available with acoustic techniques, and it is now desired for certain military and scientific applications that involve sending large quantities of data. Unfortunately underwater environment presents serious challenges for propagation of laser beams. Even in clean ocean water, the extinction due to absorption and scattering theoretically limit the useful range to few attenuation lengths. However, extending the laser light propagation range to the theoretical limit leads to significant beam distortions due to optical underwater turbulence. Experiments show that the magnitude of the distortions that are caused by water temperature and salinity fluctuations can significantly exceed the magnitude of the beam distortions due to atmospheric turbulence even for relatively short propagation distances. We are presenting direct measurements of optical underwater turbulence in controlled conditions of laboratory water tank using two separate techniques involving wavefront sensor and LED array. These independent approaches will enable development of underwater turbulence power spectrum model based directly on the spatial domain measurements and will lead to accurate predictions of underwater beam propagation.

  14. Optical sensor based system to monitor caries activity

    NASA Astrophysics Data System (ADS)

    Shrestha, A.; Tahir, R.; Kishen, A.

    2007-07-01

    The aim of the study is to evaluate the ability of a visible light based spectroscopic sensor system to monitor caries activity in saliva. In this study an optical sensor is utilized to monitor the bacterial-mediated acidogenic profile of stimulated saliva using a photosensitive pH indicator. Microbiological assessment of the saliva samples were carried out using the conventional culture methods. In addition, the shifts in the pH of saliva-sucrose samples were recorded using a pH meter. The absorption spectra obtained from the optical sensor showed peak maxima at 595nm, which decreased as a function of time. The microbiological assessment showed increase in the bacterial count as a function of time. A strong positive correlation was also observed between the rates of decrease in the absorption intensity measured using the optical sensor and the decrease in pH measured using the pH meter. This study highlights the potential advantages of using the optical sensor as a sensitive and rapid chairside system for monitoring caries activity by quantification of the acidogenic profile of saliva.

  15. The Middeck Active Control Experiment (MACE): Identification for robust control

    NASA Technical Reports Server (NTRS)

    Karlov, Valery I.

    1992-01-01

    Viewgraphs on identification for robust control for the Middeck Active Control Experiment (MACE) are presented. Topics covered include: identification for robust control; three levels of identification; basic elements of the approach; advantages of 'post-ID' model of uncertainty; advantages of optimization; and practical realization.

  16. Optical control of the Advanced Technology Solar Telescope.

    PubMed

    Upton, Robert

    2006-08-10

    The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented. PMID:16926876

  17. Optical control of the Advanced Technology Solar Telescope.

    PubMed

    Upton, Robert

    2006-08-10

    The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented.

  18. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    SciTech Connect

    Azad, Abul Kalam; Chen, Hou - Tong; Taylor, Antoinette; O' Hara, John

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  19. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, R.B.

    1991-09-10

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch. 11 figures.

  20. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, Russell B.

    1991-01-01

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch.

  1. Calibration and optimization of computer-controlled optical surfacing for large optics

    NASA Astrophysics Data System (ADS)

    Kim, Dae Wook; Martin, Hubert M.; Burge, James H.

    2011-09-01

    Precision optical surfaces can be efficiently manufactured using a computer-controlled optical surfacing (CCOS) process. Most CCOS processes are based on control of the dwell time of a tool on the workpiece, according to the desired removal and the tool influence function (TIF), which is the material wear function of the tool. Several major topics were investigated to improve current CCOS processes and provide new solutions for the next generation of CCOS processes. A rigid conformal (RC) lap using a visco-elastic non-Newtonian medium was invented. It conforms to the aspheric surface shape, yet maintains stiffness on short time scales to provide natural smoothing. The smoothing removes mid- to high-frequency errors while controlled dwell time removes low-frequency errors. A parametric smoothing model was also introduced to predict the smoothing effects. A parametric edge TIF model to represent measured edge TIFs was developed and demonstrated. This model covers the removal behavior as the tool overhangs the edge of the workpiece. These new tools and models were applied in a new process optimization technique called nonsequential optimization. The non-sequential approach performs a comprehensive optimization of dwell time using multiple TIFs (multiple tools) simultaneously. An overview of these newly implemented CCOS features** is presented along with some actual CCOS results.

  2. Using optical dating to assess the recent activity of active faults in Hsinchu Area, northwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Watanuki, T.; Chen, Y.

    2003-12-01

    The aim of this study is to evaluate the recent activity of active fault systems mapped in Hsinchu area, northwestern Taiwan. Since it is the largest site of industrial park and highly populated, it is essential to assess potential of earthquake hazards. As a result of previous work, two active fault systems (Hsinchu and Hsincheng) were identified as active. However, they have not been included in dangerous active faults on published map because Holocene offset has not been confirmed yet. Relationship between five river terraces and faults were discussed by mapping on geomorphic features; both of these thrust faults contain active anticlines in their hanging walls based on folded terraces that are composed of young alluvial deposits. Neither long-term nor short-term slip rate has been reported due to lack of age control on development timing of the terraces mentioned above. We collected samples from these terraces and open-pit trench on the highest terrace, where intercalated sandy layers are found within cobbles. As literatures optically stimulated luminescence (OSL) dating method can directly measure the burial ages of sedimentary deposits that underwent a short period of sunlight bleaching. Therefore, OSL dating is applied via single aliquot regeneration method on sand size quartz extract from our study terraces. OSL ages about 46ka and 68-75ka are obtained from 4 fluvial deposits at trenching site. We tentatively suggest that the terrace was abandoned by the main channel after 68ka and then upper strata were subsequently deposited by local small creeks. The vertical displacements cross these Hsinchu and Hsincheng active faults are ca. 90m and 70m, respectively since 68ka. Consequently, the derived long-term rates of vertical slip are 1.3 and 1.0 m/ka respectively for both of them. The details of the other age results and discussion on recent structural behavior will be presented.

  3. Giant Optical Activity of Quantum Dots, Rods, and Disks with Screw Dislocations

    PubMed Central

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Noskov, Roman E.; Ginzburg, Pavel; Gun’ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2015-01-01

    For centuries mankind has been modifying the optical properties of materials: first, by elaborating the geometry and composition of structures made of materials found in nature, later by structuring the existing materials at a scale smaller than the operating wavelength. Here we suggest an original approach to introduce optical activity in nanostructured materials, by theoretically demonstrating that conventional achiral semiconducting nanocrystals become optically active in the presence of screw dislocations, which can naturally develop during the nanocrystal growth. We show the new properties to emerge due to the dislocation-induced distortion of the crystal lattice and the associated alteration of the nanocrystal’s electronic subsystem, which essentially modifies its interaction with external optical fields. The g-factors of intraband transitions in our nanocrystals are found comparable with dissymmetry factors of chiral plasmonic complexes, and exceeding the typical g-factors of chiral molecules by a factor of 1000. Optically active semiconducting nanocrystals—with chiral properties controllable by the nanocrystal dimensions, morphology, composition and blending ratio—will greatly benefit chemistry, biology and medicine by advancing enantiomeric recognition, sensing and resolution of chiral molecules. PMID:26424498

  4. Active optics system of the VLT Survey Telescope.

    PubMed

    Schipani, Pietro; Noethe, Lothar; Magrin, Demetrio; Kuijken, Konrad; Arcidiacono, Carmelo; Argomedo, Javier; Capaccioli, Massimo; Dall'Ora, Massimo; D'Orsi, Sergio; Farinato, Jacopo; Fierro, Davide; Holzlöhner, Ronald; Marty, Laurent; Molfese, Cesare; Perrotta, Francesco; Ragazzoni, Roberto; Savarese, Salvatore; Rakich, Andrew; Umbriaco, Gabriele

    2016-03-01

    This paper describes the active optics system of the VLT Survey Telescope, the 2.6-m survey telescope designed for visible wavelengths of the European Southern Observatory at Cerro Paranal, in the Atacama desert. The telescope is characterized by a wide field of view (1.42 deg diameter), leading to tighter active optics than in conventional telescopes, in particular for the alignment requirements. We discuss the effects of typical error sources on the image quality and present the specific solutions adopted for wavefront sensing and correction of the aberrations, which are based on the shaping of a monolithic primary mirror and the positioning of the secondary in five degrees of freedom. PMID:26974616

  5. Dispersion of optical activity of magnesium sulfite hexahydrate single crystals

    NASA Astrophysics Data System (ADS)

    Dimov, T.; Bunzarov, Zh; Iliev, I.; Petkova, P.; Tzoukrovski, Y.

    2010-11-01

    The magnesium sulfite hexahydrate (MgSO3.6H2O) crystals are unique because they are the only representative (with sodium periodate) of the crystallographic class C3 (without a center of symmetry). The crystal symmetry suggests presence of nonlinearity, piezo- and pyro-electric properties and gyrotropy as well. Single crystals of MgSO3.6H2O (pure and doped with Ni, Co and Zn) for the time being are grown only by the original method developed in the Laboratory for Crystal growth at the Faculty of Physics in Sofia University. The first results of optical activity of pure MgSO3.6H2O and Zn doped MgSO3.6H2O crystals are described and analyzed in a wide spectral range. The optical activity manifests itself in the direction (0001) as a rotation of the polarization plane.

  6. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques.

  7. Hemodynamic responses to functional activation accessed by optical imaging

    NASA Astrophysics Data System (ADS)

    Ni, Songlin; Li, Pengcheng; Yang, Yuanyuan; Lv, Xiaohua; Luo, Qingming

    2006-01-01

    A multi-wavelength light-emitting diode (LED) and laser diode (LD) based optical imaging system was developed to visualize the changes in cerebral blood flow, oxygenation following functional activation simultaneously in rodent cortex. The 2-D blood flow image was accessed by laser speckle contrast imaging, and the spectroscopic imaging of intrinsic signal was used for the calculation of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) concentration. The combination of spectroscopic imaging and laser speckle contrast imaging provides the capability to simultaneously investigate the spatial and temporal blood flow and hemoglobin concentration changes with high resolution, which may lead to a better understanding of the coupling between neuronal activation and vascular responses. The optical imaging system been built is compact and convenient to investigators. And it is reliable to acquire raw data. In present study, the hemodynamic responses to cortical spreading depression (CSD) in parietal cortex of ~-chloralose/urethan anesthetized rats were demonstrated.

