Science.gov

Sample records for active optical properties

  1. Optical Properties of Anisotropic Polycrystalline Ce+3 activated LSO

    PubMed Central

    Roy, Sudesna; Lingertat, Helmut; Brecher, Charles; Sarin, Vinod

    2012-01-01

    Polycrystalline cerium activated lutetium oxyorthosilicate (LSO:Ce) is highly desirable technique to make cost effective and highly reproducible radiation detectors for medical imaging. In this article methods to improve transparency in polycrystalline LSO:Ce were explored. Two commercially available powders of different particulate sizes (average particle size 30 and 1500 nm) were evaluated for producing dense LSO:Ce by pressure assisted densification routes, such as hot pressing and hot isostatic pressing. Consolidation of the powders at optimum conditions produced three polycrystalline ceramics with average grain sizes of 500 nm, 700 and 2000 nm. Microstructural evolution studies showed that for grain sizes larger than 1 µm, anisotropy in thermal expansion coefficient and elastic constants of LSO, resulted in residual stress at grain boundaries and triple points that led to intragranular microcracking. However, reducing the grain size below 1 µm effectively avoids microcracking, leading to more favorable optical properties. The optical scattering profiles generated by a Stover scatterometer, measured by a He-Ne laser of wavelength 633 nm, showed that by reducing the grain size from 2 µm to 500 nm, the in-line transmission increased by a factor of 103. Although these values were encouraging and showed that small changes in grain size could increase transmission by almost 3 orders of magnitude, even smaller grain sizes need to be achieved in order to get truly transparent material with high in-line transmission. PMID:23505329

  2. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  3. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    SciTech Connect

    Bu, Xiaohai; Zhou, Yuming Zhang, Tao; Wang, Yongjuan; Zhang, Zewu; He, Man

    2014-08-15

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity.

  4. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    NASA Astrophysics Data System (ADS)

    Bu, Xiaohai; Zhou, Yuming; Zhang, Tao; Wang, Yongjuan; Zhang, Zewu; He, Man

    2014-08-01

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8-14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles.

  5. Tailored spectroscopic and optical properties in rare earth-activated glass-ceramics planar waveguides

    NASA Astrophysics Data System (ADS)

    Ristic, Davor; Van Tran, Thi Thanh; Dieudonné, Belto; Cristina, Armellini; Berneschi, Simone; Chiappini, Andrea; Chiasera, Alessandro; Varas, Stefano; Carpentiero, Alessandro; Mazzola, Maurizio; Nunzi Conti, Gualtiero; Pelli, Stefano; Speranza, Giorgio; Feron, Patrice; Duverger Arfuso, Claire; Cibiel, Gilles; Turrell, Sylvia; Tran Ngoc, Khiem; Boulard, Brigitte; Righini, Giancarlo C.; Ferrari, Maurizio

    2013-03-01

    Glass ceramic activated by rare earth ions are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing to develop interesting new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. At the state of art the fabrication techniques based on bottom-up and top-down approaches appear to be viable although a specific effort is required to achieve the necessary reliability and reproducibility of the preparation protocols. In particular, the dependence of the final product on the specific parent glass and on the employed synthesis still remain an important task of the research in material science. Glass-ceramic waveguides overcome some of the efficiency problems experienced with conventional waveguides. These two-phase materials are composed of nanocrystals embedded in an amorphous matrix. The respective volume fractions of the crystalline and amorphous phases determine the properties of the glass ceramic. They also represent a valid alternative to widely used glass hosts such as silica as an effective optical medium for light propagation and luminescence enhancement. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including optical amplifiers, monolithic waveguide laser, novel sensors, coating of spherical microresonators, and up and down converters for solar energy exploitation.

  6. Properties of the long-term optical activity of the prototype polar AM Herculis

    NASA Astrophysics Data System (ADS)

    Šimon, Vojtěch

    2016-08-01

    AM Her displays strong long-term activity with the high and low states. This investigation uses AAVSO optical data for a time-series analysis of the long-term variations. Rapid changes of brightness (e.g. the orbital modulation) were smoothed out to emphasise the activity on super-orbital time-scale. I show that the character of this activity changed considerably on time-scales of years, which is reflected in a large evolution of the complicated histogram of the optical brightness. The high states are not the well-defined, narrow levels of brightness. I also show that AM Her displays transitions between the high and low states with the intermittently existing cycles. The longest uninterrupted series of transitions from the high to low state consists of seven episodes (about six years). The existence of this series can be controlled by the lifetime of the active regions on the donor, which modulates the mass transfer rate. I show that the episodes of the high and low states accumulate in clusters, which produces an additional cycle after smoothing by the moving averages. The cycles of activity of the donor can explain this modulation. A single isolated short episode of the low state does not imply a break of this cycle. I also argue that the specific properties of star spots and their migration caused by the differential rotation of the donor would be needed to explain the complex activity of AM Her.

  7. Effects of silver and gold catalytic activities on the structural and optical properties of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Lajvardi, M.; Eshghi, H.; Izadifard, M.; Ghazi, M. E.; Goodarzi, A.

    2016-01-01

    The metal-assisted chemical etching of silicon in an aqueous solution of hydrofluoric acid and hydrogen peroxide is established for the fabrication of large area, uniform silicon nanowire (SiNW) arrays. In this study, silver (Ag) and gold (Au) are considered as catalysts and the effect of different catalysts with various thicknesses on the structural and optical properties of the fabricated SiNWs is investigated. The morphology of deposited catalysts on the silicon wafer is characterized by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). It is shown that the morphology of the fabricated silicon nanostructures remarkably depends upon the catalyst layer thickness, and the catalyst etching time directly affects the structural and optical properties of the synthesized SiNWs. FESEM images show a linear increment of the nanowire length versus time, whereas the etching rate for the Au-etched SiNWs was lower than the Ag-etched ones. Strong light scattering in SiNWs caused the total reflection to decrease in the range of visible light, and this decrement was higher for the Ag-etched SiNW sample, with a longer length than the Au-etched one. A broadband visible photoluminescence (PL) with different peak positions is observed for the Au- and Ag-etched samples. The synthesized optically active SiNWs can be considered as a promising candidate for a new generation of nano-scale opto-electronic devices.

  8. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties

    PubMed Central

    Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.

    2015-01-01

    The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175

  9. Grain optical properties

    NASA Technical Reports Server (NTRS)

    Hanner, Martha

    1988-01-01

    The optical properties of small grains provide the link between the infrared observations presented in Chapter 1 and the dust composition described in Chapter 3. In this session, the optical properties were discussed from the viewpoint of modeling the emission from the dust coma and the scattering in order to draw inference about the dust size distribution and composition. The optical properties are applied to the analysis of the infrared data in several ways, and these different uses should be kept in mind when judging the validity of the methods for applying optical constants to real grains.

  10. Optical properties of active bismuth centres in silica fibres containing no other dopants

    SciTech Connect

    Bufetov, Igor' A; Semenov, S L; Vel'miskin, V V; Firstov, Sergei V; Dianov, Evgenii M; Bufetova, G A

    2010-09-10

    Optical fibre preforms and fibres with a bismuth-doped silica core containing no other dopants have been fabricated by the powder-in-tube technique. The optical loss has been measured for the first time in such fibres in a wide spectral range, from 190 to 1700 nm. We have studied the luminescence of active bismuth centres and the luminescence lifetime for some of their bands in both the preforms and the fibres drawn out from them. (optical fibres)

  11. Optically active P5-deltacyclenes: selective oxidation, ligand properties, and a diastereoselective rearrangement reaction.

    PubMed

    Keller, I C; Bauer, W; Heinemann, F W; Höhn, C; Rohwer, L; Zenneck, U

    2016-04-25

    Cage-chiral tetra-tert-butyl-P5-deltacyclene is accessible as a pair of highly enriched enantiomers and . The only secondary phosphorus atom P1 of the cage can be selectively oxidized by reaction with t-BuOOH. The P1-oxo species and , allow the direct determination of their ee values. Oxidation occurs with the complete retention of the optical activity of the compounds. The chiroptical properties of and are strongly dominated by their cage chirality, the oxygen atom does not contribute significantly. Elemental sulfur and selenium oxidize P5 with high preference to yield P5-thio- and P5-seleno-P5-deltacyclenes and of the intact cages again. Longer reaction time and more than stoichiometric amounts of selenium, leads to tri-seleno-P5-tetracycloundecane , a partially opened oxidized rearrangement product. The ligand properties of racemic were determined. Diphosphetane phosphorus atom P2 of is the active donor center to bind a Cr(CO)5 fragment, but a tautomerization of takes place if [(benzene)RuCl2]2 is added. A hydrogen atom migrates from P1 to the oxygen atom to form a phosphinous acid ligand. The lone pair of P1 is regenerated and acts as the active ligand function of the cage in this case. As for , the base n-BuLi induces an efficient cage rearrangement reaction of , where P1 and the neighboring carbon atom C4 containing its t-Bu substituent change places. C4 moves to its new position without breaking the bond with P5, this way forming the novel P1-oxo-P5-norsnoutene cage in a highly diastereoselective process. PMID:27055252

  12. Alkaline-earth oxide network modifier on optical properties of Ce3+-activated borogermanate glasses

    NASA Astrophysics Data System (ADS)

    Sun, Xin-Yuan; Xiao, Zhuo-Hao; Zhong, Jiu-Ping

    2015-12-01

    Transparent and colorless CeO2-activated borogermanate glasses, with the nominal composition of 25B2O3-40GeO2-14Gd2O3-1CeO2-20MO (M = Ba, Sr, Ca and Mg), were synthesized by a melt-quenching method in air. Their optical properties including the transmittance, photoluminescence (excitation and emission spectra), the luminescence decay curves, as well as the temperature-dependent emission spectra were studied in detail. The room temperature photoluminescence spectra reveal that the emission intensity of the MgO glass is about two times stronger than that of the BaO glass. The blue shift of the cut-off edge, excitation and emission spectra of Ce3+-activated borogermanate glass were clearly observed in the order of BaO, SrO, CaO and MgO. And the emission intensity of Ce3+ ions as a function of temperature range in 325-475 K was also investigated.

  13. Optical properties and photocatalytic activities of tungsten oxide (WO3) with platinum co-catalyst addition

    NASA Astrophysics Data System (ADS)

    Widiyandari, Hendri; Firdaus, Iqbal; Kadarisman, Vincencius Gunawan Slamet; Purwanto, Agus

    2016-02-01

    This research reported the optical properties and photocatalytic activities of tungsten oxide with platinum co-catalyst addition (WO3/Pt) film. The platinum was deposited on the surface of WO3 particle using photo deposition method, while the film formation of WO3/Pt on the glass substrate was prepared using spray deposition method. The addition of Pt of 0, 1, 2, and 4 wt.% resulted that the energy band gap value of the films were shifted to 2.840, 2.752, 2.623 and 2.507 eV, respectively. The as-prepared films were tested for methylene blue (MB) dye photo-degradation using the LED (light emitting diode) lamp as a visible domestic source light. The enhancement of photocatalytic activity was observed after the addition of Pt as a co-catalyst. The degradation kinetics analysis of the photo-catalyst showed that the Pt addition resulted increasing of photo-catalysis reaction rate constant, k.

  14. Optical spectroscopic properties of active nano-crystal doped transparent glass composites

    NASA Astrophysics Data System (ADS)

    Myint, Thandar

    Cr4+ and some Cr3+ ions doped tunable laser media operate in optical telecommunication bands. The tunability of some Cr 3+ doped media cover the telecom O,E,S,C and L bands while Er doped glass, widely used in optical amplifiers, covers only C bands. If the telecom utilizes Cr doped materials as the amplified media in fiber lasers and amplifiers, it can revolutionize the optical communications. But making Cr doped crystal in fiber form is difficult and expensive while the glass is the best material to make the fiber form. One solution to solve this problem is to synthesize the glass composites which have the good mechanical properties of glasses and perfect optical properties of bulk single crystals. In this thesis, synthesis and optical properties of chromium doped transparent glass-ceramics with the chemical composition similar to Cunyite(Cr4+:Ca2GeO 4) laser crystal are presented. Broadband structureless fluorescence and high quantum efficiency of new glass-ceramic make it the promising medium for fiber lasers and amplifiers. One barrier in synthesizing the glass ceramics is controlling the size of the nanocrystals inside the glass matrix. Since the glass composite is a two-phase (glass and crystal phase) system, the size of nano-crystals must be small to reduce the scattering and consequently produce the transparent sample. In order to produce smaller nano-crystals inside the glass matrix, porous glass with pore size of 4nm is also investigated. The optical properties of synthesized porous-glass show the crystal having a few lattice parameters in size can be grown inside the pore network.

  15. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  16. Luminescent properties of orange emissive Sm3+-activated thermally stable phosphate phosphor for optical devices.

    PubMed

    Ratnam, B V; Jayasimhadri, M; Jang, Kiwan

    2014-11-11

    Rare earth ion activated orthophosphates have a great deal of interest due to their thermal stability for white light emitting diodes. In this regard, thermally stable Sm3+ doped NaCaPO4 (NCP) phosphor was synthesized by conventional solid state reaction technique. The phase and the structure of the as prepared powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), FT-IR, emission and excitation properties were extensively investigated for NCP phosphors. X-ray diffraction analysis confirmed the formation of NaCaPO4 with orthorhombic structure. The excitation spectra indicate that this phosphor can be effectively excited by UV light from 350 to 500 nm. All the transitions in the excitation spectrum of Sm3+ start from the ground state 6H5/2 to various excited states. The emission spectra indicated that the emitted radiation was dominated by the emission peak wavelength at 599 nm originated from the transition of 4G5/2→6H7/2. The optimum concentration of Sm3+ is determined as 1.0 mol% based on the concentration dependent emission spectra. These results suggest that the NaCaPO4:Sm3+ phosphor is a promising orange emitting phosphor under 404 nm excitation with CIE coordinates of x=0.545, y=0.41, which might be used in the development of materials for LED's and other optical devices in the visible region. PMID:24892535

  17. Influence of optical activity on properties of a phase conjugate wave generated in a photorefractive BSO crystal

    NASA Astrophysics Data System (ADS)

    Sawada, Takayuki; Ujihara, Kikuo

    1989-08-01

    A rigorous method for analyzing the effect of optical activity on a phase conjugate wave (PCW) generated in photorefractive Bi12SiO20 (BSO) is described. Using the method, the PCW intensity and its polarization angle versus the input polarization angle of the probe beam are numerically evaluated for two transverse configurations, with a static electric field generated approximately along the 001 direction or the 1-10 direction, respectively. Both the observed PCW intensity and its polarization angle are in reasonable agreement with the theory. The result indicates that optical activity has a pronounced influence on the properties of the PCW. The analysis is applicable to any isotropic photorefractive crystal with optical activity.

  18. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Congjun; Ohodnicki, Paul R.; Su, Xin; Keller, Murphy; Brown, Thomas D.; Baltrus, John P.

    2015-01-01

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an

  19. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices. PMID:25572664

  20. Optically diffracting hydrogels for screening kinase activity in vitro and in cell lysate: impact of material and solution properties.

    PubMed

    MacConaghy, Kelsey I; Chadly, Duncan M; Stoykovich, Mark P; Kaar, Joel L

    2015-03-17

    Optically diffracting films based on hydrogel-encapsulated crystalline colloidal arrays have considerable utility as sensors for detecting enzymaticphosphorylation and, thus, in screening small molecule modulators of kinases. In this work, we have investigated the impact of hydrogel properties, as well as the role of the ionic character of the surrounding environment, on the optical sensitivity of kinase responsive crystalline colloidal array-containing hydrogels. In agreement with a model of hydrogel swelling, the optical sensitivity of such materials increased as the shear modulus and the Flory-Huggins interaction parameter between polymer and solvent decreased. Additionally, elimination of extraneous charges in the polymer backbone by exploiting azide-alkyne click chemistry to functionalize the hydrogels with a peptide substrate for protein kinase A further enhanced the sensitivity of the optically diffracting films. Increasing peptide concentration and, in turn, immobilized charge within the hydrogel network was shown to increase the optical response over a range of ionic strength conditions. Ultimately, we showed that, by tuning the hydrogel and solution properties, as little as 0.1 U/μL protein kinase A could be detected in short reaction times (i.e., 2 h), which is comparable to conventional biochemical kinase assays. We further showed that this approach can be used to detect protein kinase A activity in lysate from HEK293 cells. The sensitivity of the resulting films, coupled with the advantages of photonic crystal based sensors (e.g., label free detection), makes this approach highly attractive for screening enzymatic phosphorylation. PMID:25714913

  1. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  2. A low-luminosity type-1 QSO sample. III. Optical spectroscopic properties and activity classification

    NASA Astrophysics Data System (ADS)

    Tremou, E.; Garcia-Marin, M.; Zuther, J.; Eckart, A.; Valencia-Schneider, M.; Vitale, M.; Shan, C.

    2015-08-01

    Context. We report on the optical spectroscopic analysis of a sample of 99 low-luminosity quasi-stellar objects (LLQSOs) at z ≤ 0.06 base the Hamburg/ESO QSO Survey (HES). To better relate the low-redshift active galactic nucleus (AGN) to the QSO population it is important to study samples of the latter type at a level of detail similar to that of the low-redshift AGN. Powerful QSOs, however, are absent at low redshifts due to evolutionary effects and their small space density. Our understanding of the (distant) QSO population is, therefore, significantly limited by angular resolution and sensitivity. The LLQSOs presented here offer the possibility of studying the faint end of this population at smaller cosmological distances and, therefore, in greater detail. Aims: In comparing two spectroscopic methods, we aim to establish a reliable activity classification scheme of the LLQSOs sample. Our goal is to enrich our systematic multiwavelength analysis of the AGN/starburst relation in these systems and give a complementary information on this particular sample of LLQSOs from the Hamburg ESO survey. Methods: Here, we present results of the analysis of visible wavelength spectroscopy provided by the HES and the 6 Degree Field Galaxy Survey (6dFGS). These surveys use different spectroscopic techniques, long-slit and circular fiber, respectively. These allow us to assess the influence of different apertures on the activity of the LLQSOs using classical optical diagnostic diagrams. We perform a Gaussian fitting of strong optical emission lines and decompose narrow and broad Balmer components. Results: A small number of our LLQSO present no broad component, which is likely to be present but buried in the noise. Two sources show double broad components, whereas six comply with the classic NLS1 requiremnts. As expected in NLR of broad line AGNs, the [Sii]-based electron density values range between 100 and 1000 Ne/cm3. Using the optical characteristics of Populations A and B

  3. Measurement of food optical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical properties determine how a biological material or a food product will behave or interact with light. Absorption and scattering coefficients are the two primary optical properties characterizing turbid or diffusive food products. Measurement of the optical properties can provide useful inform...

  4. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity

    PubMed Central

    Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L.; De Vittorio, Massimo; Pisanello, Ferruccio

    2015-01-01

    Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello, Neuron 82, 1245 (2014)24881834]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber. PMID:26504650

  5. Optically active poly(amide-imide)/TiO2 nanocomposites containing amino acid moieties: synthesis and properties.

    PubMed

    Rafiee, Zahra; Zare, Elham

    2015-11-01

    The novel optically active poly(amide-imide) (PAI)/TiO2 nanocomposites containing fluorene moieties have been successfully synthesized through ultrasonic irradiation. The surface of nanoparticles was chemically modified with γ-aminopropyltriethoxyl silane to enhance the compatibility with polymeric matrix and to avoid the aggregation of nanoparticles. The dispersion of surface-modified TiO2 in PAI film was confirmed by the transmission electron microscope (TEM) analysis showing the well-dispersed nanosized TiO2 nanoparticles. The thermal stabilities and optical properties of PAI/surface-modified TiO2 nanocomposite films were also investigated. The thermogravimetric analysis data showed an improvement of thermal stability of novel nanocomposite films as compared to the pure polymer. PMID:26002811

  6. Soot Optical Property Study

    NASA Technical Reports Server (NTRS)

    Aung, K. T.; Hassan, M. I.; Krishnan, S. S.; Lin, K.-C.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Recent past studies of soot reaction processes in laminar premixed and nonpremixed flames generally have used the intrusive technique of thermophoretic sampling and analysis by transmission electron microscopy (TEM) to observe soot structure and obtain important fundamental information about soot particle properties, such as soot primary particle diameters, the rate of change of soot primary particle diameter as a function of time (or rate of soot surface growth or oxidation), the amount of soot particle reactive surface area per unit volume, the number of primary soot particles per unit volume, and the rate of formation of primary soot particles (or the rate of soot primary particle nucleation). Given the soot volume per unit volume of the flame (or the soot volume fraction), all these properties are readily found from a measurement of the soot primary particle diameter (which usually is nearly a constant for each location within a laminar flame). This approach is not possible within freely propagating flames, however, because soot properties at given positions in such flames vary relatively rapidly as a function of time in the soot formation and oxidation regions compared to the relatively lengthy sampling times needed to accumulate adequate soot samples and to minimize effects of soot collected on the sampling grid as it moves to and from the sampling position through other portions of the flame. Thus, nonintrusive optical methods must be used to find the soot primary particle diameters needed to define the soot surface reaction properties mentioned earlier. Unfortunately, approximate nonintrusive methods used during early studies of soot reaction properties in flames, found from laser scattering and absorption measurements analyzed assuming either Rayleigh scattering or Mie scattering from polydisperse effective soot particles having the same mass of soot as individual soot aggregates, have not been found to be an effective way to estimate the soot surface

  7. Optical properties of flyash

    SciTech Connect

    Self, S.A.

    1991-11-01

    This is the sixteenth quarterly report under DOE contract No. DE-AC22-87PC 79903 entitled Optical Properties of Flyash.'' Tasks 1 and 2 of this program were funded from September 15, 1987. Tasks 3 and 4 were funded from September 15, 1988. The general aims of this research are to provide a fundamental scientific basis for the physical understanding and reliable calculation of radiative heat transfer in coal combustion systems, particularly as it is influenced by the presence of inorganic constituents deriving from the mineral matter in coal. Some preliminary work in this area has been carried out at Stanford in the past several years with NSF support. The present program will greatly enlarge the scope of this work.

  8. Optically active quantum dots

    NASA Astrophysics Data System (ADS)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  9. Microwave Sintering and Optical Properties of Sm3+-Activated KSrPO4 Phosphors

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Sen; Lin, Bor-Tsuen; Jean, Ming-Der

    2014-02-01

    The microwave sintering and photoluminescence properties of KSr1- x PO4: xSm3+ phosphors have been investigated. KSrPO4 phosphates activated by various concentrations of Sm3+ ions ( x = 0.007, 0.009, 0.01, 0.03) were microwave sintered at 1200°C for 3 h under air atmosphere. x-Ray diffraction patterns showed that all phosphor samples exhibited a single phase without any extraneous phases. Scanning electron microscopy images showed that the particle size increased with the Sm3+ concentration and that the particle morphology was fine and uniform. The photoluminescence results showed that a concentration quenching effect occurred when the concentration of Sm3+ ions reached x = 0.01. Decay time measurement results showed that the lifetime decreased gradually from 3.12 ms to 2.34 ms as the Sm3+ concentration increased. All the chromaticity ( x, y) values of the microwave-sintered KSrPO4:Sm3+ phosphors were located in the red region (0.57, 0.41).

  10. Optical properties of flyash

    SciTech Connect

    Self, S.A.

    1989-07-01

    The purpose of this task is to validate the whole approach adopted in this program. Specifically, this bench-scale experiment is intended to compare the measured optical/radiative properties of a dispersion of well characterized ash with those calculated on the basis of the known size/composition distribution using the correlation formulae relating the composition and complex refractive index resulting from measurements on bulk samples of synthetic slag. Considerable thought has been given to the various possible approaches to satisfying the objectives of this task. Several experiments were done to guide our design of an apparatus for measuring the scattering and absorption properties of dispersions of flyash. As a result of these experiments, and from extensive prior experience in connection with research on electrostatic precipitation, it has been determined that there is no satisfactory way to satisfy the aims of this task using a gaseous dispersion of flyash because it is not possible to adequately disperse and deagglomerate flyash into a gas stream. Unless the ash is adequately dispersed, as it exists in the radiant boiler of a pulverized coal-fired combustion system, one cannot expect calculations, based on Mie calculations for a dispersion of spheres to properly agree with laboratory measurements. For these reasons, our design efforts are based on making measurements on a dispersion of flyash in liquid, for which our experience shows we can obtain stable, well-deagglomerated dispersions of ash. Because there is not single liquid which is adequately transparent over the wavelength range 1--12 {mu}m, we plan to use a combination of three liquids, C Cl{sub 4}, C S{sub 2} and bromoform to cover the full range. Windows of BaF{sub 2} will be used to contain the liquid suspension in an absorption/scattering cell.

  11. Structure-activity predictions of properties of organophosphorus pesticides and chemical agents important for optical detection. Master`s thesis

    SciTech Connect

    Porte, R.E.

    1995-12-01

    This thesis presents the results of an investigation for estimating various physicochemical properties of chemical warfare agents and organophosphorus pesticides. The determination of aqueous solubility, - octanol/water partition coefficients, and alkaline hydrolysis rate constants will be used in the development of a chemical sensor using fiber optic spectroscopy. These three parameters will effect the limit of detection for each compound by limiting the concentration in the detector. The parameters were estimated by linear free energy relationships and quantitative structure activity relationships using experimental data for compounds of similar chemical structure. The results of this thesis showed that the hydrophobic medium represented by 1-octanol did concentrate the OP pesticides but did not significantly concentrate CWA, CWA simulants, or CWA hydrolysis products. Correlations were evaluated for six classes of organophosphorus compounds. The limitation of this approach to predicting physicochemical parameters is not in the molecular descriptors used in the regression equations but in the availability of existing experimental data.

  12. OPTICAL SPECTRAL PROPERTIES OF SWIFT BURST ALERT TELESCOPE HARD X-RAY-SELECTED ACTIVE GALACTIC NUCLEI SOURCES

    SciTech Connect

    Winter, Lisa M.; Keeney, Brian; Lewis, Karen T.; Koss, Michael; Veilleux, Sylvain; Mushotzky, Richard F.

    2010-02-10

    The Swift Burst Alert Telescope survey of active galactic nuclei (AGNs) is providing an unprecedented view of local AGNs ((z) {approx} 0.03) and their host galaxy properties. In this paper, we present an analysis of the optical spectra of a sample of 64 AGNs from the nine month survey, detected solely based on their 14-195 keV flux. Our analysis includes both archived spectra from the Sloan Digital Sky Survey and our own observations from the 2.1 m Kitt Peak National Observatory telescope. Among our results, we include line ratio classifications utilizing standard emission line diagnostic plots, [O III] 5007 A luminosities, and Hbeta-derived black hole masses. As in our X-ray study, we find the type 2 sources to be less luminous (in [O III] 5007 A and 14-195 keV luminosities) with lower accretion rates than the type 1 sources. We find that the optically classified low-ionization narrow emission line regions, H II/composite galaxies, and ambiguous sources have the lowest luminosities, while both broad-line and narrow-line Seyferts have similar luminosities. From a comparison of the hard X-ray (14-195 keV) and [O III] luminosities, we find that both the observed and extinction-corrected [O III] luminosities are weakly correlated with X-ray luminosity. In a study of the host galaxy properties from both continuum fits and measurements of the stellar absorption indices, we find that the hosts of the narrow-line sources have properties consistent with late-type galaxies.

  13. Synthesis, structural and optical properties, ferromagnetic behaviour, cytotoxicity and NLO activity of lithium sulphate doped L-threonine

    NASA Astrophysics Data System (ADS)

    Theras, J. Elberin Mary; Kalaivani, D.; Mani, J. Arul Martin; Jayaraman, D.; Joseph, V.

    2016-09-01

    Lithium Sulphate doped L-threonine (Li2SO4-LT), a semi-organic crystal, has been synthesised and grown by slow evaporation technique at room temperature. The grown crystal was subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Li2SO4-LT crystal belongs to the orthorhombic crystal system (a=7.66 Å, b=5.11 Å, c=13.60 Å) with space group P212121. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) study was carried out to quantify the concentration of lithium element in the grown crystal. The results show that 0.07 mol of lithium sulphate has been incorporated into the parent system. The grown material has been found to possess wide transparency in the range 240-1100 nm with lower cut-off wavelength at 240 nm. The optical band gap was calculated as 4.92 eV using optical absorption spectrum and Tauc's relation. Fourier transform infrared (FTIR) spectroscopic study was performed to identify the functional groups present in the grown crystal. The surface features of the grown crystal were analyzed using Scanning Electron Microscope (SEM) analysis. The magnetic property was studied with the help of Vibrating Sample Magnetometer (VSM). The coercivity and retentivity of the material were measured from the hysteresis curve as 550.06 G and 79.50×10-6 emu respectively. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay method was performed to understand the cytotoxicity or anticancer activity of the sample. The cell viability and cytotoxicity of the sample against MCF-7 cells were estimated as 49.41% and 50.59% respectively at a concentration of 250 μg. The second harmonic generation (SHG) efficiency was measured by the Kurtz powder technique using Nd:YAG laser and was found to be 1.46 times that of standard potassium dihydrogen phosphate (KDP).

  14. Optical Properties Of Ceramic Fabrics

    NASA Technical Reports Server (NTRS)

    Covington, M. A.; Sawko, P. M.

    1990-01-01

    Report discusses optical properties of ceramic fabrics woven from silica, aluminoborosilicate, and silicon carbide yarns. Directional hemispheric reflectance and transmittance data given for several different weave patterns, yarn constructions, and fabric weights.

  15. Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Le; Wei, Hongwei; Fan, Yingju; Liu, Xinzheng; Zhan, Jinhua

    2009-06-01

    One-dimensional (1D) CdS@ZnS core-shell nanocomposites were successfully synthesized via a two-step solvothermal method. Preformed CdS nanowires with a diameter of ca. 45 nm and a length up to several tens of micrometers were coated with a layer of ZnS shell by the reaction of zinc acetate and thiourea at 180 °C for 10 h. It was found that uniform ZnS shell was composed of ZnS nanoparticles with a diameter of ca. 4 nm, which anchored on the nanowires without any surface pretreatment. The 1D CdS@ZnS core-shell nanocomposites were confirmed by XRD, SEM, TEM, HR-TEM, ED, and EDS techniques. The optical properties and photocatalytic activities of the 1D CdS@ZnS core-shell nanocomposites towards methylene blue (MB) and 4-chlorophenol (4CP) under visible light (λ > 420 nm) were separately investigated. The results show that the ZnS shell can effectively passivate the surface electronic states of the CdS cores, which accounts for the enhanced photocatalytic activities of the 1D CdS@ZnS core-shell nanocomposites compared to that of the uncoated CdS nanowires.

  16. Optical properties of human hair

    NASA Astrophysics Data System (ADS)

    Altshuler, Gregory B.; Ilyasov, Ildar K.; Prikhodko, Constantin V.

    1995-01-01

    Optical properties of human hair are the subject of great interest for the realization of any possible cosmetic applications. This paper represents the results of hair microstructure as an optical substance investigation, indicates melanin and keratin absorption spectra, and shows experimentally discovered anisotropia of optical properties of human hair. Radiation weakening coefficient value at the range from 450 up to 800 nm is estimated. Thresholds of hair destruction by Nd, Ho, Cu, and Er laser radiation are obtained. Perspectives of laser application for epilation and other medical purposes are evaluated.

  17. Efficient modulation of optical and electrical properties of X-shaped thermally activated delayed fluorescence emitters by substitution.

    PubMed

    Fan, Jianzhong; Wang, Xin; Lin, Lili; Wang, Chuankui

    2016-08-01

    A series of X-shaped thermally activated delayed fluorescence (TADF) emitters are systematically studied by first-principles calculations. Effects of the cyano group adding to the acceptor unit and the hydroxyl group adding to the donor part on the optical and electrical properties are analyzed. It is found that both kinds of groups can efficiently increase the emission wavelength to realize full-color emission. Although they play different roles in modulating the energy level of frontier orbitals, the S-T energy gap, the reorganization energy and transfer integral for different molecules, they can efficiently increase the charge transfer rate and reduce the difference of electron transfer rate and hole transfer rate. These results indicate that these designed strategies are efficient to achieve balanced charge transfer rates and modulate emission colors. By analyzing the energy matching between the TADF emitters and three kinds of hosts, the emission spectra of the 3,5-bis(N-carbazolyl)benzene (mcp) and the absorption spectra of most TADF emitters have a large overlap, which provides helpful information in application of these TADF molecules. PMID:27383609

  18. Optical properties of flyash

    SciTech Connect

    Self, S.A.

    1990-04-01

    In this research program, we have adopted the approach that by measuring fundamental properties (i.e, the complex refractive index, m) of the fly ash which participates in the radiation transfer, we can use well established theoretical principles (Mie theory) to compute the radiative properties of dispersions of fly ash as found in coal combustors. With this approach one can, understand the underlying principles that affect the radiative properties of an ash dispersion and more confidently predict how variations in the characteristics of the ash dispersion cause variations in its radiative properties. An important criterion in this approach is that the fly ash particles be spherical, homogeneous, and isotropic. Fortunately, fly ash particles are formed at high temperatures at which most of them are molten, leading primarily to spherical particles. Furthermore, one should expect that molten particles will be reasonably homogeneous and isotropic. On cooling, most fly ash particles form glassy spheres which are homogeneous and isotropic. Some ash particles form hollow shells (cenospheres) while others form as particles with bubbles'' or voids, but most fly ash particles are well approximated as homogeneous isotropic spheres. In the following sections we review some of the underlying principles that affect the radiative properties of fly ash dispersions and report on progress that has been made during the past quarter.

  19. MBiO{sub 2}Cl (M=Sr, Ba) as novel photocatalysts: Synthesis, optical property and photocatalytic activity

    SciTech Connect

    Huang, Hongwei Wang, Shuobo; Zhang, Yihe Han, Xu

    2015-02-15

    Novel quaternary photocatalysts MBiO{sub 2}Cl (M=Sr, Ba) have been successfully developed for efficient photodecomposition of RhB. Their photocatalytic mechanism was also investigated. - Highlights: • Two Bi-based compounds SrBiO{sub 2}Cl and BaBiO{sub 2}Cl were explored as photocatalysts. • They were successfully synthesized by a solid-state reaction. • RhB can be effectively photodecomposed by SrBiO{sub 2}Cl and BaBiO{sub 2}Cl under UV light. • ·OH radicals serving as active species play important roles in degradation process. - Abstract: Two Bi-based compounds SrBiO{sub 2}Cl and BaBiO{sub 2}Cl were successfully synthesized by a solid-state reaction and investigated as new photocatalysts for the first time. Their microstructures and optical properties were characterized by XRD, SEM and DRS. The band gaps of SrBiO{sub 2}Cl and BaBiO{sub 2}Cl were separately determined to be 3.52 and 3.71 eV, and their E{sub CB} and E{sub VB} were also estimated. The photocatalytic activities of the as-prepared samples were evaluated by photodecomposition of rhodamine B (RhB) in aqueous solution. The results revealed that both SrBiO{sub 2}Cl and BaBiO{sub 2}Cl can be used as effective photocatalysts under UV irradiation, and SrBiO{sub 2}Cl exhibits a higher photocatalytic activity than BaBiO{sub 2}Cl, which was also verified by the PL spectra. Terephthalic acid photoluminescence probing technique (TA-PL) demonstrated that ·OH radicals serving as active species play an important role in photooxidative degradation of RhB over SrBiO{sub 2}Cl and BaBiO{sub 2}Cl. Moreover, a larger amount of ·OH radicals generation was observed over SrBiO{sub 2}Cl, which is in agreement with its higher photocatalytic activity.

  20. Nonlinear optical properties of bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Hendrickx, Eric; Verbiest, Thierry; Clays, Koen J.; Persoons, Andre P.

    1993-04-01

    In this paper we show the applicability of Hyper-Rayleigh scattering to obtain hyperpolarizabilities of ionic and biochemical compounds. It was found that dark-adapted bacteriorhodopsin and its isolated chromophore have considerable second order nonlinear optical properties. Information obtained from depolarization studies of the scattered light is discussed.

  1. Satellite material contaminant optical properties

    NASA Technical Reports Server (NTRS)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-01-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K geranium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  2. Optical Properties of Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gaponenko, S. V.

    1998-10-01

    Low-dimensional semiconductor structures, often referred to as nanocrystals or quantum dots, exhibit fascinating behavior and have a multitude of potential applications, especially in the field of communications. This book examines in detail the optical properties of these structures, gives full coverage of theoretical and experimental results, and discusses their technological applications. The author begins by setting out the basic physics of electron states in crystals (adopting a "cluster-to-crystal" approach), and goes on to discuss the growth of nanocrystals, absorption and emission of light by nanocrystals, optical nonlinearities, interface effects, and photonic crystals. He illustrates the physical principles with references to actual devices such as novel light-emitters and optical switches. The book covers a rapidly developing, interdisciplinary field. It will be of great interest to graduate students of photonics or microelectronics, and to researchers in electrical engineering, physics, chemistry, and materials science.

  3. Optical properties of thylakoid stacks

    NASA Astrophysics Data System (ADS)

    Shibayev, Pavel; Shibaev, Petr

    2012-02-01

    Optical properties of grana are simulated by means of 4x4 matrix approach (Berreman method). The results of calculations lead to a conclusion that even small degree of chirality, that may be present in a granum structure, results in the dramatic changes of its optical properties. Depending on the birefringence and degree of chirality in granum organization the reflection of left or right handed circularly polarized light can be greatly suppressed. This can explain the light induced difference in the growth of pea and lentil shoots irradiated by left and right handed circularly polarized light [1]. [4pt] [1] Pavel P. Shibayev, R.G. Pergolizzi, The effect of circularly polarized light on the growth of plants, International journal of botany, 7, 113 (2011)

  4. Optical Properties of Ferromagnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Burch, Kenneth

    2006-03-01

    Ferromagnetic semiconductors hold great promise for numerous magneto-optics applications. In this talk I detail recent optical spectroscopic studies of as grown and annealed thin films and digitally doped superlattices of Ga1-xMnxAs, prepared in the group of D.D. Awschalom (UCSB) and annealed in the group of N.Samarth (PSU). Annealing induces a large strengthening of the optical conductivity (σ1(φ)), while the frequency dependence of σ1(φ) remains unchanged. This indicates that the scattering rate and Fermi level have not been effected by annealing, despite the large increase in hole density. Our Infrared work on Digital Ferromagnetic Heterostructures reveals a unique ability to tune their optical properties as well as their intrinsic electronic structure without changing the doping/defect level. This work is in collaboration with D.B. Shrekenhamer, E.J. Singley, D.N. Basov (University of California, San Diego) J. Stephens, R.K. Kawakami, D.D. Awschalom(University of California, Santa Barbara), B.L. Sheu, and N. Samarth (Pennsylvania State University).

  5. Optical, structural and morphological properties of silver nanoparticles and its influence on the photocatalytic activity of TiO2.

    PubMed

    Umadevi, M; Jegatha Christy, A

    2013-07-01

    Silver nanoparticles (Ag NPs) were synthesized by solution combustion method using glycine and citric acid as fuels. The prepared Ag NPs were characterized by optical absorption spectroscopy, X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared spectroscopy (FTIR) and Energy Dispersion Spectroscopic (EDS) techniques. Surface plasmon resonance peak was appeared at 410 and 418 nm for glycine (GAg) and citric acid (CAg) assisted silver nanoparticles respectively. The silver NPs are fcc in crystal structure. The calculated average particle size from XRD was found around 29 nm for GAg and 41 nm for CAg. HRTEM image shows that the silver nanoparticles have strain and fivefold symmetry formed by twinning in the crystal structure. The photocatalytic activity of TiO2 nanoparticles with Ag NPs were also elucidated and were found that the Ag NPs enhance the photocatalytic activity of TiO2. PMID:23608130

  6. Optical Properties of Nanosatellite Hardware

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Coker, R. F.

    2014-01-01

    Over the last decade, a number of very small satellites have been launched into space. These have been called nanosatellites (generally of a weight between 1 and 10 kg) or picosatellites (weight <1 kg). This also includes CubeSats, which are based on 10-cm cube units. With the addition of the Japanese Experiment Module (JEM) Small Satellite Orbital Deployer (J-SSOD) to the International Space Station (ISS), CubeSats are easily cycled through the JEM airlock and deployed into space (fig. 1). The number of CubeSats launched since 2003 was approaching 100 at the time of publication, and the authors expect this trend in research to continue, particularly for high school and college flight experiments. Because these spacecraft are so small, there is usually no allowance for shielding or active heating or cooling of the avionics and other hardware. Parts that are usually ignored in the thermal analysis of larger spacecraft may contribute significantly to the heat load of a tiny satellite. In addition, many small satellites have commercial-off-the-shelf (COTS) components. To reduce costs, many providers of COTS components do not include the optical and physical parameters necessary for accurate thermal analysis. Marshall Space Flight Center participated in the development and analysis of the Space Missile Defense Command-Operational Nanosatellite Effect (SMDC-ONE) and the Edison Demonstration of Smallsat Networks (EDSN) nanosatellites. These optical property measurements are documented here in hopes that they may benefit future nanosatellite and picosatellite programs and aid thermal analysis to ensure project goals are met, with the understanding that material properties may vary by vendor, batch, manufacturing process, and preflight handling. Where possible, complementary data are provided from ground simulations of the space environment and flight experiments, such as the Materials on International Space Station Experiment (MISSE) series. NASA gives no recommendation

  7. Optical Properties of Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vallée, F.

    The bright and changing colours obtained by dispersing metallic compounds in a glass matrix have been known empirically for centuries. Indeed, glasses have been coloured in the bulk by inclusion of metallic powders since ancient times to make jewellery and ornaments (see Chap. 25). Then in the Middle Ages, they were used for stained glass windows and later on for coloured glass artefacts, e.g., ruby red glass objects. However, the role played by nanoparticles in this colouring effect, i.e., the effects of nanoparticles on optical properties, were only first studied scientifically in the nineteenth century, by Michael Faraday [1].

  8. Manganese-Vanadate Hybrids: Impact of Organic Ligands on Their Structures, Thermal Stabilities, Optical Properties, and Photocatalytic Activities.

    PubMed

    Luo, Lan; Zeng, Yuhan; Li, Le; Luo, Zhixiang; Smirnova, Tatyana I; Maggard, Paul A

    2015-08-01

    Manganese(II)-vanadate(V)/organic hybrids were prepared in high purity using four different N-donor organic ligands (2,6:2',2″-terpyridine = terpy, 2,2'-bipyrimidine = bpym, o-phenanthroline = o-phen, and 4,4'-bipyridine = 4,4'-bpy), and their crystalline structures, thermal stabilities, optical properties, photocatalytic activities and electronic structures were investigated as a function of the organic ligand. Hydrothermal reactions were employed that targeted a 1:2 molar ratio of Mn(II)/V(V), yielding four hybrid solids with the compositions of Mn(terpy)V2O6·H2O (I), Mn2(bpym)V4O12·0.6H2O (II), Mn(H2O)(o-phen)V2O6 (III), and Mn(4,4'-bpy)V2O6·1.16H2O (IV). The inorganic component within these hybrid compounds, that is, [MnV2O6], forms infinite chains in I and layers in II, III, and IV. In each case, the organic ligand preferentially coordinates to the Mn(II) cations within their respective structures, either as chelating and three-coordinate (mer isomer in I) or two-coordinate (cis isomers in II and III), or as bridging and two coordinate (trans isomer in IV). The terminating ligands in I (terpy) and III (o-phen) yield nonbridged "MnV2O6" chains and layers, respectively, while the bridging ligands in II (bpym) and IV (4,4'-bpy) result in three-dimensional, pillared hybrid networks. The coordination number of the ligand, that is, two- or three-coordinate, has the predominant effect on the dimensionality of the inorganic component, while the connectivity of the combined metal-oxide/organic network is determined by the chelating versus bridging ligand coordination modes. Each hybrid compound decomposes into crystalline MnV2O6 upon heating in air with specific surface areas from ∼7 m(2)/g for III to ∼41 m(2)/g for IV, depending on the extent of structural collapse as the lattice water is removed. All hybrid compounds exhibit visible-light bandgap sizes from ∼1.7 to ∼2.0 eV, decreasing with the increased dimensionality of the [MnV2O6] network in the order

  9. Synthesis, structure, optical properties, antifungal and antibacterial activities of 2-(1-oxo-1H-2,3-dihydroisoindol-2-yl)-3-imidazolyl-L-lactamic acid

    NASA Astrophysics Data System (ADS)

    Jia, Ting; Zhang, Wei-Long; Chen, Yun; Cai, Shuang-Lian; Yi, Hai-Bo

    2013-10-01

    2-(1-oxo-1H-2,3-dihydroisoindol-2-yl)-3-imidazolyl-L-lactamic acid has been prepared conveniently by the condensation reaction of o-phthalaldehyde (OPA) with L-Histidine, and its single crystal structure has been characterized by X-ray crystallography method. The in vitro antifungal and antibacterial activities of the compound were investigated with the representative strains of Candida albicans, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Its luminescent and nonlinear optical properties have also been investigated. Second-harmonic-generation (SHG) measurements indicate that compound 1 displays a weak SHG response of about 0.75 times that of KH2PO4.

  10. Engineering optical properties of semiconductor metafilm superabsorbers

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2016-04-01

    Light absorption in ultrathin layer of semiconductor has been considerable interests for many years due to its potential applications in various optical devices. In particular, there have been great efforts to engineer the optical properties of the film for the control of absorption spectrums. Whereas the isotropic thin films have intrinsic optical properties that are fixed by materials' properties, metafilm that are composed by deep subwavelength nano-building blocks provides significant flexibilities in controlling the optical properties of the designed effective layers. Here, we present the ultrathin semiconductor metafilm absorbers by arranging germanium (Ge) nanobeams in deep subwavelength scale. Resonant properties of high index semiconductor nanobeams play a key role in designing effective optical properties of the film. We demonstrate this in theory and experimental measurements to build a designing rule of efficient, controllable metafilm absorbers. The proposed strategy of engineering optical properties could open up wide range of applications from ultrathin photodetection and solar energy harvesting to the diverse flexible optoelectronics.

  11. Optics activity for hospitalized children

    NASA Astrophysics Data System (ADS)

    Gargallo, Ana; Gómez-Varela, Ana I.; González-Nuñez, Hector; Delgado, Tamara; Almaguer, Citlalli; Cambronero, Ferran; Garcia-Sanchez, Angel; Flores-Arias, Maria T.

    2014-08-01

    USC-OSA is a student chapter whose objective is to bring Optics knowledge closer to the non-optics community. The activity developed at the Hospital school was one of the most important last year. It was consisted in a few Optics experiments and workshops with hospitalized children of different ages and pathologies. The experiments had to be adapted to their physical conditions with the aim of everyone could participate. We think this activity has several benefits including spreading Optics through children meanwhile they have fun and forget their illness for a while.

  12. A novel Bi-based oxybromide SrBiO{sub 2}Br: Synthesis, optical property and photocatalytic activity

    SciTech Connect

    He, Ying; Huang, Hongwei Zhang, Yihe Li, Xiaowei; Tian, Na; Guo, Yuxi; Luo, Yi

    2015-04-15

    Highlights: • SrBiO{sub 2}Br was first explored as a novel photocatalyst. • SrBiO{sub 2}Br has been successfully synthesized by a solid state reaction. • We systematically synthesized SrBiO{sub 2}Br in different temperature. • SrBiO{sub 2}Br calcinated at 700 °C exhibited the highest photocatalytic activity. - Abstract: A novel Bi-based photocatalyst SrBiO{sub 2}Br with layered structure was successfully synthesized via a solid state reaction method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectra (DRS). SrBiO{sub 2}Br has an indirect-transition optical band-gap of 2.58 eV. Density functional calculations revealed that conduction band (CB) were composed of the Bi 6p and Br 4s orbitals, and valence band (VB) were occupied by Br 4p and O 2p. The photodecomposition of rhodamine-B (RhB) experiments demonstrated SrBiO{sub 2}Br can be used as photocatalysts under ultraviolet (UV) light and visible light irradiation (λ > 400 nm). The results revealed that SrBiO{sub 2}Br calcinated at 700 °C exhibited the highest photocatalytic activity among the obtained SrBiO{sub 2}Br samples.

  13. Particle-resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume

    SciTech Connect

    Zaveri, Rahul A.; Barnard, James C.; Easter, Richard C.; Riemer, Nicole; West, Matthew

    2010-09-11

    The recently developed particle-resolved aerosol box model PartMC-MOSAIC was used to simulate the evolution of aerosol mixing state and the associated optical and cloud condensation nuclei (CCN) activation properties in an idealized urban plume. The model explicitly resolved the size and composition of individual particles from a number of sources and tracked their evolution due to condensation/evaporation, coagulation, emission, and dilution. The ensemble black carbon (BC) specific absorption cross section increased by 40% over the course of two days as a result of BC aging by condensation and coagulation. Three- and four-fold enhancements in CCN/CN ratios were predicted to occur within 6 hours for 0.2% and 0.5% supersaturations (S), respectively. The particle-resolved results were used to evaluate the errors in the optical and CCN activation properties that would be predicted by a conventional sectional framework that assumes monodisperse, internally-mixed particles within each bin. This assumption artificially increased the ensemble BC specific absorption by 14-30% and decreased the single scattering albedo by 0.03-0.07 while the bin resolution had a negligible effect. In contrast, the errors in CCN/CN ratios were sensitive to the bin resolution, and they depended on the chosen supersaturation. For S = 0.2%, the CCN/CN ratio predicted using 100 internally-mixed bins was up to 25% higher than the particle-resolved results, while it was up to 125% higher using 10 internally-mixed bins. Errors introduced in the predicted optical and CCN properties by neglecting coagulation were also quantified.

  14. Nonlinear optical properties of composite materials

    NASA Technical Reports Server (NTRS)

    Haus, Joseph W.; Inguva, Ramarao

    1991-01-01

    The optical properties of a new class of composite nonlinear materials composed of coated grains, such as cadmium sulfide with a silver coating, are examined. These materials exhibit intrinsic optical bistability and resonantly enhanced conjugate reflectivity. The threshold for intrinsic optical bistability is low enough for practical applications in optical communications and optical computing. Some problems associated with the fabrication of these materials are addressed. Based on preliminary results, switching times are expected to be in the subpicosecond range.

  15. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks. PMID:25361349

  16. Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: a theoretical study.

    PubMed

    Öner, Nazmiye; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2014-12-10

    The effective psychoactive properties of N,N-dimethyltryptamine (DMT) known as the near-death molecule have encouraged the imagination of many research disciplines for several decades. Although there is no theoretical study, a number of paper composed by experimental techniques have been reported for DMT molecule. In this study, the molecular modeling of DMT was carried out using B3LYP and HSEh1PBE levels of density functional theory (DFT). Our calculations showed that the energy gap between HOMO and LUMO is low, demonstrating that DMT is a biologically active molecule. Large hyperconjugation interaction energies imply that molecular charge transfer occurs in DMT. Moreover, NLO analysis indicates that DMT can be used an effective NLO material. PMID:24983923

  17. Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: A theoretical study

    NASA Astrophysics Data System (ADS)

    Öner, Nazmiye; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2014-12-01

    The effective psychoactive properties of N,N-dimethyltryptamine (DMT) known as the near-death molecule have encouraged the imagination of many research disciplines for several decades. Although there is no theoretical study, a number of paper composed by experimental techniques have been reported for DMT molecule. In this study, the molecular modeling of DMT was carried out using B3LYP and HSEh1PBE levels of density functional theory (DFT). Our calculations showed that the energy gap between HOMO and LUMO is low, demonstrating that DMT is a biologically active molecule. Large hyperconjugation interaction energies imply that molecular charge transfer occurs in DMT. Moreover, NLO analysis indicates that DMT can be used an effective NLO material.

  18. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  19. OPTOGELs: optically active xerogels

    NASA Astrophysics Data System (ADS)

    Canva, Michael; Georges, Patrick M.; Brun, Alain; Chaput, Frederic; Devreux, Francois; Boilot, Jean-Pierre

    1992-12-01

    Using the sol-gel process, we synthesized zirconia/silica matrices doped with different organic dyes (rhodamine 640, ...). These samples were used to perform optical Kerr effect experiments with sequences of ultrashort light pulses (100 fs, 620 nm, 1 (mu) J focused on 50 micrometers diameter) to induce refractive index changes. A permanent birefringence around 7 X 10-5 was obtained. By changing the direction of the polarization of the excitation pulses, we were able to locally control the directions of the neutral axes. We thus demonstrated the possibility of using this media as an all optical memory matrix and such doped xerogels will subsequently be referred to as OPTOGELS. We interpret our results as the possibility of locally controlling the orientation of the doping molecules encaged in the solid host matrix. The memory effect is probably due to links of hydrogen bond type between the organic molecules and the pore surface which prevent thermal reorientation. The electric field of the optical excitation pulses exerts a torque on the molecules. If this torque is greater than the energy linking the molecules to the pore surface, the molecules are temporarily released and aligned in the direction of the pulse polarization. Based on this interpretation, we have developed a model to explain the evolution of the birefringence as a function of the number of excitation pulses.

  20. Optical properties of relativistic plasma mirrors

    PubMed Central

    Vincenti, H.; Monchocé, S.; Kahaly, S.; Bonnaud, G.; Martin, Ph.; Quéré, F.

    2014-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for an entirely new class of optical components based on plasmas. The most promising of these are known as plasma mirrors, formed when an intense femtosecond laser ionizes a solid surface. These mirrors specularly reflect the main part of a laser pulse and can be used as active optical elements to manipulate its temporal and spatial properties. Unfortunately, the considerable pressures exerted by the laser can deform the mirror surface, unfavourably affecting the reflected beam and complicating, or even preventing, the use of plasma mirrors at ultrahigh intensities. Here we derive a simple analytical model of the basic physics involved in laser-induced deformation of a plasma mirror. We validate this model numerically and experimentally, and use it to show how such deformation might be mitigated by appropriate control of the laser phase. PMID:24614748

  1. Optical properties of relativistic plasma mirrors.

    PubMed

    Vincenti, H; Monchocé, S; Kahaly, S; Bonnaud, G; Martin, Ph; Quéré, F

    2014-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for an entirely new class of optical components based on plasmas. The most promising of these are known as plasma mirrors, formed when an intense femtosecond laser ionizes a solid surface. These mirrors specularly reflect the main part of a laser pulse and can be used as active optical elements to manipulate its temporal and spatial properties. Unfortunately, the considerable pressures exerted by the laser can deform the mirror surface, unfavourably affecting the reflected beam and complicating, or even preventing, the use of plasma mirrors at ultrahigh intensities. Here we derive a simple analytical model of the basic physics involved in laser-induced deformation of a plasma mirror. We validate this model numerically and experimentally, and use it to show how such deformation might be mitigated by appropriate control of the laser phase. PMID:24614748

  2. Optical properties of liquids for fluidic optics.

    PubMed

    Liebetraut, Peter; Waibel, Philipp; Nguyen, Phuong Ha Cu; Reith, Patrick; Aatz, Bernd; Zappe, Hans

    2013-05-10

    We present the dispersion characteristics of 18 liquids and one resin, which are widely used as media for liquid lenses in adaptive and tunable optics and for index matching in spectrochemical analysis. These are measured by using a refractometer operating at six different wavelengths. We provide a short description of the measurement setup and present a detailed uncertainty analysis of the measurement system to provide a measure of the reliability of the data. We conclude with a catalog of refractive indices and Sellmeier coefficients of the measured liquids and show the location of the analyzed materials in an Abbe diagram. PMID:23669831

  3. A new multicomponent salt of imidazole and tetrabromoterepthalic acid: structural, optical, thermal, electrical transport properties and antibacterial activity along with Hirshfeld surface analysis.

