Science.gov

Sample records for active outer hair

  1. Active Outer Hair Cells Affect the Sound-Evoked Vibration of the Reticular Lamina

    NASA Astrophysics Data System (ADS)

    Jacob, Stefan; Fridberger, Anders

    2011-11-01

    It is well established that the organ of Corti uses active mechanisms to enhance its sensitivity and frequency selectivity. Two possible mechanisms have been identified, both capable of producing mechanical forces, which can alter the sound-evoked vibration of the hearing organ. However, little is known about the effect of these forces on the sound-evoked vibration pattern of the reticular lamina. Current injections into scala media were used to alter the amplitude of the active mechanisms in the apex of the guinea pig temporal bone. We used time-resolved confocal imaging to access the vibration pattern of individual outer hair cells. During positive current injection the the sound-evoked vibration of outer hair cell row three increased while row one showed a small decrease. Negative currents reversed the observed effect. We conclude that the outer hair cell mediated modification of reticular lamina vibration patterns could contribute to the inner hair cell stimulation.

  2. Effects of cochlear loading on the motility of active outer hair cells

    PubMed Central

    Ó Maoiléidigh, Dáibhid; Hudspeth, A. J.

    2013-01-01

    Outer hair cells (OHCs) power the amplification of sound-induced vibrations in the mammalian inner ear through an active process that involves hair-bundle motility and somatic motility. It is unclear, though, how either mechanism can be effective at high frequencies, especially when OHCs are mechanically loaded by other structures in the cochlea. We address this issue by developing a model of an active OHC on the basis of observations from isolated cells, then we use the model to predict the response of an active OHC in the intact cochlea. We find that active hair-bundle motility amplifies the receptor potential that drives somatic motility. Inertial loading of a hair bundle by the tectorial membrane reduces the bundle’s reactive load, allowing the OHC’s active motility to influence the motion of the cochlear partition. The system exhibits enhanced sensitivity and tuning only when it operates near a dynamical instability, a Hopf bifurcation. This analysis clarifies the roles of cochlear structures and shows how the two mechanisms of motility function synergistically to create the cochlear amplifier. The results suggest that somatic motility evolved to enhance a preexisting amplifier based on active hair-bundle motility, thus allowing mammals to hear high-frequency sounds. PMID:23509256

  3. Integration of outer hair cell activity in a one-dimensional cochlear model

    NASA Astrophysics Data System (ADS)

    Cohen, Azaria; Furst, Miriam

    2004-05-01

    Recently, significant progress has been made in understanding the contribution of the mammalian cochlear outer hair cells (OHCs) to normal auditory signal processing. In the present paper an outer hair cell model is incorporated in a complete, time-domain, one-dimensional cochlear model. The two models control each other through cochlear partition movement and pressure. An OHC gain (γ) is defined to indicate the outer hair cell contribution at each location along the cochlear partition. Its value ranges from 0 to 1: γ=0 represents a cochlea with no active OHCs, γ=1 represents a nonrealistic cochlea that becomes unstable at resonance frequencies, and γ=0.5 represents an ideal cochlea. The model simulations reveal typical normal and abnormal excitation patterns according to the value of γ. The model output is used to estimate normal and hearing-impairment audiograms. High frequency loss is predicted by the model, when the OHC gain is relatively small at the basal part of the cochlear partition. The model predicts phonal trauma audiograms, when the OHC gain is random along the cochlear partition. A maximum threshold shift of about 60 dB is obtained at 4 kHz.

  4. Activity-dependent regulation of prestin expression in mouse outer hair cells

    PubMed Central

    Song, Yohan; Xia, Anping; Lee, Hee Yoon; Wang, Rosalie; Ricci, Anthony J.

    2015-01-01

    Prestin is a membrane protein necessary for outer hair cell (OHC) electromotility and normal hearing. Its regulatory mechanisms are unknown. Several mouse models of hearing loss demonstrate increased prestin, inspiring us to investigate how hearing loss might feedback onto OHCs. To test whether centrally mediated feedback regulates prestin, we developed a novel model of inner hair cell loss. Injection of diphtheria toxin (DT) into adult CBA mice produced significant loss of inner hair cells without affecting OHCs. Thus, DT-injected mice were deaf because they had no afferent auditory input despite OHCs continuing to receive normal auditory mechanical stimulation and having normal function. Patch-clamp experiments demonstrated no change in OHC prestin, indicating that loss of information transfer centrally did not alter prestin expression. To test whether local mechanical feedback regulates prestin, we used TectaC1509G mice, where the tectorial membrane is malformed and only some OHCs are stimulated. OHCs connected to the tectorial membrane had normal prestin levels, whereas OHCs not connected to the tectorial membrane had elevated prestin levels, supporting an activity-dependent model. To test whether the endocochlear potential was necessary for prestin regulation, we studied TectaC1509G mice at different developmental ages. OHCs not connected to the tectorial membrane had lower than normal prestin levels before the onset of the endocochlear potential and higher than normal prestin levels after the onset of the endocochlear potential. Taken together, these data indicate that OHC prestin levels are regulated through local feedback that requires mechanoelectrical transduction currents. This adaptation may serve to compensate for variations in the local mechanical environment. PMID:25810486

  5. Immunological identification of candidate proteins involved in regulating active shape changes of outer hair cells.

    PubMed

    Knipper, M; Zimmermann, U; Köpschall, I; Rohbock, K; Jüngling, S; Zenner, H P

    1995-06-01

    By employing immunological methods, it has been demonstrated that myosin, myosin light chain (MLC) and myosin light chain kinase (MLCK) proteins in outer hair cells (OHC) are immunologically different from isoforms in platelets, smooth muscle and heart muscle, and are probably more related to isoforms found in red blood cells (RBC). Moreover, proteins related to band 3 protein (b3p) and protein 4.1 (p 4.1), ankyrin as well as fodrin and spectrin, but not glycophorin, have been identified in isolated OHCs. Both OHCs and RBC differ from other motile non-muscle cells in their lack of smooth muscle isoforms of actin, their common high levels of spectrin-, ankyrin- and band 3-like proteins, as well as the expression of the 80 kDa protein 4.1 isoform. The data support the notion that motility of OHC may be based upon regulation of the b3p/p 4.1/ankyrin complex, and thus may be reminiscent to the active shape changes in RBC.

  6. Cochlear amplification, outer hair cells and prestin

    PubMed Central

    Dallos, Peter

    2008-01-01

    Mechanical amplification of acoustic signals is apparently a common feature of vertebrate auditory organs. In non-mammalian vertebrates amplification is produced by stereociliary processes, related to the mechanotransducer channel complex and probably to the phenomenon of fast adaptation. The extended frequency range of the mammalian cochlea has likely co-evolved with a novel hair cell type, the outer hair cell and its constituent membrane protein, prestin. Cylindrical outer hair cells are motile and their somatic length changes are voltage driven and powered by prestin. One of the central outstanding problems in mammalian cochlear neurobiology is the relation between the two amplification processes. PMID:18809494

  7. Outer Hair Cell Electromotility and Otoacoustic Emissions*

    PubMed Central

    Brownell, William E.

    2009-01-01

    Outer hair cell electromotility is a rapid, force generating, length change in response to electrical stimulation. DC electrical pulses either elongate or shorten the cell and sinusoidal electrical stimulation results in mechanical oscillations at acoustic frequencies. The mechanism underlying outer hair cell electromotility is thought to be the origin of spontaneous otoacoustic emissions. The ability of the cell to change its length requires that it be mechanically flexible. At the same time the structural integrity of the organ of Corti requires that the cell possess considerable compressive rigidity along its major axis. Evolution appears to have arrived at novel solutions to the mechanical requirements imposed on the outer hair cell. Segregation of cytoskeletal elements in specific intracellular domains facilitates the rapid movements. Compressive strength is provided by a unique hydraulic skeleton in which a positive hydrostatic pressure in the cytoplasm stabilizes a flexible elastic cortex with circumferential tensile strength. Cell turgor is required in order that the pressure gradients associated with the electromotile response can be communicated to the ends of the cell. A loss in turgor leads to loss of outer hair cell electromotility. Concentrations of salicylate equivalent to those that abolish spontaneous otoacoustic emissions in patients weaken the outer hair cell’s hydraulic skeleton. There is a significant diminution in the electromotile response associated with the loss in cell turgor. Aspirin’s effect on outer hair cell electromotility attests to the role of the outer hair cell in generating otoacoustic emissions and demonstrates how their physiology can influence the propagation of otoacoustic emissions. PMID:2187727

  8. Prestin is the motor protein of cochlear outer hair cells

    NASA Astrophysics Data System (ADS)

    Zheng, Jing; Shen, Weixing; He, David Z. Z.; Long, Kevin B.; Madison, Laird D.; Dallos, Peter

    2000-05-01

    The outer and inner hair cells of the mammalian cochlea perform different functions. In response to changes in membrane potential, the cylindrical outer hair cell rapidly alters its length and stiffness. These mechanical changes, driven by putative molecular motors, are assumed to produce amplification of vibrations in the cochlea that are transduced by inner hair cells. Here we have identified an abundant complementary DNA from a gene, designated Prestin, which is specifically expressed in outer hair cells. Regions of the encoded protein show moderate sequence similarity to pendrin and related sulphate/anion transport proteins. Voltage-induced shape changes can be elicited in cultured human kidney cells that express prestin. The mechanical response of outer hair cells to voltage change is accompanied by a `gating current', which is manifested as nonlinear capacitance. We also demonstrate this nonlinear capacitance in transfected kidney cells. We conclude that prestin is the motor protein of the cochlear outer hair cell.

  9. Outer Hair Cell Electromotility in vivo

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Sripriya; Nuttall, Alfred L.

    2011-11-01

    The effectiveness of outer hair cell (OHC) electro-motility in vivo has been challenged by the expected low-pass filtering of the transmembrane potential due to the cell's own capacitance. The OHC electromotility is characterized here by an electromechanical ratio defined as the ratio of the OHC contraction to the transmembrane potential. This ratio has been measured in isolated cells to be approximately 26 nm/mV. We estimate the OHC electromechanical ratio in vivo from the recently measured displacements of the reticular lamina and the basilar membrane near the 19 kHz characteristic frequency in the basal region of guinea pig cochlea. Our analysis strongly suggests OHC electromotility process is effective for cochlear amplification in vivo at least around the characteristic frequency of the basal location in spite of the low-pass filtering.

  10. Decreasing Outer Hair Cell Membrane Cholesterol Increases Cochlear Electromechanics

    NASA Astrophysics Data System (ADS)

    Brownell, William E.; Jacob, Stefan; Hakizimana, Pierre; Ulfendahl, Mats; Fridberger, Anders

    2011-11-01

    The effect of decreasing membrane cholesterol on the mechanical response of the cochlea to acoustic and/or electrical stimulation was monitored using laser interferometry. In contrast to pharmacological interventions that typically decrease cochlear electromechanics, reducing membrane cholesterol increased the response. The electromechanical response in untreated preparations was asymmetric with greater displacements in response to positive currents and cholesterol depletion increased the asymmetry. The results confirm that outer hair cell electromotility is enhanced by low membrane cholesterol. The asymmetry of the response indicates the outer hair cell resting membrane potential is hyperpolarized relative to the voltage of maximum gain for the outer hair cell voltage-displacement function. The magnitude of the response increase suggests a non-uniform distribution of cholesterol along the lateral wall of normal adult outer hair cells.

  11. Characterization of Transcriptomes of Cochlear Inner and Outer Hair Cells

    PubMed Central

    Liu, Huizhan; Pecka, Jason L.; Zhang, Qian; Soukup, Garrett A.; Beisel, Kirk W.

    2014-01-01

    Inner hair cells (IHCs) and outer hair cells (OHCs) are the two types of sensory receptor cells that are critical for hearing in the mammalian cochlea. IHCs and OHCs have different morphology and function. The genetic mechanisms that define their morphological and functional specializations are essentially unknown. The transcriptome reflects the genes that are being actively expressed in a cell and holds the key to understanding the molecular mechanisms of the biological properties of the cell. Using DNA microarray, we examined the transcriptome of 2000 individually collected IHCs and OHCs from adult mouse cochleae. We show that 16,647 and 17,711 transcripts are expressed in IHCs and OHCs, respectively. Of those genes, ∼73% are known genes, 22% are uncharacterized sequences, and 5.0% are noncoding RNAs in both populations. A total of 16,117 transcripts are expressed in both populations. Uniquely and differentially expressed genes account for <15% of all genes in either cell type. The top 10 differentially expressed genes include Slc17a8, Dnajc5b, Slc1a3, Atp2a3, Osbpl6, Slc7a14, Bcl2, Bin1, Prkd1, and Map4k4 in IHCs and Slc26a5, C1ql1, Strc, Dnm3, Plbd1, Lbh, Olfm1, Plce1, Tectb, and Ankrd22 in OHCs. We analyzed commonly and differentially expressed genes with the focus on genes related to hair cell specializations in the apical, basolateral, and synaptic membranes. Eighty-three percent of the known deafness-related genes are expressed in hair cells. We also analyzed genes involved in cell-cycle regulation. Our dataset holds an extraordinary trove of information about the molecular mechanisms underlying hair cell morphology, function, pathology, and cell-cycle control. PMID:25122905

  12. Optimal Electrical Properties of Outer Hair Cells Ensure Cochlear Amplification

    PubMed Central

    Nam, Jong-Hoon; Fettiplace, Robert

    2012-01-01

    The organ of Corti (OC) is the auditory epithelium of the mammalian cochlea comprising sensory hair cells and supporting cells riding on the basilar membrane. The outer hair cells (OHCs) are cellular actuators that amplify small sound-induced vibrations for transmission to the inner hair cells. We developed a finite element model of the OC that incorporates the complex OC geometry and force generation by OHCs originating from active hair bundle motion due to gating of the transducer channels and somatic contractility due to the membrane protein prestin. The model also incorporates realistic OHC electrical properties. It explains the complex vibration modes of the OC and reproduces recent measurements of the phase difference between the top and the bottom surface vibrations of the OC. Simulations of an individual OHC show that the OHC somatic motility lags the hair bundle displacement by ∼90 degrees. Prestin-driven contractions of the OHCs cause the top and bottom surfaces of the OC to move in opposite directions. Combined with the OC mechanics, this results in ∼90 degrees phase difference between the OC top and bottom surface vibration. An appropriate electrical time constant for the OHC membrane is necessary to achieve the phase relationship between OC vibrations and OHC actuations. When the OHC electrical frequency characteristics are too high or too low, the OHCs do not exert force with the correct phase to the OC mechanics so that they cannot amplify. We conclude that the components of OHC forward and reverse transduction are crucial for setting the phase relations needed for amplification. PMID:23209783

  13. Electrokinetic shape changes of cochlear outer hair cells.

    PubMed

    Kachar, B; Brownell, W E; Altschuler, R; Fex, J

    Rapid mechanical changes have been associated with electrical activity in a variety of non-muscle excitable cells. Recently, mechanical changes have been reported in cochlear hair cells. Here we describe electrically evoked mechanical changes in isolated cochlear outer hair cells (OHCs) with characteristics which suggest that direct electrokinetic phenomena are implicated in the response. OHCs make up one of two mechanosensitive hair cell populations in the mammalian cochlea; their role may be to modulate the micromechanical properties of the hearing organ through mechanical feedback mechanisms. In the experiments described here, we applied sinusoidally modulated electrical potentials across isolated OHCs; this produced oscillatory elongation and shortening of the cells and oscillatory displacements of intracellular organelles. The movements were a function of the direction and strength of the electrical field, were inversely related to the ionic concentration of the medium, and occurred in the presence of metabolic uncouplers. The cylindrical shape of the OHCs and the presence of a system of membranes within the cytoplasm--laminated cisternae--may provide the anatomical substrate for electrokinetic phenomena such as electro-osmosis.

  14. Electrokinetic shape changes of cochlear outer hair cells

    NASA Astrophysics Data System (ADS)

    Kachar, Bechara; Brownell, William E.; Altschuler, Richard; Fex, Jörgen

    1986-07-01

    Rapid mechanical changes have been associated with electrical activity in a variety of non-muscle excitable cells1-5. Recently, mechanical changes have been reported in cochlear hair cells6-8. Here we describe electrically evoked mechanical changes in isolated cochlear outer hair cells (OHCs) with characteristics which suggest that direct electrokinetic phenomena are implicated in the response. OHCs make up one of two mechanosensitive hair cell populations in the mammalian cochlea; their role may be to modulate the micromechanical properties of the hearing organ through mechanical feedback mechanisms6-10. In the experiments described here, we applied sinusoidally modulated electrical potentials across isolated OHCs; this produced oscillatory elongation and shortening of the cells and oscillatory displacements of intracellular organdies. The movements were a function of the direction and strength of the electrical field, were inversely related to the ionic concentration of the medium, and occurred in the presence of metabolic uncouplers. The cylindrical shape of the OHCs and the presence of a system of membranes within the cytoplasm-laminated cisternae11-may provide the anatomical substrate for electrokinetic phenomena such as electro-osmosis12,13.

  15. Activation of BK and SK channels by efferent synapses on outer hair cells in high-frequency regions of the rodent cochlea.

    PubMed

    Rohmann, Kevin N; Wersinger, Eric; Braude, Jeremy P; Pyott, Sonja J; Fuchs, Paul Albert

    2015-02-01

    Cholinergic neurons of the brainstem olivary complex project to and inhibit outer hair cells (OHCs), refining acoustic sensitivity of the mammalian cochlea. In all vertebrate hair cells studied to date, cholinergic inhibition results from the combined action of ionotropic acetylcholine receptors and associated calcium-activated potassium channels. Although inhibition was thought to involve exclusively small conductance (SK potassium channels), recent findings have shown that BK channels also contribute to inhibition in basal, high-frequency OHCs after the onset of hearing. Here we show that the waveform of randomly timed IPSCs (evoked by high extracellular potassium) in high-frequency OHCs is altered by blockade of either SK or BK channels, with BK channels supporting faster synaptic waveforms and SK channels supporting slower synaptic waveforms. Consistent with these findings, IPSCs recorded from high-frequency OHCs that express BK channels are briefer than IPSCs recorded from low-frequency (apical) OHCs that do not express BK channels and from immature high-frequency OHCs before the developmental onset of BK channel expression. Likewise, OHCs of BKα(-/-) mice lacking the pore-forming α-subunit of BK channels have longer IPSCs than do the OHCs of BKα(+/+) littermates. Furthermore, serial reconstruction of electron micrographs showed that postsynaptic cisterns of BKα(-/-) OHCs were smaller than those of BKα(+/+) OHCs, and immunofluorescent quantification showed that efferent presynaptic terminals of BKα(-/-) OHCs were smaller than those of BKα(+/+) OHCs. Together, these findings indicate that BK channels contribute to postsynaptic function, and influence the structural maturation of efferent-OHC synapses. PMID:25653344

  16. Outer Hair Cells and Prestin—A Moderated Discussion

    NASA Astrophysics Data System (ADS)

    Brownell, William E.; Gummer, Anthony W.

    2011-11-01

    A discussion moderated by the authors on the topic "Outer Hair Cells and Prestin" was held on 18 July 2011 at the 11th International Mechanics of Hearing Workshop in Williamstown, Massachusetts. The paper provides an edited transcript of the session.

  17. Modulation by purines of calcium-activated non-selective cation channels in the outer hair cells of the guinea-pig cochlea.

    PubMed Central

    Van den Abbeele, T; Tran Ba Huy, P; Teulon, J

    1996-01-01

    1. The cell-attached and cell-free configurations of the patch-clamp technique were used to investigate whether external ATP and its derivatives modulate channel activity in outer hair cells freshly isolated from the guinea-pig cochlea. 2. Submicromolar concentrations of ATP stimulated a non-selective cation channel with a conductance of about 25 pS. The ATP-elicited stimulation was partly blocked by the membrane-permeant blocker 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC), and mimicked by the calcium ionophore, ionomycin, suggesting that the channel activated by ATP is identical to a previously reported calcium-activated non-selective (CAN) cation channel. 3. The P2x agonist beta, gamma-methylene-ATP (beta, gamma-MeATP, 10 microM) and the P2Y agonist 2-methyl-thio-ATP (2-MeSATP, 1 microM) both activated CAN channels. The effect of ATP was inhibited by the P2 antagonist suramin but not by the P2Y antagonist Reactive Blue 2. These results suggest that both purinergic receptors are involved in the ATP-evoked response and that internal calcium acts as a second messenger for opening CAN channels. 4. In contrast, adenosine inhibited CAN channels. This effect was reproduced by the A2 agonist 5'-N-ethylcarboxyamidoadenosine (NECA) and the permeant cAMP analogue 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP), but not by the A1 agonist N6-cyclo-hexyladenosine (CHA). CAN channels were also inhibited when the catalytic subunit of protein kinase A was applied internally on inside-out patches, suggesting that adenosine A2 receptor downregulates CAN channels via a cAMP-dependent phosphorylation. Images Figure 10 PMID:8814608

  18. The effect of quinine on outer hair cell shape, compliance and force.

    PubMed

    Jarboe, J K; Hallworth, R

    1999-06-01

    Quinine intoxication causes a well-described syndrome that includes tinnitus, sensorineural hearing loss and vertigo. The pathophysiology of quinine's effects on hearing is unknown, but may include a peripheral component. The cochlear outer hair cell is known to be motile and to contribute force to amplify the vibration pattern of the organ of Corti. The outer hair cell is also a target of diseases involving tinnitus and sensorineural hearing loss, including salicylate intoxication. These effects may be mediated through changes either in motile force or in mechanical properties. Quinine's effects on outer hair cell motility and mechanical properties have therefore been examined in vitro. Quinine at 5.0 mM substantially decreased active force generation in isolated guinea pig cochlear outer hair cells. Isolated cells also elongated and dilated in diameter when exposed to 5.0 mM quinine. No consistent changes in mechanical properties were observed. 1.0 mM quinine was ineffective in either force reduction or elongation. Trifluoperazine, a calmodulin inhibitor, and ML-9, a blocker of myosin light chain kinases, were ineffective in blocking quinine-induced force reduction or elongation. Deferoxamine, a hydroxyl free radical scavenger, also failed to block either the force decrease or the elongation.

  19. Direct immunofluorescence of the outer root sheath in anagen and telogen hair in pemphigus vulgaris and pemphigus foliaceus.

    PubMed

    Tanasilovic, Srdjan; Medenica, Ljiljana; Popadic, Svetlana

    2014-11-01

    Direct immunofluorescence of peri-lesional skin is the gold standard in the diagnosis of pemphigus. A specific immunofluorescence pattern may also be demonstrated in the outer root sheath of anagen and telogen hair. We demonstrated an intercellular reticular deposition of immunoglobulin G in the outer root sheath of plucked anagen and telogen hair in all pemphigus vulgaris patients with active disease and for the first time in all patients with active pemphigus foliaceus. Moreover, we demonstrated for the first time that plucked hair samples may be kept at -20°C for at least 2 weeks before immunofluorescent staining and analysis.

  20. Effects of salicylate on sound-evoked outer hair cell stereocilia deflections.

    PubMed

    Hakizimana, Pierre; Fridberger, Anders

    2015-09-01

    Hearing depends on sound-evoked deflections of the stereocilia that protrude from the sensory hair cells in the inner ear. Although sound provides an important force driving stereocilia, forces generated through mechanically sensitive ion channels and through the motor protein prestin have been shown to influence stereocilia motion in solitary hair cells. While a possible influence of prestin on mechanically sensitive ion channels has not been systematically investigated, a decrease in transducer currents is evident in solitary hair cells when prestin is blocked with salicylate, raising the question of whether a reduced prestin activity or salicylate itself affected the mechanotransduction apparatus. We used two- and three-dimensional time-resolved confocal imaging to visualize outer hair cell stereocilia during sound stimulation in the apical turn of cochlear explant preparations from the guinea pig. Surprisingly, following application of salicylate, outer hair cell stereocilia deflections increased, while cochlear microphonic potentials decreased. However, when prestin activity was altered with the chloride ionophore tributyltin, both the cochlear microphonic potential and the stereocilia deflection amplitude decreased. Neither positive nor negative current stimulation abolished the bundle movements in the presence of salicylate, indicating that the observed effects did not depend on the endocochlear potential. These data suggest that salicylate may alter the mechanical properties of stereocilia, decreasing their bending stiffness. PMID:25392240

  1. Effects of salicylate on sound-evoked outer hair cell stereocilia deflections.

    PubMed

    Hakizimana, Pierre; Fridberger, Anders

    2015-09-01

    Hearing depends on sound-evoked deflections of the stereocilia that protrude from the sensory hair cells in the inner ear. Although sound provides an important force driving stereocilia, forces generated through mechanically sensitive ion channels and through the motor protein prestin have been shown to influence stereocilia motion in solitary hair cells. While a possible influence of prestin on mechanically sensitive ion channels has not been systematically investigated, a decrease in transducer currents is evident in solitary hair cells when prestin is blocked with salicylate, raising the question of whether a reduced prestin activity or salicylate itself affected the mechanotransduction apparatus. We used two- and three-dimensional time-resolved confocal imaging to visualize outer hair cell stereocilia during sound stimulation in the apical turn of cochlear explant preparations from the guinea pig. Surprisingly, following application of salicylate, outer hair cell stereocilia deflections increased, while cochlear microphonic potentials decreased. However, when prestin activity was altered with the chloride ionophore tributyltin, both the cochlear microphonic potential and the stereocilia deflection amplitude decreased. Neither positive nor negative current stimulation abolished the bundle movements in the presence of salicylate, indicating that the observed effects did not depend on the endocochlear potential. These data suggest that salicylate may alter the mechanical properties of stereocilia, decreasing their bending stiffness.

  2. Membrane tether formation from voltage-clamped outer hair cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Ermilov, Sergey A.; Murdock, David R.; Brownell, William E.; Anvari, Bahman

    2004-06-01

    Outer hair cells contribute an active mechanical feedback to the vibrations of the cochlear structures resulting in the high sensitivity and frequency selectivity of normal hearing. We have designed and implemented a novel experimental setup that combines optical tweezers with patch-clamp apparatus to investigate the electromechanical properties of cellular plasma membranes. A micron-size bead trapped by the optical tweezers is brought in contact with the membrane of a voltage-clamped cell, and subsequently moved away to form a plasma membrane tether. Bead displacement during tether elongation is monitored by a quadrant photodetector to obtain time-resolved measurements of the tethering force. Salient information associated with the mechanical properties of the membrane tether can thus be obtained. Tethers can be pulled from the cell membrane at different holding potentials, and the tether force response can be measured while changing transmembrane potential. Experimental results from outer hair cells and human embryonic kidney cells are presented.

  3. Sensory Transduction and Adaptation in Inner and Outer Hair Cells of the Mouse Auditory System

    PubMed Central

    Stauffer, Eric A.; Holt, Jeffrey R.

    2009-01-01

    Auditory function in the mammalian inner ear is optimized by collaboration of two classes of sensory cells known as inner and outer hair cells. Outer hair cells amplify and tune sound stimuli that are transduced and transmitted by inner hair cells. Although they subserve distinct functions, they share a number of common properties. Here we compare the properties of mechanotransduction and adaptation recorded from inner and outer hair cells of the postnatal mouse cochlea. Rapid outer hair bundle deflections of about 0.5 micron evoked average maximal transduction currents of about 325 pA, whereas inner hair bundle deflections of about 0.9 micron were required to evoke average maximal currents of about 310 pA. The similar amplitude was surprising given the difference in the number of stereocilia, 81 for outer hair cells and 48 for inner hair cells, but may be reconciled by the difference in single-channel conductance. Step deflections of inner and outer hair bundles evoked adaptation that had two components: a fast component that consisted of about 60% of the response occurred over the first few milliseconds and a slow component that consisted of about 40% of the response followed over the subsequent 20 –50 ms. The rate of the slow component in both inner and outer hair cells was similar to the rate of slow adaptation in vestibular hair cells. The rate of the fast component was similar to that of auditory hair cells in other organisms and several properties were consistent with a model that proposes calcium-dependent release of tension allows transduction channel closure. PMID:17942617

  4. Syndecan-1 is strongly expressed in the anagen hair follicle outer root sheath and in the dermal papilla but expression diminishes with involution of the hair follicle.

    PubMed

    Bayer-Garner, Ilene B; Sanderson, Ralph D; Smoller, Bruce R

    2002-12-01

    Syndecan-1 is the prototypic member of a family of heparan sulfate-bearing cell surface proteoglycans that function in adhesion, cell-extracellular matrix interactions, migration, and proliferation. During embryogenesis, syndecan-1 expression in the epithelium is downregulated when the epithelium gives rise to motile mesenchymal cells, whereas mesenchymal syndecan-1 expression is upregulated during organ formation. In aggressive basal cell carcinomas, syndecan-1 expression is evident in the stroma. Some neoplastic cells induce stroma to meet needs for growth, and it may be the mesenchymal cells that produce and shed syndecan-1 into the stroma. The physiologic mechanism by which the hair follicle undergoes its cyclic process of involution and formation of a new active hair follicle is not well understood. Sixty scalp biopsies and a large scalp resection were evaluated for syndecan-1 expression within hair follicles in the growing (anagen), involuting (catagen), and resting (telogen) phases. Strong syndecan-1 immunoreactivity was evident in the outer root sheath (ORS) of the anagen hair follicle, but this expression diminished in intensity with the involution and resting stages in the hair follicle cycle. The diminution of syndecan-1 immunoreactivity in the ORS of involuting and resting hair follicles may be a result of terminal keratinocyte differentiation. Syndecan-1 was also present in the dermal papilla of the anagen hair follicle, where it may promote growth factor-mediated cell signaling that induces and maintains growth of the hair shaft and the inner root sheath.

  5. Membrane tether formation from outer hair cells with optical tweezers.

    PubMed Central

    Li, Zhiwei; Anvari, Bahman; Takashima, Masayoshi; Brecht, Peter; Torres, Jorge H; Brownell, William E

    2002-01-01

    Optical tweezers were used to characterize the mechanical properties of the outer hair cell (OHC) plasma membrane by pulling tethers with 4.5-microm polystyrene beads. Tether formation force and tether force were measured in static and dynamic conditions. A greater force was required for tether formations from OHC lateral wall (499 +/- 152 pN) than from OHC basal end (142 +/- 49 pN). The difference in the force required to pull tethers is consistent with an extensive cytoskeletal framework associated with the lateral wall known as the cortical lattice. The apparent plasma membrane stiffness, estimated under the static conditions by measuring tether force at different tether length, was 3.71 pN/microm for OHC lateral wall and 4.57 pN/microm for OHC basal end. The effective membrane viscosity was measured by pulling tethers at different rates while continuously recording the tether force, and estimated in the range of 2.39 to 5.25 pN x s/microm. The viscous force most likely results from the viscous interactions between plasma membrane lipids and the OHC cortical lattice and/or integral membrane proteins. The information these studies provide on the mechanical properties of the OHC lateral wall is important for understanding the mechanism of OHC electromotility. PMID:11867454

  6. Lowering extracellular chloride concentration alters outer hair cell shape.

    PubMed

    Cecola, R P; Bobbin, R P

    1992-08-01

    In general, increasing external K+ concentration, as well as exposure to hypotonic medium, induces a shortening of outer hair cells (OHCs) accompanied by an increase in width and volume. One possible mechanism suggested for these changes is a movement of Cl- and/or water across the cell membrane. We therefore examined the role of Cl- in OHC volume maintenance by testing the effect of decreasing extracellular Cl- concentration on OHC length and shape. In addition, the effect of hypotonic medium was examined. OHCs were isolated from guinea pig cochleae, mechanically dissociated and dispersed, and placed in a modified Hanks balanced salt solution (HBS). Exposing the cells to a Cl(-)-free HBS produced an initial shortening, which was rapidly followed by an increase in length. After about 9 min of exposure to Cl(-)-free HBS, the cells appeared to lose all water and collapsed. Upon return to normal HBS, the OHCs returned to their normal shape. We speculate that the collapse of the OHCs may be due to the loss of intracellular Cl-, which, in turn, resulted in the loss of intracellular K+ and water. The results indicate that Cl- contributes greatly to the maintenance of OHC volume. In addition, we confirmed that isolated OHCs swell in hypotonic medium and maintain their swollen state until returned to normal medium. The mechanism for maintenance of the swollen state is unknown.

  7. Loss of function of Ywhah in mice induces deafness and cochlear outer hair cells' degeneration

    PubMed Central

    Buret, L; Rebillard, G; Brun, E; Angebault, C; Pequignot, M; Lenoir, M; Do-cruzeiro, M; Tournier, E; Cornille, K; Saleur, A; Gueguen, N; Reynier, P; Amati-Bonneau, P; Barakat, A; Blanchet, C; Chinnery, P; Yu-Wai-Man, P; Kaplan, J; Roux, A-F; Van Camp, G; Wissinger, B; Boespflug-Tanguy, O; Giraudet, F; Puel, J-L; Lenaers, G; Hamel, C; Delprat, B; Delettre, C

    2016-01-01

    In vertebrates, 14-3-3 proteins form a family of seven highly conserved isoforms with chaperone activity, which bind phosphorylated substrates mostly involved in regulatory and checkpoint pathways. 14-3-3 proteins are the most abundant protein in the brain and are abundantly found in the cerebrospinal fluid in neurodegenerative diseases, suggesting a critical role in neuron physiology and death. Here we show that 14-3-3eta-deficient mice displayed auditory impairment accompanied by cochlear hair cells' degeneration. We show that 14-3-3eta is highly expressed in the outer and inner hair cells, spiral ganglion neurons of cochlea and retinal ganglion cells. Screening of YWHAH, the gene encoding the 14-3-3eta isoform, in non-syndromic and syndromic deafness, revealed seven non-synonymous variants never reported before. Among them, two were predicted to be damaging in families with syndromic deafness. In vitro, variants of YWHAH induce mild mitochondrial fragmentation and severe susceptibility to apoptosis, in agreement with a reduced capacity of mutated 14-3-3eta to bind the pro-apoptotic Bad protein. This study demonstrates that YWHAH variants can have a substantial effect on 14-3-3eta function and that 14-3-3eta could be a critical factor in the survival of outer hair cells. PMID:27275396

  8. Cochlear outer hair cells undergo an apical circumference remodeling constrained by the hair bundle shape.

    PubMed

    Etournay, Raphaël; Lepelletier, Léa; Boutet de Monvel, Jacques; Michel, Vincent; Cayet, Nadège; Leibovici, Michel; Weil, Dominique; Foucher, Isabelle; Hardelin, Jean-Pierre; Petit, Christine

    2010-04-01

    Epithelial cells acquire diverse shapes relating to their different functions. This is particularly relevant for the cochlear outer hair cells (OHCs), whose apical and basolateral shapes accommodate the functioning of these cells as mechano-electrical and electromechanical transducers, respectively. We uncovered a circumferential shape transition of the apical junctional complex (AJC) of OHCs, which occurs during the early postnatal period in the mouse, prior to hearing onset. Geometric analysis of the OHC apical circumference using immunostaining of the AJC protein ZO1 and Fourier-interpolated contour detection characterizes this transition as a switch from a rounded-hexagon to a non-convex circumference delineating two lateral lobes at the neural side of the cell, with a negative curvature in between. This shape tightly correlates with the 'V'-configuration of the OHC hair bundle, the apical mechanosensitive organelle that converts sound-evoked vibrations into variations in cell membrane potential. The OHC apical circumference remodeling failed or was incomplete in all the mouse mutants affected in hair bundle morphogenesis that we tested. During the normal shape transition, myosin VIIa and myosin II (A and B isoforms) displayed polarized redistributions into and out of the developing lobes, respectively, while Shroom2 and F-actin transiently accumulated in the lobes. Defects in these redistributions were observed in the mutants, paralleling their apical circumference abnormalities. Our results point to a pivotal role for actomyosin cytoskeleton tensions in the reshaping of the OHC apical circumference. We propose that this remodeling contributes to optimize the mechanical coupling between the basal and apical poles of mature OHCs.