  8. Optical activity of transparent polymer layers characterized by spectral means

    NASA Astrophysics Data System (ADS)

    Cosutchi, Andreea Irina; Dimitriu, Dan Gheorghe; Zelinschi, Carmen Beatrice; Breaban, Iuliana; Dorohoi, Dana Ortansa

    2015-06-01

    The method based on the channeled spectrum, validated for inorganic optical active layers, is used now to determine the optical activity of some transparent polymer solutions in different solvents. The circular birefringence, the dispersion parameter and the specific rotation were estimated in the visible range by using the measurements of wavelengths in the channeled spectra of Hydroxypropyl cellulose in water, methanol and acetic acid. The experiments showed the specific rotation dependence on the polymer concentration and also on the solvent nature. The decrease of the specific rotation in the visible range with the increase in wavelength was evidenced. The method has some advantages as the rapidity of the experiments and the large spectral range in which it can be applied. One disadvantage is the fact that the channeled spectrum does not allow to establish the rotation sense of the electric field intensity.

  9. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques. PMID:27304296

  10. Student Activity Funds: Procedures & Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    Student activity funds may create educational opportunities for students, but they frequently create problems for business administrators. The first part of this work reviews the types of organizational issues and transactions an organized student group is likely to encounter, including establishing a constitution, participant roles,…

  11. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes.

    PubMed

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique; Osakada, Kohtaro; Takeuchi, Daisuke

    2016-07-11

    Cationic Pd(II) monophosphine complexes derived from α- and β-cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to (13) C NMR studies with (13) C-enriched CO, both complexes catalyze the formation of CO-free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer.

  12. Demonstrating Optical Activity Using an iPad

    ERIC Educational Resources Information Center

    Schwartz, Pauline M.; Lepore, Dante M.; Morneau, Brandy N.; Barratt, Carl

    2011-01-01

    Optical activity using an iPad as a source of polarized light is demonstrated. A sample crystal or solution can be placed on the iPad running a white screen app. The sample is viewed through a polarized filter that can be rotated. This setup can be used in the laboratory or with a document camera to easily project in a large lecture hall.…

  13. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes.

    PubMed

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique; Osakada, Kohtaro; Takeuchi, Daisuke

    2016-07-11

    Cationic Pd(II) monophosphine complexes derived from α- and β-cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to (13) C NMR studies with (13) C-enriched CO, both complexes catalyze the formation of CO-free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer. PMID:27218801

  14. Optical Breath Gas Sensor for Extravehicular Activity Application

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S> ; Chullen, Cinda; Falconi, Eric A.

    2012-01-01

    The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation Portable Life Support System (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen (O2) channel using a vertical cavity surface emitting laser (VCSEL). Both prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Based on the results of the initial instrument development, further prototype development and testing of instruments leveraging the lessons learned were desired. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU. .

  15. The fabrication and characterisation of piezoelectric actuators for active x-ray optics

    NASA Astrophysics Data System (ADS)

    Zhang, Dou; Rodriguez Sanmartin, Daniel; Button, Tim W.; Meggs, Carl; Atkins, Carolyn; Doel, Peter; Brooks, David; Feldman, Charlotte; Willingale, Richard; Michette, Alan; Pfauntsch, Slawka; Sahraei, Shahin; James, Ady; Dunare, Camelia; Stevenson, Tom; Parkes, William; Smith, Andrew; Wang, Hongchang

    2009-08-01

    Piezoelectric actuators are widely employed in adaptive optics to enable an actively controlled mirror surface and improve the optical resolution and sensitivity. Currently two new prototype adaptive X-ray optical systems are under development through the Smart X-ray Optics project in a UK based consortium. One proposed technology is micro-structured optical arrays (MOAs) which uses aligned micro-channels structures obtained by deep silicon etching using both dry and wet techniques and bonded piezoelectric actuators to produce a micro-focused X-ray source for biological applications. The other technology is large scale optics which uses a thin shell mirror segment with 20-40 bonded piezo-actuators for the next generation of X-ray telescopes with an aim to achieve a resolution greater than that currently available by Chandra (0.5"). The Functional Materials Group of Birmingham University has the capability of fabricating a wide range of piezo-actuators including, for example, unimorph, bimorph and active fibre composites (AFC) by using a viscous plastic processing technique. This offers flexibility in customising the shapes (from planar to 3-D helix) and feature sizes (>20 μm) of the actuators, as well as achieving good piezoelectric properties. PZT unimorph actuators are being developed in this programme according to the design and implementation of the proposed mirror and array structures. Precise controls on the dimension, thickness, surface finishing and the curvature have been achieved for delivering satisfactory actuators. Results are presented regarding the fabrication and characterisation of such piezo-actuators, as well as the progress on the large optic and MOAs prototypes employing the piezo-actuators.

  16. Optical Plasma Control During ARC Carbon Nanotube Growth

    NASA Technical Reports Server (NTRS)

    Hinkov, I.; Farhat, S.; DeLaChapelle, M. Lamy; Fan, S. S.; Han, H. X.; Li, G. H.; Scott, C. D.

    2001-01-01

    To improve nanotube production, we developed a novel optical control technique, based on the shape of the visible plasma zone created between the anode and the cathode in the direct current (DC) arc process. For a given inert gas, we adjust the anode to cathode distance (ACD) in order to obtain strong visible vortices around the cathode. This enhance anode vaporization, which improve nanotubes formation. In light of our experimental results, we focus our discussion on the relationship between plasma parameters and nanotube growth. Plasma temperature control during arc process is achieved using argon, helium, and their mixtures as a buffer gases. The variation of the gas mixture from pure argon to pure helium changes plasma temperature. As a consequence, the microscopic characteristics of nanotubes as diameter distribution is changed moving from smaller values for argon to higher diameters for helium. We also observe a dependence of the macroscopic characteristics of the final products as Brunauer-Emmett-Teller (BET) surface area.

  17. Polarization-independent silicon metadevices for efficient optical wavefront control

    DOE PAGES

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; Dominguez, Jason James; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi Subramanian; Luk, Ting S.; Decker, Manuel; Neshev, Dragomir N.; et al

    2015-07-20

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the latticemore » spacing as a single geometric control parameter.« less

  18. A Modular, IGBT Driven, Ignitron Switched, Optically Controlled Power Supply

    NASA Astrophysics Data System (ADS)

    Carroll, Evan; von der Linden, Jens; You, Setthivoine

    2013-10-01

    An experiment to investigate the dynamics of canonical flux tubes at the University of Washington uses two high energy pulsed power supplies to generate and sustain the plasma discharge. A modular 240 μF , 12 kV DC capacitor based power supply, discharged by ignitron, has been developed specifically for this application. Design considerations include minimizing inductance, rapid switching, fast rise times, and electrically isolated control. An optically coupled front panel and fast IGBT ignitron drive circuit, sequenced manually or by software, control the charge and discharge of the power supply. A complete, sequenced charge/discharge has been successfully tested with a dummy load, producing a peak current of 100 kA and a rise time of 25 μs . This work was sponsored in part by the US DOE Grant DE-SC0010340.

  19. Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control.

    PubMed

    Chong, Katie E; Staude, Isabelle; James, Anthony; Dominguez, Jason; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi S; Luk, Ting S; Decker, Manuel; Neshev, Dragomir N; Brener, Igal; Kivshar, Yuri S

    2015-08-12

    We experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0-2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter. PMID:26192100

  20. Controllable 3D atomic Brownian motor in optical lattices

    NASA Astrophysics Data System (ADS)

    Dion, C. M.; Sjölund, P.; Petra, S. J. H.; Jonsell, S.; Nylén, M.; Sanchez-Palencia, L.; Kastberg, A.

    2008-06-01

    We study a Brownian motor, based on cold atoms in optical lattices, where atomic motion can be induced in a controlled manner in an arbitrary direction, by rectification of isotropic random fluctuations. In contrast with ratchet mechanisms, our Brownian motor operates in a potential that is spatially and temporally symmetric, in apparent contradiction to the Curie principle. Simulations, based on the Fokker-Planck equation, allow us to gain knowledge on the qualitative behaviour of our Brownian motor. Studies of Brownian motors, and in particular ones with unique control properties, are of fundamental interest because of the role they play in protein motors and their potential applications in nanotechnology. In particular, our system opens the way to the study of quantum Brownian motors.

  1. Kalman filtering to suppress spurious signals in Adaptive Optics control

    SciTech Connect

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  2. Polarization-independent silicon metadevices for efficient optical wavefront control

    SciTech Connect

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; Dominguez, Jason James; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi Subramanian; Luk, Ting S.; Decker, Manuel; Neshev, Dragomir N.; Brener, Igal; Kivshar, Yuri S.

    2015-07-20

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter.

  3. Activities report of the Division of Optical Technology (FOA 33)

    NASA Astrophysics Data System (ADS)

    Letalick, Dietmar

    1988-11-01

    Research on hydro-optics; laser remote sensing; coherent CO2 laser radar; optical signatures; atmospheric transmission; ionizing radiation effects on electronics; fiber optics; optical processing; and terrain models is summarized.

  4. Control of systems with tiered actuators with application to interferometer optical delay line control

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J.; Hadaegh, Fred Y.

    2004-01-01

    High accuracy feedback control systems might employ tiers of actuators with different properties. Such systems performance can be estimated in advance using Bode integrals. The systems can be made globally stable with good transient responses and close to the best possible disturbance rejection when controllers include high-order linear links and multiple nonlinear dynamic links. The design approach is exemplified by designing conb-ol system for an interferometer optical delay line.

  5. 76 FR 66750 - Certain Projectors With Controlled-Angle Optical Retarders, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... COMMISSION Certain Projectors With Controlled-Angle Optical Retarders, Components Thereof, and Products... Optical Retarders, Components Thereof, And Products Containing Same, DN 2849; the Commission is soliciting... within the United States after importation of certain projectors with controlled-angle optical...