    PubMed

    Dey, Sanjoy Kumar; Saha, Rajat; Singha, Soumen; Biswas, Susobhan; Layek, Animesh; Middya, Somnath; Ray, Partha Pratim; Bandhyopadhyay, Debasis; Kumar, Sanjay

    2015-06-01

    Herein, we report the structural, optical, thermal and electrical transport properties of a new multicomponent salt (TBTA(2-))·2(IM(+))·(water) [TBTA-IM] of tetrabromoterepthalic acid (TBTA) with imidazole (IM). The crystal structure of TBTA-IM is determined by both the single crystal and powder X-ray diffraction techniques. The structural analysis has revealed that the supramolecular charge assisted O(-)⋯HN(+) hydrogen bonding and Br⋯π interactions play the most vital role in formation of this multicomponent supramolecular assembly. The Hirshfeld surface analysis has been carried out to investigate supramolecular interactions and associated 2D fingerprint plots reveal the relative contribution of these interactions in the crystal structure quantitatively. According to theoretical analysis the HOMO-LUMO energy gap of the salt is 2.92 eV. The salt has been characterized by IR, UV-vis and photoluminescence spectroscopic studies. It shows direct optical transition with band gaps of 4.1 eV, which indicates that the salt is insulating in nature. The photoluminescence spectrum of the salt is significantly different from that of TBTA. Further, a comparative study on the antibacterial activity of the salt with respect to imidazole, Gatifloxacin and Ciprofloxacin has been performed. Moreover, the current-voltage (I-V) characteristic of ITO/TBTA-IM/Al sandwich structure exhibits good rectifying property and the electron tunneling process governs the electrical transport mechanism of the device. PMID:25748591

  4. A new multicomponent salt of imidazole and tetrabromoterepthalic acid: Structural, optical, thermal, electrical transport properties and antibacterial activity along with Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Dey, Sanjoy Kumar; Saha, Rajat; Singha, Soumen; Biswas, Susobhan; Layek, Animesh; Middya, Somnath; Ray, Partha Pratim; Bandhyopadhyay, Debasis; Kumar, Sanjay

    2015-06-01

    Herein, we report the structural, optical, thermal and electrical transport properties of a new multicomponent salt (TBTA2-)·2(IM+)·(water) [TBTA-IM] of tetrabromoterepthalic acid (TBTA) with imidazole (IM). The crystal structure of TBTA-IM is determined by both the single crystal and powder X-ray diffraction techniques. The structural analysis has revealed that the supramolecular charge assisted O-⋯Hsbnd N+ hydrogen bonding and Br⋯π interactions play the most vital role in formation of this multicomponent supramolecular assembly. The Hirshfeld surface analysis has been carried out to investigate supramolecular interactions and associated 2D fingerprint plots reveal the relative contribution of these interactions in the crystal structure quantitatively. According to theoretical analysis the HOMO-LUMO energy gap of the salt is 2.92 eV. The salt has been characterized by IR, UV-vis and photoluminescence spectroscopic studies. It shows direct optical transition with band gaps of 4.1 eV, which indicates that the salt is insulating in nature. The photoluminescence spectrum of the salt is significantly different from that of TBTA. Further, a comparative study on the antibacterial activity of the salt with respect to imidazole, Gatifloxacin and Ciprofloxacin has been performed. Moreover, the current-voltage (I-V) characteristic of ITO/TBTA-IM/Al sandwich structure exhibits good rectifying property and the electron tunneling process governs the electrical transport mechanism of the device.

  5. Prediction of Apple Quality by Optical Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical properties (i.e., absorption and scattering) are useful for assessing the internal quality of apples such as firmness and soluble solids content (SSC). A spatially-resolved hyperspectral imaging technique was developed to measure the optical properties of apples for predicting fruit firmness...

  6. γ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibres

    NASA Astrophysics Data System (ADS)

    Sporea, D.; Mihai, L.; Neguţ, D.; Luo, Yanhua; Yan, Binbin; Ding, Mingjie; Wei, Shuen; Peng, Gang-Ding

    2016-07-01

    We investigate the effects of γ irradiation on bismuth active centres (BACs) and related photoluminescence properties of bismuth/erbium co-doped silica fibre (BEDF), [Si] ~28, [Ge] ~1.60, [Al] ~0.10, [Er] ~ <0.10 and [Bi] ~0.10 atom%, fabricated by in-situ solution doping and Modified Chemical Vapor Deposition (MCVD). The samples were irradiated at 1 kGy, 5 kGy, 15 kGy, 30 kGy and 50 kGy doses, and dose rate of 5.5 kGy/h, at room temperature. The optical properties of BEDF samples are tested before and after γ irradiation. We found that high dose γ irradiation could significantly influence the formation and composition of BACs and their photoluminescence performance, as important changes in absorption and emission properties associated with the 830 nm pump produces the direct evidence of γ irradiation effects on BAC-Si. We notice that the saturable to unsaturable absorption ratio at pump wavelength could be increased with high dose γ irradiation, indicating that emission and pump efficiency could be increased by γ irradiation. Our experimental results also reveal good radiation survivability of the BEDF under low and moderate γ irradiation. Our investigation suggests the existence of irradiation related processing available for tailoring the photoluminescence properties and performance of bismuth doped/co-doped fibres.

  7. γ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibres.

    PubMed

    Sporea, D; Mihai, L; Neguţ, D; Luo, Yanhua; Yan, Binbin; Ding, Mingjie; Wei, Shuen; Peng, Gang-Ding

    2016-01-01

    We investigate the effects of γ irradiation on bismuth active centres (BACs) and related photoluminescence properties of bismuth/erbium co-doped silica fibre (BEDF), [Si] ~28, [Ge] ~1.60, [Al] ~0.10, [Er] ~ <0.10 and [Bi] ~0.10 atom%, fabricated by in-situ solution doping and Modified Chemical Vapor Deposition (MCVD). The samples were irradiated at 1 kGy, 5 kGy, 15 kGy, 30 kGy and 50 kGy doses, and dose rate of 5.5 kGy/h, at room temperature. The optical properties of BEDF samples are tested before and after γ irradiation. We found that high dose γ irradiation could significantly influence the formation and composition of BACs and their photoluminescence performance, as important changes in absorption and emission properties associated with the 830 nm pump produces the direct evidence of γ irradiation effects on BAC-Si. We notice that the saturable to unsaturable absorption ratio at pump wavelength could be increased with high dose γ irradiation, indicating that emission and pump efficiency could be increased by γ irradiation. Our experimental results also reveal good radiation survivability of the BEDF under low and moderate γ irradiation. Our investigation suggests the existence of irradiation related processing available for tailoring the photoluminescence properties and performance of bismuth doped/co-doped fibres. PMID:27440386

  8. γ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibres

    PubMed Central

    Sporea, D.; Mihai, L.; Neguţ, D.; Luo, Yanhua; Yan, Binbin; Ding, Mingjie; Wei, Shuen; Peng, Gang-Ding

    2016-01-01

    We investigate the effects of γ irradiation on bismuth active centres (BACs) and related photoluminescence properties of bismuth/erbium co-doped silica fibre (BEDF), [Si] ~28, [Ge] ~1.60, [Al] ~0.10, [Er] ~ <0.10 and [Bi] ~0.10 atom%, fabricated by in-situ solution doping and Modified Chemical Vapor Deposition (MCVD). The samples were irradiated at 1 kGy, 5 kGy, 15 kGy, 30 kGy and 50 kGy doses, and dose rate of 5.5 kGy/h, at room temperature. The optical properties of BEDF samples are tested before and after γ irradiation. We found that high dose γ irradiation could significantly influence the formation and composition of BACs and their photoluminescence performance, as important changes in absorption and emission properties associated with the 830 nm pump produces the direct evidence of γ irradiation effects on BAC-Si. We notice that the saturable to unsaturable absorption ratio at pump wavelength could be increased with high dose γ irradiation, indicating that emission and pump efficiency could be increased by γ irradiation. Our experimental results also reveal good radiation survivability of the BEDF under low and moderate γ irradiation. Our investigation suggests the existence of irradiation related processing available for tailoring the photoluminescence properties and performance of bismuth doped/co-doped fibres. PMID:27440386

  9. In situ Fabrication of α-Bi2O3/(BiO)2CO3 Nanoplate Heterojunctions with Tunable Optical Property and Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Wang, Wei; Zhang, Qian; Cao, Jun-Ji; Huang, Ru-Jin; Ho, Wingkei; Lee, Shun Cheng

    2016-03-01

    Exploring the full potential use of heterojunction photocatalysts containing bismuth has attracted considerable interest in recent years. Fabrication of well-defined heterojunction photocatalysts with precise modulation of their chemical composition is crucial for tuning their optical properties and photocatalytic activity. In this study, we fabricated nanoplate α-Bi2O3/(BiO)2CO3 heterojunctions through in situ thermal treatment of (BiO)2CO3 nanoplates synthesized using a facile hydrothermal process. Characterization results showed that the as-prepared Bi2O3/(BiO)2CO3 heterojunctions possessed distinct crystal interface and exhibited pronounced structural and optical modulation, resulting in significant improvement of their photocatalytic activity for NO removal under simulated solar light irradiation compared with pristine (BiO)2CO3. Electron spin resonance spectroscopy showed that ṡOH radicals were the major reactive species involved in NO degradation, which is consistent with the theoretical analysis. The heterojunction formation can not only broaden the light absorption range but also improve the charge separation of photo-induced electron–hole pairs. This study is an important advancement in the development of semiconductor heterojunctions towards achieving functional photocatalysts.

  10. In situ Fabrication of α-Bi2O3/(BiO)2CO3 Nanoplate Heterojunctions with Tunable Optical Property and Photocatalytic Activity.

    PubMed

    Huang, Yu; Wang, Wei; Zhang, Qian; Cao, Jun-Ji; Huang, Ru-Jin; Ho, Wingkei; Lee, Shun Cheng

    2016-01-01

    Exploring the full potential use of heterojunction photocatalysts containing bismuth has attracted considerable interest in recent years. Fabrication of well-defined heterojunction photocatalysts with precise modulation of their chemical composition is crucial for tuning their optical properties and photocatalytic activity. In this study, we fabricated nanoplate α-Bi2O3/(BiO)2CO3 heterojunctions through in situ thermal treatment of (BiO)2CO3 nanoplates synthesized using a facile hydrothermal process. Characterization results showed that the as-prepared Bi2O3/(BiO)2CO3 heterojunctions possessed distinct crystal interface and exhibited pronounced structural and optical modulation, resulting in significant improvement of their photocatalytic activity for NO removal under simulated solar light irradiation compared with pristine (BiO)2CO3. Electron spin resonance spectroscopy showed that ⋅OH radicals were the major reactive species involved in NO degradation, which is consistent with the theoretical analysis. The heterojunction formation can not only broaden the light absorption range but also improve the charge separation of photo-induced electron-hole pairs. This study is an important advancement in the development of semiconductor heterojunctions towards achieving functional photocatalysts. PMID:26997545

  11. In situ Fabrication of α-Bi2O3/(BiO)2CO3 Nanoplate Heterojunctions with Tunable Optical Property and Photocatalytic Activity

    PubMed Central

    Huang, Yu; Wang, Wei; Zhang, Qian; Cao, Jun-ji; Huang, Ru-jin; Ho, Wingkei; Lee, Shun Cheng

    2016-01-01

    Exploring the full potential use of heterojunction photocatalysts containing bismuth has attracted considerable interest in recent years. Fabrication of well-defined heterojunction photocatalysts with precise modulation of their chemical composition is crucial for tuning their optical properties and photocatalytic activity. In this study, we fabricated nanoplate α-Bi2O3/(BiO)2CO3 heterojunctions through in situ thermal treatment of (BiO)2CO3 nanoplates synthesized using a facile hydrothermal process. Characterization results showed that the as-prepared Bi2O3/(BiO)2CO3 heterojunctions possessed distinct crystal interface and exhibited pronounced structural and optical modulation, resulting in significant improvement of their photocatalytic activity for NO removal under simulated solar light irradiation compared with pristine (BiO)2CO3. Electron spin resonance spectroscopy showed that ⋅OH radicals were the major reactive species involved in NO degradation, which is consistent with the theoretical analysis. The heterojunction formation can not only broaden the light absorption range but also improve the charge separation of photo-induced electron–hole pairs. This study is an important advancement in the development of semiconductor heterojunctions towards achieving functional photocatalysts. PMID:26997545

  12. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties.

    PubMed

    Stoumpos, Constantinos C; Frazer, Laszlo; Clark, Daniel J; Kim, Yong Soo; Rhim, Sonny H; Freeman, Arthur J; Ketterson, John B; Jang, Joon I; Kanatzidis, Mercouri G

    2015-06-01

    The synthesis and properties of the hybrid organic/inorganic germanium perovskite compounds, AGeI3, are reported (A = Cs, organic cation). The systematic study of this reaction system led to the isolation of 6 new hybrid semiconductors. Using CsGeI3 (1) as the prototype compound, we have prepared methylammonium, CH3NH3GeI3 (2), formamidinium, HC(NH2)2GeI3 (3), acetamidinium, CH3C(NH2)2GeI3 (4), guanidinium, C(NH2)3GeI3 (5), trimethylammonium, (CH3)3NHGeI3 (6), and isopropylammonium, (CH3)2C(H)NH3GeI3 (7) analogues. The crystal structures of the compounds are classified based on their dimensionality with 1–4 forming 3D perovskite frameworks and 5–7 1D infinite chains. Compounds 1–7, with the exception of compounds 5 (centrosymmetric) and 7 (nonpolar acentric), crystallize in polar space groups. The 3D compounds have direct band gaps of 1.6 eV (1), 1.9 eV (2), 2.2 eV (3), and 2.5 eV (4), while the 1D compounds have indirect band gaps of 2.7 eV (5), 2.5 eV (6), and 2.8 eV (7). Herein, we report on the second harmonic generation (SHG) properties of the compounds, which display remarkably strong, type I phase-matchable SHG response with high laser-induced damage thresholds (up to ∼3 GW/cm(2)). The second-order nonlinear susceptibility, χS(2), was determined to be 125.3 ± 10.5 pm/V (1), (161.0 ± 14.5) pm/V (2), 143.0 ± 13.5 pm/V (3), and 57.2 ± 5.5 pm/V (4). First-principles density functional theory electronic structure calculations indicate that the large SHG response is attributed to the high density of states in the valence band due to sp-hybridization of the Ge and I orbitals, a consequence of the lone pair activation. PMID:25950197

  13. BOREAS TE-10 Leaf Optical Properties

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Chan, Stephen S.; Middleton, Elizabeth

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-10 (Terrestrial Ecology) team collected several data sets in support of its efforts to characterize and interpret information on the reflectance, transmittance, gas exchange, oxygen evolution, and biochemical properties of boreal vegetation. This data set describes the spectral optical properties (reflectance and transmittance) of boreal forest conifers and broadleaf tree leaves as measured with a Spectron Engineering SE590 spectroradiometer at the Southern Study Area Old Black Spruce (SSA OBS), Old Jack Pine (OJP), Young Jack Pine (YJP), Old Aspen (OA), Old Aspen Auxiliary (OA-AUX), Young Aspen Auxiliary (YA-AUX), and Young Aspen (YA) sites. The data were collected during the growing seasons of 1994 and 1996 and are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. Magnetic field effects on mitochondrion-activity-related optical properties in slime mold and bone forming cells.

    PubMed

    Mizukawa, Yuri; Iwasaka, Masakazu

    2013-01-01

    In the present study, a cellular level response of Cyto-aa3 oxidation was investigated in real time under both time-varying and strong static magnetic fields of 5 T. Two kinds of cells, a slime mold, Physarum polycephalum, and bone forming cells, MC-3T3-E1, were used for the experiments. The oxidation level of the Cyto-aa3 was calculated by optical absorptions at 690 nm, 780 nm and 830 nm. The sample, fiber-optics and an additional optical fiber for light stimulation were set in a solenoidal coil or the bore of a 5-T superconducting magnet. The solenoidal coil for time-varying magnetic fields produced sinusoidal magnetic fields of 6 mT. The slime mold showed a periodic change in Cyto-aa3 oxidation, and the oxidation-reduction cycle of Cyto-aa3 was apparently changed when visible-light irradiated the slime mold. Similarly to the case with light, time-varying magnetic stimulations changed the oxidation-reduction cycle during and after the stimulation for 10 minutes. The same phenomena were observed in the MC-3T3-E1 cell assembly, although their cycle rhythm was comparatively random. Finally, magnetic field exposure of up to 5 T exhibited a distinct suppression of Cyto-aa3 oscillation in the bone forming cells. Exposure up to 5 T was repeated five times, and the change in Cyto-aa3 oxidation reproducibly occurred. PMID:24109969

  15. Chiral THz metamaterial with tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Taylor, Antoinette; O' Hara, John; Chowdhury, Roy; Zhao, Rongkuo; Soukoullis, Costas M

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  16. Plasmonic nanogels with robustly tunable optical properties

    NASA Astrophysics Data System (ADS)

    Cong, Tao; Wani, Satvik N.; Zhou, Georo; Baszczuk, Elia; Sureshkumar, Radhakrishna

    2011-10-01

    Low viscosity fluids with tunable optical properties can be processed to manufacture thin film and interfaces for molecular detection, light trapping in photovoltaics and reconfigurable optofluidic devices. In this work, self-assembly in wormlike micelle solutions is used to uniformly distribute various metallic nanoparticles to produce stable suspensions with localized, multiple wavelength or broad-band optical properties. Their spectral response can be robustly modified by varying the species, concentration, size and/or shape of the nanoparticles. Structure, rheology and optical properties of these plasmonic nanogels as well as their potential applications to efficient photovoltaics design are discussed.

  17. Optical properties of matrix confined species

    NASA Astrophysics Data System (ADS)

    Lezhnina, M. M.; Kynast, U. H.

    2010-11-01

    A majority of optically functional materials can be perceived as a liaison between ionic or molecular guests and a more or less rigid host. The guests exhibit an optical function, whereas the host provides suitable space, both of them synergistically complementing each other. The embracement of guests and hosts is often very intimate, as e.g. in typical phosphors, where luminescent ions even become part of the host. While the host-guest terminology usually is not applied to such marriages, the term becomes appropriate, if the host grants some degrees of spatial freedom, yet giving order and structure to its guests. Zeolites, clays and inverse opals are porous materials naturally providing hospitable cavities, channels or other compartments, and at the same time the guests are often demanded to occupy preassigned positions within these, or to structurally adapt to the interior host topology. Whereas zeolites and clays are merely patient providers of guest space, inverse opals, can actively turn the light on and off. The present article summarises and highlights recent experimental evidence, ongoing research and some envisaged merits resulting from the interaction of matrix confined luminescent ions, complexes and molecules with a focus on the optical properties of rare earth based materials.

  18. Optical and optoelectronic properties of organic nanomaterials

    NASA Astrophysics Data System (ADS)

    Satapathi, Soumitra

    In this dissertation research, organic nanomaterials, such as semiconducting polymer nanoparticles, graphene nanosheets and organic small molecules were successfully utilized for fabrication of organic solar cells, optical sensors and for high contrast imaging of cancer cells. Semiconducting polymer nanoparticles were synthesized by a simple miniemulsion technique. These size controllable polymeric nanoparticles were proven to be able to optimize the morphologies of the bulk heterojunction solar cells and to provide fundamental insight into the evolution of the nanostructures. Highly sensitive optical sensors were fabricated using these polymeric nanoparticles for efficient detection of nitroaromatic explosives, such as 2,4 dinitrotoluene (DNT) and 2,4,6 trinitrotoluene (TNT) in aqueous medium as well as in vapor the phase. Moreover, these water dispersible and fluorescent polymer nanodots were two-photon active and could be internalized by tumor cells as demonstrated by two-photon confocal imaging. In addition to the polymer nanoparticles, the role of the graphene nanosheets in the performance enhancement of dye sensitized solar cells was also investigated. The use of organic small molecules for optical sensing of different nerve gas agents and their potential use in multiphoton imaging of cancer cells were discussed. Controlling material properties at nanoscale for optoelectronics and imaging application as discussed in this dissertation would provide new dimensions in the areas of applied physics and materials science researches.

  19. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

    SciTech Connect

    Grant, C D; Zhang, J Z

    2007-09-28

    This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

  20. Synthesizing Diacetylenes With Nonlinear Optical Properties

    NASA Technical Reports Server (NTRS)

    Mcmanus, Samuel P.; Frazier, Donald P.; Paley, Mark S.

    1993-01-01

    Diacetylene compounds being investigated to determine whether they have nonlinear optical properties making them useful for four-wave mixing, generation of third harmonics, phase conjugation, and like. Diacetylene monomers synthesized by sequences of chemical reactions. Monomers polymerized by ultraviolet light, forming potentially useful nonlinear optical materials.

  1. Electro-optic properties of organic nanotubes.

    PubMed

    Stoylov, Stoyl P; Stoilova-McPhie, Svetla

    2011-08-10

    In this review article the theoretical and experimental possibilities of applying EO-methods for estimation of the physico-chemical properties of the organic nanotubes (ONTs) are studied. The ONTs are highly organized nanostructures of strongly elongated, anysometric, and hollow cylinders with a size range of 1 nm to 10,000 nm, e.g. in aqueous solutions they could behave as colloid (disperse) particles. They have high interaction ability due to their extremely large curved, rolled-up external surfaces (bilayers of membrane walls) and unique properties because of their specific electric charge distribution and dynamics that make possible the functionalization of their surfaces. Thus they could template guestsubstances such as membrane proteins and protein complexes on the exterior surfaces and in the membrane. We performed our investigations for the case of ONT aqueous colloid suspension. Following our earlier proposition of the general expression for the electro-optic (EO) effect we derived equations for the evaluation of the electric properties of ONT particles such as mechanism of electric polarization and identification of their most important electric Dipole Moments (DM), permanent (pDM) and induced (iDMs). Further we recommend ways for the calculation of their magnitude and direction. Also we evaluated some geometrical properties such as length of the ONT particles and their polydispersity. The knowledge that we provided about the ONT properties may enable us to elucidate and predict their biological activity. Templating biological active ligands (such as membrane proteins and protein complexes) on the inner and outer surfaces as well as in the surface membrane creates their potential usefulness as carrier and deliverer of biopharmaceuticals in bio-nanodevices. The theoretical equations were compared with the experimental data for ONTs such as (lipid) LNT, Tobacco Mosaic Virus (TMV) and microtubules (MT). Comparison of EO methods with other methods used till

  2. Synthesis and optical properties of a crosslinkable polymer system containing TCF and TCP chromophores with excellent electro-optic activity and thermal stability

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Bo, Shuhui; Zhen, Zhen; Liu, Xinhou

    2012-10-01

    Crosslinkable polymer with side-chain system was investigated to increase the content of NLO chromophores and improve the stability of oriented chromophores. In this work, a series of crosslinkable copolymers which beared different concentrations of chromophores with the tricyanofurane (TCF) acceptor and a kind of crosslinkable copolymers beared chromophores with dendritic tricyanopyrroline (TCP) acceptor were successfully synthesized and characterized. The crosslinked EO polymers which beared chromophores with the tricyanofurane (TCF) acceptor revealed the highest EO coefficient (r33) of 47.0 pm/V at 1310 nm, which was similar with the r33 of uncrosslinked systems. Compared to the uncrosslinked EO polymer systems, the crosslinked ones exhibited significantly enhanced temporal stability. Keywords: Nonlinear optics; Crosslinkable system; Chromophore-containing copolymers; Side-chain; Crosslinking reaction; Thermally stable polymer

  3. Membrane optical activity: some facts and fallacies.

    PubMed

    Wallach, D F; Low, D A; Bertland, A V

    1973-11-01

    The circular dichroism of hypothetical, water-filled, spherical shells, 75-3500 nm in radius, with walls 7.5 nm thick, composed of poly(L-lysine) in various conformational proportions, and suspended in water, were computed from the known optical properties of this polypeptide by classical general light-scattering theory (Mie theory). Comparison of the computed curves of circular dichroism spectra with those of diverse membranes reveals large discrepancies below 215 nm and shows that light scattering does not adequately account for the optical activity of membranes containing appreciable proportions of nonhelical conformation. However, turbidity effects can explain the anomalies of membrane optical rotatory dispersion near 233 nm, if not uniquely so. We conclude that the optical activity of neither most soluble proteins nor membrane proteins can provide accurate conformational information when synthetic polypeptides are used as standards and list the reasons for this argument. We also show that present techniques to "correct" membrane optical activity are likely to produce additional artifact. PMID:4522300

  4. Optical Properties of Thin Film Molecular Mixtures

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Shumway, Dean A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    -style collectors. Sputtering offers considerable flexibility in coating conditions, including a wide variety of metal and dielectric targets. Coating designs range from simple two or three layer coatings to complex coatings that are purposely graded to be metal-rich at their base and oxide-rich at their surface in order to yield the desired solar selective properties. In these cermet coatings, molecular islands of metal are thought to be embedded in a three dimensional matrix of dielectric. Recent work has identified the use of custom made ion beam sputter deposition targets to produce coatings containing molecular mixtures of metal and dielectric. The targets are cylindrical and the surface consists of a gradually changing composition of metal and dielectric. Rotating the cylinder under the beam during ion beam sputter deposition yields a coating that is a molecular mixture of metal and dielectric, with the composition changing through the thickness of the coating. The optical properties of these coatings are not only dependent on their thickness and chemical composition, but are also dependent on the extent of the through thickness gradient established during deposition. This paper presents a summary of the optical properties of several thin film molecular mixtures designed as solar selective coatings. Optical performance is first identified as a function of wavelength, from the ultraviolet to the visible and infrared. Coating composition, thickness, and gradient from metal to dielectric also play an important role. Additional work for future activities is also identified.

  5. Optical activity of BL Lacertae

    NASA Astrophysics Data System (ADS)

    Larionov, V.; Blinov, D.; Konstantinova, T.

    2012-04-01

    We perform optical photometric and R-band polarimetric monitoring of BL Lac using 70-cm AZT-8 (CrAO, Ukraine) and 0.4-m LX-200 (St.Petersburg, Russia) telescopes, as a part of GASP project. As reported in Atel#4028, this blazar was found by Fermi LAT in active state on 2012 April 9. Our data show that a sharp optical maximum was reached on the date 2012-04-08UT02:20, R=13.10, while on 2012-04-11UT01:30 R=13.40.

  6. Optical properties of a hurricane

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander A.; von Hoyningen-Huene, W.

    2004-01-01

    This paper is devoted to study of the distribution of the reflection function, spherical albedo, and optical thickness for a hurricane Erin, located in the western Atlantic (39.3°N, 60.4°W) on September 13th, 2001(16:21 UTC). The limitations and possibilities of using SeaWiFS imagery for remote sensing of hurricanes are discussed. In particular, it is found that the mode of the hurricane spherical albedo spatial distribution is equal to 0.86 and the transport optical thickness is in the range 4-10 on average for the central core of a hurricane. A simple analytical method to derive the hurricane optical thickness distribution is proposed.

  7. Optical Studies of Active Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    This grant was to support optical studies of comets close enough to the sun to be outgassing. The main focus of the observations was drawn to the two extraordinarily bright comets Hyakutake and Hale-Bopp, but other active comets were also studied in detail during the period of funding. Major findings (all fully published) under this grant include: (1) Combined optical and submillimeter observations of the comet/Centaur P/Schwassmann-Wachmann 1 were used to study the nature of mass loss from this object. The submillimeter observations show directly that the optically prominent dust coma is ejected by the sublimation of carbon monoxide. Simultaneous optical-submillimeter observations allowed us to test earlier determinations of the dust mass loss rate. (2) We modelled the rotation of cometary nuclei using time-resolved images of dust jets as the primary constraint. (3) We obtained broad-band optical images of several comets for which we subsequently attempted submillimeter observations, in order to test and update the cometary ephemerides. (4) Broad-band continuum images of a set of weakly active comets and, apparently, inactive asteroids were obtained in BVRI using the University of Hawaii 2.2-m telescope. These images were taken in support of a program to test the paradigm that many near-Earth asteroids might be dead or dormant comets. We measured coma vs. nucleus colors in active comets (finding that coma particle scattering is different from, and cannot be simply related to, nucleus color). We obtained spectroscopic observations of weakly active comets and other small bodies using the HIRES spectrograph on the Keck 10-m telescope. These observation place sensitive limits to outgassing from these bodies, aided by the high (40,000) spectral resolution of HIRES.

  8. The optical properties and photocatalytic activity of CdS-ZnS-TiO2/Graphite for isopropanol degradation under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Rahmawati, Fitria; Wulandari, Rini; Murni, Irvinna M.; Mudjijono

    2016-02-01

    This research prepared a photocatalyst tablet of CdS-ZnS-TiO2 on a graphite substrate. The synthesis was conducted through chemical bath deposition method. The graphite substrate used was a waste graphite rod from primary batteries. The aims of this research are studying the crystal structure, the optical properties and the photocatalytic activity of the prepared material. The photocatalytic activity was determined through isopropanol degradation. The result shows that the TiO2/Graphite provide direct transition gap energy at 2.91 eV and an indirect transition gap energy at 3.21 eV. Deposition of CdS-ZnS changed the direct transition gap energy to 3.01 eV and the indirect transition gap energy to 3.22 eV. Isopropanol degradation with the prepared catalyst produced new peaks at 223-224 nm and 265-266 nm confirming the production of acetone. The degradation follows first order with rate constant of 2.4 × 10-2 min-1.

  9. Optical properties of Li-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Valentini, Antonio; Quaranta, Fabio; Vasanelli, Lorenzo; Piccolo, R.

    1991-03-01

    The difficulty to achieve a refractive index matching between active substrate and active layer grown on, is one of the main problem in integrated optical devices based on gallium arsenide, because of its high refractive index value. One possible solution could be an active layer whose refractive index is variable during the grown. Zinc oxide is a very interesting material because of its electro-optic and acousto- optic properties. It has a low cost and can be prepared by a variety of techniques. In this paper deposition of lithium doped zinc oxide films by reactive sputtering has been investigated in order to study the dependence of optical properties on lithium content and deposition parameters. A ZnO:Li target was used. The film depositions were performed varying the oxygen content in sputtering gas. For comparison undoped ZnO films were also prepared. We have performed optical and electrical measurement on films relating the results to Li contents and O/Zn ratio obtained by nuclear reaction and Rutherford backscattering measurements respectively. The film analysis has shown that dopant concentration is mainly controlled by gas mixture. The optical properties are dependent on deposition conditions. Optical waveguides have been prepared and characterized. The results are presented and discussed.

  10. Optical properties of actinide and lanthanide ions

    SciTech Connect

    Hessler, J.P.; Carnall, W.T.

    1980-01-01

    This paper reviews some of the recent developments in this area of spectroscopy, emphasizing the optical properties of the tripositive lanthanide and actinide ions. In particular, the single ion properties of line positon, intensity, width, and fluorescence lifetime are discussed. 53 reference, 3 figures, 4 tables.

  11. Different ways to active optical frequency standards

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Zhang, Xiaogang; Chen, Jingbiao

    2016-06-01

    Active optical frequency standard, or active optical clock, is a new concept of optical frequency standard, where a weak feedback with phase coherence information in optical bad-cavity limitation is formed, and the continuous self-sustained coherent stimulated emission between two atomic transition levels with population inversion is realized. Through ten years of both theoretical and experimental exploration, the narrow linewidth and suppression of cavity pulling effect of active optical frequency standard have been initially proved. In this paper, after a simple review, we will mainly present the most recent experimental progresses of active optical frequency standards in Peking University, including 4-level cesium active optical frequency standards and active Faraday optical frequency standards. The future development of active optical frequency standards is also discussed.

  12. Optical positions of active galaxies

    NASA Astrophysics Data System (ADS)

    Meurs, E. J. A.

    1984-04-01

    Optical positions are calculated for 26 active galaxies (mainly Markarian dn Arakelian objects), using the plate-measuring apparatus at Leiden Observatory on the O plates of the Palomar Sky Survey and applying AGK-3 data in the reductions. The results are presented in a table and have accuracy 0.5 arcsec; a comparison with the positions determined by Clements (1981, 1983) for 19 objects reveals a possible offset of -0.28 arcsec in the right-ascension determinations.

  13. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  14. The Optical Properties of Ion Implanted Silica

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Ila, D.; Sarkisov, S.; Williams, E. K.; Poker, D. B.; Hensley, D. K.

    1997-01-01

    We will present our investigation on the change in the optical properties of silica, 'suprasil', after keV through MeV implantation of copper, tin, silver and gold and after annealing. Suprasil-1, name brand of silica glass produced by Hereaus Amerisil, which is chemically pure with well known optical properties. Both linear nonlinear optical properties of the implanted silica were investigated before and after thermal annealing. All implants, except for Sn, showed strong optical absorption bands in agreement with Mie's theory. We have also used Z-scan to measure the strength of the third order nonlinear optical properties of the produced thin films, which is composed of the host material and the metallic nanoclusters. For implants with a measurable optical absorption band we used Doyle's theory and the full width half maximum of the absorption band to calculate the predicted size of the formed nanoclusters at various heat treatment temperatures. These results are compared with those obtained from direct observation using transmission electron microscopic techniques.

  15. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  16. Three-dimensional FeSe2 microflowers assembled by nanosheets: Synthesis, optical properties, and catalytic activity for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Chang, Xiaoying; Jian, Jikang; Cai, Gemei; Wu, Rong; Li, Jin

    2016-03-01

    Three-dimensional FeSe2 microflowers were synthesized for the first time by a facile solvothermal method, using FeCl2·4H2O and selenium powder as raw materials, along with ethanolamine as solvent. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results show that the FeSe2 microflowers consist of nanosheets with a thickness of about 50 - 80 nm. The Raman spectrum shows the characteristic peaks of Se-Se vibration modes. The optical band gap of the sample was determined to be 1.48 eV by UV-visible absorption spectroscopy. The photoluminescence properties of the FeSe2 microflowers and their catalytic activity for the hydrogen evolution reaction were also assessed. Finally, a possible growth mechanism of the FeSe2 microflowers is proposed. [Figure not available: see fulltext.

  17. Growth, structure, and optical properties of a self-activated crystal: Na2Nd2O(BO3)2

    NASA Astrophysics Data System (ADS)

    Shan, Faxian; Zhang, Guochun; Yao, Jiyong; Xu, Tianxiang; Zhang, Xinyuan; Fu, Ying; Wu, Yicheng

    2015-08-01

    A self-activated crystal Na2Nd2O(BO3)2 has been grown from the Na2O-Nd2O3-B2O3-NaF system. Its structure was determined by single crystal X-ray diffraction, and verified by infrared spectrum and inductively coupled plasma optical emission spectrometry. Na2Nd2O(BO3)2 crystallizes in the monoclinic crystal system, space group P21/c with unit-cell parameters a = 10.804 Å, b = 6.421 Å, c = 10.450 Å, β = 117.95°, Z = 4, and V = 640.4 Å3. Its absorption and emission spectra were measured at room temperature. Based on the absorption spectrum, the spontaneous transition probabilities, fluorescence branch ratio, and the radiation lifetime of 4F3/2 state were calculated. The emission properties under the 355 nm excitation were also evaluated. The electronic structure of Na2Nd2O(BO3)2 was calculated by the first-principles method. The obtained results show that Na2Nd2O(BO3)2 may be a promising microchip laser material.

  18. Optical properties of a scorpion (Centruroides limpidus)

    NASA Astrophysics Data System (ADS)

    Ullrich, Bruno; Duckworth, Robyn M.; Singh, Akhilesh K.; Barik, Puspendu; Mejía-Villanueva, Vicente O.; Garcia-Pérez, Alberto C.

    2016-04-01

    Scorpions, elusive by nature, tend to appear nocturnally and are usually not appreciated when encountered. The exoskeleton is capable of fluorescing allowing for their detection at night in order to prevent undesirable encounters. The specificity of their fluorescing suggests specialized optical features. However, despite the blue-green fluorescence, to the best of our knowledge, no further results have been published on the optical properties of scorpions. Their exoskeletal structure whose versatility provides them protection, camouflage, and flexibility has not been studied under laser excitation and monochromatic light. The experiments reveal the nonlinear optical properties, infrared photoluminescence, and photoconductivity of the epicuticle of scorpions, demonstrating that the scorpion’s outer-covering is a prototype of a semiconducting inherently integrated multifunctional polymeric film with appealing potential applications such as optical logics, photonic frequency converters, novel multiplexers handling electronic and photonic inputs, and lasers.

  19. Optically active particles of chiral polymers.

    PubMed

    Song, Ci; Liu, Xuan; Liu, Dong; Ren, Chonglei; Yang, Wantai; Deng, Jianping

    2013-09-01

    Particles constructed by chiral polymers (defined as PCPs) have emerged as a rapidly expanding research field in recent years because of their potentially wide-ranging applications in asymmetric catalysis, enantioselective crystallization, enantioselective release, amongst many others. The particles show considerable optical activity, due to the chirality of the corresponding polymers from which the particles are derived. This review article presents an overview on PCPs with emphasis on our group's recent achievements in the preparation of PCPs derived from optically active helical polymers and their applications. PCPs can be prepared via emulsion polymerization, precipitation polymerization, and suspension polymerization by starting from monomers. Emulsification of preformed chiral polymers and self-assembly approaches also can lead to PCPs. Chiral polymer-based core/shell particles, hollow particles, and magnetic particles are also covered because of their remarkable properties and significant potential applications. PMID:24030962

  20. Steady-state heating of active fibres under optical pumping

    SciTech Connect

    Gainov, V V; Shaidullin, R I; Ryabushkin, Oleg A

    2011-07-31

    We have measured the temperature in the core of rare-earth-doped optical fibres under lasing conditions at high optical pump powers using a fibre Mach - Zehnder interferometer and probe light of wavelength far away from the absorption bands of the active ions. From the observed heating kinetics of the active medium, the heat transfer coefficient on the polymer cladding - air interface has been estimated. The temperature of the active medium is shown to depend on the thermal and optical properties of the polymer cladding. (fiber and integrated optics)

  1. Thermally activated heavy states and anomalous optical properties in a multiband metal: The case of SrMnS b2

    NASA Astrophysics Data System (ADS)

    Park, H. J.; Sandilands, Luke J.; You, J. S.; Ji, Hyo Seok; Sohn, C. H.; Han, J. W.; Moon, S. J.; Kim, K. W.; Shim, J. H.; Kim, Jun Sung; Noh, T. W.

    2016-05-01

    We report an optical spectroscopic study of SrMnS b2 , a low-carrier-density metal. As temperature is decreased, our measurements reveal a large increase in the quasiparticle plasma frequency, which is highly unusual for a metal. This seemingly anomalous behavior can be accounted for using a "three-band" model of the multiband electronic structure of SrMnS b2 that includes two conduction bands and one valence band. The second conduction band is assumed to be heavy and its minimum is taken to be close to, but not intersecting, the Fermi level. At finite temperature, quasiparticles are thermally redistributed between the two conduction bands, leading to an increase in the optical effective mass and a decrease in the plasma frequency. The temperature dependence of the low-lying interband optical transitions and the Hall number can also be understood using our model. The phenomenology of such a three-band scenario has not been widely considered to date in optical spectroscopic studies. Our results provide an explanation for the puzzling optical properties that have previously been reported in a number of topical low-carrier-density metals and semimetals and lay a foundation for future optical studies of these materials.

  2. Magnetically Responsive Nanostructures with Tunable Optical Properties.

    PubMed

    Wang, Mingsheng; Yin, Yadong

    2016-05-25

    Stimuli-responsive materials can sense specific environmental changes and adjust their physical properties in a predictable manner, making them highly desired components for designing novel sensors, intelligent systems, and adaptive structures. Magnetically responsive structures have unique advantages in applications, as external magnetic stimuli can be applied in a contactless manner and cause rapid and reversible responses. In this Perspective, we discuss our recent progress in the design and fabrication of nanostructured materials with various optical responses to externally applied magnetic fields. We demonstrate tuning of the optical properties by taking advantage of the magnetic fields' abilities to induce magnetic dipole-dipole interactions or control the orientation of the colloidal magnetic nanostructures. The design strategies are expected to be extendable to the fabrication of novel responsive materials with new optical effects and many other physical properties. PMID:27115174

  3. Ovarian tissue characterization using bulk optical properties

    NASA Astrophysics Data System (ADS)

    Tavakoli, B.; Xu, Y.; Zhu, Q.

    2013-03-01

    Ovarian cancer, the deadliest of all gynecologic cancers, is not often found in its early stages due to few symptoms and no reliable screening test. Optical imaging has a great potential to improve the ovarian cancer detection and diagnosis. In this study we have characterized the bulk optical properties of 26 ex-vivo human ovaries using a Diffuse Optical Tomography system. The quantitative values indicated that, in the postmenopausal group, malignant ovaries showed significantly lower scattering coefficient than normal ones. The scattering parameter is largely related to the collagen content that has shown a strong correlation with the cancer development.

  4. Optical properties of carbon microcoils

    SciTech Connect

    Hikita, Muneaki; Cao, Li E-mail: klafdi1@udayton.edu; Lafdi, Khalid E-mail: klafdi1@udayton.edu

    2014-01-27

    Carbon microcoils (CMCs) have emerged as versatile material artifacts for a variety of applications due to their helical and spiral structures. Embedded in matrix, CMCs have already been demonstrated for their potential tactile/proximity sensor application. In this study, CMCs were prepared using a conventional chemical vapor deposition method, and then were functionalized with octadecylamine. Upon photoexcitation, the functionalized CMCs exhibited photoluminescence in the visible region, which has never been found before. Similar to carbon based nanoparticles, the photoluminescence of CMCs was attributed to electron-hole radiative recombination after surface passivation. The results suggested that this kind of fluorescent functionalized CMCs might be used as a promising class of optical agents for biological applications.

  5. Optical Properties Of Turbidity Standards

    NASA Astrophysics Data System (ADS)

    Ronald, J.; Zaneveld, V.; Spinrad, Richard W.; Bartz, Robert

    1980-03-01

    Measurements of light scattering and light attenuation were made for suspensions of formazin and diatomaceous earth. Light scattering was measured for light of wavelength 632.8 nm at angles from 0.1° to 1.0° and for light of wavelengths 400, 500, 550, 600, 650, and 700 nm at 45°. Light attenuation was measured over a 25 cm pathlength for light of 660 nm. These measurements were made for suspensions which varied from 0 to 40 Jackson Turbidity Units of formazin and 0 to 40 mg/1 of diatomaceous earth. The results indicate the necessity for multiple optical measurements for determinations of turbidity of water. In addition the tables and curves presented may be used in the calibration of light scattering meters and transmissometers which are used for turbidity studies.

  6. Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical absorption and scattering properties of fruit change with the physiological and biochemical activities in the tissue during ripening and postharvest storage. But it has not been well understood on how these changes are related to the structural and mechanical properties of fruit. This resear...

  7. Optical properties of KD*P modulators

    NASA Technical Reports Server (NTRS)

    West, E. A.; Bhatia, S. S.

    1990-01-01

    Longitudinal KD*P modulators are used in ground-based solar magnetographs to eliminate seeing effects. Although the modulators can be used as variable retarders, the optical properties when zero voltage is applied influences the performance on instruments requiring very accurate polarization measurements. Measurements at the Marshall Space Flight Center are discussed in terms of the optical properties of KD*P modulators when zero voltage is applied. The measurements can be used to predict the modulation characteristics of the devices and to determine the polarization accuracy that can be expected from the vector magnetograph.

  8. Single snapshot imaging of optical properties

    PubMed Central

    Vervandier, Jean; Gioux, Sylvain

    2013-01-01

    A novel acquisition and processing method that enables single snapshot wide field imaging of optical properties in the Spatial Frequency Domain (SFD) is described. This method makes use of a Fourier transform performed on a single image and processing in the frequency space to extract two spatial frequency images at once. The performance of the method is compared to the standard six image SFD acquisition method, assessed on tissue mimicking phantoms and in vivo. Overall both methods perform similarly in extracting optical properties. PMID:24409392

  9. Optical properties of water at high temperature

    SciTech Connect

    French, Martin; Redmer, Ronald

    2011-04-15

    We calculate optical properties of water along the principal Hugoniot curve from ambient conditions up to temperatures of 130 000 K with density functional theory (DFT) and the Kubo-Greenwood formula. The effect of the exchange correlation functional is examined by comparing the generalized gradient approximation with a hybrid functional that contains Fock exchange. We find noticeable but moderate differences between the respective results which decrease rapidly above 80 000 K. The reflectivity along the principal Hugoniot is calculated and a good qualitative but fair quantitative agreement with available experimental data is found. Our results are of general relevance for calculations of optical properties with DFT at zero and elevated temperature.

  10. Optical design and active optics methods in astronomy

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2013-03-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis.

  11. Nonlinear optical properties of intriguing Ru σ-acetylide complexes and the use of a photocrosslinked polymer as a springboard to obtain SHG active thin films.

    PubMed

    Colombo, Alessia; Dragonetti, Claudia; Marinotto, Daniele; Righetto, Stefania; Griffini, Gianmarco; Turri, Stefano; Akdas-Kilig, Huriye; Fillaut, Jean-Luc; Amar, Anissa; Boucekkine, Abdou; Katan, Claudine

    2016-07-01

    This work reports on the design, synthesis and photo-physical properties of two ruthenium σ-alkynyl complexes. It is shown that, despite similar optical absorption features recorded in solution, the introduction of a benzaldehyde moiety leads to an improved non-linear optical (NLO) response as measured by Electric Field Induced Second Harmonic (EFISH) generation and Third Harmonic Generation (THG) at 1.907 μm, both related to the second order hyperpolarizability. These structure-property relationships are rationalized based on few state modelling. Complex is subsequently processed to afford composite films that demonstrate a χ(2) of 1.4 pm V(-1), quite remarkable given the ease of film processing implemented in this work. PMID:27315336

  12. Optical properties of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Karimi, Farhad; Knezevic, Irena

    We calculate the dielectric function and optical conductivity of ultra-narrow armchair graphene nanoribbons (AGNRs) and zigzag graphene nanoribbons (ZGNRs) by a self- consistent-field approach within a Markovian master-equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations. Based on third-nearest-neighbor tight-binding, with appropriate modifications for AGNRs and ZGNRs, we calculate electron dispersions and Bloch wave functions in excellent agreement with the local spin-density approximation (LSDA) results. A generalized Markovian master equation of the Lindblad form, which maintains the positivity of the density matrix, is derived to describe the interaction of the electronic system with an external electromagnetic field (to first order) and with a dissipative environment (to second order). Not only does the SCF-MMEF capture the interband electron-hole-pair generation, but it also accurately accounts for concurrent interband and intraband electron scattering with phonons and impurities. We employ the SCF-MMEF to calculate the dielectric function, complex conductivity, and loss function for both suspended and supported AGNRs and ZGNRs with different widths. Then, we obtain the plasmon dispersion and propagation length from the loss-function maximum. Support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712.

  13. Optical Properties of Suspended and Substrate Graphene

    NASA Astrophysics Data System (ADS)

    Meera, V.

    2010-03-01

    Graphene, a two-dimensional material made purely of carbon atoms arranged in a hexagonal lattice has attracted the attention of scientific community since it was first produced in 2004. Due to the peculiarity in its band structure and various striking characteristics (eg. high electrical conductivity, mechanical robustness, large thermal conductivity, tunable carrier type and mobility etc.) this has become significant both technologically as well as for fundamental research. Both experimental and theoretical investigations have been taking place to study its various properties viz. transport, electronic, thermal and optical properties. In this work, optical properties of suspended monolayer-graphene and monolayer-graphene deposited on dielectric substrates are studied by calculating the optical quantities such as coefficient of reflection and reflected polarization analytically with the help of Maxwell's equations for the respective systems. Behavior of above mentioned optical quantities with respect to various parameters are studied to compare the two systems. This study can be used to obtain the conductivity tensor of graphene with its anisotropic behavior obtained from the azimuthal angle dependence of the optical quantities. The substrate-graphene is also interesting due to the observation of Brewster's phenomena with Brewster's angle varying with respect to the azimuthal angle (an oscillation with a period of 180 degrees).

  14. Optical properties of photochromic and thermochromic materials

    NASA Astrophysics Data System (ADS)

    Mo, Yeon-Gon

    The optical properties of some thin film materials can be altered by an external stimulus. Photochromic and thermochromic materials, including inorganic and organic substances, have optical properties that can be changed in a reversible manner by irradiation and temperature respectively. These materials can be used in applications such as radiation or thermal sensors, information storage devices and smart window applications in buildings and cars. In this work, major effort was concentrated on passive thermal control coatings based on photochromic and thermochromic materials. The inorganic photochromic materials were based on tungsten and molybdenum oxide films and the organic photochromic materials included spiropyrans and spirooxazines. In addition, photochromic composite organic-inorganic films and thermochromic vanadium oxide films were prepared. The samples were synthesized using sputtering, sol-gel process, and thermal oxidation. The optical properties were investigated for the first time by ultraviolet/visible/infrared (UV/VIS/IR) spectroscopic ellipsometry, attenuated total reflection (ATR) infrared ellipsometry, spectrophotometry, and X-ray diffraction (XRD). For amorphous oxide films, the oxygen deficiency was important in determining the photochromic properties of the films. In the mid-infrared region, no photochromism was observed for the films. The optical properties of organic-inorganic composite films changed in the VIS/NIR wavelength region markedly in a reversible process, with UV irradiation. The composite films containing tungsten heteropolyoxometalate (HPOM) showed faster coloration and bleaching than pure tungsten oxide films. The composite films with molybdenum HPOM showed faster coloration and much slower bleaching than tungsten HPOM. The spiropyran and spirooxazine doped polymeric films were investigated for the first time using infrared and ATR ellipsometry. The infrared optical functions obtained by ATR measurements were a little smaller

  15. Nonlinear Optical Properties and Applications of Polydiacetylene

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Paley, Mark S.; Witherow, William K.; Frazier, Donald O.

    2000-01-01

    Recently, we have demonstrated a picosecond all-optical switch, which also functions as a partial all-optical NAND logic gate using a novel polydiacetylene that is synthesized in our laboratory. The nonlinear optical properties of the polydiacetylene material are measured using the Z-scan technique. A theoretical model based on a three level system is investigated and the rate equations of the system are solved. The theoretical calculations are proven to match nicely with the experimental results. The absorption cross-sections for both the first and higher excited states are estimated. The analyses also show that the material suffers a photochemical change beyond a certain level of the laser power and its physical properties suffer radical changes. These changes are the cause for the partial NAND gate function and the switching mechanism.

  16. Optical properties of Apollo 12 moon samples.

    NASA Technical Reports Server (NTRS)

    O'Leary, B.; Briggs, F.

    1973-01-01

    We present the photometric phase function, color, normal albedo, polarimetric phase function, and spectrophotometry of the Apollo 12 soil. With a few minor exceptions, the optical properties of the Apollo 12 soil are very similar to those of the Apollo 11 soil and of lunar mare surfaces.

  17. Optical Properties of Bruised Apple Tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the optical properties of apple tissue, especially bruised tissue, can help us prevent or mitigate bruise occurrence during harvest and postharvest operations, and develop an effective method for detecting bruises during sorting and grading. This research was aimed at determining the o...

  18. Influence of stabilizing agent and synthesis temperature on the optical properties of silver nanoparticles as active materials in surface plasmon resonance (SPR) biosensor

    NASA Astrophysics Data System (ADS)

    Mahmudin, Lufsyi; Suharyadi, Edi; Utomo, Agung Bambang Setio; Abraha, Kamsul

    2016-04-01

    It has been successfully carried out the synthesis of colloidal silver nanoparticles by chemical reduction method. Silver nitrate (AgNO3) was used as metal precursors and trisodium citrate as the reducing agent. In the synthesis process, were varied the stabilizing agent of Polyvinyl Alcohol (PVA) and polyvinylpyrrolidone (PVP) and heating temperature. The formation of silver nanoparticles was observed visually with discoloration (yellowish). The formation and the structure of silver nanoparticles in colloidal solution were further examined through their optical properties by using a UV-Vis spectrometer. The wavelength absorption spectrum of colloidal silver nanoparticles shows that maximum surface plasmon absorption for the trisodium citrate-synthesized nanoparticles was at 429.43 nm for temperature of 90°C. The addition of the stabilizer sharpened spectrum curves and caused red shift in the maximum absorption peak of 429.01 nm and 427.09 nm for PVA and PVP respectively. Meanwhile, the addition of the synthesis temperature also sharpened the maximum surface plasmon absorption band and the red shift the maximum absorption peak of 428.79 nm and 428.58 nm for temperature of 110°C and 120°C respectively. Red shift of the maximum absorption peak indicates a smaller particle size. The maximum surface plasmon absorption band in the range of 427.09 nm to 429.43 nm indicates the presence of spherical or roughly spherical silver nanoparticles and TEM imaging confirmed this shape. TEM imaging results show that the diameter size of the silver nanoparticles range of 10 nm to 60 nm as well as the morphology (crystallites) of silver nanoparticles have spherical geometry with particle distribution which quite dispersive. The dispersibility of nanoparticles such as this could potentially be used as an active material of SPR biosensor.

  19. Nonlinear optical properties and nonlinear optical probes of organic materials

    NASA Astrophysics Data System (ADS)

    Meredith, Gerald R.

    1992-02-01

    Nonlinear optical processes and electro-optical effects are expected to have increasing importance as the information age matures and photonics augment electronics in various high density and high bandwidth technologies. Whereas for electronics the emphasis is in construction of smaller device structures from a few parent materials, for organic materials the direction of materials research has been reversed. For some time it's been known that some molecular structures engender exceptionally large molecular nonlinear-polarization responses. If such molecules could be assembled in convenient, versatile, and reliable ways, the resulting materials would be very useful or even enabling in various photonics applications. The mature science and art of chemistry allows very good control over molecular composition and structure and, as will be illustrated in this talk, our knowledge of hyperpolarizability structure- property relationships is advancing rapidly. However, the science of fabrication and arrangement in molecular ensembles and polymers is rather primitive. Thus the goal to develop the appropriately structured materials for utilization in nonlinear and electro-optics has fostered the widespread use of nonlinear optical processes to probe the nature of supramolecular order and assembly. Examples of intrinsic and artificially assembled structures of crystals, molecular aggregates, polymeric orientational electrets and molecular mono- and multi-layer thin films will be shown. Nonlinear optical processes, primarily second-harmonic generation, provide unique probes of these structures, their assembly, and evolution.

  20. Land-use/land-cover drives variation in the specific inherent optical properties of estuaries

    EPA Science Inventory

    Changes in land-use/land-cover (LULC) can impact the exports of optically and biogeochemically active constituents to estuaries. Specific inherent optical properties (SIOPs) of estuarine optically active constituents (OACs) are directly related to the composition of the OACs, and...

  1. Optical properties of thin graphitic nanopetal arrays

    NASA Astrophysics Data System (ADS)

    Bao, Hua; Kumar, Anurag; Cai, Yuannan; Ji, Yuzhong; Fisher, Timothy S.; Ruan, Xiulin

    2015-06-01

    Thermal radiative properties of thin graphitic petal arrays are theoretically and experimentally investigated. Finite-difference time-domain (FDTD) simulations are first performed to calculate optical properties of vertical graphitic arrays of different structures, namely, graphitic gratings, periodic graphitic cavities, and random graphitic cavities. For graphitic gratings, the absorptance and reflectance are relatively larger when the incident electric field is parallel to the graphitic plane, while the absorptance and reflectance are both significantly lower when the electric field is polarized perpendicular to the graphitic plane. Ordered graphitic petal cavity arrays show optical properties falling between the above two cases of different polarizations. Random vertical cavity arrays with various angles of orientation show similar properties to ordered petal cavities. For oblique gratings, the reflectance will increase with oblique angle for both polarizations, while the absorptance decreases with oblique angle for the in-plane polarization and increases with oblique angle for the out-of-plane polarization. The oblique effects are explained by the strong anisotropic nature of graphitic petals. The FDTD results are compared to effective medium theory to find that the latter describes the optical properties of the graphitic grating and cavity well, and we propose an approach based on effective medium theory to approximate the dielectric function of graphitic petals with random orientation. The predicted hemispherical total reflectance based on this model gives about 2% reflectance in the visible spectrum and agrees well with experimental data from a fabricated graphitic petals sample.

  2. Quantum optical properties in plasmonic systems

    SciTech Connect

    Ooi, C. H. Raymond

    2015-04-24

    Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.

  3. Optical Transmission Properties of Dielectric Aperture Arrays

    NASA Astrophysics Data System (ADS)

    Yang, Tao

    Optical detection devices such as optical biosensors and optical spectrometers are widely used in many applications for the functions of measurements, inspections and analysis. Due to the large dimension of prisms and gratings, the traditional optical devices normally occupy a large space with complicated components. Since cheaper and smaller optical devices are always in demand, miniaturization has been kept going for years. Thanks to recent fabrication advances, nanophotonic devices such as semiconductor laser chips have been growing in number and diversity. However, the optical biosensor chips and the optical spectrometer chips are seldom reported in the literature. For the reason of improving system integration, the study of ultra-compact, low-cost, high-performance and easy-alignment optical biosensors and optical spectrometers are imperative. This thesis is an endeavor in these two subjects and will present our research work on studying the optical transmission properties of dielectric aperture arrays and developing new optical biosensors and optical spectrometers. The first half of the thesis demonstrates that the optical phase shift associated with the surface plasmon (SP) assisted extraordinary optical transmission (EOT) in nano-hole arrays fabricated in a metal film has a strong dependence on the material refractive index value in close proximity to the holes. A novel refractive index sensor based on detecting the EOT phase shift is proposed by building a model. This device readily provides a 2-D biosensor array platform for non-labeled real-time detection of a variety of organic and biological molecules in a sensor chip format, which leads to a high packing density, minimal analyte volumes, and a large number of parallel channels while facilitating high resolution imaging and supporting a large space-bandwidth product (SBP). Simulation (FDTD Solutions, Lumerical Solutions Inc) results indicate an achievable sensitivity limit of 4.37x10-9 refractive index

  4. Synthesis and characterization of structural, optical, thermal and dielectric properties of polyaniline/CoFe2O4 nanocomposites with special reference to photocatalytic activity.