  9. Piezo1 haploinsufficiency does not alter mechanotransduction in mouse cochlear outer hair cells.

    PubMed

    Corns, Laura F; Marcotti, Walter

    2016-02-01

    The mechanoelectrical transducer (MET) channels located at the stereocilia tip of cochlear hair cells are crucial to convert the mechanical energy of sound into receptor potentials, but the identity of its pore-forming subunits remains uncertain. Piezo1, which has been identified in the transcriptome of mammalian cochlear hair cells, encodes a transmembrane protein that forms mechanosensitive channels in other tissues. We investigated the properties of the MET channel in outer hair cells (OHCs) of Piezo1 mice (postnatal day 6-9). The MET current was elicited by deflecting the hair bundle of OHCs using sinewave and step stimuli from a piezo-driven fluid jet. Apical and basal OHCs were investigated because the properties of the MET channel vary along the cochlea. We found that the maximal MET current amplitude and the resting open probability of the MET channel in OHCs were similar between Piezo1(+/-) haploinsufficient mice and wild-type littermates. The sensitivity to block by the permeant MET channel blocker dihydrostreptomycin was also similar between the two genotypes. Finally, the anomalous mechano-gated current, which is activated by sheer force and which is tip-link independent, was unaffected in OHCs from Piezo1(+/-) haploinsufficient mice. Our results suggest that Piezo1 is unlikely to be a component of the MET channel complex in mammalian cochlear OHCs.

  10. Piezo1 haploinsufficiency does not alter mechanotransduction in mouse cochlear outer hair cells.

    PubMed

    Corns, Laura F; Marcotti, Walter

    2016-02-01

    The mechanoelectrical transducer (MET) channels located at the stereocilia tip of cochlear hair cells are crucial to convert the mechanical energy of sound into receptor potentials, but the identity of its pore-forming subunits remains uncertain. Piezo1, which has been identified in the transcriptome of mammalian cochlear hair cells, encodes a transmembrane protein that forms mechanosensitive channels in other tissues. We investigated the properties of the MET channel in outer hair cells (OHCs) of Piezo1 mice (postnatal day 6-9). The MET current was elicited by deflecting the hair bundle of OHCs using sinewave and step stimuli from a piezo-driven fluid jet. Apical and basal OHCs were investigated because the properties of the MET channel vary along the cochlea. We found that the maximal MET current amplitude and the resting open probability of the MET channel in OHCs were similar between Piezo1(+/-) haploinsufficient mice and wild-type littermates. The sensitivity to block by the permeant MET channel blocker dihydrostreptomycin was also similar between the two genotypes. Finally, the anomalous mechano-gated current, which is activated by sheer force and which is tip-link independent, was unaffected in OHCs from Piezo1(+/-) haploinsufficient mice. Our results suggest that Piezo1 is unlikely to be a component of the MET channel complex in mammalian cochlear OHCs. PMID:26869684

  11. Fast adaptation and Ca2+-sensitivity of the mechanotransducer require myosin-XVa in inner but not outer cochlear hair cells

    PubMed Central

    Stepanyan, Ruben; Frolenkov, Gregory I.

    2009-01-01

    In inner ear hair cells, activation of mechotransduction channels is followed by extremely rapid deactivation that depends on the influx of Ca2+ through these channels. Although the molecular mechanisms of this “fast” adaptation are largely unknown, the predominant models assume Ca2+ sensitivity as an intrinsic property of yet unidentified mechanotransduction channels. Here we examined mechanotransduction in the hair cells of young postnatal shaker 2 mice (Myo15sh2/sh2). These mice have no functional myosin-XVa, which is critical for normal growth of mechanosensory stereocilia of hair cells. Although stereocilia of both inner and outer hair cells of Myo15sh2/sh2 mice lack myosin-XVa and are abnormally short, these cells have dramatically different hair bundle morphology. Myo15sh2/sh2 outer hair cells retain a “staircase” arrangement of the abnormally short stereocilia and prominent tip links. Myo15sh2/sh2 inner hair cells do not have obliquely oriented tip links and their mechanosensitivity is mediated exclusively by “top-to-top” links between equally short stereocilia. In both inner and outer hair cells of Myo15sh2/sh2 mice, we found mechanotransduction responses with a normal “wild type” amplitude and speed of activation. Surprisingly, only outer hair cells exhibit fast adaptation and sensitivity to extracellular Ca2+. In Myo15sh2/sh2 inner hair cells, fast adaptation is disrupted and the transduction current is insensitive to extracellular Ca2+. We conclude that the Ca2+-sensitivity of the mechanotransduction channels and the fast adaptation require a structural environment that is dependent on myosin-XVa and is disrupted in Myo15sh2/sh2 inner hair cells, but not in Myo15sh2/sh2 outer hair cells. PMID:19339598

  12. Hypotonic swelling of salicylate-treated cochlear outer hair cells.

    PubMed

    Zhi, Man; Ratnanather, J Tilak; Ceyhan, Elvan; Popel, Aleksander S; Brownell, William E

    2007-06-01

    The outer hair cell (OHC) is a hydrostat with a low hydraulic conductivity of Pf=3x10(-4) cm/s across the plasma membrane (PM) and subsurface cisterna that make up the OHC's lateral wall. The SSC is structurally and functionally a transport barrier in normal cells that is known to be disrupted by salicylate. The effect of sodium salicylate on Pf is determined from osmotic experiments in which isolated, control and salicylate-treated OHCs were exposed to hypotonic solutions in a constant flow chamber. The value of Pf=3.5+/-0.5x10(-4) cm/s (mean+/-s.e.m., n=34) for salicylate-treated OHCs was not significantly different from Pf=2.4+/-0.3x10(-4) cm/s (mean+/-s.e.m., n=31) for untreated OHCs (p=.3302). Thus Pf is determined by the PM and is unaffected by salicylate treatment. The ratio of longitudinal strain to radial strain epsilonz/epsilonc=-0.76 for salicylate-treated OHCs was significantly smaller (p=.0143) from -0.72 for untreated OHCs, and is also independent of the magnitude of the applied osmotic challenge. Salicylate-treated OHCs took longer to attain a steady-state volume which is larger than that for untreated OHCs and increased in volume by 8-15% prior to hypotonic perfusion unlike sodium alpha-ketoglutarate-treated OHCs. It is suggested that depolymerization of cytoskeletal proteins and/or glycogen may be responsible for the large volume increase in salicylate-treated OHCs as well as the different responses to different modes of application of the hypotonic solution. PMID:17400411

  13. Evidence of Piezoelectric Resonance in Isolated Outer Hair Cells

    PubMed Central

    Rabbitt, R. D.; Ayliffe, H. E.; Christensen, D.; Pamarthy, K.; Durney, C.; Clifford, S.; Brownell, W. E.

    2005-01-01

    Our results demonstrate high-frequency electrical resonances in outer hair cells (OHCs) exhibiting features analogous to classical piezoelectric transducers. The fundamental (first) resonance frequency averaged fn ∼ 13 kHz (Q ∼ 1.7). Higher-order resonances were also observed. To obtain these results, OHCs were positioned in a custom microchamber and subjected to stimulating electric fields along the axis of the cell (1–100 kHz, 4–16 mV/80 μm). Electrodes embedded in the side walls of the microchamber were used in a voltage-divider configuration to estimate the electrical admittance of the top portion of the cell-loaded chamber (containing the electromotile lateral wall) relative to the lower portion (containing the basal plasma membrane). This ratio exhibited resonance-like electrical tuning. Resonance was also detected independently using a secondary 1-MHz radio-frequency interrogation signal applied transversely across the cell diameter. The radio-frequency interrogation revealed changes in the transverse electric impedance modulated by the axial stimulus. Modulation of the transverse electric impedance was particularly pronounced near the resonant frequencies. OHCs used in our study were isolated from the apical region of the guinea pig cochlea, a region that responds exclusively to low-frequency acoustic stimuli. In this sense, electrical resonances we observed in vitro were at least an order of magnitude higher (ultrasonic) than the best physiological frequency of the same OHCs under acoustic stimuli in vivo. These resonance data further support the piezoelectric theory of OHC function, and implicate piezoelectricity in the broad-band electromechanical behavior of OHCs underlying mammalian cochlear function. PMID:15613632

  14. Photometric recording of transmembrane potential in outer hair cells

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Oghalai, John S.; Saggau, Peter; Rabbitt, Richard D.; Brownell, William E.

    2006-06-01

    Cochlear outer hair cells (OHCs) are polarized epithelial cells that have mechanoelectrical transduction channels within their apical stereocilia and produce electromotile force along their lateral wall. Phase shifts, or time delays, in the transmembrane voltage occurring at different axial locations along the cell may contribute to our understanding of how these cells operate at auditory frequencies. We developed a method to optically measure the phase of the OHC transmembrane potential using the voltage-sensitive dye (VSD) di-8-ANEPPS. The exit aperture of a fibre-optic light source was driven in two dimensions so that a 24 µm spot of excitation light could be positioned along the length of the OHC. We used the whole-cell patch-clamp technique in the current-clamp mode to stimulate the OHC at the base. The photometric response and the voltage response were monitored with a photodetector and patch-clamp amplifier, respectively. The photometric response was used to measure the regional changes in the membrane potential in response to maintained (dc) and sinusoidal (ac) current stimuli applied at the base of the cell. We used a neutral density filter to lower the excitation light intensity and reduce phototoxicity. A sensitive detector and lock-in amplifier were used to measure the small ac VSD signal. This permitted measurements of the ac photometric response below the noise floor of the static fluorescence. The amplitude and phase components of the photometric response were recorded for stimuli up to 800 Hz. VSD data at 400-800 Hz show the presence of a small phase delay between the stimulus voltage at the base of the cell and the local membrane potential measured along the lateral wall. Results are consistent with the hypothesis that OHCs exhibit inhomogeneous membrane potentials that vary with position in analogy with the voltage in nerve axons.

  15. The potential and electric field in the cochlear outer hair cell membrane

    PubMed Central

    Harland, Ben; Lee, Wen-han; Brownell, William E.; Sun, Sean X.; Spector, Alexander A.

    2015-01-01

    Outer hair cell electromechanics, critically important to mammalian active hearing, is driven by the cell membrane potential. The membrane protein prestin is a crucial component of the active outer hair cell’s motor. The focus of the paper is the analysis of the local membrane potential and electric field resulting from the interaction of electric charges involved. Here the relevant charges are the ions inside and outside the cell, lipid bilayer charges, and prestin-associated charges (mobile-transferred by the protein under the action of the applied field and stationary-relatively unmoved by the field). The electric potentials across and along the membrane are computed for the case of an applied DC-field. The local amplitudes and phases of the potential under different frequencies are analyzed for the case of a DC+AC-field. We found that the effect of the system of charges alters the electric potential and internal field, which deviate significantly from their traditional linear and constant distributions. Under DC+AC conditions, the strong frequency dependence of the prestin mobile charge has a relatively small effect on the amplitude and phase of the resulting potential. The obtained results can help in a better understanding and experimental verification of the mechanism of prestin performance. PMID:25687712

  16. The potential and electric field in the cochlear outer hair cell membrane.

    PubMed

    Harland, Ben; Lee, Wen-han; Brownell, William E; Sun, Sean X; Spector, Alexander A

    2015-05-01

    Outer hair cell electromechanics, critically important to mammalian active hearing, is driven by the cell membrane potential. The membrane protein prestin is a crucial component of the active outer hair cell's motor. The focus of the paper is the analysis of the local membrane potential and electric field resulting from the interaction of electric charges involved. Here the relevant charges are the ions inside and outside the cell, lipid bilayer charges, and prestin-associated charges (mobile-transferred by the protein under the action of the applied field, and stationary-relatively unmoved by the field). The electric potentials across and along the membrane are computed for the case of an applied DC-field. The local amplitudes and phases of the potential under different frequencies are analyzed for the case of a DC + AC-field. We found that the effect of the system of charges alters the electric potential and internal field, which deviate significantly from their traditional linear and constant distributions. Under DC + AC conditions, the strong frequency dependence of the prestin mobile charge has a relatively small effect on the amplitude and phase of the resulting potential. The obtained results can help in a better understanding and experimental verification of the mechanism of prestin performance. PMID:25687712

  17. Membrane recycling at the infranuclear pole of the outer hair cell

    NASA Astrophysics Data System (ADS)

    Harasztosi, Csaba; Harasztosi, Emese; Gummer, Anthony W.

    2015-12-01

    Rapid endocytic activity of outer hair cells (OHCs) in the guinea-pig cochlea has been already studied using the fluorescent membrane marker FM1-43. It was demonstrated that vesicles were endocytosed at the apical pole of OHCs and transcytosed to the basolateral membrane and through a central strand towards the nucleus. The significance of endocytic activity in the infranuclear region is still not clear. Therefore, in this study endocytic activity at the synaptic pole of OHCs was investigated. Confocal laser scanning microscopy was used to visualize dye uptake of OHCs isolated from the guinea-pig cochlea. Signal intensity changes were quantified in the apical and basal poles relative to the signal at the membrane. Data showed no significant difference in fluorescent signal intensity changes between the opposite poles of the OHC. These results suggest that endocytic activities in both the basal and the apical poles contribute equally to the membrane recycling of OHCs.

  18. Predicting the location of missing outer hair cells using the electrical signal recorded at the round window

    PubMed Central

    Chertoff, Mark E.; Earl, Brian R.; Diaz, Francisco J.; Sorensen, Janna L.; Thomas, Megan L. A.; Kamerer, Aryn M.; Peppi, Marcello

    2014-01-01

    The electrical signal recorded at the round window was used to estimate the location of missing outer hair cells. The cochlear response was recorded to a low frequency tone embedded in high-pass filtered noise conditions. Cochlear damage was created by either overexposure to frequency-specific tones or laser light. In animals with continuous damage along the partition, the amplitude of the cochlear response increased as the high-pass cutoff frequency increased, eventually reaching a plateau. The cochlear distance at the onset of the plateau correlated with the anatomical onset of outer hair cell loss. A mathematical model replicated the physiologic data but was limited to cases with continuous hair cell loss in the middle and basal turns. The neural contribution to the cochlear response was determined by recording the response before and after application of Ouabain. Application of Ouabain eliminated or reduced auditory neural activity from approximately two turns of the cochlea. The amplitude of the cochlear response was reduced for moderate signal levels with a limited effect at higher levels, indicating that the cochlear response was dominated by outer hair cell currents at high signal levels and neural potentials at low to moderate signal levels. PMID:25190395

  19. Fast Nonlinear Currents in Outer Hair Cells from the Basal Turn of the Cochlea

    NASA Astrophysics Data System (ADS)

    Dong, X.-X.; Ospeck, M.; Iwasa, K. H.

    2003-02-01

    Outer hair cells are mechanoreceptor cells in the mammalian ear that generate force in their cell bodies based on piezoelectricity. These cells are regarded as the key feedback element in the cochlear amplifier that gives the ear the exquisite sensitivity. Since the somatic motility in outer hair cells is driven by the receptor potential, the attenuation of the receptor potential by the membrane capacitance reduces the effectiveness of the somatic motility. This problem is known as the "RC time constant" problem. We report here that outer hair cells from the basal turn of the cochlea have fast outward-rectifying currents that can reduce the attenuation of the receptor potential. Further studies on detailed kinetic properties of these currents could resolve the "RC time constant" problem, possibly establishing the significance of the somatic motility in the cochlear amplifier.

  20. A cytoskeletal spring for the control of cell shape in outer hair cells isolated from the guinea pig cochlea.

    PubMed

    Holley, M C; Ashmore, J F

    1990-01-01

    A two-dimensional cortical cytoskeletal lattice associated with the lateral plasma membranes of mammalian outer hair cells maintains cell shape and provides a restoring force to oppose active changes in cell length. The lattice is composed of two morphologically distinct filaments which are arranged to reinforce the cell circumferentially whilst allowing limited changes in cell length and diameter. This function can only be fulfilled if intracellular pressure is high enough to put the lattice under tension.

  1. Compartmentalization of the outer hair cell demonstrated by slow diffusion in the extracisternal space.

    PubMed

    Gliko, Olga; Saggau, Peter; Brownell, William E

    2009-08-19

    In the outer hair cell (OHC), the extracisternal space (ECiS) is a conduit and reservoir of the molecular and ionic substrates of the lateral wall, including those necessary for electromotility. To determine the mechanisms through which molecules are transported in the ECiS of the OHC, we selectively imaged the time-dependent spatial distribution of fluorescent molecules in a <100 nm layer near the cell/glass interface of the recording chamber after their photolytic activation in a diffraction-limited volume. The effective diffusion coefficient was calculated using the analytical solution of the diffusion equation. It was found that diffusion in the ECiS is isotropic and not affected by depolarizing the OHC. Compared with free solution, the diffusion of 10 kDa dextran was slowed down in both the ECiS and the axial core by a factor of 4.6 and 1.6, respectively.

  2. Effect of capsaicin on potassium conductance and electromotility of guinea pig outer hair cell

    PubMed Central

    Wu, T; Song, L; Shi, X; Jiang, Z; Santos-Sacchi, J; Nuttall, A.L

    2012-01-01

    Capsaicin, the classic activator of TRPV-1 channels in primary sensory neurons, evokes nociception. Interestingly, auditory reception is also modulated by this chemical, possibly by direct actions on outer hair cells (OHCs). Surprisingly, we find two novel actions of capsaicin unrelated to TRPV-1 channels, which likely contribute to its auditory effects in vivo. First, capsaicin is a potent blocker of OHC K conductances (IK and IK,n). Second, capsaicin substantially alters OHC nonlinear capacitance, the signature of electromotility – a basis of cochlear amplification. These new findings of capsaicin have ramifications for our understanding of the pharmacological properties of OHC IK, IK,n and electromotility and for interpretation of capsaicin pharmacological actions. PMID:21044673

  3. TRPA1-mediated accumulation of aminoglycosides in mouse cochlear outer hair cells.

    PubMed

    Stepanyan, Ruben S; Indzhykulian, Artur A; Vélez-Ortega, A Catalina; Boger, Erich T; Steyger, Peter S; Friedman, Thomas B; Frolenkov, Gregory I

    2011-12-01

    Aminoglycoside ototoxicity involves the accumulation of antibiotic molecules in the inner ear hair cells and the subsequent degeneration of these cells. The exact route of entry of aminoglycosides into the hair cells in vivo is still unknown. Similar to other small organic cations, aminoglycosides could be brought into the cell by endocytosis or permeate through large non-selective cation channels, such as mechanotransduction channels or ATP-gated P2X channels. Here, we show that the aminoglycoside antibiotic gentamicin can enter mouse outer hair cells (OHCs) via TRPA1, non-selective cation channels activated by certain pungent compounds and by endogenous products of lipid peroxidation. Using conventional and perforated whole-cell patch clamp recordings, we found that application of TRPA1 agonists initiates inward current responses in wild-type OHCs, but not in OHCs of homozygous Trpa1 knockout mice. Similar responses consistent with the activation of non-selective cation channels were observed in heterologous cells transfected with mouse Trpa1. Upon brief activation with TRPA1 agonists, Trpa1-transfected cells become loaded with fluorescent gentamicin-Texas Red conjugate (GTTR). This uptake was not observed in mock-transfected or non-transfected cells. In mouse organ of Corti explants, TRPA1 activation resulted in the rapid entry of GTTR and another small cationic dye, FM1-43, in OHCs and some supporting cells, even when hair cell mechanotransduction was disrupted by pre-incubation in calcium-free solution. This TRPA1-mediated entry of GTTR and FM1-43 into OHCs was observed in wild-type but not in Trpa1 knockout mice and was not blocked by PPADS, a non-selective blocker of P2X channels. Notably, TRPA1 channels in mouse OHCs were activated by 4-hydroxynonenal, an endogenous molecule that is known to be generated during episodes of oxidative stress and accumulate in the cochlea after noise exposure. We concluded that TRPA1 channels may provide a novel pathway for

  4. Ultrastructural correlates of selective outer hair cell destruction following kanamycin intoxication in the chinchilla.

    PubMed

    Ryan, A F; Woolf, N K; Bone, R C

    1980-12-01

    Kanamycin ototoxicity, combined with behavioral audiometry to evaluate threshold shifts, was used to destroy outer hair cells (OHCs) in the basal cochlea of the chincilla while leaving the inner hair cell (IHC) population largely intact. After survival times of four weeks to one year, transmission electron microscopy was employed to determine the condition of surviving hair cells and neural elements. Throughout the region of OHC loss, IHCs and their innervation were normal in appearance if their adjacent supporting cells were undamaged. When IHC supporting cells, specifically the inner pillar cells, were damaged or absent, damage to IHCs was commonly observed. Such supporting cell-related damage included extrusion of the cuticular plate from the surface of the reticular lamina, encapsulation and/or fusion of stereocilia, and gross distortion of hair cell shape. When the outer supporting cells of the organ of Corti were undamaged following OHC loss, outer spiral fibers were found to have survived in near-normal numbers in the region from 0.5-1.0 mm basal to the basal most surviving OHC, but suffered progressive attrition toward the basal end of the cochlea. It is concluded that kanamycin-induced OHC loss can occur without concommitant IHC damage or outer spiral fiber loss. PMID:7451380

  5. A hydrodynamic model of an outer hair cell

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.

    1982-01-01

    On the model it is possible to measure the force and the force direction for each individual hair as a function of the flow direction and velocity. Measurements were made at the man flow velocity .01 m/s, which is equivalent to a flow velocity in the real ear of about 1 micrometer/s. The kinematic viscosity of the liquid used in the model was 10,000 times higher than the viscosity of perilymph to attain hydrodynamic equality. Two different geometries for the sterocilia pattern were tested. First the force distribution for a W-shaped sterocilia pattern was recorded. This is the sterocilia pattern found in all real ears. It is found that the forces acting on the hairs are very regular and perpendicular to the legs of the W when the flow is directed from the outside of the W. When the flow is reversed, the forces are not reversed, but are much more irregular. This can eventually explain the half wave rectification of the nerve signals. As a second experiment, the force distribution for a V-shaped sterocilia pattern was recorded. Here the forces were irregular both when the flow was directed into the V and when it was directed against the edge of the V.

  6. Consequences of outer hair cell damage for otoacoustic emissions and audio-vocal feedback in the mustached bat.

    PubMed

    Kössl, M; Vater, M

    2000-12-01

    The cochlea of the mustached bat is adapted to process ultrasonic echolocation signals. To assess the involvement of active sound amplification by outer hair cells in high-frequency hearing and in audio-vocal interaction, selective hair cell damage was induced by the antibiotic Amikacin. Amikacin preferentially damaged the first row of outer hair cells in the basal cochlear turn. The cochlear regions coding for the second-harmonic constant-frequency component of the echolocation call (CF2) at 61 kHz and for frequencies between 75 and 100 kHz were the most affected. This was reflected in an increase of mechanical thresholds obtained by measuring distortion-product otoacoustic emissions. During initial periods of minor hair cell damage, when thresholds had deteriorated by less than 40 dB, a sharp, mechanical, cochlear resonance that is responsible for enhanced tuning to 61 kHz was still measurable as a stimulus-frequency otoacoustic emission and its frequency decreased by 350 Hz. The persistence of the resonance suggests that passive structures like the tectorial or basilar membrane are important for generation of the resonance. Behaviorally, the bats reacted to the change in cochlear micromechanics with a decrease of their CF2 frequency by 360 Hz. After larger hair cell damage, when the cochlear resonance had disappeared, the bats vocalized only sparsely and the CF2 frequency increased by up to 2 kHz, which may correspond to a state without audiovocal feedback. This indicates that audio-vocal feedback in the nondamaged animal works to lower the call frequency. PMID:11547810

  7. Mathematical Modelling of the Role of Outer Hair Cells in Cochlear Homeostasis

    NASA Astrophysics Data System (ADS)

    O'Beirne, G. A.; Patuzzi, R. B.

    2003-02-01

    To understand the ways in which the cochlea maintains its exquisite auditory sensitivity in the face of daily perturbations, we have constructed a mathematical model of the homeostatic mechanisms of the organ of Corti. In particular, the role of outer hair cells in this regulation, and how the failure of these regulatory mechanisms causes hearing loss and tinnitus. This poster presents an overview of the model. We show how various cochlear perturbations (including hydrostatic bias and exposure to a low-frequency tone) can cause the homeostatic regulation mechanisms of the outer hair cells to slowly oscillate, thereby changing the endocochlear potential and modulating transmitter release [1], and causing slow oscillations in cochlear gain (the "bounce" phenomenon; [2]).

  8. Extracted hair follicle outer root sheath cell suspension for pigment cell restoration in vitiligo.

    PubMed

    Kumar, Anil; Mohanty, Sujata; Sahni, Kanika; Kumar, Rajesh; Gupta, Somesh

    2013-04-01

    Vitiligo surgery has come up a long way from punch skin grafts to epidermal cell suspension and latest to the extracted hair follicle outer root sheath cell suspension (EHF-ORS-CS) transplantation. The progressive development from one technique to the other is always in a quest for the best. In the latest development- EHF-ORS-CS, which is an enriched source of follicular inactive melanocyte (melanocyte stem cells), seems to be a good addition to the prevailing cell-based therapies for vitiligo; however, need to be explored further in larger, and preferably randomized blinded studies. This review discusses the principle, technical details, and stem cell composition of hair follicular outer root sheath cell suspension. PMID:24023440

  9. Shape deformation of the organ of Corti associated with length changes of outer hair cell

    NASA Technical Reports Server (NTRS)

    Zimmermann, U.; Fermin, C.

    1996-01-01

    Cochlear outer hair cells (OHC) are commonly assumed to function as mechanical effectors as well as sensory receptors in the organ of Corti (OC) of the inner ear. OHC in vitro and in organ explants exhibit mechanical responses to electrical, chemical or mechanical stimulation which may represent an aspect of their effector process that is expected in vivo. A detailed description, however, of an OHC effector operation in situ is still missing. Specifically, little is known as to how OHC movements influence the geometry of the OC in situ. Previous work has demonstrated that the motility of isolated OHCs in response to electrical stimulation and to K(+)-gluconate is probably under voltage control and causes depolarisation (shortening) and hyperpolarization (elongation). This work was undertaken to investigate if the movements that were observed in isolated OHC, and which are induced by ionic stimulation, could change the geometry of the OC. A synchronized depolarization of OHC was induced in guinea pig cochleae by exposing the entire OC to artificial endolymph (K+). Subsequent morphometry of mid-modiolar sections from these cochleae revealed that the distance between the basilar membrane (BM) and the reticular lamina (RL) had decreased considerably. Furthermore, in the three upper turns OHC had significantly shortened in all rows. The results suggest that OHC can change their length in the organ of Corti (OC) thus deforming the geometry of the OC. The experiments reveal a tonic force generation within the OC that may change the position of RL and/or BM, contribute to damping, modulate the BM-RL-distance and control the operating points of RL and sensory hair bundles. Thus, the results suggest active self-adjustments of cochlear mechanics by slow OHC length changes. Such mechanical adjustments have recently been postulated to correspond to timing elements of animal communication, speech or music.

  10. Shape deformation of the organ of Corti associated with length changes of outer hair cell.

    PubMed

    Zimmermann, U; Fermin, C

    1996-05-01

    Cochlear outer hair cells (OHC) are commonly assumed to function as mechanical effectors as well as sensory receptors in the organ of Corti (OC) of the inner ear. OHC in vitro and in organ explants exhibit mechanical responses to electrical, chemical or mechanical stimulation which may represent an aspect of their effector process that is expected in vivo. A detailed description, however, of an OHC effector operation in situ is still missing. Specifically, little is known as to how OHC movements influence the geometry of the OC in situ. Previous work has demonstrated that the motility of isolated OHCs in response to electrical stimulation and to K(+)-gluconate is probably under voltage control and causes depolarisation (shortening) and hyperpolarization (elongation). This work was undertaken to investigate if the movements that were observed in isolated OHC, and which are induced by ionic stimulation, could change the geometry of the OC. A synchronized depolarization of OHC was induced in guinea pig cochleae by exposing the entire OC to artificial endolymph (K+). Subsequent morphometry of mid-modiolar sections from these cochleae revealed that the distance between the basilar membrane (BM) and the reticular lamina (RL) had decreased considerably. Furthermore, in the three upper turns OHC had significantly shortened in all rows. The results suggest that OHC can change their length in the organ of Corti (OC) thus deforming the geometry of the OC. The experiments reveal a tonic force generation within the OC that may change the position of RL and/or BM, contribute to damping, modulate the BM-RL-distance and control the operating points of RL and sensory hair bundles. Thus, the results suggest active self-adjustments of cochlear mechanics by slow OHC length changes. Such mechanical adjustments have recently been postulated to correspond to timing elements of animal communication, speech or music.

  11. Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss.

    PubMed

    Lobarinas, Edward; Salvi, Richard; Ding, Dalian

    2016-04-01

    Poorer hearing in the presence of background noise is a significant problem for the hearing impaired. Ototoxic drugs, ageing, and noise exposure can damage the sensory hair cells of the inner ear that are essential for normal hearing sensitivity. The relationship between outer hair cell (OHC) loss and progressively poorer hearing sensitivity in quiet or in competing background noise is supported by a number of human and animal studies. In contrast, the effect of moderate inner hair cell (IHC) loss or dysfunction shows almost no impact on behavioral measures of hearing sensitivity in quiet, when OHCs remain intact, but the relationship between selective IHC loss and hearing in noise remains relatively unknown. Here, a moderately high dose of carboplatin (75 mg/kg) that produced IHC loss in chinchillas ranging from 40 to 80 % had little effect on thresholds in quiet. However, when tested in the presence of competing broadband (BBN) or narrowband noise (NBN), thresholds increased significantly. IHC loss >60 % increased signal-to-noise ratios (SNRs) for tones (500-11,300 Hz) in competing BBN by 5-10 dB and broadened the masking function under NBN. These data suggest that IHC loss or dysfunction may play a significant role in listening in noise independent of OHC integrity and that these deficits may be present even when thresholds in quiet are within normal limits.

  12. Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss.

    PubMed

    Lobarinas, Edward; Salvi, Richard; Ding, Dalian

    2016-04-01

    Poorer hearing in the presence of background noise is a significant problem for the hearing impaired. Ototoxic drugs, ageing, and noise exposure can damage the sensory hair cells of the inner ear that are essential for normal hearing sensitivity. The relationship between outer hair cell (OHC) loss and progressively poorer hearing sensitivity in quiet or in competing background noise is supported by a number of human and animal studies. In contrast, the effect of moderate inner hair cell (IHC) loss or dysfunction shows almost no impact on behavioral measures of hearing sensitivity in quiet, when OHCs remain intact, but the relationship between selective IHC loss and hearing in noise remains relatively unknown. Here, a moderately high dose of carboplatin (75 mg/kg) that produced IHC loss in chinchillas ranging from 40 to 80 % had little effect on thresholds in quiet. However, when tested in the presence of competing broadband (BBN) or narrowband noise (NBN), thresholds increased significantly. IHC loss >60 % increased signal-to-noise ratios (SNRs) for tones (500-11,300 Hz) in competing BBN by 5-10 dB and broadened the masking function under NBN. These data suggest that IHC loss or dysfunction may play a significant role in listening in noise independent of OHC integrity and that these deficits may be present even when thresholds in quiet are within normal limits. PMID:26691159

  13. [The outer epidermal wall of the "sensitive hairs" of dionaea muscipula].

    PubMed

    Sievers, A

    1968-03-01

    The outer epidermal wall of the podium of the trigger hair of Dionaea muscipula reveals an unusual ultrastructure under the electron microscope. The cuticular layer is penetrated by numerous radially arranged fibrils of about 2 nm in diameter inserting in a fibrillar network beneath the cutinized part of the wall. Both the fibrils and the fibrillar network are heavily stained after treatment with lead citrate. Possibly these specific wall structures make the podium elastic and enable it to undergo repeated bendings.

  14. Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells.

    PubMed

    Dallos, P; Evans, B N; Hallworth, R

    1991-03-14

    It is the prevailing notion that cochlear outer hair cells function as mechanical effectors as well as sensory receptors. Electrically induced changes in the shape of mammalian outer hair cells, studied in vitro, are commonly assumed to represent an aspect of their effector process that may occur in vivo. The nature of the motile process is obscure, even though none of the established cellular motors can be involved. Although it is known that the motile response is under voltage control, it is uncertain whether the stimulus is a drop in the voltage along the long axis of the cell or variation in the transmembrane potential. We have now performed experiments with cells partitioned in differing degrees between two chambers. Applied voltage stimulates the cell membrane segments in opposite polarity to an amount dependent on the partitioning. The findings show, in accordance with previous suggestions, that the driving stimulus is a local transmembrane voltage drop and that the cellular motor consists of many independent elements, distributed along the cell membrane and its associated cortical structures. We further show that the primary action of the motor elements is along the longitudinal dimension of the cell without necessarily involving changes in intracellular hydrostatic pressure. This establishes the outer hair cell motor as unique among mechanisms that control cell shape.