  6. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    Actively controlled mechanical seals have recently been developed for industrial use. This study investigates the feasibility of using such seals for aerospace applications. In a noncontacting mechanical seal, the film thickness depends on the geometry of the seal interface. The amount of coning, which is a measure of the radial convergence or divergence of the seal interface, has a primary effect on the film thickness. Active control of the film thickness is established by controlling the coning with a piezoelectric material. A mathematical model has been formulated to predict the performance of an actively controlled mechanical seal.

  7. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller.

    PubMed

    Jofre, M; Anzolin, G; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W

    2012-05-21

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than ∼ 20 ms. Given the unification of components to fully control any polarization state while steering an optical beam, the proposed system is potentially integrable and robust.

  8. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller.

    PubMed

    Jofre, M; Anzolin, G; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W

    2012-05-21

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than ∼ 20 ms. Given the unification of components to fully control any polarization state while steering an optical beam, the proposed system is potentially integrable and robust. PMID:22714214

  9. Ultrafast optical control of individual quantum dot spin qubits.

    PubMed

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled

  10. Ultrafast optical control of individual quantum dot spin qubits.

    PubMed

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled

  11. Wavefront control of the Large Optics Test and Integration Site (LOTIS) 6.5m Collimator

    SciTech Connect

    West, Steven C.; Bailey, Samuel H.; Burge, James H.; Cuerden, Brian; Hagen, Jeff; Martin, Hubert M.; Tuell, Michael T.

    2010-06-20

    The LOTIS Collimator provides scene projection within a 6.5m diameter collimated beam used for optical testing research in air and vacuum. Diffraction-limited performance (0.4 to 5{mu}m wavelength) requires active wavefront control of the alignment and primary mirror shape. A hexapod corrects secondary mirror alignment using measurements from collimated sources directed into the system with nine scanning pentaprisms. The primary mirror shape is controlled with 104 adjustable force actuators based on figure measurements from a center-of-curvature test. A variation of the Hartmann test measures slopes by monitoring the reflections from 36 small mirrors bonded to the optical surface of the primary mirror. The Hartmann source and detector are located at the f/15 Cassegrain focus. Initial operation has demonstrated a closed-loop 110nmrms wavefront error in ambient air over the 6.5mcollimated beam.

  12. An integrated optical sensor for GMAW feedback control

    NASA Astrophysics Data System (ADS)

    Taylor, P. L.; Watkins, A. D.; Larsen, E. D.; Smartt, H. B.

    The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major 'off-the-shelf' components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.

  13. Optically controlled waveplate at a telecom wavelength using a ladder transition in Rb atoms for all-optical switching and high speed Stokesmetric imaging.

    PubMed

    Krishnamurthy, Subramanian; Tu, Y; Wang, Y; Tseng, S; Shahriar, M S

    2014-11-17

    We demonstrate an optically controlled waveplate at ~1323 nm using the 5S(1/2)-5P(1/2)-6S(1/2) ladder transition in a Rb vapor cell. The lower leg of the transitions represents the control beam, while the upper leg represents the signal beam. We show that we can place the signal beam in any arbitrary polarization state with a suitable choice of polarization of the control beam. Specifically, we demonstrate a differential phase retardance of ~180 degrees between the two circularly polarized components of a linearly polarized signal beam. We also demonstrate that the system can act as a Quarter Wave plate. The optical activity responsible for the phase retardation process is explained in terms of selection rules involving the Zeeman sublevels. As such, the system can be used to realize a fast Stokesmetric imaging system with a speed of ~3 MHz. When implemented using a tapered nano fiber embedded in a vapor cell, this system can be used to realize an ultra-low power all-optical switch as well as a Quantum Zeno Effect based all-optical logic gate by combining it with an optically controlled polarizer, previously demonstrated by us. We present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, using a novel algorithm recently developed by us for efficient computation of the evolution of an arbitrary large scale quantum system. PMID:25402129

  14. Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks

    NASA Astrophysics Data System (ADS)

    Difato, Francesco; Dal Maschio, Marco; Marconi, Emanuele; Ronzitti, Giuseppe; Maccione, Alessandro; Fellin, Tommasso; Berdondini, Luca; Chieregatti, Evelina; Benfenati, Fabio; Blau, Axel

    2011-05-01

    Regeneration of functional connectivity within a neural network after different degrees of lesion is of utmost clinical importance. To test pharmacological approaches aimed at recovering from a total or partial damage of neuronal connections within a circuit, it is necessary to develop a precise method for controlled ablation of neuronal processes. We combined a UV laser microdissector to ablate neural processes in vitro at single neuron and neural network level with infrared holographic optical tweezers to carry out force spectroscopy measurements. Simultaneous force spectroscopy, down to the sub-pico-Newton range, was performed during laser dissection to quantify the tension release in a partially ablated neurite. Therefore, we could control and measure the damage inflicted to an individual neuronal process. To characterize the effect of the inflicted injury on network level, changes in activity of neural subpopulations were monitored with subcellular resolution and overall network activity with high temporal resolution by concurrent calcium imaging and microelectrode array recording. Neuronal connections have been sequentially ablated and the correlated changes in network activity traced and mapped. With this unique combination of electrophysiological and optical tools, neural activity can be studied and quantified in response to controlled injury at the subcellular, cellular, and network level.

  15. Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Jenstrom, Del

    2000-01-01

    In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers

  16. Chiral magnetic effect and natural optical activity in (Weyl) metals

    NASA Astrophysics Data System (ADS)

    Pesin, Dmytro; Ma, Jing

    We consider the phenomenon of natural optical activity, and related chiral magnetic effect in metals with low carrier concentration. To reveal the correspondence between the two phenomena, we compute the optical conductivity of a noncentrosymmetric metal to linear order in the wave vector of the light wave, specializing to the low-frequency regime. We show that it is the orbital magnetic moment of quasiparticles that is responsible for the natural optical activity, and thus the chiral magnetic effect. While for purely static magnetic fields the chiral magnetic effect is known to have a topological origin and to be related to the presence of Berry curvature monopoles (Weyl points) in the band structure, we show that the existence of Berry monopoles is not required for the dynamic chiral magnetic effect to appear; the latter is thus not unique to Weyl metals. The magnitude of the dynamic chiral magnetic effect in a material is related to the trace of its gyrotropic tensor. We discuss the conditions under which this trace is non-zero; in noncentrosymmetric Weyl metals it is found to be proportional to the energy-space dipole moment of Berry curvature monopoles. The calculations are done within both the semiclassical kinetic equation, and Kubo linear response formalisms. This work was supported by NSF Grant No. DMR-1409089.

  17. Coherent control of optical information with matter wave dynamics.

    PubMed

    Ginsberg, Naomi S; Garner, Sean R; Hau, Lene Vestergaard

    2007-02-01

    In recent years, significant progress has been achieved in manipulating matter with light, and light with matter. Resonant laser fields interacting with cold, dense atom clouds provide a particularly rich system. Such light fields interact strongly with the internal electrons of the atoms, and couple directly to external atomic motion through recoil momenta imparted when photons are absorbed and emitted. Ultraslow light propagation in Bose-Einstein condensates represents an extreme example of resonant light manipulation using cold atoms. Here we demonstrate that a slow light pulse can be stopped and stored in one Bose-Einstein condensate and subsequently revived from a totally different condensate, 160 mum away; information is transferred through conversion of the optical pulse into a travelling matter wave. In the presence of an optical coupling field, a probe laser pulse is first injected into one of the condensates where it is spatially compressed to a length much shorter than the coherent extent of the condensate. The coupling field is then turned off, leaving the atoms in the first condensate in quantum superposition states that comprise a stationary component and a recoiling component in a different internal state. The amplitude and phase of the spatially localized light pulse are imprinted on the recoiling part of the wavefunction, which moves towards the second condensate. When this 'messenger' atom pulse is embedded in the second condensate, the system is re-illuminated with the coupling laser. The probe light is driven back on and the messenger pulse is coherently added to the matter field of the second condensate by way of slow-light-mediated atomic matter-wave amplification. The revived light pulse records the relative amplitude and phase between the recoiling atomic imprint and the revival condensate. Our results provide a dramatic demonstration of coherent optical information processing with matter wave dynamics. Such quantum control may find

  18. Activation of cell signaling via optical manipulation of gold-coated liposomes encapsulating signaling molecules

    NASA Astrophysics Data System (ADS)

    Orsinger, Gabriel V.; Leung, Sarah J.; Romanowski, Marek

    2013-02-01

    Many diseases involve changes in cell signaling cascades, as seen commonly in drug resistant cancers. To better understand these intricate signaling events in diseased cells and tissues, experimental methods of probing cellular communication at a single to multi-cell level are required. We recently introduced a general platform for activation of selected signaling pathways by optically controlled delivery and release of water soluble factors using gold-coated liposomes. In the example presented here, we encapsulated inositol trisphosphate (IP3), a ubiquitous intracellular secondary messenger involved in GPCR and Akt signaling cascades, within 100 nm gold-coated liposomes. The high polarizability of the liposome's unique gold pseudo-shell allows stable optical trapping for subcellular manipulation in the presence of cells. We take this optical manipulation further by optically injecting IP3-containing liposomes into the cytosol of a single cell to initiate localized cell signaling. Upon optical injection of liposomal IP3 into a single ovarian carcinoma cell, we observed localized activation as reported by changes in Indo-1 fluorescence intensity. With established gap junctions between the injected cell and neighboring cells, we monitored propagation of this signaling to and through nearby cells.

  19. Active vibration control of lightweight floor systems

    NASA Astrophysics Data System (ADS)

    Baader, J.; Fontana, M.

    2016-04-01

    Wide-span and lightweight floors are often prone to structural vibrations due to their low resonance frequency and poor material damping. Their dynamic behaviour can be improved using passive, semi-active or active vibration control devices. The following article proposes a novel method for the controller synthesis for active vibration control. An existing passive TMD (tuned mass damper) is modelled and equipped with an actuator in order to provide more efficient damping. Using an iterative optimization approach under constraints, an optimal controller is found which minimizes a quadratic cost function in frequency domain. A simulation of an existing test bench shows that the active vibration control device is able to provide increased damping compared to the passive TMD.