    PubMed

    Khan, Javed Alam; Qasim, Mohd; Singh, Braj Raj; Singh, Sneha; Shoeb, Mohd; Khan, Wasi; Das, Dibakar; Naqvi, Alim H

    2013-05-15

    In this study we have synthesized polyaniline/CoFe2O4 nanocomposites (PANI@CFs) by in situ polymerization method with different amounts of the CoFe2O4 nanoparticles NPs (CF-NPs) (0.5 g and 1.0 g). The structural optical, thermal and dielectric properties of the as synthesized PANI@CFs were studied. The XRD analysis ensures that CF-NPs have a single phase spinel structure. The XRD and EDAX results confirmed that the CF-NPs were successfully incorporated in the PANI matrix. The crystalline size analysis revealed that the size increased with increasing CF-NPs amount in the PANI@CFs, because of the aggregation effect. TGA exhibited an enhanced thermal stability of the PANI@CFs as compare with PANI owing to the strong interaction between the CF-NPs and polymer matrix. The energy band gaps as calculated through the Tauc relation were found to be gradually higher with the increasing the amount of CF-NPs in PANI@CFs. The dielectric constants (ε', ε″), dielectric loss (tanδ) and AC conductivity (σac) were studied as the function of frequency and composition, which have been explained by 'Maxwell Wagner Model'. The high dielectric constant and ac conductivity were observed of PANI@CFs than PANI. Moreover, PANI@CF 1:2 exhibited the promising photocatalytic activity for the photo-decoloration of the methyl orange (MO) dye under UV light irradiation. Results also showed protection of photo-decoloration of the MO dye by the disodium ethylenediaminetetraacetate dehydrate (EDTA-Na2; C10H14N2Na2O8·2H2O) (hole scavenger) and tert-butyl alcohol (C4H10O) (radical scavenger) clearly suggested the implication of reactive oxygen species (ROS) in the photocatalytic activity of PANI@CF 1:2. It is encouraging to conclude that PANI@CF bears the potential of its applications in photocatalysis. PMID:23545437

  5. Preparation, characterization, and infrared emissivity property of optically active polyurethane/TiO{sub 2}/SiO{sub 2} multilayered microspheres

    SciTech Connect

    Yang Yong; Zhou Yuming; Ge Jianhua; Wang Yongjuan; Zhu Yunxia

    2011-10-15

    Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. LPU/TiO{sub 2}/SiO{sub 2} was characterized by FT-IR, UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), SEM and TEM, and the infrared emissivity value (8-14 {mu}m) was investigated in addition. The results indicated that titania and polyurethane had been successfully coated onto the surfaces of silica microspheres. LPU/TiO{sub 2}/SiO{sub 2} exhibited clearly multilayered core-shell construction. The infrared emissivity values reduced along with the increase of covering layers thus proved that the interfacial interactions had direct influence on the infrared emissivity. Besides, LPU/TiO{sub 2}/SiO{sub 2} multilayered microspheres based on the optically active polyurethane took advantages of the orderly secondary structure and strengthened interfacial synergistic actions. Consequently, it possessed the lowest infrared emissivity value. - Graphical Abstract: Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. Highlights: > Optically active polyurethane based on tyrosine was used for the modification of nanoparticles. > LPU/TiO{sub 2}/SiO{sub 2} multilayered core-shell microspheres were prepared and characterized. > Interfacial interactions and secondary structure affected the infrared emissivity of composite.

  6. Optical properties of stabilized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohindroo, Jeevan Jyoti; Garg, Umesh Kumar; Sharma, Anshul Kumar

    2016-05-01

    Optical studies involving calculation of Band Gap of the synthesized copper nanoparticles were carried out in the wavelength range of 500 to 650 nm at room temperature, the particles showed high absorption at 550nm indicating their good absorptive properties. In this method water is used as the medium for reduction of copper ions in to copper Nanoparticles the stabilization of copper Nanoparticles was studied with starch both as a reductant and stabilizer,. The reaction mixture was heated using a kitchen microwave for about 5 minutes to attain the required temp for the reaction. The pH of the solution was adjusted to alkaline using 5%solution of NaOH. Formation of Copper Nanoparticles was indicated by change in color of the solution from blue to yellowish black which is supported by the UV absorption at 570nm.the synthesized particles were washed with water and alcohol. The optical properties depend upon absorption of radiations which in turn depends upon ratio of electrons and holes present in the material and also on the shape of the nanoparticles. In the present investigation it was observed that optical absorption increases with increase in particle size. The optical band gap for the Nanoparticles was obtained from plots between hv vs. (αhv)2 and hv vs. (αhv)1/2. The value of Band gap came out to be around 1.98-2.02 eV which is in close agreement with the earlier reported values

  7. Optical properties of cells with melanin

    NASA Astrophysics Data System (ADS)

    Rohde, Barukh; Coats, Israel; Krueger, James; Gareau, Dan

    2014-02-01

    The optical properties of pigmented lesions have been studied using diffuse reflectance spectroscopy in a noninvasive configuration on optically thick samples such as skin in vivo. However, it is difficult to un-mix the effects of absorption and scattering with diffuse reflectance spectroscopy techniques due to the complex anatomical distributions of absorbing and scattering biomolecules. We present a device and technique that enables absorption and scattering measurements of tissue volumes much smaller than the optical mean-free path. Because these measurements are taken on fresh-frozen sections, they are direct measurements of the optical properties of tissue, albeit in a different hydration state than in vivo tissue. Our results on lesions from 20 patients including melanomas and nevi show the absorption spectrum of melanin in melanocytes and basal keratinocytes. Our samples consisted of fresh frozen sections that were unstained. Fitting the spectrum as an exponential decay between 500 and 1100 nm [mua = A*exp(-B*(lambda-C)) + D], we report on the fit parameters of and their variation due to biological heterogeneity as A = 4.20e4 +/- 1.57e5 [1/cm], B = 4.57e-3 +/- 1.62e-3 [1/nm], C = 210 +/- 510 [nm] , D = 613 +/- 534 [1/cm]. The variability in these results is likely due to highly heterogeneous distributions of eumelanin and pheomelanin.

  8. Polymer based nanocomposites with tailorable optical properties

    NASA Astrophysics Data System (ADS)

    Colombo, Annalisa; Simonutti, Roberto

    2014-09-01

    Transparent polymers are extensively used in everyday life, from windows to computer displays, from food packaging to lenses. A possible approach for modulating their optical properties (refractive index, transparency, color and luminescence) is to change the chemical structure of the polymer, however this option is in many cases economically prohibitive. Our approach, instead, relies in the use of standard polymers with the supplement of specific nanostructured additives able to tune the final property of the material. Among others, the cases of luminescent solar concentrators based on poly(methylmethacrylate) containing luminescent quantum dots and highly transparent polymer nanocomposites with high refractive index will be presented.

  9. Terahertz optical properties of the cornea

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Quan; Lu, Yuan-Fu; Jiao, Guo-Hua; Chen, Xian-Feng; Li, Jin-Ying; Chen, Si-Hai; Dong, Yu-Ming; Lv, Jian-Cheng

    2016-01-01

    We present a study aimed at developing a terahertz time domain spectroscopy (THz-TDS) system for detection of the optical properties of ex vivo rabbit corneal tissues with different water content at terahertz frequencies (0.1-0.3 THz). The refractive index decreased with frequency while the absorption coefficient increased with frequency. Our experimental results matched the theoretical calculation very well revealing that both the absorption coefficient and the refractive index of a hydrated cornea were much larger than that of a dehydrated cornea and the terahertz properties depended on the hydrate conditions of the biosamples.

  10. Optical and electrical properties of niobium carbide

    SciTech Connect

    Allison, C.Y.; Modine, F.A.; French, R.H.

    1987-02-15

    The optical and electrical properties were measured for single crystals of NbC/sub x/ for x = 0.98, 0.87, and 0.76, and for one hot-isostatically-pressed sample of NbC/sub 0.88/. Specular reflectance was measured between 0.025 and 11 eV, and ellipsometry measurements were made at 1.96 eV. By using the phase obtained from ellipsometry data to correct the Kramers-Kronig analyses of the reflectances, we were able to improve the accuracy of the resulting optical functions. For energies below 6.5 eV, there are differences in the reflectance and optical functions of the samples which are due to differences in x. We interpret the low-energy optical data in terms of intraband transitions, which allows us to calculate the dc conductivity as well as other electronic transport parameters. These parameters agree well with the electrical conductivities and the Hall coefficients obtained by the van der Pauw technique. The higher-energy optical data are interpreted in light of recent electronic-structure calculations, which suggest that most interband transitions occur near the square face of the Brillouin zone.

  11. Optical properties of polyimide/silica nanocomposite

    NASA Astrophysics Data System (ADS)

    Tommalieh, M. J.; Zihlif, A. M.

    2010-12-01

    The optical properties of thin films of polyimide/silica nanocomposites prepared via sol-gel process were investigated as a function of nanosilica particles content. Absorption and reflectance spectra were collected by a spectrophotometer giving UV-radiation of wavelength range 200-800 nm. The optical data obtained were analyzed in terms of absorption formula for non-crystalline materials. The calculated values of the optical energy gap and the width of the energy tails of the localized states exhibited silica concentration dependence. The direct optical energy gap for neat polyimide is about 1.95 eV, and decreases to a value of 1.8 eV for nanocomposite of 25 wt% nanosilica content. It was found that the calculated refractive index and dielectric constants of nanocomposites increase with silica particles content. The overall dependence of the optical and dielectrical constants on silica content in polyimide matrix is argued on the basis of the observed morphology and overlap of the localized energy sates of different color centers. The EMT model was fitted to the observed dielectric data.

  12. Experiment system of LAMOST active optics

    NASA Astrophysics Data System (ADS)

    Cui, Xiangqun; Su, Ding; Li, Guoping; Yao, Zhengqiu; Zhang, Zhengcao; Li, Yeping; Zhang, Yong; Wang, You; Xu, Xinqi; Wang, Hai

    2004-10-01

    Active optics is the most difficult part in LAMOST project. Especially for the segmented reflecting Schmidt plate Ma, in which both segmented mirror active optics and thin mirror (or deformable mirror) active optics are applied. To test and optimize the thin mirror active optics of Ma, and to approach the reality of operating environment of the telescope, an outdoor experiment system has been established. This experiment system is also a `small LAMOST" with one sub-mirror of the primary mirror Mb and one sub-mirror of the Schmidt plate Ma, and with full scale in spacing (40 meters) between Ma and Mb. many parts of LAMOST were tested in the experiment system except segmented mirror active optics. Especially for force actuators, thin mirror support system, friction driving of the alt-azimuth mounting and its control system, wave front test along such a long optical path. This paper presents the experiment system, research and developments, and some experiment results.

  13. Optical Properties of Polypropylene upon Recycling

    PubMed Central

    2013-01-01

    In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites. PMID:24288478

  14. Measurement of optical activity of honey bee

    NASA Astrophysics Data System (ADS)

    Ortiz-Gutiérrez, Mauricio; Olivares-Pérez, Arturo; Salgado-Verduzco, Marco Antonio; Ibarra-Torres, Juan Carlos

    2016-03-01

    Optical activity of some substances, such as chiral molecules, often exhibits circular birefringence. Circular birefringence causes rotation of the vibration plane of the plane polarized light as it passes through the substance. In this work we present optical characterization of honey as function of the optical activity when it is placed in a polariscope that consists of a light source and properly arranged polarizing elements.

  15. Relation between inherent optical properties and land use and land cover across Gulf Coast estuaries

    EPA Science Inventory

    Land use and land cover (LULC) can affect the watershed exports of optically active constituents such as suspended particulate matter and colored dissolved organic matter, and in turn affect estuarine optical properties. We collected optical data from six estuaries in the northea...

  16. Optical properties monitor: Experiment definition phase

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry

    1990-01-01

    The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment (both natural and induced) on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.

  17. Optical properties monitor: Experiment definition phase

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry

    1989-01-01

    The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment-both natural and induced-on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM Experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.

  18. Nonlinear optical properties of the active medium in intracavity phase conjugation of the radiation of a pulsed electron-beam-controlled discharge CO{sub 2} laser. II. Theoretical analysis

    SciTech Connect

    Galushkin, M G; Mitin, Konstantin V; Ionin, Andrei A; Kotkov, A A

    1998-10-31

    Numerical simulation is used as the basis of an analysis of nonlinear optical properties of the active medium in intracavity four-wave mixing of the radiation of a pulsed electron-beam-controlled discharge CO{sub 2} laser on saturated-gain and refractive-index diffraction gratings. The reflection coefficient of the phase-conjugated signal is determined for various cavity Q-factors, specific input energies, and pressures of the laser-active mixture. A comparison is made of the theoretical and experimental results. It is found that the rate of formation of amplitude gratings is governed primarily by the initial population inversion and by the intensities of the interacting waves. It is shown that transient phase gratings make the dominant contribution to the phase-conjugate reflection coefficient at high pressures of the mixture. (nonlinear optical phenomena)

  19. Optical fiber solitons, their properties and uses

    NASA Astrophysics Data System (ADS)

    Haus, Hermann A.

    1993-07-01

    The history and mathematical formulation of the solitons are briefly reviewed. Solitons of the nonlinear Schroedinger equation are studied in greater detail because they describe nonlinear pulse propagation on dispersive optical fibers. The proposal by A. Hasegawa and the experiments of L.F. Mollenauer on long distance soliton propagation for use in repeaterless transoceanic fiber transmission cables are described. In 1986, limitations on the distance that can be spanned by a repeaterless link for a given bit-rate were shown to exist. It has been shown recently that by proper design these limitations can be overcome, so that newer transoceanic cable designs are likely to utilize solitons. The special properties of solitons make them particularly suited for all optical switching and logic operations. Some recent experiments with such switches are described.

  20. Femtosecond nonlinear optical properties of carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Dan; Liu, Ye; Yang, Heqing; Qian, Shixiong

    2002-09-01

    The nonlinear optical properties and ultrafast electron-relaxation dynamics of carbon nanoparticles were investigated by using the femtosecond optical Kerr effect and pump-probe techniques. The blueshift of the absorption edge with the decrease of the size of the nanoparticles reveals the opening of the gap. The magnitude of chi(3) for carbon nanoparticles is calculated to be 8.3 x10-13 esu, which arises from the contribution of delocalized feature of the pi electrons. The decay of photobleaching includes a fast and a slow component, which are assigned to the relaxation of the free carriers and trapped carriers, respectively. It is found that the lifetimes of two components of bleaching decrease as temperature of heat treatment is increased.

  1. Studies on optical, mechanical and transport properties of NLO active L-alanine formate single crystal grown by modified Sankaranarayanan Ramasamy (SR) method

    NASA Astrophysics Data System (ADS)

    Justin Raj, C.; Dinakaran, S.; Krishnan, S.; Milton Boaz, B.; Robert, R.; Jerome Das, S.

    2008-04-01

    Bulk single crystals of L-alanine formate of 10 mm diameter and 50 mm length have been grown with an aid of modified Sankaranarayanan-Ramasamy (SR) uniaxial crystal growth method within a period of ten days. The optical properties of the grown crystal were calculated from UV transmission spectral analysis. The second harmonic generation efficiency of the grown crystal was confirmed by Kurtz powder test. In order to determine the mechanical strength of the crystal, Vicker's microhardness test was carried along the growth plane (0 0 1). Dielectric studies reveal that both dielectric constant and dielectric loss decreases with increase in frequency. Photoconductivity study confirms the negative photoconducting nature of the crystal.

  2. Optical and thermal properties of doped semiconductor

    NASA Astrophysics Data System (ADS)

    Abroug, S.; Saadallah, F.; Yacoubi, N.

    2008-01-01

    The knowledge of doping effects on optical and thermal properties of semiconductors is crucial for the development of optoelectronic compounds. The purpose of this work is to investigate theses effects by mirage effect technique and spectroscopic ellipsometry SE. The absorption spectra measured for differently doped Si and GaAs bulk samples, show that absorption in the near IR increases with dopant density and also the band gap shifts toward low energies. This behavior is due to free carrier absorption which could be obtained by subtracting phonon assisted absorption from the measured spectrum. This carrier absorption is related to the dopant density throw a semi-empirical model.

  3. Electronic structure and optical properties of resin

    NASA Astrophysics Data System (ADS)

    Rao, Zhi-Fan; Zhou, Rong-Feng

    2013-03-01

    We used the density of functional theory (DFT) to study the electronic structure and density of states of resin by ab initio calculation. The results show the band gap of resin is 1.7 eV. The covalent bond is combined C/O atoms with H atoms. The O 2p orbital is the biggest effect near the Fermi level. The results of optical properties show the reflectivity is low, and the refractive index is 1.7 in visible light range. The highest absorption coefficient peak is in 490 nm and the value is 75,000.

  4. Optical properties of irregular interstellar grains

    NASA Technical Reports Server (NTRS)

    Perrin, J. M.; Lamy, P. L.

    1989-01-01

    In order to study the interaction of light with interstellar grains, the authors represent an irregular particle by a network of interacting dipoles whose polarizability is determined in a first approach by the Clausius-Mossoti relationship. Typically, 10,000 dipoles are considered. In the case of spherical particles, the results from Mie theory are fully recovered. The main interest of this method is to study with good accuracy the implications of surface roughness and/or inhomogeneities on optical properties in the infrared spectral range, particularly of the silicate emission features.

  5. Bioferroelectricity and optical properties of biological systems

    NASA Astrophysics Data System (ADS)

    Bystrov, Vladimir; Bystrova, Natalia

    2003-08-01

    A bioferroelectric approach to analysis of ferroelectric behavior of biological systems is presented. The optical properties of nerve fibers, biomembrane ion channels, and purple membrane films containing bacteriorhodopsin are analyzed. The features, influence of the proton subsystem and proton transfer on the hydrogen-bonded biomolecular structures are analyzed within the ferroelectric liquid-crystal model and possible biomedical applications discussed. The ferroelectric behavior of biological systems and the set of various bioferroelectric effects are considered within the limits of phenomenological theory of ferroelectrics. The nonlinear response to weak actions under conditions critical to human organism is one of specific features characterizing biological objects on molecular, cell and organism levels.

  6. Optical properties of graphene nanoflakes: Shape matters

    NASA Astrophysics Data System (ADS)

    Mansilla Wettstein, Candela; Bonafé, Franco P.; Oviedo, M. Belén; Sánchez, Cristián G.

    2016-06-01

    In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNFs) or graphene quantum dots (GQDs) are relevant for their electronic structure, thermal stability, and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNF size, which shows three very distinct trends for different shapes and edge geometries.

  7. Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials.

    PubMed

    Li, Guozhou; Li, Qiang; Yang, Lizhen; Wu, Lijun

    2016-07-01

    We investigate optical magnetism and optical activity in a simple planar metamolecule composed of double U-shaped metal split ring resonators (SRRs) twisted by 90° with respect to one another. Compared to a single SRR, the resonant energy levels are split and strong magnetic response can be observed due to inductive and conductive coupling. More interestingly, the nonchiral structures exhibit strong optical gyrotropy (1100°/λ) under oblique incidence, benefiting from the strong electromagnetic coupling. A chiral molecule model is proposed to shed light on the physical origin of optical activity. These artificial chiral metamaterials could be utilized to control the polarization of light and promise applications in enantiomer sensing-based medicine, biology, and drug development. PMID:27367063

  8. Electronic and optical properties of mixed Be-chalcogenides

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Ahmad, Iftikhar; Zhang, D.; Rahnamaye Aliabad, H. A.; Jalali Asadabadi, S.

    2013-02-01

    The electronic and optical properties of BeSxSe1-x, BeSxTe1-x and BeSexTe1-x, (0≤x≤1) are studied using the highly accurate modified Beck and Johnson (mBJ) potential. The binary Be-chalcogenides are wide and indirect band gap semiconductors and hence they are not efficient materials for optoelectronics. In order to modify them into optically active materials, the anion chalcogen atoms are partially replaced by other chalcogen atoms like BeSxSe1-x, BeSxTe1-x and BeSexTe1-x (0≤x≤1). The modified ternary compounds are of direct band gap nature and hence they are optically active. Some of these direct band gap materials are lattice matched with silicon and can possibly replace Si in semiconductor devices. Keeping in view the importance of these materials in optoelectronics, the optical properties of BeSxSe1-x, BeSxTe1-x and BeSexTe1-x in the full composition range are investigated. It is found that these materials are transparent in the IR, visible and near UV spectral regions. The alloys for the most of the concentrations have band gaps larger than 3 eV, so it is expected that they may be efficient materials for blue, green and UV light emitting diodes.

  9. Nonlinear optical properties of multipyrrole dyes

    PubMed Central

    Frenette, Mathieu; Hatamimoslehabadi, Maryam; Bellinger-Buckley, Stephanie; Laoui, Samir; Bag, Seema; Dantiste, Olivier; Rochford, Jonathan; Yelleswarapu, Chandra

    2014-01-01

    The nonlinear optical properties of a series of pyrrolic compounds consisting of BODIPY and aza-BODIPY systems are investigated using 532 nm nanosecond laser and the Z-scan technique. Results show that 3,5-distyryl extension of BODIPY to the red shifted MeO2BODIPY dye has a dramatic impact on its nonlinear absorption properties changing it from a saturable absorber to an efficient reverse saturable absorbing material with a nonlinear absorption coefficient of 4.64 × 10−10 m/W. When plotted on a concentration scale per mole of dye in solution MeO2BODIPY far outperforms the recognized zinc(II) phthalocyanine dye and is comparable to that of zinc(II) tetraphenylporphyrin. PMID:25242819

  10. Indium sulfide microflowers: Fabrication and optical properties

    SciTech Connect

    Zhu Hui; Wang Xiaolei; Yang Wen; Yang Fan; Yang Xiurong

    2009-10-15

    With the assistance of urea, uniform 2D nanoflakes assembled 3D In{sub 2}S{sub 3} microflowers were synthesized via a facile hydrothermal method at relative low temperature. The properties of the as-obtained In{sub 2}S{sub 3} flowers were characterized by various techniques. In this work, the utilization of urea and L-cysteine, as well as the amount of them played important roles in the formation of In{sub 2}S{sub 3} with different nanostructures. Inferred from their morphology evolution, a urea induced precursor-decomposition associated with the Ostwald-ripening mechanism was proposed to interpret these hierarchical structure formation. Furthermore, the optical properties of these In{sub 2}S{sub 3} microflowers were investigated via UV-vis absorption and photoluminescence (PL) spectroscopies in detail.

  11. Thermo-optical Properties of Nanofluids

    NASA Astrophysics Data System (ADS)

    Ortega, Maria Alejandra; Rodriguez, Luis; Castillo, Jimmy; Fernández, Alberto; Echevarria, Lorenzo

    2008-04-01

    In this work, we report thermo-optical properties of nanofluids. Spherical gold nanoparticles obtained by laser ablation in condensed media were characterized using thermal lens spectroscopy in SDS-water solution pumping at 532 nm with a 10 ns pulsed laser-Nd-YAG system. Nanoparticles obtained by laser ablation were stabilized in the time by surfactants (Sodium Dodecyl-Sulfate or SDS) in different molar concentrations. The morphology and size of the gold nanoparticles were determined by transmission electron microscopy (TEM). The plasmonic resonance bands in gold nanoparticles are responsible of the light optical absorption of this wavelength. The position of the absorption maximum and width band in the UV-Visible spectra is given by the morphological characteristics of these systems. The thermo-optical constant such as thermal diffusion, thermal conductivity and dn/dT are functions of nanoparticles sizes and dielectric constant of the media. The theoretical model existents do not describe completely this relations because is not possible separate the contributions due to nanoparticles size, factor form and dielectric constant. The thermal lens signal obtained is also dependent of nanoparticles sizes. This methodology can be used in order to evaluate nanofluids and characterizing nanoparticles in different media. These results are expected to have an impact in bioimaging, biosensors and other technological applications such as cooler system.

  12. Optical properties of titanium dioxide nanotube arrays

    SciTech Connect

    Abdelmoula, Mohamed; Sokoloff, Jeffrey; Lu, Wen-Tao; Menon, Latika; Close, Thomas; Richter, Christiaan

    2014-01-07

    We present experimental measurements and a theoretical analysis of the near UV to NIR optical properties of free standing titania nanotube arrays. An improved understanding of the optical physics of this type of nanostructure is important to several next generation solar energy conversion technologies. We measured the transmission, reflection, and absorption of the electromagnetic spectrum from 300 nm to 1000 nm (UV to NIR) of titania nanotube arrays. We measured the total, specular, and diffuse reflection and transmission using both single point detection and an integrating sphere spectrometer. We find that the transmission, but not the reflection, of light (UV to NIR) through the nanotube array is well-explained by classic geometric optics using an effective medium model taking into account the conical geometry of the nanotubes. For wavelengths shorter than ∼500 nm, we find the surprising result that the reflection coefficient for light incident on the open side of the nanotube array is greater than the reflection coefficient for light incident on the closed “floor” of the nanotube array. We consider theoretical models based on the eikonal approximation, photonic crystal band theory, and a statistical treatment of scattering to explain the observed data. We attribute the fact that light with wavelengths shorter than 500 nm is more highly reflected from the open than the closed tube side as being due to disorder scattering inside the nanotube array.

  13. Thermo-optical Properties of Nanofluids

    SciTech Connect

    Ortega, Maria Alejandra; Echevarria, Lorenzo; Rodriguez, Luis; Castillo, Jimmy; Fernandez, Alberto

    2008-04-15

    In this work, we report thermo-optical properties of nanofluids. Spherical gold nanoparticles obtained by laser ablation in condensed media were characterized using thermal lens spectroscopy in SDS-water solution pumping at 532 nm with a 10 ns pulsed laser-Nd-YAG system. Nanoparticles obtained by laser ablation were stabilized in the time by surfactants (Sodium Dodecyl-Sulfate or SDS) in different molar concentrations. The morphology and size of the gold nanoparticles were determined by transmission electron microscopy (TEM). The plasmonic resonance bands in gold nanoparticles are responsible of the light optical absorption of this wavelength. The position of the absorption maximum and width band in the UV-Visible spectra is given by the morphological characteristics of these systems. The thermo-optical constant such as thermal diffusion, thermal conductivity and dn/dT are functions of nanoparticles sizes and dielectric constant of the media. The theoretical model existents do not describe completely this relations because is not possible separate the contributions due to nanoparticles size, factor form and dielectric constant. The thermal lens signal obtained is also dependent of nanoparticles sizes. This methodology can be used in order to evaluate nanofluids and characterizing nanoparticles in different media. These results are expected to have an impact in bioimaging, biosensors and other technological applications such as cooler system.

  14. Optical Properties of Black Silicon: An Analysis

    NASA Astrophysics Data System (ADS)

    Marthi, Sita Rajyalaxmi; Sekhri, Suramya; Ravindra, N. M.

    2015-09-01

    Silicon (Si) continues to be the dominant semiconducting material used in photovoltaic technology for the manufacture of solar cells. Si, an indirect band gap semiconducting material, has a reflectance of about 30% in the visible range of wavelengths. Standard Si solar cells are not entirely useful in the infrared spectrum region. In order to enhance the performance of silicon solar cells, reflectance losses must be minimized and absorption must be maximized. In the solar cell industry, anti-reflection (AR) coating is used to suppress reflection losses. AR coatings are limited in use because they only reduce the reflectance for a narrow range of wavelengths and incident angle since their functionality is based on a quarter-wavelength coating. Surface texturing is a technique, by which the reflectivity is reduced in a wide range of wavelengths. Black silicon (B-Si) is a material with surface roughness in the micron scale. B-Si, when used instead of crystalline Si (c-Si), offers the possibility to increase the absorption of light in the visible and infrared range of wavelengths. B-Si has a very low reflectivity in the visible range of wavelengths. It exhibits high absorptance in the visible and infrared region. The main objective of this paper is to study the optical properties of B-Si by simulation and compare them with the simulated and experimental optical properties of B-Si and c-Si.

  15. Genetic Engineering of Optical Properties of Biomaterials

    NASA Astrophysics Data System (ADS)

    Gourley, Paul; Naviaux, Robert; Yaffe, Michael

    2008-03-01

    Baker's yeast cells are easily cultured and can be manipulated genetically to produce large numbers of bioparticles (cells and mitochondria) with controllable size and optical properties. We have recently employed nanolaser spectroscopy to study the refractive index of individual cells and isolated mitochondria from two mutant strains. Results show that biomolecular changes induced by mutation can produce bioparticles with radical changes in refractive index. Wild-type mitochondria exhibit a distribution with a well-defined mean and small variance. In striking contrast, mitochondria from one mutant strain produced a histogram that is highly collapsed with a ten-fold decrease in the mean and standard deviation. In a second mutant strain we observed an opposite effect with the mean nearly unchanged but the variance increased nearly a thousand-fold. Both histograms could be self-consistently modeled with a single, log-normal distribution. The strains were further examined by 2-dimensional gel electrophoresis to measure changes in protein composition. All of these data show that genetic manipulation of cells represents a new approach to engineering optical properties of bioparticles.

  16. Optical properties of silver nano-cubes

    NASA Astrophysics Data System (ADS)

    Das, Ratan; Sarkar, Sumit

    2015-10-01

    Here in this work we are interested in the optical properties of uniform sized cubic silver nano-crystals. These silver nano-crystals are prepared by simple chemical reduction method using PVP as a capping agent. High Resolution Transmission Electron Microscopy (HRTEM) images and X-ray diffraction (XRD) analysis reveal that the produced nano-crystals are FCC in structure with a cubic morphology having an average size of 100 nm approximately. Further High Performance Liquid Chromatography (HPLC) study reveals the monodispersity of the prepared sample. UV/Vis study shows an absorption peak due to surface plasmon resonance (SPR) in the visible range which remains steady for more than two months and after that absorption peak position gets red shifted slowly as samples becomes more aged, confirming the agglomeration after two months. Most important optical property shown by the sample is the photoluminescence (PL), which gives an emission spectra in the visible range, confirming a band gap in the silver nano-cubes. It has been observed that the different PL spectra show an emission peak at 482 nm with different intensity for different excitation wavelength.

  17. Birefringence, the Lost and Forgotten Optical Property

    NASA Astrophysics Data System (ADS)

    Nicholls, J.

    2009-05-01

    Petrologists and mineralogists could more effectively exploit birefringence and its derivative properties, retardation and interference color, to characterize minerals in thin section. Mineralogy texts and courses largely confine their treatments to the principal birefringences: γ - α, β - α, and γ - β in biaxial crystals and |ɛ - ω| in uniaxial crystals. Each section through a biaxial or uniaxial crystal has a birefringence and the birefringences range from zero to a maximum value for the substance under examination. The distribution of birefringence values on the indicatrix is not random; rather it follows a regular pattern. The pattern reveals itself in stereographic projection and it can be quantitatively depicted if the principal refractive indices are known. This pattern, when combined with the optical orientation of the crystal, places limits on the crystallographic orientation of the crystal plate in thin section. Birefringence can be used to estimate the composition of binary solid solutions displaying moderate to high interference colors if the optical orientation can be established. Computer color management techniques provide estimation of retardation values derived from interference colors to within a few nanometres in the range 250 to 1650 nanometres. These color management techniques can also be used to create charts and diagrams with retardation values as one variable and other mineral properties and compositions as the other variable. On such diagrams, interference colors can be painted, the color bands normal to the retardation axis like Michel-Levy charts.

  18. Electrical and optical properties of carbon films

    NASA Astrophysics Data System (ADS)

    Kulkarni, Pranita

    Carbon and carbon-based materials, including graphite, diamond, and other thin-film structures, are being intensively researched for a wide range of electronic applications. A variety of graphitic, nano-structured carbon materials can be synthesized that have current or potential applications as thin-film transistors, photovoltaics, and supercapacitors. Diamond has been pursued for many years for electronics that can be used in extreme conditions, such as high temperature, high power, high frequency, and radiation environments. In this research study, electronic properties of diamond and graphitic films with crystallite or grain sizes in the nanometer range were investigated. The nano-structured graphitic carbon films were grown using a previously developed method based on the pyrolysis of poly(acrylonitrile) and poly(n-butyl acrylate) block copolymers (PAN-b-PBA). An important characteristic of these films is that the morphology (and therefore other properties) can be controlled by the compositions and processing of the starting block copolymers. Spherical, cylindrical, lamellar, and branched morphologies have been fabricated. The crystallite sizes, optical absorption, and morphology of PAN-b-PBA (containing 17.8% PAN) pyrolyzed between 400 and 600°C were determined and were compared to those derived by pyrolysis of PAN homopolymers at the same temperatures. Hall-effect measurements on pyrolyzed PAN-b-PBA films with spherical, cylindrical, and branched morphologies and homopolymer PAN films pyrolyzed at the same temperatures revealed that both PAN-b-PBA with different morphologies and PAN homopolymer-derived films had n-type conductivity; differences in carrier concentration and mobility values were correlated with the morphological differences of the films. Optical absorption measurements in the ultra-violet through visible wavelength range were also conducted on these films; measurements of the pseudo band-gaps and absorption coefficients were correlated with

  19. Accurate simulation of optical properties in dyes.

    PubMed

    Jacquemin, Denis; Perpète, Eric A; Ciofini, Ilaria; Adamo, Carlo

    2009-02-17

    Since Antiquity, humans have produced and commercialized dyes. To this day, extraction of natural dyes often requires lengthy and costly procedures. In the 19th century, global markets and new industrial products drove a significant effort to synthesize artificial dyes, characterized by low production costs, huge quantities, and new optical properties (colors). Dyes that encompass classes of molecules absorbing in the UV-visible part of the electromagnetic spectrum now have a wider range of applications, including coloring (textiles, food, paintings), energy production (photovoltaic cells, OLEDs), or pharmaceuticals (diagnostics, drugs). Parallel to the growth in dye applications, researchers have increased their efforts to design and synthesize new dyes to customize absorption and emission properties. In particular, dyes containing one or more metallic centers allow for the construction of fairly sophisticated systems capable of selectively reacting to light of a given wavelength and behaving as molecular devices (photochemical molecular devices, PMDs).Theoretical tools able to predict and interpret the excited-state properties of organic and inorganic dyes allow for an efficient screening of photochemical centers. In this Account, we report recent developments defining a quantitative ab initio protocol (based on time-dependent density functional theory) for modeling dye spectral properties. In particular, we discuss the importance of several parameters, such as the methods used for electronic structure calculations, solvent effects, and statistical treatments. In addition, we illustrate the performance of such simulation tools through case studies. We also comment on current weak points of these methods and ways to improve them. PMID:19113946

  20. Linear and nonlinear optical properties of chalcogenide microstructured optical fibers

    NASA Astrophysics Data System (ADS)

    Trolès, Johann; Brilland, Laurent; Caillaud, Celine; Renversez, Gilles; Mechin, David; Adam, Jean-Luc

    2015-03-01

    Chalcogenide glasses are known for their large transparency in the mid-infrared and their high linear refractive index (>2). They present also a high non-linear coefficient (n2), 100 to 1000 times larger than for silica, depending on the composition. we have developed a casting method to prepare the microstructured chalcogenide preform. This method allows optical losses as low as 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various chalcogenide MOFs operating in the IR range has been fabricated in order to associate the high non-linear properties of these glasses and the original MOF properties. For example, small core fibers have been drawn to enhance the non linearities for telecom applications such as signal regeneration and generation of supercontinuum sources. On another hand, in the 3-12 µm window, single mode fibers and exposed core fibers have been realized for Gaussian beams propagation and sensors applications respectively.

  1. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  2. Transurethral fiber optics for in-vivo optical property determination: human and animal trials

    NASA Astrophysics Data System (ADS)

    Kim, Beop-Min; Ostermeyer, Martin R.; Jacques, Steven L.; Levy, David A.; Chakrabarti, Pradip; Torres, Jorge H.; von Eschenbach, Andrew C.; Rastegar, Sohi; Motamedi, Massoud

    1996-05-01

    A new optical probe which enables rapid and noninvasive measurement of the in vivo optical properties of tissues over a broad range of wavelengths is presented. The device was initially tested and calibrated in tissue-simulating phantoms whose optical properties were known to be similar to those of biological media. The technique was then applied in vivo to measure the optical properties of canine and human prostates.

  3. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Dér, András; Fábián, László; Valkai, Sándor; Wolff, Elmar; Ramsden, Jeremy; Ormos, Pál

    2006-08-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in integrated optics, among which the bacterial chromoprotein, bacteriorhodopsin (bR) generated the most interest. bR undergoes enormous absorption and concomitant refractive index changes upon initiation of a cyclic series of photoreactions by a burst of actinic light. This effect can be exploited to create highly versatile all-optical logical elements. We demonstrate the potential of this approach by investigating the static and dynamic response of several basic elements of integrated optical devices. Our results show that, due to its relatively high refractive index changes, bR can be used as an active nonlinear optical material to produce a variety of integrated optical switching and modulation effects.

  4. Optical Properties of Thin Film Molecular Mixtures

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Shumway, Dean A.

    2003-01-01

    Thin films composed of molecular mixtures of metal and dielectric are being considered for use as solar selective coatings for a variety of space power applications. By controlling the degree of molecular mixing, the solar selective coatings can be tailored to have the combined properties of high solar absorptance, , and low infrared emittance, . On orbit, these combined properties would simultaneously maximize the amount of solar energy captured by the coating and minimize the amount of thermal energy radiated. Mini-satellites equipped with solar collectors coated with these cermet coatings may utilize the captured heat energy to power a heat engine to generate electricity, or to power a thermal bus that directs heat to remote regions of the spacecraft. Early work in this area identified the theoretical boundary conditions needed to operate a Carnot cycle in space, including the need for a solar concentrator, a solar selective coating at the heat inlet of the engine, and a radiator.1 A solar concentrator that can concentrate sunlight by a factor of 100 is ideal. At lower values, the temperature of the solar absorbing surface becomes too low for efficient heat engine operation, and at higher values, cavity type heat receivers become attractive. In designing the solar selective coating, the wavelength region yielding high solar absorptance must be separated from the wavelength region yielding low infrared emittance by establishing a sharp transition in optical properties. In particular, a sharp transition in reflectance is desired in the infrared to achieve the desired optical performance. For a heat engine operating at 450 C, a sharp transition at 1.8 micrometers is desired.2 The radiator completes the heat flow through the Carnot cycle.

  5. The role of activator concentration and precipitate formation on optical and dosimetric properties of KCl:Eu2+ storage phosphor detectors

    PubMed Central

    Hansel, Rachael A.; Xiao, Zhiyan; Hu, Yanle; Green, Olga; Yang, Deshan; Harold Li, H.

    2013-01-01

    Purpose: The activator ion (Eu2+ in KCl:Eu2+) plays an important role in the photostimulated luminescence (PSL) mechanism of storage phosphor radiation detectors. In order to design an accurate, effective, and robust detector, it is important to understand how the activator ion concentration affects the structure and, consequently, radiation detection properties of KCl:Eu2+. Methods: Potassium chloride pellets were fabricated with various amounts of europium dopant (0.01–5.0 mol.% Eu2+). Clinical radiation doses were given with a 6 MV linear accelerator. Radiation doses larger than 100 Gy were given with a 137Cs irradiator. Dose response curves, radiation hardness, and temporal signal stability were measured using a laboratory PSL readout system. The crystal structure of the material was studied using x ray diffraction and luminescence spectroscopy. Results: The most intense PSL signal was from samples with 1.0 mol.% Eu. However, samples with concentrations higher than 0.05 mol.% Eu exhibited significant degradation in PSL intensity for cumulated doses larger than 3000 Gy. Structural and luminescence spectroscopy showed clear evidence of precipitate phases within the KCl lattice, especially for high activator concentrations. Analysis of PL emission spectra showed that interactions between Eu-Vc dipoles and Eu-Vc trimers could explain trends in PSL sensitivity and radiation hardness observations. Conclusions: The concentration of the activator ion (Eu2+) significantly affects radiation detection properties of the storage phosphor KCl:Eu2+. An activator concentration between 0.01 and 0.05 mol.% Eu in KCl:Eu2+ storage phosphor detectors is recommended for linear dose response, good PSL sensitivity, predictable temporal stability, and high reusability for megavoltage radiation detection. PMID:24007173

  6. Entangling unstable optically active matter qubits

    SciTech Connect

    Matsuzaki, Yuichiro; Fitzsimons, Joseph; Benjamin, Simon C.

    2011-06-15

    In distributed quantum computation, small devices composed of a single or a few qubits are networked together to achieve a scalable machine. Typically, there is an optically active matter qubit at each node, so that photons are exploited to achieve remote entanglement. However, in many systems the optically active states are unstable or poorly defined. We report a scheme to perform a high-fidelity entanglement operation even given severe instability. The protocol exploits the existence of optically excited states for phase acquisition without actually exciting those states; it functions with or without cavities and does not require number-resolving detectors.

  7. Structural and optical properties of nanostructured nickel

    NASA Astrophysics Data System (ADS)

    Singh, J.; Pandey, J.; Gupta, R.; Kaurav, N.; Tripathi, J.

    2016-05-01

    Metal nanoparticles are attractive because of their special structure and better optical properties. Nickel nanoparticles (Ni-Np) have been synthesized successfully by thermal decomposition method in the presence of trioctyl phosphine (TOP) and oleylamine (OAm). The samples were characterized by X-ray diffraction (XRD), Zetapotential measurement and Fourier transforms infrared (FTIR) spectroscopy. The size of Ni nanoparticles can be readily tuned from 13.86 nm. As-synthesized Ni nanoparticles have hexagonal closed pack (hcp) cubic structure as characterized by power X-ray diffraction (XRD) prepared at 280°C. The possible formation mechanism has also been phenomenological proposed for as synthesized Ni-Np. The value of Zeta potential was found 12.25 mV.

  8. Optical and electrical properties of silicon nanopillars

    SciTech Connect

    Golobokova, L. S. Nastaushev, Yu. V.; Dultsev, F. N.; Kryzhanovskaya, N. V.; Moiseev, E. I.; Kozhukhov, A. S.; Latyshev, A. V.

    2015-07-15

    The electrical and optical properties of silicon nanopillars (Si NPs) are studied. Electron-beam lithography and reactive ion etching are used for the formation of ordered Si-NP arrays. The Si NPs with a diameter from 60 to 340 nm and a height from 218 to 685 nm are formed. The Si NPs are coated with a TiON{sup x} layer with a thickness of 8 nm for chemical and electrical passivation of the surface. Scanning electron microscopy and atomic-force microscopy are used to characterize the obtained structures. The Si-NP arrays acquire various colors when exposed to “bright-field” illumination. The spectra of reflection from the Si-NP arrays in the wavelength range 500–1150 nm are obtained.

  9. Electronic and optical properties of Praseodymium trifluoride

    SciTech Connect

    Saini, Sapan Mohan

    2014-10-24

    We report the role of f- states on electronic and optical properties of Praseodymium trifluoride (PrF{sub 3}) compound. Full potential linearized augmented plane wave (FPLAPW) method with the inclusion of spin orbit coupling has been used. We employed the local spin density approximation (LSDA) and Coulomb-corrected local spin density approximation (LSDA+U). LSDA+U is known for treating the highly correlated 4f electrons properly. Our theoretical investigation shows that LSDA+U approximation reproduce the correct insulating ground state of PrF{sub 3}. On the other hand there is no significant difference of reflectivity calculated by LSDA and LSDA+U. We find that the reflectivity for PrF{sub 3} compound stays low till around 7 eV which is consistent with their large energy gaps. Our calculated reflectivity compares well with the experimental data. The results are analyzed in the light of transitions involved.

  10. Optical response and activity of ultrathin films of topological insulators

    NASA Astrophysics Data System (ADS)

    Parhizgar, Fariborz; Moghaddam, Ali G.; Asgari, Reza

    2015-07-01

    We investigate the optical properties of ultrathin film of a topological insulator in the presence of an in-plane magnetic field. We show that due to the combination of the overlap between the surface states of the two layers and the magnetic field, the optical conductivity can show strong anisotropy. This leads to the effective optical activity of the ultrathin film by influencing the circularly polarized incident light. Intriguingly, for a range of magnetic fields, the reflected and transmitted lights exhibit elliptic character. Even for certain values almost linear polarizations are obtained, indicating that the thin film can act as a polaroid in reflection. All these features are discussed in the context of the time-reversal symmetry breaking as one of the key ingredients for the optical activity.

  11. Optical Properties of Multi-Layered Insulation

    NASA Technical Reports Server (NTRS)

    Rodriguez, Heather M.; Abercromby, Kira J.; Barker, Edwin

    2007-01-01

    , which is due to the copper color of Kapton. If the debris is MLI and the outer layer of copper coloring of Kapton is present, evidence would be seen spectrally by the specific absorption feature as well as using R-B (red-blue) light curves. Using laboratory photometric measurements and the results from spectral laboratory measurements, an optical property database is provided for an object with a high A/m. The benefits of this database for remote optical measurements of orbital debris are shown by illustrating the optical properties expected for a high A/m object, specifically common satellite and rocket body MLI.

  12. Optical properties of silicon inverse opals

    NASA Astrophysics Data System (ADS)

    Wei, Hong

    Silicon inverse opals are artificial structures in which nearly monodisperse, close-packed air bubbles are embedded in a silicon matrix. If properly tailored, this structure can exhibit a photonic band gap (PBG) in the near infrared spectral region. The PBG can block light propagation in any direction, allowing the control of light flow in the material. Silicon inverse opals can be fabricated by infiltrating amorphous silicon into silica colloidal crystals and then etching away the silica. In this thesis, the structural defects of silica colloidal crystals and the optical properties of silicon inverse opals are studied. First, by using laser-scanning confocal microscopy, the concentration and distribution of stacking faults and vacancies were quantified in silica colloidal crystals. It's shown that silica colloidal crystals show strong tendency toward face-center-cubic structure with the vacancy density as small as 5 x 10-4. Second, by combining optical microscopy and Fourier Transform Infrared (FTIR) spectroscopy, the transmission and reflection spectra of silicon inverse opals along the [111] direction were measured. Combined with the calculation of transmission and reflection spectra by Transfer Matrix Methods, it is concluded that the strong light attenuation in silicon inverse opals is due to the enhanced absorption (>600%) in silicon materials. Third, by using optical pump-probe techniques, the photo-induced ultra-fast reflection changes in silicon inverse opals were examined. The pump-generated free carriers cause the reflection in the band gap region to change after ˜0.5 ps. For the first few ps, the main effect is a decrease in reflectivity due to nonlinear absorption. After ˜5 ps, this effect disappears and an unexpected blue spectral shift is seen in the photonic band gap. The refractive index decreases due to optically-induced strain born the thermal expansion mismatch between silicon and its native oxide. Finally, by infiltrating silicon inverse

  13. Synthesis, characterization and optical properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Shoutian

    ZnO, Si, silica, Ge, Ga oxide, W oxide and Mo oxide nanoparticles have been synthesized and characterized, and their optical properties have been investigated. These particles were synthesized by a Laser Vaporization and Controlled Condensation (LVCC) technique in a modified diffusion cloud chamber. The particles deposited on smooth substrates reveal highly organized web-like structures with uniform micrometer size pores. The effect of solvents on the web-like structures was also investigated. ZnO nanoparticles were also prepared by wet chemical methods such as the reversed micelle and sol solutions technique. The photoluminescence quantum yield is enhanced 10 times once the surfaces of the ZnO nanoparticles are coated with a layer of stearate molecules. Many techniques have been used to characterize the nanoparticles. SEM gives information about particle size and morphology; X-ray diffraction and Raman spectroscopy determine the crystallinity and crystal structure; XPS and FTIR reveal the surface chemical composition; UV-vis spectroscopy and photoluminescence measurements characterize the optical properties of nanoparticles. Silica nanoparticles, prepared in an amorphous phase, show bright blue photoluminescence upon irradiation with UV light, but the luminescence has a very short lifetime (less than 20 ns). Si nanoparticles, with a diamond-like crystal phase, acquire oxidized-surfaces on exposure to air. The surface-oxidized Si nanocrystals show a short- lived blue emission characteristic of the SiO2 coating and a longer-lived red emission at room temperature. The lifetime of the red emission depends on the emission wavelength. Some substituted benzene molecules and tungsten oxide nanoparticles can quench the red photoluminescence of the Si nanocrystals. Tungsten oxide and molybdenum oxide nanoparticles show photochromic properties: they change color to blue when irradiated. The photons drive a transition from one chemical state to another. The color change of

  14. Optical theorem detectors for active scatterers

    NASA Astrophysics Data System (ADS)

    Marengo, Edwin A.; Tu, Jing

    2015-10-01

    We develop a new theory of the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. It applies to arbitrary lossless backgrounds and quite general probing fields. The derived formulation holds for arbitrary passive scatterers, which can be dissipative, as well as for the more general class of active scatterers which are composed of a (passive) scatterer component and an active, radiating (antenna) component. The generalization of the optical theorem to active scatterers is relevant to many applications such as surveillance of active targets including certain cloaks and invisible scatterers and wireless communications. The derived theoretical framework includes the familiar real power optical theorem describing power extinction due to both dissipation and scattering as well as a novel reactive optical theorem related to the reactive power changes. The developed approach naturally leads to three optical theorem indicators or statistics which can be used to detect changes or targets in unknown complex media. The paper includes numerical simulation results that illustrate the application of the derived optical theorem results to change detection in complex and random media.

  15. Stem cell tracking with optically active nanoparticles

    PubMed Central

    Gao, Yu; Cui, Yan; Chan, Jerry KY; Xu, Chenjie

    2013-01-01

    Stem-cell-based therapies hold promise and potential to address many unmet clinical needs. Cell tracking with modern imaging modalities offers insight into the underlying biological process of the stem-cell-based therapies, with the goal to reveal cell survival, migration, homing, engraftment, differentiation, and functions. Adaptability, sensitivity, resolution, and non-invasiveness have contributed to the longstanding use of optical imaging for stem cell tracking and analysis. To identify transplanted stem cells from the host tissue, optically active probes are usually used to label stem cells before the administration. In comparison to the traditional fluorescent probes like fluorescent proteins and dyes, nanoparticle-based probes are advantageous in terms of the photo-stabilities and minimal changes to the cell phenotype. The main focus here is to overview the recent development of optically active nanoparticles for stem cells tracking. The related optical imaging modalities include fluorescence imaging, photoacoustic imaging, Raman and surface enhanced Raman spectroscopy imaging. PMID:23638335

  16. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. Thermal, mechanical, and structural considerations leading to the design of the tray hardware are discussed. In general, changes in the retested component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials, multilayer optical interference filters, and extreme-infrared reflectivity of black paints show unexpected changes.

  17. Optical and chemical properties of tholins

    NASA Astrophysics Data System (ADS)

    Khare, Bishun N.; McKay, Christopher P.; Cruikshank, Dale P.; Sekine, Yasuhito; Wilhite, Patrick; Ishihara, Tomoko

    2008-10-01

    For over three decades tholins have been synthesized from mixtures of the cosmically abundant gases CH4, C2H6, NH3, H2O, HCHO, N2, and H2, previously in the Laboratory for Planetary Studies at Cornell University and in recent years at NASA Ames Research Center. The tholin synthesized by UV light or spark discharge on sequential and non-sequential pyrolysis GC-MS revealed hundreds of compounds, and on hydrolysis produced a large number of amino acids including racemic protein amino acids. Optical constants have been measured of many of the tholins, tholins produced from a condensed mixture of water and ethane at 77 K, poly HCN, and Titan tholin produced on electrical discharge through a mixture of 90% N2 and 10% CH4. Its optical constants were measured from soft x-rays to microwave for the first time. Here we report the absorption properties of Titan tholin that is produced in the temperature range 135 to 178 K where tholins are produced by magnetospheric charged particles, then pass through lower temperature at 70 K and finally to the ground at 95 K. While descending to the ground, it gets coated and processed on the way by other sources of energy such as long UV and cosmic rays. It is therefore expected that the stable products of CH4 photolysis react with Titan tholin to recycle the CH4 supply in Titan's atmosphere. Furthermore, the reactions of gaseous C2H6 with the reactive materials on the surface of the tholin could incorporate atmospheric C2H6 into the tholin and therefore might reduce the deposition rate of C2H6 onto the ground of Titan.

  18. Optically Stimulated Luminescence Properties Of Natural Schist

    NASA Astrophysics Data System (ADS)

    Stefanaki, E. C.; Afouxenidis, D.; Polymeris, G. S.; Sakalis, A.; Tsirliganis, N. C.; Kitis, G.

    Schist is a common siliciclastic geological material that has been extensively used in buildings as brick, tile and roofing slates. Its use, especially in the Mediterranean sea is widespread through the centuries. There are various examples from the ancient Greece, such as monuments from Knossos, Karthaia, as well as from modern Greece, such as traditional houses, etc. Schist is a metamorphic crystalline rock composed largely of silicon minerals, such as quartz, muscovite mica and feldspars. The type and composition of schists, as well as, the concentration of each mineral depends strongly on the type and the origin of the schist. Its past and modern use makes it a suitable candidate form archaeological dating, as well as, for retrospective dosimetry purposes. In the present work a preliminary characterization of schist is performed in order to investigate if some basic properties required for dating applications can be found in this material. The preliminary study concerns the optical stability, the sensitization and linearity of the Infrared Stimulated Luminescence (IRSL) resulting from feldspars, as well as the post IR Blue Optically Stimulated Luminescence (post - IR Blue OSL) resulting mostly from quartz. The results indicate that both signals are rapidly bleached when the sample is exposed to sunlight. The dose response was found to be linear for radiation doses at least up to 75 Gy for the IRSL signal and at least up to 25 Gy in the case of post - IR Blue OSL. The use of a single aliquot measurement protocol, due to the lack of sensitisation, extends the latter dose response linearity region up to 75 Gy for the post - IR Blue OSL signal of schist. Finally, the application of the double single-aliquot regenerative-dose protocol to schist was investigated, in order to recover,successfully, the equivalent dose in 4 - 11 μm grains of the compound.

  19. Microstructure Related Properties of Optical Thin Films.

    NASA Astrophysics Data System (ADS)

    Wharton, John James, Jr.

    Both the optical and physical properties of thin film optical interference coatings depend upon the microstructure of the deposited films. This microstructure is strongly columnar with voids between the columns. Computer simulations of the film growth process indicate that the two most important factors responsible for this columnar growth are a limited mobility of the condensing molecules and self-shadowing by molecules already deposited. During the vacuum deposition of thin films, the microstructure can be influenced by many parameters, such as substrate temperature and vacuum pressure. By controlling these parameters and introducing additional ones, thin film coatings can be improved. In this research, ultraviolet irradiation and ion bombardment were examined as additional parameters. Past studies have shown that post-deposition ultraviolet irradiation can be used to relieve stress and reduce absorption in the far ultraviolet of silicon dioxide films. Ion bombardment has been used to reduce stress, improve packing density, and increase resistance to moisture penetration. Three refractory oxide materials commonly used in thin film coatings were studied; they are silicon dioxide, titanium dioxide, and zirconium dioxide. Both single-layer films and narrowband filters made of these materials were examined. A 1000-watt mercury-xenon lamp was used to provide ultraviolet irradiation. An inverted magnetron ion source was used to produce argon and oxygen ions. Ultraviolet irradiation was found to reduce the absorption and slightly increase the index of refraction in zirconium oxide films. X-ray diffraction analysis revealed that ultraviolet irradiation caused titanium oxide films to become more amorphous; their absorption in the ultraviolet was slightly reduced. No changes were noted in film durability. Ion bombardment enhanced the tetragonal (lll) peak of zirconium oxide but increased the absorption of both zirconium oxide and titanium oxide films. The titanium oxide

  20. Photovoltaic concentrator assembly with optically active cover

    DOEpatents

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  1. Recent optical activity of Mrk 421

    NASA Astrophysics Data System (ADS)

    Semkov, E.; Bachev, R.; Strigachev, A.; Ibryamov, S.; Peneva, S.; Gupta, A. C.

    2013-04-01

    Our BVRI optical observations of Mrk 421 were performed within the multiwavelength international campaign (December 2012-June 2013), with the participation of GASP-WEBT, Swift, MAGIC, VLBA, NuSTAR, Fermi, VERITAS, F-GAMMA and other collaborations. Following the reports of enhanced X-ray and gamma activity of Mrk 421 (ATel #4978, ATel #4977, ATel #4976, ATel #4974, ATel #4918), we observed this blazar with the optical telescopes of the National Astronomical Observatory Rozhen and the Astronomical Observatory Belogradchik, Bulgaria.

  2. Nonreciprocal optical properties in resonant hybrid photonic crystals

    NASA Astrophysics Data System (ADS)

    D'Andrea, A.; Tomassini, N.

    2016-07-01

    The present work is devoted to the theoretical study of the nonreciprocal optical properties in hybrid (isotropic and anisotropic) periodic multilayers for photon energy values chosen close to the electronic energy gaps of semiconductors (excitons). The optical properties of these resonant nonmagnetic photonic crystals, where linear and quadratic spatial dispersion effects are both present, will be studied in the framework of exciton-polariton self-consistent solutions of the Maxwell and Schrödinger equations in the effective-mass approximation. The main interesting optical properties, namely, giant transmission, absorption suppression, and optical unidirectional propagation, will be computed by implementing a two-layer "minimum model."

  3. Optical activity in planar chiral metamaterials: Theoretical study

    SciTech Connect

    Bai, Benfeng; Svirko, Yuri; Turunen, Jari; Vallius, Tuomas

    2007-08-15

    A thorough theoretical study of the optical activity in planar chiral metamaterial (PCM) structures, made of both dielectric and metallic media, is conducted by the analysis of gammadion-shaped nanoparticle arrays. The general polarization properties are first analyzed from an effective-medium perspective, by analogy with natural optical activity, and then verified by rigorous numerical simulation, some of which are corroborated by previous experimental results. The numerical analysis suggests that giant polarization rotation (tens of degrees) may be achieved in the PCM structures with a thickness of only hundreds of nanometers. The artificial optical activity arises from circular birefringence induced by the structural chirality and is enhanced by the guided-mode or surface-plasmon resonances taking place in the structures. There are two polarization conversion types in the dielectric PCMs, whereas only one type in the metallic ones. Many intriguing features of the polarization property of PCMs are also revealed and explained: the polarization effect is reciprocal and vanishes in the symmetrically layered structures; the effect occurs only in the transmitted field, but not in the reflected field; and the polarization spectra of two enantiomeric PCM structures are mirror symmetric to each other. These remarkable properties pave the way for the PCMs to be used as polarization elements in new-generation integrated optical systems.