  15. Shape changes in isolated outer hair cells: measurements with attached microspheres.

    PubMed

    Zajic, G; Schacht, J

    1991-04-01

    Shape changes can be induced in isolated outer hair cells by various stimuli and quantified from digitized video-images. While overall changes in length between base and apex are easily measured, changes in defined segments of the cell require fixed landmarks on the cell body. The problem of locating such landmarks makes it difficult to assess if a change in length is uniform or largely confined to a particular segment of the cell. This information is important in identifying the location of a contractile apparatus and the elucidation of mechanisms of motility. We demonstrate here that microspheres can serve as reference points for such measurements. By attaching microspheres to cells we determined that, when outer hair cells increased their volume upon K(+)-depolarization, their middle segment shortened more significantly (14 +/- 6%) than either the basal (10 +/- 5%) or apical section (7 +/- 6%; P less than 0.01). In contrast, when cortical contractions were induced by elevating intracellular Ca2+, the elongation of the cells was more pronounced in their basal (8 +/- 2%) than their apical (6 +/- 2%; P = 0.06) or middle region (6 +/- 3%). This study provides further insight into the mechanisms of shape changes in isolated outer hair cells and illustrates a method to analyze localized changes in the absence of internal landmarks.

  16. An electrical inspection of the subsurface cisternae of the outer hair cell.

    PubMed

    Song, Lei; Santos-Sacchi, Joseph

    2015-02-01

    The cylindrical outer hair cell (OHC) of Corti's organ drives cochlear amplification by a voltage-dependent activation of the molecular motor, prestin (SLC26a5), in the cell's lateral membrane. The voltage-dependent nature of this process leads to the troublesome observation that the membrane resistor-capacitor filter could limit high-frequency acoustic activation of the motor. Based on cable theory, the unique 30 nm width compartment (the extracisternal space, ECS) formed between the cell's lateral membrane and adjacent subsurface cisternae (SSC) could further limit the influence of receptor currents on lateral membrane voltage. Here, we use dual perforated/whole-cell and loose patch clamp on isolated OHCs to sequentially record currents resulting from excitation at apical, middle, and basal loose patch sites before and after perforated patch rupture. We find that timing of currents is fast and uniform before whole-cell pipette washout, suggesting little voltage attenuation along the length of the lateral membrane. Prior treatment with salicylate, a disrupter of the SSC, confirms the influence of the SSC on current spread. Finally, a cable model of the OHC, which can match our data, indicates that the SSC poses a minimal barrier to current flow across it, thereby facilitating rapid delivery of voltage excitation to the prestin-embedded lateral membrane.

  17. A synthetic prestin reveals protein domains and molecular operation of outer hair cell piezoelectricity

    PubMed Central

    Schaechinger, Thorsten J; Gorbunov, Dmitry; Halaszovich, Christian R; Moser, Tobias; Kügler, Sebastian; Fakler, Bernd; Oliver, Dominik

    2011-01-01

    Prestin, a transporter-like protein of the SLC26A family, acts as a piezoelectric transducer that mediates the fast electromotility of outer hair cells required for cochlear amplification and auditory acuity in mammals. Non-mammalian prestin orthologues are anion transporters without piezoelectric activity. Here, we generated synthetic prestin (SynPres), a chimera of mammalian and non-mammalian prestin exhibiting both, piezoelectric properties and anion transport. SynPres delineates two distinct domains in the protein's transmembrane core that are necessary and sufficient for generating electromotility and associated non-linear charge movement (NLC). Functional analysis of SynPres showed that the amplitude of NLC and hence electromotility are determined by the transport of monovalent anions. Thus, prestin-mediated electromotility is a dual-step process: transport of anions by an alternate access cycle, followed by an anion-dependent transition generating electromotility. The findings define structural and functional determinants of prestin's piezoelectric activity and indicate that the electromechanical process evolved from the ancestral transport mechanism. PMID:21701557

  18. Localization of kainate receptors in inner and outer hair cell synapses

    PubMed Central

    Fujikawa, Taro; Petralia, Ronald S.; Fitzgerald, Tracy S.; Wang, Ya-Xian; Millis, Bryan; Morgado-Díaz, José Andrés; Kitamura, Ken; Kachar, Bechara

    2014-01-01

    Glutamate plays a role in hair cell afferent transmission, but the receptors that mediate neurotransmission between outer hair cells (OHCs) and type II ganglion neurons are not well defined. A previous study using in situ hybridization showed that several kainate-type glutamate receptor (KAR) subunits are expressed in cochlear ganglion neurons. To determine whether KARs are expressed in hair cell synapses, we performed X-gal staining on mice expressing lacZ driven by the GluK5 promoter, and immunolabeling of glutamate receptors in whole-mount mammalian cochleae. X-gal staining revealed GluK5 expression in both type I and type II ganglion neurons and OHCs in adults. OHCs showed X-gal reactivity throughout maturation from postnatal day 4 (P4) to 1.5 months. Immunoreactivity for GluK5 in IHC afferent synapses appeared to be postsynaptic, similar to GluA2 (GluR2; AMPA-type glutamate receptor (AMPAR) subunit), while GluK2 may be on both sides of the synapses. In OHC afferent synapses, immunoreactivity for GluK2 and GluK5 was found, although GluK2 was only in those synapses bearing ribbons. GluA2 was not detected in adult OHC afferent synapses. Interestingly, GluK1, GluK2 and GluK5 were also detected in OHC efferent synapses, forming several active zones in each synaptic area. At P8, GluA2 and all KAR subunits except GluK4 were detected in OHC afferent synapses in the apical turn, and GluA2, GluK1, GluK3 decreased dramatically in the basal turn. These results indicate that AMPARs and KARs (GluK2/GluK5) are localized to IHC afferent synapses, while only KARs (GluK2/GluK5) are localized to OHC afferent synapses in adults. Glutamate spillover near OHCs may act on KARs in OHC efferent terminals to modulate transmission of acoustic information and OHC electromotility. PMID:24858010

  19. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins.

    PubMed

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E; Fridberger, Anders; Zuo, Jian

    2015-09-01

    Nature's fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5's active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  20. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins

    PubMed Central

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E.; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E.; Fridberger, Anders; Zuo, Jian

    2015-01-01

    Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  1. Glutaraldehyde induces cell shape changes in isolated outer hair cells from the inner ear.

    PubMed

    Slepecky, N; Ulfendahl, M

    1988-01-01

    Individual isolated outer hair cells (OHCs) from the cochlea were maintained in a collagen gel and viewed in the light microscope. They were observed during fixation and processing for transmission electron microscopy and individual cells were selected for observation in the electron microscope. Application of glutaraldehyde at several concentrations caused OHCs to become shorter. Shrinkage occurred during dehydration but there was no further change during infiltration with the epoxy resin. Ultrastructural analysis of isolated cells fixed with glutaraldehyde and postfixed with osmium tetroxide showed that these cells were similar to cells fixed in the intact cochlea. The glutaraldehyde-induced cell shape change is similar to the shortening seen in intact OHCs in response to the application of solutions containing high potassium or caffeine. Application of glutaraldehyde to cells pretreated with potassium or caffeine caused further shortening. Glutaraldehyde-induced cell shape change was not blocked by the application of tetracaine, which did prevent potassium-induced and caffeine-induced shortening. Glutaraldehyde-induced cell shape change was not stopped by short treatment with N-ethylmaleimide, which did inhibit potassium-induced shortening. Results from these experiments suggest that the glutaraldehyde-induced OHC shape change is not caused by an effect on the membrane or by calcium activation of a contractile response. Shortening may be caused by shrinkage due to cross-linking of proteins.

  2. Membrane Composition Tunes the Outer Hair Cell Motor

    NASA Astrophysics Data System (ADS)

    Rajagopalan, L.; Sfondouris, J.; Oghalai, J. S.; Pereira, F. A.; Brownell, W. E.

    2009-02-01

    Cholesterol and docosahexaenoic acid (DHA), an ω-3 fatty acid, affect membrane mechanical properties in different ways and modulate the function of membrane proteins. We have probed the functional consequence of altering cholesterol and DHA levels in the membranes of OHCs and prestin expressing HEK cells. Large, dynamic and reversible changes in prestin-associated charge movement and OHC motor activity result from altering the concentration of membrane cholesterol. Increasing membrane cholesterol shifts the q/V function ~ 50 mV in the hyperpolarizing direction, possibly a response related to increases in membrane stiffness. The voltage shift is linearly related to total membrane cholesterol. Increasing cholesterol also decreases the total charge moved in a linear fashion. Decreasing membrane cholesterol shifts the q/V function ~ 50 mV in the depolarizing direction with little or no effect on the amount of charge moved. In vivo increases in membrane cholesterol transiently increase but ultimately lead to decreases in DPOAE. Docosahexaenoic acid shifts the q/V function in the hyperpolarizing direction < 15 mV and increases total charge moved. Tuning of cochlear function by membrane cholesterol contributes to the exquisite temporal and frequency processing of mammalian hearing by optimizing the cochlear amplifier.

  3. The Goldman-Hodgkin-Katz equation and graphical 'load-line' analysis of ionic flow through outer hair cells.

    PubMed

    Patuzzi, R

    1998-11-01

    While the 'membrane potential' of a cell which has a homogeneous membrane and surrounding environment, and which is not pumping ions electrogenically (passing no net current through its membranes), can be estimated from the Goldman voltage equation, this equation is inappropriate for other cells. In the mammalian cochlea such problematic cells include the cells of stria vascularis and the sensory hair cells of the organ of Corti. Not only is the Goldman voltage equation inappropriate, but in asymmetric cells the concept of a single 'membrane potential' is misleading: a different transmembrane voltage is required to define the electrical state of each section of the cell's heterogeneous membrane. This paper presents a graphical 'load-line analysis' of currents through one such asymmetric cell, the outer hair cells of the organ of Corti. The approach is extremely useful in discussing the effects of various cochlear manipulations on the electrical potential within hair cells, even without a detailed knowledge of their membrane conductance. The paper discusses how modified Goldman-Hodgkin-Katz equations can be used to describe stretch-activated channels, voltage-controlled channels, ligand-mediated channels, and how the combination of these channels and the extracellular ionic concentrations should affect the hair cell's resting intracellular potential and resting transcellular current, its receptor current and receptor potential, and the extracellular microphonic potential around these cells. Two other issues discussed are the role of voltage-controlled channels in genetically determining membrane potential, and the insensitivity of hair cells to changes of extracellular potassium concentration under some conditions.

  4. A Cochlear Partition Model Incorporating Realistic Electrical and Mechanical Parameters for Outer Hair Cells

    NASA Astrophysics Data System (ADS)

    Nam, Jong-Hoon; Fettiplace, Robert

    2011-11-01

    The organ of Corti (OC) is believed to optimize the force transmission from the outer hair cell (OHC) to the basilar membrane and inner hair cell. Recent studies showed that the OC has complex modes of deformation. In an effort to understand the consequence of the OC deformation, we developed a fully deformable 3D finite element model of the OC. It incorporates hair bundle's mechano-transduction and the OHC electrical circuit. Geometric information was taken from the gerbil cochlea at locations with 18 and 0.7 kHz characteristic frequencies. Cochlear partitions of several hundred micrometers long were simulated. The model describes the signature 3D structural arrangement in the OC, especially the tilt of OHC and Deiters cell process. Transduction channel kinetics contributed to the system's mechanics through the hair bundle. The OHC electrical model incorporated the transduction channel conductance, nonlinear capacitance and piezoelectric properties. It also incorporated recent data on the voltage-dependent potassium conductance and membrane time constant. With the model we simulated (1) the limiting frequencies of mechano-transduction and OHC somatic motility and (2) OC transient response to impulse stimuli.

  5. PKCα-Mediated Signals Regulate the Motile Responses of Cochlear Outer Hair Cells.

    PubMed

    Park, Channy; Kalinec, Federico

    2015-05-01

    There is strong evidence that changes in the actin/spectrin-based cortical cytoskeleton of outer hair cells (OHCs) regulate their motile responses as well as cochlear amplification, the process that optimizes the sensitivity and frequency selectivity of the mammalian inner ear. Since a RhoA/protein kinase C (PKC)-mediated pathway is known to inhibit the actin-spectrin interaction in other cell models, we decided to investigate whether this signaling cascade could also participate in the regulation of OHC motility. We used high-speed video microscopy and confocal microscopy to explore the effects of pharmacological activation of PKCα, PKCβI, PKCβII, PKCδ, PKCε, and PKCζ with lysophosphatidic acid (LPA) and their inhibition with bisindolylmaleimide I, as well as inhibition of RhoA and Rho-associated protein kinase (ROCK) with C3 and Y-27632, respectively. Motile responses were induced in isolated guinea pig OHCs by stimulation with an 8 V/cm external alternating electrical field as 50 Hz bursts of square wave pulses (100 ms on/off). We found that LPA increased expression of PKCα and PKCζ only, with PKCα, but not PKCζ, phosphorylating the cytoskeletal protein adducin of both Ser-726 and Thr-445. Interestingly, however, inhibition of PKCα reduced adducin phosphorylation only at Ser-726. We also determined that LPA activation of a PKCα-mediated signaling pathway simultaneously enhanced OHC electromotile amplitude and cell shortening, and facilitated RhoA/ROCK/LIMK1-mediated cofilin phosphorylation. Altogether, our results suggest that PKCα-mediated signals, probably via adducin-mediated inhibition of actin-spectrin binding and cofilin-mediated depolymerization of actin filaments, play an essential role in the homeostatic regulation of OHC motility and cochlear amplification. PMID:25954875

  6. Transitory endolymph leakage induced hearing loss and tinnitus: depolarization, biphasic shortening and loss of electromotility of outer hair cells

    NASA Technical Reports Server (NTRS)

    Zenner, H. P.; Reuter, G.; Zimmermann, U.; Gitter, A. H.; Fermin, C.; LePage, E. L.

    1994-01-01

    There are types of deafness and tinnitus in which ruptures or massive changes in the ionic permeability of the membranes lining the endolymphatic space [e.g., of the reticular lamina (RL)] are believed to allow potassium-rich endolymph to deluge the low [K+] perilymphatic fluid (e.g., in the small spaces of Nuel). This would result in a K+ intoxication of sensory and neural structures. Acute attacks of Meniere's disease have been suggested to be an important example for this event. The present study investigated the effects of transiently elevated [K+] due to the addition of artificial endolymph to the basolateral cell surface of outer hair cells (OHC) in replicating endolymph-induced K+ intoxication of the perilymph in the small spaces of Nuel. The influence of K+ intoxication of the basolateral OHC cell surface on the transduction was then examined. Intoxication resulted in an inhibition of the physiological repolarizing K+ efflux from hair cells. This induced unwanted depolarizations of the hair cells, interfering with mechanoelectrical transduction. A pathological longitudinal OHC shortening was also found, with subsequent compression of the organ of Corti possibly influencing the micromechanics of the mechanically active OHC. Both micromechanical and electrophysiological alterations are proposed to contribute to endolymph leakage induced attacks of deafness and possibly also to tinnitus. Moreover, repeated or long-lasting K+ intoxications of OHC resulted in a chronic and complete loss of OHC motility. This is suggested to be a pathophysiological basis in some patients with chronic hearing loss resulting from Meniere's syndrome.

  7. Differentiating the stem cell pool of human hair follicle outer root sheath into functional melanocytes.

    PubMed

    Schneider, Marie; Dieckmann, Christina; Rabe, Katrin; Simon, Jan-Christoph; Savkovic, Vuk

    2014-01-01

    Bench-to-Bedside concepts for regenerative therapy place significant weight on noninvasive approaches, with harvesting of the starting material as a header. This is particularly important in autologous treatments, which use one's bodily constituents for therapy. Precisely the stretch between obtaining therapeutic elements invasively and noninvasively places non-intrusive "sampling" rather than "biopsy" in the center of the road map of developing an autologous regenerative therapy. We focus on such a noninvasively available source of adult stem cells that we carry with us throughout our life, available at our fingertips-or shall we say hair roots, by a simple plucking of hair: the human hair follicle. This chapter describes an explant procedure for cultivating melanocytes differentiated from the stem cell pool of the hair follicle Outer Root Sheath (ORS). In vivo, the most abundant derivatives of the heterogeneous ORS stem cell pool are epidermal cells-melanocytes and keratinocytes which complete their differentiation-either spontaneously or upon picking up regenerative cues from damaged skin-and migrate from the ORS towards the adjacent regenerating area of the epidermis. We have taken advantage of the ORS developmental potential by optimizing explant primary culture, expansion and melanogenic differentiation of resident ORS stem cells towards end-stage melanocytes in order to obtain functional melanocytes noninvasively for the purposes of transplantation and use them for the treatment of depigmentation disorders. Our protocol specifies sampling of hair with their ORS, follicle medium-air interface primary culture, stimulation of cell outgrowth, adherent culture and differentiation of ORS stem cells and precursors towards fully functional melanocytes. Along with cultivation, we describe selection techniques for establishing and maintaining a pure melanocyte population and methods suitable for determining melanocyte identity.

  8. Synaptic Transfer from Outer Hair Cells to Type II Afferent Fibers in the Rat Cochlea

    PubMed Central

    Weisz, Catherine J.C.; Lehar, Mohamed; Hiel, Hakim; Glowatzki, Elisabeth; Fuchs, Paul Albert

    2012-01-01

    Type II cochlear afferents receive glutamatergic synaptic excitation from outer hair cells (OHCs) in the rat cochlea. However, it remains uncertain whether this connection is capable of providing auditory information to the brain. The functional efficacy of this connection depends in part on the number of presynaptic OHCs, their probability of transmitter release, and the effective electrical distance for spatial summation in the Type II fiber. The present work addresses these questions using whole-cell recordings from the spiral process of type II afferents that run below OHCs in the apical turn of young (5–9 days postnatal) rat cochlea. A ‘high potassium puffer’ was used to elicit calcium action potentials from individual OHCs and thereby show that the average probability of transmitter release was 0.26 (range 0.02 to 0.73). Electron microscopy showed relatively few vesicles tethered to ribbons in equivalent OHCs. A ‘receptive field’ map for individual type II fibers was constructed by successively puffing onto OHCs along the cochlear spiral, up to 180 µm from the recording pipette. These revealed a conservative estimate of 7 presynaptic OHCs per type II fiber (range 1–11). EPSCs evoked from presynaptic OHCs separated by more than 100 µm did not differ in amplitude or waveform, implying that the type II fiber’s length constant exceeded the length of the synaptic input zone. Taken together these data suggest that type II fibers could communicate centrally by maximal activation of their entire pool of presynaptic OHCs. PMID:22787038

  9. Transcription Factors Expressed in Mouse Cochlear Inner and Outer Hair Cells

    PubMed Central

    Li, Yi; Liu, Huizhan; Barta, Cody L.; Judge, Paul D.; Zhao, Lidong; Zhang, Weiping J.; Gong, Shusheng; Beisel, Kirk W.; He, David Z. Z.

    2016-01-01

    Regulation of gene expression is essential to determining the functional complexity and morphological diversity seen among different cells. Transcriptional regulation is a crucial step in gene expression regulation because the genetic information is directly read from DNA by sequence-specific transcription factors (TFs). Although several mouse TF databases created from genome sequences and transcriptomes are available, a cell type-specific TF database from any normal cell populations is still lacking. We identify cell type-specific TF genes expressed in cochlear inner hair cells (IHCs) and outer hair cells (OHCs) using hair cell-specific transcriptomes from adult mice. IHCs and OHCs are the two types of sensory receptor cells in the mammalian cochlea. We show that 1,563 and 1,616 TF genes are respectively expressed in IHCs and OHCs among 2,230 putative mouse TF genes. While 1,536 are commonly expressed in both populations, 73 genes are differentially expressed (with at least a twofold difference) in IHCs and 13 are differentially expressed in OHCs. Our datasets represent the first cell type-specific TF databases for two populations of sensory receptor cells and are key informational resources for understanding the molecular mechanism underlying the biological properties and phenotypical differences of these cells. PMID:26974322

  10. Transcription Factors Expressed in Mouse Cochlear Inner and Outer Hair Cells.

    PubMed

    Li, Yi; Liu, Huizhan; Barta, Cody L; Judge, Paul D; Zhao, Lidong; Zhang, Weiping J; Gong, Shusheng; Beisel, Kirk W; He, David Z Z

    2016-01-01

    Regulation of gene expression is essential to determining the functional complexity and morphological diversity seen among different cells. Transcriptional regulation is a crucial step in gene expression regulation because the genetic information is directly read from DNA by sequence-specific transcription factors (TFs). Although several mouse TF databases created from genome sequences and transcriptomes are available, a cell type-specific TF database from any normal cell populations is still lacking. We identify cell type-specific TF genes expressed in cochlear inner hair cells (IHCs) and outer hair cells (OHCs) using hair cell-specific transcriptomes from adult mice. IHCs and OHCs are the two types of sensory receptor cells in the mammalian cochlea. We show that 1,563 and 1,616 TF genes are respectively expressed in IHCs and OHCs among 2,230 putative mouse TF genes. While 1,536 are commonly expressed in both populations, 73 genes are differentially expressed (with at least a twofold difference) in IHCs and 13 are differentially expressed in OHCs. Our datasets represent the first cell type-specific TF databases for two populations of sensory receptor cells and are key informational resources for understanding the molecular mechanism underlying the biological properties and phenotypical differences of these cells. PMID:26974322

  11. Effect of diamide on force generation and axial stiffness of the cochlear outer hair cell.

    PubMed Central

    Adachi, M; Iwasa, K H

    1997-01-01

    We found that diamide, which affects spectrin, reduces the axial stiffness of the cochlear outer hair cell, the cylindrically shaped mechanoreceptor cell with a unique voltage-sensitive motility. This effect thus provides a means of examining the relationship between the stiffness and the motility of the cell. For measuring axial stiffness and force production, we used an experimental configuration in which an elastic probe was attached to the cell near the cuticular plate and the other end of the cell was held with a patch pipette in the whole-cell recording mode. Diamide at concentrations of up to 5 mM reduced the axial stiffness in a dose-dependent manner to 165 nN per unit strain from 502 nN for untreated cells. The isometric force elicited by voltage pulses under whole-cell voltage clamp was also reduced to 35 pN/mV from 105 pN/mV for untreated cells. Thus the isometric force was approximately proportional to the axial stiffness. Our observations suggest a series connection between the motor and cytoskeletal elements and can be explained by the area motor model previously proposed for the outer hair cell. Images FIGURE 1 FIGURE 9 PMID:9370475

  12. The cochlear amplifier as a standing wave: ``Squirting'' waves between rows of outer hair cells?

    NASA Astrophysics Data System (ADS)

    Bell, Andrew; Fletcher, Neville H.

    2004-08-01

    This paper draws attention to symmetric Lloyd-Redwood (SLR) waves-known in ultrasonics as ``squirting'' waves-and points out that their distinctive properties make them well-suited for carrying positive feedback between rows of outer hair cells. This could result in standing-wave resonance-in essence a narrow-band cochlear amplifier. Based on known physical properties of the cochlea, such an amplifier can be readily tuned to match the full 10-octave range of human hearing. SLR waves propagate in a thin liquid layer enclosed between two thin compliant plates or a single such plate and a rigid wall, conditions found in the subtectorial space of the cochlea, and rely on the mass of the inter-plate fluid interacting with the stiffness of the plates to provide low phase velocity and high dispersion. The first property means SLR wavelengths can be as short as the distance between rows of outer hair cells, allowing standing wave formation; the second permits wide-range tuning using only an order-of-magnitude variation in cochlear physical properties, most importantly the inter-row spacing. Viscous drag at the two surfaces potentially limits SLR wave propagation at low frequencies, but this can perhaps be overcome by invoking hydrophobic effects.

  13. A Study of Noncultured Extracted Hair Follicle Outer Root Sheath Cell Suspension for Transplantation in Vitiligo

    PubMed Central

    Shah, Aarti N; Marfatia, Ritu K; Saikia, Siddhartha S

    2016-01-01

    Context: Vitiligo surgeries have come a long way from tissue grafts to cultured and non cultured cell transplantation. Extracted hair follicle outer root sheath cell transplantation (EHF ORS) suspension is more enriched with melanocyte. In a hair bulb, there is one melanocyte for every five keratinocytes which is much higher than the epidermal melanin unit. Aims: To analyse the effectiveness of cultured EHF ORS and to perform objective evaluation based on clinical improvement & photographic evidence. To observe any untoward events or side effects. Settings and Design: The study was open and uncontrolled. All the patients were screened at preliminary visit. Reviews were done every two weeks. The endpoint selected was six months post procedure. Materials and Methods: Twenty five patients of stable Vitiligo were included in the study and follicular unit were harvested by Follicular Unit Extraction method. Outer root sheath cells were extracted by trypsinization. The solution was transplanted over dermabraded recipient site. Pressure dressing was given. Patients were followed up regularly. Statistical Analysis Used: Descriptive Statistics, Chi-Square. Results: Mean ± SD repigmentation was 80.15% ± 22.9% with excellent repigmentation (90-100%) in 60% of patients. Conclusions: This method is safe, effective, and simpler than the other methods involving cell culturing and requiring a laboratory set-up but selection of patients is crucial for the success of the outcome. PMID:27601859

  14. A Study of Noncultured Extracted Hair Follicle Outer Root Sheath Cell Suspension for Transplantation in Vitiligo

    PubMed Central

    Shah, Aarti N; Marfatia, Ritu K; Saikia, Siddhartha S

    2016-01-01

    Context: Vitiligo surgeries have come a long way from tissue grafts to cultured and non cultured cell transplantation. Extracted hair follicle outer root sheath cell transplantation (EHF ORS) suspension is more enriched with melanocyte. In a hair bulb, there is one melanocyte for every five keratinocytes which is much higher than the epidermal melanin unit. Aims: To analyse the effectiveness of cultured EHF ORS and to perform objective evaluation based on clinical improvement & photographic evidence. To observe any untoward events or side effects. Settings and Design: The study was open and uncontrolled. All the patients were screened at preliminary visit. Reviews were done every two weeks. The endpoint selected was six months post procedure. Materials and Methods: Twenty five patients of stable Vitiligo were included in the study and follicular unit were harvested by Follicular Unit Extraction method. Outer root sheath cells were extracted by trypsinization. The solution was transplanted over dermabraded recipient site. Pressure dressing was given. Patients were followed up regularly. Statistical Analysis Used: Descriptive Statistics, Chi-Square. Results: Mean ± SD repigmentation was 80.15% ± 22.9% with excellent repigmentation (90-100%) in 60% of patients. Conclusions: This method is safe, effective, and simpler than the other methods involving cell culturing and requiring a laboratory set-up but selection of patients is crucial for the success of the outcome.

  15. Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells.

    PubMed

    Nowotny, Manuela; Gummer, Anthony W

    2006-02-14

    The stereocilia of the cochlear inner hair cells (IHCs) transduce vibrations into the sensory receptor current. Until now, mechanisms for deflecting these stereocilia have not been identified experimentally. Here, we identify a mechanism by using the electromechanical properties of the soma of the outer hair cell to produce an intracochlear, mechanical force stimulus. It is known that the soma of this cell generates mechanical force in response to a change of its transmembrane potential. In the present experiments, the force was induced by intracochlear electrical stimulation at frequencies that covered the entire functionally relevant range of 50 kHz. Vibration responses were measured in the transverse direction with a laser Doppler vibrometer. For frequencies up to approximately 3 kHz in the first three turns of the guinea-pig cochlea, the apical surface of the IHC and the opposing surface of the tectorial membrane were found to vibrate with similar amplitudes but opposite phases. At high frequencies, there was little relative motion between these surfaces in the transverse direction. The counterphasic motion up to approximately 3 kHz results in a pulsatile motion of the fluid surrounding the stereocilia of the IHCs. Based on physical principles of fluid flow between narrowly spaced elastic plates, we show that radial fluid motion is amplified relative to transverse membrane motion and that the radial motion is capable of bending the stereocilia. In conclusion, for frequencies up to at least 3 kHz, there appears to be direct fluid coupling between outer hair cells and IHCs.

  16. Mapping gene activity of Arabidopsis root hairs

    PubMed Central

    2013-01-01

    Background Quantitative information on gene activity at single cell-type resolution is essential for the understanding of how cells work and interact. Root hairs, or trichoblasts, tubular-shaped outgrowths of specialized cells in the epidermis, represent an ideal model for cell fate acquisition and differentiation in plants. Results Here, we provide an atlas of gene and protein expression in Arabidopsis root hair cells, generated by paired-end RNA sequencing and LC/MS-MS analysis of protoplasts from plants containing a pEXP7-GFP reporter construct. In total, transcripts of 23,034 genes were detected in root hairs. High-resolution proteome analysis led to the reliable identification of 2,447 proteins, 129 of which were differentially expressed between root hairs and non-root hair tissue. Dissection of pre-mRNA splicing patterns showed that all types of alternative splicing were cell type-dependent, and less complex in EXP7-expressing cells when compared to non-root hair cells. Intron retention was repressed in several transcripts functionally related to root hair morphogenesis, indicative of a cell type-specific control of gene expression by alternative splicing of pre-mRNA. Concordance between mRNA and protein expression was generally high, but in many cases mRNA expression was not predictive for protein abundance. Conclusions The integrated analysis shows that gene activity in root hairs is dictated by orchestrated, multilayered regulatory mechanisms that allow for a cell type-specific composition of functional components. PMID:23800126

  17. Properties of auditory nerve responses in absence of outer hair cells.

    PubMed

    Dallos, P; Harris, D

    1978-03-01

    1. Recordings were made from chinchilla auditory nerve fibers after portions of the cochlear outer hair cell (OHC) population were destroyed with the antibiotic kanamycin. In most cases the inner hair cell (IHC) population was completely preserved as determined by phase-contrast microscopy. We presume that the remaining IHCs are functionally normal, and thus that recordings obtained from fibers originating from the lesioned cochlear segment reflect IHC behavior. 2. Behavioral thresholds were measured for all animals both before and after the production of the cochlear lesion. The audiograms and the histological evaluation of the ears were the basis for assessing whether a particular fiber originated in a normal, pathological (shifted threshold; IHC only), or border region. These criteria also identified the animals that sustained IHC damage together with the destruction of part of the OHC population. Only the data obtained from those fibers which probably originated from the OHC-free segment of the cochlea are considered in detail. 3. Fibers whose characteristic frequency (CF) identified them as belonging to the normal (audiometrically and histologically) region, were found to be normal in all respects. 4. Fibers from the border region (where the audiogram has a steep slope between normal and hearing-loss regions probably corresponding to the segment where OHC loss progresses from less than 10% to more than 90%) had very complex response patterns. Their frequency threshold curves (FTC) showed great variability. In general, the closer the fiber was to the fully developed lesion, the more abnormal its FTC became. 5. Those units that were concluded to have originated from the OHC-free part of the cochlea could be divided into three categories on the basis of the shape of their FTCs. A small fraction had very broad tuning (9%). The majority (53%) had approximately normal tail segment, normal bandwidth of the tip segment, and highly elevated threshold at CF. A group of

  18. Theory of electrically driven shape changes of cochlear outer hair cells.

    PubMed

    Dallos, P; Hallworth, R; Evans, B N

    1993-07-01

    1. A theory of cochlear outer hair cell electromotility is developed and specifically applied to somatic shape changes elicited in a microchamber. The microchamber permits the arbitrary electrical and mechanical partitioning of the outer hair cell along its length. This means that the two partitioned segments are stimulated with different input voltages and undergo different shape changes. Consequently, by imposing more constraints than other methods, experiments in the microchamber are particularly suitable for testing different theories of outer hair cell motility. 2. The present model is based on simple hypotheses. They include a distributed motor associated with the cell membrane or cortex and the assumption that the displacement generated by the motor is related to the transmembrane voltage across the associated membrane element. It is expected that the force generated by the motor is counterbalanced by an elastic restoring force indigenous to the cell membrane and cortex, and a tensile force due to intracellular pressure. It is assumed that all changes take place while total cell volume is conserved. The above elements of the theory taken together permit the development of qualitative and quantitative predictions about the expected motile responses of both partitioned segments of the cell. Only a DC treatment is offered here. 3. Both a linear motor and an expanded treatment that incorporates a stochastic molecular motor model are considered. The latter is represented by a two-state Boltzmann process. We show that the linear motor treatment is an appropriate extrapolation of the stochastic motor theory for the case of small voltage driving signals. Comparison of experimental results with model responses permits the estimation of model parameters. Good match of data is obtained if it is assumed that the molecular motors undergo conformational length changes of 0.7-1.0 nm, that they have an effective displacement vector at approximately -20 degrees with the long

  19. Polycaprolactone fiber meshes provide a 3D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle.

    PubMed

    Savkovic, Vuk; Flämig, Franziska; Schneider, Marie; Sülflow, Katharina; Loth, Tina; Lohrenz, Andrea; Hacker, Michael Christian; Schulz-Siegmund, Michaela; Simon, Jan-Christoph

    2016-01-01

    Melanocytes differentiated from the stem cells of human hair follicle outer root sheath (ORS) have the potential for developing non-invasive treatments for skin disorders out of a minimal sample: of hair root. With a robust procedure for melanocyte cultivation from the ORS of human hair follicle at hand, this study focused on the identification of a suitable biocompatible, biodegradable carrier as the next step toward their clinical implementation. Polycaprolactone (PCL) is a known biocompatible material used for a number of medical devices. In this study, we have populated electrospun PCL fiber meshes with normal human epidermal melanocytes (NHEM) as well as with hair-follicle-derived human melanocytes from the outer root sheath (HUMORS) and tested their functionality in vitro. PCL fiber meshes evidently provided a niche for melanocytes and supported their melanotic properties. The cells were tested for gene expression of PAX3, PMEL, TYR and MITF, as well as for proliferation, expression of melanocyte marker proteins tyrosinase and glycoprotein 100 (gp100), L-DOPA-tautomerase enzymatic activity and melanin content. Reduced mitochondrial activity and PAX-3 gene expression indicated that the three-dimensional PCL scaffold supported differentiation rather than proliferation of melanocytes. The monitored melanotic features of both the NHEM and HUMORS cultivated on PCL scaffolds significantly exceeded those of two-dimensional adherent cultures. PMID:26126647

  20. Polycaprolactone fiber meshes provide a 3D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle.

    PubMed

    Savkovic, Vuk; Flämig, Franziska; Schneider, Marie; Sülflow, Katharina; Loth, Tina; Lohrenz, Andrea; Hacker, Michael Christian; Schulz-Siegmund, Michaela; Simon, Jan-Christoph

    2016-01-01

    Melanocytes differentiated from the stem cells of human hair follicle outer root sheath (ORS) have the potential for developing non-invasive treatments for skin disorders out of a minimal sample: of hair root. With a robust procedure for melanocyte cultivation from the ORS of human hair follicle at hand, this study focused on the identification of a suitable biocompatible, biodegradable carrier as the next step toward their clinical implementation. Polycaprolactone (PCL) is a known biocompatible material used for a number of medical devices. In this study, we have populated electrospun PCL fiber meshes with normal human epidermal melanocytes (NHEM) as well as with hair-follicle-derived human melanocytes from the outer root sheath (HUMORS) and tested their functionality in vitro. PCL fiber meshes evidently provided a niche for melanocytes and supported their melanotic properties. The cells were tested for gene expression of PAX3, PMEL, TYR and MITF, as well as for proliferation, expression of melanocyte marker proteins tyrosinase and glycoprotein 100 (gp100), L-DOPA-tautomerase enzymatic activity and melanin content. Reduced mitochondrial activity and PAX-3 gene expression indicated that the three-dimensional PCL scaffold supported differentiation rather than proliferation of melanocytes. The monitored melanotic features of both the NHEM and HUMORS cultivated on PCL scaffolds significantly exceeded those of two-dimensional adherent cultures.