  20. Optical Assessment of Caries Lesion Structure and Activity

    NASA Astrophysics Data System (ADS)

    Lee, Robert Chulsung

    New, more sophisticated diagnostic tools are needed for the detection and characterization of caries lesions in the early stages of development. It is not sufficient to simply detect caries lesions, methods are needed to assess the activity of the lesion and determine if chemical or surgical intervention is needed. Previous studies have demonstrated that polarization sensitive optical coherence tomography (PS-OCT) can be used to nondestructively image the subsurface lesion structure and measure the thickness of the highly mineralized surface zone. Other studies have demonstrated that the rate of dehydration can be correlated with the lesion activity and that the rate can be measured using optical methods. The main objective of this work was to test the hypothesis that optical methods can be used to assess lesion activity on tooth coronal and root surfaces. Simulated caries models were used to develop and validate an algorithm for detecting and measuring the highly mineralized surface layer using PS-OCT. This work confirmed that the algorithm was capable of estimating the thickness of the highly mineralized surface layer with high accuracy. Near-infrared (NIR) reflectance and thermal imaging methods were used to assess activity of caries lesions by measuring the state of lesion hydration. NIR reflectance imaging performed the best for artificial enamel and natural coronal caries lesion samples, particularly at wavelengths coincident with the water absorption band at 1460-nm. However, thermal imaging performed the best for artificial dentin and natural root caries lesion samples. These novel optical methods outperformed the conventional methods (ICDAS II) in accurately assessing lesion activity of natural coronal and root caries lesions. Infrared-based imaging methods have shown potential for in-vivo applications to objectively assess caries lesion activity in a single examination. It is likely that if future clinical trials are a success, this novel imaging

  1. Controlling Environmental Effects on Optical Measurements of Gate Dielectric Thickness

    SciTech Connect

    Elisa, U.; Van Buskirk, Jonathan; Pois, Heath; Zhukov, Vladimir; Morris, Stephen; Kelso, Sue; Collings, Chris; McWhirter, Jim; Nguyen, Thierry; Ramamurthi, Saroja

    2005-09-09

    As the gate dielectric has scaled to the sub 3 nanometer regime, demands on gate dielectric thickness control have translated into the need for sub-monolayer precision on thickness measurements. While current ellipsometry techniques are capable of meeting these requirements, environmental film growth on the gate dielectric induces changes in the optical thickness of the film, yielding artificially thick results when measured. This growth is not constant, and we will discuss how both large scale and localized fluctuations of ambient parameters affect growth rates and can destabilize existing growth.In response to AMC (Airborne Molecular Contamination) layer formation, optical thickness metrology suppliers have developed a variety of techniques to remove the AMC layer from the film prior to measurement. As AMC growth rates are affected by humidity, air pressure, and air composition, each AMC desorption method must be customized for the individual properties of the gate dielectric and process environment to optimize AMC removal. Two AMC layer desorption techniques have been investigated and will be covered along with their respective strengths and complications in a production environment.

  2. Optical impedance spectroscopy with single-mode electro-active-integrated optical waveguides.

    PubMed

    Han, Xue; Mendes, Sergio B

    2014-02-01

    An optical impedance spectroscopy (OIS) technique based on a single-mode electro-active-integrated optical waveguide (EA-IOW) was developed to investigate electron-transfer processes of redox adsorbates. A highly sensitive single-mode EA-IOW device was used to optically follow the time-dependent faradaic current originated from a submonolayer of cytochrome c undergoing redox exchanges driven by a harmonic modulation of the electric potential at several dc bias potentials and at several frequencies. To properly retrieve the faradaic current density from the ac-modulated optical signal, we introduce here a mathematical formalism that (i) accounts for intrinsic changes that invariably occur in the optical baseline of the EA-IOW device during potential modulation and (ii) provides accurate results for the electro-chemical parameters. We are able to optically reconstruct the faradaic current density profile against the dc bias potential in the working electrode, identify the formal potential, and determine the energy-width of the electron-transfer process. In addition, by combining the optically reconstructed faradaic signal with simple electrical measurements of impedance across the whole electrochemical cell and the capacitance of the electric double-layer, we are able to determine the time-constant connected to the redox reaction of the adsorbed protein assembly. For cytochrome c directly immobilized onto the indium tin oxide (ITO) surface, we measured a reaction rate constant of 26.5 s(-1). Finally, we calculate the charge-transfer resistance and pseudocapacitance associated with the electron-transfer process and show that the frequency dependence of the redox reaction of the protein submonolayer follows as expected the electrical equivalent of an RC-series admittance diagram. Above all, we show here that OIS with single-mode EA-IOW's provide strong analytical signals that can be readily monitored even for small surface-densities of species involved in the redox

  3. Reliable and Affordable Control Systems Active Combustor Pattern Factor Control

    NASA Technical Reports Server (NTRS)

    McCarty, Bob; Tomondi, Chris; McGinley, Ray

    2004-01-01

    Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.

  4. Active optics system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gardiol, Daniele; Capobianco, Gerardo; Fantinel, Daniela; Giro, Enrico; Lessio, Luigi; Loreggia, Davide; Rodeghiero, Gabriele; Russo, Federico; Volpicelli, Antonio C.

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) SST-2M is an end-to-end prototype of Small Size class of Telescope for the Cherenkov Telescope Array. It will apply a dual mirror configuration to Imaging Atmospheric Cherenkov Telescopes. The 18 segments composing the primary mirror (diameter 4.3 m) are equipped with an active optics system enabling optical re-alignment during telescope slew. The secondary mirror (diameter 1.8 m) can be moved along three degrees of freedom to perform focus and tilt corrections. We describe the kinematic model used to predict the system performance as well as the hardware and software design solution that will be implemented for optics control.

  5. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide

    NASA Astrophysics Data System (ADS)

    Fuchs, F.; Stender, B.; Trupke, M.; Simin, D.; Pflaum, J.; Dyakonov, V.; Astakhov, G. V.

    2015-07-01

    Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins.

  6. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide.

    PubMed

    Fuchs, F; Stender, B; Trupke, M; Simin, D; Pflaum, J; Dyakonov, V; Astakhov, G V

    2015-07-07

    Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins.

  7. Continuously Controlled Optical Band Gap in Oxide Semiconductor Thin Films.

    PubMed

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-03-01

    The optical band gap of the prototypical semiconducting oxide SnO2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. Charge density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques. PMID:26836282

  8. A long-range polarization-controlled optical tractor beam

    NASA Astrophysics Data System (ADS)

    Shvedov, Vladlen; Davoyan, Arthur R.; Hnatovsky, Cyril; Engheta, Nader; Krolikowski, Wieslaw

    2014-11-01

    The laser beam has become an indispensable tool for the controllable manipulation and transport of microscopic objects in biology, physical chemistry and condensed matter physics. In particular, ‘tractor’ laser beams can draw matter towards a laser source and perform, for instance, all-optical remote sampling. Recent advances in lightwave technology have already led to small-scale experimental demonstrations of tractor beams. However, the realization of long-range tractor beams has not gone beyond the realm of theoretical investigations. Here, we demonstrate the stable transfer of gold-coated hollow glass spheres against the power flow of a single inhomogeneously polarized laser beam over tens of centimetres. Additionally, by varying the polarization state of the beam we can stop the spheres or reverse the direction of their motion at will.

  9. Electron spin control of optically levitated nanodiamonds in vacuum

    PubMed Central

    Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin–optomechanical system for studying macroscopic quantum mechanics. PMID:27432560

  10. Continuously controlled optical band gap in oxide semiconductor thin films

    DOE PAGES

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-02-02

    The optical band gap of the prototypical semiconducting oxide SnO2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion, chargemore » density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.« less

  11. Nonresonant optical control of a spinor polariton condensate

    NASA Astrophysics Data System (ADS)

    Askitopoulos, A.; Kalinin, K.; Liew, T. C. H.; Cilibrizzi, P.; Hatzopoulos, Z.; Savvidis, P. G.; Berloff, N. G.; Lagoudakis, P. G.

    2016-05-01

    We investigate the spin dynamics of polariton condensates spatially separated from and effectively confined by the pumping exciton reservoir. We obtain a strong correlation between the ellipticity of the nonresonant optical pump and the degree of circular polarization (DCP) of the condensate at the onset of condensation. With increasing excitation density we observe a reversal of the DCP. The spin dynamics of the trapped condensate are described within the framework of the spinor complex Ginzburg-Landau equations in the Josephson regime, where the dynamics of the system are reduced to a current-driven Josephson junction. We show that the observed spin reversal is due to the interplay between an internal Josephson coupling effect and the detuning of the two projections of the spinor condensate via transition from a synchronized to a desynchronized regime. These results suggest that spinor polariton condensates can be controlled by tuning the nonresonant excitation density offering applications in electrically pumped polariton spin switches.

  12. Electron spin control of optically levitated nanodiamonds in vacuum.

    PubMed

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics. PMID:27432560

  13. Control of Spectral Phase of Ultrafast Optical Pulses with Grisms

    NASA Astrophysics Data System (ADS)

    Durfee, Charles; Field, Jeff; Squier, Jeff; Kane, Steve

    2008-10-01

    High-quality dispersion management is critical for ultrafast optics. Grisms are a combination of diffraction gratings and prisms. We can use grisms for high-fidelity control of the spectral phase of ultrafast pulses, making systems much more compact and easy to adjust. While the spectral phase of a given system can be obtained with ray-tracing, analytic expressions are desirable for exploring and optimizing new designs. We show that we can analytically calculate the spectral phase of a range of grism-like structures by making a superposition of basic tilted window modules. For example, a prism pair can be described by starting with a tilted slab of glass, which defines the outer edges of the prism pair. The inner edges of the prism pair are then created by superposing a tilted slab of air, which removes glass between the prisms. We will discuss the applications of these grism designs to ultrafast amplifiers and pulse shapers.

  14. Electron spin control of optically levitated nanodiamonds in vacuum

    NASA Astrophysics Data System (ADS)

    Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-07-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.