  4. Optical properties of fluids in microfabricated channels

    SciTech Connect

    French, T.; Gourley, P.L.; McDonald, A.E.

    1997-03-01

    Microfabricated channels are widely thought to be the key to realizing chemical analysis on a microscopic scale. Chemical and biological information in the microchannels is often probed with optical techniques such as fluorescence, Raman and absorption spectroscopy. However, the optical effects of a microchannel are not well characterized. For example, it is important to understand the optics of the channel in order to optimize optical coupling efficiency. The authors consider various designs for enhancing the sensitivity of fluorescence detection in a microchannel.

  5. Ultrafast laser-induced changes in optical properties of semiconductors

    SciTech Connect

    Chirila, C. C.; Lim, Freda C. H.; Gavaza, M. G.

    2012-04-01

    We study the effect of laser radiation on optical properties of semiconductors of industrial interest. The material is pumped with a laser of chosen central frequency, for which the absorption is maximal, thus inducing electron dynamics, which modifies the optical properties. By using an improved theoretical model, we study ultrafast dynamic changes in the refraction index and reflectivity corresponding to a wide frequency-interval of probing radiation and identify that interval where these optical changes are most significant.

  6. Nonlinear optical properties and supercontinuum spectrum of titania-modified carbon quantum dots

    NASA Astrophysics Data System (ADS)

    Kulchin, Yu N.; Mayor, A. Yu; Proschenko, D. Yu; Postnova, I. V.; Shchipunov, Yu A.

    2016-04-01

    We have studied the nonlinear optical properties and supercontinuum spectrum of solutions of carbon quantum dots prepared by a hydrothermal process from chitin and then coated with titania. The titania coating has been shown to have an activating effect on the carbon quantum dots, enhancing supercontinuum generation in the blue-violet spectral region and enabling their nonlinear optical characteristics to be varied.

  7. Optical properties of disilane-bridged donor-acceptor architectures: strong effect of substituents on fluorescence and nonlinear optical properties.

    PubMed

    Shimada, Masaki; Yamanoi, Yoshinori; Matsushita, Tomonori; Kondo, Takashi; Nishibori, Eiji; Hatakeyama, Akari; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2015-01-28

    A series of disilane-bridged donor-acceptor architectures 1-9 containing strong electron-donating and -withdrawing substituents were designed and synthesized in acceptable yields. The substituents substantially affected the fluorescence and nonlinear optical properties of the compounds. In the solid state, the compounds showed purple-blue fluorescence (λ(em) = 360-420 nm) with high quantum yields (up to 0.81). Compound 3, which had p-N,N-dimethylamino and o-cyano substituents, exhibited optical second harmonic generation (activity 2.9 times that of urea, calculated molecular hyperpolarizability β = 1.6 × 10(-30) esu) in the powder state. Density functional theory calculations for the ground and excited states indicated that both the locally excited state and the intramolecular charge transfer excited state make important contributions to the luminescence behavior. PMID:25565361

  8. Nonlinear optical properties of bismuth selenide

    NASA Astrophysics Data System (ADS)

    Bas, Derek; Babakiray, Sercan; Stanescu, Tudor; Lederman, David; Bristow, Alan

    Bismuth selenide (Bi2Se3) is a topological insulator with many interesting photonic properties. Much research has been done involving various types of photocurrents in an attempt to highlight the differences between the bulk electronic states and massless conducting surface states. Here, Bi2Se3 films varying in thickness from 6 to 40 quintuple layers have been produced via molecular beam epitaxy as a means to vary the relative contributions of bulk and surface. On these samples, optical measurements were performed at around 1.6 eV, which is enough energy to stimulate transitions from the Fermi level to a region near the second Dirac cone. Z-scan was used to measure saturable absorption, time-resolved two-color pump-probe was used to measure two-photon absorption, and a Fourier transform infrared spectrometer was used to measure linear absorption. Results were examined and analyzed with respect to thickness. Thickness-dependent band structures were produced using a tight-binding model and used to compare with experimental results.

  9. Exposure effects on the optical properties of building materials

    NASA Astrophysics Data System (ADS)

    Lane, Sarah; Cathcart, J. Michael; Harrell, J. Timothy

    2008-04-01

    Georgia Tech recently initiated a weathering effects measurement program to monitor the optical properties of several common building materials. A set of common building materials were placed outdoors and optical property measurements made over a series of weeks to assess the impact of exposure on these properties. Both reflectivity and emissivity measurements were made. Materials in this program included aluminum flashing, plastic sheets, bricks, roof shingles, and tarps. This paper will discuss the measurement approach, experimental setup, and present preliminary results from the optical property measurements.

  10. Manifestation of optical activity in different materials

    NASA Astrophysics Data System (ADS)

    Konstantinova, A. F.; Golovina, T. G.; Konstantinov, K. K.

    2014-07-01

    Various manifestations of optical activity (OA) in crystals and organic materials are considered. Examples of optically active enantiomorphic and nonenantiomorphic crystals of 18 symmetry classes are presented. The OA of enantiomorphic organic materials as components of living nature (amino acids, sugars, and proteins) is analyzed. Questions related to the origin of life on earth are considered. Examples of differences in the enantiomers of drugs are shown. The consequences of replacing conventional left-handed amino acids with additionally right-handed amino acids for living organisms are indicated.

  11. Optical properties of mouse biotissues and their optical phantoms

    NASA Astrophysics Data System (ADS)

    Krainov, A. D.; Mokeeva, A. M.; Sergeeva, E. A.; Agrba, P. D.; Kirillin, M. Yu.

    2013-08-01

    Based on spectrophotometric measurements in the range of 700-1100 nm performed with the use of an integrating sphere, we have obtained absorption and scattering spectra of internal organs of mouse, as well as of aqueous solutions of India ink and Lipofundin, which are basic model media for creating optical phantoms of biological tissues. To retrieve the spectra of optical characteristics, we have used original formulas that relate the parameters of the medium with measured spectrophotometric characteristics and that are constructed based on classical analytical models of propagation of light in turbid media. As a result of comparison of spectra of biotissues and model media, we have developed a mixture of Lipofundin and India ink serving as mouse optical phantoms for problems of optical medical diagnostics.

  12. Property Blocks: Games and Activities.

    ERIC Educational Resources Information Center

    Humphreys, Alan, Ed.; Dailey, Jean, Ed.

    This pamphlet describes the property blocks produced by MINNEMAST, and discusses their use in the development of thinking processes. Classification systems, including block diagrams and tree diagrams, are discussed. Sixteen classroom activities and eleven games which use the blocks are described. Suggestions to the teacher for further reading are…

  13. Optical properties of sol-gel immobilized Laccase: a first step for its use in optical biosensing

    NASA Astrophysics Data System (ADS)

    Delfino, I.; Portaccio, M.; Della Ventura, B.; Manzo, G.; Mita, D. G.; Lepore, M.

    2012-04-01

    Laccases are cuproproteins belonging to the group of oxidoreductases that are able to catalyze the oxidation of various aromatic compounds (particularly phenols) with the concomitant reduction of oxygen to water. They are characterized by low substrate specificity and have a catalytic competence which widely varies depending on the source. Additionally, laccases have also very peculiar optical properties due to their copper active sites which participate to the reduction processes. All these characteristics make laccases very flexible biotic element for biotechnological applications. During the years, a number of studies have been devoted at exploiting catalytic properties of laccases and very few at profiting of their optical properties. Some preliminary studies by absorption, fluorescence FT-IR and Raman spectroscopies of commercial laccases have evidenced their potential usefulness for optical biosensing of phenol compounds as cathecol. Moreover the sol-gel process offers a convenient and versatile method for preparing optically transparent matrices at room temperature that can represent a very convenient support for laccase immobilization. Also for immobilised enzymes the above-mentioned techniques have allowed a detailed characterization of their optical properties that confirmed the potentials of laccases in optical biosensors and represented a fundamental step in the designing of an optimised optical biosensing scheme.

  14. Linear and nonlinear optical properties of some organoxenon derivatives.

    PubMed

    Avramopoulos, Aggelos; Serrano-Andrés, Luis; Li, Jiabo; Reis, Heribert; Papadopoulos, Manthos G

    2007-12-01

    We employ a series of state-of-the-art computational techniques to study the effect of inserting one or more Xe atoms in HC2H and HC4H, on the linear and nonlinear optical (L&NLO) properties of the resulting compounds. It has been found that the inserted Xe has a great effect on the L&NLO properties of the organoxenon derivatives. We analyze the bonding in HXeC2H, and the change of the electronic structure, which is induced by inserting Xe, in order to rationalize the observed extraordinary L&NLO properties. The derivatives, which are of interest in this work, have been synthesized in a Xe matrix. Thus the effect of the local field (LF), due to the Xe environment, on the properties of HXeC2H, has also been computed. It has been found that the LF effect on some properties is significant. The calculations have been performed by employing a hierarchy of basis sets and the techniques MP2 and CCSD(T) for taking into account correlation. For the interpretation of the results we have employed the complete active space valence bond and CASSCF/CASPT2 methods. PMID:18067344

  15. Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters

    NASA Technical Reports Server (NTRS)

    Morrow, John H.; Hooker, Stanford B.; Booth, Charles R.; Bernhard, Germar; Lind, Randall N.; Brown, James W.

    2010-01-01

    This report documents new technology used to measure the apparent optical properties (AOPs) of optically complex waters. The principal objective is to be prepared for the launch of next-generation ocean color satellites with the most capable commercial off-the-shelf (COTS) instrumentation. An enhanced COTS radiometer was the starting point for designing and testing the new sensors. The follow-on steps were to apply the lessons learned towards a new in-water profiler based on a kite-shaped backplane for mounting the light sensors. The next level of sophistication involved evaluating new radiometers emerging from a development activity based on so-called microradiometers. The exploitation of microradiometers resulted in an in-water profiling system, which includes a sensor networking capability to control ancillary sensors like a shadowband or global positioning system (GPS) device. A principal advantage of microradiometers is their flexibility in producing, interconnecting, and maintaining instruments. The full problem set for collecting sea-truth data--whether in coastal waters or the open ocean-- involves other aspects of data collection that were improved for instruments measuring both AOPs and inherent optical properties (IOPs), if the uncertainty budget is to be minimized. New capabilities associated with deploying solar references were developed as well as a compact solution for recovering in-water instrument systems from small boats.

  16. Optical properties of micromachined polysilicon reflective surfaces with etching holes

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Byrne, Colin; Liu, Chang; Brady, David J.

    1998-08-01

    MUMPS (Multi-User MEMS Process) is receiving increasingly wide use in micro optics. We have investigated the optical properties of the polysilicon reflective surface in a typical MUMPS chip within the visible light spectrum. The effect of etching holes on the reflected laser beam is studied. The reflectivity and diffraction patterns at five different wavelengths have been measured. The optical properties of the polysilicon reflective surface are greatly affected by the surface roughness, the etching holes, as well as the material. The etching holes contribute to diffraction and reduction of reflectivity. This study provides a basis for optimal design of micromachined free-space optical systems.

  17. Specular optical activity of achiral metasurfaces

    NASA Astrophysics Data System (ADS)

    Plum, Eric; Fedotov, Vassili A.; Zheludev, Nikolay I.

    2016-04-01

    Optical activity in 3D-chiral media in the form of circular dichroism and birefringence is a fundamental phenomenon that serves as evidence of life forms and is widely used in spectroscopy. Even in 3D-chiral media exhibiting strong transmission optical activity, the reflective effect is weak and sometimes undetectable. Here, we report that specular optical activity at structured interfaces can be very strong. Resonant polarization rotation reaching 25 ° and reflectivity contrast exceeding 50% for oppositely circularly polarized waves are observed for microwaves reflected by a metasurface with structural elements lacking two-fold rotational symmetry. The effect arises at oblique incidence from a 3D-chiral arrangement of the wave's direction and the metasurface's structure that itself does not possess chiral elements. Specular optical activity of such magnitude is unprecedented. It is fundamentally different from the polarization effects occurring upon scattering, reflection, and transmission from surfaces with 2D-chiral patterns. The scale of the effect allows applications in polarization sensitive devices and surface spectroscopies.

  18. An Overhead Projection Demonstration of Optical Activity

    ERIC Educational Resources Information Center

    Hill, John W.

    1973-01-01

    Describes the use of two polarizing lenses, a yellow filter, an oatmeal bos, a piece of cardboard, a 1,000 ml beaker, and an overhead projector to demonstrate compound optical activity to large classes. Indicates the presence of an accuracy within 1-2 degrees of usually acceptable data. (CC)

  19. Influence of optical activity on rogue waves propagating in chiral optical fibers

    NASA Astrophysics Data System (ADS)

    Temgoua, D. D. Estelle; Kofane, T. C.

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  20. Optical properties of armchair (7, 7) single walled carbon nanotubes

    SciTech Connect

    Gharbavi, K.; Badehian, H.

    2015-07-15

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energy loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations.

  1. Determines the Thermal and Optical Properties of Fenestration Systems

    1995-01-27

    WINDOW4.1 computes the thermal properties of windows and other fenestration elements used in typical residential and commercial buildings. Manufactures, specifiers, architects, consumers, and the energy code specialists all need to know these properties (U-values, Solar Heat Gain Coefficients, optical properties). The use of this program to calculate these properties is typically much more cost effective than laboratory test procedures. Properties of complete window systems are based on libraries (or user input) component data.

  2. Optical Properties and Biological Applications of Electromagnetically Coupled Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Sassan Nathan

    The optical properties of metallic particles change dramatically as the size shrinks to the nanoscale. The familiar mirror-like sheen of bulk metals is replaced by the bright, sharp, colorful plasmonic resonances of nanoparticles. The resonances of plasmonic metal nanoparticles are highly tunable throughout the visible spectrum, depending on the size, shape, local dielectric environment, and proximity to other optical resonances. Fundamental and applied research in the nanoscience community in the past few decades has sought to understand and exploit these phenomena for biological applications. In this work, discrete nanoparticle assemblies were produced through biomolecular interactions and studied at the single particle level with darkfield spectroscopy. Pairs of gold nanoparticles tethered by DNA were utilized as molecular rulers to study the dynamics of DNA bending by the restriction enzyme EcoRV. These results substantiated that nanoparticle rulers, deemed "plasmon rulers", could measure the dynamics of single biomolecules with high throughput, long lifetime, and high temporal resolution. To extend these concepts for live cell studies, a plasmon ruler comprised of peptide-linked gold nanoparticle satellites around a core particle was synthesized and utilized to optically follow cell signaling pathways in vivo at the single molecule level. The signal provided by these plasmon rulers allowed continuous observation of caspase-3 activation at the single molecule level in living cells for over 2 hours, unambiguously identifying early stage activation of caspase-3 in apoptotic cells. In the last section of this dissertation, an experimental and theoretical study of electomagnetic coupling in asymmetric metal nanoparticle dimers is presented. A "heterodimer" composed of a silver particle and a gold particle is observed to have a novel coupling between a plasmon mode (free electron oscillations) and an inter-band absorption process (bound electron transitions). The

  3. The Adaptive Optics Summer School Laboratory Activities

    NASA Astrophysics Data System (ADS)

    Ammons, S. M.; Severson, S.; Armstrong, J. D.; Crossfield, I.; Do, T.; Fitzgerald, M.; Harrington, D.; Hickenbotham, A.; Hunter, J.; Johnson, J.; Johnson, L.; Li, K.; Lu, J.; Maness, H.; Morzinski, K.; Norton, A.; Putnam, N.; Roorda, A.; Rossi, E.; Yelda, S.

    2010-12-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO systems as a research tool. The activities are divided into three stations: Vision Science, Fourier Optics, and the AO Demonstrator. We briefly overview these activities, which are described fully in other articles in these conference proceedings (Putnam et al., Do et al., and Harrington et al., respectively). We devote attention to the unique challenges encountered in the design of these activities, including the marriage of inquiry-like investigation techniques with complex content and the need to tune depth to a graduate- and PhD-level audience. According to before-after surveys conducted in 2008, the vast majority of participants found that all activities were valuable to their careers, although direct experience with integrated, functional AO systems was particularly beneficial.

  4. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1991-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six-inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. The experimental results for those component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials and extreme-infrared reflectivity of black paints show unexpected changes.

  5. Properties of stellar activity cycles

    NASA Astrophysics Data System (ADS)

    Korhonen, Heidi

    2015-08-01

    The current photometric datasets, that span decades, allow for studying long-term magentic cycles on active stars. Complementary Ca H&K observations give information also on the cycles of normal solar-like stars, which have significantly smaller, and less easily detectable, spots. In recent years, high precision space-based observations, for example from the Kepler satellite, have allowed also to study the sunspot-like spot sizes in other stars. In this talk I will review what is known about the properties of the cyclic stellar activity in other stars than our Sun, and also discuss the future prospects in this field.

  6. Science Data Report for the Optical Properties Monitor (OPM) Experiment

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Zwiener, J. M.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    This science data report describes the Optical Properties Monitor (OPM) experiment and the data gathered during its 9-mo exposure on the Mir space station. Three independent optical instruments made up OPM: an integrating sphere spectral reflectometer, vacuum ultraviolet spectrometer, and a total integrated scatter instrument. Selected materials were exposed to the low-Earth orbit, and their performance monitored in situ by the OPM instruments. Coinvestigators from four NASA Centers, five International Space Station contractors, one university, two Department of Defense organizations, and the Russian space company, Energia, contributed samples to this experiment. These materials included a number of thermal control coatings, optical materials, polymeric films, nanocomposites, and other state-of-the-art materials. Degradation of some materials, including aluminum conversion coatings and Beta cloth, was greater than expected. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  7. Optical Properties of Aerosols and Clouds: The Software Package OPAC.

    NASA Astrophysics Data System (ADS)

    Hess, M.; Koepke, P.; Schult, I.

    1998-05-01

    The software package OPAC (Optical Properties of Aerosols and Clouds) is described. It easily provides optical properties in the solar and terrestrial spectral range of atmospheric particulate matter. Microphysical and optical properties of six water clouds, three ice clouds, and 10 aerosol components, which are considered as typical cases, are stored as ASCII files. The optical properties are the extinction, scattering, and absorption coefficients, the single scattering albedo, the asymmetry parameter, and the phase function. They are calculated on the basis of the microphysical data (size distribution and spectral refractive index) under the assumption of spherical particles in case of aerosols and cloud droplets and assuming hexagonal columns in case of cirrus clouds. Data are given for up to 61 wavelengths between 0.25 and 40 m and up to eight values of the relative humidity. The software package also allows calculation of derived optical properties like mass extinction coefficients and Ångström coefficients.Real aerosol in the atmosphere always is a mixture of different components. Thus, in OPAC it is made possible to get optical properties of any mixtures of the basic components and to calculate optical depths on the base of exponential aerosol height profiles. Typical mixtures of aerosol components as well as typical height profiles are proposed as default values, but mixtures and profiles for the description of individual cases may also be achieved simply.

  8. Optical fiber sensor having an active core

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.

  9. Optical Properties of Multi-Layered Insulation

    NASA Astrophysics Data System (ADS)

    Rodriguez, H.; Abercromby, K.; Mulrooney, M.; Barker, E.

    spectral measurements were acquired for each MLI sample. Spectral data will be combined to match the wavelength region of photometric data to establish a fiduciary reference for the photometric measurements. Not only will this help validate the color photometry, but it will also assist interpretation and analysis of telescopic data. As an example, copper-colored Kapton shows a strong absorption feature near 4800 angstroms. If the observed debris is MLI and the outer layer of copper coloring of Kapton is present, evidence of this material should be seen spectroscopically by the specific absorption feature as well as photometrically (eg. by using R-B (red-blue) light curves). Using laboratory photometric and spectroscopic measurements an optical property database is provided for a representative high A/m object. These results should directly aid the accurate interpretation of telescopically acquired optical orbital debris photometry of both high A/m targets as well as satellites and spacecraft that incorporate MLI.

  10. Optical properties of mouse brain tissue after optical clearing with FocusClear™

    NASA Astrophysics Data System (ADS)

    Moy, Austin J.; Capulong, Bernard V.; Saager, Rolf B.; Wiersma, Matthew P.; Lo, Patrick C.; Durkin, Anthony J.; Choi, Bernard

    2015-09-01

    Fluorescence microscopy is commonly used to investigate disease progression in biological tissues. Biological tissues, however, are strongly scattering in the visible wavelengths, limiting the application of fluorescence microscopy to superficial (<200 μm) regions. Optical clearing, which involves incubation of the tissue in a chemical bath, reduces the optical scattering in tissue, resulting in increased tissue transparency and optical imaging depth. The goal of this study was to determine the time- and wavelength-resolved dynamics of the optical scattering properties of rodent brain after optical clearing with FocusClear™. Light transmittance and reflectance of 1-mm mouse brain sections were measured using an integrating sphere before and after optical clearing and the inverse adding doubling algorithm used to determine tissue optical scattering. The degree of optical clearing was quantified by calculating the optical clearing potential (OCP), and the effects of differing OCP were demonstrated using the optical histology method, which combines tissue optical clearing with optical imaging to visualize the microvasculature. We observed increased tissue transparency with longer optical clearing time and an analogous increase in OCP. Furthermore, OCP did not vary substantially between 400 and 1000 nm for increasing optical clearing durations, suggesting that optical histology can improve ex vivo visualization of several fluorescent probes.

  11. Measurement of Optical Properties of Small Particles

    SciTech Connect

    Arakawa, E.T.; Tuminello, P.S.; Khare, B.N.; Millham, M.E.; Authier, S.; Pierce, J.

    1997-12-01

    We have measured the optical constants of montmorillonite and the separated coats and cores of B. subtilis spores over the wavelength interval from 200 nm to 2500 nm. The optical constants of kaolin were obtained over the wavelength interval from 130 nm to 2500 nm. Our results are applicable to the development of systems for detection of airborne biological contaminants. Future work will include measurement of the optical constants of B. cereus spores, B. sub tilts vegetative cells, egg albumin, illite, and a mixture (by weight) of one third kaolin, one third montmorillonite, and one third illite.

  12. Measurement of Optical Properties of Small Particles

    NASA Technical Reports Server (NTRS)

    Arakawa, E. T.; Tuminello, P. S.; Khare, B. N.; Millham, M. E.; Authier, S.; Pierce, J.

    1997-01-01

    We have measured the optical constants of montmorillonite and the separated coats and cores of B. subtilis spores over the wavelength interval from 200 nm to 2500 nm. The optical constants of kaolin were obtained over the wavelength interval from 130 nm to 2500 nm. Our results are applicable to the development of systems for detection of airborne biological contaminants. Future work will include measurement of the optical constants of B. cereus spores, B. sub tilts vegetative cells, egg albumin, illite, and a mixture (by weight) of one third kaolin, one third montmorillonite, and one third illite.

  13. Optical properties of porphyrin: graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Harsha Vardhan Reddy, M.; Al-Shammari, Rusul M.; Al-Attar, Nebras; Lopez, Sergio; Keyes, Tia E.; Rice, James H.

    2014-08-01

    In this work we aim to (via a non-invasive functionalization approach) tune and alter the intrinsic features of optically "transparent" graphene, by integrating water-soluble porphyrin aggregates. We explore the potential to combine porphyrin aggregates and graphene oxide to assess the advantages of such as a composite compared to the individual systems. We apply a range of optical spectroscopy methods including photo-absorption, fluorescence assess ground-state and excited state interactions. Our studies show that comparing resonant Raman scattering with optical transmission and fluorescence microscopy that the presence of influences the microscopic structures of the resulting composites.

  14. Engineer-able optical properties of trilayer graphene nanoribbon

    NASA Astrophysics Data System (ADS)

    Meshginqalam, Bahar; T, Hamid Toloue A.; Taghi Ahmadi, Mohammad; Sabatyan, Arash

    2016-03-01

    Graphene with a single atomic layer of carbon indicates two-dimensional behavior which plays an important role in sensor application, because of its high surface-to-volume ratio. Its interesting optical properties lead to low-cost and accurate optical devices as well. In the presented work trilayer graphene nanoribbon (TGN) with focus on its optical property for different incident wave lengths in the presence of applied voltage is explored. In low bias condition the optical conductance is modeled and dielectric constant and refractive index based on the estimated conductance are calculated theoretically; finally the obtained results are investigated numerically. Controllable optical properties supported by applied voltage on TGN are proved. Consequently, the proposed model indicates TGN as a possible candidate on surface plasmon based sensors, which needs to be explored.

  15. Detection of optical properties in small region by diffuse reflectance

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Li, Shengcai; Wang, Kai; Zhu, Zongping; Wang, Wei

    2015-11-01

    The optical properties of small and highly absorbing tissues can be determined by measurement of spatially resolved diffuse reflectance at short source-detector separations. Spatial resolution and number of measuring point influence the inverting precision of optical property directly from the experimental diffuse reflectance. To increase spatial resolution and number of measuring point, a high-resolution and multiple points detection system is designed. A special optical fiber array probe is employed. Its spatial resolution is 0.125mm. The system is proved to be reliable by comparing the experimental result of diffuse reflectance from small region 0.125mm-1.25mm with that of numerical simulation. The inverting method based on Monte Carlo simulation is designed, by which optical properties can be achieved by building optical parameter date base and training artificial neural network (ANN).

  16. The Optical Properties of Biological Tissue.

    NASA Astrophysics Data System (ADS)

    Bews, Jeffrey Alan

    The ability of light to propagate through biological tissue has found much application in medicine (ie. Photodynamic therapy and Diaphanography). However, a poor understanding of this transport phenomenon has served to limit the effectiveness of those modalities employing it in their operation. This thesis is a study of light propagation through biological tissue, its goal being to improve on the lack of knowledge that presently exists. A spectrophotometer type instrument (DICOM-8) was developed to measure the diffuse spectra extinction of biological tissue. Results were obtained for both normal and diseased breast tissue. Extinction curves for the two tissues exhibited a similar shape (extinction monotonically decreasing with increasing wavelength) but differed in magnitude below 700 nm with carcinoma possessing a higher extinction than normal. Data obtained from these tissue measurements served as the basis for developing a homogeneous liquid (TEM) for simulating the optical properties of tissue over the range 550 to 900 nm. Bench-top Diaphanography studies carried out on a breast phantom constructed of TEM demonstrated the improved tumor visualization attainable with short wavelength light. TEM also functioned as a test medium in which light distributions resulting from highly controlled irradiation geometries (isotropic point and planar sources) were measured and compared with those predicted by Linear Transport (LT) theory. The mean free path (MFP) of TEM ranged from 0.206 mm at 550 nm to 0.495 mm at 900 nm and was found to be directly proportional to the square of the wavelength. The scatter/absorption coefficient (c) was 0.9986459 at 550 nm and 0.9997315 at 850 nm. Agreement between experimental and theoretical distributions was found to be extremely good. Theoretical distributions generated with LT theory revealed the fact that small changes in MFP will have little effect on light transport. Similar changes in c, meanwhile, will drastically alter the

  17. The optical properties of crystalline melilite

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Koike, C.; Tsuchiyama, A.

    We report the optical properties of the two end members of melilite group minerals in the infrared region by use of powdered synthesized single crystals for the first time. Melilite is known as one of a high temperature condensates, and a major constituent mineral in the CAIs (Ca and Al-rich inclusions) in the primitive carbonaceous chondrite. The chemical formula of the melilite is represented as (Ca,Na)2 [Mg,Fe2+,Al,Si)3O7]. Particularly in the CAIs, the melilite system is a solid solution of the Al-end member, gehlenite (Ca2Al2SiO7) and the Mg-end member,Å kermanite (Ca2MgSi2O7). The absorption spectral features of both end members are complex. The numbers of main absorption bands are 14 ˜15 in the region from 5 to 100 microns. In the 10 micron region, spectral features consist of several absorption bands as same as other silicate crystals. However, in particular forÅ kermanite, the feature consists of very sharp and strong bands which are not seen in other silicate crystals such as olivine and pyroxene. The most prominent absorption peaks located at 21 and 24 microns for gehlenite andÅ kermanite, respectively. In addition, both of two samples have very broad features in the Far-IR region. While from the recent ISO-SWS observations, it was reported that the detection of 22 micron emission feature in the Carina nebula Hii region (Chan & Onaka 2000) and in the Cas A supernova remnant (Arendt et al. 1999). From the comparison of laboratory data by Dorschner et al. (1980), Mg, Ca and Fe ``protosilicate" are considered as the possible carrier of this unidentified feature. In order to discuss the possibility of the identification of this feature by melilite, we tried to compare the observational data and the laboratory data multiplied by Plank distributions. From a preliminary analysis, we found that the laboratory absorption spectra of melilites are very similar to the unidentified 22 micron feature, though there are some minor discrepancies such as peak position

  18. Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films.

    PubMed

    Ctistis, G; Papaioannou, E; Patoka, P; Gutek, J; Fumagalli, P; Giersig, M

    2009-01-01

    In this study, we present our experimental results on the optical, magnetic, as well as magneto-optic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films. Different meshes were used with hole diameters ranging between 220 and 330 nm while the interhole distance has been kept constant at 470 nm. The hole pattern modifies completely the magnetic behavior of the cobalt films; it gives rise to an increase of the coercive field of the in-plane magnetization with increasing hole diameter and to the appearance of out-of-plane magnetization components. Magneto-optic measurements show a spectacular magneto-optic response at wavelengths where surface plasmon-polaritons are supported by the structure as deduced in optical measurements. The experiments demonstrate the ability to artificially control the magnetic and thus the magneto-optic properties in hole array structures. PMID:19072720

  19. Nonlinear Optical Properties of Triphenylalanine-based Peptide Nanostructures

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. V.; Mishina, E. D.; Sigov, A. S.

    2016-05-01

    Nonlinear optical properties of peptide nanobelts and peptide nanospheres, the two types of self-assembled triphenylalanine-based peptide nanostructures, are studied. Nanobelts nonlinear susceptibility tensor components are evaluated, and nanobelts crystal structure and crystallographic orientation are defined on the basis of nonlinear optical mapping and polarization dependences of the second harmonic signal. The results obtained suggest that it is possible to use these materials as biologically compatible nonlinear optical converters.

  20. Effective Dirac Hamiltonian for anisotropic honeycomb lattices: Optical properties

    NASA Astrophysics Data System (ADS)

    Oliva-Leyva, M.; Naumis, Gerardo G.

    2016-01-01

    We derive the low-energy Hamiltonian for a honeycomb lattice with anisotropy in the hopping parameters. Taking the reported Dirac Hamiltonian for the anisotropic honeycomb lattice, we obtain its optical conductivity tensor and its transmittance for normal incidence of linearly polarized light. Also, we characterize its dichroic character due to the anisotropic optical absorption. As an application of our general findings, which reproduce the previous case of uniformly strained graphene, we study the optical properties of graphene under a nonmechanical distortion.

  1. Tailored synthesis of superparamagnetic gold nanoshells with tunable optical properties.

    SciTech Connect

    Zhang, Q.; Ge, J.; Goebl, J.; Hu, Y.; Sun, Y.; Yin, Y.; Center for Nanoscale Materials; Univ. of California at Riverside

    2010-05-04

    Multifunctional Au nanoshells with tunable optical properties and fast magnetic response have been fabricated through a sequence of sol-gel, surface-protected etching, and seed-mediated growth processes. The use of a porous silica layer enhances the uniformity of nanoshell growth, the reproducibility of the synthesis, and the structural and optical stability of the products.

  2. All-optical active switching in individual semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Piccione, Brian; Cho, Chang-Hee; van Vugt, Lambert K.; Agarwal, Ritesh

    2012-10-01

    The imminent limitations of electronic integrated circuits are stimulating intense activity in the area of nanophotonics for the development of on-chip optical components, and solutions incorporating direct-bandgap semiconductors are important in achieving this end. Optical processing of data at the nanometre scale is promising for circumventing these limitations, but requires the development of a toolbox of components including emitters, detectors, modulators, waveguides and switches. In comparison to components fabricated using top-down methods, semiconductor nanowires offer superior surface properties and stronger optical confinement. They are therefore ideal candidates for nanoscale optical network components, as well as model systems for understanding optical confinement. Here, we demonstrate all-optical switching in individual CdS nanowire cavities with subwavelength dimensions through stimulated polariton scattering, as well as a functional NAND gate built from multiple switches. The device design exploits the strong light-matter coupling present in these nanowires, leading to footprints that are a fraction of those of comparable silicon-based dielectric contrast and photonic crystal devices.

  3. Quantum analysis of polarization properties of optical beams

    SciTech Connect

    Lahiri, Mayukh; Wolf, Emil

    2010-10-15

    We present a quantum treatment of polarization of optical beams and discuss some properties of beams of any state of polarization. The analysis is based on quantum-mechanical interpretation of a canonical experiment that is used to elucidate polarization properties of stochastic fields in classical optics. Our work shows how to apply some ideas and techniques, commonly used in the classical theory, for fields that cannot be treated classically.

  4. Optical Properties of Host Galaxies of Extragalactic Nuclear Water Masers

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun; Zaw, Ingyin; Blanton, Michael R.; Greenhill, Lincoln J.

    2011-12-01

    We study the optical properties of the host galaxies of nuclear 22 GHz (λ = 1.35 cm) water masers. To do so, we cross-match the galaxy sample surveyed for water maser emission (123 detections and 3806 non-detections) with the Sloan Digital Sky Survey (SDSS) low-redshift galaxy sample (z < 0.05). Out of 1636 galaxies with SDSS photometry, we identify 48 detections; out of the 1063 galaxies that also have SDSS spectroscopy, we identify 33 detections. We find that maser detection rate is higher at higher optical luminosity (MB ), larger velocity dispersion (σ), and higher [O III] λ5007 luminosity, with [O III] λ5007 being the dominant factor. These detection rates are essentially the result of the correlations of isotropic maser luminosity with all three of these variables. These correlations are natural if maser strength increases with central black hole mass and the level of active galactic nucleus (AGN) activity. We also find that the detection rate is higher in galaxies with higher extinction. Based on these results, we propose that maser surveys seeking to efficiently find masers should rank AGN targets by extinction-corrected [O III] λ5007 flux when available. This prioritization would improve maser detection efficiency, from an overall ~3% without pre-selection to ~16% for the strongest intrinsic [O III] λ5007 emitters, by a factor of ~5.

  5. (Bio)hybrid materials based on optically active particles

    NASA Astrophysics Data System (ADS)

    Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg

    2014-03-01

    In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.

  6. Target for optically activated seekers and trackers

    NASA Astrophysics Data System (ADS)

    Lakin, C. T.; Willett, N. F.

    1984-05-01

    This abstract discloses a target for optically activated seekers and trackers (TOAST) which provides for calibrated and variable target characteristics such as size, intensity, spatial position, color and interfering background. The TOAST has a first ilumination system providing a target light beam through an adjustable iris which controls image size. The target beam passes through a collimator lens which focuses the light at infinity. With the target beam focused at infinity, the motion of an elevation plate lengthens or shortens the distance from the collimator lens to a one motion mirror. The target beam is attenuated by a variable filter driven by a servo-motor, and a color selection process is provided by passing the beam through spectral filters. A background light beam with background imagery is provided to the beamsplitter mirror and mixed with the target image so as to simulate the target environment encountered by an operating optically activated seeker and tracker.

  7. Optical Properties of Volcanic Ash: Improving Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Colarco, P. R.; Aquila, V.; Krotkov, N. A.; Bleacher, J. E.; Garry, W. B.; Young, K. E.; Lima, A. R.; Martins, J. V.; Carn, S. A.

    2015-12-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation. Recent research has identified a wide range in volcanic ash optical properties among samples collected from the ground after different eruptions. The database of samples investigated remains relatively small, and measurements of optical properties at the relevant particle sizes and spectral channels are far from complete. Generalizing optical properties remains elusive, as does establishing relationships between ash composition and optical properties, which are essential for satellite retrievals. We are building a library of volcanic ash optical and microphysical properties. In this presentation we show

  8. Polarisation properties of pulsars at optical wavelengths

    NASA Astrophysics Data System (ADS)

    Mignani, Roberto; Marelli, Martino; Shearer, Andrew; Slowikowska, Agnieszka

    2016-07-01

    Polarisation measurements of pulsars offer unique insights into their highly-magnetised relativistic environments and represent a primary test for neutron star magnetosphere models and radiation emission mechanisms. Besides the radio band, optical observations have been, so far, best suited to these goals, with polarisation measurements in the X-rays becoming possible in the near future thanks to missions, such as XIPE and IXPE. In this talk, we review the status of the optical polarisation measurements of pulsars and we foresee possible synergies between X-ray polarimetry observations of selected pulsars with, e.g XIPE and IXPE, and optical observations with the next generation of extremely large telescope, such as the E-ELT.

  9. Optical properties of blood in motion

    NASA Astrophysics Data System (ADS)

    Lindberg, Lars-Goeran; Sveider, Per; Oberg, P. Ake

    1992-08-01

    An in vitro model was developed for application in studies of the optical and physical characteristics of flowing blood in rigid and flexible tubes (artificial vessels). The results indicate that both transmission and reflection of light are dependent on blood volume changes, orientation as well as deformability of the red blood cells. Light transmission and reflection in human blood showed a parabolic behavior at hematocrit levels. > 38% when plotted against blood flow. At both a low and high flow rate, the light transmission increased when compared to an intermediate flow where the transmission showed a minimum. The optical wavelength used also affected the light transmission and reflection in moving blood. The results from studies of blood in flow-through models are of importance for the understanding of the optical mechanisms behind the signal generation in photometrical measurement techniques.

  10. Optical properties of blood in motion

    NASA Astrophysics Data System (ADS)

    Lindberg, Lars-Goran; Oberg, P. Ake

    1993-02-01

    An in vitro model is developed for application in studies of the optical and physical characteristics of flowing blood in rigid and flexible tubes (artificial vessels). The results indicate that both transmission and reflection of light are dependent on blood volume changes and orientation as well as the deformability of the red blood cells. Light transmission and reflection in human blood shows a parabolic behavior at hematocrit levels greater than 40%, when plotted against blood flow. At both low and high flow rates, the light transmission increases when compared to an intermediate flow where the transmission shows a minimum. The optical wavelength used also affects the light transmission and reflection in moving blood. The results of studies of blood in flow-through models are important for the understanding of the optical mechanisms behind the signal generation in photometrical measurement techniques.

  11. Optical Properties of Bismuth Germanate (BGO)

    SciTech Connect

    Jellison Jr, Gerald Earle; Auluck, S.; Singh, David J; Boatner, Lynn A

    2010-01-01

    The optical dielectric function of bismuth germanate Bi4Ge3O12 has been measured using spectroscopic ellipsometry and optical transmission. Analysis near the direct band edge indicates that there are at least three critical points at 4.44 low intensity and at 4.75 and 4.91 high intensity. Using transmission measurements, the band gap is determined to be 4.20 eV, which is likely determined by the defects in the material. Comparisons are made with relativistic electronic structure and optical calculations based on the Engel Vosko generalized gradient approximation. The near-absorption-edge critical points are associated with spin-orbit-split bands which significantly modify the conduction bands.

  12. Optical activity of chirally distorted nanocrystals

    NASA Astrophysics Data System (ADS)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2016-05-01

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.

  13. Constitutive Modeling of the Mechanical Properties of Optical Fibers

    NASA Technical Reports Server (NTRS)

    Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.

    1998-01-01

    Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.

  14. In-vivo local determination of tissue optical properties

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Frederic; Piguet, D.; Marquet, Pierre; Gross, Jeffrey D.; Tromberg, Bruce J.; Depeursinge, Christian D.

    1997-12-01

    Local and superficial optical characterization of biological tissues can be achieved by measuring the spatially resolved diffuse reflectance at small source-detector separations. The sensitivity of the signal to the phase function, absorption and scattering coefficients were studied using Monte Carlo simulations. Measurements of spatially resolved reflectance were performed in vivo on human brain with source-detector separations from 0.3 to 1.5 mm. Distinct optical properties were found between normal cortex, astrocytoma of optic nerve and normal optic nerve.

  15. In-vivo local determination of tissue optical properties

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Frederic P.; Piguet, Dominique; Marquet, Pierre; Gross, Jeffrey D.; Tromberg, Bruce J.; Depeursinge, Christian D.

    1998-01-01

    Local and superficial optical characterization of biological tissues can be achieved by measuring the spatially resolved diffuse reflectance at small source-detector separations. The sensitivity of the signal to the phase function, absorption and scattering coefficients were studied using Monte Carlo simulations. Measurements of spatially resolved reflectance were performed in vivo on human brain with source-detector separations from 0.3 to 1.5 mm. Distinct optical properties were found between normal cortex, astrocytoma of optic nerve and normal optic nerve.

  16. Optical properties and structure of beryllium lead silicate glasses

    SciTech Connect

    Zhidkov, I. S.; Zatsepin, A. F.; Cholakh, S. O.; Kuznetsova, Yu. A.

    2014-10-21

    Luminescence and optical properties and structural features of (BeO){sub x}(PbO⋅SiO{sub 2}){sub 1−x} glasses (x = 0 ÷ 0.3) are investigated by means of optical absorption and photoluminescence spectroscopy and X-ray diffraction. The regularities of the formation of the optical absorption edge and static disorder are studied. It is shown that the optical absorption and luminescence are determined by transitions between localized states of lead ions. The impact of beryllium oxide on optical and luminescence properties and electronic structure of bands tails is discussed. The presence of two different concentration ranges with various short-range order structure and band tails nature has been established.

  17. Structural and optical properties for typical solid mirror shapes

    NASA Technical Reports Server (NTRS)

    Cho, Myung K.; Richard, Ralph M.

    1990-01-01

    A method is developed to determine the weight, center of gravity, areal properties, and mass inertial properties for typical mirrors. A number of support conditions were considered to examine optical surface deflections, surface quality, and fundamental natural frequency for single- and double-arch mirror shapes. Structural performance estimates were made with the NASTRAN program, and optical performances were evaluated with the FRINGE program, using an SXA 40-in mirror. To show the behavior of element types from the NASTRAN program, finite element validity and sensitivity studies were performed in optical model applications. Material parameters, contoured back shapes, and support locations are shown to have significant effects on structural and optical performances. Optimal support locations and support points are given. Fundamental natural frequencies for some shapes are found with the closed-form solution. The plate models results may not be acceptable for determining real mirror optical performances.

  18. Optically Active Porphyrin and Phthalocyanine Systems.

    PubMed

    Lu, Hua; Kobayashi, Nagao

    2016-05-25

    This review highlights and summarizes various optically active porphyrin and phthalocyanine molecules prepared using a wide range of structural modification methods to improve the design of novel structures and their applications. The induced chirality of some illustrative achiral bis-porphyrins with a chiral guest molecule is introduced because these systems are ideal for the identification and separation of chiral biologically active substrates. In addition, the relationship between CD signal and the absolute configuration of the molecule is analyzed through an analysis of the results of molecular modeling calculations. Possible future research directions are also discussed. PMID:27186902

  19. Optical imaging of neural and hemodynamic brain activity

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  20. Actively controlled thin-shell space optics

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Flint, Eric M.; Main, John A.; Lindler, Jason E.

    2003-08-01

    Increasingly, scientific and military missions require the use of space-based optical systems. For example, new capabilities are required for imaging terrestrial like planets, for surveillance, and for directed energy applications. Given the difficulties in producing and launching large optics, it is doubtful that refinements of conventional technology will meet future needs, particularly in a cost-effective manner. To meet this need, recent research has been investigating the feasibility of a new class of ultra-lightweight think-skin optical elements that combine recent advances in lightweight thermally formed materials, active materials, and novel sensing and control architectures. If successful, the approach may lead to an order of magnitude reduction in space optics areal density, improved large scale manufacturing capability, and dramatic reductions in manufacturing and launch costs. In a recent effort, a one meter thin-film mirror like structure was fabricated. This paper provides an overview of tools used to model and simulate this structure as well as results from structural dynamic testing. In addition, progress in the area of non-contact global shape control using smart materials is presented.

  1. Evanescent Field Based Photoacoustics: Optical Property Evaluation at Surfaces.

    PubMed

    Goldschmidt, Benjamin S; Rudy, Anna M; Nowak, Charissa A; Tsay, Yowting; Whiteside, Paul J D; Hunt, Heather K

    2016-01-01

    Here, we present a protocol to estimate material and surface optical properties using the photoacoustic effect combined with total internal reflection. Optical property evaluation of thin films and the surfaces of bulk materials is an important step in understanding new optical material systems and their applications. The method presented can estimate thickness, refractive index, and use absorptive properties of materials for detection. This metrology system uses evanescent field-based photoacoustics (EFPA), a field of research based upon the interaction of an evanescent field with the photoacoustic effect. This interaction and its resulting family of techniques allow the technique to probe optical properties within a few hundred nanometers of the sample surface. This optical near field allows for the highly accurate estimation of material properties on the same scale as the field itself such as refractive index and film thickness. With the use of EFPA and its sub techniques such as total internal reflection photoacoustic spectroscopy (TIRPAS) and optical tunneling photoacoustic spectroscopy (OTPAS), it is possible to evaluate a material at the nanoscale in a consolidated instrument without the need for many instruments and experiments that may be cost prohibitive. PMID:27500652

  2. Nonlinear quantum optical properties of graphene

    NASA Astrophysics Data System (ADS)

    Semnani, Behrooz; Hamed Majedi, Amir; Safavi-Naeini, Safieddin

    2016-03-01

    We present a semiclassical theory of the linear and nonlinear optical response of graphene. The emphasis is placed on the nonlinear optical response of graphene from the standpoint of the underlying chiral symmetry. The Bloch quasiparticles in the low-energy limit around the degeneracy points are dominantly chiral. It is shown that this chiral behavior in conjunction with scale invariance in graphene around the Dirac points results in the strong nonlinear optical response. Explicit expressions for the linear and nonlinear conductivity tensors are derived based on semiconductor Bloch equations (SBEs). The linear terms agree with the result of Kubo formulation. The three main additive mechanisms contribute in the nonlinear optical response of graphene: pure intraband, pure interband and the interplay between them. For each contribution, an explicit response function is derived. The Kerr-type nonlinearity of graphene is then numerically studied and it is demonstrated that the nonlinear refractive index of graphene can be tuned and enhanced by applying a gate voltage. It is also discussed that a strong Kerr nonlinearity can be achieved in a gated graphene monolayer. However, this nonlinearity is accompanied with a significant amount of absorption loss.

  3. Distinct optical properties of relativistically degenerate matter

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2014-06-01

    In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.

  4. Distinct optical properties of relativistically degenerate matter

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-06-15

    In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.

  5. Diamagnetic Raman Optical Activity of Chlorine, Bromine, and Iodine Gases.

    PubMed

    Šebestík, Jaroslav; Kapitán, Josef; Pačes, Ondřej; Bouř, Petr

    2016-03-01

    Magnetic Raman optical activity of gases provides unique information about their electric and magnetic properties. Magnetic Raman optical activity has recently been observed in a paramagnetic gas (Angew. Chem. Int. Ed. 2012, 51, 11058; Angew. Chem. 2012, 124, 11220). In diamagnetic molecules, it has been considered too weak to be measurable. However, in chlorine, bromine and iodine vapors, we could detect a significant signal as well. Zeeman splitting of electronic ground-state energy levels cannot rationalize the observed circular intensity difference (CID) values of about 10(-4) . These are explicable by participation of paramagnetic excited electronic states. Then a simple model including one electronic excited state provides reasonable spectral intensities. The results suggest that this kind of scattering by diamagnetic molecules is a general event observable under resonance conditions. The phenomenon sheds new light on the role of excited states in the Raman scattering, and may be used to probe molecular geometry and electronic structure. PMID:26845382

  6. ESTIMATION OF KOREAN PADDY FIELD SOIL PROPERTIES USING OPTICAL REFLECTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An optical sensing approach based on diffuse reflectance has shown potential for rapid and reliable on-site estimation of soil properties. Important sensing ranges and the resulting regression models useful for soil property estimation have been reported. In this study, a similar approach was applie...

  7. Nonlinear optical properties of rigid-rod polymers

    NASA Technical Reports Server (NTRS)

    Trimmer, Mark S.; Wang, Ying

    1992-01-01

    The purpose of this research project was to integrate enhanced third order nonlinear optical (NLO) properties, especially high x(exp (3)) (greater than 10(exp -8) esu), into Maxdem's novel conjugated rigid-rod polymers while retaining their desirable processing, mechanical, and thermal properties. This work primarily involved synthetic approaches to optimized materials.

  8. Estimation of Korean paddy field soil properties using optical reflectance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An optical sensing approach based on diffuse reflectance has shown potential for rapid and reliable on-site estimation of soil properties. Important sensing ranges and the resulting regression models useful for soil property estimation have been reported. In this study, a similar approach was applie...

  9. Optical pumping of generalized laser active materials.

    PubMed

    Fry, F H

    1967-11-01

    Results are presented of a computer-based study on the rate of excitation in the active cores of two types of optically pumped lasers as a function of a number of parameters of the active core. The absorption bands of the active materials are generated by Lorentzian and Gaussian functions. The excitation rate of the active core is proportional to the width of the absorption band at all depths of penetration. The plots of excitation rate as a function of frequency show curves similar to line reversal spectra and emphasize the importance of excitation some distance from the center of the absorption band in the slab model. In the cylindrical model, this wing pumping is even more important due to focusing. The effect of refractive index on the excitation rate is also described. PMID:20062337

  10. Optical properties of graphite oxide and reduced graphite oxide

    NASA Astrophysics Data System (ADS)

    Jung, Eilho; Lee, Seokbae; Roh, Seulki; Hwang, Eunhee; Lee, Junghyun; Lee, Hyoyoung; Hwang, Jungseek

    2014-07-01

    We studied the optical properties of a graphite oxide and a reduced graphite oxide by using the optical spectroscopic technique. The graphite oxide does not show a finite dc conductivity and has several characteristic absorption modes in the mid-infrared region, caused by an epoxide functional group and hydroxyl and carboxyl moieties in the mid-infrared range. The reduced graphite oxide shows a Drude-like response in the far-infrared region and the estimated dc conductivity and electric mobility are around 200 Ω-1cm-1 and ˜100 cm2V-1s-1, respectively. We found that the optical conductivity cannot be fitted with a simple Drude model, which indicates that the charge carriers are correlated. We applied an extended Drude model and obtained the optical scattering rate and the optical effective mass. We found that the optical effective mass can carry information of both the enhanced mass by correlation and the electronic band structure.

  11. The properties of RE-TM magneto-optical films

    NASA Astrophysics Data System (ADS)

    Lee, Z. Y.; Miao, X. S.; Zhu, P.; Hu, Y. S.; Wan, D. F.; Dai, D. W.; Chen, S. B.; Lin, G. Q.

    1992-09-01

    In this paper, the magnetic, magneto-optical and galvonomagnetic properties, and their temperature dependence for LRE-TM SmCo, SmCoDy and HRE-TM TbFeCo magneto-optical films as high density recording media prepared by rf magnetron sputtering or evaporation are reported. By adding Dy to SmCo thin film, the SmCoDy thin film is more suitable for magneto-optical recording, its domain size being below 0.63 μm. The Kerr enhancement and corrosion protective effects of AIN and AlSiN for optimum design of the multi-layer structure of magneto-optical disk are described. The instruments of measuring the magneto-optical Kerr effect and magneto-optical recording domain characteristics of thin films are reviewed.

  12. Nonlinear-optical, optical, and crystallographic properties of methyl p-hydroxybenzoate

    NASA Astrophysics Data System (ADS)

    Li, Zhengdong; Wu, Baichang; Su, Genbo

    1997-07-01

    Bulk crystals of methyl p-hydroxybenzoate were grown from organic solution. The crystal structure was determined by X-ray analysis. The refractive indices were determined by the method of prism minimum deviation. The nonlinear-optical coefficients dij and deff were measured. The nonlinear-optical properties are discussed in terms of crystalline structure.

  13. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties.

    PubMed

    Nadort, Annemarie; Zhao, Jiangbo; Goldys, Ewa M

    2016-07-01

    Upconversion photoluminescence is a nonlinear effect where multiple lower energy excitation photons produce higher energy emission photons. This fundamentally interesting process has many applications in biomedical imaging, light source and display technology, and solar energy harvesting. In this review we discuss the underlying physical principles and their modelling using rate equations. We discuss how the understanding of photophysical processes enabled a strategic influence over the optical properties of upconversion especially in rationally designed materials. We subsequently present an overview of recent experimental strategies to control and optimize the optical properties of upconversion nanoparticles, focussing on their emission spectral properties and brightness. PMID:26986473

  14. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties

    NASA Astrophysics Data System (ADS)

    Nadort, Annemarie; Zhao, Jiangbo; Goldys, Ewa M.

    2016-07-01

    Upconversion photoluminescence is a nonlinear effect where multiple lower energy excitation photons produce higher energy emission photons. This fundamentally interesting process has many applications in biomedical imaging, light source and display technology, and solar energy harvesting. In this review we discuss the underlying physical principles and their modelling using rate equations. We discuss how the understanding of photophysical processes enabled a strategic influence over the optical properties of upconversion especially in rationally designed materials. We subsequently present an overview of recent experimental strategies to control and optimize the optical properties of upconversion nanoparticles, focussing on their emission spectral properties and brightness.

  15. Optical communication technology. II - Properties of optical fibers

    NASA Astrophysics Data System (ADS)

    1980-07-01

    The pulse dispersion of short light impulses is examined with respect to mode, waveguides, and material and profile dispersion. Impulse expansions of up to 50 ns/km are measured and equations for calculating light impulses from fiber length and light speed in vacuum are presented, together with equations of refraction profiles and profile patterns. Attention is given to multimode-step index fibers, gradient fibers, and monomode fibers as well as to their differing properties. Diagrams of numerical aperture, light dispersion (of the above mentioned fiber types), and interference of two waveguides are given.

  16. Calculating nonlocal optical properties of structures with arbitrary shape.

    SciTech Connect

    McMahon, J. M.; Gray, S. K.; Schatz, G. C.; Northwestern Univ.

    2010-07-16

    In a recent Letter [J. M. McMahon, S. K. Gray, and G. C. Schatz, Phys. Rev. Lett. 103, 097403 (2009)], we outlined a computational method to calculate the optical properties of structures with a spatially nonlocal dielectric function. In this paper, we detail the full method and verify it against analytical results for cylindrical nanowires. Then, as examples of our method, we calculate the optical properties of Au nanostructures in one, two, and three dimensions. We first calculate the transmission, reflection, and absorption spectra of thin films. Because of their simplicity, these systems demonstrate clearly the longitudinal (or volume) plasmons characteristic of nonlocal effects, which result in anomalous absorption and plasmon blueshifting. We then study the optical properties of spherical nanoparticles, which also exhibit such nonlocal effects. Finally, we compare the maximum and average electric field enhancements around nanowires of various shapes to local theory predictions. We demonstrate that when nonlocal effects are included, significant decreases in such properties can occur.

  17. Magneto-Optical Properties of Paramagnetic Superrotors

    NASA Astrophysics Data System (ADS)

    Milner, A. A.; Korobenko, A.; Floß, J.; Averbukh, I. Sh.; Milner, V.

    2015-07-01

    We study the dynamics of paramagnetic molecular superrotors in an external magnetic field. An optical centrifuge is used to create dense ensembles of oxygen molecules in ultrahigh rotational states. In is shown, for the first time, that the gas of rotating molecules becomes optically birefringent in the presence of a magnetic field. The discovered effect of "magneto-rotational birefringence" indicates the preferential alignment of molecular axes along the field direction. We provide an intuitive qualitative model, in which the influence of the applied magnetic field on the molecular orientation is mediated by the spin-rotation coupling. This model is supported by the direct imaging of the distribution of molecular axes, the demonstration of the magnetic reversal of the rotational Raman signal, and by numerical calculations.

  18. Magneto-Optical Properties of Paramagnetic Superrotors.

    PubMed

    Milner, A A; Korobenko, A; Floß, J; Averbukh, I Sh; Milner, V

    2015-07-17

    We study the dynamics of paramagnetic molecular superrotors in an external magnetic field. An optical centrifuge is used to create dense ensembles of oxygen molecules in ultrahigh rotational states. In is shown, for the first time, that the gas of rotating molecules becomes optically birefringent in the presence of a magnetic field. The discovered effect of "magneto-rotational birefringence" indicates the preferential alignment of molecular axes along the field direction. We provide an intuitive qualitative model, in which the influence of the applied magnetic field on the molecular orientation is mediated by the spin-rotation coupling. This model is supported by the direct imaging of the distribution of molecular axes, the demonstration of the magnetic reversal of the rotational Raman signal, and by numerical calculations. PMID:26230789

  19. Optical properties of Rydberg excitons and polaritons

    NASA Astrophysics Data System (ADS)

    Zielińska-Raczyńska, Sylwia; Czajkowski, Gerard; Ziemkiewicz, David

    2016-02-01

    We show how to compute the optical functions when Rydberg excitons appear, including the effect of the coherence between the electron-hole pair and the electromagnetic field. We use the real density matrix approach (RDMA), which, combined with the Green's function method, enables one to derive analytical expressions for the optical functions. Choosing the susceptibility, we performed numerical calculations appropriate to a Cu20 crystal, being a semiconductor with an indirect gap. The effect of the coherence is displayed in the line shape. We also examine in detail and explain the dependence of the oscillator strength and the resonance placement on the state number. We report good agreement with recently published experimental data. We also show that the presented method can be applied to semiconductors with a direct gap.