  1. Prestin-Dependence of Outer Hair Cell Survival and Partial Rescue of Outer Hair Cell Loss in PrestinV499G/Y501H Knockin Mice.

    PubMed

    Cheatham, Mary Ann; Edge, Roxanne M; Homma, Kazuaki; Leserman, Emily L; Dallos, Peter; Zheng, Jing

    2015-01-01

    A knockin (KI) mouse expressing mutated prestinV499G/Y501H (499 prestin) was created to study cochlear amplification. Recordings from isolated outer hair cells (OHC) in this mutant showed vastly reduced electromotility and, as a consequence, reduced hearing sensitivity. Although 499 prestin OHCs were normal in stiffness and longer than OHCs lacking prestin, accelerated OHC death was unexpectedly observed relative to that documented in prestin knockout (KO) mice. These observations imply an additional role of prestin in OHC maintenance besides its known requirement for mammalian cochlear amplification. In order to gain mechanistic insights into prestin-associated OHC loss, we implemented several interventions to improve survival. First, 499 prestin KI's were backcrossed to Bak KO mice, which lack the mitochondrial pro-apoptotic gene Bak. Because oxidative stress is implicated in OHC death, another group of 499 prestin KI mice was fed the antioxidant diet, Protandim. 499 KI mice were also backcrossed onto the FVB murine strain, which retains excellent high-frequency hearing well into adulthood, to reduce the compounding effect of age-related hearing loss associated with the original 499 prestin KIs. Finally, a compound heterozygous (chet) mouse expressing one copy of 499 prestin and one copy of KO prestin was also created to reduce quantities of 499 prestin protein. Results show reduction in OHC death in chets, and in 499 prestin KIs on the FVB background, but only a slight improvement in OHC survival for mice receiving Protandim. We also report that improved OHC survival in 499 prestin KIs had little effect on hearing phenotype, reaffirming the original contention about the essential role of prestin's motor function in cochlear amplification. PMID:26682723

  2. Studies of cochlear outer hair cell membrane mechanics using optical tweezers

    NASA Astrophysics Data System (ADS)

    Murdock, David R.; Ermilov, Sergey A.; Brownell, William E.; Anvari, Bahman

    2003-06-01

    An optical tweezers system was used to study the mechanical characteristics of outer hair cell (OHC) and human embryonic kidney (HEK) cell plasma membranes. The effect of the cationic amphipath chlorpromazine (CPZ) on the equilibrium tethering force, (Feq) force relaxation time constant,(τ) and effective membrane viscosity (ηeff) was measured. The Feq for the OHC lateral wall plasma membrane was ~60 pN and was unchanged by addition of CPZ. A significantly greater τ value was observed in CPZ-treated OHCs (30.5 +/- 12.6 s) than in control OHCs (19.0 +/- 13.2 s). The Feq and τ values for control HEK cells were >60% lower than the respective OHC values but increased by ~3 times following CPZ addition. Effective viscosity ranged between 1.49-1.81 pN•s/μm for CPZ-treated OHCs. This represents a decrease from reported control OHC membrane viscosities.

  3. A Case of Basal Cell Carcinoma with Outer Hair Follicle Sheath Differentiation.

    PubMed

    Onishi, Masazumi; Takahashi, Kazuhiro; Maeda, Fumihiko; Akasaka, Toshihide

    2015-01-01

    A 70-year-old Japanese man presented at our hospital with an asymptomatic, blackish, irregularly shaped plaque with a gray nodule in the periphery on his left lower leg. The lesion had been present for 10 years and had recently enlarged, associated with bleeding. Histopathologically, the tumor consisted of three distinct parts: The first part showed massive aggregation of basophilic basaloid cells with peripheral palisading and abundant melanin granules, and was diagnosed as solid-type basal cell carcinoma. The second part showed aggregation of clear cells with squamous eddies, and was diagnosed as proliferating trichilemmal tumor. The third part showed reticular aggregation of basaloid cells with infundibular cysts in the papillary dermis, and was diagnosed as infundibulocystic basal cell carcinoma. We diagnosed this tumor as basal cell carcinoma with various forms of hair follicle differentiation, including differentiation into the outer root sheath. PMID:26955331

  4. Intercellular junctions between palisade nerve endings and outer root sheath cells of rat vellus hairs.

    PubMed

    Kaidoh, T; Inoué, T

    2000-05-15

    Hair follicles have a longitudinal set of sensory nerve endings called palisade nerve endings (PN). We examined the junctional structures between the PN and outer root sheath (ORS) cells of hair follicles in the rat external ear. Transmission electron microscopy of serial thin sections showed that the processes of the ORS cells penetrated the basal lamina of the hair follicle, forming intercellular junctions with the PN (PN-ORS junctions). Two types of junctions were found: junctions between nerve endings and ORS cells (N-ORS junctions) and those between Schwann cell processes and ORS cells (S-ORS junctions). The N-ORS junctions had two subtypes: 1) a short process or small eminence of the ORS cell was attached to the nerve ending (type I); or 2) a process of the ORS cell was invaginated into the nerve ending (type II). The S-ORS junctions also had two subtypes: 1) a short process or small eminence of the ORS cell was abutted on the Schwann cell process (type I); or 2) a process of the ORS cell was invaginated into the Schwann cell process (type II). Vesicles, coated pits, coated vesicles, and endosomes were sometimes seen in nerve endings, Schwann cells, and ORS cells near the junctions. Computer-aided reconstruction of the serial thin sections displayed the three-dimensional structure of these junctions. These results suggested that the PN-ORS junctions provided direct relationships between the PN and ORS in at least four different patterns. The discovery of these junctions shows the PN-ORS relationship to be closer than previously realized. We speculate that these junctions may have roles in attachment of the PN to the ORS, contributing to increases in the sensitivity of the PN, and in chemical signaling between the PN and ORS.

  5. Ventral cochlear nucleus neural discharge characteristics in the absence of outer hair cells.

    PubMed

    Woolf, N K; Ryan, A F

    1985-09-01

    The role of the cochlear outer hair cell (OHC) in auditory processing remains poorly understood. The OHCs possess an independent afferent innervation which constitutes 5-10% of cochlear afferent neurons and which appears to project to the cochlear nucleus (CN). Whether the OHCs contribute to the processing of auditory signals in the CN has not been determined. To address this question, kanamycin ototoxicity was used to produce selective OHC loss while leaving the inner hair cell (IHC) population largely intact, in the basal portion of the cochlea of chinchillas. Single unit responses were then recorded in the ventral cochlear nucleus (VCN), and compared to responses in untreated subjects. Many of the changes observed in VCN neural responses reflected changes which have previously been reported in the VIIIth nerve. However, frequency tuning curve tip segments which were normal in both bandwidth and length were observed in approximately 22% of the units associated with regions of complete OHC loss and preservation of IHCs. This has not been reported in previous OHC lesion studies. Also, first spike latency was found to be significantly lengthened for units associated with the OHC free regions. Those features of VCN neural responses which first arise within the CN, such as non-primary-like post-stimulus-time histogram response patterns, were unaffected by OHC loss. These results suggest that afferent fibers associated with OHCs do not play a major role in signal processing in the VCN. PMID:4041821

  6. Specialized features of the outer hair cell shapes in the cochlear fovea of bats.

    PubMed

    Zhang, S Q; Li, S L; Zhu, H L; Yan, L Y

    2015-01-01

    In this study, we examined the specialized features of the outer hair cells (OHCs) and the stereocilium bundles of the bat cochlear fovea. Bat cochlea hair cells were observed by scanning and transmission electron microscopy, and the auditory brainstem response thresholds were assessed. The stereocilia bundles of the OHCs were extremely short. The OHC bodies were flask-shaped and cambiform or ball-shape in the cochlear fovea. Digitations in the Deiters cells had exaggerated lengths, and cup formation of the Deiters cell, housed at the bottom of the OHC in the base of the cell, showed a specialized shape. Our results provide the first evidence that different shapes of the OHCs in the cochlea fovea are related to the high-frequency function of auditory response. Echolocating bats have cochlear morphologies that differ from those of non-echolocating animals. Bat cochlear foveae are specialized for analyzing the Doppler-shifted echoes of the first-harmonics of the CF2 component; these are overrepresented in the frequency range around the dominant harmonic of the echolocation calls of bats. However, the OHCs of the bat cochlear fovea have not been fully characterized. PMID:26345886

  7. Acute mechanical overstimulation of isolated outer hair cells causes changes in intracellular calcium levels without shape changes.

    PubMed

    Fridberger, A; Ulfendahl, M

    1996-01-01

    Impaired auditory function following acoustic overstimulation, or noise, is mainly reported to be accompanied by cellular changes such as damage to the sensory hair bundles, but changes in the cell bodies of the outer hair cells have also been described. To investigate more closely the immediate cellular responses to overstimulation, isolated guinea pig outer hair cells were subjected to a 200 Hz oscillating water jet producing intense mechanical stimulation. The water jet was aimed at the cell body of the isolated outer hair cell. Cell shape changes were studied using video microscopy, and intracellular calcium concentration changes were monitored by means of the fluorescent calcium indicator Fluo-3. Cells exposed to a high-intensity stimulus showed surprisingly small light-microscopical alterations. The cytoplasmic calcium concentration increased in most cells, although some cells appeared very resistant to the mechanical stress. No correlation could be found be tween the calcium concentration changes and the cell length. The changes in calcium concentration reported here are suggested to be involved in the long-term pathogenesis of noise-induced hair cell damage.

  8. How do the medial olivocochlear efferents influence the biomechanics of the outer hair cells and thereby the cochlear amplifier? Simulation results

    NASA Astrophysics Data System (ADS)

    Saremi, Amin; Stenfelt, Stefan; Verhulst, Sarah

    2015-12-01

    The bottom-up signal pathway, which starts from the outer ear and leads to the brain cortices, gives the classic image of the human sound perception. However, there have been growing evidences in the last six decades for existence of a functional descending network whereby the central auditory system can modulate the early auditory processing, in a top-down manner. The medial olivocochlear efferent fibers project from the superior olivary complex at the brainstem into the inner ear. They are linked to the basal poles of the hair cells by forming synaptic cisterns. This descending network can activate nicotinic cholinergic receptors (nAChR) that increase the membrane conductance of the outer hair cells and thereby modify the magnitude of the active force generated inside the cochlea. The aim of the presented work is to quantitatively investigate how the changes in the biomechanics of the outer hair cells, caused by the efferent activation, manipulate the cochlear responses. This is done by means of a frequency-domain biophysical model of the cochlea [12] where the parameters of the model convey physiological interpretations of the human cochlear structures. The simulations manifest that a doubling of the outer hair cell conductance, due to efferent activation, leads to a frequency-dependent gain reduction along the cochlear duct with its highest effect at frequencies between 1 kHz and 3.5 kHz and a maximum of approximately 10 dB gain reduction at 2 kHz. This amount of the gain inhibition and its frequency dependence reasonably agrees with the experimental data recorded from guinea pig, cat and human cochleae where the medial olivococlear efferents had been elicited by broad-band stimuli. The simulations also indicate that the efferent-induced increase of the outer hair cell conductance increases the best frequency of the cochlear responses, in the basal region. The presented simulations quantitatively confirm that activation of the medial olivocochlear efferents can

  9. Hair Growth Promotion Activity and Its Mechanism of Polygonum multiflorum

    PubMed Central

    Li, Yunfei; Han, Mingnuan; Lin, Pei; He, Yanran; Yu, Jie; Zhao, Ronghua

    2015-01-01

    Polygonum multiflorum Radix (PMR) has long history in hair growth promotion and hair coloring in clinical applications. However, several crucial problems in its clinic usage and mechanisms are still unsolved or lack scientific evidences. In this research, C57BL/6J mice were used to investigate hair growth promotion activity and possible mechanism of PMR and Polygonum multiflorum Radix Preparata (PMRP). Hair growth promotion activities were investigated by hair length, hair covered skin ratio, the number of follicles, and hair color. Regulation effects of several cytokines involved in the hair growth procedure were tested, such as fibroblast growth factor (FGF-7), Sonic Hedgehog (SHH), β-catenin, insulin-like growth factor-1 (IGF-1), and hepatocyte growth factor (HGF). Oral PMR groups had higher hair covered skin ratio (100 ± 0.00%) than oral PMRP groups (48%~88%). However, topical usage of PMRP had about 90% hair covered skin ratio. Both oral administration of PMR and topically given PMRP showed hair growth promotion activities. PMR was considered to be more suitable for oral administration, while PMRP showed greater effects in external use. The hair growth promotion effect of oral PMR was most probably mediated by the expression of FGF-7, while topical PMRP promoted hair growth by the stimulation of SHH expression. PMID:26294926

  10. Nonlinear Responses of a Nonlinear Cochlear Model with the Function of AN Outer Hair Cell Model

    NASA Astrophysics Data System (ADS)

    Murakami, Y.; Unoki, M.

    2009-02-01

    To investigate how outer hair cells (OHCs) produce compressive nonlinearity in both the cochlear I/O function and tuning curve for a single tone, we present a nonlinear cochlear model with a nonlinear OHC model. In modeling cochlea filtering, we modeled somatic motility as a function of OHCs and the interaction between the basilar membrane and somatic motility through the tectorial membrane as mechanoelectrical transducer networks. The parameter values of the model were set to the estimates for human data. Signal frequencies of 0.125, 0.25, 0.5, 1, 2, 3, 4, and 6 kHz were used in the simulations of cochlear filtering. The results revealed that this model can account for the compressive nonlinearity in both the I/O functions and tuning curves of a cochlea obtained from the experiments. They also suggest that the somatic motility depending on the transducer currents produces nonlinearities in the I/O functions and tuning curves of cochlea.

  11. Expression and function of channelrhodopsin 2 in mouse outer hair cells

    NASA Astrophysics Data System (ADS)

    Chen, Fangyi; Wu, Tao; Wilson, Teresa; Subhash, Hrebesh; Omelchenko, Irina; Bateschell, Michael; Wang, Lingyan; Brigande, John; Jiang, Zhi-Gen; Nuttall, Alfred

    2013-03-01

    Outer hair cell (OHC) is widely accepted as the origin of cochlear amplification, a mechanism that accounts for the extreme sensitivity of the mammalian hearing. The key process of cochlear amplification is the reverse transduction, where the OHC changes its length under electrical stimulation. In this study, we developed a method to modulate electro-mechanical transduction with an optogenetic approach based on channelrhodopsin 2 (ChR2), a direct lightactivated non-selective cation channel (NSCC). We specifically expressed ChR2 in mouse cochlea OHCs through in uterus injection of adenovirus vector with ChR2 in fusion with the fluorescent marker tdTomato. We also transfected ChR2(H134R), a point mutant of ChR2, with plasmid to an auditory cell line (HEI-OC1). With whole cell recording, we found that blue light (470 nm) elicited a current with a reversal potential around zero in both mouse OHCs and HEI-OC1 cells and generated depolarization in both cell types.

  12. Microdomains shift and rotate in the lateral wall of cochlear outer hair cells.

    PubMed

    Kitani, Rei; Park, Channy; Kalinec, Federico

    2013-01-01

    Outer hair cell (OHC) electromotility, a response consisting of reversible changes in cell length and diameter induced by electrical stimulation, confers remarkable sensitivity and frequency resolution to the mammalian inner ear. Looking for a better understanding of this mechanism, we labeled isolated guinea pig OHCs with microspheres and, using high-speed video recording, investigated their movements at the apical, mid, and basal regions of osmotically and electrically stimulated cells. After hypoosmotic challenge, OHCs shortened and their diameter increased, with microspheres moving always toward the central plane; iso-osmolarity returned OHCs to their original shape and microspheres to their original positions. Under electrical stimulation, microspheres exhibited robust movements, with their displacement vectors changing in direction from random to parallel to the longitudinal axis of the cells with peak reorientation speeds of up to 6 rad/s and returning to random after 5 min without stimulation. Alterations in plasma-membrane cholesterol levels as well as cytoskeleton integrity affected microsphere responses. We concluded that microspheres attach to different molecular microdomains, and these microdomains are able to shift and rotate in the plane of the OHC lateral wall with a dynamics tightly regulated by membrane lipid composition and the cortical cytoskeleton.

  13. Motility voltage sensor of the outer hair cell resides within the lateral plasma membrane.

    PubMed Central

    Huang, G; Santos-Sacchi, J

    1994-01-01

    The outer hair cell (OHC) from the organ of Corti is believed to be responsible for the mammal's exquisite sense of hearing. A membrane-based motile response of this cell underlies the initial processing of acoustic energy. The voltage-dependent capacitance of the OHC, possibly reflecting charge movement of the motility voltage sensor, was measured in cells during intracellular dialysis of trypsin under whole cell voltage clamp. Within 10 min after dialysis, light and electron microscopic examination revealed that the subplasmalemmal structures, including the cytoskeletal framework and subsurface cisternae, were disrupted and/or detached from adjacent plasma membrane. Dialysis of heat-inactivated trypsin produced no changes in cell structure. Simultaneous measures of linear and nonlinear membrane capacitance revealed minimal changes, indicating that contributions by subsurface structures to the generation of the nonlinear capacitance are unlikely. This study strongly suggests that voltage-dependent charge movement in the OHC reflects properties of the force generator's voltage sensor and that the sensor/motor resides solely within the lateral plasma membrane. Images PMID:7991617

  14. Cochlear Outer-Hair-Cell Power Generation and Viscous Fluid Loss

    PubMed Central

    Wang, Yanli; Steele, Charles R.; Puria, Sunil

    2016-01-01

    Since the discovery of otoacoustic emissions and outer hair cell (OHC) motility, the fundamental question of whether the cochlea produces mechanical power remains controversial. In the present work, direct calculations are performed on power loss due to fluid viscosity and power generated by the OHCs. A three-dimensional box model of the mouse cochlea is used with a feed-forward/feed-backward approximation representing the organ of Corti cytoarchitecture. The model is fit to in vivo basilar membrane motion with one free parameter for the OHCs. The calculations predict that the total power output from the three rows of OHCs can be over three orders of magnitude greater than the acoustic input power at 10 dB sound pressure level (SPL). While previous work shows that the power gain, or the negative damping, diminishes with intensity, we show explicitly based on our model that OHC power output increases and saturates with SPL. The total OHC power output is about 2 pW at 80 dB SPL, with a maximum of about 10 fW per OHC. PMID:26792556

  15. All Three Rows of Outer Hair Cells Are Required for Cochlear Amplification.

    PubMed

    Murakoshi, Michio; Suzuki, Sho; Wada, Hiroshi

    2015-01-01

    In the mammalian auditory system, the three rows of outer hair cells (OHCs) located in the cochlea are thought to increase the displacement amplitude of the organ of Corti. This cochlear amplification is thought to contribute to the high sensitivity, wide dynamic range, and sharp frequency selectivity of the hearing system. Recent studies have shown that traumatic stimuli, such as noise exposure and ototoxic acid, cause functional loss of OHCs in one, two, or all three rows. However, the degree of decrease in cochlear amplification caused by such functional losses remains unclear. In the present study, a finite element model of a cross section of the gerbil cochlea was constructed. Then, to determine effects of the functional losses of OHCs on the cochlear amplification, changes in the displacement amplitude of the basilar membrane (BM) due to the functional losses of OHCs were calculated. Results showed that the displacement amplitude of the BM decreases significantly when a single row of OHCs lost its function, suggesting that all three rows of OHCs are required for cochlear amplification. PMID:26295049

  16. Cochlear outer hair cell bio-inspired metamaterial with negative effective parameters

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Zhang, Siwen

    2016-05-01

    Inspired by periodical outer hair cells (OHCs) and stereocilia clusters of mammalian cochlear, a type of bio-inspired metamaterial with negative effective parameters based on the OHC structure is proposed. With the structural parameters modified and some common engineering materials adopted, the bio-inspired structure design with length scales of millimeter and lightweight is presented, and then, a bending wave bandgap in a favorable low-frequency with width of 55 Hz during the interval 21-76 or 116 Hz during the interval 57-173 Hz is obtained, i.e., the excellent low-frequency acoustic performance turns up. Compared with the local resonance unit in previous literatures, both the size and weight are greatly reduced in our bio-inspired structure. In addition, the lower edge of low-frequency bandgap is reduced by an order of magnitude, almost to the lower limit frequency of the hearing threshold as well, which achieves an important breakthrough on the aspect of low-frequency and great significance on the noise and vibration reduction in low-frequency range.

  17. Evidence for Outer Hair Cell Driven Oscillatory Fluid Flow in the Tunnel of Corti

    PubMed Central

    Karavitaki, K. Domenica; Mountain, David C.

    2007-01-01

    Outer hair cell (OHC) somatic motility plays a key role in mammalian cochlear frequency selectivity and hearing sensitivity, but the mechanism of cochlear amplification is not well understood and remains a matter of controversy. We have visualized and quantified the effects of electrically evoked OHC somatic motility within the gerbil organ of Corti using an excised cochlear preparation. We found that OHC motility induces oscillatory motion of the medial olivocochlear fibers where they cross the tunnel of Corti (ToC) in their course to innervate the OHCs. We show that this motion is present at physiologically relevant frequencies and remains at locations distal to the OHC excitation point. We interpret this fiber motion to be the result of oscillatory fluid flow in the ToC. We show, using a simple one-dimensional hydromechanical model of the ToC, that a fluid wave within the tunnel can travel without significant attenuation for distances larger than the wavelength of the cochlear traveling wave at its peak. This ToC fluid wave could interact with the cochlear traveling wave to amplify the motion of the basilar membrane. The ToC wave could also provide longitudinal coupling between adjacent sections of the basilar membrane, and such coupling may be critical for cochlear amplification. PMID:17277193

  18. A Langevin Model of Nanoelectromechanical Transduction in Cochlear Outer Hair Cells

    NASA Astrophysics Data System (ADS)

    Raphael, Robert M.

    2001-03-01

    Cochlear outer hair cells contribute to the sensitivity, frequency selectivity and dynamic range of mammalian hearing and are responsible for cochlea nonlinearities. We have developed a new model of this electromotility based on the statistical mechanics of freely rotating dipoles in a liquid crystalline membrane.^1 Voltage-induced dipole reorientation leads to extension of cytoskeletal filaments based on the nanostructral organization of the cell. The predictions of the model agree with electrophysiological data on the stationary noise characteristics of the membrane and with the absence of nonstationary shot noise. This indicates that the molecular events underlying high frequency electromotility involving stochastic diffusion of a voltage sensor in a potential of mean force. Evidence for order electricity comes from experiments revealing that the diffusion of fluorescent probes in the membrane depends on membrane potential and membrane tension, supporting the picture that electromechanical coupling involves a voltage-induced disorder-order transition within the membrane. ^1 Raphael, R. M., A. S. Popel and W. E. Brownell. 2000. Biophys. J. 78:2844

  19. Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro.

    PubMed

    Clerici, W J; DiMartino, D L; Prasad, M R

    1995-04-01

    Reactive oxygen species (ROS) have been implicated in the ototoxicity of various agents. This study examines the effects of superoxide anion (O2), hydroxyl radical (OH.) and hydrogen peroxide (H2O2), on isolated cochlear outer hair cell (OHC) morphology. OHCs were superfused with artificial perilymph (AP) or AP containing a specific ROS scavenger, and then with AP, ROS system or scavenger plus ROS system for 90 min. The generation of ROS as well as the scavenging properties of other agents were confirmed by specific biochemical assays. Control cells decreased 4.8% in mean length, and showed no obvious membrane damage. Generation of O2. or OH. resulted in high rates (85.7 and 42.9%, respectively) of bleb formation at the synaptic pole, and decreased (O2., 15.2%; OH., 17.3%) mean cell length. Length change and bleb formation rate were H2O2 concentration-dependent. 20 mM H2O2 led to 33.3% decreased mean cell length, and only 20% bleb formation; 0.1 mM H2O2 led to 83.3% bleb formation, with no length decrease. Superoxide dismutase, deferoxamine and catalase protected against O2., OH. and H2O2 effects, respectively. Bleb formation and diminished cell length likely represent differential lipid peroxidative outcomes at supra- and infranuclear membranes, and are consistent with effects of certain ototoxicants.

  20. The actin-binding proteins eps8 and gelsolin have complementary roles in regulating the growth and stability of mechanosensory hair bundles of mammalian cochlear outer hair cells.

    PubMed

    Olt, Jennifer; Mburu, Philomena; Johnson, Stuart L; Parker, Andy; Kuhn, Stephanie; Bowl, Mike; Marcotti, Walter; Brown, Steve D M

    2014-01-01

    Sound transduction depends upon mechanosensitive channels localized on the hair-like bundles that project from the apical surface of cochlear hair cells. Hair bundles show a stair-case structure composed of rows of stereocilia, and each stereocilium contains a core of tightly-packed and uniformly-polarized actin filaments. The growth and maintenance of the stereociliary actin core are dynamically regulated. Recently, it was shown that the actin-binding protein gelsolin is expressed in the stereocilia of outer hair cells (OHCs) and in its absence they become long and straggly. Gelsolin is part of a whirlin scaffolding protein complex at the stereocilia tip, which has been shown to interact with other actin regulatory molecules such as Eps8. Here we investigated the physiological effects associated with the absence of gelsolin and its possible overlapping role with Eps8. We found that, in contrast to Eps8, gelsolin does not affect mechanoelectrical transduction during immature stages of development. Moreover, OHCs from gelsolin knockout mice were able to mature into fully functional sensory receptors as judged by the normal resting membrane potential and basolateral membrane currents. Mechanoelectrical transducer current in gelsolin-Eps8 double knockout mice showed a profile similar to that observed in the single mutants for Eps8. We propose that gelsolin has a non-overlapping role with Eps8. While Eps8 is mainly involved in the initial growth of stereocilia in both inner hair cells (IHCs) and OHCs, gelsolin is required for the maintenance of mature hair bundles of low-frequency OHCs after the onset of hearing. PMID:24475274

  1. Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea.

    PubMed

    Shehata, W E; Brownell, W E; Dieler, R

    1991-01-01

    A reversible tinnitus and hearing loss have long been known to result from large doses of salicylate. Cochlear electrophysiology and otoacoustic emission studies suggest that the drug may interfere with outer hair cell electromotility. Exposure of isolated outer hair cells to sodium salicylate concentrations ranging from 0.05 to 10 mM reveals a dose dependent, reversible loss of turgidity and dimunition of electromotility. There was also a change in membrane conductance with salicylate superfusion that occurred later in time from the onset of shape and electromotility changes. There was no evidence of dose dependence for the change in membrane conductance, nor was the change reversible. The changes in shape and electromotility that we observe in vitro may impair cochlear partition movements in vivo and could account, at least in part, for the salicylate-induced hearing loss and effects on otoacoustic emissions.

  2. Mosaic pattern of Cre recombinase expression in cochlear outer hair cells of the Brn3.1 Cre mouse.

    PubMed

    Frenz, Silke; Rak, Kristen; Völker, Johannes; Jürgens, Lukas; Scherzad, Agmal; Schendzielorz, Philipp; Radeloff, Andreas; Jablonka, Sibylle; Hansen, Stefan; Mlynski, Robert; Hagen, Rudolf

    2015-04-15

    The Brn3.1 gene encodes for the protein Brn3.1, which is a member of the POU-IV class of transcription factors. Mutation leads to nonsyndromic human progressive hearing loss (DFNA15). To investigate the suitability of the Brn3.1 promoter for Cre recombinase-induced genetic recombination in cochlear hair cells, we established a transgenic Brn3.1 Cre mouse. This mouse line was crossbred with floxed ROSA26 and ROSA26 reporter mice. The cochleae were histologically analysed in cryosections at E16.5 and whole-mount preparations from P2 until P85. In addition, mice from all used strains and their recombinant offspring were tested electrophysiologically by auditory brainstem responses (ABR) and distorsion product otoacoustic emissions (DPOAE). Cre recombinase activity could be detected in P14 and P21 animals in a mosaic pattern in 26.3 and 9.9% of the outer hair cells, respectively. All investigated mice showed normal ABR and DPOAE values, indicating that neither insertion of the internal ribosome entry site (IRES) Cre cassette into the Brn3.1 gene led to abnormal auditory development nor did the reporter strains show inherited hearing disorders. This study shows that Cre expression under the control of the Brn3.1 promoter is feasible and that the insertion of the internal ribosome entry site Cre cassette into this locus exerted no effects on hearing development. Because of the inconstant pattern and the limited duration of expression, the application of the developed mouse line might be restricted. Also, the unchanged hearing capacity and structural integrity of the organ of Corti in available reporter lines indicate that they may be useful tools for hearing research. PMID:25714426

  3. Microstructures in the organ of Corti help outer hair cells form traveling waves along the cochlear coil.

    PubMed

    Nam, Jong-Hoon

    2014-06-01

    According to the generally accepted theory of mammalian cochlear mechanics, the fluid in the cochlear scalae interacts with the elastic cochlear partition to generate transversely oscillating displacement waves that propagate along the cochlear coil. Using a computational model of cochlear segments, a different type of propagating wave is reported, an elastic propagating wave that is independent of the fluid-structure interaction. The characteristics of the propagating wave observed in the model, such as the wavelength, speed, and phase lag, are similar to those observed in the living cochlea. Three conditions are required for the existence of the elastic propagating wave in the cochlear partition without fluid-interaction: 1), the stiffness gradient of the cochlear partition; 2), the elastic longitudinal coupling; and 3), the Y-shaped structure in the organ of Corti formed by the outer hair cell, the Deiters cell, and the Deiters cell phalangeal process. The elastic propagating waves in the cochlear partition disappeared without the push-pull action provided by the outer hair cell and Deiters cell phalangeal process. The results suggest that the mechanical feedback of outer hair cells, facilitated by the organ of Corti microstructure, can control the tuning and amplification by modulating the cochlear traveling wave.

  4. Relationship between stiffness, internal cell pressure and shape of outer hair cells isolated from the guinea-pig hearing organ.

    PubMed

    Chan, E; Ulfendahl, M

    1997-12-01

    The mechanical properties of outer hair cells are of importance for normal hearing, and it has been shown that damage of the cells can lead to a reduction in the hearing sensitivity. In this study, we measured the stiffness of isolated outer hair cells in hyper- and hypotonic conditions, and examined the change in stiffness in relation to the corresponding changes in internal cell pressure and cell shape. The results showed that the axial stiffness of isolated outer hair cells (30-90 microns in length, 8-12 microns in diameter), ranging from 0.13-5.39 mN m-1, was inversely related to cell length. Exposure to hyper- and hypotonic external media with a small percentage change in osmolality caused a similar magnitude of change in cell length and cell diameter, but an average 60% change in cell stiffness. Therefore, a moderate osmotic change in the external medium can lead to a significant alteration in cell stiffness. The findings thus indicate an important contribution of internal cell pressure to cell stiffness.

  5. In vitro organotin administration alters guinea pig cochlear outer hair cell shape and viability.

    PubMed

    Clerici, W J; Chertoff, M E; Brownell, W E; Fechter, L D

    1993-06-01

    Trimethyltin (TMT) and triethyltin (TET) disrupt auditory function at doses far below those shown to be neurotoxic. In vivo studies suggest that the initial effect of TMT on hearing occurs at the inner hair cell/spiral ganglion cell synapse, while later, the outer hair cell (OHC) undergoes structural and functional damage. TET produces acute effects upon afferent neurotransmission similar to those observed following TMT, but TET's effects on OHC structure and function have not been examined. OHCs are motile elements within the cochlea, believed to modulate the sensitivity and tuning within the inner ear. Changes in OHC length may alter hearing function, and length changes have been reported following exposure to various ototoxic agents in vitro. In the present study, 77 OHCs from 45 pigmented male guinea pigs were isolated in primary culture and exposed for 90 min to concentrations between 30 microM and 1.0 mM of TMT or TET and then to bathing medium for 30 min to remove the toxicant. Significant shortening of the OHC cell body occurred at all doses to both organotins, with a mean reduction in length of 15.1 and 20.2% for 1.0 mM TMT and TET, respectively, at the end of testing; control cells were only 3.4% shorter at the end of 90 min of perfusion with bathing medium. The effect of organotin exposure on OHC volume was not consistently related to either TMT or TET concentration or altered cell length. In addition, disruption of the plasma membrane characterized by bleb formation, the forceful ejection of cytoplasm, or bursting was seen in 80% of cells exposed to 1.0 mM TET, although not TMT; lower concentrations of both organotins disrupted the cell membrane in 10-30% of cells. Membrane rupture was not reliably associated with either increased cell volume or decreased length, implicating a weakening of the plasma membrane or cortical lattice as the basis for this effect. Consistent with the irreversible structural weakening of the lateral wall, resorption of

  6. Neural Stem Cells Restore Hair Growth Through Activation of the Hair Follicle Niche.

    PubMed

    Hwang, Insik; Choi, Kyung-Ah; Park, Hang-Soo; Jeong, Hyesun; Kim, Jeong-Ok; Seol, Ki-Cheon; Kwon, Han-Jin; Park, In-Hyun; Hong, Sunghoi

    2016-01-01

    Several types of hair loss result from the inability of hair follicles to initiate the anagen phase of the hair regeneration cycle. Modulating signaling pathways in the hair follicle niche can stimulate entry into the anagen phase. Despite much effort, stem cell-based or pharmacological therapies to activate the hair follicle niche have not been successful. Here, we set out to test the effect of neural stem cell (NSC) extract on the hair follicle niche for hair regrowth. NSC extracts were applied to the immortalized cell lines HaCaT keratinocytes and dermal papilla cells (DPCs) and the shaven dorsal skin of mice. Treatment with NSC extract dramatically improved the growth of HaCaT keratinocytes and DPCs. In addition, NSC extract enhanced the hair growth of the shaven dorsal skin of mice. In order to determine the molecular signaling pathways regulated by NSCs, we evaluated the expression levels of multiple growth and signaling factors, such as insulin-like growth factor-1 (IGF-1), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and bone morphogenetic protein (BMP) family members. We found that treatment with an NSC extract enhanced hair growth by activating hair follicle niches via coregulation of TGF-β and BMP signaling pathways in the telogen phase. We also observed activation and differentiation of intrafollicular hair follicle stem cells, matrix cells, and extrafollicular DPCs in vivo and in vitro. We tested whether activation of growth factor pathways is a major effect of NSC treatment on hair growth by applying the growth factors to mouse skin. Combined growth factors, including TGF-β, significantly increased the hair shaft length and growth rate. DNA damage and cell death were not observed in skin cells of mice treated with the NSC extract for a prolonged period. Overall, our data demonstrate that NSC extract provides an effective approach for promoting

  7. Effect of salicylate on outer hair cell plasma membrane viscoelasticity: studies using optical tweezers

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Brownell, William E.; Anvari, Bahman

    2004-06-01

    The plasma membrane (PM) of mammalian outer hair cells (OHCs) generates mechanical forces in response to changes in the transmembrane electrical potential. The resulting change in the cell length is known as electromotility. Salicylate (Sal), the anionic, amphipathic derivative of aspirin induces reversible hearing loss and decreases electromotile response of the OHCs. Sal may change the local curvature and mechanical properties of the PM, eventually resulting in reduced electromotility or it may compete with intracellular monovalent anions, particularly Cl-, which are essential for electromotility. In this work we have used optical tweezers to study the effects of Sal on viscoelastic properties of the OHC PM when separated from the underlying composite structures of the cell wall. In this procedure, an optically trapped microsphere is brought in contact with PM and subsequently pulled away to form a tether. We measured the force exerted on the tether as a function of time during the process of tether growth at different pulling rates. Effective tether viscosity, steady-state tethering force extrapolated to zero pulling rate, and the time constant for tether growth were estimated from the measurements of the instantaneous tethering force. The time constant for the tether growth measured for the OHC basal end decreased 1.65 times after addition of 10 mM Sal, which may result from an interaction between Sal and cholesterol, which is more prevalent in the PM of OHC basal end. The time constants for the tether growth calculated for the OHC lateral wall and control human embryonic kidney cells as well as the other calculated viscoelastic parameters remained the same after Sal perfusion, favoring the hypothesis of competitive inhibition of electromotility by salicylate.