  15. Optical properties of individual site-controlled Ge quantum dots

    SciTech Connect

    Grydlik, Martyna E-mail: martyna.grydlik@jku.at; Brehm, Moritz E-mail: martyna.grydlik@jku.at; Tayagaki, Takeshi; Langer, Gregor; Schäffler, Friedrich; Schmidt, Oliver G.

    2015-06-22

    We report photoluminescence (PL) experiments on individual SiGe quantum dots (QDs) that were epitaxially grown in a site-controlled fashion on pre-patterned Si(001) substrates. We demonstrate that the PL line-widths of single QDs decrease with excitation power to about 16 meV, a value that is much narrower than any of the previously reported PL signals in the SiGe/Si heterosystem. At low temperatures, the PL-intensity becomes limited by a 25 meV high potential-barrier between the QDs and the surrounding Ge wetting layer (WL). This barrier impedes QD filling from the WL which collects and traps most of the optically excited holes in this type-II heterosystem.

  16. Optical Property Evaluation of Next Generation Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.

    2010-01-01

    Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

  17. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    SciTech Connect

    Chen, Yuan; Deng, Li; Chen, Aixi

    2015-02-15

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  18. Twisted optical-fiber-based acousto-optic tunable filter controlled by the flexural acoustic polarization

    NASA Astrophysics Data System (ADS)

    Park, Hyun Chul; Lee, Kwang Jo

    2015-08-01

    The spectral characteristics of twisted fiber-based acousto-optic filters are theoretically investigated. The influences of three types of flexural acoustic polarization states — linear, circular, and elliptical polarizations — on filter spectra are studied under realistic experimental conditions: a fiber length of 5 - 20 cm and a circumferential fiber twist angle of < 12 π. We will analytically show that either a single- or a dual-resonance filter spectrum is achievable depending on the input polarization state of applied acoustic waves and that the spectral position of each resonance peak can be scanned continuously and linearly in the wavelength domain by using the fiber twist. The feasible spectral tuning range of the resonances is calculated to > 80 nm for a twist angle of 12 π. We will describe how the transmission of each resonance peak can also be selectively tuned by adjusting the ellipticity of the input acoustic polarization from linear to circular. The results illustrate that our approach exploiting a combination of the fiber twist and acoustic polarization management offers an excellent route to the spectral shaping of all-fiber acousto-optic devices in that the transmission of multiple resonances, as well as their spectral positions, are readily and individually controllable in a single device configuration. In addition, we also propose a novel cosine apodization method to suppress the undesirable sidelobe spectra occurring between the dual resonance peaks. The technique is based on a cosine modulation of the AO coupling strength along the fiber, which is achieved by using a combination of the fiber's circumferential twist and the linear acoustic polarization. The proposed scheme is useful to minimize the crosstalk occurring between adjacent resonance peaks. We highlight that our approach is directly applicable to matched filtering as robust, adaptable, stable, and versatile optical filters.

  19. Active Control by Conservation of Energy Concept

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2000-01-01

    Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.

  20. Plasma control using neural network and optical emission spectroscopy

    SciTech Connect

    Kim, Byungwhan; Bae, Jung Ki; Hong, Wan-Shick

    2005-03-01

    Due to high sensitivity to process parameters, plasma processes should be tightly controlled. For plasma control, a predictive model was constructed using a neural network and optical emission spectroscopy (OES). Principal component analysis (PCA) was used to reduce OES dimensionality. This approach was applied to an oxide plasma etching conducted in a CHF{sub 3}/CF{sub 4} magnetically enhanced reactive ion plasma. The etch process was systematically characterized by means of a statistical experimental design. Three etch outputs (etch rate, profile angle, and etch rate nonuniformity) were modeled using three different approaches, including conventional, OES, and PCA-OES models. For all etch outputs, OES models demonstrated improved predictions over the conventional or PCA-OES models. Compared to conventional models, OES models yielded an improvement of more than 25% in modeling profile angle and etch rate nonuniformtiy. More than 40% improvement over PCA-OES model was achieved in modeling etch rate and profile angle. These results demonstrate that nonreduced in situ data are more beneficial than reduced one in constructing plasma control model.

  1. Monocular distance estimation from optic flow during active landing maneuvers.

    PubMed

    van Breugel, Floris; Morgansen, Kristi; Dickinson, Michael H

    2014-06-01

    Vision is arguably the most widely used sensor for position and velocity estimation in animals, and it is increasingly used in robotic systems as well. Many animals use stereopsis and object recognition in order to make a true estimate of distance. For a tiny insect such as a fruit fly or honeybee, however, these methods fall short. Instead, an insect must rely on calculations of optic flow, which can provide a measure of the ratio of velocity to distance, but not either parameter independently. Nevertheless, flies and other insects are adept at landing on a variety of substrates, a behavior that inherently requires some form of distance estimation in order to trigger distance-appropriate motor actions such as deceleration or leg extension. Previous studies have shown that these behaviors are indeed under visual control, raising the question: how does an insect estimate distance solely using optic flow? In this paper we use a nonlinear control theoretic approach to propose a solution for this problem. Our algorithm takes advantage of visually controlled landing trajectories that have been observed in flies and honeybees. Finally, we implement our algorithm, which we term dynamic peering, using a camera mounted to a linear stage to demonstrate its real-world feasibility.

  2. Active control of buildings during earthquakes

    NASA Technical Reports Server (NTRS)

    Vance, Vicki L.

    1993-01-01

    The objective of this report is to provide an overview of the different types of control systems used in buildings, to discuss the problems associated with current active control mechanisms, and to show the cost-effectiveness of applying active control to buildings. In addition, a small case study investigates the feasibility and benefits of using embedded actuators in buildings. Use of embedded actuators could solve many of the current problems associated with active control by providing a wider bandwidth of control, quicker speed of response, increased reliability and reduced power requirement. Though embedded actuators have not been developed for buildings, they have previously been used in space structures. Many similarities exist between large civil and aerospace structures indicating that direct transfer of concepts between the two disciplines may be possible. In particular, much of the Controls-Structures Interaction (CSI) technology currently being developed could be beneficially applied to civil structures. While several buildings with active control systems have been constructed in Japan, additional research and experimental verification are necessary before active control systems become widely accepted and implemented.

  3. Enzymatic aerobic ring rearrangement of optically active furylcarbinols.

    PubMed

    Thiel, Daniel; Doknić, Diana; Deska, Jan

    2014-01-01

    Biogenic furans are currently discussed as highly attractive alternative feedstock in a post-fossil society; thus, also the creation of sustainable furan valorization pathways appears of great importance. Here an artificial Achmatowicz monooxygenase activity for the aerobic ring expansion of furans is achieved by the combination of commercial glucose oxidase as oxygen-activating biocatalyst and wild-type chloroperoxidase as oxygen-transfer mediator, providing a biological ready-to-use solution for this truly synthetic furan rearrangement. In concert with enzymatic transformations for the enantioselective preparation of optically active furylcarbinols, purely biocatalytic reaction cascades for the stereocontrolled construction of complex pyranones are obtained, exhibiting high functional group tolerance even to oxidation-sensitive moieties. PMID:25335580

  4. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1991-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: science program objectives and rationale; science requirements; capturing the essential physics; science development approach; development model hardware; development model test plan; and flight hardware and operations.

  5. Active control of turbomachine discrete tones

    NASA Astrophysics Data System (ADS)

    Fleeter, Sanford

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  6. Active Star Configured Fiber Optic CSMA/CD LANs

    NASA Astrophysics Data System (ADS)

    Truman, Alan K.; Smith, Robert W.; Schmidt, Ronald V.

    1987-01-01

    The widespread use of the IEEE 802.3 CSMA/CD (Ethernet) Local Area Network (LAN) has created demand for a fiber optic physical layer implementation to address security issues, hostile electromagnetic environments, modern structured wiring requirements and distance limitations of coaxial based implementations. Active Star CSMA/CD LANs will be described in this paper which consist of a central wiring Concentrator which supports point to point fiber links to Media Access Units (Transceivers) located at the Host computers. The fiber optic Active Star configured CSMA/CD LAN implementation provides a robust network which meets all the requirements imposed on an Ethernet Physical Layer. Collision detection is reliably performed in the electrical domain of the Concentrator. Network requirements included guaranteed collision detection, network reliability and easy addition and rearrangement of host connections. In addition, the Active Star implementation can provide an increased network diameter to 4.2 km and can support the four basic multimode fiber types, simultaneously, with substantial system margins.

  7. (Bio)hybrid materials based on optically active particles

    NASA Astrophysics Data System (ADS)

    Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg

    2014-03-01

    In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.

  8. Application of Optical Biosensors in Small-Molecule Screening Activities

    PubMed Central

    Geschwindner, Stefan; Carlsson, Johan F.; Knecht, Wolfgang

    2012-01-01

    The last two decades have seen remarkable progress and improvements in optical biosensor systems such that those are currently seen as an important and value-adding component of modern drug screening activities. In particular the introduction of microplate-based biosensor systems holds the promise to match the required throughput without compromising on data quality thus representing a sought-after complement to traditional fluidic systems. This article aims to highlight the application of the two most prominent optical biosensor technologies, namely surface plasmon resonance (SPR) and optical waveguide grating (OWG), in small-molecule screening and will present, review and discuss the advantages and disadvantages of different assay formats on these platforms. A particular focus will be on the specific advantages of the inhibition in solution assay (ISA) format in contrast to traditional direct binding assays (DBA). Furthermore we will discuss different application areas for both fluidic as well as plate-based biosensor systems by considering the individual strength of the platforms. PMID:22666031

  9. Using DFT Methods to Study Activators in Optical Materials

    SciTech Connect

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials. DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.

  10. Using DFT Methods to Study Activators in Optical Materials

    DOE PAGES

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials.more » DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less

  11. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  12. All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings.