  20. Plastic optical fibers: properties and practical applications

    NASA Astrophysics Data System (ADS)

    Loch, Manfred, Jr.

    2004-10-01

    Driven by the increasing data traffic and the increasing demand for bandwidth optical fiber technologies play a greater role in todays and future data-communication networks. Although the well-known silica fiber have the potential of achieving very large bandwidth, this fiber is not the ideal medium for high bit rate data-communication for office and home applications because its small dimension requires well sophisticated components as well as installation technologies. This increases the total system cost, inevitably. However, the technologies of plastic (polymer) optical fibers (POF) and the devices for POF nowadays show rapid process /2/. So, we could benefit from the special advantages of these fibers over a wide field of applications, from decoration to local networks, including lighting, image guides and sensor technique. Today, inexpensive and robust POF transmission systems are available on the market with high bit rate capacity. Bus-systems, e.g. MOST and Byteflight, are applied in the rough automotive environment.

  1. Plasmonic Biofoam: A Versatile Optically Active Material.

    PubMed

    Tian, Limei; Luan, Jingyi; Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2016-01-13

    Owing to their ability to confine and manipulate light at the nanoscale, plasmonic nanostructures are highly attractive for a broad range of applications. While tremendous progress has been made in the synthesis of size- and shape-controlled plasmonic nanostructures, their integration with other materials and application in solid-state is primarily through their assembly on rigid two-dimensional (2D) substrates, which limits the plasmonically active space to a few nanometers above the substrate. In this work, we demonstrate a simple method to create plasmonically active three-dimensional biofoams by integrating plasmonic nanostructures with highly porous biomaterial aerogels. We demonstrate that plasmonic biofoam is a versatile optically active platform that can be harnessed for numerous applications including (i) ultrasensitive chemical detection using surface-enhanced Raman scattering; (ii) highly efficient energy harvesting and steam generation through plasmonic photothermal heating; and (iii) optical control of enzymatic activity by triggered release of biomolecules encapsulated within the aerogel. Our results demonstrate that 3D plasmonic biofoam exhibits significantly higher sensing, photothermal, and loading efficiency compared to conventional 2D counterparts. The design principles and processing methodology of plasmonic aerogels demonstrated here can be broadly applied in the fabrication of other functional foams. PMID:26630376

  2. Optical diffusion property of chicken tissue

    NASA Astrophysics Data System (ADS)

    Schneider, Patricia S.; Flamholz, Alex; Wong, Peter K.; Lieberman, David H.; Cheung, Tak D.; Itoka, Harriet; Minott, Troy; Quizhpi, Janie; Rodriguez, Jacquelin

    2004-11-01

    Chicken tissue acts as a turbid medium in optical wavelength. Optical characterization data of fresh chicken dark and white meat were studied using the theory of light diffusion. The gaussian-like transmission profile was used to determine the transport mean free path and absorption. The refractive index, a fundamental parameter, was extracted via transmission correlation function analysis without using index-matching fluid. The variation in refractive index also produced various small shifts in the oscillatory feature of the intensity spatial correlation function at distance shorter than the transport mean free path. The optical system was calibrated with porous silicate slabs containing different water contents and also with a solid alumina slab. The result suggested that the selective scattering/absorption of myoglobin and mitochondria in the dark tissues is consistent with the transmission data. The refractive index was similar for dark and white tissues at the He-Ne wavelength and suggested that the index could serve as a marker for quality control. Application to chicken lunchmeat samples revealed that higher protein and lower carbohydrate would shift the correlation toward smaller distance. The pure fat refractive index was different from that of the meat tissue. Application of refractive index as a fat marker is also discussed

  3. Influence of river discharge and ocean currents on coastal optical properties

    NASA Astrophysics Data System (ADS)

    Cherukuru, Nagur; Brando, Vittorio E.; Schroeder, Thomas; Clementson, Lesley A.; Dekker, Arnold G.

    2014-08-01

    The variability in the optical properties of a coastal region influenced by river runoff and multiple ocean currents in a southern hemisphere setting has been studied. The study area, Tasmanian coastal waters, is influenced by subtropical currents such as the East Australian Current (EAC) and the Zeehan Current (ZC) mix with cooler sub-Antarctic water (SAW). Freshwater discharges from rivers around the island and their mixing with the ocean currents also influence Tasmanian coastal waters. This study was performed to understand the influence of hydrodynamic processes on coastal optical properties and underwater light propagation. Physical, biogeochemical and optical properties were measured in Tasmanian coastal water during the austral autumn of 2007. In this study we found that physical properties have a good correlation with optical properties indicating the role played by hydrodynamic processes in distribution of optically active substances, optical properties of the water mass and underwater light propagation. Analysis of in situ salinity and temperature confirmed the presence of relatively cooler ZC in the South-West region, a cooler mixture of the ZC and SAW in the South-East, warm and saline EAC waters along the East coast and relatively cooler and fresh Bass straight waters along the North coast. In Tasmanian coastal waters light absorption in the water column is controlled by Coloured Dissolved Organic Matter (CDOM) with regionally varying contributions from Non-Algal Particulate (NAP) matter and phytoplankton. Absorption due to CDOM and NAP show a conservative mixing behaviour indicating that these biogeochemical components were delivered by the river and diluted in the coastal water. Suspended particulate matter in Tasmanian coastal water are highly scattering in nature and the beam attenuation is mainly due to light scattering. Variability in probability of light backscattering was mainly due to varying availability of non-algal particulate matter in

  4. Designing Optical Properties in DNA-Programmed Nanoparticle Superlattices

    NASA Astrophysics Data System (ADS)

    Ross, Michael Brendan

    A grand challenge of modern science has been the ability to predict and design the properties of new materials. This approach to the a priori design of materials presents a number of challenges including: predictable properties of the material building blocks, a programmable means for arranging such building blocks into well understood architectures, and robust models that can predict the properties of these new materials. In this dissertation, we present a series of studies that describe how optical properties in DNA-programmed nanoparticle superlattices can be predicted prior to their synthesis. The first chapter provides a history and introduction to the study of metal nanoparticle arrays. Chapter 2 surveys and compares several geometric models and electrodynamics simulations with the measured optical properties of DNA-nanoparticle superlattices. Chapter 3 describes silver nanoparticle superlattices (rather than gold) and identifies their promise as plasmonic metamaterials. In chapter 4, the concept of plasmonic metallurgy is introduced, whereby it is demonstrated that concepts from materials science and metallurgy can be applied to the optical properties of mixed metallic plasmonic materials, unveiling rich and tunable optical properties such as color and asymmetric reflectivity. Chapter 5 presents a comprehensive theoretical exploration of anisotropy (non-spherical) in nanoparticle superlattice architectures. The role of anisotropy is discussed both on the nanoscale, where several desirable metamaterial properties can be tuned from the ultraviolet to near-infrared, and on the mesoscale, where the size and shape of a superlattice is demonstrated to have a pronounced effect on the observed far-field optical properties. Chapter 6 builds upon those theoretical data presented in chapter 5, including the experimental realization of size and shape dependent properties in DNA-programmed superlattices. Specifically, nanoparticle spacing is explored as a parameter that

  5. Growth, structure, and optical properties of a self-activated crystal: Na3Nd9O3(BO3)8

    NASA Astrophysics Data System (ADS)

    Shan, Faxian; Xia, Mingjun; Zhang, Guochun; Yao, Jiyong; Zhang, Xinyuan; Xu, Tianxiang; Wu, Yicheng

    2015-03-01

    A self-activated crystal Na3Nd9O3(BO3)8 has been grown by using Na2CO3-B2O3-NaF as flux. Its structure was determined by single crystal X-ray diffraction. Na3Nd9O3(BO3)8 crystallizes in the hexagonal crystal system, space group P 6 bar 2m with unit-cell parameters a = 8.7611 Å, c = 8.4579 Å, Z = 1, and V = 562.23 Å3, which is isostructural with Na3La9O3(BO3)8. Na3Nd9O3(BO3)8 has a high Nd3+ concentration (1.60 × 1022 ions/cm3), almost three times that of the self-activated crystal NdAl3(BO3)4 (NAB). The absorption and emission spectra as well as decay time for 4F3/2 to 4I11/2 transition in Na3Nd9O3(BO3)8 were measured at room temperature. The obtained results show that Na3Nd9O3(BO3)8 may be a potential high-neodymium-content laser crystal for microchip laser application.

  6. Optically active aromatic amino acids. Part VI. Synthesis and properties of (Leu5)-enkephalin analogues containing O-methyl-L-tyrosine1 with ring substitution at position 3'.

    PubMed

    Arnold, Z S; Schiller, P W

    2000-06-01

    Twelve new [Tyr(Me)1, Leu5]-enkephalin analogues with substituents at position 3' of the Tyr ring have been synthesized using traditional solution methods. The substituents were -CO2H, -CONH2, -CO2Me, -(E)-CH=NOH, -(E)-CH=NOMe and CH2OH. The analogues were C-terminated with methyl esters, amides or as free acids. In the in vitro biological assays a remarkable agonist activity to the opiate receptor mu in guinea pig ileum (GPI) relative to Leu-ENK was shown by the following: Leu-ENK, 100; [Tyr(Me)(3'-CO2Me)1, Leu-OMe5]-ENK (I), 8.1; [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-OMe5]-ENK (VI), 26.2; [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-OH5]-ENK (VII), 2.9; [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-NH2(5)]-ENK (VIII), 4.7; and [Tyr(Me)(3'-CH2OH)1, Leu-OMe5]-ENK (X), 5.6. The agonist effect was naltrexone- or naloxone-reversible. The masking of the hydroxyl group in (E)-hydroxyiminomethyl group of analogue (VI) by O-methylation has totally abolished its GPI agonist activity. It seems that the (E)-CH=NOH group shows affinity and plays an analogous role to the phenol group Tyr1 in leucine-enkephalin and in the tyramine group of the opiate alkaloids. The analogues: [Tyr(Me)(3'-CO2Me)1, Leu-OMe5]-ENK (I), [Tyr(Me)(3'-CO2H)1, Leu-OMe5]-ENK (II), [Tyr(Me)(3'-CO2Me)1, Leu-NH2(5)]-ENK (III), [Tyr(Me)(3'-CO2H)1, Leu-NH2(5)]-ENK (IV), [Tyr(Me)(3'-CONH2)1, Leu-NH2(5)]-ENK (V), [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-OMe5]-ENK (VI), [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-OH5]-ENK (VII), [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-NH2(5)]-ENK (VIII), [Tyr(Me)(3'-(E)-CH=NOMe)1, Leu-OMe5]-ENK (IX), [Tyr(Me)(3'-CH2OH)1, Leu-OMe5]-ENK (X), [Tyr(Me)(3'-CH2OH)1, Leu-OH5]-ENK (XI) and [Tyr(Me)(3'-CH2OH)1, Leu-NH2(5)]-ENK (XII) under testing had no significant agonist activity to the enkephalinergic receptor in mouse vas deferens (MVD). All methyl esters of synthesized analogues of [Leu5]-ENK showed higher activity to mu receptors than structurally identical C-terminal amides. It is a surprising result since usually C-terminate amides are stronger

  7. Structural elucidation, optical, magnetic and nonlinear optical properties of oxystyryl dyes.

    PubMed

    Koleva, Bojidarka B; Stoyanov, Stanimir; Kolev, Tsonko; Petkov, Ivan; Spiteller, Michael

    2009-01-01

    Structure, magnetic and optical properties of tetraphenylborate salts of 2,5-[1-methyl-4-[2-(4-hydroxyphenyl)ethenyl]piridinium]-propane and butane are performed in gas and condense phase by means of solution and solid-state conventional and linear-polarized IR-spectroscopy of oriented colloids in nematic liquid crystal suspension, UV-vis and fluorescence methods, HPLC tandem ESI mess spectrometry (MS/MS), (1)H, (13)C and (1)H-(1)H COSY NMR, TGV and DSC methods. Quantum chemical DFT calculations are used for performing of the structures, optical and nonlinear optical properties of the studied compounds. PMID:18722806

  8. Structural elucidation, optical, magnetic and nonlinear optical properties of oxystyryl dyes

    NASA Astrophysics Data System (ADS)

    Koleva, Bojidarka B.; Stoyanov, Stanimir; Kolev, Tsonko; Petkov, Ivan; Spiteller, Michael

    2009-01-01

    Structure, magnetic and optical properties of tetraphenylborate salts of 2,5-[1-methyl-4-[2-(4-hydroxyphenyl)ethenyl]piridinium]-propane and butane are performed in gas and condense phase by means of solution and solid-state conventional and linear-polarized IR-spectroscopy of oriented colloids in nematic liquid crystal suspension, UV-vis and fluorescence methods, HPLC tandem ESI mess spectrometry (MS/MS), 1H, 13C and 1H- 1H COSY NMR, TGV and DSC methods. Quantum chemical DFT calculations are used for performing of the structures, optical and nonlinear optical properties of the studied compounds.

  9. Optical properties of vanadium dioxide thin film in nanoparticle structure

    NASA Astrophysics Data System (ADS)

    Fang, Baoying; Li, Yi; Tong, Guoxiang; Wang, Xiaohua; Yan, Meng; Liang, Qian; Wang, Feng; Qin, Yuan; Ding, Jie; Chen, Shaojuan; Chen, Jiankun; Zheng, Hongzhu; Yuan, Wenrui

    2015-09-01

    The thermo-optic effect and infrared optical properties of VO2 nanoparticles were studied to obtain an optical material with special property that can be used in smart windows. The reflectance and transmittance spectra of the VO2 nanoparticles with different duty cycles at different temperatures were simulated with a specific dispersion relation. Vanadium metal nanoparticles were deposited on glass substrate by magnetic reactive sputtering with porous alumina template (AAO) mask, and the VO2 nanoparticles were prepared by thermal oxidation. The nanostructure and optical properties of the VO2 nanoparticles were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and spectrophotometry. The method of preparation of the sample is economical and the phase transition temperature is observed to drop to 43 °C. The transmission at 1700 nm exhibits a variation of 29% between the metallic and semiconducting states. The VO2 nanoparticles exhibit a significant thermochromic property. The transmittance of the VO2 nanoparticles is improved compared with the VO2 film. The decrease in phase transition temperature and the enhancement of optical properties demonstrate that VO2 film in nanoparticle structure is a viable candidate material for smart windows.

  10. Optical Properties of Magnetron sputtered Nickel Thin Films

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Fidele; Geerts, Wilhelmus J.; Cui, Yubo

    2015-03-01

    The study of optical properties of Nickel (Ni) is important, given the pivotal role it plays in the semiconductor and nano-electronics technology. Ni films were made by DC and RF magnetron sputtering in an ATC Orion sputtering system of AJA on various substrates. The optical properties were studied ex situ by variable angle spectroscopic (220-1000 nm) ellipsometry at room temperature. The data were modeled and analyzed using the Woollam CompleteEase Software fitting ellipsometric and transmission data. Films sputtered at low pressure have optical properties similar to that of Palik. Films sputtered at higher pressure however have a lower refraction index and extinction coefficient. It is expected from our results that the density of the sputtered films can be determined from the ellipsometric quantities. Our experiments also revealed that Ni is susceptible to a slow oxidation changing its optical properties over the course of several weeks. The optical properties of the native oxide differ from those of reactive sputtered NiO similar as found by. Furthermore the oxidation process of our samples is characterized by at least two different time constants.

  11. Electrodeposited CdTe{emdash}optical properties

    SciTech Connect

    Rakhshani, A.E.

    1997-06-01

    For the measurement of optical constants, the electrodeposited films of CdTe were lifted off their opaque substrates and transferred onto glass slides using a transparent liquid adhesive. This technique proved to give results more reliable than those obtained on samples in which CdTe is deposited on CdS-coated conducting glass. The measured optical dispersion in the photon energy range of E{lt}1.5eV is in excellent agreement with that for the single crystal. The optical absorption coefficient was determined in the E{lt}3.5eV range and was compared with that for the single crystal. The results revealed two direct allowed transitions at 1.50 eV [{Gamma}{sub 8}valenceband(VB){r_arrow}{Gamma}{sub 6}conductionband(CB)] and 2.43 eV [{Gamma}{sub 7}(VB){r_arrow}{Gamma}{sub 6}(CB)] and three indirect allowed transitions at 1.27 eV [L{sub 4,5}(VB){r_arrow}{Gamma}{sub d}], 1.83 eV [L{sub 6}(VB){r_arrow}{Gamma}{sub d}], and 2.84 eV [{Gamma}{sub 8}(VB){r_arrow}L{sub 6}(CB)]. The 1.27 and the 1.83 eV transitions, which have not been reported previously and were not detected in single-crystal data, are attributed to the transitions to a grain-boundary-related defect energy band {Gamma}{sub d}, 0.65 eV above {Gamma}{sub 8} (VB). The indirect transitions at 1.83 and 2.84 eV are assisted by phonons having energies of 80 and 84 meV, respectively. {copyright} {ital 1997 American Institute of Physics.}

  12. Optical properties of normal and diseased breast tissues: prognosis for optical mammography

    NASA Astrophysics Data System (ADS)

    Troy, Tamara L.; Page, David L.; Sevick-Muraca, Eva M.

    1996-07-01

    The use of near-infrared measurements of photon migration has been recently demonstrated for the detection of breast cancer in Europe. Yet the clinical success of this potential screening tool depends upon consistent detection of the disease at earlier stages than is currently possible with conventional x-ray mammography. In this paper, we present the optical property measurements of 115 histologically classified breast tissue specimens in order to determine whether consistent and significant optical contrast exists for detection of the disease. Our in vitro optical properties measured with a double integrating sphere technique show consistent changes in effective scattering coefficients, (mu) s', with tissue classification of infiltrating carcinoma, ductal carcinoma in situ, mucinous carcinoma, normal fatty, and normal fibrous tissues. However, there is little change in the in vitro tissue absorption coefficient, (mu) a, measured at 749, 789, and 836 nm. For normal and diseased tissue specimens extracted from the same patient, we found differences in optical properties, indicating optical contrast. Using a finite- element prediction of light propagation, we evaluated this optical contrast for photon migration detection of ductal carcinoma in situ tissues using these optical properties measured in vitro.

  13. Optical Properties and Aggregation of Graphene Nanoplatelets.

    PubMed

    Melezhyk, A V; Kotov, V A; Tkachev, A G

    2016-01-01

    In the present paper, the optical density of dispersions of randomly oriented multilayer graphene nanoplatelets (GNPs) was estimated. Calculated and experimental data were compared for aqueous GNP dispersions stabilized with various surfactants. It was shown that the sonication of an expanded graphite compound (EGC) in aqueous surfactant solutions leads to the transformation of EGC worm-like particles into weak GNP aggregates which are able to pass into solution upon dilution and agitation of the system. They may be filtered and washed out of surfactants. The concentrated GNP dispersions containing these weak aggregates can be used to synthesize different graphene-based nanostructures and obtain novel composite materials. PMID:27398570

  14. Electro-optical properties of Rydberg excitons

    NASA Astrophysics Data System (ADS)

    Zielińska-Raczyńska, Sylwia; Ziemkiewicz, David; Czajkowski, Gerard

    2016-07-01

    We show how to compute the electro-optical functions (absorption, reflection, and transmission) when Rydberg exciton-polaritons appear, including the effect of the coherence between the electron-hole pair and the electromagnetic field. With the use of the real density matrix approach, numerical calculations applied for the Cu2O crystal are performed. We also examine in detail and explain the dependence of the resonance displacement on the state number and applied electric field strength. We report a fairly good agreement with recently published experimental data.

  15. The optical properties of YBCO thin films

    NASA Astrophysics Data System (ADS)

    Wallace, Roger James

    We present strong evidence that there is no specific mid- infrared absorption band in YBCO and a generalised Drude model can be used to explain all of the observed features in the optical spectrum. A high vacuum, low temperature ATR experiment has been used to excite surface plasmons (SPP) on YBCO thin films at different temperatures. We have found that the SPP resonance condition varies systematically with temperature. The temperature dependent dielectric function and optical conductivity of YBCO at 2984nm have been determined. We have shown that the renal and imaginary dielectric function of YBCO, ~ɛ= ɛ1 + iɛ2, at 2984nm, are linearly dependent on temperature: ɛ1(T) = -52 + 0.008T and ɛ1(T) = 4 + 0.1T. We have calculated the optical conductivity, σ(T), and the normal reflectance, ℜ(T): σ(T) = 196 + 4.9T and ℜ(T) = 0.99-7.4 × 10-4T, where temperature is in kelvin and the conductivity is in Ω-1 cm-1. A generalised Drude model has been used to analyse our results. The generalised Drude memory function, M = 1//tau + i/omega/lambda, has been calculated as a function of temperature. The parameters 1/τ and λ can be approximated by 1/τ(T) = 50 + 6.6T and 1 + λ(T) ≅ 1.48 - 0.003T +.35 × 10-5T. These expressions are valid between 100K and 300K. An optical technique for determining the thickness of YBCO thin films has been developed. It has been used in an investigation of laser ablated plasmas. We have observed that the limit of material in the plasma plume is not the same as the limit of the luminosity of the plume. The angular distribution of material can be modelled by a cos n/Theta function over much of the range but a combined cos n/Theta + cos m/Theta function is required to describe the distribution near the visible tip of the plume.

  16. Optical Activity of Anisotropic Achiral Surfaces

    SciTech Connect

    Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoons, A. |

    1996-08-01

    Anisotropic achiral surfaces respond differently to left- and right-hand circularly polarized light. This occurs when the orientation of the surface with respect to an otherwise achiral experimental setup makes the total geometry chiral. Such optical activity is demonstrated in second-harmonic generation from an anisotropic thin molecular film. The circular-difference response reverses sign as the handedness of the geometry is reversed and vanishes when the setup possesses a mirror plane. The results are explained within the electric-dipole-allowed second-order surface nonlinearity. {copyright} {ital 1996 The American Physical Society.}

  17. Optical properties of Chern-Simons systems

    NASA Astrophysics Data System (ADS)

    Huerta, Luis

    2016-05-01

    Chern-Simons (CS) systems interacting with electromagnetic radiation are described by a term f FɅF added to the Maxwell action. In (3+1)D, this CS term is a boundary term affecting the system behaviour in its borders. We study the consequences of the above in the properties of electromagnetic radiation, in particular, by considering the interplay between magneto-electric properties and topology. Apart from a modified Kerr polarization rotation, compared to that found for the particular case of topological insulators, we also found two Brewster angles, for s and p polarization of reflected radiation, respectively. Energy distribution between reflected and transmitted radiation is also studied in terms of the magneto-electric properties and topological condition of the system.

  18. Electronic, optical and bonding properties of MgCO 3

    NASA Astrophysics Data System (ADS)

    Hossain, Faruque M.; Dlugogorski, B. Z.; Kennedy, E. M.; Belova, I. V.; Murch, Graeme E.

    2010-05-01

    The electronic, optical and bonding properties of MgCO 3 (magnesite, rhombohedral calcite-type structure) are calculated using a first-principles density-functional theory (DFT) method considering the exchange-correlation function within the local density approximation (LDA) and the generalized gradient approximation (GGA). The indirect band gap of magnesite is estimated to be 5.0 eV, which is underestimated by ˜1.0 eV. The fundamental absorption edge, which indicates the exact optical transitions from occupied valence bands to the unoccupied conduction band, is estimated by calculating the photon energy dependent imaginary part of the dielectric function using scissors approximations (rigid shift of unoccupied bands). The optical properties show consistent results with the experimental calcite-type structure and also show a considerable optical anisotropy of the magnesite structure. The density of states and Mulliken population analyses reveal the bonding nature between the atoms.

  19. Optical properties of a multibarrier structure under intense laser fields

    NASA Astrophysics Data System (ADS)

    Ospina, D. A.; Akimov, V.; Mora-Ramos, M. E.; Morales, A. L.; Tulupenko, V.; Duque, C. A.

    2015-11-01

    Using the diagonalization method and within the effective mass and parabolic band approximations, the energy spectrum and the wave functions are investigated in biased multibarrier structure taking into account the effects of nonresonant intense laser fields. We calculated the optical properties from the susceptibility using a nonperturbative formalism recently reported. We study the changes in the intersubband optical absorption coefficients and refraction index for several values of the dressing laser parameter and for some specific values of the electric field applied along the growth direction of the heterostructure. It is concluded from our study that the peaks in the optical absorption spectrum have redshifts or blueshifts as a function of the laser parameter and the electric field. These parameters could be suitable tools for tuning the electronic and optical properties of the multibarrier structure.

  20. Optical properties of the mouse eye

    PubMed Central

    Geng, Ying; Schery, Lee Anne; Sharma, Robin; Dubra, Alfredo; Ahmad, Kamran; Libby, Richard T.; Williams, David R.

    2011-01-01

    The Shack-Hartmann wavefront sensor (SHWS) spots upon which ocular aberration measurements depend have poor quality in mice due to light reflected from multiple retinal layers. We have designed and implemented a SHWS that can favor light from a specific retinal layer and measured monochromatic aberrations in 20 eyes from 10 anesthetized C57BL/6J mice. Using this instrument, we show that mice are myopic, not hyperopic as is frequently reported. We have also measured longitudinal chromatic aberration (LCA) of the mouse eye and found that it follows predictions of the water-filled schematic mouse eye. Results indicate that the optical quality of the mouse eye assessed by measurement of its aberrations is remarkably good, better for retinal imaging than the human eye. The dilated mouse eye has a much larger numerical aperture (NA) than that of the dilated human eye (0.5 NA vs. 0.2 NA), but it has a similar amount of root mean square (RMS) higher order aberrations compared to the dilated human eye. These measurements predict that adaptive optics based on this method of wavefront sensing will provide improvements in retinal image quality and potentially two times higher lateral resolution than that in the human eye. PMID:21483598

  1. Optical properties of magnetron-sputtered and rolled aluminum

    SciTech Connect

    Van Gils, S.; Dimogerontakis, Th.; Buytaert, G.; Stijns, E.; Terryn, H.; Skeldon, P.; Thompson, G.E.; Alexander, M.R.

    2005-10-15

    The optical properties of magnetron-sputtered aluminum and AA1050 aluminum alloy sheet have been examined qualitatively using total reflectance and quantitatively by means of visible spectroscopic ellipsometry (VISSE). Significant changes in reflectance and optical constants are observed, which are related to the incorporation of oxide in the aluminum bulk. The role of such oxide was determined by VISSE using the Bruggeman effective-medium approximation, with the findings validated by x-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy.

  2. Electronic and optical properties of carbon supracrystalline sp 2 nanoallotropes

    NASA Astrophysics Data System (ADS)

    Brazhe, R. A.; Meftakhutdinov, R. M.

    2016-05-01

    Electronic and optical properties of 2D conducting carbon supracrystals are studied. The band structure is calculated using the tight-binding method. One sample is classified as semimetal, and the remaining samples are classified as narrow-band-gap semiconductors. The optical conductivity of the supracrystalline structures is calculated. It is demonstrated that the conductivity of semimetal supracrystals may be substantially higher than the grapheme conductivity. Complex refractive indices of the supracrystals are estimated.

  3. Nonlinear optical properties of potential sensitive styryl dyes.

    PubMed Central

    Huang, J Y; Lewis, A; Loew, L

    1988-01-01

    The nonlinear optical properties of dyes that alter their optical characteristics rapidly with membrane potential are described. The second harmonic signals from these dyes characterized in this paper are among the largest that have been detected to date. Structural conclusions are drawn from the second harmonic signals generated by the Langmuir Blodgett monolayers used in these measurements. Our results indicate that with appropriate instrumentation second harmonic signals could readily be detected from living cells stained with these dyes. PMID:3390517

  4. Complex fluids with robustly tunable optical properties: experiments and theory

    NASA Astrophysics Data System (ADS)

    Cong, T.; Wani, S. N.; Sangani, A. S.; Sureshkumar, R.; Syracuse University Team

    2011-03-01

    Fluids with tunable optical properties are of fundamental and practical interest. They can be easily processed to manufacture thin films and interfaces for applications such as molecular detection and light trapping in photovoltaics. We use solution phase self-assembly to uniformly distribute various metallic nanoparticles to produce stable suspensions with localized, multiple wavelength or broad-band optical properties. Their spectral response can be robustly modified by varying the species, concentration, size and/or shape of the nanoparticles. Spectral behavior for finite particle concentrations can be predicted by an effective medium theory developed in this work. Structure, rheology and optical properties of these plasmonic suspensions as well as their potential application to high efficiency photovoltaics design will be discussed. NSF Grant 1049454.

  5. Photoconductive and nonlinear optical properties of composites based on metallophthalocyanines

    NASA Astrophysics Data System (ADS)

    Vannikov, A. V.; Grishina, A. D.; Gorbunova, Yu. G.; Tsivadze, A. Yu.

    2015-08-01

    The photoconductive, photorefractive and nonlinear optical properties of composites from polyvinylcarbazole or aromatic polyimide containing supramolecular ensembles of (tetra-15-crown-5) - phthalocyaninato gallium, indium, - phthalocyaninateacetato yttrium, - phthalocyaninato ruthenium with axially coordinated pyrazine molecules were investigated at 633, 1030 and 1064nmusing continuous and pulsed lasers. Supramolecular ensembles (SE) were prepared through dissolution of molecular metallophthalocyanines in tetrachloroethane (TCE) and subsequent treatment via three cycles of heating to 90∘C and slow cooling to room temperature. The zscan method in femtosecond and nanosecond regimeswas used for measuring nonlinear optical properties phthalocyaninato indium and yttrium in TCE solutions and polymer films. It was established that effect of heavy metallic atom is basic factor which determines the quantum yield, photorefractive amplification of laser object beam, dielectric susceptibility of third order and nonlinear optical properties of metallophthalocyanines.

  6. Origin of Interplanetary Dust through Optical Properties of Zodiacal Light

    NASA Astrophysics Data System (ADS)

    Yang, Hongu; Ishiguro, Masateru

    2015-11-01

    This study investigates the origin of interplanetary dust particles (IDPs) through the optical properties, albedo and spectral gradient, of zodiacal light. The optical properties were compared with those of potential parent bodies in the solar system, which include D-type (as analogs of cometary nuclei), C-type, S-type, X-type, and B-type asteroids. We applied Bayesian inference to the mixture model composed of the distribution of these sources, and found that >90% of the IDPs originate from comets (or their spectral analogs, D-type asteroids). Although some classes of asteroids (C-type, X-type, and B-type) may make a moderate contribution, ordinary chondrite-like particles from S-type asteroids occupy a negligible fraction of the interplanetary dust cloud complex. The overall optical properties of the zodiacal light were similar to those of chondritic porous IDPs, supporting the dominance of cometary particles in the zodiacal cloud.

  7. Measuring the optical properties of IceCube drill holes

    NASA Astrophysics Data System (ADS)

    Rongen, Martin

    2016-04-01

    The IceCube Neutrino Observatory consists of 5160 digital optical modules (DOMs) in a cubic kilometer of deep ice below the South Pole. The DOMs record the Cherenkov light from charged particles interacting in the ice. A good understanding of the optical properties of the ice is crucial to the quality of the event reconstruction. While the optical properties of the undisturbed ice are well understood, the properties of the refrozen drill holes still pose a challenge. A new data-acquisition and analysis approach using light originating from LEDs within one DOM detected by the photomultiplier of the same DOM will be described. This method allows us to explore the scattering length in the immediate vicinity of the considered DOMs.

  8. Optical absorption properties of dispersed gold and silver alloy nanoparticles.

    PubMed

    Wilcoxon, Jess

    2009-03-01

    The oldest topic in nanoscience is the size-dependent optical properties of gold and silver colloids or nanoparticles, first investigated scientifically by Michael Faraday in 1857. In the modern era, advances in both synthesis and characterization have resulted in new insights into the size-dependent absorbance of Au and Ag nanoparticles with sizes below the classical limit for Mie theory. In this paper we discuss the synthesis and properties of core/shell and nanoalloy particles of Au and Ag, compare them to particles of pure gold and silver, and discuss how alloying affects nanoparticle chemical stability. We show that composition, size, and nanostructure (e.g., core/shell vs quasi-random nanoalloy) can all be employed to adjust the optical absorbance properties. The type of nanostructure--core/shell vs alloy--is reflected in their optical absorbance features. PMID:19708105

  9. Thermo-optical properties and nonlinear optical response of smectic liquid crystals containing gold nanoparticles.

    PubMed

    de Melo, P B; Nunes, A M; Omena, L; do Nascimento, S M S; da Silva, M G A; Meneghetti, M R; de Oliveira, I N

    2015-10-01

    The present work is devoted to the study of the thermo-optical and nonlinear optical properties of smectic samples containing gold nanoparticles with different shapes. By using the time-resolved Z-scan technique, we determine the effects of nanoparticle addition on the critical behavior of the thermal diffusivity and thermo-optical coefficient at the vicinity of the smectic-A-nematic phase transition. Our results reveal that introduction of gold nanoparticles affects the temperature dependence of thermo-optical parameters, due to the local distortions in the orientational order and heat generation provided by guest particles during the laser exposure. Further, we show that a nonlinear optical response may take place at temperatures where the smectic order is well established. We provide a detailed discussion of the effects associated with the introduction gold nanoparticles on the mechanisms behind the thermal transport and optical nonlinearity in liquid-crystal samples. PMID:26565262

  10. Thermo-optical properties and nonlinear optical response of smectic liquid crystals containing gold nanoparticles

    NASA Astrophysics Data System (ADS)

    de Melo, P. B.; Nunes, A. M.; Omena, L.; Nascimento, S. M. S. do; da Silva, M. G. A.; Meneghetti, M. R.; de Oliveira, I. N.

    2015-10-01

    The present work is devoted to the study of the thermo-optical and nonlinear optical properties of smectic samples containing gold nanoparticles with different shapes. By using the time-resolved Z-scan technique, we determine the effects of nanoparticle addition on the critical behavior of the thermal diffusivity and thermo-optical coefficient at the vicinity of the smectic-A -nematic phase transition. Our results reveal that introduction of gold nanoparticles affects the temperature dependence of thermo-optical parameters, due to the local distortions in the orientational order and heat generation provided by guest particles during the laser exposure. Further, we show that a nonlinear optical response may take place at temperatures where the smectic order is well established. We provide a detailed discussion of the effects associated with the introduction gold nanoparticles on the mechanisms behind the thermal transport and optical nonlinearity in liquid-crystal samples.

  11. Optical and Electrical Properties of Ar+ Implanted PET

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Shekhawat, Nidhi; Sharma, Annu; Aggarwal, Sanjeev; Kumar, Praveen; Kanjilal, D.

    2011-07-01

    In the present work, the effect of 100 keV argon ion implantation on the optical and electrical properties of PET has been studied. A continuous reduction in optical band gap (from 3.63 to 1.93 eV) with increasing implantation dose has been observed as analyzed using UV-Visible absorption spectroscopy. Current-Voltage (I-V) characteristics have been studied which clearly indicate the enhancement in the conductivity of PET specimens as an effect of implantation. This increase in conductivity has been correlated with the decrease in optical band gap.

  12. The Electrical and Optical Properties of Doped Yttrium Aluminum Garnets

    NASA Astrophysics Data System (ADS)

    Chen, Jimmy Kuo-Wei

    The electrical and optical properties of YAG, Nd:YAG, Ti:YAG, and Zr:YAG were studied and quantitatively correlated to determine defect models for the defect structure of these systems. Correlations of these independent measurements were essential, as defect models derived from electrical or optical measurements alone were inconclusive. The correlated defect model provided a new interpretation for the electrical and optical properties of Ti:YAG. This defect model was then tested by checking its predicted dependence of Ti:YAG's optical properties with PO_2. This prediction was experimentally verified. Most of the systems were found to have a defect structure controlled by inadvertent background acceptors compensated by oxygen vacancies. This structure led to a characteristic conductivity isotherm where the conductivity varied as PO_2^{-1/4} for reduced PO_2's, and approached PO_2 independence for oxidizing PO_2's. Only for a heavily doped Zr:YAG sample was a new defect structure encountered. For this sample, an extrinsically compensated defect structure was detected, with the Zr^{+4} ions compensating the background acceptors. The conductivity isotherm for this sample had a n-type like component that varied as PO_2^{ -1/6}.. Quantitative correlations of the electrical and optical properties also provided a deep insight into the nature of the optical properties, and how these properties change as a function of oxidizing and reducing anneals. Correlations of this type were used to locate the energy level positions of rm Fe^{+2}, Ti ^{+3}, Zr^{+3}, and rm V_{o}^ {cdotcdot} in the YAG bandgap. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  13. Long term measurements of optical properties and their hygroscopic enhancement

    NASA Astrophysics Data System (ADS)

    Hervo, M.; Sellegri, K.; Pichon, J. M.; Roger, J. C.; Laj, P.

    2014-11-01

    Optical properties of aerosols were measured from the GAW Puy de Dôme station (1465 m) over a seven year period (2006-2012). The impact of hygroscopicity on aerosol optical properties was calculated over a two year period (2010-2011). The analysis of the spatial and temporal variability of the optical properties showed that while no long term trend was found, a clear seasonal and diurnal variation was observed on the extensive parameters (scattering, absorption). Scattering and absorption coefficients were highest during the warm season and daytime, in concordance with the seasonality and diurnal variation of the PBL height reaching the site. Intensive parameters (single scattering albedo, asymmetry factor, refractive index) did not show such a strong diurnal variability, but still indicated different values depending on the season. Both extensive and intensive optical parameters were sensitive to the air mass origin. A strong impact of hygroscopicity on aerosol optical properties was calculated, mainly on aerosol scattering, with a dependence on the aerosol type. At 90% humidity, the scattering factor enhancement (fσsca) was more than 4.4 for oceanic aerosol that have mixed with a pollution plume. Consequently, the aerosol radiative forcing was estimated to be 2.8 times higher at RH = 90% and 1.75 times higher at ambient RH when hygroscopic growth of the aerosol was considered. The hygroscopicity enhancement factor of the scattering coefficient was parameterized as a function of humidity and air mass type.

  14. Simulation of integrated optical network (IPON) properties

    NASA Astrophysics Data System (ADS)

    Siska, Petr; Koudelka, Petr; Latal, Jan; Vitasek, Jan; Kepak, Stanislav; Vašinek, Vladimír.

    2014-09-01

    There is an increasing pressure nowadays on the efficient use of existing ICT infrastructure in order to provide the latest services for corporate customers or end users. With the increase in number of services, requirements for optical networks of all hierarchies are increasing as well. This increase in the requirements, however, involves risks which must be faced by Internet service providers. These include the maximum use of spectral range, bandwidth and reachable distance, suppression of dispersion effect, route planning efficiency, CAPEX and OPEX costs management, or successful combination of technologies of deployed networks. The aim of this article is to present the problems associated with interconnection of WDM-PON and ver.2 EPON (IEEE 802.3ah standard). The entire simulation is based on real parameters, which were provided by the manufacturers of the technologies and then measured in the laboratory. Then we were able to perform simulations based on more realistic features of these technologies.

  15. Mixed metal films with switchable optical properties

    NASA Astrophysics Data System (ADS)

    Richardson, T. J.; Slack, J. L.; Farangis, B.; Rubin, M. D.

    2002-02-01

    Thin, Pd-capped metallic films containing magnesium and first-row transition metals (Mn, Fe, Co) switch reversibly from their initial reflecting state to visually transparent states when exposed to gaseous hydrogen or following cathodic polarization in an alkaline electrolyte. Reversion to the reflecting state is achieved by exposure to air or by anodic polarization. The films were prepared by cosputtering from one magnesium target and one manganese, iron, or cobalt target. Both the dynamic optical switching range and the speed of the transition depend on the magnesium-transition metal ratio. Infrared spectra of films in the transparent, hydrided (deuterided) states support the presence of the intermetallic hydride phases Mg3MnH7, Mg2FeH6, and Mg2CoH5.

  16. Linear electro-optical properties of zincite

    NASA Astrophysics Data System (ADS)

    Shaldin, Yu. V.

    2004-09-01

    Orientational, dispersion, and temperature dependences of electro-optical coefficients of Li-doped ZnO single crystals are investigated. According to the data on the orientational dependences obtained far from the electronic absorption band, the values of all linearly independent components of the Pockels tensor are specified. In the range from 2 eV to E g , at both 100 and 300 K, the dispersion obeys a power law with m=2, which indicates a two-dimensional character of the van Hove singularity. The anomalies in the temperature dependences in the range from 15 to 700 K are explained by the competing contributions of the anharmonicities of the electron and lattice subsystems, which lead to anomalous behavior of the coefficients at both low ( T < 100 K) and high ( T > 100 K) temperatures. In the low-temperature range, the identified anomalies correlate with data of independent measurements of birefringence, spontaneous polarization, and dilatometry.

  17. Optical Properties of Nanoporous Germanium Thin Films.

    PubMed

    Cavalcoli, Daniela; Impellizzeri, Giuliana; Romano, Lucia; Miritello, Maria; Grimaldi, Maria Grazia; Fraboni, Beatrice

    2015-08-12

    In the present article we report enhanced light absorption, tunable size-dependent blue shift, and efficient electron-hole pairs generation in Ge nanoporous films (np-Ge) grown on Si. The Ge films are grown by sputtering and molecular beam epitaxy; subsequently, the nanoporous structure is obtained by Ge+ self-implantation. We show, by surface photovoltage spectroscopy measurements, blue shift of the optical energy gap and strong signal enhancement effects in the np-Ge films. The blue shift is related to quantum confinement effects at the wall separating the pore in the structure, the signal enhancement to multiple light-scattering events, which result in enhanced absorption. All these characteristics are highly stable with time. These findings demonstrate that nanoporous Ge films can be very promising for photovoltaic applications. PMID:26177652

  18. Neutron Activation of NIF Final Optics Assemblies

    SciTech Connect

    Sitaraman, S; Dauffy, L; Khater, H; Brereton, S

    2009-09-29

    Analyses were performed to characterize the radiation field in the vicinity of the Final Optics Assemblies (FOAs) at the National Ignition Facility (NIF) due to neutron activation following Deuterium-Deuterium (DD), Tritium-Hydrogen-Deuterium (THD), and Deuterium-Tritium (DT) shots associated with different phases of the NIF operations. The activation of the structural components of the FOAs produces one of the larger sources of gamma radiation and is a key factor in determining the stay out time between shots to ensure worker protection. This study provides estimates of effective dose rates in the vicinity of a single FOA and concludes that the DD and THD targets produce acceptable dose rates within 10 minutes following a shot while about 6-days of stay out time is suggested following DT shots. Studies are ongoing to determine the combined effects of multiple FOAs and other components present in the Target Bay on stay-out time and worker dose.

  19. Active polarimeter optical system laser hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-07-01

    A laser hazard analysis was performed for the SNL Active Polarimeter Optical System based on the ANSI Standard Z136.1-2000, American National Standard for Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for Safe Use of Lasers Outdoors. The Active Polarimeter Optical System (APOS) uses a pulsed, near-infrared, chromium doped lithium strontium aluminum fluoride (Cr:LiSAF) crystal laser in conjunction with a holographic diffuser and lens to illuminate a scene of interest. The APOS is intended for outdoor operations. The system is mounted on a height adjustable platform (6 feet to 40 feet) and sits atop a tripod that points the beam downward. The beam can be pointed from nadir to as much as 60 degrees off of nadir producing an illuminating spot geometry that can vary from circular (at nadir) to elliptical in shape (off of nadir). The JP Innovations crystal Cr:LiSAF laser parameters are presented in section II. The illuminating laser spot size is variable and can be adjusted by adjusting the separation distance between the lens and the holographic diffuser. The system is adjusted while platform is at the lowest level. The laser spot is adjusted for a particular spot size at a particular distance (elevation) from the laser by adjusting the separation distance (d{sub diffuser}) to predetermined values. The downward pointing angle is also adjusted before the platform is raised to the selected operation elevation.

  20. Tuning nonlinear optical absorption properties of WS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Long, Hui; Tao, Lili; Tang, Chun Yin; Zhou, Bo; Zhao, Yuda; Zeng, Longhui; Yu, Siu Fung; Lau, Shu Ping; Chai, Yang; Tsang, Yuen Hong

    2015-10-01

    To control the optical properties of two-dimensional (2D) materials is a long-standing goal, being of both fundamental and technological significance. Tuning nonlinear optical absorption (NOA) properties of 2D transition metal dichalcogenides in a cost effective way has emerged as an important research topic because of its possibility to custom design NOA properties, implying enormous applications including optical computers, communications, bioimaging, and so on. In this study, WS2 with different size and thickness distributions was fabricated. The results demonstrate that both NOA onset threshold, FON, and optical limiting threshold, FOL, of WS2 under the excitation of a nanosecond pulsed laser can be tuned over a wide range by controlling its size and thickness. The FON and FOL show a rapid decline with the decrease of size and thickness. Due to the edge and quantum confinement effect, WS2 quantum dots (2.35 nm) exhibit the lowest FON (0.01 J cm-2) and FOL (0.062 J cm-2) among all the samples, which are comparable to the lowest threshold achieved in graphene based materials, showing great potential as NOA materials with tunable properties.To control the optical properties of two-dimensional (2D) materials is a long-standing goal, being of both fundamental and technological significance. Tuning nonlinear optical absorption (NOA) properties of 2D transition metal dichalcogenides in a cost effective way has emerged as an important research topic because of its possibility to custom design NOA properties, implying enormous applications including optical computers, communications, bioimaging, and so on. In this study, WS2 with different size and thickness distributions was fabricated. The results demonstrate that both NOA onset threshold, FON, and optical limiting threshold, FOL, of WS2 under the excitation of a nanosecond pulsed laser can be tuned over a wide range by controlling its size and thickness. The FON and FOL show a rapid decline with the decrease of size

  1. Prediction of nonlinear optical properties of large organic molecules

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    1992-01-01

    The preparation of materials with large nonlinear responses usually requires involved synthetic processes. Thus, it is very advantageous for materials scientists to have a means of predicting nonlinear optical properties. The prediction of nonlinear optical properties has to be addressed first at the molecular level and then as bulk material. For relatively large molecules, two types of calculations may be used, which are the sum-over-states and the finite-field approach. The finite-field method was selected for this research, because this approach is better suited for larger molecules.

  2. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    PubMed

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-01

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  3. Optical properties of volcanic ash: improving remote sensing observations.

    NASA Astrophysics Data System (ADS)

    Whelley, Patrick; Colarco, Peter; Aquila, Valentina; Krotkov, Nickolay; Bleacher, Jake; Garry, Brent; Young, Kelsey; Rocha Lima, Adriana; Martins, Vanderlei; Carn, Simon

    2016-04-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation.

  4. Computational Study of Linear and Nonlinear Optical Properties of Single Molecules and Clusters of Organic Electro-Optic Chromophores

    NASA Astrophysics Data System (ADS)

    Garrett, Kerry

    Organic electro-optic (OEO) materials integrated into silicon-organic hybrid (SOH) devices afford significant improvements in size, weight, power, and bandwidth (SWAP) performance of integrated electronic/photonic systems critical for current and next generation telecommunication, computer, sensor, transportation, and defense technologies. Improvement in molecular first hyperpolarizability, and in turn electro-optic activity, is crucial to further improvement in the performance of SOH devices. The timely preparation of new chromophores with improved molecular first hyperpolarizability requires theoretical guidance; however, common density functional theory (DFT) methods often perform poorly for optical properties in systems with substantial intramolecular charge transfer character. The first part of this dissertation describes the careful evaluation of popular long-range correction (LC) and range-separated hybrid (RSH) density functional theory (DFT) for definition of structure/function relationships crucial for the optimization of molecular first hyperpolarizability, beta. In particular, a benchmark set of well-characterized OEO chromophores is used to compare calculated results with the corresponding experimentally measured linear and nonlinear optical properties; respectively, the wavelength of the peak one-photon absorption energy, lambdamax, and beta. A goal of this work is to systematically determine the amount of exact exchange in LC/RSH-DFT methods required for accurately computing these properties for a variety OEO chromophores. High-level electron correlation (post-Hartree-Fock) methods are also investigated and compared with DFT. Included are results for the computation of beta using second-order Moller-Plesset perturbation theory (MP2) and the double-hybrid method, B2PLYP. The second part of this work transitions from single-molecule studies to computing bulk electronic and nonlinear optical properties of molecular crystals and isotropic ensembles of a

  5. Optical Properties of Silver Nanoparticulate Glasses

    NASA Astrophysics Data System (ADS)

    Evans, Rachel N.; Cannavino, Sarah A.; King, Christy A.; Lamartina, Joseph A.; Magruder, Robert H.; Ferrara, Davon W.

    The ion exchange method of embedding metal nanoparticles (NPs) into float glass is an often used technique of fabricating colored glasses and graded-index waveguides. The depth and size of NP formation in the glass depends on the concentration and temperature of metal ions in the molten bath. In this study we explore the dichroic properties of silver metal ion exchange restricted to only one side of a glass microscope slide using reflection and transmission spectroscopy and its dependence on temperature, concentration of silver ions, and length of time in the molten bath.

  6. The retrieval of optical properties from terrestrial dust devil vortices

    NASA Astrophysics Data System (ADS)

    Mason, Jonathon P.; Patel, Manish R.; Lewis, Stephen R.

    2014-03-01

    The retrieval of the optical properties of desert aerosols in suspension within terrestrial dust devils is presented with possible future application for martian dust devils. The transmission of light through dust devil vortices was measured in situ to obtain the wavelength-dependent attenuation by the aerosols. A Monte Carlo model was applied to each dust devil with the retrieved optical properties corresponding to the set of parameters which lead to the best model representation of the observed transmission spectra. The retrieved optical properties agree well with single scattering theory and are consistent with previous studies of dust aerosols. The enhanced absorption observed for dust devils with a higher tangential wind speed, and in comparison to atmospheric aerosol studies, suggests that larger dust particles are lofted and suspended around dust devil vortices. This analysis has shown that the imaginary refractive indices (and thus the optical properties of the suspended dust) are generally overestimated when these larger dust grains entrained by dust devils are neglected. This will lead to an overestimation of the amount of solar radiation absorbed by the small particles that remain in suspension after the dust devil terminates. It is also demonstrated that a 10% uncertainty in the particle size distribution of the dust entrained in the dust devils can result in a 50% increase in the predicted amount of incident solar radiation absorbed by the dust particles once the dust devil has terminated. The method used here provides the capability to retrieve the optical properties of the dust entrained in martian dust devils by taking advantage of transits over surface spacecraft which are capable of making optical measurements at ultraviolet and visible wavelengths. Our results suggest that we would observed higher absorption at all wavelengths for dust particles entrained in dust devil vortices compared to the ubiquitous dust haze.

  7. Acousto-optical properties of metamaterials

    NASA Astrophysics Data System (ADS)

    Pustovoit, V. I.

    2016-02-01

    The possibility of the effective use of metamaterials in acousto-optics is demonstrated. It is shown that photoelastic constants that determine a change in the dielectric constant of a heterogeneous medium under the action of a sound wave can significantly exceed the corresponding constants for conventional crystals. We have analysed the mechanisms of the dielectric constant variation in a heterogeneous medium consisting of nanoparticles in the form of ellipsoids and have found explicitly the values of the photoelastic constants. It is shown that the mechanism of the dielectric constant variation in a longitudinal sound wave is reduced to a change in the local concentration of nanoparticles in the bulk and in a transverse acoustic wave - to a local rotation of space-oriented nanoellipsoids. It is also shown that the use of metamedia with a nonuniform distribution of nanoparticles provides a unique opportunity for designing qualitatively new instruments and devices that cannot be produced on the basis of conventional crystals. It is noted that metamaterials open ample opportunities for creating devices of the IR region of the spectrum due to the absence of restrictions on the size of such media.

  8. Optical properties of colloidal germanium nanocrystals

    SciTech Connect

    WILCOXON,JESS P.; PROVENCIO,PAULA P.; SAMARA,GEORGE A.

    2000-05-01

    Highly crystalline germanium (Ge) nanocrystals in the size range 2--10 nm were grown in inverse micelles and purified and size-separated by high pressure liquid chromatography with on-line optical and electrical diagnostics. The nanocrystals retain the diamond structure of bulk Ge down to at least 2.0 nm (containing about 150 Ge atoms). The background- and impurity-free extinction and photoluminescence (PL) spectra of these nanocrystals revealed rich structure which was interpreted in terms of the bandstructure of Ge shifted to higher energies by quantum confinement. The shifts ranged from {minus}0.1 eV to over 1 eV for the various transitions. PL in the range 350--700 nm was observed from nanocrystals 2--5 nm in size. The 2.0 nm nanocrystals yielded the most intense PL (at 420 nm) which is believed to be intrinsic and attributed to direct recombination at {Gamma}. Excitation at high energy (250 nm) populates most of the conduction bands resulting in competing recombination channels and the observed broad PL spectra.

  9. Optical techniques for determining dynamic material properties

    SciTech Connect

    Paisley, D.L.; Stahl, D.B.

    1996-12-31

    Miniature plates are laser-launched with a 10-Joule Nd:YAG for one-dimensional (1-D) impacts on to target materials much like gas gun experiments and explosive plane wave plate launch. By making the experiments small, flyer plates (3 mm diameter x 50 micron thick) and targets (10 mm diameter x 200 micron thick), 1-D impact experiments can be performed in a standard laser-optical laboratory with minimum confinement and collateral damage. The laser-launched plates do not require the traditional sabot on gas guns nor the explosives needed for explosive planewave lenses, and as a result are much more amenable to a wide variety of materials and applications. Because of the small size very high pressure gradients can be generated with relative ease. The high pressure gradients result in very high strains and strain rates that are not easily generated by other experimental methods. The small size and short shock duration (1 - 20 ns) are ideal for dynamically measuring bond strengths of micron-thick coatings. Experimental techniques, equipment, and dynamic material results are reported.

  10. Electrical and optical properties of dense composites

    NASA Astrophysics Data System (ADS)

    Doyle, William T.

    1999-02-01

    Effective cluster models have been developed that treat disordered suspensions of monodisperse metal spheres as mixtures of isolated spheres and compact clusters of spheres using the Clausius-Mossotti equation [Phys. Rev. B 42, 9319 (1990); J. Appl. Phys. 71, 3926 (1992)] and the Bruggeman equation [J. Appl. Phys. 78, 6165 (1995)]. These effective cluster models are adapted to suspensions of dielectric particles with arbitrary complex permittivity. The models are compared with the coated sphere model of Sheng [Phys. Rev. Lett. 45, 60 (1980); J. Opt. Soc. Am. B 15, 1022 (1998)]. Model calculations are compared with the measurements of the optical transmission spectra and low frequency electrical conductivity of Au-SiO2 films by Cohen, Cody, Coutts, and Abeles [Phys. Rev. B 8, 3689 (1973)], and with the low frequency permittivity measurements on suspensions of Ag spheres in KCl of Grannan, Garland, and Tanner [Phys. Rev. Lett. 46, 375 (1981)]. The models accurately predict the percolation thresholds seen in the electrical measurements and are in good agreement with all of the experiments over the entire range of volume loading.

  11. Nonlinear optical properties of nitrogen-doped bilayer graphene

    NASA Astrophysics Data System (ADS)

    Anand, Benoy; Podila, Ramakrishna; Rao, Apparao M.; Philip, Reji; Sai, S. Siva Sankara

    2013-06-01

    The electronic properties of graphene can be controlled by substitutional doping to obtain p-type or n-type characteristics. To this end, bilayer graphene films are synthesized using CVD method and substitutionally doped with Nitrogen (N). Previously, XPS measurements done in tandem with Raman spectroscopy revealed that the rich chemistry between carbon and nitrogen can result in pyridinic, pyrrolic, or graphitic configurations. The nonlinear optical properties (NLO) of both pristine and N-doped graphene samples are studied in both nanosecond and femtosecond excitation regimes using open aperture Z-scan method. Similar to the previous observations with Raman spectroscopy, we see that the NLO properties are more sensitive to the local bonding environments which determine the defect density in the graphene lattice, rather than just the dopant percentage. Our results give more insights into the effect of defects on the NLO properties of doped graphene which help in tailor making graphene samples for applications like modelocking and optical switching.

  12. AEROSOL OPTICAL PROPERTIES AND BIOGENIC SOA: EFFECT ON HYGROSCOPIC PROPERTIES AND LIGHT ABSORPTION

    EPA Science Inventory

    This study will provide a comprehensive characterization of optical properties of biogenic SOA and their sensitivity to anthropogenic influence. Several parameters critical for climate modeling, such as absorption cross-section, single scattering albedo and sensitivity to R...