  8. Functional Prestin Transduction of Immature Outer Hair Cells from Normal and Prestin-Null Mice

    PubMed Central

    Xia, Anping; Wooltorton, Julian R.A.; Palmer, Donna J.; Ng, Philip; Pereira, Fred A.; Eatock, Ruth Anne

    2008-01-01

    Prestin is a membrane protein in the outer hair cell (OHC) that has been shown to be essential for electromotility. OHCs from prestin-null mice do not express prestin, do not have a nonlinear capacitance (the electrical signature of electromotility), and are smaller in size than wild-type OHCs. We sought to determine whether prestin-null OHCs can be transduced to incorporate functional prestin protein in a normal fashion. A recombinant helper-dependent adenovirus expressing prestin and green fluorescent protein (HDAd–prestin–GFP) was created and tested in human embryonic kidney cells (HEK cells). Transduced HEK cells demonstrated membrane expression of prestin and nonlinear capacitance. HDAd–prestin–GFP was then applied to cochlear sensory epithelium explants harvested from wild-type and prestin-null mice at postnatal days 2–3, the age at which native prestin is just beginning to become functional in wild-type mice. At postnatal days 4–5, we investigated transduced OHCs for (1) their prestin expression pattern as revealed by immunofluorescence; (2) their cell surface area as measured by linear capacitance; and (3) their prestin function as indicated by nonlinear capacitance. HDAd–prestin–GFP efficiently transduced OHCs of both genotypes and prestin protein localized to the plasma membrane. Whole-cell voltage clamp studies revealed a nonlinear capacitance in transduced wild-type and prestin-null OHCs, but not in non-transduced cells of either genotype. Prestin transduction did not increase the linear capacitance (cell surface area) for either genotype. In peak nonlinear capacitance, voltage at peak nonlinear capacitance, charge density of the nonlinear capacitance, and shape of the voltage-capacitance curves, the transduced cells of the two genotypes resembled each other and previously reported data from adult wild-type mouse OHCs. Thus, prestin introduced into prestin-deficient OHCs segregates normally to the cell membrane and generates a normal

  9. Coordinated movement of the three rows of outer hair cells is essential for cochlear amplification

    NASA Astrophysics Data System (ADS)

    Murakoshi, Michio; Suzuki, Sho; Wada, Hiroshi

    2015-12-01

    The process known as cochlear amplification is realized by coordinated movement of the outer hair cells (OHCs) in response to changes in their membrane potential. In this process, the displacement amplitude of the basilar membrane (BM) is thought to be increased, thereby leading to the high sensitivity, wide dynamic range and sharp frequency selectivity of our hearing. Unfortunately, however, OHCs are vulnerable to noise exposure, ototoxic acid, aging and so on. Previous studies have shown that exposure to intense noise causes functional loss of OHCs from the innermost row (i.e., close to the modiolus) to the outermost row (i.e., close to the cochlear wall). On the contrary, by other traumatic stimuli such as ototoxic acid, aging and ischemia, such loss of OHCs has been reported to occur from the outermost row toward the innermost row. However, how the cochlear amplification changes when coordinated movement of OHCs is impaired, that is when the OHCs in one, two or all three rows have become dysfunctional, remains unclear. In the present study, therefore, a finite element (FE) model of the gerbil cochlea, which takes the motility of OHCs into account, was developed based on our previous FE model. Using this model, changes in the displacement amplitude of the BM due to the functional loss of OHCs in one, two or all three rows were investigated and the effects of incoordination of the three rows of OHCs on cochlear amplification were estimated. Results showed that the displacement amplitude of the BM significantly decreased when either the innermost row or the outermost row of OHCs lost its function, suggesting that all three rows of OHCs are required for cochlear amplification.

  10. From Zebrafish to Mammal: Functional Evolution of Prestin, the Motor Protein of Cochlear Outer Hair Cells

    PubMed Central

    Tan, Xiaodong; Pecka, Jason L.; Tang, Jie; Okoruwa, Oseremen E.; Zhang, Qian

    2011-01-01

    Prestin is the motor protein of cochlear outer hair cells. It belongs to a distinct anion transporter family called solute carrier protein 26A, or SLC26A. Members of this family serve two fundamentally distinct functions. Although most members transport different anion substrates across a variety of epithelia, prestin (SLC26A5) is unique, functioning as a voltage-dependent motor protein. Recent evidence suggests that prestin orthologs from zebrafish and chicken are electrogenic divalent/chloride anion exchangers/transporters with no motor function. These studies appear to suggest that prestin was evolved from an anion transporter. We examined the motor and transport functions of prestin and its orthologs from four different species in the vertebrate lineage, to gain insights of how these two physiological functions became distinct. Somatic motility, voltage-dependent nonlinear capacitance (NLC), and transporter function were measured in transfected human embryonic kidney (HEK) cells using voltage-clamp and anion uptake techniques. Zebrafish and chicken prestins both exhibited weak NLC, with peaks significantly shifted in the depolarization (right) direction. This was contrasted by robust NLC with peaks left shifted in the platypus and gerbil. The platypus and gerbil prestins retained little transporter function compared with robust anion transport capacities in the zebrafish and chicken orthologs. Somatic motility was detected only in the platypus and gerbil prestins. There appears to be an inverse relationship between NLC and anion transport functions, whereas motor function appears to have emerged only in mammalian prestin. Our results suggest that motor function is an innovation of therian prestin and is concurrent with diminished transporter capabilities. PMID:21047933

  11. Action of salicylate on membrane capacitance of outer hair cells from the guinea-pig cochlea.

    PubMed Central

    Tunstall, M J; Gale, J E; Ashmore, J F

    1995-01-01

    1. The effect of salicylate on membrane capacitance and intracellular pH has been measured in isolated outer hair cells (OHCs) during whole cell recording. Cell membrane capacitance was measured using a lock-in amplifier technique. 2. Salicylate applied in the bath reduced the fast charge movement, equivalent to a voltage-dependent membrane capacitance, present in OHCs. Simultaneous measurement of membrane capacitance and voltage-driven cell length changes showed that salicylate reduced both together. 3. A small effect of salicylate on outward currents at 0 mV was observed. Sodium salicylate (5 mM) reduced the currents by 19% and another weak acid, sodium butyrate (10 mM), reduced outward currents in OHCs by 15%. 4. The ratiometric dye 2,7-bis(2-carboxymethyl)-5,6-carboxyfluorescein (BCECF) was used to measure pHi changes in OHCs during weak acid exposure. Membrane capacitance and pHi were measured simultaneously in OHCs exposed first to 10 mM sodium butyrate and then to 5 mM sodium salicylate. Although both compounds produced a similar reduction in pHi, butyrate decreased the resting capacitance from a mean resting capacitance of 35 pF (at -30 mV) by 5.4 +/- 2.1 pF, whereas salicylate decreased it by 15.7 +/- 2.3 pF (n = 4). 5. Exposure of OHCs to 10 mM sodium benzoate, an amphiphilic anion, reduced resting membrane capacitance at -30 mV by 9.2 +/- 3.2 pF (n = 3). Outward currents, measured at 0 mV, were reduced by 0.25 +/- 0.05 nA during benzoate application, comparable with the effect of salicylate. 6. Capacitance was measured during slow bath application of salicylate. The resulting dose-capacitance curve had a Hill coefficient of 3.40 +/- 0.85 (n = 4) and a half-maximal dose of 3.95 +/- 0.34 mM. The dose-capacitance curve was not significantly voltage dependent. 7. Salicylate had no detectable effect on the resting capacitance of Deiters' cells, a non-sensory cell type of the organ of Corti. 8. It is concluded that many of the described effects of salicylate

  12. Prestin regulation and function in residual outer hair cells after noise-induced hearing loss.

    PubMed

    Xia, Anping; Song, Yohan; Wang, Rosalie; Gao, Simon S; Clifton, Will; Raphael, Patrick; Chao, Sung-il; Pereira, Fred A; Groves, Andrew K; Oghalai, John S

    2013-01-01

    The outer hair cell (OHC) motor protein prestin is necessary for electromotility, which drives cochlear amplification and produces exquisitely sharp frequency tuning. Tecta(C1509G) transgenic mice have hearing loss, and surprisingly have increased OHC prestin levels. We hypothesized, therefore, that prestin up-regulation may represent a generalized response to compensate for a state of hearing loss. In the present study, we sought to determine the effects of noise-induced hearing loss on prestin expression. After noise exposure, we performed cytocochleograms and observed OHC loss only in the basal region of the cochlea. Next, we patch clamped OHCs from the apical turn (9-12 kHz region), where no OHCs were lost, in noise-exposed and age-matched control mice. The non-linear capacitance was significantly higher in noise-exposed mice, consistent with higher functional prestin levels. We then measured prestin protein and mRNA levels in whole-cochlea specimens. Both Western blot and qPCR studies demonstrated increased prestin expression after noise exposure. Finally, we examined the effect of the prestin increase in vivo following noise damage. Immediately after noise exposure, ABR and DPOAE thresholds were elevated by 30-40 dB. While most of the temporary threshold shifts recovered within 3 days, there were additional improvements over the next month. However, DPOAE magnitudes, basilar membrane vibration, and CAP tuning curve measurements from the 9-12 kHz cochlear region demonstrated no differences between noise-exposed mice and control mice. Taken together, these data indicate that prestin is up-regulated by 32-58% in residual OHCs after noise exposure and that the prestin is functional. These findings are consistent with the notion that prestin increases in an attempt to partially compensate for reduced force production because of missing OHCs. However, in regions where there is no OHC loss, the cochlea is able to compensate for the excess prestin in order to

  13. Assessment of Sensitivity and Compression of Outer Hair Cell Amplifiers by Means of Dpoae O-Functions in Humans

    NASA Astrophysics Data System (ADS)

    Oswald, J.; Klein, A.; Janssen, T.

    2003-02-01

    A new method for assessing sensitivity and compression of outer hair cell amplifiers by means of distortion product otoacoustic emissions (DPOAE) I/O-functions in humans was evaluated. Extrapolated DPOAE I/O functions from patients with sensory hearing loss and neonates were used to estimate hearing threshold objectively. There was a strong positive correlation between estimated and behavioral threshold in the sensory hearing loss ears below 45-dB hearing loss. Above 45-dB hearing loss there was a negative correlation due to tinnitus ears which had high emission levels despite the hearing loss. This was also true for the slope of the DPOAE I/O-function. Applying the same method to the neonates data revealed a slight hearing loss at high frequencies within the early postnatal period. Slope of the DPOAE I/O-functions was not increased excluding sensory hearing loss. Follow up measurments 4 weeks later revealed normalisation indicating transistory sound conductive disturbancies. The findings suggest extrapolated DPOAE I/O-functions to be a valuable clinical tool for differentiating middle-ear and cochlear pathologies and estimating quantitatively loss of sensitivity and compression of outer hair cell amplifiers.

  14. A threshold decrease for electrically stimulated motor responses of isolated aging outer hair cells from the pigmented guinea pig.

    PubMed

    LePage, E L; Reuter, G; Zenner, H P

    1995-01-01

    When outer hair cells are isolated from guinea pig cochleas and are placed in normal Hank's medium, they exhibit aging as a slow tonic reduction in length and increase in diameter. During this time the lateral subsurface cisternae become progressively vesiculated and the optical density of the border seen under phase-contrast microscopy decreases. A study of 65 outer hair cells was carried out using video imaging of this process. The base of each cell bonded to the Petri dish and the motility of the cuticular plate was recorded in two ways. To quantify the slow contraction of each preparation, the dimensions of the cell were measured from video replay. Displacements of the cuticular plate in response to an alternating electric field in line with the cell axis were also monitored using a video tracking technique. The amplitude of a 1 Hz stimulus required to cause a visually detectable motor response above baseline noise decreased as the cell degraded. Typically, fresh cylindrical cells exhibiting high optical contrast showed relatively small movements for field strengths up to 2 kVm-1. However, as the cell depolarized, the rigidity initially decreased and the cell could respond to field strengths down to 0.1 kVm-1 before cell death ultimately occurred. Such a threshold phenomenon in the isolated OHC has not been demonstrated directly until now. This result explains the variability of electromotility in aging in vitro preparations from the cochlea. PMID:7546676

  15. Synchronization of Spontaneous Active Motility of Hair Cell Bundles

    PubMed Central

    Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores

    2015-01-01

    Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409

  16. Synchronization of Spontaneous Active Motility of Hair Cell Bundles.

    PubMed

    Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores

    2015-01-01

    Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409

  17. Dissection of the Mechanical Impedance Components of the Outer Hair Cell Using a Chloride-Channel Blocker

    NASA Astrophysics Data System (ADS)

    Harasztosi, Csaba; Gummer, Anthony W.

    2011-11-01

    The voltage-dependent chloride-channel blocker anthracene-9-carboxylic acid (9AC) has been found to reduce the imaginary but not the real part of the mechanical impedance of the organ of Corti, suggesting that the effective stiffness of outer hair cells (OHCs) is reduced by 9AC. To examine whether 9AC interacts directly with the motor protein prestin to reduce the membrane component of the impedance, the patch-clamp technique in whole-cell configuration was used to measure the nonlinear capacitance (NLC) of isolated OHCs and, as control, prestin-transfected human embryonic kidney 293 (HEK293) cells. Extracellular application of 9AC significantly reduced the NLC of both OHCs and HEK293 cells. Intracellular 9AC did not influence the blocking effect of the extracellular applied drug. These results suggest that 9AC interacts directly with prestin, reducing the effective stiffness of the motor, and that the interaction is extracellular.

  18. Auditory sensitivity and the outer hair cell system in the CBA mouse model of age-related hearing loss.

    PubMed

    Frisina, Robert D; Zhu, Xiaoxia

    2010-06-01

    Age-related hearing loss is a highly prevalent sensory disorder, from both the clinical and animal model perspectives. Understanding of the neurophysiologic, structural, and molecular biologic bases of age-related hearing loss will facilitate development of biomedical therapeutic interventions to prevent, slow, or reverse its progression. Thus, increased understanding of relationships between aging of the cochlear (auditory portion of the inner ear) hair cell system and decline in overall hearing ability is necessary. The goal of the present investigation was to test the hypothesis that there would be correlations between physiologic measures of outer hair cell function (otoacoustic emission levels) and hearing sensitivity (auditory brainstem response thresholds), starting in middle age. For the CBA mouse, a useful animal model of age-related hearing loss, it was found that correlations between these two hearing measures occurred only for high sound frequencies in middle age. However, in old age, a correlation was observed across the entire mouse range of hearing. These findings have implications for improved early detection of progression of age-related hearing loss in middle-aged mammals, including mice and humans, and distinguishing peripheral etiologies from central auditory system decline.

  19. Centering perspectives on Black women, hair politics, and physical activity.

    PubMed

    Versey, H Shellae

    2014-05-01

    As researchers categorize issues facing Black women's health, obesity and physical exercise continue to be significant topics of debate. General interventions targeted toward Black women to address obesity and increase physical exercise have been largely ineffective. In this article, I situate the current public health discourse on obesity and related interventions within a sociocultural context of body appearance, with a specific focus on hair. Why do some African American women feel such strong ties to their hair that they will avoid exercise? What can be done to understand this phenomenon and address alternatives that may make both hair maintenance and regular exercise feasible? I map a theoretical argument for why hair matters for some women, and discuss how physical activity intervention strategies might be improved by considering such complexities.

  20. Evaluation of hair growth promoting activity of Phyllanthus niruri

    PubMed Central

    Patel, Satish; Sharma, Vikas; S. Chauhan, Nagendra; Thakur, Mayank; Dixit, Vinod Kumar

    2015-01-01

    Objective: This study was designed to investigate the potential Phyllanthus niruri (P. niruri ) extracts in promotion of hair growth. Materials and Methods: Here, we studied the hair growth promoting activity of petroleum ether extract of P. niruri following its topical administration. Alopecia was induced in albino rats by subcutaneous administration of testosterone for 21 days. Evaluation of hair loss inhibition was done by concurrent administration of extract and monitoring parameters like follicular density, anagen/telogen (A/T) ratio and histological observation of animal skin sections. Finasteride solution was applied topically as standard. In vitro experiments were also performed to study the effect of extract on the activity of 5α-reductase enzyme Results: Groups treated with petroleum ether extract of plant showed hair re-growth as reflected by follicular density, A/T ratio and skin sections. Histopathology and morphologic observations of hair re-growth at shaved sites showed active follicular proliferation. In vitro experiments results showed inhibitory activity of petroleum ether extract on type-2 5α-reductase enzyme and an increase in the amount of testosterone with increasing concentrations. Conclusion: It could be concluded that petroleum ether extracts of P. niruri might be useful in the treatment of testosterone-induced alopecia in the experimental animal by inhibiting 5α-reductase enzyme. PMID:26693408

  1. [Neutron activation analysis of human hair--multivariate analysis of factors influencing on trace element contents in hair-- (author's transl)].

    PubMed

    Imahori, A; Fukushima, I

    1980-06-01

    As a part of IAEA research project, "Activation analysis of hair as an indicator of contamination of man by environmental trace element pollutants", a survey was carried out to elucidate the levels of various trace element concentrations in hair of local population in the Tokyo Metropolitan areas, by applying instrumental neutron activation analysis. A total of 202 scalp hair samples were collected from the inhabitants classified by sex and five age classes. Irradiation was made in the Rikkyo University 100 kW TRIGA MARK-II reactor. Using several combinations of irradiation time, cooling time and counting time, forty elements were determined. The relationship between several trace element contents in hair and such factors as sex, age class, hair treatment, smoking habit and dental treatment, was analyzed by using the method of multiple regression. It was shown that (1) Hair treatment had a predominant effect on the contents of bromine, magnesium and calcium in hair, (2) Aging and smoking contributed increasing mercury content in hair, and hair treatment acted reversely. PMID:7208973

  2. Susceptibility of outer hair cells to cholesterol chelator 2-hydroxypropyl-β-cyclodextrine is prestin-dependent

    PubMed Central

    Takahashi, Satoe; Homma, Kazuaki; Zhou, Yingjie; Nishimura, Shinichi; Duan, Chongwen; Chen, Jessie; Ahmad, Aisha; Cheatham, Mary Ann; Zheng, Jing

    2016-01-01

    Niemann-Pick type C1 disease (NPC1) is a fatal genetic disorder caused by impaired intracellular cholesterol trafficking. Recent studies reported ototoxicity of 2-hydroxypropyl- β-cyclodextrin (HPβCD), a cholesterol chelator and the only promising treatment for NPC1. Because outer hair cells (OHCs) are the only cochlear cells affected by HPβCD, we investigated whether prestin, an OHC-specific motor protein, might be involved. Single, high-dose administration of HPβCD resulted in OHC death in prestin wildtype (WT) mice whereas OHCs were largely spared in prestin knockout (KO) mice in the basal region, implicating prestin’s involvement in ototoxicity of HPβCD. We found that prestin can interact with cholesterol in vitro, suggesting that HPβCD-induced ototoxicity may involve disruption of this interaction. Time-lapse analysis revealed that OHCs isolated from WT animals rapidly deteriorated upon HPβCD treatment while those from prestin-KOs tolerated the same regimen. These results suggest that a prestin-dependent mechanism contributes to HPβCD ototoxicity. PMID:26903308

  3. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration.

    PubMed

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang; Li, Ji

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  4. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration

    PubMed Central

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  5. Deformation of the Outer Hair Cells and the Accumulation of Caveolin-2 in Connexin 26 Deficient Mice

    PubMed Central

    Anzai, Takashi; Fukunaga, Ichiro; Hatakeyama, Kaori; Fujimoto, Ayumi; Kobayashi, Kazuma; Nishikawa, Atena; Aoki, Toru; Noda, Tetsuo; Minowa, Osamu; Ikeda, Katsuhisa; Kamiya, Kazusaku

    2015-01-01

    Background Mutations in GJB2, which encodes connexin 26 (Cx26), a cochlear gap junction protein, represent a major cause of pre-lingual, non-syndromic deafness. The degeneration of the organ of Corti observed in Cx26 mutant—associated deafness is thought to be a secondary pathology of hearing loss. Here we focused on abnormal development of the organ of Corti followed by degeneration including outer hair cell (OHC) loss. Methods We investigated the crucial factors involved in late-onset degeneration and loss of OHC by ultrastructural observation, immunohistochemistry and protein analysis in our Cx26-deficient mice (Cx26f/fP0Cre). Results In ultrastructural observations of Cx26f/fP0Cre mice, OHCs changed shape irregularly, and several folds or notches were observed in the plasma membrane. Furthermore, the mutant OHCs had a flat surface compared with the characteristic wavy surface structure of OHCs of normal mice. Protein analysis revealed an increased protein level of caveolin-2 (CAV2) in Cx26f/fP0Cre mouse cochlea. In immunohistochemistry, a remarkable accumulation of CAV2 was observed in Cx26f/fP0Cre mice. In particular, this accumulation of CAV2 was mainly observed around OHCs, and furthermore this accumulation was observed around the shrunken site of OHCs with an abnormal hourglass-like shape. Conclusions The deformation of OHCs and the accumulation of CAV2 in the organ of Corti may play a crucial role in the progression of, or secondary OHC loss in, GJB2-associated deafness. Investigation of these molecular pathways, including those involving CAV2, may contribute to the elucidation of a new pathogenic mechanism of GJB2-associated deafness and identify effective targets for new therapies. PMID:26492081

  6. Developing an active artificial hair cell using nonlinear feedback control

    NASA Astrophysics Data System (ADS)

    Joyce, Bryan S.; Tarazaga, Pablo A.

    2015-09-01

    The hair cells in the mammalian cochlea convert sound-induced vibrations into electrical signals. These cells have inspired a variety of artificial hair cells (AHCs) to serve as biologically inspired sound, fluid flow, and acceleration sensors and could one day replace damaged hair cells in humans. Most of these AHCs rely on passive transduction of stimulus while it is known that the biological cochlea employs active processes to amplify sound-induced vibrations and improve sound detection. In this work, an active AHC mimics the active, nonlinear behavior of the cochlea. The AHC consists of a piezoelectric bimorph beam subjected to a base excitation. A feedback control law is used to reduce the linear damping of the beam and introduce a cubic damping term which gives the AHC the desired nonlinear behavior. Model and experimental results show the AHC amplifies the response due to small base accelerations, has a higher frequency sensitivity than the passive system, and exhibits a compressive nonlinearity like that of the mammalian cochlea. This bio-inspired accelerometer could lead to new sensors with lower thresholds of detection, improved frequency sensitivities, and wider dynamic ranges.

  7. Studies on active substances in herbs used for hair treatment. I. Effects of herb extracts on hair growth and isolation of an active substance from Polyporus umbellatus F.

    PubMed

    Inaoka, Y; Shakuya, A; Fukazawa, H; Ishida, H; Nukaya, H; Tsuji, K; Kuroda, H; Okada, M; Fukushima, M; Kosuge, T

    1994-03-01

    The effects of methanol extracts of 80 herbs on hair growth were investigated, using normal C3H/He mice from which telogen hair on the back had been removed. Eighteen of the extracts apparently promoted hair regrowth on the mice. As one of active principles in Polyporus umbellatus F., 3,4-dihydroxybenzaldehyde was isolated by column chromatography on Amberlite XAD-2, Sephadex LH-20 and silica gel. PMID:8004697

  8. Protease activity, localization and inhibition in the human hair follicle

    PubMed Central

    Bhogal, R K; Mouser, P E; Higgins, C A; Turner, G A

    2014-01-01

    Synopsis Objective In humans, the process of hair shedding, referred to as exogen, is believed to occur independently of the other hair cycle phases. Although the actual mechanisms involved in hair shedding are not fully known, it has been hypothesized that the processes leading to the final step of hair shedding may be driven by proteases and/or protease inhibitor activity. In this study, we investigated the presence of proteases and protease activity in naturally shed human hairs and assessed enzyme inhibition activity of test materials. Methods We measured enzyme activity using a fluorescence-based assay and protein localization by indirect immunohistochemistry (IHC). We also developed an ex vivo skin model for measuring the force required to pull hair fibres from skin. Results Our data demonstrate the presence of protease activity in the tissue material surrounding club roots. We also demonstrated the localization of specific serine protease protein expression in human hair follicle by IHC. These data provide evidence demonstrating the presence of proteases around the hair club roots, which may play a role during exogen. We further tested the hypothesis that a novel protease inhibitor system (combination of Trichogen® and climbazole) could inhibit protease activity in hair fibre club root extracts collected from a range of ethnic groups (UK, Brazil, China, first-generation Mexicans in the USA, Thailand and Turkey) in both males and females. Furthermore, we demonstrated that this combination is capable of increasing the force required to remove hair in an ex vivo skin model system. Conclusion These studies indicate the presence of proteolytic activity in the tissue surrounding the human hair club root and show that it is possible to inhibit this activity with a combination of Trichogen® and climbazole. This technology may have potential to reduce excessive hair shedding. Résumé Objectif Chez l'homme, le processus de perte de cheveux, désigné comme exog

  9. Human hair neutron activation analysis: Analysis on population level, mapping

    NASA Astrophysics Data System (ADS)

    Zhuk, L. I.; Kist, A. A.

    1999-01-01

    Neutron activation analysis is an outstanding analytical method having very wide applications in various fields. Analysis of human hair within last decades mostly based on neutron activation analysis is a very attractive illustration of the application of nuclear analytical techniques. Very interesting question is how the elemental composition differs in different areas or cities. In this connection the present paper gives average data and maps of various localities in the vicinity of drying-out Aral Sea and of various industrial cities in Central Asia.

  10. Characterization of active hair-bundle motility by a mechanical-load clamp

    NASA Astrophysics Data System (ADS)

    Salvi, Joshua D.; Maoiléidigh, Dáibhid Ó.; Fabella, Brian A.; Tobin, Mélanie; Hudspeth, A. J.

    2015-12-01

    Active hair-bundle motility endows hair cells with several traits that augment auditory stimuli. The activity of a hair bundle might be controlled by adjusting its mechanical properties. Indeed, the mechanical properties of bundles vary between different organisms and along the tonotopic axis of a single auditory organ. Motivated by these biological differences and a dynamical model of hair-bundle motility, we explore how adjusting the mass, drag, stiffness, and offset force applied to a bundle control its dynamics and response to external perturbations. Utilizing a mechanical-load clamp, we systematically mapped the two-dimensional state diagram of a hair bundle. The clamp system used a real-time processor to tightly control each of the virtual mechanical elements. Increasing the stiffness of a hair bundle advances its operating point from a spontaneously oscillating regime into a quiescent regime. As predicted by a dynamical model of hair-bundle mechanics, this boundary constitutes a Hopf bifurcation.

  11. Foxi3 Deficiency Compromises Hair Follicle Stem Cell Specification and Activation.

    PubMed

    Shirokova, Vera; Biggs, Leah C; Jussila, Maria; Ohyama, Takahiro; Groves, Andrew K; Mikkola, Marja L

    2016-07-01

    The hair follicle is an ideal system to study stem cell specification and homeostasis due to its well characterized morphogenesis and stereotypic cycles of stem cell activation upon each hair cycle to produce a new hair shaft. The adult hair follicle stem cell niche consists of two distinct populations, the bulge and the more activation-prone secondary hair germ (HG). Hair follicle stem cells are set aside during early stages of morphogenesis. This process is known to depend on the Sox9 transcription factor, but otherwise the establishment of the hair follicle stem cell niche is poorly understood. Here, we show that that mutation of Foxi3, a Forkhead family transcription factor mutated in several hairless dog breeds, compromises stem cell specification. Further, loss of Foxi3 impedes hair follicle downgrowth and progression of the hair cycle. Genome-wide profiling revealed a number of downstream effectors of Foxi3 including transcription factors with a recognized function in hair follicle stem cells such as Lhx2, Runx1, and Nfatc1, suggesting that the Foxi3 mutant phenotype results from simultaneous downregulation of several stem cell signature genes. We show that Foxi3 displays a highly dynamic expression pattern during hair morphogenesis and cycling, and identify Foxi3 as a novel secondary HG marker. Absence of Foxi3 results in poor hair regeneration upon hair plucking, and a sparse fur phenotype in unperturbed mice that exacerbates with age, caused by impaired secondary HG activation leading to progressive depletion of stem cells. Thus, Foxi3 regulates multiple aspects of hair follicle development and homeostasis. Stem Cells 2016;34:1896-1908.

  12. Biological activities of Eikenella corrodens outer membrane and lipopolysaccharide.

    PubMed Central

    Progulske, A; Mishell, R; Trummel, C; Holt, S C

    1984-01-01

    Highly purified preparations of the outer membrane and lipopolysaccharide (LPS) of Eikenella corrodens strain ATCC 23834 and the outer membrane fraction (OMF) of strain 470 were tested in in vitro biological assays. The OMFs of both strains were found to be mitogenic for BDF and C3H/HeJ murine splenocytes. The E. corrodens LPS was mitogenic for BDF spleen cells; however, doses of LPS as high as 50 micrograms/ml failed to stimulate C3H/HeJ cells. When incubated with T-lymphocyte-depleted C3H/HeJ splenocytes, the strain 23834 OMF demonstrated significant mitogenic activity, indicating that the OMF is a B-cell mitogen by a mechanism other than that elicited by conventional LPS. The E. corrodens 23834 OMF and LPS were stimulators of bone resorption when tested in organ cultures of fetal rat long bones. In contrast, the strain 470 OMF was only weakly stimulatory. Both OMFs and LPSs demonstrated "endotoxic" activity, since as little as 0.062 micrograms of E. corrodens LPS and 0.015 micrograms of the OMFs induced gelation in the Limulus amebocyte clotting assay. Thus, despite having a "nonclassical" LPS biochemistry, the E. corrodens LPS elicits classical endotoxic activities. These results also indicate that the surface structures of E. corrodens have significant biological activities as measured in vitro. The expression of such activities in vivo may play an important role in the pathogenesis of periodontitis as well as other E. corrodens infections. PMID:6360893

  13. Two Adaptation Processes in Auditory Hair Cells Together Can Provide an Active Amplifier

    PubMed Central

    Vilfan, Andrej; Duke, Thomas

    2003-01-01

    The hair cells of the vertebrate inner ear convert mechanical stimuli to electrical signals. Two adaptation mechanisms are known to modify the ionic current flowing through the transduction channels of the hair bundles: a rapid process involves Ca2+ ions binding to the channels; and a slower adaptation is associated with the movement of myosin motors. We present a mathematical model of the hair cell which demonstrates that the combination of these two mechanisms can produce “self-tuned critical oscillations”, i.e., maintain the hair bundle at the threshold of an oscillatory instability. The characteristic frequency depends on the geometry of the bundle and on the Ca2+ dynamics, but is independent of channel kinetics. Poised on the verge of vibrating, the hair bundle acts as an active amplifier. However, if the hair cell is sufficiently perturbed, other dynamical regimes can occur. These include slow relaxation oscillations which resemble the hair bundle motion observed in some experimental preparations. PMID:12829475

  14. Galactosyltransferase activities in mitochondria outer membrane: biosynthesis of galactosylated proteins.

    PubMed

    Gasnier, F; Louisot, P; Gateau, O

    1989-01-01

    1. Mitochondria outer membranes prepared from mouse livers were purified on a discontinuous sucrose gradient. Control in electron microscopy and marker enzymes assays confirmed purity and homogeneity of this fraction. 2. Purified mitochondria outer membranes exhibited significant UDP-galactose: glycoprotein galactosyltransferase activities when incubated with endogenous or exogenous glycoprotein acceptors in presence of detergent (Nonidet P40). 3. Some properties of two distinct mitochondrial galactosyltransferases, acting respectively on ovomucoid and ovine asialo-mucin were investigated. 4. Transfer of galactose on ovomucoid was maximal for a pH of 7.6 at 33 degrees C whereas asialo-mucin galactosyltransferase exhibited an optimum pH of 5.6 for an optimal temperature of 46 degrees C. 5. These two distinct membrane-bound enzymes were both inhibited by diacylglycerophospholipids whereas lysophospholipids modulated both enzymes in a different way: at 5 mM lysophosphatidylcholine, asialo-mucin galactosyltransferase was slightly stimulated while ovomucoid galactosyltransferase was markedly activated. 6. The most important activating effect on ovomucoid galactosyltransferase was obtained with a phospholipid containing a long aliphatic side chain linked by an ester bond in sn-1 of glycerol, an hydroxyl group or hydrogen atoms in sn-2 and a phosphorylcholine head group in sn-3. PMID:2501112

  15. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation.