    PubMed

    Zhang, W L; Ma, R; Tang, C H; Rao, Y J; Zeng, X P; Yang, Z J; Wang, Z N; Gong, Y; Wang, Y S

    2015-07-01

    An all-optical method to control the lasing modes of Er-doped random fiber lasers (RFLs) is proposed and demonstrated. In the RFL, an Er-doped fiber (EDF) recoded with randomly separated fiber Bragg gratings (FBG) is used as the gain medium and randomly distributed reflectors, as well as the controllable element. By combining random feedback of the FBG array and Fresnel feedback of a cleaved fiber end, multi-mode coherent random lasing is obtained with a threshold of 14 mW and power efficiency of 14.4%. Moreover, a laterally-injected control light is used to induce local gain perturbation, providing additional gain for certain random resonance modes. As a result, active mode selection of the RFL is realized by changing locations of the laser cavity that is exposed to the control light. PMID:26125397

  13. Zeno inhibition of polarization rotation in an optically active medium

    NASA Astrophysics Data System (ADS)

    Gonzalo, Isabel; Porras, Miguel A.; Luis, Alfredo

    2015-07-01

    We describe an experiment in which the rotation of the polarization of light propagating in an optically active water solution of D-fructose tends to be inhibited by frequent monitoring whether the polarization remains unchanged. This is an example of the Zeno effect that has remarkable pedagogical interest because of its conceptual simplicity, easy implementation, low cost, and because the same the Zeno effect holds at classical and quantum levels. An added value is the demonstration of the Zeno effect beyond typical idealized assumptions in a practical setting with real polarizers.

  14. Calculation of optical second-harmonic susceptibilities and optical activity for crystals

    SciTech Connect

    Levine, Z.H.

    1994-12-31

    A new generation of nearly first-principles calculations predicts both the linear and second-harmonic susceptibilities for a variety of insulating crystals, including GaAs, GaP, AlAs, AlP, Se, {alpha}-quartz, and c-urea. The results are typically in agreement with experimental measurements. The calculations have been extended to optical activity, with somewhat less success to date. The theory, based on a simple self-energy correction to the local density approximation, and results are reviewed herein.

  15. HBT-EP Program: Active MHD Mode Dynamics and Control

    NASA Astrophysics Data System (ADS)

    Navratil, G. A.; Bialek, J.; Boozer, A. H.; Byrne, P. J.; Donald, G. V.; Hughes, P. E.; Levesque, J. P.; Mauel, M. E.; Peng, Q.; Rhodes, D. J.; Stoafer, C. C.; Hansen, C. J.

    2015-11-01

    The HBT-EP active mode control research program aims to: (i) quantify external kink dynamics and multimode response to magnetic perturbations, (ii) understand the relationship between control coil configuration, conducting and ferritic wall effects, and active feedback control, and (iii) explore advanced feedback algorithms. Biorthogonal decomposition is used to observe multiple simultaneous resistive wall modes (RWM). A 512 core GPU-based low latency (14 μs) MIMO control system uses 96 inputs and 64 outputs for Adaptive Control of RWMs. An in-vessel adjustable ferritic wall is used to study ferritic RWMs with increased growth rates, RMP response, and disruptivity. A biased electrode in the plasma is used to control the rotation of external kinks and evaluate error fields. A Thomson scattering diagnostic measures Te and ne at 3 spatial points, soon to be extended to 10 points. A quasi-linear sharp-boundary model of the plasma's multimode response to error fields is developed to determine harmful error field structures and associated NTV and resonant torques. Upcoming machine upgrades will allow measurements and control of scrape-off-layer currents, and control of kink modes using optical diagnostics. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  16. Modeling and vibration control of an active membrane mirror

    NASA Astrophysics Data System (ADS)

    Ruggiero, Eric J.; Inman, Daniel J.

    2009-09-01

    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  17. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  18. Student Activity Funds: Procedures and Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    2000-01-01

    An effective internal-control system can help school business administrators meet the challenges of accounting for student activity funds. Such a system should include appropriate policies and procedures, identification of key control points, self-assessments, audit trails, and internal and external audits. (MLH)

  19. Mission control activity during STS-61 EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Flight controller Susan P. Rainwater observes as two astronauts work through a lengthy period of extravehicular activity (EVA) in the cargo bay of the Earth-looking Space Shuttle Endeavour. Rainwater's EVA console was one of Mission Control's busiest during this eleven-day Hubble Space Telescope (HST) servicing mission in Earth orbit.

  20. Actively Controlled Magnetic Vibration-Isolation System

    NASA Technical Reports Server (NTRS)

    Grodsinky, Carlos M.; Logsdon, Kirk A.; Wbomski, Joseph F.; Brown, Gerald V.

    1993-01-01

    Prototype magnetic suspension system with active control isolates object from vibrations in all six degrees of freedom at frequencies as low as 0.01 Hz. Designed specifically to protect instruments aboard spacecraft by suppressing vibrations to microgravity levels; basic control approach used for such terrestrial uses as suppression of shocks and other vibrations in trucks and railroad cars.

  1. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  2. [Septal Activation and Control of Limbic Structures].

    PubMed

    Fedotova, I R; Frolov, A A

    2015-01-01

    Coherent activation of limbic system structures as the main function of theta-rhythm is widely discussed in the literature. However until now does not exist the common view on its generation in these brain structures. The model of septal theta-rhythmic activation and control of limbic structures is suggested basing on the literature and own experimental data.

  3. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, Joseph Thaddeus

    1998-01-01

    A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)

  4. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, J.T.

    1998-04-28

    A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.

  5. Control Program for an Optical-Calibration Robot

    NASA Technical Reports Server (NTRS)

    Johnston, Albert

    2005-01-01

    A computer program provides semiautomatic control of a moveable robot used to perform optical calibration of video-camera-based optoelectronic sensor systems that will be used to guide automated rendezvous maneuvers of spacecraft. The function of the robot is to move a target and hold it at specified positions. With the help of limit switches, the software first centers or finds the target. Then the target is moved to a starting position. Thereafter, with the help of an intuitive graphical user interface, an operator types in coordinates of specified positions, and the software responds by commanding the robot to move the target to the positions. The software has capabilities for correcting errors and for recording data from the guidance-sensor system being calibrated. The software can also command that the target be moved in a predetermined sequence of motions between specified positions and can be run in an advanced control mode in which, among other things, the target can be moved beyond the limits set by the limit switches.

  6. Plasmon-controlled fluorescence towards high-sensitivity optical sensing.

    PubMed

    Ray, K; Chowdhury, M H; Zhang, J; Fu, Y; Szmacinski, H; Nowaczyk, K; Lakowicz, J R

    2009-01-01

    Fluorescence spectroscopy is widely used in chemical and biological research. Until recently most of the fluorescence experiments have been performed in the far-field regime. By far-field we imply at least several wavelengths from the fluorescent probe molecule. In recent years there has been growing interest in the interactions of fluorophores with metallic surfaces or particles. Near-field interactions are those occurring within a wavelength distance of an excited fluorophore. The spectral properties of fluorophores can dramatically be altered by near-field interactions with the electron clouds present in metals. These interactions modify the emission in ways not seen in classical fluorescence experiments. Fluorophores in the excited state can create plasmons that radiate into the far-field and fluorophores in the ground state can interact with and be excited by surface plasmons. These reciprocal interactions suggest that the novel optical absorption and scattering properties of metallic nanostructures can be used to control the decay rates, location, and direction of fluorophore emission. We refer to these phenomena as plasmon-controlled fluorescence (PCF). An overview of the recent work on metal-fluorophore interactions is presented. Recent research combining plasmonics and fluorescence suggest that PCF could lead to new classes of experimental procedures, novel probes, bioassays, and devices.

  7. Optical sensors for process control and emissions monitoring in industry

    SciTech Connect

    S. W. Alendorf; D. K. Ottensen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1999-01-01

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  8. Active hexagonally segmented mirror to investigate new optical phasing technologies for segmented telescopes.

    PubMed

    Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback

    2009-11-10

    The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented.

  9. Active hexagonally segmented mirror to investigate new optical phasing technologies for segmented telescopes.

    PubMed

    Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback

    2009-11-10

    The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented. PMID:19904341

  10. James Webb Space Telescope optical simulation testbed III: first experimental results with linear-control alignment

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Lajoie, Charles-Philippe; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Élodie; Perrin, Marshall D.; Ygouf, Marie; Michau, Vincent; Bonnefois, Aurélie; Fusco, Thierry; Escolle, Clément; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science and Operations Center. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the full linear control alignment infrastructure developed for JOST, with an emphasis on multi-field wavefront sensing and control. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is experimentally tested. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by small misalignments of the three lenses, are tested and validated on simulations.

  11. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; Cui, Wan-Xing; Li, Yi-Chao; Zhang, Wei; Lu, Rong-Wen; Thompson, Anthony; Amthor, Franklin; Wang, Xu-Jing

    2012-05-01

    We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75 mM) and high-dose (5.5 mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.

  12. Control of nucleus accumbens activity with neurofeedback.

    PubMed

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian

    2014-08-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function.

  13. Control of nucleus accumbens activity with neurofeedback

    PubMed Central

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian

    2014-01-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as “neurofeedback.” In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive arousal affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. PMID:24705203

  14. Active vibration control of civil structures

    SciTech Connect

    Farrar, C.; Baker, W.; Fales, J.; Shevitz, D.

    1996-11-01

    This is a final report of a one year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Active vibration control (AVC) of structural and mechanical systems is one of the rapidly advancing areas of engineering research. The multifaceted nature of AVC covers many disciplines, such as sensors and instrumentation, numerical modeling, experimental mechanics, and advanced power systems. This work encompassed a review of the literature on active control of structures focusing both on active control hardware and on control algorithms, a design of an isolation systems using magneto-rheological fluid-filled (MRF) dampers and numerical simulations to study the enhanced vibration mitigation effects of this technology.

  15. Active Learning Strategies for Introductory Light and Optics

    NASA Astrophysics Data System (ADS)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.

  16. An optically controlled phased array antenna based on single sideband polarization modulation.

    PubMed

    Zhang, Yamei; Wu, Huan; Zhu, Dan; Pan, Shilong

    2014-02-24

    A novel optically controlled phased array antenna consisting a simple optical beamforming network and an N element linear patch antenna array is proposed and demonstrated. The optical beamforming network is realized by N independent phase shifters using a shared optical single sideband (OSSB) polarization modulator together with N polarization controllers (PCs), N polarization beam splitters (PBSs) and N photodetectors (PDs). An experiment is carried out. A 4-element linear patch antenna array operating at 14 GHz and a 1 × 4 optical beamforming network (OBFN) is employed to realize the phased array antenna. The radiation patterns of the phased array antenna at -30°, 0° and 30° are achieved.