  13. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture

    PubMed Central

    2013-01-01

    Abstract. During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future. PMID:24296995

  14. Optical properties and climate forcing of Icelandic dust

    NASA Astrophysics Data System (ADS)

    Dagsson Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Hladil, Jindrich; Skala, Roman; Navratil, Tomas; Chadimova, Leona; Gritsevich, Maria; Peltoniemi, Jouni; Hakala, Teemu

    2014-05-01

    Iceland is an active source of dust originating from glaciogenic and volcanic sediments. The frequency of days with dust suspension exceeded 34 dust days annually in 1949-2011. This figure represents a minimum value as many dust storms occur without the dust passing the weather stations recording the events. Comparison of meteorological synoptic codes for dust observation and direct particulate matter mass concentration measurements in 2005-2013 showed that the mean number of dust days in Iceland can increase up to135 dust days annually. Dust events in NE Iceland occur mostly in May-September, while almost half of all dust events in SW Iceland were at sub-zero temperatures or in winter. Icelandic dust is different from the crustal dust; it is of volcanic origin and dark in colour. It contains sharp-tipped shards and is often with bubbles. Such physical properties allow large particle suspension and transport to long distances, e.g. towards the Arctic. To estimate the further impacts of dust transport, both laboratory and snow spectropolarimetric measurements were done using the Finnish Geodetic Institute Field Goniospectrometer FIGIFIGO (http://www.polarisation.eu/index.php/list-of-instruments/view-submission/172), an automated portable instrument for multiangular reflectance measurements. The albedo, hemispherical directional reflectance factor (HDRF), polarization, and other snow properties were monitored on the snow and areas affected by the dust deposition through the following melting period in spring 2013 in Lapland during the Soot on Snow (SoS) 2013 campaign. Glaciogenic silt deposited on snow made the snow optically darker. The melting, metamorphose and diffusion processes were fast during the measurement time while the sun heated the particles, snow melted around, and the particles diffused inside the snow. Smaller particles diffused faster than the larger. Fine silt particles tended to form larger grains. Larger volcanic sand particles had lower

  15. Crystallization, Optical and Chemical Properties of Fluoride Glasses

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1985-01-01

    Fluoride glasses have great promise as infrared optical components, especially fibers, because they are transparent to 8 micrometers and higher. In order to optimize properties, different glass compositions are needed. Some are hard to form in a container, and may possibly be formable in a containerless furnace. Understanding of crystallization with and without a container could lead to glasses with optimum properties. Chemical durability (attack by water) can limit or extend the applicability of fluoride glasses. Progress to date is given.

  16. Structure, Electronic and Nonlinear Optical Properties of Furyloxazoles and Thienyloxazoles

    NASA Astrophysics Data System (ADS)

    Dagli, Ozlem; Gok, Rabia; Bahat, Mehmet; Ozbay, Akif

    2016-04-01

    Geometry optimization, electronic and nonlinear optical properties of isomers of furyloxazole and thienyloxazole molecules are carried out at the B3LYP/6-311++G(2d,p) level. The conformational analysis of 12 compounds have been studied as a function of torsional angle between rings. Electronic and NLO properties such as dipole moment, energy gap, polarizability and first hyperpolarizability were also calculated.

  17. Optical properties of Hg(1-x)Cd(x)Te

    NASA Astrophysics Data System (ADS)

    Tong, Fei-Ming; Ravindra, N. M.

    1993-04-01

    Optical properties of Hg(1-x)Cd(x)Te are summarized. Based on Penn-type (1962) models, the Moss (1950) relation, and the Wemple and DiDomenico (1971) approach, calculations of energy gap, plasmon energy, Fermi energy, oscillator strength and electronic polarizability have been made. Comparisons are made with the data available in the literature. Details of the dependency of the properties on composition are presented.

  18. Optical modelling data for room temperature optical properties of organic–inorganic lead halide perovskites

    PubMed Central

    Jiang, Yajie; Green, Martin A.; Sheng, Rui; Ho-Baillie, Anita

    2015-01-01

    The optical properties of perovskites at ambient temperatures are important both to the design of optimised solar cells as well as in other areas such as the refinement of electronic band structure calculations. Limited previous information on the optical modelling has been published. The experimental fitting parameters for optical constants of CH3NH3PbI3−xClx and CH3NH3PbI3 perovskite films are reported at 297 K as determined by detailed analysis of reflectance and transmittance data. The data in this study is related to the research article “Room temperature optical properties of organic–inorganic lead halide perovskites” in Solar Energy Materials & Solar Cells [1]. PMID:26217745

  19. Structural, electronic and optical properties of Cu-doped ZnO: experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Horzum, S.; Torun, E.; Serin, T.; Peeters, F. M.

    2016-06-01

    Experiments are supplemented with ab initio density functional theory (DFT) calculations in order to investigate how the structural, electronic and optical properties of zinc oxide (ZnO) thin films are modified upon Cu doping. Changes in characteristic properties of doped thin films, that are deposited on a glass substrate by sol-gel dip coating technique, are monitored using X-ray diffraction (XRD) and UV measurements. Our ab initio calculations show that the electronic structure of ZnO can be well described by DFT+U/? method and we find that Cu atom substitutional doping in ZnO is the most favourable case. Our XRD measurements reveal that the crystallite size of the films decrease with increasing Cu doping. Moreover, we determine the optical constants such as refractive index, extinction coefficient, optical dielectric function and optical energy band gap values of the films by means of UV-Vis transmittance spectra. The optical band gap of ZnO the thin film linearly decreases from 3.25 to 3.20 eV at 5% doping. In addition, our calculations reveal that the electronic defect states that stem from Cu atoms are not optically active and the optical band gap is determined by the ZnO band edges. Experimentally observed structural and optical results are in good agreement with our theoretical results.

  20. Optical properties of Aeolian dusts common to West Texas

    NASA Astrophysics Data System (ADS)

    Ma, Lulu; Zobeck, Ted M.; Hsieh, Daniel H.; Holder, Dean; Morgan, Cristine L. S.; Thompson, Jonathan E.

    2011-11-01

    Both recent models and historical events such as the Dust Bowl and volcanic eruptions have illustrated aerosols can play a significant role in climate change through direct and indirect optical effects. Soil dust aerosols generated by Aeolian processes represent a significant fraction of the total mass burden of atmospheric particles. Central to a better understanding of the climate effects of dust aerosols is knowledge of their optical properties. This research study utilized a dust generator and several instruments to determine certain optical properties of Aeolian dust mimics created by the Amarillo and Pullman soil types native to the panhandle of Texas, USA. Values for the mass-extinction coefficient ranged between 1.74 and 2.97 m 2 g -1 at 522 nm depending on how mass concentration was determined. Single-scatter albedo (SSA) for both soil types ranged from 0.947 to 0.980 at visible wavelengths with SSA increasing at longer wavelengths. Angstrom absorption exponents were measured as 1.73 for Pullman and 2.17 for Amarillo soil. Observed Angstrom extinction exponents were 0.110 and 0.168 for the Pullman and Amarillo soil types. The optical properties reported may be of use for optical based estimates of soil erosion and aid in understanding how regional soil dusts may alter radiative transport presently and during historical events such as the Dust Bowl era.

  1. Beam optical properties of the NSLS dipoles

    SciTech Connect

    Galayda, J.N.; Blumberg, L.N.; Heese, R.N.; Hsieh, H.C.H.

    1981-01-01

    Presently there is much interest in low energy (<1 GeV) electron storage rings as sources of synchrotron radiation and for studies of the free electron laser. The economics and physics of these storage rings favor the use of bending magnets with small radius of curvature and large bend angle. Some general features of such magnets and the results of magnetic measurements of the dipole magnets of the NSLS booster and storage rings are discussed. The magnetic measurements are interpreted in terms of the magnet geometry and saturation characteristics. Transport functions describing the linear and nonlinear focusing properties of the magnets, parametrized in terms of their curvature and fringe field length are discussed.

  2. Synthesis and Optical Properties of Photochromic Perinaphthothioindigo

    SciTech Connect

    Cherepy, N J; Sanner, R D

    2005-02-10

    (1,2-naphtho)(1,8-naphtho)thioindigo (PNT) has been synthesized following a simple Friedel-Crafts route and its photochemical properties in toluene and PMMA characterized. PNT is a photochromic molecule capable of reversible photoisomerization between a yellow form (cis-PNT, {lambda}{sub max} = 484 nm) and a purple form (trans-PNT, {lambda}{sub max} = 595 nm). The stable purple form converts to the yellow form with a trans-PNT to cis-PNT conversion quantum yield of 0.027 in toluene and 0.062 in PMMA. The unstable yellow form exhibits a cis-PNT to trans-PNT quantum efficiency of conversion of 0.27-0.85 in toluene and 0.17-0.68 PMMA, with highest conversion efficiency occurring in the vicinity of its {lambda}{sub max} of 484 nm. Trans-PNT has a strong fluorescence quantum yield, 0.14 (toluene) and 0.16 (PMMA). For samples prepared photochemically in the cis-PNT form, slow thermal relaxation to the trans form occurs in the dark, with a half life of about 17 hours in toluene (25 C) and even slower, 168 hours, in PMMA. The property of photoswitching between fluorescent and non-fluorescent forms makes this material a candidate for many applications in imaging and data storage. An anomalous excitation profile for the fluorescence from trans-PNT, showing a dip at {approx}600 nm, is an agreement with the wavelength-dependent quantum yield of conversion from trans-PNT to cis-PNT, which is highest at the absorbance peak.

  3. Optical Properties of Astronomical Silicates in the Far-infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A,; Benford, Dominic J.; Dwek, Eli; Henry, Ross M.; Nuth, Joseph A., III; Silverberg, Robert f.; Wollack, Edward J.

    2008-01-01

    Correct interpretation of a vast array of astronomical data relies heavily on understanding the properties of silicate dust as a function of wavelength, temperature, and crystallinity. We introduce the QPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project to address the need for high fidelity optical characterization data on the various forms of astronomical dust. We use two spectrometers to provide extinction data for silicate samples across a wide wavelength range (from the near infrared to the millimeter). New experiments are in development that will provide complementary information on the emissivity of our samples, allowing us to complete the optical characterization of these dust materials. In this paper, we present initial results from several materials including amorphous iron silicate, magnesium silicate and silica smokes, over a wide range of temperatures, and discuss the design and operation of our new experiments.

  4. Optical Limiting Properties of Graphene/Polymer Composites.

    PubMed

    Pan, Ruiyi; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Zhang, Qiuping; Wang, Yan; Tang, Jun

    2016-04-01

    Graphene oxide (GO) was doped into four polymers films: Poly(methyl methacrylate) (PMMA), polystyrene (PS), polycarbonate (PC), and polyacrylonitrile (PAN). Following that, their optical limiting properties were investigated at 532 nm. In order to make GO hydrophobic, the lipophilic alkyl chains were connected to GO. The results showed that GO/PAN composite possesses better non-linear response than the other three composites at the same transmission (T ~ 59%). The reason were attributed to the thermal effect coming from high input fluence of laser, which improved the cross link density of PAN and further enhanced the interaction between the GO-ODA and PAN. Meanwhile, GO/PC and GO/PS had similar optical limiting property and GO/PMMA film gave the weakest optical limiting effect in our experiment. PMID:27451679

  5. Optical properties of epitaxial YAG:Yb films

    NASA Astrophysics Data System (ADS)

    Ubizskii, S. B.; Matkovskii, A. O.; Melnyk, S. S.; Syvorotka, I. M.; Müller, V.; Peters, V.; Petermann, K.; Beyertt, A.; Giesen, A.

    2004-03-01

    This work deals with the investigation of the optical properties of epitaxial YAG:Yb films and their suitability as gain media for thin disk lasers. Epitaxial films of YAG:Yb were grown by the liquid phase epitaxy method in air on the (111)-oriented YAG substrates. The thickness of the grown layers was from 30 to 260 m. The melt composition was varied to obtain the desired doping level from 10 to 15% and to optimize the optical properties. The best epitaxial films were colourless and had an Yb3+ luminescence lifetime of more than 950 s, which is very close to the intrinsic lifetime of the Yb ions in the bulk YAG single crystals. These films were tested in a thin disk laser setup with 24 absorption passes of the 940 nm pumping beam. The maximum output power at 1.03 m wavelength in CW operation reached more than 60 W and the optical efficiency was close to 30%.

  6. Deep seawater inherent optical properties in the Southern Ionian Sea

    NASA Astrophysics Data System (ADS)

    Riccobene, G.; Capone, A.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Avanzini, C.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.

    2007-02-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km3 Čerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60 100 km SE of Capo Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 m-1 (corresponding to an absorption length of 67 m) close to the one of optically pure water and it does not show seasonal variation.

  7. Optical properties of bio-inspired peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Handelman, Amir; Apter, Boris; Rosenman, Gil

    2016-04-01

    Supramolecular self-assembled bio-inspired peptide nanostructures are favorable to be implemented in diverse nanophotonics applications due to their superior physical properties such as wideband optical transparency, high second-order nonlinear response, waveguiding properties and more. Here, we focus on the optical properties found in di-phenylalanine peptide nano-architectures, with special emphasize on their linear and nonlinear optical waveguiding effects. Using both simulation and experiments, we show their ability to passively guide light at both fundamental and second-harmonic frequencies. In addition, we show that at elevated temperatures, 140-180°C, these native supramolecular structures undergo irreversible thermally induced transformation via re-assembling into completely new thermodynamically stable phase having nanofiber morphology similar to those of amyloid fibrils. In this new phase, the peptide nanofibers lose their second-order nonlinear response, while exhibit profound modification of optoelectronic properties followed by the appearance of visible (blue and green) photoluminescence (PL). Our study propose a new generation of multifunctional optical waveguides with variety of characteristics, which self-assembled into 1D-elongated nanostructures and could be used as building blocks of many integrated photonic devices.

  8. Mechanical Properties of Irradiated Polarization-Maintaining Optical Fibers

    NASA Technical Reports Server (NTRS)

    Moeti, L.; Moghazy, S.; Ally, A.; Barnes, S.; Watkins, L.; Cuddihy, E.

    1996-01-01

    Polarization-maintaining optical fibers, referred to as PANDA fibers, were subjected to Cobalt 60 radiation (300,000 Rad). The mechanical properties of the PANDA fibers were measured after exposure to gamma radiation and compared to non-irradiated PANDA fibers.

  9. Optical Properties of PbTe and PbSe

    SciTech Connect

    Ekuma, Chinedu E; Singh, David J; Moreno, Juana; Jarrell, Mark

    2012-01-01

    We report optical properties of PbTe and PbSe as obtained from first-principles calculations with the Tran-Blaha modified Becke-Johnson potential. The results are discussed in relation to existing experimental data, particularly in relation to the temperature dependence of the band gap.

  10. Polyurethane phantoms with homogeneous and nearly homogeneous optical properties

    NASA Astrophysics Data System (ADS)

    Keränen, Ville T.; Mäkynen, Anssi J.; Dayton, Amanda L.; Prahl, Scott A.

    2010-02-01

    Phantoms with controlled optical properties are often used for calibration and standardization. The phantoms are typically prepared by adding absorbers and scatterers to a clear host material. It is usually assumed that the scatterers and absorbers are uniformly dispersed within the medium. To explore the effects of this assumption, we prepared paired sets of polyurethane phantoms (both with identical masses of absorber, India ink and scatterer, titanium dioxide). Polyurethane phantoms were made by mixing two polyurethane parts (a and b) together and letting them cure in a polypropylene container. The mixture was degassed before curing to ensure a sample without bubbles. The optical properties were controlled by mixing titanium dioxide or India ink into polyurethane part (a or b) before blending the parts together. By changing the mixing sequence, we could change the aggregation of the scattering and absorbing particles. Each set had one sample with homogeneously dispersed scatterers and absorbers, and a second sample with slightly aggregated scatterers or absorbers. We found that the measured transmittance could easily vary by a factor of twenty. The estimated optical properties (using the inverse adding-doubling method) indicate that when aggregation is present, the optical properties are no longer proportional to the concentrations of absorbers or scatterers.

  11. Demonstrations of Some Optical Properties of Liquid Crystals.

    ERIC Educational Resources Information Center

    Nicastro, Anthony J.

    1983-01-01

    Discusses several properties of liquid crystal displays. Includes instructions for demonstrating liquid crystalline phase, ordering of the long axes of molecules along one direction, and electro-optic effects. The latter is accomplished with the use of an overhead projector following preparation of a sandwich cell. (JN)

  12. Tuning nonlinear optical absorption properties of WS₂ nanosheets.

    PubMed

    Long, Hui; Tao, Lili; Tang, Chun Yin; Zhou, Bo; Zhao, Yuda; Zeng, Longhui; Yu, Siu Fung; Lau, Shu Ping; Chai, Yang; Tsang, Yuen Hong

    2015-11-14

    To control the optical properties of two-dimensional (2D) materials is a long-standing goal, being of both fundamental and technological significance. Tuning nonlinear optical absorption (NOA) properties of 2D transition metal dichalcogenides in a cost effective way has emerged as an important research topic because of its possibility to custom design NOA properties, implying enormous applications including optical computers, communications, bioimaging, and so on. In this study, WS2 with different size and thickness distributions was fabricated. The results demonstrate that both NOA onset threshold, F(ON), and optical limiting threshold, F(OL), of WS2 under the excitation of a nanosecond pulsed laser can be tuned over a wide range by controlling its size and thickness. The F(ON) and F(OL) show a rapid decline with the decrease of size and thickness. Due to the edge and quantum confinement effect, WS2 quantum dots (2.35 nm) exhibit the lowest F(ON) (0.01 J cm(-2)) and F(OL) (0.062 J cm(-2)) among all the samples, which are comparable to the lowest threshold achieved in graphene based materials, showing great potential as NOA materials with tunable properties. PMID:26456545

  13. Electronic and optical properties of spodumene gemstone: A theoretical study

    NASA Astrophysics Data System (ADS)

    de Lima, A. F.; Souza, S. O.; Lalic, M. V.

    2008-03-01

    The spodumene (LiAlSi 2O 6) is a natural silicate with monoclinic structure, interesting for a jewel industry and possible application as a scintillator. In this paper we present the electronic structure and some of the basic optical properties of the pure spodumene crystal, as calculated by the first-principles, density functional based, full potential linear augmented plane wave method.

  14. Optical Properties of Otago Shelf Waters: South Island New Zealand

    NASA Astrophysics Data System (ADS)

    Pfannkuche, J.

    2002-10-01

    The optical properties and concentrations of optically active water components were measured at 31 stations on the Otago coast. For the broad-band (PAR), diffuse light attenuation decreased 15-fold ( Kd=0·76 to 0·05 m -1) and reflectance 7-fold ( R=11·95 to 1·45%) from the most turbid harbour water to the clearest oceanic sites 30 km offshore. The Kd values therefore suggested, that Otago shelf waters were appreciably clearer than at first thought. The absorption and scattering coefficients ( a and b, respectively) for PAR were calculated using published nomograms. Multiple linear regression showed the dependence of a and b on changes in the concentration of gilvin, g 440, chlorophyll a, [ C], and inorganic particles, [ I]: a (PAR)=0·019+0·221 g440 +0·037[ C]+0·018[ I] b (PAR)=0·239[ C]+0·342[ I] Substituting the mean concentrations of gilvin (0·078 m -1), chlorophyll a (1·58 mg m -3) and inorganic particles (3·23 g m -3) into the above equations suggested that gilvin absorbed 11%, phytoplankton 39%, inorganic particles 38% and water itself 12% of PAR and on average. Phytoplankton cells caused 25% and inorganic sediments 75% of the scattering. Spectral irradiance measurements showed, that absorption by gilvin and suspended sediments could dominate absorption in the blue-green waveband for the most turbid harbour waters. Gilvin and phytoplankton levels were lowest in winter and inorganic sediment concentration were generally low offshore (<1 g m -3). Thus, oceanic waters were clearer and brighter in winter when compared to spring (July: Kd=0·05 m -1; R=3·1%; November: Kd=0·11 m -1; R=2·1% on average). However, spectral irradiance measurements showed anomalous features in R (λ) and Kd(λ) spectra above ˜590 nm which suggested light emission resulting from Raman scattering and chlorophyll fluorescence.

  15. Physical and optical properties of lead doped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Riyatun; Rahmasari, Lita; Marzuki, Ahmad

    2016-02-01

    Physical and optical properties of lead telluride (Pb:TZBN) glasses with composition 55TeO2-(41-x)ZnO-2Bi2O3-2Na2O-xPbO where x = 1.0, 1.5, 2.0, 2.5% mol are presented. UV-VIS-NIR spectra of the glasses in the range of 300 - 800 nm along with their densities and refractive indices at 746 nm were recorded at room temperature. The optical bandgap energy (Eg) has been calculated from the fitting of Tauc plot. On the basis of these results we found that with the increase of Pb2+ content, their refractive indices are increased while their optical bandgaps are decreased. From this experiment, no distinct relationship between the Pb2+ content variation and the electronic polarizability (αO2-) as well as their optical basicity values (A) were observed.

  16. Calculated optical properties of thorium, protactinium, and uranium metals

    SciTech Connect

    Gasche, T.; Brooks, M.S.; Johansson, B.

    1996-07-01

    We report self-consistent energy band calculations using the linear muffin-tin orbital method and the local-spin-density approximation to exchange and correlation in density-functional theory for the light actinide metals Th, Pa, and U. The optical properties have been calculated and compared with measurements, where possible. The dependence of the optical response functions upon crystal structure was found to be surprisingly large and the dependence upon spin-orbit coupling, less so. Where it was possible to make comparison, agreement with experiment was obtained for the maxima of the optical spectra, the exception being a feature in the optical conductivity at 10 eV measured in both Th and U but not obtained in the calculations. {copyright} {ital 1996 The American Physical Society.}

  17. Third order nonlinear optical property of Bi₂Se₃.

    PubMed

    Lu, Shunbin; Zhao, Chujun; Zou, Yanhong; Chen, Shuqing; Chen, Yu; Li, Ying; Zhang, Han; Wen, Shuangchun; Tang, Dingyuan

    2013-01-28

    The third order nonlinear optical property of Bi₂Se₃, a kind of topological insulator (TI), has been investigated under femto-second laser excitation. The open and closed aperture Z-scan measurements were used to unambiguously distinguish the real and imaginary part of the third order optical nonlinearity of the TI. When excited at 800 nm, the TI exhibits saturable absorption with a saturation intensity of 10.12 GW/cm² and a modulation depth of 61.2%, and a giant nonlinear refractive index of 10⁻¹⁴ m²/W, almost six orders of magnitude larger than that of bulk dielectrics. This finding suggests that the TI:Bi₂Se₃ is indeed a promising nonlinear optical material and thus can find potential applications from passive laser mode locker to optical Kerr effect based photonic devices. PMID:23389188

  18. Optical and electrical properties of single-crystalline zirconium carbide

    SciTech Connect

    Modine, F.A.; Haywood, T.W.; Allison, C.Y.

    1985-12-15

    Optical and electrical properties are reported for single-crystalline ZrC/sub 0.89/. The specular reflectance was measured between 0.025 and 6.5 eV, and ellipsometry measurements were made between 1.2 and 4.5 eV. The combination of ellipsometry with reflectance allows optical functions to be computed reliably between 0 and 6.5 eV and also provides a check on the consistency of the measurements. The van der Pauw technique was used to measure the electrical resistivity of the samples at temperatures between 4.2 and 300 K and the Hall coefficient at room temperature. Drude parameters obtained from the electrical measurements are in good agreement with those obtained from the optical data. Both the optical and electrical results are compared to other experimental results and to theory.

  19. Optical properties of infrared FELs from the FELI Facility II

    SciTech Connect

    Saeki, K.; Okuma, S.; Oshita, E.

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  20. The Optical Properties Monitor (OPM): a Multipurpose Optical Laboratory in Space

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.

    1992-01-01

    The Optical Properties Monitor (OPM) is a multifunction in-flight laboratory for in-situ optical studies of materials. Many independent and related studies can be carried out on EURECA with the OPM instruments to address the experiment objectives. Test samples will be selected to address the materials and issues of the greatest interest to NASA, ESA, DoD, and the aerospace community. The objective of the OPM program is to study the effects of the space environment, both natural and induced, on optical, thermal control, solar array, and other materials.

  1. X-ray properties of optically selected QSOs

    NASA Technical Reports Server (NTRS)

    Avni, Y.; Tananbaum, H.

    1986-01-01

    The dependence of the X-ray-to-optical luminosity ratio on optical luminosity and redshift for optically selected QSOs is studied, largely on the basis of two, complete, magnitude-limited samples (Bright Quasar Survey /1983/ and Braccesi Faint /1984/) which were observed with the Einstein Observatory. Heterogeneous samples are established as adequate for the study of that dependence. Optimal choices for increasing the size of the data set for such a study are pointed out. The previous results of Avni and Tananbaum for alpha sub 0, x(z, L sub opt) are confirmed and strengthened, and the numerical sensitivity to changes in the values of q sub 0 and of the optical spectral index is evaluated. It is shown that the large majority, probably all, of optically selected QSOs are X-ray loud; no more than a few percent can be X-ray quiet. Thus X-ray emission appears to be a universal property of QSOs. It is shown that comparisons of optically selected QSOs with X-ray selected QSOs are numerically sensitive to the details of the input ingredients. A residual discrepancy of about a factor of 2 between calculated and observed X-ray number counts is found. Directions for further research that are important for understanding the full bivariate optical-X-ray evolution and luminosity function for QSOs are discussed.

  2. Active optics with a minimum number of actuators

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2014-06-01

    Optics for astronomy implies powerful developments of active and adaptive optics methods applied to instrumentation from X-rays to the near infrared for the design of telescopes, spectrographs, and coronagraph planet finders. This presentation particularly emphasizes the development of active optics methods. Highly accurate and remarkably smooth surfaces from active optics methods allow new optical systems that use highly aspheric and non-axisymmetric - freeform - surfaces. Depending on the goal and performance required for a deformable optical surface, elasticity theory analysis is carried out either with small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, or the weakly conical shell theory. A mirror thickness distribution is then determined as a function of associated bending actuators and boundary conditions. For a given optical shape to generate, one searches for optical solutions with a minimum number of actuators.

  3. Experimental and theoretical optical properties of methylammonium lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Leguy, Aurélien M. A.; Azarhoosh, Pooya; Alonso, M. Isabel; Campoy-Quiles, Mariano; Weber, Oliver J.; Yao, Jizhong; Bryant, Daniel; Weller, Mark T.; Nelson, Jenny; Walsh, Aron; van Schilfgaarde, Mark; Barnes, Piers R. F.

    2016-03-01

    The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3]+ cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties. The optical constants and energy band diagram of CH3NH3PbI3 are then used to simulate the contributions from different optical transitions to a typical transient absorption spectrum (TAS).The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3]+ cations has a significant influence on the position of the bandgap suggesting that collective

  4. Optical Properties of Nested Pyramidal Nanoshells.

    PubMed

    Lin, Julia Y; Hasan, Warefta; Yang, Jiun-Chan; Odom, Teri W

    2010-01-01

    This paper describes the fabrication and characterization of nested Au pyramidal nanoshells. These particles exhibited two plasmon resonances at visible and near-infrared wavelengths that could be manipulated depending on the size of the gap between inner and outer pyramidal shells. We found that larger gaps (30 nm) exhibited much larger Raman scattering responses compared to smaller gaps (5 nm) in the nested pyramidal shells. The SERS-activity of these anisotropic particles can be optimized by adjusting the distances between the inner and outer Au shells. PMID:20431688

  5. Estimation of aerosol optical properties from all-sky imagers

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  6. Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites.

    PubMed

    Green, Martin A; Jiang, Yajie; Soufiani, Arman Mahboubi; Ho-Baillie, Anita

    2015-12-01

    Over the last several years, organic-inorganic lead halide perovskites have rapidly emerged as a new photovoltaic contender. Although energy conversion efficiency above 20% has now been certified, improved understanding of the material properties contributing to these high performance levels may allow the progression to even higher efficiency, stable cells. The optical properties of these new materials are important not only to device design but also because of the insight they provide into less directly accessible properties, including energy-band structures, binding energies, and likely impact of excitons, as well as into absorption and inverse radiative recombination processes. PMID:26560862

  7. Optical Fiber Technique for In-Reactor Mechanical Properties Measurement

    SciTech Connect

    Robert S. Schley; Zilong Hua; David H. Hurley; Heng Ban

    2012-07-01

    In-reactor measurement of material properties is required for a better understanding of radiation effects on materials. We present an optical fiber based technique for measuring changes in elastic properties which involves exciting and measuring flexural vibrations in a thin cantilever beam. By exciting the beam and measuring the natural frequency, changes in the modulus of elasticity can be monitored. The technique is demonstrated by monitoring the elastic property changes of a beam fabricated from copper, as the copper undergoes recrystallization at elevated temperature.

  8. Optical fiber technique for in-reactor mechanical properties measurement

    SciTech Connect

    Schley, R. S.; Hurley, D. H.; Hua, Z. A.

    2013-01-25

    In-reactor measurement of material properties is required for a better understanding of radiation effects on materials. We present an optical fiber based technique for measuring changes in elastic properties which involves exciting and measuring flexural vibrations in a thin cantilever beam. By exciting the beam and measuring the resonant frequency, changes in the modulus of elasticity can be monitored. The technique is demonstrated by monitoring the elastic property changes of a beam fabricated from copper, as the copper undergoes recrystallization at elevated temperature.

  9. Optical properties of charged semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Jha, Praket P.

    The effect of n-type doping on the luminescence properties of II-VI quantum dots is studied. The addition of two shells of CdS on CdSe quantum dots prevents the creation of surface traps and makes the system stable under reducing environment. The injection of electrons into films of quantum dots leads to lower photoluminescence (PL) efficiency, with the extent of quenching dependent on both the number and the quantum states of the spectator charges in the nanocrystal. It is found that a 1Pe electron is an eightfold better PL quencher than the 1Se electron. Reduced threshold for stimulated emission is also observed in doped CdSe/CdS films. Time resolved photoluminescence measurements are used to extract the recombination rates of a charged exciton, called trion. It is observed that the negative trion has a radiative rate ˜2.2 +/- 0.4x faster than a neutral exciton, while its non-radiative recombination rate is slower than the biexciton non-radiative recombination rate by a factor of 7.5 +/- 1.7. The knowledge of the recombination rates of the trion enables us to calculate the quantum yield of a negative trion to be ˜10% for the nanocrystals investigated in our work. This is larger than the off state quantum yield from a single quantum dot photoluminescence trajectory and eliminates the formation of negative trion as the possible reason for the PL blinking of single quantum dots. Single quantum dot electrochemistry has also been achieved. It is shown that by varying the Fermi level of the system electrons can be reversibly injected into and extracted out of single CdSe/CdS and CdSe/ZnS nanoparticles to modulate the photoluminescence.

  10. Measurement of bidirectional optical properties of complex shading devices

    SciTech Connect

    Klems, J.H.; Warner, J.L.

    1995-01-01

    A new method of predicting the solar heat gain through complex fenestration systems involving nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bidirectional radiative transmittance and reflectance of each layer of a fenestration system. The properties of systems containing these layers are then built up computationally from the measured layer properties using a transmission/multiple-reflection calculation. The calculation produces the total directional-hemispherical transmittance of the fenestration system and the layer-by-layer absorptances. These properties are in turn combined with layer-specific measurements of the inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain coefficient. This paper describes the method of measuring the spatially averaged bidirectional optical properties using an automated, large-sample gonioradiometer/photometer, termed a ``Scanning Radiometer.`` Property measurements are presented for one of the most optically complex systems in common use, a venetian blind. These measurements will form the basis for optical system calculations used to test the method of determining performance.

  11. Double quantum dot in a quantum dash: Optical properties

    SciTech Connect

    Kaczmarkiewicz, Piotr Machnikowski, Paweł; Kuhn, Tilmann

    2013-11-14

    We study the optical properties of highly elongated, highly flattened quantum dot structures, also referred to as quantum dashes, characterized by the presence of two trapping centers located along the structure. Such a system can exhibit some of the properties characteristic for double quantum dots. We show that sub- and super-radiant states can form for certain quantum dash geometries, which is manifested by a pronounced transfer of intensity between spectral lines, accompanied by the appearance of strong electron-hole correlations. We also compare exciton absorption spectra and polarization properties of a system with a single and double trapping center and show how the geometry of multiple trapping centers influences the optical properties of the system. We show that for a broad range of trapping geometries the relative absorption intensity of the ground state is larger than that of the lowest excited states, contrary to the quantum dash systems characterized by a single trapping center. Thus, optical properties of these structures are determined by fine details of their morphology.

  12. Exciton states and optical properties of carbon nanotubes.

    PubMed

    Ajiki, Hiroshi

    2012-12-01

    Exciton states and related optical properties of a single-walled carbon nanotube are reviewed, primarily from a theoretical viewpoint. The energies and wavefunctions of excitons are discussed using a screened Hartree-Fock approximation with an effective-mass or k·p approximation. The close relationship between a long-range electron-hole exchange interaction and a depolarization effect is clarified. I discuss optical properties including the radiative lifetime of excitons, absorption spectra and radiation force. To describe these properties in a unified scheme, a self-consistent method is introduced for calculating the scattering light and induced current density due to excitons. I also briefly review experimental results on the Aharonov-Bohm effect in excitons and quasi-dark excitons excited by light polarized perpendicular to the tube axis. PMID:23139202

  13. Optical properties of fly ash. Volume 2, Final report

    SciTech Connect

    Self, S.A.

    1994-12-01

    Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal and Ebert. Volume 2 contains the dissertation of Ebert which covers the measurements of the optical constants of slags, and calculations of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.

  14. Optical properties of mice skin for optical therapy relevant wavelengths: influence of gender and pigmentation

    NASA Astrophysics Data System (ADS)

    Sabino, C. P.; Deana, A. M.; Silva, D. F. T.; França, C. M.; Yoshimura, T. M.; Ribeiro, M. S.

    2015-03-01

    Red and near-infrared light have been widely employed in optical therapies. Skin is the most common optical barrier in non-invasive techniques and in many cases it is the target tissue itself. Consequently, to optimize the outcomes brought by lightbased therapies, the optical properties of skin tissue must be very well elucidated. In the present study, we evaluated the dorsal skin optical properties of albino (BALB/c) and pigmented (C57BL/6) mice using the Kubelka-Munk photon transport model. We evaluated samples from male and female young mice of both strains. Analysis was performed for wavelengths at 630, 660, 780, 810 and 905 nm due to their prevalent use in optical therapies, such as low-level light (or laser) and photodynamic therapies. Spectrophotometric measurements of diffuse transmittance and reflectance were performed using a single integrating sphere coupled to a proper spectrophotometer. Statistic analysis was made by two-way ANOVA, with Tukey as post-test and Levenne and Shapiro-Wilks as pre-tests. Statistical significance was considered when p<0.05. Our results show only a slight transmittance increment (<10 %) as wavelengths are increased from 630 to 905 nm, and no statistical significance was observed. Albino male mice present reduced transmittance levels for all wavelengths. The organization and abundance of skin composing tissues significantly influence its scattering optical properties although absorption remains constant. We conclude that factors such as subcutaneous adiposity and connective tissue structure can have statistically significant influence on mice skin optical properties and these factors have relevant variations among different gender and strains.

  15. System Report for the Optical Properties Monitor (OPM) Experiment

    NASA Technical Reports Server (NTRS)

    Hummer, L.

    2001-01-01

    This systems report describes how the Optical Properties Monitor (OPM) experiment was developed. Pertinent design parameters are discussed, along with mission information and system requirements to successfully complete the mission. Environmental testing was performed on the OPM to certify it for spaceflight. This testing included vibration, thermal vacuum, electromagnetic interference and conductance, and toxicity tests. Instrument and monitor subsystem performances, including the reflectometer, vacuum ultraviolet, total integrated scatter, atomic oxygen monitor, irradiance monitor, and molecular contamination monitor during the mission are discussed. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. The OPM conducted in situ measurements of a number of material samples. These data may be found in the OPM Science Report. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  16. Optical properties of plasmonic nanostructures: Theory & experiments

    NASA Astrophysics Data System (ADS)

    Bala Krishna, Juluri

    Metal nanoparticles and thin films enable localization of electromagnetic energy in the form of localized surface plasmon resonances (LSPR) and propagating surface plasmons respectively. This research field, also known as plasmonics, involves understanding and fabricating innovative nanostructures designed to manage and utilize localized light in the nanoscale. Advances in plasmonics will facilitate innovation in sensing, biomedical engineering, energy harvesting and nanophotonic devices. In this thesis, three aspects of plasmonics are studied: 1) active plasmonic systems using charge-induced plasmon shifts (CIPS) and plasmon-molecule resonant coupling; 2) scalable solutions to fabricate large electric field plasmonic nanostructures; and 3) controlling the propagation of designer surface plasmons (DSPs) using parabolic graded media. The full potential of plasmonics can be realized with active plasmonic devices which provide tunable plasmon resonances. The work reported here develops both an understanding for and realization of various mechanisms to achieve tunable plasmonic systems. First, we show that certain nanoparticle geometries and material compositions enable large CIPS. Second, we propose and investigate systems which exhibit coupling between molecular and plasmonic resonances where energy splitting is observed due to interactions between plasmons and molecules. Large electric field nanostructures have many promising applications in the areas of surface enhanced Raman spectroscopy, higher harmonic light generation, and enhanced uorescence. High throughput techniques that utilize simple nanofabrication are essential their advancement. We contribute to this effort by using a salting-out quenching technique and colloidal lithography to fabricate nanodisc dimers and cusp nanostructures that allow localization of large electric fields, and are comparable to structures fabricated by conventional lithography/milling techniques. Designer surface plasmons (DSPs) are

  17. Optical properties and emissivities of liquid metals and alloys

    NASA Technical Reports Server (NTRS)

    Krishnan, Shankar; Nordine, Paul C.

    1993-01-01

    This paper presents the results from our on-going program to investigate the optical properties of liquid metals and alloys at elevated temperatures. Ellipsometric and polarimetric techniques have been used to investigate the optical properties of materials in the 1000 - 3000 K temperature range and in the 0.3 - 0.1 mu m wavelength range. The ellipsometric and polarimetric techniques are described and the characteristics of the instruments are presented. The measurements are conducted by reflecting a polarized laser beam from an electromagnetically levitated liquid metal or alloy specimen. A Rotating Analyzer Ellipsometer (RAE) or a four-detector Division-of-Amplitude Photopolarimeter (DOAP) is used to determine the polarimetric properties of the light reflected at an angle of incidence of approximately 68 deg. Optical properties of the specimen which are calculated from these measurements include the index of refraction, extinction coefficient, normal spectral emissivity, and spectral hemispherical emissivity. These properties have been determined at various wavelengths and temperatures for liquid Ag, Al, Au, Cu, Nb, Ni, Pd, Pt, Si, Ti, Ti-Al alloys, U, and Zr. We also describe new experiments using pulsed-dye laser spectroscopic ellipsometry for studies of the wavelength dependence of the emissivities and optical properties of materials at high temperature. Preliminary results are given for liquid Al. The application of four-detector polarimetry for rapid determination of surface emissivity and true temperature is also described. Characteristics of these devices are presented. An example of the accuracy of this instrument in measurements of the melting point of zirconium is illustrated.

  18. Spectral ellipsometry studying of iron's optical and electronic properties

    NASA Astrophysics Data System (ADS)

    Chernukha, Yevheniia; Stashchuk, Vasyl S.; Polianska, Olena; Oshtuk, Olexsandr

    2014-05-01

    Fe's optical and electronic properties were investigated at room temperature in different structural states. The sample's surface was explored in wide spectral range λ = 0,23-17,0 μm (E = 4,96 - 0,07 еV ) by the Beatty's spectral ellipsometry method. While an experiment was carried out ellipsometry parameters Δ and ψ were measure near the principal angle of incidence. The refraction index R , permittivity Ɛ and optical conductivity σ( hν ) , that is proportional to the interband density of electronic states, were calculated using these parameters. Fe's optical conductivities in liquid, amorphous and crystalline states were compared in this work. The optical conductivity was calculated using the published data of the iron's density of electronic states in crystalline, amorphous and liquid states for the comparison of the experimental and theoretical results. It is shown that, at structural transformations "amorphous, liquid state- crystalline state", the optical properties of metallic iron are determined, in the first turn, by the nearest neighborhood, and the electronic structure is not subjected to significant modifications.

  19. Optical and electrical properties of bi-layers organic devices

    NASA Astrophysics Data System (ADS)

    Trad, Hager; Rouis, Ahlem; Davenas, Jöel; Majdoub, Mustapha

    2014-10-01

    The influence of interfacial charges on the device characteristics of bi-layers structure LEDs with poly[5-methoxy-2-octyloxy-1,4-phenylenevinylene] (MO-PPV) as active polymer layer is investigated. The concept to improve device performance is presented using: a diacetate cellulose (DAC) and a new synthetized 5-{2-(2-chloroethoxy)ethoxy}-2-{(E)-(2-pyridyl)azo}phenol (PDEG) components. The DAC and mixed (DAC+PDEG) layers were inserted between indium tin oxide (ITO) and MO-PPV polymer. The optical properties (UV-Vis) of MO-PPV, PDEG and mixed (DAC+PDEG) in solutions were studied and compared to those on thin films. Detailed current-voltage measurements of the bi-layers devices showed improvements of the threshold voltage (Vth) of the ITO/(DAC+PDEG)/MO-PPV/Al device attributed to the enhancement of carriers injection and transport resulted from the modified electrode structures. Conduction mechanisms of structure LEDs were matched with space-charge-limited current (SCLC) one. The impedance spectra for all devices can be discussed in terms of an equivalent circuit model designed as a parallel resistor Rp and capacitor Cp network in series with resistor Rs. The ITO/(DAC+PDEG)/MO-PPV/Al device showed the lowest impedance attributed to the removal of contaminants and to changes in the work function of ITO. The frequency-dependent electrical properties of the ITO/(DAC+PDEG)/MO-PPV/Al structure is analyzed by impedance spectroscopy as function of bias. We have extracted numerical values of the equivalent circuit model parameters by fitting experimental data. Their evolution with bias voltages has shown that the SCLC mechanism is characterized by an exponential trap distribution.

  20. Extrinsic chirality: Tunable optically active reflectors and perfect absorbers

    NASA Astrophysics Data System (ADS)

    Plum, Eric

    2016-06-01

    Conventional three-dimensional (3D) chiral media can exhibit optical activity for transmitted waves, but optical activity for reflected waves is negligible. This work shows that mirror asymmetry of the experimental arrangement—extrinsic 3D chirality—leads to giant optical activity for reflected waves with fundamentally different characteristics. It is demonstrated experimentally that extrinsically 3D-chiral illumination of a lossy metasurface backed by a mirror enables tunable circular dichroism and circular birefringence as well as perfect absorption of circularly polarized waves. In contrast, such polarization phenomena vanish for conventional optically active media backed by a mirror.

  1. Development of graphene oxide materials with controllably modified optical properties

    NASA Astrophysics Data System (ADS)

    Naumov, Anton; Galande, Charudatta; Mohite, Aditya; Ajayan, Pulickel; Weisman, R. Bruce

    2015-03-01

    One of the major current goals in graphene research is modifying its optical and electronic properties through controllable generation of band gaps. To achieve this, we have studied the changes in optical properties of reduced graphene oxide (RGO) in water suspension upon the exposure to ozone. Ozonation for the periods of 5 to 35 minutes has caused a dramatic bleaching of its absorption and the concurrent appearance of strong visible fluorescence in previously nonemissive samples. These observed spectral changes suggest a functionalization-induced band gap opening. The sample fluorescence induced by ozonation was found to be highly pH-dependent: sharp and structured emission features resembling the spectra of molecular fluorophores were present at basic pH values, but this emission reversibly broadened and red-shifted in acidic conditions. These findings are consistent with excited state protonation of the emitting species in acidic media. Oxygen-containing addends resulting from the ozonation were detected by XPS and FTIR spectroscopy and related to optical transitions in localized graphene oxide fluorophores by computational modeling. Further research will be directed toward producing graphene-based optoelectronic devices with tailored and controllable optical properties.

  2. Annealing effects on optical properties of natural alexandrite

    NASA Astrophysics Data System (ADS)

    Fernandes Scalvi, Rosa M.; Li, Máximo Siu; Scalvi, Luis V. A.

    2003-11-01

    Natural alexandrite (BeAl2O4:Cr3+) crystals are investigated as regards the effects of annealing on their optical properties. Optical absorption spectra are measured from the ultraviolet (190 nm) to the near infrared (900 nm), for a sample subjected to consecutive annealing processes, where time and temperature are varied. Besides this, luminescence spectra are simultaneously obtained for this sample, excited with a Kr+ laser source, tuned on an ultraviolet multi-line mode (337.5, 350.7 and 356.4 nm). We observe from absorption as well as from emission data that annealing mainly influences the distribution of Cr3+ and Fe3+ ions, located on sites of a mirror plane (Cs symmetry), which are responsible for the optical properties of alexandrite. The results obtained lead to the conclusion that annealing induces a modification of the population of Cr3+ on Cs sites as well as on sites located on an inversion plane (Ci). Annealing could improve the optical properties of this material, as regards its application as a tunable laser.

  3. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing

    NASA Astrophysics Data System (ADS)

    Stankova, N. E.; Atanasov, P. A.; Nikov, Ru. G.; Nikov, R. G.; Nedyalkov, N. N.; Stoyanchov, T. R.; Fukata, N.; Kolev, K. N.; Valova, E. I.; Georgieva, J. S.; Armyanov, St. A.

    2016-06-01

    This article presents experimental investigations of effects of the process parameters on the medical grade polydimethylsiloxane (PDMS) elastomer processed by laser source with irradiation at UV (266 and 355 nm), VIS (532 nm) and NIR (1064 nm). Systematic experiments are done to characterize how the laser beam parameters (wavelength, fluence, and number of pulses) affect the optical properties and the chemical composition in the laser treated areas. Remarkable changes of the optical properties and the chemical composition are observed. Despite the low optical absorption of the native PDMS for UV, VIS and NIR wavelengths, successful laser treatment is accomplished due to the incubation process occurring below the polymer surface. With increasing of the fluence and the number of the pulses chemical transformations are revealed in the entire laser treated area and hence decreasing of the optical transmittance is observed. The incubation gets saturation after a certain number of pulses and the laser ablation of the material begins efficiently. At the UV and VIS wavelengths the number of the initial pulses, at which the optical transmittance begins to reduce, decreases from 16 up to 8 with increasing of the laser fluence up to 1.0, 2.5 and 10 J cm-2 for 266, 355 and 532 nm, respectively. In the case of 1064 nm the optical transmittance begins to reduce at 11th pulse incident at a fluence of 13 J cm-2 and the number of the pulses decreases to 8 when the fluence reaches value of 16 J cm-2. The threshold laser fluence needed to induce incubation process after certain number of pulses of 8 is different for every wavelength irradiation as the values increase from 1.0 for 266 nm up to 16 J cm-2 for 1064 nm. The incubation and the ablation processes occur in the PDMS elastomer material during its pulsed laser treatment are a complex function of the wavelength, fluence, number of pulses and the material properties as well.

  4. The temperature dependence of the thermo-optical properties of TAG optical ceramics

    NASA Astrophysics Data System (ADS)

    Starobor, A. V.; Zheleznov, D. S.; Palashov, O. V.

    2016-02-01

    The thermal effects of thermally-induced depolarization and a thermal lens in terbium aluminum garnet (TAG) ceramics were investigated in the temperature range 79-293 K. Thermal effects decrease considerably upon cooling to 79 K, and it is demonstrated that the thermo-optical properties of TAG ceramics are not inferior to the properties of TGG ceramics. TAG is a promising medium for Faraday isolators and cryogenic Faraday isolators.

  5. Using DFT Methods to Study Activators in Optical Materials

    DOE PAGESBeta

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials.more » DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less

  6. Using DFT Methods to Study Activators in Optical Materials

    SciTech Connect

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials. DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.

  7. Optical Properties of the α-T3 Model

    NASA Astrophysics Data System (ADS)

    Illes, Emilia; Carbotte, Jules; Nicol, Elisabeth

    The α-T3 model, recently introduced by Raoux et. al, provides a continuous evolution between the honeycomb lattice of graphene and the T3 or dice lattice. It is characterized by a variable Berry phase that changes continuously from π to 0. We present our calculations of optical properties of the α-T3 model, including the Hall quantization and optical conductivity, with an emphasis on the effect of the variable Berry's phase of the model. In particular, we describe the continuous evolution of the Hall quantization from a relativistic to a non-relativistic regime.

  8. Luminescent properties of bismuth centres in aluminosilicate optical fibres

    SciTech Connect

    Bulatov, Lenar I; Mashinskii, Valerii M; Dvoirin, Vladislav V; Dianov, Evgenii M; Kustov, Evgenii F

    2010-02-28

    The shape and spectral position of the luminescence bands of bismuth-doped aluminosilicate glass fibres are shown to depend on excitation power and wavelength. This indicates that the red and IR luminescence bands are composed of several components. The absorption and radiative transitions involved are identified, and a diagram of energy levels and transitions is obtained for four modifications of a bismuth centre in different environments in the aluminosilicate glass network. The effect of local environment on the optical properties of the bismuth centres is examined. (optical fibres and waveguides)

  9. Ultrafast optical pulse interactions in active disordered condensed matter

    NASA Astrophysics Data System (ADS)

    Siddique, Masood

    2005-07-01

    The goal of this research is to better understand the basic physics that governs the behavior of short-pulsed light propagating in scattering media where either the host medium or the scattering particles exhibit emission or absorption interact with the incident light in form of absorption or stimulated emission. The temporal and spectral dynamics from the interactions of optically active disordered-media with ultrashort optical pulses is the focus of the research performed in this thesis. The interaction processes studied are optical gain, spectral narrowing, fluorescence and pulse lifetime reduction and transport of ultrashort optical pulses in disordered media containing optically active discrete scattering particles. Linear and nonlinear effects are presented where the propagation of picosecond and femtosecond laser pulses in active disordered media is measured experimentally and compared with the theories of Boltzmann radiative transport and diffusive propagation of radiation in disordered media. Active media can be involved in optical processes in disordered media where either the propagation of optical radiation can result in gain or absorption upon optical excitation. A study of optical scattering in non-discrete media such as the biological heterogeneously-continuous scattering tissues is carried out as well. Lasing in random media is one of the outcomes of these results. The optical gain of optically excited active media is divided into clear subdivisions of Amplified Spontaneous Emission, Stimulated Emission and Laser Emission by characterizing them by their temporal and spectral emission.

  10. An electrically-activated dynamic tissue-equivalent phantom for assessment of diffuse optical imaging systems.

    PubMed

    Hebden, Jeremy C; Brunker, Joanna; Correia, Teresa; Price, Ben D; Gibson, Adam P; Everdell, N L

    2008-01-21

    A novel design of solid dynamic phantom with tissue-like optical properties is presented, which contains variable regions of contrast which are activated electrically. Reversible changes in absorption are produced by localized heating of targets impregnated with thermochromic pigment. A portable, battery-operated prototype has been constructed, and its optical and temporal characteristics have been investigated. The phantom has been developed as a means of assessing the performance of diffuse optical imaging systems, such as those used to monitor haemodynamic changes in the brain and other tissues. Images of the phantom have been reconstructed using data acquired with a continuous wave optical topography system. PMID:18184989

  11. An electrically-activated dynamic tissue-equivalent phantom for assessment of diffuse optical imaging systems

    NASA Astrophysics Data System (ADS)

    Hebden, Jeremy C.; Brunker, Joanna; Correia, Teresa; Price, Ben D.; Gibson, Adam P.; Everdell, N. L.

    2008-01-01

    A novel design of solid dynamic phantom with tissue-like optical properties is presented, which contains variable regions of contrast which are activated electrically. Reversible changes in absorption are produced by localized heating of targets impregnated with thermochromic pigment. A portable, battery-operated prototype has been constructed, and its optical and temporal characteristics have been investigated. The phantom has been developed as a means of assessing the performance of diffuse optical imaging systems, such as those used to monitor haemodynamic changes in the brain and other tissues. Images of the phantom have been reconstructed using data acquired with a continuous wave optical topography system.

  12. Experimental and theoretical optical properties of methylammonium lead halide perovskites.

    PubMed

    Leguy, Aurélien M A; Azarhoosh, Pooya; Alonso, M Isabel; Campoy-Quiles, Mariano; Weber, Oliver J; Yao, Jizhong; Bryant, Daniel; Weller, Mark T; Nelson, Jenny; Walsh, Aron; van Schilfgaarde, Mark; Barnes, Piers R F

    2016-03-17

    The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3](+) cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties. The optical constants and energy band diagram of CH3NH3PbI3 are then used to simulate the contributions from different optical transitions to a typical transient absorption spectrum (TAS). PMID:26477295

  13. Method for quantifying optical properties of the human lens

    DOEpatents

    Loree, T.R.; Bigio, I.J.; Zuclich, J.A.; Shimada, Tsutomu; Strobl, K.

    1999-04-13

    A method is disclosed for quantifying optical properties of the human lens. The present invention includes the application of fiberoptic, OMA-based instrumentation as an in vivo diagnostic tool for the human ocular lens. Rapid, noninvasive and comprehensive assessment of the optical characteristics of a lens using very modest levels of exciting light are described. Typically, the backscatter and fluorescence spectra (from about 300- to 900-nm) elicited by each of several exciting wavelengths (from about 300- to 600-nm) are collected within a few seconds. The resulting optical signature of individual lenses is then used to assess the overall optical quality of the lens by comparing the results with a database of similar measurements obtained from a reference set of normal human lenses having various ages. Several metrics have been identified which gauge the optical quality of a given lens relative to the norm for the subject`s chronological age. These metrics may also serve to document accelerated optical aging and/or as early indicators of cataract or other disease processes. 8 figs.

  14. Radiation Pattern and Scattering Properties of Optical Antennas

    NASA Astrophysics Data System (ADS)

    Xu, Zeyan; Messer, Kevin; Yablonovitch, Eli

    When light emitting devices (e.g. LEDs) are coupled with optical antennas of the same resonance frequency, their spontaneous emission rate can be enhanced drastically. The ultimate goal is to have the rate of spontaneous emission faster than the stimulated emission so that the LEDs would be as fast as lasers and enable us to achieve energy efficient interconnects for on-chip communication. In this project, we built multiple optical setups to experimentally measure the far field radiation pattern, light scattering properties and photoluminescence of a series of optical antennas. We also used Lumerical FDTD software to theoretically simulate the structure and found out that the simulated results agree with experimental values. As the longitudinal length increased, the spectrum shifted towards higher wavelengths on the spectrum. Also, by studying the radiation patterns of the optical antennas, we are able to understand their strengths as a function of direction, and how the geometrical shape contribute to the shape of radiation patterns. Understanding the radiation pattern and the scattering spectrum of optical antennas will enable us to design devices with specific requirements on radiational directions and resonance frequencies for optical antennas. This work was funded by National Science Foundation Award ECCS-0939514.

  15. Method for quantifying optical properties of the human lens

    DOEpatents

    Loree, deceased, Thomas R.; Bigio, Irving J.; Zuclich, Joseph A.; Shimada, Tsutomu; Strobl, Karlheinz

    1999-01-01

    Method for quantifying optical properties of the human lens. The present invention includes the application of fiberoptic, OMA-based instrumentation as an in vivo diagnostic tool for the human ocular lens. Rapid, noninvasive and comprehensive assessment of the optical characteristics of a lens using very modest levels of exciting light are described. Typically, the backscatter and fluorescence spectra (from about 300- to 900-nm) elicited by each of several exciting wavelengths (from about 300- to 600-nm) are collected within a few seconds. The resulting optical signature of individual lenses is then used to assess the overall optical quality of the lens by comparing the results with a database of similar measurements obtained from a reference set of normal human lenses having various ages. Several metrics have been identified which gauge the optical quality of a given lens relative to the norm for the subject's chronological age. These metrics may also serve to document accelerated optical aging and/or as early indicators of cataract or other disease processes.

  16. Electronic and optical properties of novel carbon allotropes

    DOE PAGESBeta

    Wang, Zhanyu; Dong, F.; Shen, B.; Zhang, R. J.; Zheng, Y. X.; Chen, L. Y.; Wang, S. Y.; Wang, C. Z.; Ho, K. M.; Fan, Yuan -Jia; et al

    2016-01-22

    The vibrational properties, electronic structures and optical properties of novel carbon allotropes, such as monolayer penta-graphene (PG), double-layer PG and T12-carbon, were studied by first-principles calculations. Results of phonon calculations demonstrate that these exotic carbon allotropes are dynamically stable. The bulk T12 phase is an indirect-gap semiconductor having a quasiparticle (QP) bandgap of ~5.19 eV. When the bulk material transforms to a two-dimensional (2D) phase, the monolayer and double-layer PG become quasi-direct gap semiconductors with smaller QP bandgaps of ~4.48 eV and ~3.67 eV, respectively. Furthermore, the partial charge density analysis indicates that the 2D phases retain part of themore » electronic characteristics of the T12 phase. The linear photon energy-dependent dielectric functions and related optical properties including refractive index, extinction coefficient, absorption spectrum, reflectivity, and energy-loss spectrum were also computed and discussed. Additionally, the chemical stability of monolayer PG and the electronic and optical properties of double-side hydrogenated monolayer PG were also investigated. Furthermore, the results obtained from our calculations are beneficial to practical applications of these exotic carbon allotropes in optoelectronics and electronics.« less

  17. Modeling silica aerogel optical performance by determining its radiative properties

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Yang, Sungwoo; Bhatia, Bikram; Strobach, Elise; Wang, Evelyn N.