    PubMed

    Osorio, Karen M; Lee, Song Eun; McDermitt, David J; Waghmare, Sanjeev K; Zhang, Ying V; Woo, Hyun Nyun; Tumbar, Tudorita

    2008-03-01

    Aml1/Runx1 controls developmental aspects of several tissues, is a master regulator of blood stem cells, and plays a role in leukemia. However, it is unclear whether it functions in tissue stem cells other than blood. Here, we have investigated the role of Runx1 in mouse hair follicle stem cells by conditional ablation in epithelial cells. Runx1 disruption affects hair follicle stem cell activation, but not their maintenance, proliferation or differentiation potential. Adult mutant mice exhibit impaired de novo production of hair shafts and all temporary hair cell lineages, owing to a prolonged quiescent phase of the first hair cycle. The lag of stem cell activity is reversed by skin injury. Our work suggests a degree of functional overlap in Runx1 regulation of blood and hair follicle stem cells at an equivalent time point in the development of these two tissues. PMID:18256199

  16. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation.

    PubMed

    Osorio, Karen M; Lee, Song Eun; McDermitt, David J; Waghmare, Sanjeev K; Zhang, Ying V; Woo, Hyun Nyun; Tumbar, Tudorita

    2008-03-01

    Aml1/Runx1 controls developmental aspects of several tissues, is a master regulator of blood stem cells, and plays a role in leukemia. However, it is unclear whether it functions in tissue stem cells other than blood. Here, we have investigated the role of Runx1 in mouse hair follicle stem cells by conditional ablation in epithelial cells. Runx1 disruption affects hair follicle stem cell activation, but not their maintenance, proliferation or differentiation potential. Adult mutant mice exhibit impaired de novo production of hair shafts and all temporary hair cell lineages, owing to a prolonged quiescent phase of the first hair cycle. The lag of stem cell activity is reversed by skin injury. Our work suggests a degree of functional overlap in Runx1 regulation of blood and hair follicle stem cells at an equivalent time point in the development of these two tissues.

  17. Active Motion of Hair Bundles Coupled to the Otolithic Membrane in the Frog Sacculus

    NASA Astrophysics Data System (ADS)

    Strimbu, C. Elliott; Fredrickson-Hemsing, Lea; Bozovic, Dolores

    2011-11-01

    Active hair bundle motility has been proposed to provide the basis for the active process in the auditory organs of non-mammalian vertibrates, and has been extensively studied in mechanically decoupled or free-standing hair bundles from in vitro preparations of the frog sacculus. A number of studies have, however, suggested that cooperativity between hair cells plays an important role in the response of an intact organ. We use a semi-intact in vitro saccular preparation in which the hair cells are coupled and loaded by the otolithic membrane. While the hair bundles do not spontaneously oscillate beneath the membrane, they exhibit active movements in response to transient stimuli, demonstrating that the active process remains operant under these conditions. The coupled system however displays a striking decrease in frequency selectivity compared to freely oscillating bundles.

  18. Developmental and activity-dependent plasticity of filiform hair receptors in the locust

    PubMed Central

    Pflüger, Hans-Joachim; Wolf, Harald

    2013-01-01

    A group of wind sensitive filiform hair receptors on the locust thorax and head makes contact onto a pair of identified interneuron, A4I1. The hair receptors' central nervous projections exhibit pronounced structural dynamics during nymphal development, for example, by gradually eliminating their ipsilateral dendritic field while maintaining the contralateral one. These changes are dependent not only on hormones controlling development but on neuronal activity as well. The hair-to-interneuron system has remarkably high gain (close to 1) and makes contact to flight steering muscles. During stationary flight in front of a wind tunnel, interneuron A4I1 is active in the wing beat rhythm, and in addition it responds strongly to stimulation of sensory hairs in its receptive field. A role of the hair-to-interneuron in flight steering is thus suggested. This system appears suitable for further study of developmental and activity-dependent plasticity in a sensorimotor context with known connectivity patterns. PMID:23986712

  19. 76 FR 58273 - Agency Information Collection Activities; Proposed Collection; Comment Request; Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... Collection Activities; Proposed Collection; Comment Request; Outer Continental Shelf Air Regulations; EPA ICR... all outer continental shelf (OCS) sources except those located in the Gulf of Mexico west of 87.5... boundary extends three leagues (about nine miles) from the coastline. Title: Outer Continental Shelf...

  20. Radiolead (210)Pb and (210)Po/(210)Pb activity ratios in dogs' hair.

    PubMed

    Strumińska-Parulska, Dagmara I; Szymańska, Karolina; Skwarzec, Bogdan

    2015-01-01

    The aim of this study was to determine activity concentrations of radiolead (210)Pb as well as (210)Po/(210)Pb activity ratios in dog hair. The objectives of this research were also to investigate the utility of domestic animal hair as a noninvasive indicator of metal exposure for radiotoxic, naturally occurring (210)Pb and find the correlations between (210)Pb concentration in hair and age, gender, hair type or diet of analyzed animals. The highest (210)Pb concentrations were measured in a 2-year-old Shih Tzus (9.82 ± 0.53 Bq kg(-1) dw(-1)) and a 2-year-old Bichon Maltese (8.09 ± 0.42 Bq kg(-1) dw(-1)), both longhair males, while the lowest was found in a 15-year-old Yorkshire Terrier (0.44 ± 0.02 Bq kg(-1) dw(-1)), small longhair male as well. As results showed, mainly dog hair color as well as their age and gender influenced the differences in the values of (210)Pb concentrations in analyzed hair samples. Also the values of activity ratios of (210)Po/(210)Pb in analyzed dog hair samples were calculated and obtained results were similar to those observed in human hair. PMID:26191992

  1. Radiolead (210)Pb and (210)Po/(210)Pb activity ratios in dogs' hair.

    PubMed

    Strumińska-Parulska, Dagmara I; Szymańska, Karolina; Skwarzec, Bogdan

    2015-01-01

    The aim of this study was to determine activity concentrations of radiolead (210)Pb as well as (210)Po/(210)Pb activity ratios in dog hair. The objectives of this research were also to investigate the utility of domestic animal hair as a noninvasive indicator of metal exposure for radiotoxic, naturally occurring (210)Pb and find the correlations between (210)Pb concentration in hair and age, gender, hair type or diet of analyzed animals. The highest (210)Pb concentrations were measured in a 2-year-old Shih Tzus (9.82 ± 0.53 Bq kg(-1) dw(-1)) and a 2-year-old Bichon Maltese (8.09 ± 0.42 Bq kg(-1) dw(-1)), both longhair males, while the lowest was found in a 15-year-old Yorkshire Terrier (0.44 ± 0.02 Bq kg(-1) dw(-1)), small longhair male as well. As results showed, mainly dog hair color as well as their age and gender influenced the differences in the values of (210)Pb concentrations in analyzed hair samples. Also the values of activity ratios of (210)Po/(210)Pb in analyzed dog hair samples were calculated and obtained results were similar to those observed in human hair.

  2. Premature Graying as a Consequence of Compromised Antioxidant Activity in Hair Bulb Melanocytes and Their Precursors

    PubMed Central

    Shi, Ying; Luo, Long-Fei; Liu, Xiao-Ming; Zhou, Qiong; Xu, Shi-Zheng; Lei, Tie-Chi

    2014-01-01

    Intricate coordinated mechanisms that govern the synchrony of hair growth and melanin synthesis remain largely unclear. These two events can be uncoupled in prematurely gray hair, probably due to oxidative insults that lead to the death of oxidative stress-sensitive melanocytes. In this study, we examined the gene expression profiles of middle (bulge) and lower (hair bulb) segments that had been micro-dissected from unpigmented and from normally pigmented hair follicles from the same donors using quantitative real-time RT-PCR (qPCR) arrays. We found a significant down-regulation of melanogenesis-related genes (TYR, TYRP1, MITF, PAX3, POMC) in unpigmented hair bulbs and of marker genes typical for melanocyte precursor cells (PAX3, SOX10, DCT) in unpigmented mid-segments compared with their pigmented analogues. qPCR, western blotting and spin trapping assays revealed that catalase protein expression and hydroxyl radical scavenging activities are strongly repressed in unpigmented hair follicles. These data provide the first clear evidence that compromised antioxidant activity in gray hair follicles simultaneously affects mature hair bulb melanocytes and their immature precursor cells in the bulge region. PMID:24695442

  3. Legal regime of human activities in outer space law

    NASA Technical Reports Server (NTRS)

    Golda, Carlo

    1994-01-01

    Current developments in space activities increasingly involve the presence of humans on board spacecraft and, in the near future, on the Moon, on Mars, on board Space Stations, etc. With respect to these challenges, the political and legal issues connected to the status of astronauts are largely unclear and require a new doctrinal attention. In the same way, many legal and political questions remain open in the structure of future space crews: the need for international standards in the definition and training of astronauts, etc.; but, first of all, an international uniform legal definition of astronauts. Moreover, the legal structure for human life and operations in outer space can be a new and relevant paradigm for the definition of similar rules in all the situations and environments in which humans are involved in extreme frontiers. The present article starts from an overview on the existing legal and political definitions of 'astronauts', moving to the search of a more useful definition. This is followed by an analysis of the concrete problems created by human space activities, and the legal and political responses to them (the need for a code of conduct; the structure of the crew and the existing rules in the US and ex-USSR; the new legal theories on the argument; the definition and structure of a code of conduct; the next legal problems in fields such as privacy law, communications law, business law, criminal law, etc.).

  4. Telomerase activity concentrates in the mitotically active segments of human hair follicles.

    PubMed

    Ramirez, R D; Wright, W E; Shay, J W; Taylor, R S

    1997-01-01

    Telomerase is a ribonucleoprotein enzyme capable of adding hexanucleotide repeats onto the ends of linear chromosomal DNA. Whereas normal somatic cells with a limited replicative capacity fail to express telomerase activity, most immortal eukaryotic cells do. Cells of renewal tissues (e.g., skin, intestine, blood) require an extensive proliferative capacity. Some cells in such renewal tissues also express telomerase activity, most likely to prevent rapid erosion of their telomeres during cell proliferation. In this study, we measured the levels of telomerase activity in dissected compartments of the human hair follicle: hair shaft, gland-containing fragment, upper intermediate fragment (where it is thought undifferentiated stem cells reside), lower intermediate fragment, and in the bulb-containing fragment (an area with high mitotic activity containing a more differentiated pool of keratinocytes). In anagen follicles, high levels of telomerase activity were found almost exclusively in the bulb-containing fragment of the follicles, with low levels of telomerase in the bulge area (intermediate fragments) and gland-containing fragment. In comparison, catagen follicles had low levels of telomerase activity in the bulb-containing fragments as well as in other compartments. Such observations indicate that, in anagen hair follicles, the fragments containing cells actively dividing (e.g., transient amplifying cells) express telomerase activity, whereas fragments containing cells with low mitotic activity, for example, quiescent stem cells, express low levels of telomerase activity. PMID:8980299

  5. Tmc1 Point Mutation Affects Ca2+ Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse Outer Hair Cells

    PubMed Central

    Corns, Laura F.; Johnson, Stuart L.; Kros, Corné J.

    2016-01-01

    The transduction of sound into electrical signals depends on mechanically sensitive ion channels in the stereociliary bundle. The molecular composition of this mechanoelectrical transducer (MET) channel is not yet known. Transmembrane channel-like protein isoforms 1 (TMC1) and 2 (TMC2) have been proposed to form part of the MET channel, although their exact roles are still unclear. Using Beethoven (Tmc1Bth/Bth) mice, which have an M412K point mutation in TMC1 that adds a positive charge, we found that Ca2+ permeability and conductance of the MET channel of outer hair cells (OHCs) were reduced. Tmc1Bth/Bth OHCs were also less sensitive to block by the permeant MET channel blocker dihydrostreptomycin, whether applied extracellularly or intracellularly. These findings suggest that the amino acid that is mutated in Bth is situated at or near the negatively charged binding site for dihydrostreptomycin within the permeation pore of the channel. We also found that the Ca2+ dependence of the operating range of the MET channel was altered by the M412K mutation. Depolarization did not increase the resting open probability of the MET current of Tmc1Bth/Bth OHCs, whereas raising the intracellular concentration of the Ca2+ chelator BAPTA caused smaller increases in resting open probability in Bth mutant OHCs than in wild-type control cells. We propose that these observations can be explained by the reduced Ca2+ permeability of the mutated MET channel indirectly causing the Ca2+ sensor for adaptation, at or near the intracellular face of the MET channel, to become more sensitive to Ca2+ influx as a compensatory mechanism. SIGNIFICANCE STATEMENT In the auditory system, the hair cells convert sound-induced mechanical movement of the hair bundles atop these cells into electrical signals through the opening of mechanically gated ion channels at the tips of the bundles. Although the nature of these mechanoelectrical transducer (MET) channels is still unclear, recent studies implicate

  6. Activating β-catenin signaling in CD133-positive dermal papilla cells increases hair inductivity.

    PubMed

    Zhou, Linli; Yang, Kun; Xu, Mingang; Andl, Thomas; Millar, Sarah E; Boyce, Steven; Zhang, Yuhang

    2016-08-01

    Bioengineering hair follicles using cells isolated from human tissue remains a difficult task. Dermal papilla (DP) cells are known to guide the growth and cycling activities of hair follicles by interacting with keratinocytes. However, DP cells quickly lose their inductivity during in vitro passaging. Rodent DP cell cultures need external addition of growth factors, including WNT and BMP molecules, to maintain the hair inductive property. CD133 is expressed by a subpopulation of DP cells that are capable of inducing hair follicle formation in vivo. We report here that expression of a stabilized form of β-catenin promoted clonal growth of CD133-positive (CD133+) DP cells in in vitro three-dimensional hydrogel culture while maintaining expression of DP markers, including alkaline phosphatase (AP), CD133, and integrin α8. After a 2-week in vitro culture, cultured CD133+ DP cells with up-regulated β-catenin activity led to an accelerated in vivo hair growth in reconstituted skin compared to control cells. Further analysis showed that matrix cell proliferation and differentiation were significantly promoted in hair follicles when β-catenin signaling was up-regulated in CD133+ DP cells. Our data highlight an important role for β-catenin signaling in promoting the inductive capability of CD133+ DP cells for in vitro expansion and in vivo hair follicle regeneration, which could potentially be applied to cultured human DP cells.

  7. Activating β-catenin signaling in CD133-positive dermal papilla cells increases hair inductivity.

    PubMed

    Zhou, Linli; Yang, Kun; Xu, Mingang; Andl, Thomas; Millar, Sarah E; Boyce, Steven; Zhang, Yuhang

    2016-08-01

    Bioengineering hair follicles using cells isolated from human tissue remains a difficult task. Dermal papilla (DP) cells are known to guide the growth and cycling activities of hair follicles by interacting with keratinocytes. However, DP cells quickly lose their inductivity during in vitro passaging. Rodent DP cell cultures need external addition of growth factors, including WNT and BMP molecules, to maintain the hair inductive property. CD133 is expressed by a subpopulation of DP cells that are capable of inducing hair follicle formation in vivo. We report here that expression of a stabilized form of β-catenin promoted clonal growth of CD133-positive (CD133+) DP cells in in vitro three-dimensional hydrogel culture while maintaining expression of DP markers, including alkaline phosphatase (AP), CD133, and integrin α8. After a 2-week in vitro culture, cultured CD133+ DP cells with up-regulated β-catenin activity led to an accelerated in vivo hair growth in reconstituted skin compared to control cells. Further analysis showed that matrix cell proliferation and differentiation were significantly promoted in hair follicles when β-catenin signaling was up-regulated in CD133+ DP cells. Our data highlight an important role for β-catenin signaling in promoting the inductive capability of CD133+ DP cells for in vitro expansion and in vivo hair follicle regeneration, which could potentially be applied to cultured human DP cells. PMID:27312243

  8. Chloride-driven Electromechanical Phase Lags at Acoustic Frequencies Are Generated by SLC26a5, the Outer Hair Cell Motor Protein

    PubMed Central

    Santos-Sacchi, Joseph; Song, Lei

    2014-01-01

    Outer hair cells (OHC) possess voltage-dependent membrane bound molecular motors, identified as the solute carrier protein SLC26a5, that drive somatic motility at acoustic frequencies. The electromotility (eM) of OHCs provides for cochlear amplification, a process that enhances auditory sensitivity by up to three orders of magnitude. In this study, using whole cell voltage clamp and mechanical measurement techniques, we identify disparities between voltage sensing and eM that result from stretched exponential electromechanical behavior of SLC26a5, also known as prestin, for its fast responsiveness. This stretched exponential behavior, which we accurately recapitulate with a new kinetic model, the meno presto model of prestin, influences the protein’s responsiveness to chloride binding and provides for delays in eM relative to membrane voltage driving force. The model predicts that in the frequency domain, these delays would result in eM phase lags that we confirm by measuring OHC eM at acoustic frequencies. These lags may contribute to canceling viscous drag, a requirement for many models of cochlear amplification. PMID:24988347

  9. Chloride-driven electromechanical phase lags at acoustic frequencies are generated by SLC26a5, the outer hair cell motor protein.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2014-07-01

    Outer hair cells (OHC) possess voltage-dependent membrane bound molecular motors, identified as the solute carrier protein SLC26a5, that drive somatic motility at acoustic frequencies. The electromotility (eM) of OHCs provides for cochlear amplification, a process that enhances auditory sensitivity by up to three orders of magnitude. In this study, using whole cell voltage clamp and mechanical measurement techniques, we identify disparities between voltage sensing and eM that result from stretched exponential electromechanical behavior of SLC26a5, also known as prestin, for its fast responsiveness. This stretched exponential behavior, which we accurately recapitulate with a new kinetic model, the meno presto model of prestin, influences the protein's responsiveness to chloride binding and provides for delays in eM relative to membrane voltage driving force. The model predicts that in the frequency domain, these delays would result in eM phase lags that we confirm by measuring OHC eM at acoustic frequencies. These lags may contribute to canceling viscous drag, a requirement for many models of cochlear amplification.

  10. Selective activation of the versican promoter by epithelial- mesenchymal interactions during hair follicle development.

    PubMed

    Kishimoto, J; Ehama, R; Wu, L; Jiang, S; Jiang, N; Burgeson, R E

    1999-06-22

    Interaction between the epithelium and the mesenchyme is an essential feature of organogenesis, including hair follicle formation. The dermal papilla (DP), a dense aggregate of specialized dermis-derived stromal cells located at the bottom of the follicle, is a major component of hair that signals the follicular epithelial cells to prolong the hair growth process. However, little is known about DP-specific gene activation with regard to hair induction. In this study we demonstrate that a short fragment (839 bp) of the human versican (a core protein of one of the matrix chondroitin sulfate proteoglycans) promoter is sufficient to activate lacZ reporter gene expression in the DP of postnatal transgenic mice and also in the condensed mesenchyme (the origin of the DP) beneath the hair placode during hair follicle embryogenesis. Using the same versican promoter with green fluorescent protein (GFP), large numbers of fresh pelage DP cells were isolated from newborn transgenic skin by high-speed cell sorting. These GFP-positive DP cells showed abundant versican mRNA, confirming that the reporter molecules reflected endogenous versican gene expression. These sorted GFP-positive cells showed DP-like morphology in culture, but both GFP and versican expression was lost during primary culture. In vivo hair growth assays showed that GFP-positive cells could induce hair when grafted with epithelial cells, whereas GFP-negative cells grafted with epithelium or GFP-positive cells alone did not. These results suggest that versican may play an essential role both in mesenchymal condensation and in hair induction.

  11. Spontaneous oscillations, signal amplification and synchronization in a model of active hair bundle mechanics

    PubMed Central

    Han, Lijuan; Neiman, Alexander B.

    2010-01-01

    We study spontaneous dynamics and signal transduction in a model of active hair bundle mechanics of sensory hair cells. The hair bundle motion is subjected to internal noise resulted from thermal fluctuations and stochastic dynamics of mechano-electrical transduction ion channels. Similar to other studies we found that in the presence of noise the coherence of stochastic oscillations is maximal at a point on the bifurcation diagram away from the Andronov-Hopf bifurcation and is close to the point of maximum sensitivity of the system to weak periodic mechanical perturbations. Despite decoherent effect of noise the stochastic hair bundle oscillations can be synchronized by external periodic force of few pN amplitude in a finite range of control parameters. We then study effects of receptor potential oscillations on mechanics of the hair bundle and show that the hair bundle oscillations can be synchronized by oscillating receptor voltage. Moreover, using a linear model for the receptor potential we show that bi-directional coupling of the hair bundle and the receptor potential results in significant enhancement of the coherence of spontaneous oscillations and of the sensitivity to the external mechanical perturbations. PMID:20481759

  12. Spontaneous oscillations, signal amplification, and synchronization in a model of active hair bundle mechanics

    NASA Astrophysics Data System (ADS)

    Han, Lijuan; Neiman, Alexander B.

    2010-04-01

    We study spontaneous dynamics and signal transduction in a model of active hair bundle mechanics of sensory hair cells. The hair bundle motion is subjected to internal noise resulted from thermal fluctuations and stochastic dynamics of mechanoelectrical transduction ion channels. Similar to other studies we found that in the presence of noise the coherence of stochastic oscillations is maximal at a point on the bifurcation diagram away from the Andronov-Hopf bifurcation and is close to the point of maximum sensitivity of the system to weak periodic mechanical perturbations. Despite decoherent effect of noise the stochastic hair bundle oscillations can be synchronized by external periodic force of few pN amplitude in a finite range of control parameters. We then study effects of receptor potential oscillations on mechanics of the hair bundle and show that the hair bundle oscillations can be synchronized by oscillating receptor voltage. Moreover, using a linear model for the receptor potential we show that bidirectional coupling of the hair bundle and the receptor potential results in significant enhancement of the coherence of spontaneous oscillations and of the sensitivity to the external mechanical perturbations.

  13. Mutation of the TBCE gene causes disturbance of microtubules in the auditory nerve and cochlear outer hair cell degeneration accompanied by progressive hearing loss in the pmn/pmn mouse.

    PubMed

    Rak, Kristen; Frenz, Silke; Radeloff, Andreas; Groh, Janos; Jablonka, Sibylle; Martini, Rudolf; Hagen, Rudolf; Mlynski, Robert

    2013-12-01

    The progressive motor neuronopathy (pmn/pmn) mouse, an animal model for a fast developing human motor neuron disorder, is additionally characterized by simultaneous progressive sensorineural hearing loss. The gene defect in the pmn/pmn mouse is localized to a missense mutation in the tubulin-specific chaperone E (TBCE) gene on mouse chromosome 13, which is one of the five tubulin-specific chaperons involved in tubulin folding and dimerization. The missense mutation leads to a disturbance of tubulin structures in the auditory nerve and a progressive outer hair cell loss due to apoptosis, which is accompanied by highly elevated ABR-thresholds and loss of DPOAEs. In addition the TBCE protein is selectively expressed in the outer hair cells and the transcellular processes of the inner pillar cells in the cochlea of control and pmn/pmn mouse. We conclude from our study that the mutation of the TBCE gene affects the auditory nerve and the cochlear hair cells simultaneously, leading to progressive hearing loss. This animal model will give the chance to test possible therapeutic strategies in special forms of hearing loss, in which the auditory nerve and the cochlear hair cells are simultaneously affected. PMID:24120439

  14. Hair growth activity of Crataegus pinnatifida on C57BL/6 mouse model.

    PubMed

    Shin, Heon-Sub; Lee, Jung-Min; Park, Sang-Yong; Yang, Jung-Eun; Kim, Ju-Han; Yi, Tae-Hoo

    2013-09-01

    Crataegus pinnatifida has a long history of use in traditional oriental herbal medicine to stimulating digestion and improving blood circulation. Based on nutrition of hair, the present study was conducted to assess the effect of C. pinnatifida extract on hair growth using mouse model and its mechanisms of action. The C. pinnatifida extract containing the contents of total polyphenol of 5.88□0.82 g gallic acid/100 g extract and proanthocyanidin of 9.15□1.58 mg cyaniding chloride/100 g extract was orally administered daily at a dosage of 50 mg/kg weight to the 7-week-old C57BL/6 mice in telogen. The C. pinnatifida extract promoted hair growth by inducing anagen phase in mice in telogen, reflected by color of skin, thickness of hair shaft, and density of hair. The ratio of anagento telogen was determined by shape of hair follicles in vertically sectioned slide and increased by oral administration of C. pinnatifida extract. The number and the size of hair follicles were also enlarged, indicating anagen phase induction. The proliferation of human dermal papilla cells (hDPC) was accelerated by addition of C. pinnatifida extract, which activated the signaling of mitogen-activated protein kinases (Erk, p-38, and JNK) and Akt. Moreover, the ratio of Bcl-2/Bax as the determinant of cell fate was also raised in skin. These results suggest that the C. pinnatifida extract promotes hair growth by inducing anagen phase, which might be mediated by the activation of cellular signalings that enhance the survival of cultured hDPC and the increase of the ratio of Bcl-2 to Bax that protects cells against cell death.

  15. Therapeutic strategy for hair regeneration: Hair cycle activation, niche environment modulation, wound-induced follicle neogenesis and stem cell engineering

    PubMed Central

    Chueh, Shan-Chang; Lin, Sung-Jan; Chen, Chih-Chiang; Lei, Mingxing; Wang, Ling Mei; Widelitz, Randall B.; Hughes, Michael W.; Jiang, Ting-Xing; Chuong, Cheng Ming

    2013-01-01

    Introduction There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer. Areas covered Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells. Expert opinion Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. PMID:23289545

  16. Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells

    PubMed Central

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  17. Allosteric coupling of the inner activation gate to the outer pore of a potassium channel.

    PubMed

    Peters, Christian J; Fedida, David; Accili, Eric A

    2013-10-23

    In potassium channels, functional coupling of the inner and outer pore gates may result from energetic interactions between residues and conformational rearrangements that occur along a structural path between them. Here, we show that conservative mutations of a residue near the inner activation gate of the Shaker potassium channel (I470) modify the rate of C-type inactivation at the outer pore, pointing to this residue as part of a pathway that couples inner gate opening to changes in outer pore structure and reduction of ion flow. Because they remain equally sensitive to rises in extracellular potassium, altered inactivation rates of the mutant channels are not secondary to modified binding of potassium to the outer pore. Conservative mutations of I470 also influence the interaction of the Shaker N-terminus with the inner gate, which separately affects the outer pore.

  18. Hoxc13 is a crucial regulator of murine hair cycle.

    PubMed

    Qiu, Weiming; Lei, Mingxing; Tang, Hui; Yan, Hongtao; Wen, Xuhong; Zhang, Wei; Tan, Ranjing; Wang, Duan; Wu, Jinjin

    2016-04-01

    Hair follicles undergo cyclical growth and regression during postnatal life. Hair regression is an apoptosis-driven process strictly controlled by micro- and macro-environmental signals. However, how these signals are controlled remains largely unknown. Hoxc13, a member of the Hox gene family, is reported to play an important role in hair follicle differentiation. In the present study, we observed that Hoxc13 was highly expressed in the outer root sheath, matrix, medulla and inner root sheath of hair follicles in a hair cycle-dependent manner. We therefore investigated the role of Hoxc13 in hair follicle cycling. Injection of ShRNA (ShHoxc13) to suppress Hoxc13 in early anagen promoted premature catagen entry, shown by significantly decreased hair length and hair bulb size, increased percentage of catagen hair follicles, hair cycle score and TUNEL+ cells and inhibited proliferation. In contrast, local injection of recombinant Hoxc13 polypeptide (rhHoxc13) during the late anagen phase prolonged the anagen phase. Additionally, rhHoxc13 injections during the telogen phase significantly promoted hair growth and induced the anagen progression. At the molecular level, the expression of phosphorylated smad2 (p-smad2), a key factor of active TGF-β1 signaling, was up-regulated in the ShHoxc13-treated hair follicles and down-regulated in rhHoxc13-treated hair follicles, suggesting that Hoxc13 might block anagen-catagen transition by inhibiting the TGF-β1 signaling. Taken together, our data strongly suggest that Hoxc13 is a novel and crucial regulator of the hair cycle. This might also provide an understanding of the mechanism of the 'hair cycle clock' and the development of alopecia treatments.

  19. Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification?

    PubMed Central

    Peng, Anthony W.; Ricci, Anthony J.

    2010-01-01

    Hearing organs have evolved to detect sounds across several orders of magnitude of both intensity and frequency. Detection limits are at the atomic level despite the energy associated with sound being limited thermodynamically. Several mechanisms have evolved to account for the remarkable frequency selectivity, dynamic range, and sensitivity of these various hearing organs, together termed the active process or cochlear amplifier. Similarities between hearing organs of disparate species provides insight into the factors driving the development of the cochlear amplifier. These properties include: a tonotopic map, the emergence of a two hair cell system, the separation of efferent and afferent innervations, the role of the tectorial membrane, and the shift from intrinsic tuning and amplification to a more end organ driven process. Two major contributors to the active process are hair bundle mechanics and outer hair cell electromotility, the former present in all hair cell organs tested, the latter only present in mammalian cochlear outer hair cells. Both of these processes have advantages and disadvantages, and how these processes interact to generate the active process in the mammalian system is highly disputed. A hypothesis is put forth suggesting that hair bundle mechanics provides amplification and filtering in most hair cells, while in mammalian cochlea, outer hair cell motility provides the amplification on a cycle by cycle basis driven by the hair bundle that provides frequency selectivity (in concert with the tectorial membrane) and compressive nonlinearity. Separating components of the active process may provide additional sites for regulation of this process. PMID:20430075

  20. Estrogenic and anti-estrogenic activity of off-the-shelf hair and skin care products.

    PubMed

    Myers, Sharon L; Yang, Chun Z; Bittner, George D; Witt, Kristine L; Tice, Raymond R; Baird, Donna D

    2015-05-01

    Use of personal care products is widespread in the United States but tends to be greater among African Americans than whites. Of special concern is the possible hazard of absorption of chemicals with estrogenic activity (EA) or anti-EA (AEA) in these products. Such exposure may have adverse health effects, especially when it occurs during developmental windows (e.g., prepubertally) when estrogen levels are low. We assessed the ethanol extracts of eight commonly used hair and skin products popular among African Americans for EA and AEA using a cell proliferation assay with the estrogen sensitive MCF-7:WS8 cell line derived from a human breast cancer. Four of the eight personal care products tested (Oil Hair Lotion, Extra-dry Skin Lotion, Intensive Skin Lotion, Petroleum Jelly) demonstrated detectable EA, whereas three (Placenta Hair Conditioner, Tea-Tree Hair Conditioner, Cocoa Butter Skin Cream) exhibited AEA. Our data indicate that hair and skin care products can have EA or AEA, and suggest that laboratory studies are warranted to investigate the in vivo activity of such products under chronic exposure conditions as well as epidemiologic studies to investigate potential adverse health effects that might be associated with use of such products. PMID:24849798

  1. Estrogenic and anti-estrogenic activity of off-the-shelf hair and skin care products

    PubMed Central

    Myers, Sharon L.; Yang, Chun Z.; Bittner, George D.; Witt, Kristine L.; Tice, Raymond R.; Baird, Donna D.

    2014-01-01

    Use of personal care products is widespread in the United States but tends to be greater among African Americans than whites. Of special concern is the possible hazard of absorption of chemicals with estrogenic activity (EA) or anti-EA (AEA) in these products. Such exposure may have adverse health effects, especially when it occurs during developmental windows (e.g., prepubertally) when estrogen levels are low. We assessed the ethanol extracts of eight commonly used hair and skin products popular among African Americans for EA and AEA using a cell proliferation assay with the estrogen sensitive MCF-7:WS8 cell line derived from a human breast cancer. Four of the eight personal care products tested (Oil Hair Lotion, Extra-dry Skin Lotion, Intensive Skin Lotion, Petroleum Jelly) demonstrated detectable EA, whereas three (Placenta Hair Conditioner, Tea-Tree Hair Conditioner, Cocoa Butter Skin Cream) exhibited AEA. Our data indicate that hair and skin care products can have EA or AEA, and suggest that laboratory studies are warranted to investigate the in vivo activity of such products under chronic exposure conditions as well as epidemiologic studies to investigate potential adverse health effects that might be associated with use of such products. PMID:24849798

  2. Estrogenic and anti-estrogenic activity of off-the-shelf hair and skin care products.

    PubMed

    Myers, Sharon L; Yang, Chun Z; Bittner, George D; Witt, Kristine L; Tice, Raymond R; Baird, Donna D

    2015-05-01

    Use of personal care products is widespread in the United States but tends to be greater among African Americans than whites. Of special concern is the possible hazard of absorption of chemicals with estrogenic activity (EA) or anti-EA (AEA) in these products. Such exposure may have adverse health effects, especially when it occurs during developmental windows (e.g., prepubertally) when estrogen levels are low. We assessed the ethanol extracts of eight commonly used hair and skin products popular among African Americans for EA and AEA using a cell proliferation assay with the estrogen sensitive MCF-7:WS8 cell line derived from a human breast cancer. Four of the eight personal care products tested (Oil Hair Lotion, Extra-dry Skin Lotion, Intensive Skin Lotion, Petroleum Jelly) demonstrated detectable EA, whereas three (Placenta Hair Conditioner, Tea-Tree Hair Conditioner, Cocoa Butter Skin Cream) exhibited AEA. Our data indicate that hair and skin care products can have EA or AEA, and suggest that laboratory studies are warranted to investigate the in vivo activity of such products under chronic exposure conditions as well as epidemiologic studies to investigate potential adverse health effects that might be associated with use of such products.

  3. Hair Cortisol Analysis: A Promising Biomarker of HPA Activation in Older Adults.

    PubMed

    Wright, Kathy D; Hickman, Ronald; Laudenslager, Mark L

    2015-06-01

    Prolonged stress is a potentially harmful and often undetected risk factor for chronic illness in older adults. Cortisol, one indicator of the body's hormonal responses to stress, is regulated by the hypothalamic-pituitary-adrenal (HPA) axis and is commonly measured in saliva, urine, or blood samples. Cortisol possesses a diurnal pattern and thus collection timing is critical. Hair cortisol is a proxy measure to the total retrospective activity of the HPA axis over the preceding months, much like hemoglobin A1c is a proxy measure of glucose control over the past 3 months. The aim of this review is to examine a novel biomarker, hair cortisol, as a practical measure of long-term retrospective cortisol activity associated with chronic stress in older adults. Hair cortisol analysis advances the science of aging by better characterizing chronic stress as a risk factor for chronic illness progression and as a biomarker of the effectiveness of stress reduction interventions.

  4. Fast Adaptation in Vestibular Hair Cells Requires Myosin-1c Activity

    PubMed Central

    Stauffer, Eric A.; Scarborough, John D.; Hirono, Moritoshi; Miller, Emilie D.; Shah, Kavita; Mercer, John A.; Holt, Jeffrey R.; Gillespie, Peter G.