  17. Progress on the development of active micro-structured optical arrays for x-ray optics

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanmartin, Daniel; Zhang, Dou; Button, Tim; Atkins, Carolyn; Doel, Peter; Wang, Hongchang; Brooks, David; Feldman, Charlotte; Willingale, Richard; Michette, Alan; Pfauntsch, Slawka; Sahraei, Shahin; Shand, Matthew; James, Ady; Dunare, Camelia; Stevenson, Tom; Parkes, William; Smith, Andy

    2009-08-01

    The Smart X-Ray Optics (SXO) project comprises a U.K.-based consortium developing active/adaptive micro-structured optical arrays (MOAs). These devices are designed to focus X-rays using grazing incidence reflection through consecutive aligned arrays of microscopic channels etched in silicon. The silicon channels have been produced both by dry and wet etching, the latter providing smoother channel walls. Adaptability is achieved using piezoelectric actuators, which bend the device and therefore change its focal distance. We aim to achieve a 5 cm radius of curvature which can provide a suitable focal length using a tandem pair MOA configuration. Finite Element Analysis (FEA) modelling has been carried out for the optimization of the MOA device design, consider different types of actuators (unimorph, bimorph and active fibre composites), and different Si/piezoelectric absolute and relative thicknesses. Prototype devices have been manufactured using a Viscous Plastic Processing Process for the piezoelectric actuators and dry etched silicon channels, bonded together using a low shrinkage adhesive. Characterisation techniques have been developed in order to evaluate the device performance in terms of the bending of the MOA channels produced by the actuators. This paper evaluates the progress to date on the actuation of the MOAs, comparing FEA modelling with the results obtained for different prototype structures.

  18. An Optically Controllable Transformation-dc Illusion Device.

    PubMed

    Jiang, Wei Xiang; Luo, Chen Yang; Ge, Shuo; Qiu, Cheng-Wei; Cui, Tie Jun

    2015-08-19

    The concept of multifunctional transformation-dc devices is proposed and verified experimentally. The functions of dc metamaterials can be remotely altered by illuminating with visible light. If the light-induced dc illusion effect is activated, the electrostatic behavior of the original object is perceived as multiple equivalent objects with different pre-designed geometries. The experimental verification of the functional device makes it possible to control sophisticated transformation-dc devices with external light illumination. PMID:26177597

  19. Vector control activities: Fiscal Year, 1986

    SciTech Connect

    Not Available

    1987-04-01

    The program is divided into two major components - operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems requiring TVA attention and study. Nonchemical methods of control are emphasized and are supplemented with chemical measures as needed. TVA also cooperates with various concerned municipalities in identifying blood-sucking arthropod pest problems and demonstrating control techniques useful in establishing abatement programs, and provides technical assistance to other TVA programs and organizations. The program also helps Land Between The Lakes (LBL) plan and conduct vector control operations and tick control research. Specific program control activities and support studies are discussed.

  20. Fourier optics for wavefront engineering and wavelength control of lasers

    NASA Astrophysics Data System (ADS)

    Blanchard, Romain

    Since their initial demonstration in 1994, quantum cascade lasers (QCLs) have become prominent sources of mid-infrared radiation. Over the years, a large scientific and engineering effort has led to a dramatic improvement in their efficiency and power output, with continuous wave operation at room temperature and Watt-level output power now standard. However, beyond this progress, new functionalities and capabilities need to be added to this compact source to enable its integration into consumer-ready systems. Two main areas of development are particularly relevant from an application standpoint and were pursued during the course of this thesis: wavelength control and wavefront engineering of QCLs. The first research direction, wavelength control, is mainly driven by spectroscopic applications of QCLs, such as trace gas sensing, process monitoring or explosive detection. We demonstrated three different capabilities, corresponding to different potential spectroscopic measurement techniques: widely tunable single longitudinal mode lasing, simultaneous lasing on multiple well-defined longitudinal modes, and simultaneous lasing over a broad and continuous range of the spectrum. The second research direction, wavefront engineering of QCLs, i.e. the improvement of their beam quality, is relevant for applications necessitating transmission of the QCL output over a large distance, for example for remote sensing or military countermeasures. To address this issue, we developed plasmonic lenses directly integrated on the facets of QCLs. The plasmonic structures designed are analogous to antenna arrays imparting directionality to the QCLs, as well as providing means for polarization control. Finally, a research interest in plasmonics led us to design passive flat optical elements using plasmonic antennas. All these projects are tied together by the involvement of Fourier analysis as an essential design tool to predict the interaction of light with various gratings and periodic

  1. Innovative active control of gun barrels using smart materials

    NASA Astrophysics Data System (ADS)

    Mattice, Michael S.; LaVigna, Chris

    1997-06-01

    The accuracy of stabilized, turreted gun systems like the 120mm gun on the M1A2 Abrams tank and the 30mm gun on the Apache helicopter are limited by, among other things, structural flexure of the gun barrel and support structure. An advanced actuation system based on piezoelectric translators and an optical fiber strain sensing system are described in conjunction with a rapid prototyping workstation for the design of distributed parameter control systems to actively minimize the effects of vibrations caused by traversing rough terrain or weapon firing.

  2. Implementation of active magnetic bearing digital controller

    NASA Astrophysics Data System (ADS)

    Liu, Hu; Fang, Jiancheng; Liu, Gang

    2006-11-01

    An active magnetic bearing digital controller is presented. This system is based on high-speed floating-point digital signal processor (DSP) and field programmable gate array (FPGA). The active vibration control algorithms are coded in C language where is possible to reduce the probabilities of software errors occurring and to reduce the debugging time for those errors and are executed by the high-speed floating-point DSP. This paper describes the implementation of the controller. The proposed digital control system can meet the requirement of enough throughput which is difficult using a single fixed-pointing DSP, realize integration of magnetic bearings controller and have the merits of easily to maintain and be applied in other magnetic bearings systems. The system has been applied successfully in several actual magnetic bearings systems at Beijing University of Aeronautics and Astronautics and the experimental results verify its feasibility.

  3. CFD Modeling for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.

    2001-01-01

    This presentation describes current work under UEET Active Flow Control CFD Research Tool Development. The goal of this work is to develop computational tools for inlet active flow control design. This year s objectives were to perform CFD simulations of fully gridded vane vortex generators, micro-vortex genera- tors, and synthetic jets, and to compare flowfield results with wind tunnel tests of simple geometries with flow control devices. Comparisons are shown for a single micro-vortex generator on a flat plate, and for flow over an expansion ramp with sidewall effects. Vortex core location, pressure gradient and oil flow patterns are compared between experiment and computation. This work lays the groundwork for evaluating simplified modeling of arrays of devices, and provides the opportunity to test simple flow control device/sensor/ control loop interaction.

  4. Active vibration control in microgravity environment

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1987-01-01

    The low gravity environment of the space station is suitable for experiments or manufacturing processes which require near zero gravity. An experiment was fabricated to test the validity of the active control process and to verify the flow and control parameters identified in a theoretical model. Zero gravity is approximated in the horizontal plane using a low friction air bearing table. An analog control system was designed to activate calibrated air jets when displacement of the test mass is sensed. The experiment demonstrates that an air jet control system introduces an effective damping factor to control oscillatory response. The amount of damping as well as the flow parameters, such as pressure drop across the valve and flow rate of air, are verified by the analytical model.

  5. Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity

    SciTech Connect

    Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

    2007-05-01

    Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

  6. Active control of robot manipulator compliance

    NASA Technical Reports Server (NTRS)

    Nguyen, C. C.; Pooran, F. J.

    1986-01-01

    Work performed at Catholic University on the research grant entitled Active Control of Robot Manipulator Compliance, supported by NASA/Goddard space Flight Center during the period of May 15th, 1986 to November 15th, 1986 is described. The modelling of the two-degree-of-freedom robot is first presented. Then the complete system including the robot and the hybrid controller is simulated on an IBM-XT Personal Computer. Simulation results showed that proper adjustments of controller gains enable the robot to perform successful operations. Further research should focus on developing a guideline for the controller gain design to achieve system stability.

  7. Advancement of Optical Component Control for an Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.

    2009-01-01

    Risk mitigation activities associated with a prototype imaging Fabry-Perot Interferometer (FPI) system are continuing at the NASA Langley Research Center. The system concept and technology center about enabling and improving future space-based atmospheric composition missions, with a current focus on observing tropospheric ozone around 9.6 micron, while having applicability toward measurement in different spectral regions and other applications. Recent activities have focused on improving an optical element control subsystem to enable precise and accurate positioning and control of etalon plates; this is needed to provide high system spectral fidelity critical for enabling the required ability to spectrally-resolve atmospheric line structure. The latest results pertaining to methodology enhancements, system implementation, and laboratory characterization testing will be reported

  8. A randomized placebo-controlled trial of idebenone in Leber's hereditary optic neuropathy.

    PubMed

    Klopstock, Thomas; Yu-Wai-Man, Patrick; Dimitriadis, Konstantinos; Rouleau, Jacinthe; Heck, Suzette; Bailie, Maura; Atawan, Alaa; Chattopadhyay, Sandip; Schubert, Marion; Garip, Aylin; Kernt, Marcus; Petraki, Diana; Rummey, Christian; Leinonen, Mika; Metz, Günther; Griffiths, Philip G; Meier, Thomas; Chinnery, Patrick F