    2016-02-01

    Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM). Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation). To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm) of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE). The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel's microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  18. Nonlinear optical and optical limiting properties of graphene oxide dispersion in femtosecond regime

    NASA Astrophysics Data System (ADS)

    Zheng, Zebo; Zhu, Liang; Zhao, Fuli

    2014-08-01

    The third-order nonlinear optical properties of graphene oxide (GO) dispersion in distilled water were investigated in femtosecond regime, using a single beam z-scan technique. Induced by a focused Gaussian beam (λ~800 nm) with 150 fs pulse duration, the graphene oxide shows strong nonlinear absorption, which was dominated by reverse saturable absorption (RSA), originates from two-photon absorption (TPA) in GO. In addition, the optical limiting performance of GO was experimentally derived, indicating that the occurrence of RSA make GO a candidate for optical limiting. In addition, the further increasing of input intensity would enhance the nonlinear scattering effects in the sample so that the optical limiting threshold was reached.

  19. Tunable optical and magneto-optical properties of ferrofluid in the terahertz regime.

    PubMed

    Chen, Sai; Fan, Fei; Chang, Shengjiang; Miao, Yinping; Chen, Meng; Li, Jining; Wang, Xianghui; Lin, Lie

    2014-03-24

    The dielectric property and magneto-optical effects of ferrofluids have been investigated in the terahertz (THz) regime by using THz time-domain spectroscopy. The experiment results show that the refractive index and absorption coefficient of ferrofluid for THz waves rise up with the increase of nanoparticle concentration in the ferrofluid. Moreover, two different THz magneto-optical effects have been found with different external magnetic fields, of which mechanisms have been theoretically explained well by microscopic structure induced refractive index change in the magnetization process and the transverse magneto-optical effect after the saturation magnetization, respectively. This work suggests that ferrofluid is a promising magneto-optical material in the THz regime which has widely potential applications in THz functional devices for THz sensing, modulation, phase retardation, and polarization control. PMID:24663979

  20. Effect of the intramolecular hydrogen bond on the spectral and optical properties in chitosan oligosaccharide

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yang, Mengshi; Shi, Xiao; Chu, Xiuxiang; Chen, Liang; Wu, Qiang; Wang, Yueyue

    2015-05-01

    The geometric structures, hydrogen bond types, IR spectra and nonlinear optical properties of chitosan oligosaccharide (degree of polymerization 2-5) are studied by density-functional theory (DFT) at B3LYP/6-31+G(d) level. We have analyzed the statistics of relationship between IR spectra and bond lengths, and angles of amino, hydroxyl. The results show that: (1) the active groups C3-OH, C6-OH and -NH2 can form intramolecular hydrogen bond in chitosan oligosaccharide; (2) the IR spectra of three active groups have size effect in growth process, however, its IR intensity increases significantly and IR frequencies are red shifted obviously when the active hydroxyl form hydrogen bonds, because the bond length of active hydroxyl becomes longer; (3) the effect of hydrogen bond on intensity and frequency of the three vibration mode of amino is the main factor and complication. The paper also provides the nonlinear optical properties of chitosan oligosaccharide. The reason why hydrogen bond can make an appreciable difference to IR spectra, and the nonlinear optical properties of chitosan oligosaccharide are discussed. This research has important significance in the characterization of chitosan oligosaccharide, the properties of chitosan material and hydrogen bond by infrared spectroscopy.

  1. Optical properties of functional composite silver nanoparticles and their potential use in reproductive medicine

    NASA Astrophysics Data System (ADS)

    Syrvatka, Vasyl J.; Slyvchuk, Yurij I.; Rozgoni, Ivan I.; Gevkan, Ivan I.; Bilyy, Oleksandr I.

    2013-06-01

    Silver nanoparticles are promising product of nanotechnology with attractive physicochemical and biological properties. The main aim of the study was to investigate optical properties of functional silver nanoparticles with different composite agents: polyvinylpyrrolidone, bovine serum albumin, hyaluronan and to explore their potential using in reproductive medicine. The date obtained in the study showed that surface modification of nanoparticles leads to change of their optical, physicochemical and biological properties. The optical properties of silver nanoparticles display, that AgNPs with PVP and BSA is most stable in PBS than AgNPs with HA. However the absorption curves after 120 hours of storage show, that AgNPs-HA were the most stable in ethanol. Results show, that silver nanoparticles did not effect on sperm viability and motility, but cause a changes of some biochemical parameters of conditioned medium, particular increase the concentration of triglycerides, activity of alkaline phosphatase, lactate dehydrogenase and decrease the activity of aspartate aminotransferase and alanine aminotransferase after 3 h of in vitro cultivation at 37°C. According to our latest data AgNPs with HA have a less toxic effect on biological processes in rabbits sperm compared with AgNPs with PVP and BSA. Nevertheless all functional composites of silver nanoparticles at the concentration of 0.1 μg/mL have no toxic effect on spermatozoa and can be successfully applied in reproductive medicine at low concentrations as signal enhancers, optical sensors, and biomarkers.

  2. Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals.

    PubMed

    McVey, Benjamin F P; Tilley, Richard D

    2014-10-21

    Understanding and unlocking the potential of semiconductor nanocrystals (NCs) is important for future applications ranging from biomedical imaging contrast agents to the next generation of solar cells and LEDs. Silicon NCs (Si NCs) have key advantages compared with other semiconductor NCs due to silicon's high natural abundance, low toxicity and strong biocompatibility, and unique size, and surface dependent optical properties. In this Account, we review and discuss the synthesis, surface modification, purification, optical properties, and applications of Si NCs. The synthetic methods used to make Si NCs have improved considerably in the last 5-10 years; highly monodisperse Si NCs can now be produced on the near gram scale. Scaled-up syntheses have allowed scientists to drive further toward the commercial utilization of Si NCs. The synthesis of doped Si NCs, through addition of a simple elemental precursor to a reaction mixture or by the production of a single source precursor, has shown great promise. Doped Si NCs have demonstrated unique or enhanced properties compared with pure Si NCs, for example, magnetism due to the presence of magnetic metals like Fe and Mn. Surface reactions have reached a new level of sophistication where organic (epoxidation and diol formation) and click (thiol based) chemical reactions can be carried out on attached surface molecules. This has led to a wide range of biocompatible functional groups as well as a degree of emission tuneability. The purification of Si NCs has been improved through the use of size separation columns and size selective precipitation. These purification approaches have yielded highly monodisperse and pure Si NCs previously unachieved. This has allowed scientists to study the size and surface dependent properties and toxicity and enabled the use of Si NCs in biomedical applications. The optical properties of Si NCs are complex. Using a combination of characterization techniques, researchers have explored the

  3. Optical and transport properties of dense liquid silica

    SciTech Connect

    Qi, Tingting; Millot, Marius; Kraus, Richard G.; Hamel, Sebastien; Root, Seth

    2015-06-15

    Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequency dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.

  4. Optical properties of the perfectly compensated semimetal WTe2

    NASA Astrophysics Data System (ADS)

    Homes, C. C.; Ali, M. N.; Cava, R. J.

    2015-10-01

    The optical properties of layered tungsten ditelluride have been measured over a wide temperature and frequency range for light polarized in the a-b planes. A striking low-frequency plasma edge develops in the reflectance at low temperature where this material is a perfectly compensated semimetal. The optical conductivity is described using a two-Drude model which treats the electron and hole pockets as separate electronic subsystems. At low temperature, one scattering rate collapses by over two orders of magnitude, while the other also undergoes a significant, but less dramatic, decrease; both scattering rates appear to display the quadratic temperature dependence expected for a Fermi liquid. First principles electronic structure calculations reveal that the low-lying optical excitations are due to direct transitions between the bands associated with the electron and hole pockets.

  5. Lanthanides-clay nanocomposites: Synthesis, characterization and optical properties

    SciTech Connect

    Celedon, Salvador; Quiroz, Carolina; Gonzalez, Guillermo; Sotomayor Torres, Clivia M.; Benavente, Eglantina

    2009-05-06

    Complexes of Europium(III) and Terbium(III) with 2,2-bipyridine and 1,10-phenanthroline were inserted into Na-bentonite by ion exchange reactions at room temperature. The products display interlaminar distances and stoichiometries in agreement with the ion exchange capacity and the interlayer space available in the clay. The optical properties of the intercalates, being qualitatively similar to those of the free complexes, are additionally improved with respect to exchange processes with the medium, especially in a moist environment. The protection again hydrolysis, together with the intensity of the optical transition {sup 5}D{sub 0}-{sup 5}F{sub 2} observed in the nanocomposite, makes these products promising for the development of novel optical materials.

  6. Temperature dependence of optical properties of GaAs

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Snyder, Paul G.; Woollam, John A.

    1991-01-01

    The effect of temperature on the optical properties of GaAs was investigated using spectroscopic ellipsometry measurements, between room temperature and about 610 C in increments of 50 C, of pseudodielectric functions and related optical constants of GaAs. A quantitative analysis of the pseudodielectric function spectrum was carried out using a harmonic-oscillator approximation (HOA) to fit the measured dielectric functions. Good fits were obtained with this model, which provides a convenient means of reproducing the GaAs dielectric function at any temperature, by using the temperature-dependent oscillator parameters. The HOA analysis also provides information about band-gap variation with temperature. Using the measured optical constants at a number of fixed temperatures, an algorithm was developed for computing the dielectric function spectrum at an arbitrary temperature in the range 22-610 C.

  7. Fabricating optical phantoms to simulate skin tissue properties and microvasculatures

    NASA Astrophysics Data System (ADS)

    Sheng, Shuwei; Wu, Qiang; Han, Yilin; Dong, Erbao; Xu, Ronald

    2015-03-01

    This paper introduces novel methods to fabricate optical phantoms that simulate the morphologic, optical, and microvascular characteristics of skin tissue. The multi-layer skin-simulating phantom was fabricated by a light-cured 3D printer that mixed and printed the colorless light-curable ink with the absorption and the scattering ingredients for the designated optical properties. The simulated microvascular network was fabricated by a soft lithography process to embed microchannels in polydimethylsiloxane (PDMS) phantoms. The phantoms also simulated vascular anomalies and hypoxia commonly observed in cancer. A dual-modal multispectral and laser speckle imaging system was used for oxygen and perfusion imaging of the tissue-simulating phantoms. The light-cured 3D printing technique and the soft lithography process may enable freeform fabrication of skin-simulating phantoms that embed microvessels for image and drug delivery applications.

  8. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  9. Mechanical properties of polyimide coated optical fibers at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Dyer, Robert S.; Lago, Ralph J.; Stolov, Andrei A.; Li, Jie

    2016-03-01

    High temperature mechanical strength and reliability of optical fibers have become important subjects as optical fibers are increasingly used for harsher environments. Theories and models of fiber mechanical properties established for traditional telecommunications applications may need to be validated for applications at elevated temperatures. In this paper, we describe the test setup for high temperature tensile strength of fiber and report initial results of dynamic tensile strength of polyimide coated optical fiber at 300 and 350ºC for different heating time intervals. The results are compared with room temperature strength data, data available in the literature, and our earlier work on thermogravimetric analysis (TGA) weight loss of the polyimide coating and the observations on surface morphology at elevated temperatures. Interesting observations are discussed and possible explanations are proposed.

  10. Optical Properties of Alkaline Earth Ions Doped Bismuth Borate Glasses

    SciTech Connect

    Kundu, Virender; Dhiman, R. L.; Maan, A. S.; Goyal, D. R.

    2011-07-15

    The optical properties of glasses with composition xLi{sub 2}O(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x = 0, 5, 10, 15 and 20 mol %, prepared by normal melt quench technique were investigated by means of UV-VIS measurement. It was observed that the optical band gap of the present glass system decreases with increasing Li{sub 2}O content up to 15 mol%, and with further increase in lithium oxide content i.e. x>15 mol% the optical band gap increases. It was also observed that the present glass system behaves as an indirect band gap semiconductor.

  11. Optical and transport properties of dense liquid silica

    NASA Astrophysics Data System (ADS)

    Qi, Tingting; Millot, Marius; Kraus, Richard G.; Root, Seth; Hamel, Sebastien

    2015-06-01

    Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequency dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.

  12. Optical properties of structurally modified glasses doped with gold ions.

    PubMed

    Qiu, Jianrong; Jiang, Xiongwei; Zhu, Congshan; Inouye, Hideyuki; Si, Jinhai; Hirao, Kazuyuki

    2004-02-15

    We report on the optical properties of a structurally modified silicate glass doped with Au ions. The area in the vicinity of the focal point of an 800-nm femtosecond laser in a glass sample became gray as a result of the formation of color centers after laser irradiation and turned red because of precipitation of Au nanoparticles after further annealing at 550 degrees C for 30 min. When the glass was excited by UV light at 365 nm, yellowish-white and orange-yellow emissions were observed in the laser-irradiated and the Au-nanoparticle-precipitated area, respectively. An optical Kerr shutter experiment showed that the Au nanoparticle-precipitated glass had an ultrafast nonlinear optical response, and the third-order nonlinear susceptibility was estimated to be approximately 10(-11) esu. PMID:14971756

  13. Optical properties of structurally modified glasses doped with gold ions

    NASA Astrophysics Data System (ADS)

    Qiu, Jianrong; Jiang, Xiongwei; Zhu, Congshan; Inouye, Hideyuki; Si, Jinhai; Hirao, Kazuyuki

    2004-02-01

    We report on the optical properties of a structurally modified silicate glass doped with Au ions. The area in the vicinity of the focal point of an 800-nm femtosecond laser in a glass sample became gray as a result of the formation of color centers after laser irradiation and turned red because of precipitation of Au nanoparticles after further annealing at 550 °C for 30 min. When the glass was excited by UV light at 365 nm, yellowish-white and orange-yellow emissions were observed in the laser-irradiated and the Au-nanoparticle-precipitated area, respectively. An optical Kerr shutter experiment showed that the Au nanoparticle-precipitated glass had an ultrafast nonlinear optical response, and the third-order nonlinear susceptibility was estimated to be ~10-11 esu.

  14. Optical properties of the perfectly compensated semimetal WTe2

    NASA Astrophysics Data System (ADS)

    Homes, C. C.; Ali, M. N.; Cava, R. J.

    The optical properties of layered tungsten ditelluride have been measured over a wide temperature and frequency range for light polarized in the a-b planes. A striking low-frequency plasma edge develops in the reflectance at low temperature where this material is a perfectly compensated semimetal. The optical conductivity is described using a two-Drude model which treats the electron and hole pockets as separate electronic subsystems. At low temperature, one scattering rate collapses by over two orders of magnitude, while the other also undergoes a significant, but less dramatic, decrease; both scattering rates appear to display the quadratic temperature dependence expected for a Fermi liquid. First principles electronic structure calculations reveal that the low-lying optical excitations are due to direct transitions between the bands associated with the electron and hole pockets. Supported by the Department of Energy under Contract No. DE-SC0012704; Army Research Office, Grant No. W911NF-12-1-0461.

  15. Optical and X-ray Properties of Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    dell'Antonio, I. P.; Geller, M. J.; Fabricant, D.

    1992-12-01

    We study the optical and x-ray properties of 30 groups of galaxies observed with EINSTEIN. We have obtained redshifts for the galaxies in the group fields down to a limiting magnitude M_B<= 15.7. Typically this corresponds to ~ 18 redshifts per group. Our sample contains 14 MKW-AWM clusters, three of which are actually superpositions of two groups. We compare the velocity dispersions and virial masses we derive from the optical data with the x-ray luminosity and structure. We find remarkable correlations between the x-ray structure and optical galaxy positions. The x-ray emission associated with the galaxies is extended even in more distant groups. This emission is probably due to hot gas in the individual galaxy potentials, which implies that the poor clusters of galaxies are dynamically young. This is consistent with results from N-body simulations of group formation.

  16. Polarization ray tracing in anisotropic optically active media

    NASA Technical Reports Server (NTRS)

    Mcclain, Stephen C.; Chipman, Russell A.

    1992-01-01

    Procedures for performing polarization ray tracing through birefringent media are presented in a form compatible with the standard methods of geometric ray tracing. The birefringent materials treated include the following: anisotropic optically active materials such as quartz, non-optically active uniaxial materials such as calcite, and isotropic optically active materials such as mercury sulfide or organic liquids. Refraction and reflection algorithms are presented which compute both ray directions and wave directions. Methods for computing polarization modes, refractive indices, optical path lengths, and Fresnel transmission and reflection coefficients are also specified.

  17. Physical and optical properties of persistent contrails: Climatology and interpretation

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Hironobu; Yang, Ping; Liou, K. N.; Minnis, Patrick

    2012-03-01

    The physical and optical properties of persistent contrails were studied with the measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar. MODIS data were used to determine the contrail locations on the basis of their artificial shapes easily distinguished from natural cirrus, and the so-identified contrails were analyzed with collocated CALIPSO lidar data. Statistics of the geography, geometry, meteorology, and optical properties are reported for approximately 3400 persistent contrails observed over North America, the North Atlantic Ocean, and Europe. The majority of the detected contrails appear in ice-supersaturated air with temperatures lower than -40°C. On average, contrails have significantly larger backscattering coefficients and slightly higher linear depolarization ratios (LDRs) than neighboring cirrus clouds. Depolarization tends to be strong when ice crystals are small, and LDR is approximately 0.4-0.45 for young contrails and contrail cores. The mean LDR for the detected contrails increases with decreasing temperature and is not strongly dependent on the lidar pointing angle. The backscattering properties suggest that contrails are primarily composed of small, randomly oriented ice crystals but may also contain a few horizontally oriented plates. Most contrails are optically thin with a mean (median) optical thickness of approximately 0.19 (0.14); however, optically thicker contrails do exist and tend to occur in warmer and more humid ambient air. The mean value and range of the observed LDR data are consistent with theoretical predictions based on a mixture of nonspherical ice crystals randomly oriented in the atmosphere.

  18. Optical properties of sulfur copolymers for infrared applications

    NASA Astrophysics Data System (ADS)

    Namnabat, Soha; Gabriel, Jared J.; Pyun, Jeffrey; Norwood, Robert A.

    2014-03-01

    The development of organic polymers with high refractive indices has been widely investigated, as a possible alternative to inorganic metal oxide, semiconductor, or chalcogenide-based materials for a variety of optical devices and components, such as waveguides, anti-reflective coatings, charge-coupled devices and fiber optic cables. In principle, organic-based polymers are attractive for these applications because of their low weight, ease of processing, mechanical toughness, and facile chemical variation using commercially available precursors. However, one of the fundamental challenges associated with organic polymers is their generally low refractive indices in comparison to their inorganic counterparts. Herein we report on the optical characterization of a new class of sulfur copolymers that are readily moldable, transparent above 500nm, possess high refractive index (n < 1.8) and take advantage of the low infrared absorption of S‒S bonds for potential use in the mid-infrared at 3-5 microns. These materials are largely made from elemental sulfur by an inverse vulcanization process; in the current study we focus on the properties of a chemically stable, branched copolymer of poly(sulfur-random-1,3-diisopropenylbenzene) (poly(S-r-DIB). Copolymers with elemental sulfur content ranging from 50% to 80% by weight were studied by UV-VIS spectroscopy, FTIR, and prism coupling for refractive index measurement. Clear correlation between material composition and the optical properties was established, confirming that the high polarizability of the sulfur atom leads to high refractive index while also maintaining low optical loss. Applications of the materials for bulk optics, high-density photonic circuits, and infrared components will also be discussed.

  19. Optical properties of Tm 3+ ions in lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Jayasankar, C. K.; Renuka ^Devi, A.

    1996-09-01

    Optical properties of Tm 3+ ions are investigated in the following lithium borate (LBO) glasses: Li 2CO 3 + H 3BO 3 and MCO 3 + Li 2CO 3 + H 3BO 3 (M = Mg, Ca, Sr and Ba). The assigned energy level data of Tm 3+ (4f 12) in these borate glasses as well as the data that are available for some other systems in the literature are analysed in terms of a parametrized Hamiltonian model that includes 14 free-ion parameters. The absorption linestrengths are measured for Tm 3+:LBO glasses. Using these data, intensity parameters (Ω λ, λ = 2, 4, 6), radiative transition probabilities, radiative lifetimes, fluorescence branching ratios and integrated absorption cross-sections for fluorescent levels of Tm 3+:LBO glasses are calculated by applying Judd-Ofelt theory. The effect of glass network formers and glass modifiers on the optical properties of Tm 3+:glasses are discussed.

  20. Using optical tweezers to study mechanical properties of collagen

    NASA Astrophysics Data System (ADS)

    Rezaei, Naghmeh; Downing, Benjamin P. B.; Wieczorek, Andrew; Chan, Clara K. Y.; Welch, Robert Lindsay; Forde, Nancy R.

    2011-08-01

    The mechanical response of biological molecules at the microscopic level contributes significantly to their function. Optical tweezers are instruments that enable scientists to study mechanical properties at microscopic levels. They are based on a highly focused laser beam that creates a trap for microscopic objects such as dielectric spheres, viruses, bacteria, living cells and organelles, and then manipulates them by applying forces in the picoNewton range (a range that is biologically relevant). In this work, mechanical properties of single collagen molecules are studied using optical tweezers. We discuss the challenges of stretching single collagen proteins, whose length is much less than the size of the microspheres used as manipulation handles, and show how instrumental design and biochemistry can be used to overcome these challenges.

  1. Remote sensing of optical properties in continuously stratified waters

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1978-01-01

    The radiative transfer equation is solved by Monte Carlo methods for natural waters in which the optical properties are distributed with depth. It is demonstrated that interpreting the reflectance of a continuously stratified ocean in terms of an equivalent homogeneous ocean yields the average of a particular combination of the water's optical properties over the dimensionless penetration depth. Although in general the dimensionless penetration depth cannot be remotely measured, a method is presented for estimating the actual penetration depth from the remote observations if the medium's absorption coefficient is known, independent of depth, and sufficiently large. The application of this to the remote measurement of the vertical distribution of suspended sediments is discussed in detail.

  2. Research on lunar materials. [optical, chemical, and electrical properties

    NASA Technical Reports Server (NTRS)

    Gold, T.

    1978-01-01

    Abstracts of 14 research reports relating to investigations of lunar samples are presented. The principal topics covered include: (1) optical properties of surface and core samples; (2) chemical composition of the surface layers of lunar grains: Auger electron spectroscopy of lunar soil and ground rock samples; (3) high frequency electrical properties of lunar soil and rock samples and their relevance for the interpretation of lunar radar observations; (4) the electrostatic dust transport process; (5) secondary electron emission characteristics of lunar soil samples and their relevance to the dust transportation process; (6) grain size distribution in surface soil and core samples; and (7) the optical and chemical effects of simulated solar wind (2keV proton and a particle radiation) on lunar material.

  3. Optical properties of transition metal oxide quantum wells

    SciTech Connect

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  4. Alloyed Noble Metal Nanoparticles with Tunable Optical Properties

    NASA Astrophysics Data System (ADS)

    Wessler, Garrett C.; Gong, Chen; Rebello de Sousa Dias, Mariama; Tailon, Joshua A.; Salamanca-Riba, Lourdes G.; Leite, Marina S.

    Noble metal nanoparticles (NPs) have been widely used in sensing, optics, and catalysis applications by taking advantage of surface plasmon resonance (SPR). This response is slightly tuned by varying the size and shape of the NPs; however, a method to obtain truly on-demand plasmonic responses is still lacking due to the intrinsic nature of a metal's dielectric function. Here, we fabricate size and composition controlled metal alloy NP arrays by deposit-and-anneal methods and through-template depositions. We control the composition of the metal NPs by co-sputtering and by alternating electron-beam evaporation of the Ag and Au targets. To characterize the NPs, macroscopic transmission measurements are combined with spectrally dependent near-field scanning optical microscopy to show the local optical properties around the NPs. By varying the atomic fraction of Ag and Au in the alloys, we modulate the optical properties of the NPs for different applications. For example, hot carrier plasmonic devices necessitate high absorption in the visible range, while photovoltaic applications require low absorption by the NPs.

  5. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-01

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  6. Surface structure and the optical properties of black chrome

    NASA Astrophysics Data System (ADS)

    Smith, G. B.; McPhedran, R. C.; Derrick, G. H.

    1985-04-01

    A new optical model is presented for solar-selective black chrome. Surface texture is shown to be the primary factor which gives thin films of black chrome a uniformly high absorptance in the visible and near-infrared regions. Internal composition of the films is a secondary influence on their optical properties. We present results consistent with experimental data obtained from films having widely varying structures and compositions, both before and after heat treatment. Our optical model does not rely on the quasistatic approximation, hitherto universally employed in theoretical studies of solar-selective black chrome. Instead, we use a rigorous diffraction formulation for doubly-periodic surfaces (bigratings). The key parameters of the surface morphology are determined from stereo-pair electronmicrographs, and are used in the bigrating model. We present the predicted variation of spectral absorptance with wavelength, as well as integrated absorptance and thermal emittance, for roughened chromium. We give results both for bare metal, and for the metal conformally overcoated either with a thin layer of Cr2O3 or with a Cr/Cr2O3 cermet. Various shapes of surface features are examined, and surface profile is shown not to be crucial in determining optical properties.

  7. Modelization of the optical and colorimetric properties of lustred ceramics

    NASA Astrophysics Data System (ADS)

    Reillon, V.; Berthier, S.

    2006-05-01

    The lustre decoration is one of the most famous decorations of glazed ceramics in the Mediterranean basin. Unfortunately, the recipes and fabrication techniques used during medieval times have been lost and that is why these objects have been widely studied. But until now, little was known on their optical properties. In this work it is shown that, despite the common belief, the chemical composition of the decoration (copper and/or silver nanoparticles) is not the only relevant parameter in order to explain the optical properties of lustres. By the use of optical characterization and the elaboration of a model - based on the Maxwell Garnett theory and the Abeles matrices theory for interferences -, simulated reflection spectra have been obtained in good agreement with the measured reflection spectra, confirming that the concentration of metal, the size of the metallic nanoparticles as well as the optical index of the glaze play a key-role in order to explain the coloured metallic shine exhibited by the lustres.

  8. Optical characterization of thermal properties of biological tissue

    NASA Astrophysics Data System (ADS)

    Gutierrez-Arroyo, A.; Sánchez Pérez, C.; Alemán-García, N.; Piña-Barba, C.

    2013-11-01

    In this work we utilize heat conduction measurements trough the photothermal beam deflection technique to characterize thermal properties of biological tissue. We design a heat flux sensor based on the phenomenon of photothermal laser beam deflection within a thermo-optic slab (acrylic), where the deflection is quantified by an optical fiber angle sensor. We analytically model the heat flux sensor response based on heat wave propagation theory that well agree with experimental data. We present heat conduction measurements on different tissues applying a heat pulse. Hence we obtain the thermal effusivity coefficient of bovine tendon and chicken liver and heart. It has been shown that thermal conduction depends on the tissués chemical composition as well on their structural arrangements, so any modification in tissue will affect on heat conduction rendering this method potentially useful as an auxiliary in biomedical studies. Nowadays there are several thermal effusivity and diffusivity measurement techniques with classic calorimetry (using thermistors) for research and industrial applications. However there are only few integrated optical devices already proposed, turning this optical technique in an innovative and alternative sensing system for thermal properties characterization.

  9. Far-infrared properties of optically-selected quasars and Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Edelson, R. A.; Malkan, M. A.

    1987-01-01

    Pointed IRAS observations and ground based observations are used to determine the infrared properties of optically selected galaxies and quasars. The use of complete, unbiased, optically selected samples means that statistical tests can be applied to probe the underlying properties of active galactic nuclei (AGNs). The near infrared to millimeter spectral energy distributions (SEDs) were studied of the CfA Seyfert galaxies, a well defined, unbiased sample of 25 Type 1 and 23 Type 2 Seyfert galaxies selected by optical spectroscopy. Data given show strong trends in the infrared SEDs. Strong evidence is also given that the infrared spectra of Seyfert 2 galaxies are dominated by thermal emission from warm dust, while nonthermal emission is more important in the spectra of quasars and luminous Seyfert 1 nuclei.

  10. Magneto-optical properties of Pd-Ni multilayers

    NASA Astrophysics Data System (ADS)

    Flevaris, N. K.

    1991-05-01

    The magneto-optical polar Kerr effect properties of compositionally modulated Pdm-Nin multilayers have been studied, at room temperature, for modulation wavelengths containing just a few monolayers. A perpendicular anisotropy component was observed to develop for very thin Ni layers (n=2 or 1 atomic planes). The rotation values were found to depend strongly on both m and n suggesting a modulation-induced property modification. These results were supported by magnetic studies. Also, they are discussed on the basis of extensive structural and other investigations.

  11. Stability properties of a rotating astigmatic optical cavity

    NASA Astrophysics Data System (ADS)

    Habraken, Steven J. M.; Nienhuis, Gerard

    2009-02-01

    We study the effects of rotation on the stability properties of an astigmatic two-mirror cavity. We show that rotation can both stabilize and destabilize a cavity and investigate the effects of such a rotationally-induced transition on the spatial structure and the orbital angular momentum of the cavity modes. Our method relies on the connection between ray and wave optics and is exact within the time-dependent paraxial approximation.

  12. Optical properties of natural phenols in aqueous media

    NASA Astrophysics Data System (ADS)

    Vusovich, Olga; Sultimova, Natalia; Tchaikovskaya, Olga; Sokolova, Irina; Vasilieva, Nina

    2015-11-01

    Currently, the study of the photochemistry of natural phenols is relevant as it has a fundamental and a practical importance. The optical properties of natural phenols are studied: 3-methoxy-4-hydroxybenzaldehyde (vanillin) and 3- hydroxy-4-methoxybenzaldehyde (isovanillin), 4-hydroxy-3-methoxybenzoic acid (vanillic acid). The processes of proton transfer in the investigated molecules in ground and excited states under exposure to lamp and laser emissions are presented using the methods of electron spectroscopy and quantum chemistry.

  13. Optical measurements of the thermal properties of nanofluids

    NASA Astrophysics Data System (ADS)

    Rusconi, Roberto; Rodari, Erica; Piazza, Roberto

    2006-12-01

    The authors show that the thermal conductivity and diffusivity of colloidal particle dispersions can be rapidly obtained with high accuracy and reproducibility by exploiting a noninvasive, all-optical thermal lensing method. Applications of this technique to model suspensions of spherical monodisperse particles suggest that classical models for the effective properties of composite media hold up to rather high volume fractions, while no "anomalous" thermal conductivity effects are found.

  14. Bidirectional reflectance, leaf optical and physiological properties of prairie vegetation

    NASA Technical Reports Server (NTRS)

    Walter-Shea, E. A.; Blad, B. L.; Starks, P. J; Hays, C. J.; Mesarch, M. A.; Middleton, E. M.

    1990-01-01

    A modular multiband radiometer is used to measure reflected radiation from the vegetative surface of a prairie. The data are compared to estimates of incoming radiation by measuring the reflection from a molded halon panel, and the bidirectional reflectance factors are measured at seven view-zenith angles and various incidence angles. The canopy-reflectance results are compared to leaf-optical and other vegetative physiological properties, and a direct relationship is reported.

  15. Tomography and optical properties of silver nano-inukshuk

    SciTech Connect

    Ghosh, Tanmay; Das, Pabitra; Ghosh, Tapas; Satpati, Biswarup

    2015-06-24

    Following a simple dip-and-rinse galvanic displacement reaction silver nano-inukshuks were prepared directly on germanium surfaces. Morphology, 3-dimensional (3D) structure, chemical composition and optical properties of the silver nanostructurs were investigated using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and cathodoluminescence (CL) spectroscopy. Exact 3D morphology was reconstructed in the by tomography mode of TEM.

  16. Optical Properties of Astronomical Silicates with Infrared Techniques

    NASA Astrophysics Data System (ADS)

    Cataldo, Giuseppe; Rinehart, S. A.; Benford, D.; Dwek, E.; Kinzer, R. E.; Nuth, J.; Silverberg, R.; Wollack, E.

    2011-05-01

    Infrared observations are uniquely able to observe the astrophysical processes deep within dusty regions and to provide key information on the characteristics of the dust itself. This information is critical for learning the role of dust in gas physics, for exploring how dust processing occurs, and for understanding the formation and destruction mechanisms of dust grains. Though relevant astronomical and ground-based observations already exist, the properties of dust at these long wavelengths are poorly known, and since observed spectral features of dust are used to infer characteristics of the surrounding neighborhood, these large uncertainties lead to ambiguity in interpretation. The OPASI-T program addresses the need for high fidelity optical characterization data in the far and mid infrared, aiming at the creation of a unique library of the optical properties of metal-enriched silicate condensates. Such database will cover a wide wavelength range connecting numerical data with laboratory and astronomical spectra in the mid infrared, while providing new data in the unexplored far-infrared and millimeter regime. Both new and established experiments are used to measure the transmission and reflection properties of amorphous silicates across the infrared, which are then analyzed by way of numerical methods in order to determine the variations of their optical constants and complex dielectric function as a function of wavelength. I will present room-temperature measurements of SiO in a KBr matrix from 5 to 25 μm and its optical properties as derived from a least-squares nonlinear fit applied to a mixed approach coupling the Maxwell-Garnett theory, the Lorentz dispersive model for mixtures, and the averaged equation for transmission. This material is based upon work supported by NASA through the ROSES/APRA program. This research was supported by an appointment (Cataldo) at the Goddard Space Flight Center administered by Universities Space Research Association

  17. Synthesis and nonlinear optical properties of a peripherally functionalized hyperbranched polymer by DR1 chromophores.

    PubMed

    Scarpaci, Annabelle; Blart, Errol; Montembault, Véronique; Fontaine, Laurent; Rodriguez, Vincent; Odobel, Fabrice

    2009-08-01

    The first peripheral postfunctionalization of a hyperbranched polyimide by nonlinear optic chromophores (DR1 derivative) was achieved using two different routes. The first one consists in the esterification of the terminal carboxylic acid groups, whereas the second is based on copper-catalyzed Huisgen reaction of the terminal propargylic ester groups. The resulting polymers display good solubility in classical organic solvents and good filmability because thick films can be prepared (up to 2.7 mum). The second-order nonlinear optical properties were measured by SHG at 1064 nm and we show that these hyperbranched polymers exhibit good poling efficiency and good thermal stability since the electro-optic activity remains stable up to 130 degrees C. These results illustrate the potential of hyperbranched polymers to host second-order nonlinear optical chromophores to replace dendrimers or classical linear polymers generally used in this area. PMID:20355797

  18. Tuning band gap and optical properties of SnX2 nanosheets: Hybrid functional studies

    NASA Astrophysics Data System (ADS)

    Guo, P.; Luo, Y. W.; Jia, Y.

    2016-04-01

    Based on hybrid functional calculations, the electronic structures and optical properties are investigated in the monolayer and bilayer tin dichalcogenides SnX2 (X = S and Se) nanosheets. Numerical results show that quantum size effects are obvious on the electronic structures and optical absorption in the SnS2 and SnSe2 nanosheets. The band gap values increase when the nanosheets layer numbers decrease. Moreover, for SnSe2 nanosheet, the optical absorption coefficients are high and its threshold values lie in the visible light activity range. These results are interesting and indicate that SnS2 and SnSe2 nanosheets may serve as the promising candidates for visible optical applications.

  19. Active Learning Environment with Lenses in Geometric Optics

    ERIC Educational Resources Information Center

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  20. Determination of optical properties of oxidative bleaching human dental tissue samples using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ni, Y. R.; Guo, Z. Y.; Shu, S. Y.; Zeng, C. C.; Zhong, H. Q.; Chen, B. L.; Liu, Z. M.; Bao, Y.

    2011-10-01

    Oxidative bleaching changes of human teeth induced changes in the optical properties of dental tissue. We introduced 1310 nm wavelengths of optical coherence tomography (OCT) attenuation coefficient method which is a relatively novel and rarely reported methodology to measure the correlation coefficient during the teeth oxidative bleaching procedure. And the quantitative parameters of enamel optical thickness and disruption of the entrance signal (DES) were extracted from the OCT images. The attenuation coefficient of the bleached tissue is 6.2 mm-1 which is significant (p < 0.001) higher than that unbleached sample is 1.4 mm-1. But attenuation coefficient varied significantly (p < 0.001) between 5.9 and 1.5 mm-1 in dentine which is downtrend. Furthermore, the persistence of bleaching oxidation in 35% hydrogen peroxide-induced optical thickness of enamel is similar with unbleached tissue which may indicate the refractive index of enamel is unchanged. Moreover, disruption of the entrance signal (DES) analysis showed that remarkable difference was appeared at enamel surface. The results indicate that optical properties of oxidative bleaching human dental tissue can be determined by attenuation coefficient using OCT system.

  1. Automated mineral identification algorithm using optical properties of crystals

    NASA Astrophysics Data System (ADS)

    Aligholi, Saeed; Khajavi, Reza; Razmara, Morteza

    2015-12-01

    A method has been developed to automatically characterize the type of mineral phases by means of digital image analysis using optical properties of crystals. The method relies on microscope automation, digital image acquisition, image processing and analysis. Two hundred series of digital images were taken from 45 standard thin sections using a digital camera mounted on a conventional microscope and then transmitted to a computer. CIELab color space is selected for the processing, in order to effectively employ its well-defined color difference metric for introducing appropriate color-based feature. Seven basic optical properties of minerals (A. color; B. pleochroism; C. interference color; D. birefringence; E. opacity; F. isotropy; G. extinction angle) are redefined. The Local Binary Pattern (LBP) operator and modeling texture is integrated in the Mineral Identification (MI) scheme to identify homogeneous regions in microscopic images of minerals. The accuracy of mineral identification using the method was %99, %98, %96 and %95 for biotite, hornblende, quartz and calcite minerals, respectively. The method is applicable to other minerals and phases for which individual optical properties of crystals do not provide enough discrimination between the relevant phases. On the basis of this research, it can be concluded that if the CIELab color space and the local binary pattern (LBP) are applied, it is possible to recognize the mineral samples with the accuracy of more than 98%.

  2. Preparation and optical property of anatase hollow microsphere with mesoporosity

    SciTech Connect

    Li Guohua Zhu Jingtao; Tian Wei; Ma Chunan

    2009-02-04

    Anatase hollow sphere with mesoporosity was prepared by sol pyrogenation used TiCl{sub 4} as precursor only. The samples were characterized by X-ray diffraction and scan electron microscopy, their specific surface area was measured by N{sub 2} adsorption. The results show that the sample calcined at 500 deg. C for 2 h is phase pure anatase, the morphology of the particle of the sample is hollow sphere, and the wall of the hollow sphere is constituted of anatase nanoparticle and mesoporosity. The crystallinity, the crystal size, the pore width, the specific surface area and the crystal phase of the sample are changing along with the calcined temperature. The optical property was measured by ultraviolet radiation vis absorption spectra of the suspension of the samples. The results show that the optical property of the sample is better than that of nanoanatase particle, and the optical property of hollow sphere titania with mesoporosity is related to its crystal phase, specific surface area, crystal size, porosity size and crystallinity.

  3. Optical properties of dielectric thin films including quantum dots

    NASA Astrophysics Data System (ADS)

    Flory, F.; Chen, Y. J.; Lee, C. C.; Escoubas, L.; Simon, J. J.; Torchio, P.; Le Rouzo, J.; Vedraine, S.; Derbal-Habak, Hassina; Ackermann, Jorg; Shupyk, Ivan; Didane, Yahia

    2010-08-01

    Depending on the minimum size of their micro/nano structure, thin films can exhibit very different behaviors and optical properties. From optical waveguides down to artificial anisotropy, through diffractive optics and photonic crystals, the application changes when decreasing the minimum feature size. Rigorous electromagnetic theory can be used to model most of the components but when the size is of a few nanometers, quantum theory has also to be used. These materials including quantum structures are of particular interest for other applications, in particular for solar cells, because of their luminescent and electronic properties. We show that the properties of electrons in multiple quantum wells can be easily modeled with a formalism similar to that used for multilayer waveguides. The effects of different parameters, in particular coupling between wells and well thickness dispersion, on possible discrete energy levels or energy band of electrons and on electron wave functions is given. When such quantum confinement appears the spectral absorption and the extinction coefficient dispersion with wavelength is modified. The dispersion of the real part of the refractive index can then be deduced from the Kramers- Krönig relations. Associated with homogenization theory this approach gives a new model of refractive index for thin films including quantum dots. Absorption spectra of samples composed of ZnO quantum dots in PMMA layers are in preparation are given.

  4. Asteroid surface processes: Experimental studies of the solar wind on reflectance and optical properties of asteroids

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy-Ann

    1991-01-01

    The effect of the solar wind on the optical properties of meteorites was studied to determine whether the solar wind can alter the properties of ordinary chondrite parent bodies resulting in the spectral properties of S-type asteroids. The existing database of optical properties of asteroids was analyzed to determine the effect of solar wind in altering asteroid surface properties.

  5. Monitoring transformer oil insulation using optical absorption properties

    NASA Astrophysics Data System (ADS)

    Rose, Benjamin P.

    As the electrical power distribution system ages, new methods of determining the quality of electrical transformer units are needed. Due to the relatively high expense of loss of service and safety hazards, a relatively cheap sensor to track the age of the insulation would aide in the progress of an intelligent power grid. The degradation of solid insulating paper releases some of the age indicating organic compounds into the oil. At present, the only available method to determine the concentration of those compounds is to perform high performance liquid chromatography (HPLC) testing in a laboratory. This is an expensive and time consuming activity that also requires transformer to be taken offline. Currently there are no sensors that can directly (on-line) measure the chemical integrity of the material. This research was focused upon one of the well known organic compounds released by paper into the transformer oil - 2-furfuraldehyde (2FAL). Previous methods of 2FAL detection were explored and expounded upon. A device was constructed to utilize light emitting diodes to optically interrogate solid discs made out of chemically active material in multiple tests. A 10 kVA distribution transformer was fitted with a special device allowing a continuous oil circulation and the optical setup. The transformer was tested while being loaded under accelerated ageing conditions. A premature failure of the distribution transformer did not allow any correlation between concentration of 2FAL and the optical signals. Previously sampled oils for a current transformer (CT) were also tested for chemical analysis in the laboratory and optical signals from the newly developed optical device were obtained. A 95% linear correlation was found between the age of the CT oil and the output of the optical device. Although the technique was validated and does seem to have merit, more tests are needed before the optical device can be recommended for use in the field.

  6. Multiwavelength optical properties of compact dust aggregates in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Min, M.; Rab, Ch.; Woitke, P.; Dominik, C.; Ménard, F.

    2016-01-01

    Context. In protoplanetary disks micron-size dust grains coagulate to form larger structures with complex shapes and compositions. The coagulation process changes the absorption and scattering properties of particles in the disk in significant ways. To properly interpret observations of protoplanetary disks and to place these observations in the context of the first steps of planet formation, it is crucial to understand the optical properties of these complex structures. Aims: We derive the optical properties of dust aggregates using detailed computations of aggregate structures and compare these computationally demanding results with approximate methods that are cheaper to compute in practice. In this way we wish to understand the merits and problems of approximate methods and define the context in which they can or cannot be used to analyze observations of objects where significant grain growth is taking place. Methods: For the detailed computations we used the discrete dipole approximation (DDA), a method able to compute the interaction of light with a complexly shaped, inhomogeneous particle. We compared the results to those obtained using spherical and irregular, homogeneous and inhomogeneous particles. Results: While no approximate method properly reproduces all characteristics of large dust aggregates, the thermal properties of dust can be analyzed using irregularly shaped, porous, inhomogeneous grains. The asymmetry of the scattering phase function is a good indicator of aggregate size, while the degree of polarization is probably determined by the size of the constituent particles. Optical properties derived from aggregates significantly differ from the most frequently used standard ("astronomical silicate" in spherical grains). We outline a computationally fast and relatively accurate method that can be used for a multiwavelength analysis of aggregate dust in protoplanetary disks.

  7. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Volume 4; Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols; Revised

    NASA Technical Reports Server (NTRS)

    Mueller, J. L. (Editor); Fargion, Giuletta S. (Editor); McClain, Charles R. (Editor); Pegau, Scott; Zaneveld, J. Ronald V.; Mitchell, B. Gregg; Kahru, Mati; Wieland, John; Stramska, Malgorzat

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 (Mueller and Fargion 2002, Volumes 1 and 2) is entirely superseded by the six volumes of Revision 4 listed above.

  8. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols

    NASA Technical Reports Server (NTRS)

    Mueller, J. L.; Fargion, G. S.; McClain, C. R. (Editor); Pegau, S.; Zanefeld, J. R. V.; Mitchell, B. G.; Kahru, M.; Wieland, J.; Stramska, M.

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparision and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background, and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 is entirely superseded by the six volumes of Revision 4 listed above.

  9. Control of the optical and crystalline properties of TiO{sub 2} in visible-light active TiO{sub 2}/TiN bi-layer thin-film stacks

    SciTech Connect

    Smith, Wilson; Fakhouri, Houssam; Pulpytel, Jerome; Arefi-Khonsari, Farzaneh

    2012-01-15

    Multi-layered thin films of TiO{sub 2} and TiN were created by rf reactive magnetron sputtering, and their crystalline, optical, and photoelectrochemical properties were measured. The overall composition of the films (TiO{sub 2}-to-TiN ratio) was kept constant with the height of each film. The number of layers and thickness of each layer was controlled to create bi-layer thin films that were composed of: 9 bi-layers, 18 bi-layers, 27 bi-layers, 36 bi-layers, and 45 bi-layers. XRD patterns were observed for each film after annealing to measure the grain size and composition of anatase and rutile as a function of temperature. It was found that the phase-transition temperature is able to be substantially controlled (between 550 deg. C and 850 deg. C) for the anatase to rutile transition by varying the number of layers/thickness of each layer. In addition, bi-layer stacking significantly affected the film's optical properties by lowering the bandgap into the visible-light region, and also showed up to three times the improvement in photoelectrochemical performance under uv and visible irradiation. Overall, bi-layer stacking of TiO{sub 2}/TiN films has shown a unique and highly desirable control over several important physical characteristics that can be beneficial for many applications, such as high-temperature sensors and optoelectronic devices.

  10. Optical Properties of Snow and Sea-ice, Barrow Alaska

    NASA Astrophysics Data System (ADS)

    Reay, H. J.; France, J. L.; King, M. D.

    2009-12-01

    Sunlit snowpacks and sea-ice produce a flux of chemicals from the snow or ice to the atmosphere. The chemical flux (1) changes the oxidising capacity of the atmosphere above the snowpack (2) alters chemical concentrations in snow, via reaction with photo-generated hydroxyl radicals. Photochemistry in snow and ice affect concentration chemicals in ice cores which are used to infer past (and therefore future) climates. Impurities in snow changes the optical absorption properties of the snowpack and thus the efficiency with which they melt as highlighted by the IPCC. Measurements of the solar irradiance in the snow and above the snow were undertaken as part of the OASIS 2009 campaign Barrow, Alaska. A model has been used to compute the amount of chemistry driven by this sunlight in and above the snow and to calculate fluxes of NO, NO2 from the snow and depth integrated hydroxyl radical production rate. The values can be compared to measurements of these gases at Barrow as part of the large OASIS field campaign. We have studied the optical properties of different Arctic snowpacks at UV-visible wavelength (350-700nm) by measuring the e-folding depth and albedos of many windpacks. Optically the snowpacks can be classified into four main snowpack types: snow on sea-ice, snow inland, soft and hard windpack. The albedo was measured using nadir reflectance and the e-folding depth was measured by recording the diffuse irradiance using fibre optic probes inserted into the snow at known depths. Using the TUV-Snow radiative transfer model we have determined the optical variables for scattering and absorption. We have produce absorption spectra of the impurities in the snowpack demonstrating a combination of black carbon and humic-like material (fig1). Fig 1. Absorption spectrum of inland snow

  11. Morphology dependence of the optical properties of DALM related materials[Diazoluminomelanin

    SciTech Connect

    Wagner-Brown, K.B.; Ferris, K.F.; Kiel, J.L.; Albanese, R.A.

    1998-07-01

    Diazoluminomelanin (DALM) is an electroluminescent polymer which has shown significant optical activity in response to perturbing fields. The current model for this process features optical excitation of a polymer backbone containing conducting conjugation, with subsequent energy transfer to a luminescent group. In this paper the authors have performed electronic structure calculations using the AM1 Hamiltonian with configuration interaction to estimate the electronic properties of two potential models for the DALM backbone. Contrary to the conventional picture of conjugation, the phenyl groups in the DALM backbone show significant twist angles (42--55{degree}) depending on substitutional group, resulting in localized electronic excitations.

  12. Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system

    NASA Astrophysics Data System (ADS)

    Wagner, Sasha; Jaffe, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-11-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman’s rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands.

  13. Associations Between the Molecular and Optical Properties of Dissolved Organic Matter in the Florida Everglades, a Model Coastal Wetland System

    PubMed Central

    Wagner, Sasha; Jaffé, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-01-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source, and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial, and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275−295, S350−400, SR, FI, freshness index, and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman's rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance, and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands. PMID:26636070

  14. Associations Between the Molecular and Optical Properties of Dissolved Organic Matter in the Florida Everglades, a Model Coastal Wetland System.

    PubMed

    Wagner, Sasha; Jaffé, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-01-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source, and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial, and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index, and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman's rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance, and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands. PMID:26636070

  15. Bio-optical properties of oceanic waters: A reappraisal

    NASA Astrophysics Data System (ADS)

    Morel, André; Maritorena, StéPhane

    2001-04-01

    The apparent optical properties (AOPs) of oceanic case 1 waters were previously analyzed [Morel, 1988] and statistically related to the chlorophyll concentration ([Chl]) used as a global index describing the trophic conditions of water bodies. From these empirical relationships a bio-optical model of the upper layer was developed. With objectives and structure similar to those of the previous study the present reappraisal utilizes AOPs determined during recent Joint Global Ocean Flux Study cruises, namely, spectral attenuation for downward irradiance Kd(λ) and irradiance reflectance R(λ). This revision also benefits from improved knowledge of inherent optical properties (IOPs), namely, pure water absorption coefficients and particle scattering and absorption coefficients, and from better pigment quantification (via a systematic use of high-performance liquid chromatography). Nonlinear trends, already observed between optical properties and algal biomass, are fully confirmed, yet with numerical differences. The previous Kd(λ) model, and subsequently the R(λ) model, is modified to account for these new relationships. The R(λ) values predicted as a function of [Chl] and the predicted ratios of reflectances at two wavelengths, which are commonly used in ocean color algorithms, compare well with field values (not used when developing the reflectance model). This good agreement means that semianalytical ocean color algorithms can be successfully applied to satellite data. Going further into purely analytical approaches, ideally based on radiative transfer computations combined with a suite of relationships between the IOPs and [Chl], remains presently problematic, especially because of the insufficient knowledge of the phase function and backscattering efficiency of oceanic particles.

  16. Retrieval of Aerosol Optical Properties under Thin Cirrus from MODIS

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Sayer, Andrew Mark.

    2014-01-01

    Retrieval of aerosol optical properties using shortwave bands from passive satellite sensors, such as MODIS, is typically limited to cloud-free areas. However, if the clouds are thin enough (i.e. thin cirrus) such that the satellite-observed reflectance contains signals under the cirrus layer, and if the optical properties of this cirrus layer are known, the TOA reflectance can be corrected for the cirrus layer to be used for retrieving aerosol optical properties. To this end, we first correct the TOA reflectances in the aerosol bands (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 micron for ocean algorithm and 0.412, 0.47, and 0.65 micron for deep blue algorithm) for the effects of thin cirrus using 1.38 micron reflectance and conversion factors that convert cirrus reflectance in 1.38 micron band to those in aerosol bands. It was found that the conversion factors can be calculated by using relationships between reflectances in 1.38 micron band and minimum reflectances in the aerosol bands (Gao et al., 2002). Refer to the example in the figure. Then, the cirrus-corrected reflectance can be calculated by subtracting the cirrus reflectance from the TOA reflectance in the optically thin case. A sensitivity study suggested that cloudy-sky TOA reflectances can be calculated with small errors in the form of simple linear addition of cirrus-only reflectances and clear-sky reflectances. In this study, we correct the cirrus signals up to TOA reflectance at 1.38 micron of 0.05 where the simple linear addition is valid without extensive radiative transfer simulations. When each scene passes the set of tests shown in the flowchart, the scene is corrected for cirrus contamination and passed into aerosol retrieval algorithms.

  17. Nonlinear optical properties of the active medium in intracavity phase conjugation of the radiation of a pulsed electron-beam-controlled discharge CO{sub 2} laser. I. Experiments

    SciTech Connect

    Galushkin, M G; Mitin, Konstantin V; Ionin, Andrei A; Kotkov, A A; Seleznev, L V

    1998-08-31

    An experimental investigation was made of phase conjugation in the course of intracavity degenerate four-wave mixing of radiation in the active medium of a pulsed electron-beam-controlled discharge CO{sub 2} laser generating long pulses. An analysis was carried out of the dependences of the energy and temporal characteristics of a phase-conjugated signal on the specific input energy deposited in the electron-beam-controlled discharge, on the Q-factor of the laser cavity, on the composition and pressure of the laser-active mixture, on the angle of interaction and optical delay between the probe and reference waves, on the ratio of the intensities of these two waves, and on the polarisation and spectral composition of laser radiation. The energy reflection coefficient of the phase-conjugated signal increased with increase in the input energy and with reduction in the probe wave intensity. An increase in the proportion of nitrogen and a reduction in the proportion of helium in the laser-active mixture increased the reflection coefficient and gave rise to a specific profile of the phase-conjugated signal with two maxima, attributed to amplitude and phase nonlinearities of the active medium. An increase in the specific input energy and of the cavity Q-factor reduced the response time of the phase-conjugate signal. (nonlinear optical phenomena and devices)

  18. Nonlinear optical properties of methyl red under CW irradiation

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Ye, Qing; Wang, Chen; Wang, Jin; Deng, Zhichao; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo

    2015-12-01

    Organic materials have wide potential application in nonlinear optical devices. The nonlinear optical (NLO) properties of methyl red (MR) doped polymethyl methacrylate (MR-PMMA) are investigated under CW laser irradiation at 473 nm, 532 nm and 632.8 nm, respectively. By combining Kramers-Kronig (K-K) relation and CW Z-scan technique, the effective refractive index n2 and the change of refractive index Δn are obtained under different scanning speed at 473 nm and 532 nm. Δn is positive at 473 nm, while Δn is negative at 532 nm. The experimental result is consistent with that of K-K relation. With the scanning speed decreasing, the NLO properties of MR-PMMA are enhanced. With different laser powers at 632.8 nm, MR-PMMA has only nonlinear absorption rather than nonlinear refraction. Meanwhile, the sample is investigated under pulse laser irradiation at 532 nm. Through the comparison of results of CW Z-scan and pulse Z-scan, the influence of the cumulative thermal effect on NLO properties of material is investigated. The results indicate that, under CW irradiation near the absorption peak wavelength, the cumulative thermal effect has great influence to the NLO properties of MR-PMMA.

  19. The Radiative Properties and Optical Constants of Liquid Metals

    NASA Astrophysics Data System (ADS)

    Havstad, Mark Alan

    1991-02-01

    Measurements of the optical constants and thermal radiative properties of three metals; tungsten (in the solid phase) and uranium and aluminum (both in the liquid phase) have been made using a new instrument which includes two independent optical systems and surface control and analysis capability. The two optical systems, one for measuring the complex index of refraction by ellipsometry, the other for measuring the normal spectral emissivity by direct comparison to an integral blackbody cavity, operate over the wavelength range 0.4 to 10mum with sample temperatures between 940 and 1630 K. The surface science capabilities of the instrument permit the preparation of high purity samples of known composition in-situ. The device includes two 5 KeV argon ion sputter guns, an ultra-high vacuum pumping system and an Auger spectrometer. The ellipsometric optical system uses a novel radiation source (a carbon composite filament), refractive optics (CaF_2) and both calcite and wire grid polarizers to cover the wavelength range. The system for measuring the normal spectral emissivity uses reflective optics and an integral blackbody cavity located in the wall of the crucible holding the liquid sample. The two measurement techniques allow independent determinations of normal spectral emissivity, and thus allow unbiased estimation of errors. The sensitivity of six techniques for determining the complex index of refraction of molten metals (including the ellipsometric method used here) is analyzed over the wavelength range of interest. It is shown that only methods measuring both the phase shift and the amplitude attenuation upon reflection provide adequate accuracy over the full spectral range of interest. For tungsten, the measurement made using the two optical systems agreed well with each other and with previously published works. For aluminum, only the ellipsometric technique was employed, because the vapor pressure of aluminum prevented attaining sample temperatures high

  20. Optical Properties of Doped Cuprates and Related Materials

    NASA Astrophysics Data System (ADS)

    Yoon, Young-Duck

    1995-01-01

    The optical properties of cuprates, rm Nd_{2-it x}Ce_{it x}CuO_4 and rm La_ {2-it x}Sr_{it x}CuO _4, and the related materials, rm Ba_{1-it x}K_{it x}BiO_3 (BKBO) and rm BaPb_{1-it x}Bi_{1- it x}O_3 (BPBO), have been extensively investigated by doping- and temperature-dependent reflectance measurement of single crystal samples in the frequency range between 30 cm^{-1} (4 meV) and 40 000 cm^{-1} (5 eV). The rm Nd_{2-it x}Ce_{it x}CuO_4 system has been studied at Ce compositions in the range 0 <=q x <=q 0.2. rm La_{2-it x}Sr_{it x}CuO_4 has been studied in the spin glass doping regime, (x <=q 0.04). The two bismuthates have been investigated as superconducting materials with the maximum T_{c} . Our results for rm Nd_{2 -it x}Ce_{it x}CuO_4 show that doping with electrons induces a transfer of spectral weight from the high energy side above the charge transfer excitation band to the low energy side below 1.2 eV, similar to the results observed in hole-doped rm La_{2-it x}Sr_ {it x}CuO_4. However, the low frequency spectral weight grows slightly faster than 2x with doping x, as expected for the Mott-Hubbard model. We find very interesting results at low doping levels in rm La_{2-it x }Sr_{it x}CuO_4. Upon Sr doping the oscillator strength of the phonons is gradually reduced and doping induced modes (Raman modes and carrier-lattice interaction mode) appear in the far -infrared. We also find that the deformation potential by the dynamical tilting of CuO_6 octahedra induces a carrier-lattice interaction. The carrier -lattice interaction is characterized by strong infrared active modes and an appearance of the strong A _{g} Raman modes upon cooling. Finally, we present the normal and the superconducting properties of Bi-O superconductors. We conclude that the BKBO system is a weak- or moderate-coupling BCS-type superconductor in the dirty limit.