    2009-01-01

    Summary In sensory hair cells of the inner ear, mechanical amplification of small stimuli requires fast adaptation, the rapid closing of mechanically activated transduction channels. In frog and mouse vestibular hair cells, we found that the rate of fast adaptation depends on both channel opening and stimulus size and that it is modeled well as a release of a mechanical element in series with the transduction apparatus. To determine whether myosin-1c molecules of the adaptation motor are responsible for the release, we introduced the Y61G mutation into the Myo1c locus and generated mice homozygous for this sensitized allele. Measuring transduction and adaptation in the presence of NMB-ADP, an allele-specific inhibitor, we found that the inhibitor not only blocked slow adaptation, as demonstrated previously in transgenic mice, but also inhibited fast adaptation. These results suggest that mechanical activity of myosin-1c is required for fast adaptation in vestibular hair cells. PMID:16102537

  5. Activation of PI3K signaling prevents aminoglycoside-induced hair cell death in the murine cochlea.

    PubMed

    Jadali, Azadeh; Kwan, Kelvin Y

    2016-01-01

    Loss of sensory hair cells of the inner ear due to aminoglycoside exposure is a major cause of hearing loss. Using an immortalized multipotent otic progenitor (iMOP) cell line, specific signaling pathways that promote otic cell survival were identified. Of the signaling pathways identified, the PI3K pathway emerged as a strong candidate for promoting hair cell survival. In aging animals, components for active PI3K signaling are present but decrease in hair cells. In this study, we determined whether activated PI3K signaling in hair cells promotes survival. To activate PI3K signaling in hair cells, we used a small molecule inhibitor of PTEN or genetically ablated PTEN using a conditional knockout animal. Hair cell survival was challenged by addition of gentamicin to cochlear cultures. Hair cells with activated PI3K signaling were more resistant to aminoglycoside-induced hair cell death. These results indicate that increased PI3K signaling in hair cells promote survival and the PI3K signaling pathway is a target for preventing aminoglycoside-induced hearing loss.

  6. Activation of PI3K signaling prevents aminoglycoside-induced hair cell death in the murine cochlea

    PubMed Central

    Jadali, Azadeh

    2016-01-01

    ABSTRACT Loss of sensory hair cells of the inner ear due to aminoglycoside exposure is a major cause of hearing loss. Using an immortalized multipotent otic progenitor (iMOP) cell line, specific signaling pathways that promote otic cell survival were identified. Of the signaling pathways identified, the PI3K pathway emerged as a strong candidate for promoting hair cell survival. In aging animals, components for active PI3K signaling are present but decrease in hair cells. In this study, we determined whether activated PI3K signaling in hair cells promotes survival. To activate PI3K signaling in hair cells, we used a small molecule inhibitor of PTEN or genetically ablated PTEN using a conditional knockout animal. Hair cell survival was challenged by addition of gentamicin to cochlear cultures. Hair cells with activated PI3K signaling were more resistant to aminoglycoside-induced hair cell death. These results indicate that increased PI3K signaling in hair cells promote survival and the PI3K signaling pathway is a target for preventing aminoglycoside-induced hearing loss. PMID:27142333

  7. Hair cortisol levels as a retrospective marker of hypothalamic-pituitary axis activity throughout pregnancy: Comparison to salivary cortisol

    PubMed Central

    D’Anna-Hernandez, Kimberly L.; Ross, Randal G.; Natvig, Crystal L.; Laudenslager, Mark L.

    2011-01-01

    Maternal stress during pregnancy is associated with negative maternal/child outcomes. One potential biomarker of the maternal stress response is cortisol, a product of activity of the hypothalamic-pituitary-adrenal axis. This study evaluated cortisol levels in hair throughout pregnancy as a marker of total cortisol release. Cortisol levels in hair have been shown to be easily quantifiable and may be representative of total cortisol release more than single saliva or serum measures. Hair cortisol provides a simple way to monitor total cortisol release over an extended period of time. Hair cortisol levels were determined from each trimester (15, 26 and 36 wks gestation) and 3 months postpartum. Hair cortisol levels were compared to diurnal salivary cortisol collected over 3 days (3 times/day) at 14, 18, 23, 29, and 34 wks gestational age and 6 wks postpartum from 21 pregnant women. Both salivary and hair cortisol levels rose during pregnancy as expected. Hair cortisol and diurnal salivary cortisol area under the curve with respect to ground (AUCg) were also correlated throughout pregnancy. Levels of cortisol in hair are a valid and useful tool to measure long-term cortisol activity. Hair cortisol avoids methodological problems associated with collection other cortisol measures such as plasma, urine, or saliva and is a reliable metric of HPA activity throughout pregnancy reflecting total cortisol release over an extended period. PMID:21397617

  8. Studies of the active substances in herbs used for hair treatment. II. Isolation of hair regrowth substances, acetosyringone and polyporusterone A and B, from Polyporus umbellatus Fries.

    PubMed

    Ishida, H; Inaoka, Y; Shibatani, J; Fukushima, M; Tsuji, K

    1999-11-01

    Fractionation of the 50% ethanol extract of Polyporus umbellatus Fries by column chromatography on Amberlite XAD-2, silica gel, Sephadex LH-20 and octadecyl silica gel (ODS) (C18)) monitored by a hair-regrowth activity assay, afforded three active principles, 1, 2 and 3. The structures of 1, 2 and 3 were determined as acetosyringone, polyporusterone A, and polyporusterone B by comparison of their spectral data with that of authentic samples, respectively. The effects of several compounds related to acetosyringone, 3,4-dihydroxybenzaldehyde or polyporusterone A on hair regrowth were also investigated. PMID:10598026

  9. Activities conducted during the definition phase of the outer planets missions program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The activities are described of the Meteoroid Science Team for the definition phase of the outer planet missions. Studies reported include: (1) combined zodiacal experiment for the Grand Tour Missions of the outer planets, (2) optical transmission of a honeycomb panel and its effectiveness as a particle impact surface, (3) element identification data from the combined zodiacal OPGT experiment and (4) development of lightweight thermally stable mirrors.

  10. Body Hair

    MedlinePlus

    ... girlshealth.gov/ Home Body Puberty Body hair Body hair Even before you get your first period , you ... removing pubic hair Ways to get rid of hair top Removing body hair can cause skin irritation, ...

  11. Activation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth

    PubMed Central

    Zhou, Linli; Xu, Mingang; Yang, Yongguang; Yang, Kun; Wickett, Randall R.; Andl, Thomas; Millar, Sarah E.

    2016-01-01

    The hair follicle dermal papilla (DP) contains a unique prominin-1/CD133-positive (CD133+) cell subpopulation, which has been shown to possess hair follicle-inducing capability. By assaying for endogenous CD133 expression and performing lineage tracing using CD133-CreERT2; ZsGreen1 reporter mice, we find that CD133 is expressed in a subpopulation of DP cells during the growth phase of the murine hair cycle (anagen), but is absent at anagen onset. However, how CD133+ DP cells interact with keratinocytes to induce hair regenerative growth remains unclear. Wnt/β-catenin has long been recognized as a major signaling pathway required for hair follicle morphogenesis, development, and regeneration. Nuclear Wnt/β-catenin activity is observed in the DP during the hair growth phase. Here we show that induced expression of a stabilized form of β-catenin in CD133+ DP cells significantly accelerates spontaneous and depilation-induced hair growth. However, hair follicle regression is not affected in these mutants. Further analysis indicates that CD133+ DP-expressed β-catenin increases proliferation and differentiation of epithelial matrix keratinocytes. Upregulated Wnt/β-catenin activity in CD133+ DP cells also increases the number of proliferating DP cells in each anagen follicle. Our data demonstrate that β-catenin signaling potentiates the capability of CD133+ DP cells to promote postnatal hair growth. PMID:27472062

  12. Activation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth.

    PubMed

    Zhou, Linli; Xu, Mingang; Yang, Yongguang; Yang, Kun; Wickett, Randall R; Andl, Thomas; Millar, Sarah E; Zhang, Yuhang

    2016-01-01

    The hair follicle dermal papilla (DP) contains a unique prominin-1/CD133-positive (CD133+) cell subpopulation, which has been shown to possess hair follicle-inducing capability. By assaying for endogenous CD133 expression and performing lineage tracing using CD133-CreERT2; ZsGreen1 reporter mice, we find that CD133 is expressed in a subpopulation of DP cells during the growth phase of the murine hair cycle (anagen), but is absent at anagen onset. However, how CD133+ DP cells interact with keratinocytes to induce hair regenerative growth remains unclear. Wnt/β-catenin has long been recognized as a major signaling pathway required for hair follicle morphogenesis, development, and regeneration. Nuclear Wnt/β-catenin activity is observed in the DP during the hair growth phase. Here we show that induced expression of a stabilized form of β-catenin in CD133+ DP cells significantly accelerates spontaneous and depilation-induced hair growth. However, hair follicle regression is not affected in these mutants. Further analysis indicates that CD133+ DP-expressed β-catenin increases proliferation and differentiation of epithelial matrix keratinocytes. Upregulated Wnt/β-catenin activity in CD133+ DP cells also increases the number of proliferating DP cells in each anagen follicle. Our data demonstrate that β-catenin signaling potentiates the capability of CD133+ DP cells to promote postnatal hair growth. PMID:27472062

  13. Central pair apparatus enhances outer-arm dynein activities through regulation of inner-arm dyneins.

    PubMed

    Kikushima, Kenji

    2009-05-01

    The beating of eukaryotic cilia and flagella is controlled by multiple species of inner-arm and outer-arm dyneins. To clarify the regulation on axonemal beating by nucleotide conditions and central-pair microtubules, microtubule sliding in disintegrating Chlamydomonas axonemes of various mutants and in vitro microtubule gliding by isolated axonemal dyneins were examined. In the in vitro motility assays with outer-arm dyneins (alphabeta and gamma), microtubule translocation velocity decreased at high concentrations of ATP, while this inhibition was canceled by the simultaneous presence of ADP or ribose-modified analogues, mantATP/ADP. In contrast, motility of inner-arm dyneins was rather insensitive to these nucleotides. The velocity of sliding disintegration in axonemes lacking the central pair was less than that in wild-type axonemes at high ATP concentrations, but was overcome by the presence of ADP or mantATP/ADP. While these nucleotides did not activate the sliding velocity in other mutant axonemes, they increased the extent of sliding, except for axonemes lacking outer-arm dynein. Experiments with axonemes lacking inner-arm dynein f using casein kinase 1 inhibitor suggest that the regulation of outer-arm dynein by the central pair is effected through the activation of inner-arm dynein f, and possibly by other interactions. These results indicate that the central pair activates outer-arm dyneins on specific outer-doublet, resulting in amplification of the axonemal bending force.

  14. Young Scientists Explore Inner & Outer Space. Book 6--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of space (inner and outer). Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for…

  15. Aging of hair.

    PubMed

    Trüeb, Ralph M

    2005-06-01

    The appearance of hair plays an important role in people's overall physical appearance and self-perception. With today's increasing life expectation, the desire to look youthful plays a bigger role than ever. The hair care industry has become aware of this and also more capable to deliver active products that are directed toward meeting this consumer demand. The discovery of pharmacological targets and the development of safe and effective drugs also indicate strategies of the drug industry for maintenance of healthy and beautiful hair. Hair aging comprises weathering of the hair shaft and aging of the hair follicle. The latter manifests as decrease of melanocyte function or graying, and decrease in hair production in androgenetic and senescent alopecia. The scalp is also subject to intrinsic or physiologic aging and extrinsic aging caused by external factors. Intrinsic factors are related to individual genetic and epigenetic mechanisms with interindividual variation. Prototypes are familial premature graying and androgenetic alopecia. Extrinsic factors include ultraviolet radiation and smoking. Experimental evidence supports the hypothesis that oxidative stress plays a role in skin and hair aging. Topical anti-aging compounds for hair include humefactants, hair conditioners, photoprotectors, and antioxidants. Current available treatment modalities with proven efficacy for treatment of androgenetic alopecia are topical minoxidil, oral finasteride, and autologous hair transplantation. In the absence of another way to reverse hair graying, hair colorants are the mainstays of recovering lost hair color. Topical liposome targeting for melanins, genes, and proteins selectively to hair follicles are under current investigation.

  16. β-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche.

    PubMed

    Deschene, Elizabeth R; Myung, Peggy; Rompolas, Panteleimon; Zito, Giovanni; Sun, Thomas Yang; Taketo, Makoto M; Saotome, Ichiko; Greco, Valentina

    2014-03-21

    Wnt/β-catenin signaling is critical for tissue regeneration. However, it is unclear how β-catenin controls stem cell behaviors to coordinate organized growth. Using live imaging, we show that activation of β-catenin specifically within mouse hair follicle stem cells generates new hair growth through oriented cell divisions and cellular displacement. β-Catenin activation is sufficient to induce hair growth independently of mesenchymal dermal papilla niche signals normally required for hair regeneration. Wild-type cells are co-opted into new hair growths by β-catenin mutant cells, which non-cell autonomously activate Wnt signaling within the neighboring wild-type cells via Wnt ligands. This study demonstrates a mechanism by which Wnt/β-catenin signaling controls stem cell-dependent tissue growth non-cell autonomously and advances our understanding of the mechanisms that drive coordinated regeneration.

  17. Preliminary characterization of voltage-activated whole-cell currents in developing human vestibular hair cells and calyx afferent terminals.

    PubMed

    Lim, Rebecca; Drury, Hannah R; Camp, Aaron J; Tadros, Melissa A; Callister, Robert J; Brichta, Alan M

    2014-10-01

    We present preliminary functional data from human vestibular hair cells and primary afferent calyx terminals during fetal development. Whole-cell recordings were obtained from hair cells or calyx terminals in semi-intact cristae prepared from human fetuses aged between 11 and 18 weeks gestation (WG). During early fetal development (11-14 WG), hair cells expressed whole-cell conductances that were qualitatively similar but quantitatively smaller than those observed previously in mature rodent type II hair cells. As development progressed (15-18 WG), peak outward conductances increased in putative type II hair cells but did not reach amplitudes observed in adult human hair cells. Type I hair cells express a specific low-voltage activating conductance, G K,L. A similar current was first observed at 15 WG but remained relatively small, even at 18 WG. The presence of a "collapsing" tail current indicates a maturing type I hair cell phenotype and suggests the presence of a surrounding calyx afferent terminal. We were also able to record from calyx afferent terminals in 15-18 WG cristae. In voltage clamp, these terminals exhibited fast inactivating inward as well as slower outward conductances, and in current clamp, discharged a single action potential during depolarizing steps. Together, these data suggest the major functional characteristics of type I and type II hair cells and calyx terminals are present by 18 WG. Our study also describes a new preparation for the functional investigation of key events that occur during maturation of human vestibular organs.

  18. Molecular basis of hair cell loss.

    PubMed

    Furness, David N

    2015-07-01

    Mechanisms that lead to the death of hair cells are reviewed. Exposure to noise, the use of ototoxic drugs that damage the cochlea and old age are accompanied by hair cell death. Outer hair cells are often more susceptible than inner hair cells, partly because of an intrinsically greater susceptibility; high frequency cells are also more vulnerable. A common factor in hair cell loss following age-related changes and exposure to ototoxic drugs or high noise levels is the generation of reactive oxygen species, which can trigger intrinsic apoptosis (the mitochondrial pathway). However, hair cell death is sometimes produced via an extracellular signal pathway triggering extrinsic apoptosis. Necrosis and necroptosis also play a role and, in various situations in which cochlear damage occurs, a balance exists between these possible routes of cell death, with no one mechanism being exclusively activated. Finally, the numerous studies on these mechanisms of hair cell death have led to the identification of many potential therapeutic agents, some of which have been used to attempt to treat people exposed to damaging events, although clinical trials are not yet conclusive. Continued work in this area is likely to lead to clinical treatments that could be used to prevent or ameliorate hearing loss.

  19. Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells.

    PubMed

    Wang, Han Chin; Lin, Chun-Chieh; Cheung, Rocky; Zhang-Hooks, YingXin; Agarwal, Amit; Ellis-Davies, Graham; Rock, Jason; Bergles, Dwight E

    2015-12-01

    Spontaneous electrical activity of neurons in developing sensory systems promotes their maturation and proper connectivity. In the auditory system, spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from glia-like inner supporting cells (ISCs), facilitating maturation of central pathways before hearing onset. Here, we find that ATP stimulates purinergic autoreceptors in ISCs, triggering Cl(-) efflux and osmotic cell shrinkage by opening TMEM16A Ca(2+)-activated Cl(-) channels. Release of Cl(-) from ISCs also forces K(+) efflux, causing transient depolarization of IHCs near ATP release sites. Genetic deletion of TMEM16A markedly reduces the spontaneous activity of IHCs and spiral ganglion neurons in the developing cochlea and prevents ATP-dependent shrinkage of supporting cells. These results indicate that supporting cells in the developing cochlea have adapted a pathway used for fluid secretion in other organs to induce periodic excitation of hair cells. PMID:26627734

  20. Decoction and Fermentation of Selected Medicinal Herbs Promote Hair Regrowth by Inducing Hair Follicle Growth in Conjunction with Wnts Signaling.

    PubMed

    Jang, Su Kil; Kim, Seung Tae; Lee, Do Ik; Park, Jun Sub; Jo, Bo Ram; Park, Jung Youl; Heo, Jong; Joo, Seong Soo

    2016-01-01

    It is well recognized that regulating the hair follicle cycle in association with Wnt signaling is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether selected herbal medicines processed by decoction and fermentation promote hair growth by upregulating the number and size of hair follicles and Wnt signaling, including activation of β-catenin and Akt in telogen-synchronized C57BL/6N mice. The results revealed that the fermented extract after decoction (FDE) more effectively promoted hair growth than that of a nonfermented extract (DE). Notably, FDE effectively enhanced formation of hair follicles with clearer differentiation between the inner and outer root sheath, which is observed during the anagen phase. Mechanistic evidence was found for increased β-catenin and Akt phosphorylation levels in dorsal skin tissue along with elevated expression of hair regrowth-related genes, such as Wnt3/10a/10b, Lef1, and fibroblast growth factor 7. In conclusion, our findings suggest that FDE plays an important role in regulating the hair cycle by increasing expression of hair regrowth-related genes and activating downstream Wnt signaling targets. PMID:27110266

  1. Decoction and Fermentation of Selected Medicinal Herbs Promote Hair Regrowth by Inducing Hair Follicle Growth in Conjunction with Wnts Signaling

    PubMed Central

    Jang, Su Kil; Kim, Seung Tae; Lee, Do Ik; Park, Jun Sub; Jo, Bo Ram; Park, Jung Youl; Heo, Jong; Joo, Seong Soo

    2016-01-01

    It is well recognized that regulating the hair follicle cycle in association with Wnt signaling is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether selected herbal medicines processed by decoction and fermentation promote hair growth by upregulating the number and size of hair follicles and Wnt signaling, including activation of β-catenin and Akt in telogen-synchronized C57BL/6N mice. The results revealed that the fermented extract after decoction (FDE) more effectively promoted hair growth than that of a nonfermented extract (DE). Notably, FDE effectively enhanced formation of hair follicles with clearer differentiation between the inner and outer root sheath, which is observed during the anagen phase. Mechanistic evidence was found for increased β-catenin and Akt phosphorylation levels in dorsal skin tissue along with elevated expression of hair regrowth-related genes, such as Wnt3/10a/10b, Lef1, and fibroblast growth factor 7. In conclusion, our findings suggest that FDE plays an important role in regulating the hair cycle by increasing expression of hair regrowth-related genes and activating downstream Wnt signaling targets. PMID:27110266

  2. Activation of the OVOL1-OVOL2 Axis in the Hair Bulb and in Pilomatricoma.

    PubMed

    Ito, Takamichi; Tsuji, Gaku; Ohno, Fumitaka; Uchi, Hiroshi; Nakahara, Takeshi; Hashimoto-Hachiya, Akiko; Yoshida, Yuichi; Yamamoto, Osamu; Oda, Yoshinao; Furue, Masutaka

    2016-04-01

    OVOL1 and OVOL2, ubiquitously conserved genes encoding C2H2 zinc finger transcription factors in mammals, control epithelial cell proliferation, and differentiation, including those in skin. OVOL1 and OVOL2 expression is coordinately mediated via the Wnt signaling pathway, and OVOL1 negatively regulates OVOL2 expression in a transcriptional manner. Our previous study of OVOL1 expression in human skin revealed that OVOL1 is preferentially expressed in the inner root sheath of the hair follicle. Therefore, we hypothesized that the OVOL1-OVOL2 axis is involved in normal and neoplastic follicular differentiation. Immunohistochemical analysis showed that OVOL1 and OVOL2 were strongly expressed in a mutually exclusive manner in the cytoplasm of inner root sheath cells and matrix cells, respectively, in normal follicles. OVOL2 was also expressed in pilomatricoma, with only partial expression of OVOL1. Cultured human keratinocytes expressed OVOL1 and OVOL2 on both the mRNA and protein levels. The expression of OVOL2 was higher in keratinocytes transfected with siRNA of OVOL1. Ketoconazole, a hair growth stimulant, up-regulated the expression of OVOL1 but did not affect OVOL2 expression. These results indicated that the OVOL1-OVOL2 axis may actively contribute to cell differentiation and proliferation in the hair bulb, suggesting that the OVOL1 and OVOL2 may be therapeutic targets of hair disorders, including alopecia, and play important roles in the tumorigenesis of pilomatricoma.

  3. Exploring the Role of Mechanotransduction Activation and Adaptation Kinetics in Hair Cell Filtering Using a Hodgkin-Huxley Approach

    NASA Astrophysics Data System (ADS)

    Wells, Gregg B.; Ricci, Anthony J.

    2011-11-01

    In the auditory system, mechanotransduction occurs in the hair cell sensory hair bundle and is the first major step in the translation of mechanical energy into electrical. Tonotopic variations in the activation kinetics of this process are posited to provide a low pass filter to the input. An adaptation process, also associated with mechanotransduction, is postulated to provide a high pass filter to the input in a tonotopic manner. Together a bandpass filter is created at the hair cell input. Corresponding mechanical components to both activation and adaptation are also suggested to be involved in generating cochlear amplification. A paradox to this story is that hair cells where the mechanotransduction properties are most robust possess an intrinsic electrical resonance mechanism proposed to account for all required tuning and amplification. A simple Hodgkin-Huxley type model is presented to attempt to determine the role of the activation and adaptation kinetics in further tuning hair cells that exhibit electrical resonance. Results further support that steady state mechanotransduction properties are critical for setting the resting potential of the hair cell while the kinetics of activation and adaptation are important for sharpening tuning around the characteristic frequency of the hair cell.

  4. Hair Transplants

    MedlinePlus

    ... How to Choose the Best Skin Care Products Hair Transplants What are hair transplants? In punch transplanting, a plug containing hair ... What should first be done before considering a hair transplant? Before the procedure, an ASDS doctor will ...

  5. Oily hair

    MedlinePlus

    Hair - oily ... are some tips for preventing and treating oily hair: Shampoo your hair every day. Leaving the shampoo on your head ... minutes before rinsing may help. Avoid brushing your hair too often or too vigorously, since the brushing ...

  6. Studies of the active substances in herbs used for hair treatment. III. Isolation of hair-regrowth substances from Polygara senega var. latifolia TORR. et GRAY.

    PubMed

    Ishida, H; Inaoka, Y; Okada, M; Fukushima, M; Fukazawa, H; Tsuji, K

    1999-11-01

    Four active principles, 1, 2, 3 and 4, were isolated from Polygara senega var. latifolia TORR. et GRAY by a combination of partition and column chromatography on silica gel and octadecyl silica gel (ODS), monitored by a hair-regrowth activity assay. Compounds 1, 2, 3 and 4 were identified as senegose A, senegin II, senegin III, and senegasaponin b by comparison of their spectral data with those of authentic samples. PMID:10598039

  7. 78 FR 33859 - Outer Continental Shelf (OCS) Geological and Geophysical Exploration Activities in the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... Bureau of Ocean Energy Management Outer Continental Shelf (OCS) Geological and Geophysical Exploration Activities in the Gulf of Mexico; Correction AGENCY: Bureau of Ocean Energy Management (BOEM), Interior.... SUMMARY: On May 10, 2013, BOEM published a document in the Federal Register (78 FR 27427) entitled...

  8. 78 FR 48180 - Consolidation of Officer in Charge, Marine Inspection For Outer Continental Shelf Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... SECURITY Coast Guard Consolidation of Officer in Charge, Marine Inspection For Outer Continental Shelf Activities; Eighth Coast Guard District AGENCY: Coast Guard, DHS. ACTION: Notice and request for comments. SUMMARY: The Coast Guard is considering establishing a single Officer in Charge, Marine Inspection...

  9. Atlantic update, July 1986--June 1990: Outer Continental Shelf oil and gas activities

    SciTech Connect

    Karpas, R.M.; Gould, G.J.

    1990-10-01

    This report describes outer continental shelf oil and gas activities in the Atlantic Region. This edition of the Atlantic Update includes an overview of the Mid-Atlantic Planning Area and a summary of the Manteo Prospect off-shore North Carolina. 6 figs., 8 tabs.

  10. Coupling and Elastic Loading Affect the Active Response by the Inner Ear Hair Cell Bundles

    PubMed Central

    Strimbu, Clark Elliott; Fredrickson-Hemsing, Lea; Bozovic, Dolores

    2012-01-01

    Active hair bundle motility has been proposed to underlie the amplification mechanism in the auditory endorgans of non-mammals and in the vestibular systems of all vertebrates, and to constitute a crucial component of cochlear amplification in mammals. We used semi-intact in vitro preparations of the bullfrog sacculus to study the effects of elastic mechanical loading on both natively coupled and freely oscillating hair bundles. For the latter, we attached glass fibers of different stiffness to the stereocilia and observed the induced changes in the spontaneous bundle movement. When driven with sinusoidal deflections, hair bundles displayed phase-locked response indicative of an Arnold Tongue, with the frequency selectivity highest at low amplitudes and decreasing under stronger stimulation. A striking broadening of the mode-locked response was seen with increasing stiffness of the load, until approximate impedance matching, where the phase-locked response remained flat over the physiological range of frequencies. When the otolithic membrane was left intact atop the preparation, the natural loading of the bundles likewise decreased their frequency selectivity with respect to that observed in freely oscillating bundles. To probe for signatures of the active process under natural loading and coupling conditions, we applied transient mechanical stimuli to the otolithic membrane. Following the pulses, the underlying bundles displayed active movement in the opposite direction, analogous to the twitches observed in individual cells. Tracking features in the otolithic membrane indicated that it moved in phase with the bundles. Hence, synchronous active motility evoked in the system of coupled hair bundles by external input is sufficient to displace large overlying structures. PMID:22479461

  11. Coupling and elastic loading affect the active response by the inner ear hair cell bundles.

    PubMed

    Strimbu, Clark Elliott; Fredrickson-Hemsing, Lea; Bozovic, Dolores

    2012-01-01

    Active hair bundle motility has been proposed to underlie the amplification mechanism in the auditory endorgans of non-mammals and in the vestibular systems of all vertebrates, and to constitute a crucial component of cochlear amplification in mammals. We used semi-intact in vitro preparations of the bullfrog sacculus to study the effects of elastic mechanical loading on both natively coupled and freely oscillating hair bundles. For the latter, we attached glass fibers of different stiffness to the stereocilia and observed the induced changes in the spontaneous bundle movement. When driven with sinusoidal deflections, hair bundles displayed phase-locked response indicative of an Arnold Tongue, with the frequency selectivity highest at low amplitudes and decreasing under stronger stimulation. A striking broadening of the mode-locked response was seen with increasing stiffness of the load, until approximate impedance matching, where the phase-locked response remained flat over the physiological range of frequencies. When the otolithic membrane was left intact atop the preparation, the natural loading of the bundles likewise decreased their frequency selectivity with respect to that observed in freely oscillating bundles. To probe for signatures of the active process under natural loading and coupling conditions, we applied transient mechanical stimuli to the otolithic membrane. Following the pulses, the underlying bundles displayed active movement in the opposite direction, analogous to the twitches observed in individual cells. Tracking features in the otolithic membrane indicated that it moved in phase with the bundles. Hence, synchronous active motility evoked in the system of coupled hair bundles by external input is sufficient to displace large overlying structures. PMID:22479461

  12. Re-analysis of RNA-seq transcriptome data reveals new aspects of gene activity in Arabidopsis root hairs

    PubMed Central

    Li, Wenfeng; Lan, Ping

    2015-01-01

    Root hairs, tubular-shaped outgrowths from root epidermal cells, play important roles in the acquisition of nutrients and water, interaction with microbe, and in plant anchorage. As a specialized cell type, root hairs, especially in Arabidopsis, provide a pragmatic research system for various aspects of studies. Here, we re-analyzed the RNA-seq transcriptome profile of Arabidopsis root hair cells by Tophat software and used Cufflinks program to mine the differentially expressed genes. Results showed that ERD14, RIN4, AT5G64401 were among the most abundant genes in the root hair cells; while ATGSTU2, AT5G54940, AT4G30530 were highly expressed in non-root hair tissues. In total, 5409 genes, with a fold change greater than two-fold (FDR adjusted P < 0.05), showed differential expression between root hair cells and non-root hair tissues. Of which, 61 were expressed only in root hair cells. One hundred and thirty-six out of 5409 genes have been reported to be “core” root epidermal genes, which could be grouped into nine clusters according to expression patterns. Gene ontology (GO) analysis of the 5409 genes showed that processes of “response to salt stress,” “ribosome biogenesis,” “protein phosphorylation,” and “response to water deprivation” were enriched. Whereas only process of “intracellular signal transduction” was enriched in the subset of 61 genes expressed only in the root hair cells. One hundred and twenty-one unannotated transcripts were identified and 14 of which were shown to be differentially expressed between root hair cells and non-root hair tissues, with transcripts XLOC_000763, XLOC_031361, and XLOC_005665 being highly expressed in the root hair cells. The comprehensive transcriptomic analysis provides new information on root hair gene activity and sets the stage for follow-up experiments to certify the biological functions of the newly identified genes and novel transcripts in root hair cell morphogenesis. PMID:26106402

  13. Preserving the Environment of Outer Space - Legal, Regulatory and Institutional Aspects of Active Orbital Debris Removal

    NASA Astrophysics Data System (ADS)

    Mankata Nyampong, Y. O.

    2012-01-01

    In view of the massive quantities of space debris already deposited in outer space, any effort aimed at guaranteeing the sustainability of mankind's access to outer space and the continued safety of space operations must not be limited exclusively to mitigating the creation of new debris, but must also focus on the active removal of existing pieces of debris from space (remediation) as a matter of necessity. Presently, technologies that will enable active debris removal (ADR) are only just emerging. As the technology develops, however, several legal, regulatory and institutional issues that may hinder the conduct of ADR activities must also be addressed. This paper highlights and explores some of the foregoing issues in an effort to draw international attention to these matters and ultimately to pave the way for the smooth conduct of ADR activities once the technology matures.

  14. Outer-sphere residues influence the catalytic activity of a chalcone synthase from Polygonum cuspidatum.

    PubMed

    Shen, Yalin; Li, Xing; Chai, Tuanyao; Wang, Hong

    2016-06-01

    We have previously cloned a chalcone synthase (PcCHS1) from Polygonum cuspidatum and biochemically identified its enzymatic dynamic properties. Here, we found that the outer sphere residues, Q82 and R105, could affect the catalytic activity and product profile of PcCHS1. Both Q82P and R105Q mutations of PcCHS1 could also change the pH dependence activity as well as the product profile of PcCHS1. Moreover, the Q82P/C198F double mutant could rescue the complete loss of enzyme activity caused by the C198F single mutation. Our study demonstrated that these outer-sphere residues of PcCHS1 play important roles both in structural maintenance and enzyme activity. PMID:27419064

  15. Mechanical overstimulation of hair bundles: suppression and recovery of active motility.

    PubMed

    Kao, Albert; Meenderink, Sebastiaan W F; Bozovic, Dolores

    2013-01-01

    We explore the effects of high-amplitude mechanical stimuli on hair bundles of the bullfrog sacculus. Under in vitro conditions, these bundles exhibit spontaneous limit cycle oscillations. Prolonged deflection exerted two effects. First, it induced an offset in the position of the bundle. Recovery to the original position displayed two distinct time scales, suggesting the existence of two adaptive mechanisms. Second, the stimulus suppressed spontaneous oscillations, indicating a change in the hair bundle's dynamic state. After cessation of the stimulus, active bundle motility recovered with time. Both effects were dependent on the duration of the imposed stimulus. External calcium concentration also affected the recovery to the oscillatory state. Our results indicate that both offset in the bundle position and calcium concentration control the dynamic state of the bundle. PMID:23505461

  16. Mechanical Overstimulation of Hair Bundles: Suppression and Recovery of Active Motility

    PubMed Central

    Kao, Albert; Meenderink, Sebastiaan W. F.; Bozovic, Dolores

    2013-01-01

    We explore the effects of high-amplitude mechanical stimuli on hair bundles of the bullfrog sacculus. Under in vitro conditions, these bundles exhibit spontaneous limit cycle oscillations. Prolonged deflection exerted two effects. First, it induced an offset in the position of the bundle. Recovery to the original position displayed two distinct time scales, suggesting the existence of two adaptive mechanisms. Second, the stimulus suppressed spontaneous oscillations, indicating a change in the hair bundle’s dynamic state. After cessation of the stimulus, active bundle motility recovered with time. Both effects were dependent on the duration of the imposed stimulus. External calcium concentration also affected the recovery to the oscillatory state. Our results indicate that both offset in the bundle position and calcium concentration control the dynamic state of the bundle. PMID:23505461

  17. Photoactivation of ROS Production In Situ Transiently Activates Cell Proliferation in Mouse Skin and in the Hair Follicle Stem Cell Niche Promoting Hair Growth and Wound Healing.

    PubMed

    Carrasco, Elisa; Calvo, María I; Blázquez-Castro, Alfonso; Vecchio, Daniela; Zamarrón, Alicia; de Almeida, Irma Joyce Dias; Stockert, Juan C; Hamblin, Michael R; Juarranz, Ángeles; Espada, Jesús

    2015-11-01

    The role of reactive oxygen species (ROS) in the regulation of hair follicle (HF) cycle and skin homeostasis is poorly characterized. ROS have been traditionally linked to human disease and aging, but recent findings suggest that they can also have beneficial physiological functions in vivo in mammals. To test this hypothesis, we transiently switched on in situ ROS production in mouse skin. This process activated cell proliferation in the tissue and, interestingly, in the bulge region of the HF, a major reservoir of epidermal stem cells, promoting hair growth, as well as stimulating tissue repair after severe burn injury. We further show that these effects were associated with a transient Src kinase phosphorylation at Tyr416 and with a strong transcriptional activation of the prolactin family 2 subfamily c of growth factors. Our results point to potentially relevant modes of skin homeostasis regulation and demonstrate that a local and transient ROS production can regulate stem cell and tissue function in the whole organism.