    2011-09-01

    Major advances in understanding the pathogenesis of inherited metabolic disease caused by mitochondrial DNA mutations have yet to translate into treatments of proven efficacy. Leber's hereditary optic neuropathy is the most common mitochondrial DNA disorder causing irreversible blindness in young adult life. Anecdotal reports support the use of idebenone in Leber's hereditary optic neuropathy, but this has not been evaluated in a randomized controlled trial. We conducted a 24-week multi-centre double-blind, randomized, placebo-controlled trial in 85 patients with Leber's hereditary optic neuropathy due to m.3460G>A, m.11778G>A, and m.14484T>C or mitochondrial DNA mutations. The active drug was idebenone 900 mg/day. The primary end-point was the best recovery in visual acuity. The main secondary end-point was the change in best visual acuity. Other secondary end-points were changes in visual acuity of the best eye at baseline and changes in visual acuity for both eyes in each patient. Colour-contrast sensitivity and retinal nerve fibre layer thickness were measured in subgroups. Idebenone was safe and well tolerated. The primary end-point did not reach statistical significance in the intention to treat population. However, post hoc interaction analysis showed a different response to idebenone in patients with discordant visual acuities at baseline; in these patients, all secondary end-points were significantly different between the idebenone and placebo groups. This first randomized controlled trial in the mitochondrial disorder, Leber's hereditary optic neuropathy, provides evidence that patients with discordant visual acuities are the most likely to benefit from idebenone treatment, which is safe and well tolerated. PMID:21788663

  9. A randomized placebo-controlled trial of idebenone in Leber's hereditary optic neuropathy.

    PubMed

    Klopstock, Thomas; Yu-Wai-Man, Patrick; Dimitriadis, Konstantinos; Rouleau, Jacinthe; Heck, Suzette; Bailie, Maura; Atawan, Alaa; Chattopadhyay, Sandip; Schubert, Marion; Garip, Aylin; Kernt, Marcus; Petraki, Diana; Rummey, Christian; Leinonen, Mika; Metz, Günther; Griffiths, Philip G; Meier, Thomas; Chinnery, Patrick F

    2011-09-01

    Major advances in understanding the pathogenesis of inherited metabolic disease caused by mitochondrial DNA mutations have yet to translate into treatments of proven efficacy. Leber's hereditary optic neuropathy is the most common mitochondrial DNA disorder causing irreversible blindness in young adult life. Anecdotal reports support the use of idebenone in Leber's hereditary optic neuropathy, but this has not been evaluated in a randomized controlled trial. We conducted a 24-week multi-centre double-blind, randomized, placebo-controlled trial in 85 patients with Leber's hereditary optic neuropathy due to m.3460G>A, m.11778G>A, and m.14484T>C or mitochondrial DNA mutations. The active drug was idebenone 900 mg/day. The primary end-point was the best recovery in visual acuity. The main secondary end-point was the change in best visual acuity. Other secondary end-points were changes in visual acuity of the best eye at baseline and changes in visual acuity for both eyes in each patient. Colour-contrast sensitivity and retinal nerve fibre layer thickness were measured in subgroups. Idebenone was safe and well tolerated. The primary end-point did not reach statistical significance in the intention to treat population. However, post hoc interaction analysis showed a different response to idebenone in patients with discordant visual acuities at baseline; in these patients, all secondary end-points were significantly different between the idebenone and placebo groups. This first randomized controlled trial in the mitochondrial disorder, Leber's hereditary optic neuropathy, provides evidence that patients with discordant visual acuities are the most likely to benefit from idebenone treatment, which is safe and well tolerated.

  10. Simulation studies for multichannel active vibration control

    NASA Astrophysics Data System (ADS)

    Prakash, Shashikala; Balasubramaniam, R.; Praseetha, K. K.

    2003-10-01

    Traditional approach to vibration control uses passive techniques, which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC) is used to overcome these problems & in AVC additional sources (secondary) are used to cancel vibration from primary source based on the principle of superposition theorem Since the characteristics of the vibration source and environment are time varying, the AVC system must be adaptive. Adaptive systems have the ability to track time varying disturbances and provide optimal control over a much broader range of conditions than conventional fixed control systems. In multi channel AVC vibration fields in large dimensions are controlled & is more complicated. Therefore to actively control low frequency vibrations on large structures, multi channel AVC requires a control system that uses multiple secondary sources to control the vibration field simultaneously at multiple error sensor locations. The error criterion that can be directly measured is the sum of squares of outputs of number of sensors. The adaptive algorithm is designed to minimize this & the algorithm implemented is the "Multiple error LMS algorithm." The best known applications of multiple channel FXLMS algorithm is in real time AVC and system identification. More wider applications are in the control of propeller induced noise in flight cabin interiors. In the present paper the results of simulation studies carried out in MATLAB as well as on TMS320C32 DSP processor will be brought out for a two-channel case.

  11. Active control of buckling of flexible beams

    NASA Technical Reports Server (NTRS)

    Baz, A.; Tampe, L.

    1989-01-01

    The feasibility of using the rapidly growing technology of the shape memory alloys actuators in actively controlling the buckling of large flexible structures is investigated. The need for such buckling control systems is becoming inevitable as the design trends of large space structures have resulted in the use of structural members that are long, slender, and very flexible. In addition, as these truss members are subjected mainly to longitudinal loading they become susceptible to structural instabilities due to buckling. Proper control of such instabilities is essential to the effective performance of the structures as stable platforms for communication and observation. Mathematical models are presented that simulate the dynamic characteristics of the shape memory actuator, the compressive structural members, and the associated active control system. A closed-loop computer-controlled system is designed, based on the developed mathematical models, and implemented to control the buckling of simple beams. The performance of the computer-controlled system is evaluated experimentally and compared with the theoretical predictions to validate the developed models. The obtained results emphasize the importance of buckling control and suggest the potential of the shape memory actuators as attractive means for controlling structural deformation in a simple and reliable way.

  12. Temperature-controlled optical stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Hutchens, Thomas C.; McClain, Michael A.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2013-06-01

    Optical nerve stimulation (ONS) may be useful as a diagnostic tool for intraoperative identification and preservation of the prostate cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. Successful ONS requires elevating the nerve temperature to within a narrow range (˜42 to 47°C) for nerve activation without thermal damage to the nerve. This preliminary study explores a prototype temperature-controlled optical nerve stimulation (TC-ONS) system for maintaining a constant (±1°C) nerve temperature during short-term ONS of the rat prostate CNs. A 150-mW, 1455-nm diode laser was operated in continuous-wave mode, with and without temperature control, during stimulation of the rat CNs for 15 to 30 s through a fiber optic probe with a 1-mm-diameter spot. A microcontroller opened and closed an in-line mechanical shutter in response to an infrared sensor, with a predetermined temperature set point. With TC-ONS, higher laser power settings were used to rapidly and safely elevate the CNs to a temperature necessary for a fast intracavernous pressure response, while also preventing excessive temperatures that would otherwise cause thermal damage to the nerve. With further development, TC-ONS may provide a rapid, stable, and safe method for intraoperative identification and preservation of the prostate CNs.

  13. Control Program and Optical Improvements of Fresnel Microspectrometer

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; King, Glen; Choi, Sang; Elliott, James

    2011-01-01

    A microspectrometer has a circular geometry, and is designed with the Fresnel diffraction equation. This enables a dramatic miniaturization of the optical parts of a spectrometer over 100 times by volume. Therefore, it enables the construction of spectrometer arrays such as 100X100 microspectrometers for tunable multispectral or hyper-spectral imaging. It can be used for a massive, simultaneous spectral scan from multiple optical sources such as 10,000 optical fibers.

  14. Use of a photonic crystal for optical amplifier gain control

    DOEpatents

    Lin, Shawn-Yu; Fleming, James G.; El-Kady, Ihab

    2006-07-18

    An optical amplifier having a uniform gain profile uses a photonic crystal to tune the density-of-states of a gain medium so as to modify the light emission rate between atomic states. The density-of-states of the gain medium is tuned by selecting the size, shape, dielectric constant, and spacing of a plurality of microcavity defects in the photonic crystal. The optical amplifier is particularly useful for the regeneration of DWDM signals in long optical fibers.

  15. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1994-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100 C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changed suddenly.

  16. Vector control activities. Fiscal year, 1982

    SciTech Connect

    Pickard, E.; Cooney, J.C.; McDuff, B.R.

    1983-06-01

    The goal of the TVA Vector Control Program is to protect the public from potential vectors of disease by controlling medically-important arthropod pests that are propagated on TVA lands or waters. In addition, freedom from annoying mosquitoes and other blood-sucking pests permits the development, use, and full enjoyment of the vast recreational opportunities offered by the many miles of freshwater lakes. To attain this goal the program is divided into operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems that require TVA attention and study. Specifically, activities concerning water level management of TVA lakes, dewatering projects, plant growth control, drainage and insect control programs are detailed. Further, report is made of post-impoundment surveys, soil sampling studies of Mosquite larvae and ecological mosquito management studies.

  17. Closed-loop motor control using high-speed fiber optics

    NASA Technical Reports Server (NTRS)

    Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)

    1991-01-01

    A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.

  18. Optical switch based on the electrically controlled liquid crystal interface.

    PubMed

    Komar, Andrei A; Tolstik, Alexei L; Melnikova, Elena A; Muravsky, Alexander A

    2015-06-01

    The peculiarities of the linearly polarized light beam reflection at the interface within the bulk of a nematic liquid crystal (NLC) cell with different orientations of the director are analyzed. Two methods to create the interface are considered. Combination of the planar and homeotropic orientations of the NLC director is realized by means of a spatially structured electrode under the applied voltage. In-plane patterned azimuthal alignment of the NLC director is created by the patterned rubbing alignment technique. All possible orthogonal orientations of the LC director are considered; the configurations for realization of total internal reflection are determined. The revealed relationship between the propagation of optical beams in a liquid crystal material and polarization of laser radiation has enabled realization of the spatial separation for the orthogonally polarized light beams at the interface between two regions of NLC with different director orientations (domains). Owing to variations in the applied voltage and, hence, in the refractive index gradient, the light beam propagation directions may be controlled electrically. PMID:26192675

  19. Actively Controlling Buffet-Induced Excitations

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.; Henderson, Douglas A.; Galea, Stephen C.; Manokaran, Donald S.; Zimcik, David G.; Wickramasinghe, Viresh; Pitt, Dale M.; Gamble, Michael A.

    2005-01-01

    High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein.

  20. Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Chin, Alexander Wong

    2013-01-01

    A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-of-attack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.