  1. Optical properties of fly ash. Volume 1, Final report

    SciTech Connect

    Self, S.A.

    1994-12-01

    Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal. Volume 1 contains the dissertation of Ghosal which covers the characterization of fly ash and the measurements of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.

  2. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  3. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  4. The Optical Properties of Liquid Selenium-Tellurium Alloys

    NASA Astrophysics Data System (ADS)

    Silva, Larry Allen

    Techniques have been developed to prepare films of liquid semiconductors with sub-micrometer thicknesses. This makes it possible to determine the complex dielectric function at photon energies where interband transitions take place using information about both the transmissivity and reflectivity of the liquid, and provides a more direct probe of the electronic structure than an analysis of the reflectivity properties alone. Optical measurements have been performed on the liquid system Se_{rm x} Te_{rm 1-x} in composition steps of 20 atomic percent, and at temperatures from the melting point to 500^circ C. In this range of temperatures the optical absorption data for the liquids containing 0-80% Te show the presence of an optical band gap; these liquids are semiconductors. Possible forms for the density of electron states at the valence and conduction band edges have been derived using the non -direct transition model for optical absorption. Evidence for the onset of a transition from semiconducting to metal-like properties first appears in the Se _{20}Te_{80 } data at the highest measured temperatures. The data for liquid Te clearly show semimetallic properties: the reflectivity is large at far-infrared photon energies, decreasing at higher energies, and the absorption coefficient data extrapolate to a negative band gap energy. The complex dielectric function of liquid Te has been separated into interband and intraband components using the Drude model to determine the optical properties of the free charge carriers (holes). The energy dependence of the interband component of the data was found to be consistent with the preservation of 2-fold bonding across the semiconductor -semimetal transition. Data for the absorption coefficient at photon energies below the band gap of the Se-rich liquids have also been measured. The absorption edge of pure Se varies exponentially with photon energy. The behavior of the edge in the alloys is similar to that of Se, but a non

  5. Investigation of Optical Properties of Zinc Oxide Photodetector

    NASA Astrophysics Data System (ADS)

    Chism, Tyler

    UV photodetection devices have many important applications for uses in biological detection, gas sensing, weaponry detection, fire detection, chemical analysis, and many others. Today's photodetectors often utilize semiconductors such as GaAs to achieve high responsivity and sensitivity. Zinc oxide, unlike many other semiconductors, is cheap, abundant, non-toxic, and easy to grow different morphologies at the micro and nano scale. With the proliferation of these devices also comes the impending need to further study optics and photonics in relation to phononics and plasmonics, and the general principles underlying the interaction of photons with solid state matter and, specifically, semiconductors. For this research a metal-semiconductor-metal UV photodetector has been fabricated by using a quartz substrate on top of which was deposited micropatterned gold in an interdigitated electrode design. On this, sparsely coated zinc oxide nano trees were hydrothermally grown. The UV photodetection device showed promise for detection applications, especially because zinc oxide is also very thermally stable, a quality which is highly sought after in today's UV photodetectors. Furthermore, the newly synthesized photodetector was used to investigate optical properties and how they respond to different stimuli. It was discovered that the photons transmitted through the sparsely coated zinc oxide nano trees decreased as the voltage across the device increased. This research is aimed at better understanding photons interaction with matter and also to open the door for new devices with tunable optical properties such as transmission.

  6. Cirrus Cloud Optical and Microphysical Property Measurements with Raman Lidar

    NASA Astrophysics Data System (ADS)

    Demoz, B.; Wang, Z.; Whiteman, D.

    2006-12-01

    To improve our understanding of the impact of cirrus clouds on the current and future climate, improved knowledge of cirrus cloud optical and microphysical properties is needed. However, long-term studies of the problem indicate that accurate cirrus cloud measurements are challenging, especially in the low ice water content regime most frequent in the tropical cirrus layers. Recent advances in Raman lidar techniques have demonstrated that Raman lidar is an excellent tool to provide reliable cirrus cloud optical and microphysical properties, which are important to study cirrus clouds as well as to validate satellite cirrus cloud measurements. Based on elastic and nitrogen Raman signals, cirrus cloud optical depth and extinction to backscatter ratio can be quantified. By utilizing the Raman scattered intensities from ice crystals, a new method to remotely sense cirrus ice water content and general effective radius profiles has been demonstrated with NASA/GSFC Scanning Raman Lidar (SRL) measurements. Since the intensity of Raman scattering is fundamentally proportional to the number of molecules involved, this method provides a more direct way of measuring the ice water content compared with other schemes. Based on the SRL measurements, these Raman lidar capabilities will be illustrated.

  7. Optical properties of X-rays--dynamical diffraction.

    PubMed

    Authier, André

    2012-01-01

    The first attempts at measuring the optical properties of X-rays such as refraction, reflection and diffraction are described. The main ideas forming the basis of Ewald's thesis in 1912 are then summarized. The first extension of Ewald's thesis to the X-ray case is the introduction of the reciprocal lattice. In the next step, the principles of the three versions of the dynamical theory of diffraction, by Darwin, Ewald and Laue, are given. It is shown how the comparison of the dynamical and geometrical theories of diffraction led Darwin to propose his extinction theory. The main optical properties of X-ray wavefields at the Bragg incidence are then reviewed: Pendellösung, shift of the Bragg peak, fine structure of Kossel lines, standing waves, anomalous absorption, paths of wavefields inside the crystal, Borrmann fan and double refraction. Lastly, some of the modern applications of the dynamical theory are briefly outlined: X-ray topography, location of adsorbed atoms at crystal surfaces, optical devices for synchrotron radiation and X-ray interferometry. PMID:22186282

  8. Evaluation of tissue optical properties from light distribution images

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Lun; Chang, Ming; Hsieh, Jui-Hsiang; Yang, Yi-Fong; Chou, Yi-Sheong

    2000-06-01

    Images of light distribution in biological soft tissue we used to study the optical characteristics of tissue. The light distribution image was taken under a microscope with light injected through a pinhole close to the edge of the top surface. Images taken on skin, fat, and muscle tissues were compared to study the effect of cellular structure and temperature on the light intensity distribution. Monte Carlo simulation with the same conditions was also performed to simulate the light intensity distribution in tissue for comparison. The anisotropy scattering of light in tissue is affected by the tissue microscopic structure, such as the direction of muscle tissue fibers. The change in optical properties of fat and muscle tissue with temperature was observed. The two-dimensional light distribution images offer more information than general reflectance and transmission measurements. By matching the simulated light intensity distribution with the light distribution image, the optical properties of biological tissue could be estimated. This method might be applied in tissue engineering as an economic way for evaluating the microscopic structure of tissue.

  9. Quantitation and mapping of tissue optical properties using modulated imaging.

    PubMed

    Cuccia, David J; Bevilacqua, Frederic; Durkin, Anthony J; Ayers, Frederick R; Tromberg, Bruce J

    2009-01-01

    We describe the development of a rapid, noncontact imaging method, modulated imaging (MI), for quantitative, wide-field characterization of optical absorption and scattering properties of turbid media. MI utilizes principles of frequency-domain sampling and model-based analysis of the spatial modulation transfer function (s-MTF). We present and compare analytic diffusion and probabilistic Monte Carlo models of diffuse reflectance in the spatial frequency domain. Next, we perform MI measurements on tissue-simulating phantoms exhibiting a wide range of l values (0.5 mm to 3 mm) and (micro(s) (')micro(a)) ratios (8 to 500), reporting an overall accuracy of approximately 6% and 3% in absorption and reduced scattering parameters, respectively. Sampling of only two spatial frequencies, achieved with only three camera images, is found to be sufficient for accurate determination of the optical properties. We then perform MI measurements in an in vivo tissue system, demonstrating spatial mapping of the absorption and scattering optical contrast in a human forearm and dynamic measurements of a forearm during venous occlusion. Last, metrics of spatial resolution are assessed through both simulations and measurements of spatially heterogeneous phantoms. PMID:19405742

  10. Determination of inherent optical properties of Lake Ontario coastal waters.

    PubMed

    Bukata, R P; Jerome, J H; Bruton, J E; Jain, S C

    1979-12-01

    Two optical models (one based upon Monte Carlo simulations of the solutions of the radiative transfer equations and one based upon exponential/quasi-single scattering simulations) relating the apparent and inherent optical properties of natural water masses are utilized in conjunction with directly measured values of the irradiance attenuation coefficient K(0), the diffuse reflectance R(0), and the total attenuation coefficient c to determine the inherent optical properties of Lake Ontario coastal waters. Tables are presented displaying the calculated values of scattering albedo omega(0), forwardscattering probability F, backscattering probability B, absorption coefficient a, and scattering coefficient b as a function of wavelength. From the tables of calculated values, it is shown that both F and b display a spectral invariance, while omega(0) displays distinct spectral variations, the spectral variations apparent in the measured values of c may be attributable to spectral variations in a, and B displays a spectral change that varies inversely with the spectral change in a and c. The volume scattering phase function beta(theta) appears to be altered by the absorption characteristics of the water mass, contrary to the generally accepted premise that absorption and particulate backscattering are independent processes. PMID:20216727

  11. Estimation of inherent optical properties from CZMIL lidar

    NASA Astrophysics Data System (ADS)

    Kim, Minsu; Feygels, Viktor; Kopilevich, Yuri; Park, Joong Yong

    2014-11-01

    Bathymetric lidar has been widely used for ocean floor mapping. By identifying two distinctive return peaks, one from the water surface and the other from the bottom, the water depth can be estimated. In addition to bathymetry, it is also possible to estimate the optical properties of the water by analyzing the lidar return waveform. Only the few systems (e.g. Optech's SHOALS and CZMIL systems) that have good radiometric calibration demonstrate the capability to product the water's inherent optical properties and bottom reflectance. As the laser pulse propagates through the water, it is scattered by the water constituents. The directional distribution of scattered radiant power is determined by the volume scattering function. Only the backscattering within a very narrow solid angle around the 180° scattering angle travels back to the detector. During the two-way travel it experiences the same optical interaction (absorption and scattering) with the water constituents. Thus, the lidar return waveform between the surface and bottom peak contains information about the vertical distribution of the water attenuation coefficient and the backscattering coefficient in the form of the rate of change of the return power. One challenge is how to estimate the inherent attenuation from the apparent attenuation. In this research we propose a technique to estimate the true water attenuation coefficient from the total system attenuation. We use a lidar waveform simulator that solves the irradiance distribution on the beam cross-section using an analytical Fourier transform of the radiance based on a single-scattering approximation.

  12. Biological glass fibers: Correlation between optical and structural properties

    PubMed Central

    Aizenberg, Joanna; Sundar, Vikram C.; Yablon, Andrew D.; Weaver, James C.; Chen, Gang

    2004-01-01

    Biological systems have, through the course of time, evolved unique solutions for complex optical problems. These solutions are often achieved through a sophisticated control of fine structural features. Here we present a detailed study of the optical properties of basalia spicules from the glass sponge Euplectella aspergillum and reconcile them with structural characteristics. We show these biosilica fibers to have a distinctive layered design with specific compositional variations in the glass/organic composite and a corresponding nonuniform refractive index profile with a high-index core and a low-index cladding. The spicules can function as single-mode, few-mode, or multimode fibers, with spines serving as illumination points along the spicule shaft. The presence of a lens-like structure at the end of the fiber increases its light-collecting efficiency. Although free-space coupling experiments emphasize the similarity of these spicules to commercial optical fibers, the absence of any birefringence, the presence of technologically inaccessible dopants in the fibers, and their improved mechanical properties highlight the advantages of the low-temperature synthesis used by biology to construct these remarkable structures. PMID:14993612

  13. Aerosol Optical Properties in Southeast Asia From AERONET Observations

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.

    2003-12-01

    There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.

  14. Magneto-optical transport properties of monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Tahir, M.; Vasilopoulos, P.

    2016-07-01

    The recent experimental realization of a high quality WSe2 leads to the possibility of magneto-optical measurements and the manipulation of the spin and valley degrees of freedom. We study the influence of the very strong spin-orbit coupling and of the anisotropic lifting of the valley pseudospin degeneracy on its magnetotransport properties. The energy spectrum of WSe2 is derived and discussed in the presence of a perpendicular magnetic field B . Correspondingly we evaluate the magneto-optical Hall conductivity and the optical longitudinal conductivity as functions of the frequency, magnetic field, and Fermi energy. They are strongly influenced by the field B and the strong spin splitting. The former exhibits valley polarization and the latter beatings of oscillations. The magneto-optical responses can be tuned in two different regimes: the microwave-to-terahertz regime and the visible-frequency one. The absorption peaks involving the n =0 LL appear in between these two regimes and show a magnetic control of the spin and valley splittings. We also evaluate the power absorption spectrum.

  15. Optical properties of polymer microtips investigated with workshop tomographic system

    NASA Astrophysics Data System (ADS)

    Dudek, Michał; Kujawińska, Małgorzata; Makowski, Piotr; Jaroszewicz, Leszek R.; Parat, Vincent

    2016-04-01

    We present a novel methodology for optical fiber polymer microtip manufacturing ant testing, which supports the structure optimization process through utilization of an optical diffraction tomography system based on the lateral shear digital holographic microscope. The most important functional parameter of an optical fiber microtip is the output beam distribution in the far-field region, which depends on geometrical properties and refractive index distribution within the microtip. These factors, in turn, are determined by the optical power distribution of the actinic light and the exposition time during the photopolymerization process. In order to obtain a desired light field distribution we propose to govern the manufacturing process by a hybrid opto-numerical methodology, which constitutes a convenient feedback loop for modification of the fabrication parameters. A single cycle of the proposed scheme includes numerical modeling, tomographic measurements and modifications of fabrication process. We introduced the real values of three-dimensional refractive index distribution of microtips into the finite-difference time-domain (FDTD) simulations, which leaded to controlled modification of technology parameters and finally to improvement of a functional parameter of microtips.

  16. Thermo-optical properties of gold nanoparticles in colloidal systems

    NASA Astrophysics Data System (ADS)

    Ortega, M. A.; Rodriguez, L.; Castillo, J.; Piscitelli, V.; Fernandez, A.; Echevarria, L.

    2008-10-01

    In this work, we report the thermo-optical properties of nanoparticles in colloidal suspensions. Spherical gold nanoparticles obtained by laser ablation in condensed media were characterized using thermal lens spectroscopy pumping at 532 nm with a 10 ns pulse laser-Nd-YAG system. The obtained nanoparticles were stabilized in the time by surfactants (sodium dodecyl sulfate or SDS) in water with different molar concentrations. The morphology and size of the gold nanoparticles were determined by transmission electron microscopy (TEM) and UV-visible techniques. The plasmonic resonance bands in gold nanoparticles are responsible for the light optical absorption, and the positions of the absorption maximum and bandwidth in the UV-visible spectra are given by the morphological characteristics of these systems. The thermo-optical constants such as thermal diffusion, thermal diffusivity, and (dn/dT) are functions of the nanoparticle sizes and the dielectric function of the media. For these reasons, the thermal lens (TL) signal is also dependent on nanoparticle sizes. An analysis of the TL signal of the nanoparticles reveals the existence of an inverse dependence between the thermo-optical functions and the size. This methodology can be used in order to evaluate these systems and characterize nanoparticles in different media. These results are expected to have an impact in bioimaging, biosensors, and other technological applications such as cooling systems.

  17. Active learning in optics and photonics: Fraunhofer diffraction

    NASA Astrophysics Data System (ADS)

    Ghalila, H.; Ben Lakhdar, Z.; Lahmar, S.; Dhouaidi, Z.; Majdi, Y.

    2014-07-01

    "Active Learning in Optics and Photonics" (ALOP), funded by UNESCO within its Physics Program framework with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE (Society of Photo-Optical Instrumentation Engineers), aimed to helps and promotes a friendly and interactive method in teaching optics using simple and inexpensive equipment. Many workshops were organized since 2005 the year when Z. BenLakhdar, whom is part of the creators of ALOP, proposed this project to STO (Société Tunisienne d'Optique). These workshops address several issues in optics, covering geometrical optics, wave optics, optical communication and they are dedicated to both teachers and students. We focus this lecture on Fraunhofer diffraction emphasizing the facility to achieve this mechanism in classroom, using small laser and operating a slit in a sheet of paper. We accompany this demonstration using mobile phone and numerical modeling to assist in the analysis of the diffraction pattern figure.

  18. Effect of doping on structural and optical properties of ZnO nanoparticles: study of antibacterial properties

    NASA Astrophysics Data System (ADS)

    Maddahi, P.; Shahtahmasebi, N.; Kompany, A.; Mashreghi, M.; Safaee, S.; Roozban, F.

    2014-06-01

    Sol-gel method was successfully used for synthesis of ZnO nanoparticles doped with 10 % Mg or Cu. The structure, morphology and optical properties of the prepared nanoparticles were studied as a function of doping content. The synthesized ZnO:(Mg/Cu) samples were characterized using XRD, TEM, FTIR and UV-Vis spectroscopy techniques. The samples show hexagonal wurtzite structure, and the phase segregation takes place for Cu doping. Optical studies revealed that Mg doping increases the energy band gap while Cu incorporation results in decrease of the band gap. The antibacterial activities of the nanoparticles were tested against Escherichia coli (Gram negative bacteria) cultures. It was found that both pure and doped ZnO nanosuspensions show good antibacterial activity which increases with copper doping, and slightly decreases with adding Mg.

  19. Nonlinear optical properties and optical power limiting effect of Giemsa dye

    NASA Astrophysics Data System (ADS)

    Al-Saidi, Imad Al-Deen Hussein A.; Abdulkareem, Saif Al-Deen

    2016-08-01

    The nonlinear optical properties of Giemsa dye in chloroform solution for different concentrations and dye mixed with poly(methylmethacrylate) (PMMA) as a dye-doped polymer film were investigated using continuous wave (CW) low power solid-state laser (SSL) operating at wavelength of 532 nm as an excitation source. Using the single beam z-scan technique, the nonlinear refractive index (n2), the nonlinear absorption coefficient (β), and the third-order nonlinear optical susceptibility (χ(3)) of Giemsa dye were measured. The measurements reveal that both n2 and β are dependent on the dye concentration. The obtained results indicate that the Giemsa dye exhibits positive nonlinear saturable absorption (SA) and negative refraction nonlinearity, manifestation of self-defocusing effect. Optical power limiting characteristics of the Giemsa dye at different concentrations in solution and polymer film were studied. The observed large third-order optical nonlinearity of Giemsa dye confirms that Giemsa dye is a promising nonlinear material for the optical power limiting and photonic devices applications.

  20. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal.

    PubMed

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc. PMID:27461819

  1. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal

    NASA Astrophysics Data System (ADS)

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang

    2016-07-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc.

  2. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal

    PubMed Central

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc. PMID:27461819

  3. Fabrication of optically active nanostructures by chemical methods

    NASA Astrophysics Data System (ADS)

    Moran, Cristin Erin

    A new method of fabricating long-range, planar arrays of discrete, submicron metal structures on glass or SiO2/Si surfaces has been developed without the use of resist masks or chemical etching. The approach combines microcontact printing and electroless plating for the controlled deposition of islands or lines of gold or silver. The metallic structures are varied in size, separation and shape by using a variety of commercial diffraction gratings to mold the polydimethylsiloxane (PDMS) elastomer stamps. An assortment of distinct geometrical patterns have been fabricated and imaged on a range of length scales using scanning probe, scanning electron, and optical microscopies. Additionally, the same chemical techniques can be used to pattern surfaces with biomolecules and ordered arrays of metal nanoshells. These arrays of metal nanostructures support surface plasmon propagation and also show plasmon-plasmon interactions dependent on the geometry of the metal features. These structures were used to investigate the effects of molecular functionalization on the excitation and propagation properties of the surface plasmons that are supported by this geometry. Distinct variations in the dispersion and energy gaps of surface plasmons on these structures due to chemical functionalization of the metal structures is observed. A second type of optically active structure, rare-earth doped silica particles, has been synthesized using wet chemistry. The polydispersity of the particles can be controlled by changing the concentration of dopant salt. These particles may be useful for microlaser or display technologies.

  4. Texture evolution and infrared optical properties of praseodymium fluoride films

    NASA Astrophysics Data System (ADS)

    Su, Wei-Tao; Li, Bin; Liu, Ding-Quan; Zhang, Feng-Shan

    2007-10-01

    Praseodymium fluoride (PrF3) thin films were deposited on Ge(1 1 1) and zinc selenide substrates by molybdenum boat evaporation method. The crystal structures of thin film were characterized using XRD technique and the texture coefficients were calculated. The texture of praseodymium fluoride films changes from (3 0 2) to (1 1 0) texture when the temperature increases from 100 °C to 250 °C. Drastic tensile stress makes all the films covered by a network of fine cracks with width of nanometer-scale. The infrared transmission spectrum was measured to investigate the optical properties for all the films. The optical constants of praseodymium fluoride film were determined by using Lorentz oscillator model in the range from 8000 cm-1 to 500 cm-1.

  5. Optical And Protective Properties Of Hard Carbon Coatings

    NASA Astrophysics Data System (ADS)

    Dischler, B.; Bubenzer, A.; Koidl, P.; Brandt, G.

    1983-09-01

    In recent years amorphous carbon coatings found growing interest because of their optical and protective properties. We have deposited hydrogenated amorphous carbon films (a-C:H) from an RF excited discharge in benzene vapour. Substrates include germanium, glass and MgF2. The refractive index can be tuned between 1.8 and 2.2 and efficient antireflection coatings on Ge have been prepared. We have determined the optical absorption from the UV to the IR range (0.2 - 25 μm). A typical 1 µm thick a-C:H film is transparent (> 50% transmission) from 750 nm to the far infrared. Amorphous carbon films are harder than sapphire and are resistant to concentrated acids and bases.

  6. Optical Properties of Human Cancer and Normal Cells

    NASA Astrophysics Data System (ADS)

    Sander, Christopher; Sun, Nan; Johnson, Jeffrey; Stack, Sharon; Tanner, Carol; Ruggiero, Steven

    2014-03-01

    We have investigated the optical properties of human oral and ovarian cancer and normal cells. Specifically, we have measured the absolute optical extinction for both whole cells and intra-cellular material in aqueous suspension. Measurements were conducted over a wavelength range of 250 to 1000nm with 1 nm resolution using Light Transmission Spectroscopy (LTS). This provides both the absolute extinction of materials under study and, with Mie inversion, the absolute number of particles of a given diameter as a function of diameter in the range of 1 to 3000 nm. Our preliminary studies show significant differences in both the extinction and particle size distributions associated with cancer versus normal cells, which appear to be correlated with differences in the particle size distribution in the range of ~ 50 to 250 nm.

  7. Optical properties of borate crystals in terahertz region

    NASA Astrophysics Data System (ADS)

    Antsygin, V. D.; Mamrashev, A. A.; Nikolaev, N. A.; Potaturkin, O. I.; Bekker, T. B.; Solntsev, V. P.

    2013-11-01

    In this paper we study the optical properties of a family of borate crystals comprising alpha and beta barium borates, barium fluoroborate, lithium triborate, and lithium tetraborate in the frequency range from 0.3 to 2.0 THz. We extract the refractive indices and absorption coefficients for both ordinary and extraordinary beams from terahertz time-domain spectroscopy data. All of the investigated crystals exhibit substantial birefringence and dichroism, which qualifies them as potential materials for terahertz polarization-optical devices. We also find an additional absorption band in barium borate crystals, which is not defined by the group of phonon modes lying above 2 THz. We argue that this phenomenon may be caused by excessive sodium atoms and ions in the crystal lattice.

  8. Optical properties of a photopolymer film for digital holographic storage

    NASA Astrophysics Data System (ADS)

    Shin, Changwon; Kim, Junghoi; Kim, Nam; Lee, Hyojin; Kim, Eunkyoung

    2005-09-01

    Tir- and mono functional monomers were dispersed in a solution of polysulfone in organic solvent containing a photo initiator and other additives. New photopolymer film was prepared by dispersing acrylic monomer in a polysulfone matrix. The Polysulfone was adopted as a binder since it affords transparent thick films with low dimensional changes during holographic recording. Optical property of the photopolymer showed high diffraction efficiency (>90%) under an optimized optical condition at 532nm laser. The angular selectivity for angular multiplexing page oriented holographic memories (POHMs), the maximum diffraction efficiency of the material during holographic recording, the diffraction efficiency of the films as a function of an incident angle of two beams, exposure energy for saturation of the holographic material and application for holographic data storage will be discussed.

  9. Electrical engineering of the optical properties in silicene

    NASA Astrophysics Data System (ADS)

    Bao, Hairui; Guo, Junji; Liao, Wenhu; Zhao, Heping

    2015-02-01

    Based on the intersubband transition theorem of the semiconductors, we have theoretically investigated the optical properties of a three-terminal silicene-based device under the irradiation of a circularly polarized terahertz electromagnetic field. The system spin-orbit-coupled electronic structure may be engineered to topological insulated (TI) and band insulated (BI) state, respectively, by the staggered sublattice potential from the back-gate voltage. It has been demonstrated that the dielectric functions and optical absorption spectra from the TI spin-up and spin-down subbands behave redshift and blueshift, respectively, with the increase in the sublattice potential, while those from the BI spin-up and spin-down subbands have been proven to be continually blue-shifted with the staggered sublattice potential. The novel features may be useful in the design of the spintronic and optoelectronic devices based on silicene.

  10. Thermoluminescence and optically stimulated luminescence properties of natural barytes.

    PubMed

    Kitis, G; Kiyak, N G; Polymeris, G S

    2010-12-01

    Heavy, baryte-loaded, concrete is commonly used as radiation shielding material around high energy particle accelerators. Concrete samples received from a shielding block located at CERN cite contain many crystalline inclusions which were identified as barytes by X-ray diffraction analysis and separated by their color, classified as white, orange and green. Basic properties of thermoluminescence (TL) and optically stimulated luminescence (OSL) signals of these barytes samples such as thermal and optical stability, repeatability and mainly the linearity of both their luminescence responses were investigated as a function of beta dose. These results are also discussed regarding detailed investigation on the correlation between TL and OSL signals and their implications for retrospective dosimetry. PMID:20620071

  11. Optical properties and diffraction effects in opal photonic crystals.

    PubMed

    Balestreri, Alessandra; Andreani, Lucio Claudio; Agio, Mario

    2006-09-01

    Optical properties of fcc opals oriented along the [111] direction are calculated by means of a scattering-matrix approach based on approximating each sphere with cylindrical slices. The use of a plane-wave basis in each layer allows distinguishing zero-order reflection and transmission from higher-order (diffraction) spectra. Optical spectra at large values of the angle of incidence indicate the presence of diffraction effects and of polarization mixing along the LW orientation. Reflectance and transmittance in the high-energy region show a rich spectral dependence and compare reasonably well with recent experimental observations on polystyrene opals. Diffraction spectra as a function of the number of layers display an oscillatory behavior, pointing to the existence of a Pendellösung phenomenon, related to the exchange of energy between two propagating modes in the investigated three-dimensional photonic crystal. This phenomenon could be observed in transmittance experiments on high-quality opals with controlled thickness. PMID:17025760

  12. Optofluidic phantom mimicking optical properties of porcine livers

    PubMed Central

    Long, Ruiqi; King, Travis; Akl, Tony; Ericson, M. Nance; Wilson, Mark; Coté, Gerard L.; McShane, Michael J.

    2011-01-01

    One strategy for assessing efficacy of a liver transplant is to monitor perfusion and oxygenation after transplantation. An implantable optical sensor is being developed to overcome inadequacies of current monitoring approaches. To facilitate sensor design while minimizing animal use, a polydimethylsiloxane (PDMS)-based liver phantom was developed to mimic the optical properties of porcine liver in the 630-1000 nm wavelength range and the anatomical geometry of liver parenchyma. Using soft lithography to construct microfluidic channels in pigmented elastomer enabled the 2D approximation of hexagonal liver lobules with 15mm sinusoidal channels, which will allow perfusion with blood-mimicking fluids to facilitate the development of the liver perfusion and oxygenation monitoring system. PMID:21750766

  13. Nonlinear optical properties of lead sulfide nanocrystals in polymeric coatings

    NASA Astrophysics Data System (ADS)

    Lu, S. W.; Sohling, U.; Mennig, M.; Schmidt, H.

    2002-10-01

    Lead sulfide (PbS) nanocrystals with a particle size of 3.3 +/- 0.7 nm have been synthesized in a poly vinyl alcohol (PVA) coating on fused silica glass substrates. The coating was dip-coated from a PVA aqueous solution, in which PbS nanocrystals were precipitated and stabilized in the polymer matrix. Third-order nonlinear optical susceptibility of PbS nanocrystals is dependent on the wavelength with its maximum located near the first excitonic absorption peak resulting from the quantum confinement effect, according to the results of degenerate four wave-mixing. This suggests an enhancement of the nonlinear optical property by excitonic resonance. The maximum figure of merit, χ(3) /α, is as high as 2.91 × 10-12 esu m as measured at 595 nm.

  14. Aerosol optical properties of the free troposphere: Tropospheric backscatter climatology

    NASA Astrophysics Data System (ADS)

    Rosen, James M.

    1994-12-01

    A unique ensemble of aerosol sensors (backscattersondes, nephelometers and particle counters) has been assembled during the course of this research to obtain new measurements relating to the optical properties of aerosols in the atmosphere, especially in the free troposphere. A knowledge of the aerosol extinction-to-backscatter ratio has been greatly enhanced as a result of this project and the inference of representative values along with the range of variation is now possible. Agreement between the optical model results and actual measurements appears to be quite satisfactory. An initial climatology of aerosol backscatter in the free troposphere has been developed and is in general agreement with results and inferences from global remote sensing instruments. However, the data from remote sensors may indicate a larger influence of volcanic aerosols on the upper troposphere than actually exists. Further work with high resolution soundings is needed to fully resolve this issue.

  15. Optical properties of laser-induced heavily doped Si

    NASA Astrophysics Data System (ADS)

    Ravindra, N. M.; Mhoronge, J. F.; Jouanne, M.

    1985-09-01

    An analysis of experimental studies (Slaoui et al., 1983) of the optical properties of laser-induced heavily doped Si layers is presented. The analysis has been made on the basis of models like those of Penn (1962) and Breckenridge et al. (1974). The calculations show that, in general, the effective number of electrons contributing to optically induced electronic transitions, increases as does the imaginary part of the complex dielectric constant. This reflects an increased absorption coefficient for these As-doped samples. These studies have been carried out on samples of Si heavily doped by ion-implantation followed by a laser-annealing process. The conclusions based on these studies are seen to be in accord with those of Aspnes et al. (1984) and Vina and Cardona (1984).

  16. Active Optics Modernization of the AEOS Telescope

    NASA Astrophysics Data System (ADS)

    Greenwald, D.

    2012-09-01

    Since first light in 1997, the Advanced Electro-Optical System (AEOS) telescope at the Maui Space Surveillance Site has used an active system for figure control that applies forces on the primary mirror and positions the secondary mirror to minimize wavefront aberrations. Periodically a wavefront optimization loop is closed with a Shack-Hartmann WaveFront Sensor (WFS), 84 primary mirror force actuators and three secondary mirror translation actuators. This optimization loop is used with a series of stellar targets to find coefficients for each force or position in a sine and cosine of elevation model. During normal telescope operation when the WFS is not in use, this elevation angle dependant model is used to control the primary mirror forces and secondary mirror positions. Recently the system was upgraded with new computers, electronics and algorithms. The primary goal of the upgrade was to replace obsolete and no longer maintainable hardware with secondary goals of reducing the effort required to update the wavefront model, and improving the final operational wavefront performance. This paper discusses the algorithms implemented to achieve the secondary goals and initial performance results. In order to eliminate erroneous data from the WFS, the processing algorithms were modified to dynamically assign pixels on the WFS camera to lenslets, and closed loop tracking of the gimbal was implemented using a camera that shares the focal plane with the WFS. These changes permit the elimination of human operator review from the wavefront optimization loop. The original system collected data for either a single star or a series of stars and then replaced either the constant or the complete model at the end of a data collection session. In the revised system, each wavefront measurement is used for a Kalman update to the model. Operationally, the Kalman updates allow data to be collected intermittently as time is available between other telescope tasks. By combining the

  17. Optical properties of hybrid polymers as barrier materials

    NASA Astrophysics Data System (ADS)

    Georgiou, D.; Laskarakis, A.; Logothetidis, S.; Amberg-Scwhab, S.; Weber, U.; Schmidt, M.; Noller, K.

    2009-06-01

    The development of high barrier films for the encapsulation of organic electronics devices onto flexible polymeric substrates is attracting a considerable scientific interest, since it is important to protect the organic semiconductor layers of these devices from corrosion due to atmospheric gas molecule permeation. The barrier layers for encapsulation consist of a sequence of inorganic and hybrid polymer thin films that are deposited onto flexible polymeric substrates, such as polyethylene terephthalate (PET). In addition to their barrier response, these multilayer systems should also exhibit high transparency and good adhesion between the hybrid polymer and inorganic layers. The knowledge of their optical properties and the correlation of the optical response with their structure and the final barrier response are of major importance since it will contribute towards the optimization of their functionality. In this work, the optical properties of hybrid polymers deposited onto silicon oxide inorganic thin films that were grown onto flexible polymeric substrates, have been investigated by the use of spectroscopic ellipsometry in a wide spectral region from the infrared to the visible-ultra violet. As it has been found, the increase of the solid content in the hybrid polymers is associated with a reduction in the refractive index values. This behavior can be correlated to a lower density of the hybrid polymer, and furthermore to a poor barrier response, due to the less cohesive inorganic-organic bonding network. Finally, from the investigation of the optical response of the hybrid polymers in the IR spectral region has revealed information on their bonding structure that has been discussed together with their barrier response.

  18. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  19. Optical properties of melting first-year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Light, Bonnie; Perovich, Donald K.; Webster, Melinda A.; Polashenski, Christopher; Dadic, Ruzica

    2015-11-01

    The albedo and transmittance of melting, first-year Arctic sea ice were measured during two cruises of the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) project during the summers of 2010 and 2011. Spectral measurements were made for both bare and ponded ice types at a total of 19 ice stations in the Chukchi and Beaufort Seas. These data, along with irradiance profiles taken within boreholes, laboratory measurements of the optical properties of core samples, ice physical property observations, and radiative transfer model simulations are employed to describe representative optical properties for melting first-year Arctic sea ice. Ponded ice was found to transmit roughly 4.4 times more total energy into the ocean, relative to nearby bare ice. The ubiquitous surface-scattering layer and drained layer present on bare, melting sea ice are responsible for its relatively high albedo and relatively low transmittance. Light transmittance through ponded ice depends on the physical thickness of the ice and the magnitude of the scattering coefficient in the ice interior. Bare ice reflects nearly three-quarters of the incident sunlight, enhancing its resiliency to absorption by solar insolation. In contrast, ponded ice absorbs or transmits to the ocean more than three-quarters of the incident sunlight. Characterization of the heat balance of a summertime ice cover is largely dictated by its pond coverage, and light transmittance through ponded ice shows strong contrast between first-year and multiyear Arctic ice covers.

  20. Estimation of aerosol optical properties considering hygroscopicity and light absorption

    NASA Astrophysics Data System (ADS)

    Jung, Chang Hoon; Lee, Ji Yi; Kim, Yong Pyo

    2015-03-01

    In this study, the influences of water solubility and light absorption on the optical properties of organic aerosols were investigated. A size-resolved model for calculating optical properties was developed by combining thermodynamic hygroscopic growth and aerosol dynamics models. The internal mixtures based on the homogeneous and core-shell mixing were compared. The results showed that the radiative forcing (RF) of Water Soluble Organic Carbon (WSOC) aerosol can be estimated to range from -0.07 to -0.49 W/m2 for core-shell mixing and from -0.09 to -0.47 W/m2 for homogeneous mixing under the simulation conditions (RH = 60%). The light absorption properties of WSOC showed the mass absorption efficiency (MAE) of WSOC can be estimated 0.43-0.5 m2/g, which accounts for 5-10% of the MAE of elemental carbon (EC). The effect on MAE of increasing the imaginary refractive index of WSOC was also calculated, and it was found that increasing the imaginary refractive index by 0.001i enhanced WSOC aerosol absorption by approximately 0.02 m2/g. Finally, the sensitivity test results revealed that changes in the fine mode fraction (FMF) and in the geometric mean diameter of the accumulation mode play important roles in estimating RF during hygroscopic growth.

  1. Retrieval of aerosol optical properties over land using PMAp

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Munro, Rosemary; Lang, Ruediger; Poli, Gabriele; Holdak, Andriy

    2015-04-01

    The retrieval of aerosol optical properties is an important task for industry and climate forecasting. An ideal instrument should include observations with moderate spectral and high spatial resolutions for a wide range of wavelengths (from the UV to the TIR), measurements of the polarization state at different wavelengths and measurements of the same scene for different observation geometries. As such an ideal instrument is currently unavailable the usage of different instruments on one satellite platform is an alternative choice. Since February 2014, the Polar Multi sensor Aerosol product (PMAp) is delivered as operational GOME product to our customers. The algorithms retrieve aerosol optical properties over ocean (AOD, volcanic ash, aerosol type) using a multi-sensor approach (GOME, AVHRR, IASI). The next releases of PMAp will provide an extended set of aerosol and cloud properties which include AOD over land and an improved volcanic ash retrieval combining AVHRR and IASI. This presentation gives an overview on the existing product and the prototypes in development. The major focus is the discussion of the AOD retrieval over land implemented in the upcoming PMAp2 release. In addition, the results of our current validation studies (e.g. comparisons to AERONET, other satellite platforms and model data) are shown.

  2. Thermal stability, optical property, and morphology of flexible organoclay films.

    PubMed

    Shin, Jieun; Chang, Jin-Hae

    2011-07-01

    Novel organo-saponite (organo-SPT) films with excellent thermal stability and optical property were synthesized by solution casting. Na ion-exchanged saponite (pristine SPT), hexadecylammonium ion-exchanged SPT (C16-SPT), hexadecyltriphenyl phosphonium ion-exchanged SPT (C16PPh3-SPT), and tetraphenyl phosphonium ion-exchanged SPT (PPh4-SPT) were used to prepare clay films. We examined the relationship between the structures and properties of the various SPT films. SPT films were examined by means of wide-angle X-ray diffraction (XRD), electronic microscopy (FE-SEM), thermogravimetric analysis (TGA), ultraviolet-visible (UV-vis.) spectrometer. On the basis of these analyses, we sought to improve both the thermal stability and the optical properties. Clay films composed of C16PPh3-SPT and PPh4-SPT were found to be more thermally stable than those composed of pristine SPT or C16-SPT. On the other hand, the transmittance was not significantly affected by variations in the organo-SPT material. PMID:22121657

  3. Relation between Oceanographic parameters and Optical properties in 5 coastal areas of Southern Italy

    NASA Astrophysics Data System (ADS)

    Campanelli, Alessandra; Braga, Federica; Betti, Mattia; Cavalli, Rosa Maria; Grilli, Federica; Pascucci, Simone; Marini, Mauro

    2014-05-01

    In the framework of the CLAM-PHYM (Coasts-and-Lake-Assessment-and-Monitoring-by-Prisma-Hyperspectral-Mission) project it was carried out an oceanographic cruise (27/08-13/09/2010) along the coasts of southern Italy in order to analyze the physical, biochemical and optical properties of some coastal areas. The sampling areas are: the Gulf of Taranto, the Policoro area, the Cetraro Bay, the Gulf of Augusta and the Gulf of Gela. CTD profiles and reflectance measurements of the sea surface and along the water column with portable field spectroradiometers were collected. Water samples were also collected for the analysis of nutrients, chlorophyll-a and CDOM. These optically active substances interact with solar radiation along the water column through absorption and scattering phenomena. The collected data were analyzed to identify the relationship between the bio-optical concentrations of optically-active-substances and the surface reflectance spectra measured in situ; this relation, if reversed, can be used to map the concentrations of optically-active-substances from hyperspectral-satellite-data. Results stress high biological activity in the Gulf of Taranto and in the Gulf of Gela showing the highest values of chlorophyll-a and aCDOM440. These areas are characterized by the presence of important industrial and port sites. The Gela's gulf, where we found the highest concentrations of chlorophyll a and CDOM, is also characterized by the runoff of the Salso river increasing the biological activity. The correlations found in the Gulf of Taranto between Kd, chlorophyll a and aCDOM440 indicate that the high concentrations of CDOM are primarily due to phytoplankton rather than from terrestrial source. The Gulf of Taranto shows the best site among those investigated where to identify bio-optical relationships between the concentrations of optically active substances and the surface reflectance spectra measured in situ. The preliminary results encourage the combined use of

  4. Active Correction of Aberrations of Low-Quality Telescope Optics

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Yijian

    2007-01-01

    A system of active optics that includes a wavefront sensor and a deformable mirror has been demonstrated to be an effective means of partly correcting wavefront aberrations introduced by fixed optics (lenses and mirrors) in telescopes. It is envisioned that after further development, active optics would be used to reduce wavefront aberrations of about one wave or less in telescopes having aperture diameters of the order of meters or tens of meters. Although this remaining amount of aberration would be considered excessive in scientific applications in which diffraction-limited performance is required, it would be acceptable for free-space optical- communication applications at wavelengths of the order of 1 m. To prevent misunderstanding, it is important to state the following: The technological discipline of active optics, in which the primary or secondary mirror of a telescope is directly and dynamically tilted, distorted, and/or otherwise varied to reduce wavefront aberrations, has existed for decades. The term active optics does not necessarily mean the same thing as does adaptive optics, even though active optics and adaptive optics are related. The term "adaptive optics" is often used to refer to wavefront correction at speeds characterized by frequencies ranging up to between hundreds of hertz and several kilohertz high enough to enable mitigation of adverse effects of fluctuations in atmospheric refraction upon propagation of light beams. The term active optics usually appears in reference to wavefront correction at significantly lower speeds, characterized by times ranging from about 1 second to as long as minutes. Hence, the novelty of the present development lies, not in the basic concept of active or adaptive optics, but in the envisioned application of active optics in conjunction with a deformable mirror to achieve acceptably small wavefront errors in free-space optical communication systems that include multi-meter-diameter telescope mirrors that are

  5. THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared M.; Taniguchi, Yoshi; Nagao, Tohru; Shioya, Yasuhiro; Brusa, Marcella; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Huchra, John P.; Jahnke, Knud; Koekemoer, Anton M.; Salvato, Mara; Capak, Peter; Scoville, Nick Z.; Kartaltepe, Jeyhan S.; Lanzuisi, Giorgio; McCarthy, Patrick J.; Maineri, Vincenzo

    2009-11-20

    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull active galactic nuclei (AGNs) in the COSMOS field. These objects exhibit the X-ray luminosity of an AGN but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to approx70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining approx30% of optically dull AGNs have anomalously high f{sub X} /f{sub O} ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.

  6. Directly observable optical properties of sprites in Central Europe

    NASA Astrophysics Data System (ADS)

    Bór, József

    2013-04-01

    Luminous optical emissions accompanying streamer-based natural electric breakdown processes initiating in the mesosphere are called sprites. 489 sprite events have been observed with a TV frame rate video system in Central Europe from Sopron (47.68N, 16.58E, 230 m MSL), Hungary between 2007 and 2009. On the basis of these observations, characteristic morphological properties of sprites, i.e. basic forms (e.g. column, carrot, angel, etc.) as well as common morphological features (e.g. tendrils, glows, puffs, beads, etc.), have been identified. Probable time sequences of streamer propagation directions were associated with each of the basic sprite forms. It is speculated that different sequences of streamer propagation directions can result in very similar final sprite shapes. The number and type variety of sprite elements appearing in an event as well as the total optical duration of an event was analyzed statistically. Jellyfish and dancing sprite events were considered as special subsets of sprite clusters. It was found that more than 90% of the recorded sprite elements appeared in clusters rather than alone and more than half of the clusters contained more than one basic sprite forms. The analysis showed that jellyfish sprites and clusters of column sprites featuring glows and tendrils do not tend to have optical lifetimes longer than 80 ms. Such very long optical lifetimes have not been observed in sprite clusters containing more than 25 elements of any type, either. In contrast to clusters containing sprite entities of only one form, sprite events showing more sprite forms seem to have extended optical durations more likely. The need for further investigation and for finding theoretical concepts to link these observations to electric conditions ambient for sprite formation is emphasized.

  7. Climatology and Characteristics of Aerosol Optical Properties in the Arctic

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Ogren, John; Backman, John; Asmi, Eija; Andrews, Elisabeth; Jefferson, Anne; Bergin, Michael; Tunved, Peter; Sharma, Sangeeta; Starkweather, Sandra

    2016-04-01

    Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, most stations (ALT, BRW, SUM, TIK, ZEP) experience maximum scattering in winter/spring, while PAL exhibits maximum scattering in the summer. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in this unique and remote region.

  8. Optical properties of core-mantle spheroidal particles

    NASA Astrophysics Data System (ADS)

    Somsikov, Vadim V.; Farafonov, Victor G.

    1994-12-01

    The new solution of the problem of light scattering by coated spheroids was used to calculate the optical properties of prolate and oblate particles. The solution was obtained by the method of separation of variables for confocal spheroids. We consider the silicate core ice mantle particles and present the extinction cross-sections for prolate and oblate spheroids with the refractive indices mcore equals 1.7 + Oi, 1.7 + 0.1i and mmantle equals 1.3, the aspect ratio (a/b)mantle equals 2 and various volume ratios Vcore/Vtotal. The results are plotted for different size parameters xv equals 2(pi) rv/(lambda) , where rv is the radius of equivolume sphere and (lambda) is the wavelength of incident radiation. The main conclusions are: (a) if Vcore/Vtotal equals 0.5, the optical properties of a core-mantle particle are determined mainly by its core: for prolate non-absorbing spheroids when xv 10, for oblate absorbing and non-absorbing spheroids when xv optical properties of an inhomogeneous particle. When the imaginary part reaches 0.1, the noticeable changes of cross-sections may be detected.

  9. Influence of shape on the optical properties of hematite aerosol

    NASA Astrophysics Data System (ADS)

    Veghte, Daniel P.; Moore, Justin E.; Jensen, Lasse; Freedman, Miriam Arak

    2015-07-01

    Mineral dust particles are the second highest emitted aerosol type by mass. Due to changes in particle size, composition, and shape that are caused by physical processes and reactive chemistry, optical properties vary during transport, contributing uncertainty in the calculation of radiative forcing. Hematite is the major absorbing species of mineral dust. In this study, we analyzed the extinction cross sections of nigrosin and hematite particles using cavity ring-down aerosol extinction spectroscopy (CRD-AES) and have measured particle shape and size distributions using transmission electron microscopy. Nigrosin was also used in this study as a spherical standard for absorbing particles. The size-selected nigrosin particles have a narrow size distribution, with extinction cross sections that are described by Mie theory. In contrast, the size distribution of size-selected hematite particles is more polydisperse. The extinction cross sections were modeled using Mie theory and the discrete dipole approximation (DDA). The DDA was used to model more complex shapes that account for the surface roughness and particle geometry. Of the four models used, Mie theory was the simplest to implement, but had significant error with a 26.1% difference from the CRD-AES results. By increasing the complexity of the models using the DDA, we determined that spheroids had a 14.7% difference, roughened spheres a 12.8% difference, and roughened spheroids a 11.2% difference from the experimental results. Using additional parameters that account for particle shape is necessary to model the optical properties of hematite particles and leads to improved extinction cross sections for modeling aerosol optical properties.

  10. Optical properties of aerosols over the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Bryant, C.; Eleftheriadis, K.; Smolik, J.; Zdimal, V.; Mihalopoulos, N.; Colbeck, I.

    Measurements of aerosol optical properties, size distribution and chemical composition were conducted at Finokalia, a remote coastal site on the Greek island of Crete (35°19'N, 25°40'E) during July 2000 and January 2001. During the summer campaign the total scattering coefficient, σ, (at a wavelength of 550 nm) ranged from 13 to 120 Mm -1 (mean=44.2 Mm -1, standard deviation=17.5) whilst during the winter it ranged from 7.22 to 37.8 Mm -1 (mean=18.42 Mm -1, standard deviation=6.61). A distinct diurnal variation in scattering coefficients was observed, with minima occurring during the early morning and maxima in the late afternoon during the summer and late evening during the winter. The mean value of the Ångström exponent was 1.47 during the summer and 1.28 during the winter, suggesting a larger fraction of smaller particles at the site during the summer. This was confirmed by continuous measurements of the aerosol size distribution. An analysis of the single scattering albedo suggests that there is a more absorbing fraction in the particle composition in the summer than during the winter. An investigation of air mass origins on aerosol optical properties indicated that those from Turkey and Central/Eastern Europe were highly polluted with a corresponding impact on aerosol optical properties. A linear relationship was obtained between the total scattering coefficient and both the non-sea-salt sulphate concentrations and the fine aerosol fraction.

  11. The optical properties of lung as a function of respiration

    NASA Astrophysics Data System (ADS)

    Beek, J. F.; van Staveren, H. J.; Posthumus, P.; Sterenborg, H. J. C. M.; van Gemert, M. J. C.

    1997-11-01

    Lung consists of alveoli enclosed by tissue and both structures contribute to volume-dependent scattering of light. It is the purpose of this paper to determine the volume-dependent optical properties of lung. In vivo interstitial fibre measurements of the effective attenuation coefficient at 632.8 nm differed during inspiration from that during expiration . In vitro measurements on a piglet lung insufflated with oxygen from 50 to 150 ml showed the effective attenuation coefficient at 632.8 nm decreases as a function of oxygen volume in the lung (at 50 ml , at 100 ml , and at 150 ml ). This was explained by combining scattering of alveoli (Mie theory) with optical properties of collapsed lung tissue using integrating sphere measurements. Theory and measured in vitro values showed good agreement (deviation ). Combination of these data yields the absorption coefficient and scattering parameters of lung tissue as a function of lung volume. We conclude that the light fluence rate in lung tissue should be estimated using optical properties that include scattering by the alveoli.

  12. Optical properties of pseudovitrinite; implications for its origin

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.

    2005-01-01

    A set of Pennsylvanian coals from the North American coal basins, ranging in vitrinite reflectance from 0.65% to 1.75%, was examined, with special emphasis on the optical properties of pseudovitrinite. The results suggest that pseudovitrinite originates from the same material as telocollinite. Slits in the pseudovitrinite seem to have originated in situ due to low-temperature oxidation of woody material; their opening might have been facilitated by devolatilization during coalification. The dominant orientation of the slits is perpendicular to bedding. The intensity and orientation of the slits in pseudovitrinite could be important factors in predicting coalbed gas extraction from coal. ?? 2005 Elsevier B.V. All rights reserved.

  13. Quantum Plasmonics: Optical Properties and Tunability of Metallic Nanorods

    SciTech Connect

    Zuloaga, Jorge; Prodan, Emil; Nordlander, Peter

    2010-09-28

    The plasmon resonances in metallic nanorods are investigated using fully quantum mechanical time-dependent density functional theory. The computed optical absorption curves display well-defined longitudinal and transverse plasmon resonances whose energies depend on the aspect ratio of the rods, in excellent agreement with classical electromagnetic modeling. The field enhancements obtained from the quantum mechanical calculations, however, differ significantly from classical predictions for distances shorter than 0.5 nm from the nanoparticle surfaces. These deviations can be understood as arising from the nonlocal screening properties of the conduction electrons at the nanoparticle surface.

  14. Optical properties of drug metabolites in latent fingermarks

    PubMed Central

    Shen, Yao; Ai, Qing

    2016-01-01

    Drug metabolites usually have structures of split-ring resonators (SRRs), which might lead to negative permittivity and permeability in electromagnetic field. As a result, in the UV-vis region, the latent fingermarks images of drug addicts and non drug users are inverse. The optical properties of latent fingermarks are quite different between drug addicts and non-drug users. This is a technic superiority for crime scene investigation to distinguish them. In this paper, we calculate the permittivity and permeability of drug metabolites using tight-binding model. The latent fingermarks of smokers and non-smokers are given as an example. PMID:26838730

  15. Optical properties of silver nanocube surfaces obtained by silane immobilization

    NASA Astrophysics Data System (ADS)

    Merk, Virginia; Nerz, Alexander; Fredrich, Sebastian; Gernert, Ulrich; Selve, Sören; Kneipp, Janina

    2015-01-01

    Silver nanocubes were synthesized by the polyol method and immobilized on a surface in a simple approach using an aminopropyltriethoxysilane (APTES). The optical and structural properties of the polyvinylpyrrolidone (PVP) stabilized nanocubes were investigated in solution and on glass surfaces. The SERS enhancement factors at two excitation wavelengths for crystal violet were compared with electric fields arising in different nano¬particle configurations using finite-difference time-domain simulations. They are in agreement with the preferred face-to-face orientation in the nanoaggregates on the surfaces. The facile immobilization enables on-demand preparation and use of the nanocubes in real analytical applications.

  16. Theoretical study of nonlinear optical properties of oxocarbon derivatives

    NASA Astrophysics Data System (ADS)

    Junqueira, G. M. A.; Faria, M. S.; da Silva, A. M.; Dos Santos, H. F.

    In this work, first hyperpolarizability (β) and electronic spectra were obtained at ab initio and semiempirical levels of theory for mono- and bi-squarate derivatives. The results from our calculations suggest the investigated compounds as potential molecules for nonlinear optics (NLO). By means of the employed theoretical methodology, it was possible to identify structural aspects leading to enhancement of the NLO properties of the studied oxocarbons. Furthermore, a correlation between Hammett parameters of the substituents (∑σp) and ln (βtot) was established.

  17. Acoustical, morphological and optical properties of oral rehydration salts (ORS)

    SciTech Connect

    George, Preetha Mary E-mail: jayakumars030@gmail.com; Divya, P.; Jayakumar, S. E-mail: jayakumars030@gmail.com; Subhashree, N. S.; Ahmed, M. Anees

    2015-06-24

    Ultrasonic velocity, density and viscosity were measured in different concentrations of oral rehydration salts (ORS) at room temperature 303 k. From the experimental data other related thermodynamic parameters, viz adiabatic compressibility, intermolecular free length, acoustic impedence, relaxation time are calculated. The experimental data were discussed in the light of molecular interaction existing in the liquid mixtures. The results have been discussed in terms of solute-solvent interaction between the components. Structural characterization is important for development of new material. The morphology, structure and grain size of the samples are investigated by SEM. The optical properties of the sample have been studied using UV Visible spectroscopy.

  18. Optical properties of drug metabolites in latent fingermarks

    NASA Astrophysics Data System (ADS)

    Shen, Yao; Ai, Qing

    2016-02-01

    Drug metabolites usually have structures of split-ring resonators (SRRs), which might lead to negative permittivity and permeability in electromagnetic field. As a result, in the UV-vis region, the latent fingermarks images of drug addicts and non drug users are inverse. The optical properties of latent fingermarks are quite different between drug addicts and non-drug users. This is a technic superiority for crime scene investigation to distinguish them. In this paper, we calculate the permittivity and permeability of drug metabolites using tight-binding model. The latent fingermarks of smokers and non-smokers are given as an example.

  19. Investigation of sensing properties of microstructured polymer optical fibres

    NASA Astrophysics Data System (ADS)

    Witt, J.; Steffen, M.; Schukar, M.; Krebber, K.

    2010-04-01

    We investigated sensing properties of single mode poly methyl methacrylate (PMMA) microstructured polymer optical fibres (MPOF) with mechanically imprinted long period gratings (LPG). After preparation of the MPOF end-faces the samples were elongated with silica fibres. These samples were used to measure the influence of strain to the LPG wavelength which showed the viscoelastic nature of PMMA. We also measured the influence of temperature and humidity. The results show that MPOF LPGs are well suited for strain sensing. One MPOF LPG was stitched to a textile. Using this textile we measured a simulated respiratory motion.

  20. Optical Properties in Non-equilibrium Phase Transitions

    SciTech Connect

    Ao, T; Ping, Y; Widmann, K; Price, D F; Lee, E; Tam, H; Springer, P T; Ng, A

    2006-01-05

    An open question about the dynamical behavior of materials is how phase transition occurs in highly non-equilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to non-thermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reaches a critical value.