  18. Racial/ethnic differences in hormonally-active hair product use: a plausible risk factor for health disparities.

    PubMed

    James-Todd, Tamarra; Senie, Ruby; Terry, Mary Beth

    2012-06-01

    Estrogen and endocrine-disrupting chemicals (EDCs) that are associated with several health outcomes have been found in hair products. We evaluated the proportion, frequency, duration, and content of hair products in a racially/ethnically diverse population. We recruited n = 301 African-American, African-Caribbean, Hispanic, and white women from the New York metropolitan area. We collected data on hair oil, lotion, leave-in conditioner, root stimulator, perm, and other product use. Estrogen and EDC information was collected from commonly used hair products' labels (used by >3% of population). African-American and African-Caribbean women were more likely to use all types of hair products compared to white women (P < 0.0001). Among hair product users, frequency varied significantly by race/ethnicity, but not duration. More African-Americans (49.4%) and African-Caribbeans (26.4%) used products containing placenta or EDCs compared to whites (7.7%). African-American and African-Caribbean women were more likely to be exposed to hormonally-active chemicals in hair products.

  19. Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing

    PubMed Central

    Carrasco, Elisa; Calvo, María I.; Blázquez-Castro, Alfonso; Vecchio, Daniela; Zamarrón, Alicia; de Almeida, Irma Joyce Dias; Stockert, Juan C.; Hamblin, Michael R.; Juarranz, Ángeles; Espada, Jesús

    2015-01-01

    The role of reactive oxygen species (ROS) in the regulation of hair follicle cycle and skin homeostasis is poorly characterized. ROS have been traditionally linked to human disease and ageing, but recent findings suggest that can also have beneficial physiological functions in vivo in mammals. To test this hypothesis, we transiently switched on in situ ROS production in mouse skin. This process activated cell proliferation in the tissue and, interestingly, in the bulge region of the hair follicle, a major reservoir of epidermal stem cells, promoting hair growth as well as stimulating tissue repair after severe burn injury. We further show that these effects were associated with a transient Src kinase phosphorylation at Tyr416 and with a strong transcriptional activation of the prolactin family 2 subfamily c of growth factors. Our results point to potentially relevant modes of skin homeostasis regulation and demonstrate that a local and transient ROS production can regulate stem cell and tissue function in the whole organism. PMID:26134949

  20. Vestibular evoked myogenic potentials are heavily dependent on type I hair cell activity of the saccular macula in guinea pigs.

    PubMed

    Lue, June-Horng; Day, An-Shiou; Cheng, Po-Wen; Young, Yi-Ho

    2009-01-01

    This study applied the vestibular evoked myogenic potential (VEMP) test to guinea pigs coupled with electronic microscopic examination to determine whether VEMPs are dependent on type I or II hair cell activity of the saccular macula. An amount of 0.05 ml of gentamicin (40 mg/ml) was injected directly overlaying, but not through, the round window membrane of the left ear in guinea pigs.One week after surgery, auditory brainstem response test revealed normal responses in 12 animals (80%), and elevated thresholds in 3 animals (20%). The VEMP test using click stimulation showed absent responses in all 15 animals (100%). Another 6 gentamicin-treated animals underwent the VEMP test using galvanic stimulation and all 6 also displayed absent responses. Ultrathin sections of the saccular macula in the gentamicin-treated ears displayed morphologic alterations in type I or II hair cells, including shrinkage and/or vacuolization in the cytoplasm, increased electron density of the cytoplasm and nuclear chromatin, and cellular lucency. However, extrusion degeneration was rare and only present in type II hair cells. Quantitative analysis demonstrated that the histological density of intact type I hair cells was 1.1 +/- 1.2/4000 microm(2) in the gentamicin-treated ears, showing significantly less than that in control ears (4.5 +/- 1.8/4000 microm(2)). However, no significant difference was observed in the densities of intact type II hair cells and supporting cells between treated and control ears. Furthermore, the calyx terminals surrounding the damaged type I hair cells were swollen and disrupted, while the button afferents contacting the damaged type II hair cells were not obviously deformed. Based on the above results, we therefore conclude that VEMPs are heavily dependent on type I hair cell activity of the saccular macula in guinea pigs.

  1. Purification and properties of the light-activated cyclic nucleotide phosphodiesterase of rod outer segments.

    PubMed

    Miki, N; Baraban, J M; Keirns, J J; Boyce, J J; Bitensky, M W

    1975-08-25

    Frog (Rana catesbiana) rod outer segment disc membranes contain a cyclic nucleotide phosphodiesterase (EC 3.1.4.17) which is activated by light in the presence of ATP. This enzyme is firmly bound to the disc membrane, but can be eluted from the membrane with 10 mM Tris-HCl buffer, pH 7.4 and 2 mM EDTA. The eluted phosphodiesterase has reduced activity, but can be activated approximately 10-fold by polycations such as protamine and polylysine. The eluted phosphodiesterase can no longer be activated by light in the presence of ATP, that is, activation by light apparently depends on the native orientation of phosphodiesterase in relationship to other disc membrane components. The eluted phosphodiesterase was purified to homogeneity as judged by analytical polyacrylamide gel electrophoresis and polyacrylamide gel isoelectric focusing. The over-all purification from intact retina was approximately 925-fold. The purification of phosphodiesterase from the isolated rod outer segment preparation was about 185-fold with a 28% yield. Phosphodiesterase accounts for approximately 0.5% of the disc membrane protein. The eluted phosphodiesterase (inactive form) has a sedimentation coefficient of 12.4 S corresponding to an approximate molecular weight of 240,000. Sodium dodecyl sulfate polyacrylamide gel electrophoresis separates the purified phosphodiesterase into two subunits of 120,000 and 110,000 daltons. With cyclic 3':5'-GMP (cGMP) as substrate the Km for the purified phosphodiesterase is 70 muM. Protamine increases the Vmax without changing the Km for cGMP. The isoelectric point (pI) of the native dimer is 5.7. Limited exposure of the eluted phosphodiesterase (inactive form) to trypsin produces a somewhat greater activation than is obtained with 0.5 mg/ml of protamine. The trypsin-activated phosphodiesterase has a sedimentation coefficient of 7.8 S corresponding to an approximate molecular weight of 170,000. The 110,000-dalton subunit is much less sensitive to trypsin

  2. Hair transplant

    MedlinePlus

    Hair restoration ... MR, Keene SA, Stough DB, Rogers NE. Hair restoration. In: Bolognia JL, Jorizzo JL, Schaffer JV, eds. ... Elsevier Saunders; 2012:chap 157. Fisher J. Hair restoration. In: Neligan PC, ed. Plastic Surgery . 3rd ed. ...

  3. Hair Removal

    MedlinePlus

    ... maintain a steady temperature by providing some insulation. Terminal hair is coarser, darker, and longer than vellus ... hair that grows on your head. Around puberty, terminal hair starts to grow in the armpits and ...

  4. Dry hair

    MedlinePlus

    Some causes of dry hair are: Anorexia nervosa Excessive hair washing, or using harsh soaps or alcohols Excessive blow-drying Dry air Menkes kinky hair syndrome Malnutrition Underactive parathyroid ( ...

  5. Effects of exposure to male goat hair extracts on luteinizing hormone secretion and neuronal activation in seasonally anestrous ewes.

    PubMed

    Ohara, Hiromi; Mogi, Kazutaka; Ichimaru, Toru; Ohkura, Satoshi; Takeuchi, Yukari; Mori, Yuji; Okamura, Hiroaki

    2014-10-01

    In sheep and goats, exposure of seasonally anestrous females to males or their fleece/hair activates the gonadotropin-releasing hormone (GnRH) pulse generator leading to pulsatile luteinizing hormone (LH) secretion. Pheromones emitted by sexually mature males are thought to play a prominent role in this male effect. In the present study, we first aimed to clarify whether the male goat pheromone is effective in ewes. Seasonally anestrous St. Croix ewes were exposed to hair extracts derived from either intact or castrated (control) male Shiba goats. The male goat-hair extract significantly increased LH secretion compared to the control, suggesting that an interspecies action of the male pheromone occurs between sheep and goats. Using the male goat-hair extract as the pheromone source, we then aimed to clarify the neural pathway involved in the signal transduction of the male pheromone. Ewes were exposed to either the goat-hair extract or the control and sacrificed 2 hr after the exposure. Expression of c-Fos, a marker of neuronal activation, was immunohistochemically examined. The male goat-hair extract significantly increased the c-Fos expression compared to the control in regions of the vomeronasal system, such as the accessory olfactory bulb and medial amygdala, and the arcuate nucleus. The main olfactory bulb did not exhibit any significant increase in the c-Fos expression by the male goat-hair extract. This result suggests that the neural signal of the male pheromone is conveyed to the GnRH pulse generator through the activated regions in ewes.

  6. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  7. Plant Growth Promotion Activity of Keratinolytic Fungi Growing on a Recalcitrant Waste Known as "Hair Waste".

    PubMed

    Cavello, Ivana A; Crespo, Juan M; García, Sabrina S; Zapiola, José M; Luna, María F; Cavalitto, Sebastián F

    2015-01-01

    Purpureocillium lilacinum (Thom) Samsom is one of the most studied fungi in the control of plant parasitic nematodes. However, there is not specific information on its ability to inhibit some pathogenic bacteria, fungi, or yeast. This work reports the production of several antifungal hydrolytic enzymes by a strain of P. lilacinum when it is grown in a medium containing hair waste. The growth of several plant-pathogenic fungi, Alternaria alternata, Aspergillus niger, and Fusarium culmorum, was considerably affected by the presence of P. lilacinum's supernatant. Besides antifungal activity, P. lilacinum demonstrates the capability to produce indoleacetic acid and ammonia during time cultivation on hair waste medium. Plant growth-promoting activity by cell-free supernatant was evidenced through the increase of the percentage of tomato seed germination from 71 to 85% after 48 hours. A 21-day plant growth assay using tomato plants indicates that crude supernatant promotes the growth of the plants similar to a reference fertilizer (p > 0.05). These results suggest that both strain and the supernatant may have potential to be considered as a potent biocontrol agent with multiple plant growth-promoting properties. To our knowledge, this is the first report on the antifungal, IAA production and tomato growth enhancing compounds produced by P. lilacinum LPSC #876.

  8. Plant Growth Promotion Activity of Keratinolytic Fungi Growing on a Recalcitrant Waste Known as "Hair Waste".

    PubMed

    Cavello, Ivana A; Crespo, Juan M; García, Sabrina S; Zapiola, José M; Luna, María F; Cavalitto, Sebastián F

    2015-01-01

    Purpureocillium lilacinum (Thom) Samsom is one of the most studied fungi in the control of plant parasitic nematodes. However, there is not specific information on its ability to inhibit some pathogenic bacteria, fungi, or yeast. This work reports the production of several antifungal hydrolytic enzymes by a strain of P. lilacinum when it is grown in a medium containing hair waste. The growth of several plant-pathogenic fungi, Alternaria alternata, Aspergillus niger, and Fusarium culmorum, was considerably affected by the presence of P. lilacinum's supernatant. Besides antifungal activity, P. lilacinum demonstrates the capability to produce indoleacetic acid and ammonia during time cultivation on hair waste medium. Plant growth-promoting activity by cell-free supernatant was evidenced through the increase of the percentage of tomato seed germination from 71 to 85% after 48 hours. A 21-day plant growth assay using tomato plants indicates that crude supernatant promotes the growth of the plants similar to a reference fertilizer (p > 0.05). These results suggest that both strain and the supernatant may have potential to be considered as a potent biocontrol agent with multiple plant growth-promoting properties. To our knowledge, this is the first report on the antifungal, IAA production and tomato growth enhancing compounds produced by P. lilacinum LPSC #876. PMID:26697226

  9. 75 FR 70021 - Environmental Documents Prepared in Support of Oil and Gas Activities on the Alaska Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... Bureau of Ocean Energy Management, Regulation and Enforcement Environmental Documents Prepared in Support of Oil and Gas Activities on the Alaska Outer Continental Shelf AGENCY: Bureau of Ocean Energy... Location Project purpose FONSI Shell Exploration & Production, Beaufort Sea, Alaska...... Conduct...

  10. Localizations of γ-Actins in Skin, Hair, Vibrissa, Arrector Pili Muscle and Other Hair Appendages of Developing Rats

    PubMed Central

    Morioka, Kiyokazu; Takano-Ohmuro, Hiromi

    2016-01-01

    Six isoforms of actins encoded by different genes have been identified in mammals including α-cardiac, α-skeletal, α-smooth muscle (α-SMA), β-cytoplasmic, γ-smooth muscle (γ-SMA), and γ-cytoplasmic actins (γ-CYA). In a previous study we showed the localization of α-SMA and other cytoskeletal proteins in the hairs and their appendages of developing rats (Morioka K., et al. (2011) Acta Histochem. Cytochem. 44, 141–153), and herein we determined the localization of γ type actins in the same tissues and organs by immunohistochemical staining. Our results indicate that the expression of γ-SMA and γ-CYA is suggested to be poor in actively proliferating tissues such as the basal layer of the epidermis and the hair matrix in the hair bulb, and as well as in highly keratinized tissues such as the hair cortex and hair cuticle. In contrast, the expression of γ-actins were high in the spinous layer, granular layer, hair shaft, and inner root sheath, during their active differentiations. In particular, the localization of γ-SMA was very similar to that of α-SMA. It was located not only in the arrector pili muscles and muscles in the dermis, but also in the dermal sheath and in a limited area of the outer root sheath in both the hair and vibrissal follicles. The γ-CYA was suggested to be co-localized with γ-SMA in the dermal sheath, outer root sheath, and arrector pili muscles. Sparsely distributed dermal cells expressed both types of γ-actin. The expression of γ-actins is suggested to undergo dynamic changes according to the proliferation and differentiation of the skin and hair-related cells. PMID:27222613

  11. Activation analyses of authenticated hairs of Napoleon Bonaparte confirm arsenic poisoning.

    PubMed

    Weider, B; Fournier, J H

    1999-12-01

    In 1960, activation analyses at the Harwell Nuclear Research Laboratory of the University of Glascow, London of authenticated hairs of Napoleon Bonaparte taken immediately after his death confirmed Napoleon's chronic arsenic poisoning on the island of St. Helena. Timeline correlation of his clinical symptomatology of the preceding 4 months, as reported in the written diaries of his exiled companions, further supports the effect of fluctuating, elevated toxic levels of arsenic on his health. Independent analyses of authenticated hairs of Napoleon by the Toxicology Crime Laboratory of the United States Federal Bureau of Investigation in 1995 reveals toxic levels of arsenic. The successful assassination of Napoleon included both a cosmetic and lethal phase. The cosmetic phase consisted of arsenic poisoning over time to weaken Napoleon, making the associated debility appear to be a natural illness and thus allay any suspicions prior to instituting the lethal phase. On May 3, 1821, at 5:30 P.M., the lethal phase was carried out. Napoleon was given Calomel (HgCl), a cathartic, and a popular orange-flavored drink called orgeat, which was flavored with the oil of bitter almonds. Together they formed mercury cyanide, which is lethal. Napoleon lost consciousness and died two days later.

  12. 7-Phloroeckol promotes hair growth on human follicles in vitro.

    PubMed

    Bak, Soon-Sun; Sung, Young Kwan; Kim, Se-Kwon

    2014-08-01

    7-Phloroeckol, phloroglucinol derivative isolated from marine brown algae, has anti-oxidative, anti-inflammatory responses and MMP inhibitory activities. In this study, we evaluated the hair growth-promoting effects of 7-phloroeckol in human hair follicles. To investigate cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells in the presence or absence of 7-phloroeckol treatment, MTT assay was employed. Moreover, gene expression and protein concentration of insulin-like growth factor (IGF)-1 was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. 7-Phloroeckol induced an increase in proliferation of DPCs and ORS cells. In addition, hair shaft growth was measured using the hair-follicle organ culture system. 7-Phloroeckol resulted in elongation of the hair shaft in cultured human hair follicles. 7-Phloroeckol induced an IGF-1 mRNA expression and protein concentration in DPCs and conditioned media, respectively. These results suggest that 7-phloroeckol promotes hair growth through stimulation of DPCs and ORS cells.

  13. Hair transplantation.

    PubMed

    Avram, Marc R

    2012-12-01

    Hair transplantation is a purely dermatologic surgical procedure that dermatologists should be able to perform in appropriate candidates with hair loss. Hair transplantation techniques performed in the 1960s through the 1990s utilized large grafts that created an unfortunate public image of unnatural-appearing transplanted hair. Over the last 15 years, hair transplantation has been performed using follicular units to create consistently natural-looking transplanted hair in both men and women. This article provides an overview of candidate selection and state-of-the-art techniques for performing hair transplantation.

  14. The Growth of Human Hair.

    ERIC Educational Resources Information Center

    Jones, Helen J.

    1984-01-01

    Suggests a simple technique for collecting and observing human hair roots to compare structure, function, and variation. Students extract their own hair samples and view them using a 40-power microscope objective. Differences between active/inactive phases of hair growth are readily observed. (The activity can be adapted for younger students.) (DH)

  15. Influence of bacterial toxins on the GTPase activity of transducin from bovine retinal rod outer segments

    SciTech Connect

    Rybin, V.O.; Gureeva, A.A.

    1986-05-10

    The action of cholera toxin, capable of ADP-ribosylation of the activator N/sub s/ protein, and pertussis toxin, capable of ADP-ribosylation of the inhibitor N/sub i/ protein of the adenylate cyclase complex, on transducin, the GTP-binding protein of the rod outer segments of the retina, was investigated. It was shown that under the action of pertussis and cholera toxins, the GTPase activity of transducin is inhibited. Pertussin toxin inhibits the GTPase of native retinal rod outer segments by 30-40%, while GTPase of homogeneous transducin produces a 70-80% inhibition. The action of toxins on transducin depends on the presence and nature of the guanylic nucleotide with which incubation is performed. On the basis of the data obtained it is suggested that pertussis toxin interacts with pretransducin and with the transducin-GDP complex, while cholera toxin ADP-ribosylates the transducin-GTP complex and does not act on transducin lacking GTP.

  16. Doppler laser imaging predicts response to topical minoxidil in the treatment of female pattern hair loss.

    PubMed

    McCoy, J; Kovacevic, M; Situm, M; Stanimirovic, A; Bolanca, Z; Goren, A

    2016-01-01

    Topical minoxidil is the only drug approved by the US FDA for the treatment of female pattern hair loss. Unfortunately, following 16 weeks of daily application, less than 40% of patients regrow hair. Several studies have demonstrated that sulfotransferase enzyme activity in plucked hair follicles predicts topical minoxidil response in female pattern hair loss patients. However, due to patients’ discomfort with the procedure, and the time required to perform the enzymatic assay it would be ideal to develop a rapid, non-invasive test for sulfotransferase enzyme activity. Minoxidil is a pro-drug converted to its active form, minoxidil sulfate, by sulfotransferase enzymes in the outer root sheath of hair. Minoxidil sulfate is the active form required for both the promotion of hair regrowth and the vasodilatory effects of minoxidil. We thus hypothesized that laser Doppler velocimetry measurement of scalp blood perfusion subsequent to the application of topical minoxidil would correlate with sulfotransferase enzyme activity in plucked hair follicles. In this study, plucked hair follicles from female pattern hair loss patients were analyzed for sulfotransferase enzyme activity. Additionally, laser Doppler velocimetry was used to measure the change in scalp perfusion at 15, 30, 45, and 60 minutes, after the application of minoxidil. In agreement with our hypothesis, we discovered a correlation (r=1.0) between the change in scalp perfusion within 60 minutes after topical minoxidil application and sulfotransferase enzyme activity in plucked hairs. To our knowledge, this is the first study demonstrating the feasibility of using laser Doppler imaging as a rapid, non-invasive diagnostic test to predict topical minoxidil response in the treatment of female pattern hair loss. PMID:27049083

  17. Doppler laser imaging predicts response to topical minoxidil in the treatment of female pattern hair loss.

    PubMed

    McCoy, J; Kovacevic, M; Situm, M; Stanimirovic, A; Bolanca, Z; Goren, A

    2016-01-01

    Topical minoxidil is the only drug approved by the US FDA for the treatment of female pattern hair loss. Unfortunately, following 16 weeks of daily application, less than 40% of patients regrow hair. Several studies have demonstrated that sulfotransferase enzyme activity in plucked hair follicles predicts topical minoxidil response in female pattern hair loss patients. However, due to patients’ discomfort with the procedure, and the time required to perform the enzymatic assay it would be ideal to develop a rapid, non-invasive test for sulfotransferase enzyme activity. Minoxidil is a pro-drug converted to its active form, minoxidil sulfate, by sulfotransferase enzymes in the outer root sheath of hair. Minoxidil sulfate is the active form required for both the promotion of hair regrowth and the vasodilatory effects of minoxidil. We thus hypothesized that laser Doppler velocimetry measurement of scalp blood perfusion subsequent to the application of topical minoxidil would correlate with sulfotransferase enzyme activity in plucked hair follicles. In this study, plucked hair follicles from female pattern hair loss patients were analyzed for sulfotransferase enzyme activity. Additionally, laser Doppler velocimetry was used to measure the change in scalp perfusion at 15, 30, 45, and 60 minutes, after the application of minoxidil. In agreement with our hypothesis, we discovered a correlation (r=1.0) between the change in scalp perfusion within 60 minutes after topical minoxidil application and sulfotransferase enzyme activity in plucked hairs. To our knowledge, this is the first study demonstrating the feasibility of using laser Doppler imaging as a rapid, non-invasive diagnostic test to predict topical minoxidil response in the treatment of female pattern hair loss.

  18. Hair growth promoting activity of Eclipta alba in male albino rats.

    PubMed

    Roy, R K; Thakur, Mayank; Dixit, V K

    2008-08-01

    Alopecia is a dermatological disorder with psychosocial implications on patients with hair loss. Eclipta alba Hassk. is a well-known Ayurvedic herb with purported claims of hair growth promotion. In the reported work attempts were undertaken to evaluate petroleum ether and ethanol extract of E. alba Hassk. for their effect on promoting hair growth in albino rats. The extracts were incorporated into oleaginous cream (water in oil cream base) and applied topically on shaved denuded skin of albino rats. The time (in days) required for hair growth initiation as well as completion of hair growth cycle was recorded. Minoxidil 2% solution was applied topically and served as positive control for comparison. Hair growth initiation time was significantly reduced to half on treatment with the extracts, as compared to control animals. The time required for complete hair growth was also significantly reduced. Quantitative analysis of hair growth after treatment with petroleum ether extract (5%) exhibited greater number of hair follicles in anagenic phase (69 +/- 4) which were higher as compared to control (47 +/- 13). The result of treatment with 2 and 5% petroleum ether extracts were better than the positive control minoxidil 2% treatment. PMID:18478241

  19. Blockade of S100A3 activity inhibits murine hair growth.

    PubMed

    Guan, W; Deng, Q; Yu, X L; Yuan, Y S; Gao, J; Li, J J; Zhou, L; Xia, P; Han, G Y Q; Han, W; Yu, Y

    2015-10-28

    Using mouse gene expression microarray analysis, we obtained dynamic expression profiles of the whole genome in a depilation-induced hair growth mouse model. S100A3 expression increased during the anagen phase and returned to normal during the telogen phase. The effects of S100A3 blockade on the hair growth cycle were examined in mice after subcutaneous injection of an anti-mouse S100A3 antibody. Protein localization of S100A3 was confined to the hair shafts during the anagen phase and the sebaceous glands during the telogen phase. S100A3 blockade delayed hair follicle entry into the anagen phase, decreased hair elongation, and reduced the number of hair follicles in the subcutis, which correlated with the downregulated expression of hair growth induction-related genes in vivo. The present study demonstrates that anti-S100A3 antibody inhibits mouse hair growth, suggesting that S100A3 can be used as a target for hair loss treatment.

  20. Additive and Synergistic Bactericidal Activity of Antibodies Directed against Minor Outer Membrane Proteins of Neisseria meningitidis▿

    PubMed Central

    Weynants, Vincent E.; Feron, Christiane M.; Goraj, Karine K.; Bos, Martine P.; Denoël, Philippe A.; Verlant, Vincent G.; Tommassen, Jan; Peak, Ian R. A.; Judd, Ralph C.; Jennings, Michael P.; Poolman, Jan T.

    2007-01-01

    Neisseria meningitidis serogroup B is a major cause of bacterial meningitis in younger populations. The available vaccines are based on outer membrane vesicles obtained from wild-type strains. In children less than 2 years old they confer protection only against strains expressing homologous PorA, a major, variable outer membrane protein (OMP). We genetically modified a strain in order to eliminate PorA and to overproduce one or several minor and conserved OMPs. Using a mouse model mimicking children's PorA-specific bactericidal activity, it was demonstrated that overproduction of more than one minor OMP is required to elicit antibodies able to induce complement-mediated killing of strains expressing heterologous PorA. It is concluded that a critical density of bactericidal antibodies needs to be reached at the surface of meningococci to induce complement-mediated killing. With minor OMPs, this threshold is reached when more than one antigen is targeted, and this allows cross-protection. PMID:17664268

  1. A Hot New Twist to Hair Biology

    PubMed Central

    Bodó, Enikő; Bíró, Tamás; Telek, Andrea; Czifra, Gabriella; Griger, Zoltán; Tóth, Balázs I.; Mescalchin, Alessandra; Ito, Taisuke; Bettermann, Albrecht; Kovács, László; Paus, Ralf

    2005-01-01

    The vanilloid receptor-1 (VR1, or transient receptor potential vanilloid-1 receptor, TRPV1) is activated by capsaicin, the key ingredient of hot peppers. TRPV1 was originally described on sensory neurons as a central integrator of various nociceptive stimuli. However, several human skin cell populations are also now recognized to express TRPV1, but with unknown function. Exploiting the human hair follicle (HF) as a prototypic epithelial-mesenchymal interaction system, we have characterized the HF expression of TRPV1 in situ and have examined TRPV1 signaling in organ-cultured human scalp HF and outer root sheath (ORS) keratinocytes in vitro. TRPV1 immunoreactivity was confined to distinct epithelial compartments of the human HF, mainly to the ORS and hair matrix. In organ culture, TRPV1 activation by capsaicin resulted in a dose-dependent and TRPV1-specific inhibition of hair shaft elongation, suppression of proliferation, induction of apoptosis, premature HF regression (catagen), and up-regulation of intrafollicular transforming growth factor-β2. Cultured human ORS keratinocytes also expressed functional TRPV1, whose stimulation inhibited proliferation, induced apoptosis, elevated intracellular calcium concentration, up-regulated known endogenous hair growth inhibitors (interleukin-1β, transforming growth factor-β2), and down-regulated known hair growth promoters (hepatocyte growth factor, insulin-like growth factor-I, stem cell factor). These findings strongly support TRPV1 as a significant novel player in human hair growth control, underscore the physiological importance of TRPV1 in human skin beyond nociception, and identify TRPV1 as a promising, novel target for pharmacological manipulations of epithelial growth disorders. PMID:15793280

  2. Trace elements in scalp hair of children chronically exposed to volcanic activity (Mt. Etna, Italy).

    PubMed

    Varrica, D; Tamburo, E; Dongarrà, G; Sposito, F

    2014-02-01

    The aim of this survey was to use scalp hair as a biomonitor to evaluate the environmental exposure to metals and metalloids of schoolchildren living around the Mt. Etna area, and to verify whether the degree of human exposure to trace elements is subject to changes in local environmental factors. Twenty trace elements were determined in 376 samples of scalp hair from schoolboys (11-13 years old) of both genders, living in ten towns located around the volcanic area of Mt. Etna (Sicily). The results were compared with those (215 samples) from children living in areas of Sicily characterized by a different geological setting (reference site). As, U and V showed much higher concentrations at the volcanic site whereas Sr was particularly more abundant at the reference site. Linear Discriminant Analysis (LDA) indicated an Etna factor, made up of V, U and Mn, and a second factor, concerning the reference site, characterized by Ni and Sr, and to a lesser extent by Mo and Cd. Significant differences in element concentrations were also observed among three different sectors of Mt. Etna area. Young people living in the Mt. Etna area are naturally exposed to enhanced intakes of some metals (V, U, Mn) and non-metals (e.g., As) than individuals of the same age residing in other areas of Sicily, characterized by different lithologies and not influenced by volcanic activity. The petrographic nature of local rocks and the dispersion of the volcanic plume explain the differences, with ingestion of water and local food as the most probable exposure pathways.

  3. Flame Hair

    PubMed Central

    Miteva, Mariya; Tosti, Antonella

    2015-01-01

    Background ‘Flame hairs’ is a trichoscopic feature described as hair residue from pulling anagen hairs in trichotillomania. Objective: To detect whether flame hairs are present in other hair loss disorders. Methods We retrospectively, independently and blindly reviewed the trichoscopic images of 454 consecutive patients with alopecia areata (99 cases), trichotillomania (n = 20), acute chemotherapy-induced alopecia (n = 6), acute radiotherapy-induced alopecia (n = 2), tinea capitis (n = 13), lichen planopilaris (n = 33), frontal fibrosing alopecia (n = 60), discoid lupus erythematosus (n = 30), dissecting cellulitis (n = 11), central centrifugal cicatricial alopecia (n = 94) and traction alopecia (n = 86) for the presence of flame hairs. We prospectively obtained trichoscopy-guided scalp biopsies from flame hairs in trichotillomania, alopecia areata, traction alopecia and central centrifugal cicatricial alopecia (1 case each). Results Flame hairs were detected in 100% of the acute chemotherapy- and radiotherapy-induced alopecias, where they were the predominant hair abnormality. They were also found in trichotillomania (55%), alopecia areata (21%), traction alopecia (4%) and central centrifugal cicatricial alopecia (3%). On pathology, they corresponded to distorted hair shafts. Conclusion The flame hair is a type of broken hair which can be seen in various hair loss disorders. It results from traumatic pulling of anagen hairs or from anagen arrest due to inflammation or drugs. © 2015 S. Karger AG, Basel PMID:27171360

  4. A case of atypical progressive outer retinal necrosis after highly active antiretroviral therapy.

    PubMed

    Woo, Se Joon; Yu, Hyeong Gon; Chung, Hum

    2004-06-01

    This is a report of an atypical case of progressive outer retinal necrosis (PORN) and the effect of highly active antiretroviral therapy (HAART) on the clinical course of viral retinitis in an acquired immunodeficiency syndrome (AIDS) patient. A 22-year-old male patient infected with human immunodeficiency virus (HIV) presented with unilaterally reduced visual acuity and a dense cataract. After cataract extraction, retinal lesions involving the peripheral and macular areas were found with perivascular sparing and the mud-cracked, characteristic appearance of PORN. He was diagnosed as having PORN based on clinical features and was given combined antiviral treatment. With concurrent HAART, the retinal lesions regressed, with the regression being accelerated by further treatment with intravenous acyclovir and ganciclovir. This case suggests that HAART may change the clinical course of PORN in AIDS patients by improving host immunity. PORN should be included in the differential diagnosis of acute unilateral cataract in AIDS patients. PMID:15255240

  5. A case of atypical progressive outer retinal necrosis after highly active antiretroviral therapy.

    PubMed

    Woo, Se Joon; Yu, Hyeong Gon; Chung, Hum

    2004-06-01

    This is a report of an atypical case of progressive outer retinal necrosis (PORN) and the effect of highly active antiretroviral therapy (HAART) on the clinical course of viral retinitis in an acquired immunodeficiency syndrome (AIDS) patient. A 22-year-old male patient infected with human immunodeficiency virus (HIV) presented with unilaterally reduced visual acuity and a dense cataract. After cataract extraction, retinal lesions involving the peripheral and macular areas were found with perivascular sparing and the mud-cracked, characteristic appearance of PORN. He was diagnosed as having PORN based on clinical features and was given combined antiviral treatment. With concurrent HAART, the retinal lesions regressed, with the regression being accelerated by further treatment with intravenous acyclovir and ganciclovir. This case suggests that HAART may change the clinical course of PORN in AIDS patients by improving host immunity. PORN should be included in the differential diagnosis of acute unilateral cataract in AIDS patients.

  6. Activation of the Complement Classical Pathway (C1q Binding) by Mesophilic Aeromonas hydrophila Outer Membrane Protein

    PubMed Central

    Merino, Susana; Nogueras, Maria Mercedes; Aguilar, Alicia; Rubires, Xavier; Albertí, Sebastian; Benedí, Vicente Javier; Tomás, Juan M.

    1998-01-01

    The mechanism of killing of Aeromonas hydrophila serum-sensitive strains in nonimmune serum by the complement classical pathway has been studied. The bacterial cell surface component that binds C1q more efficiently was identified as a major outer membrane protein of 39 kDa, presumably the porin II described by D. Jeanteur, N. Gletsu, F. Pattus, and J. T. Buckley (Mol. Microbiol. 6:3355–3363, 1992), of these microorganisms. We have demonstrated that the purified form of porin II binds C1q and activates the classical pathway in an antibody-independent manner, with the subsequent consumption of C4 and reduction of the serum total hemolytic activity. Activation of the classical pathway has been observed in human nonimmune serum and agammaglobulinemic serum (both depleted of factor D). Binding of C1q to other components of the bacterial outer membrane, in particular to rough lipopolysaccharide, could not be demonstrated. Activation of the classical pathway by this lipopolysaccharide was also much less efficient than activation by the outer membrane protein. The strains possessing O-antigen lipopolysaccharide bind less C1q than the serum-sensitive strains, because the outer membrane protein is less accessible, and are resistant to complement-mediated killing. Finally, a similar or identical outer membrane protein (presumably porin II) that binds C1q was shown to be present in strains from the most common mesophilic Aeromonas O serogroups. PMID:9673268

  7. Ground substrate affects activity budgets and hair loss in outdoor captive groups of rhesus macaques (Macaca mulatta).

    PubMed

    Beisner, Brianne A; Isbell, Lynne A

    2008-12-01

    How the captive environment influences the behavior of animals is relevant to the well-being of captive animals. Captivity diverges from the natural environment in many ways, and one goal of enrichment practices is to encourage species-typical behavior in these unnatural environments. This study investigated the influence of grass vs. gravel substrate on activity budgets and degree of hair loss in seven groups of captive rhesus macaques housed in outdoor enclosures at the California National Primate Research Center. Groups having grass substrate spent a greater proportion of their time foraging and a smaller proportion of time grooming compared with groups having gravel substrate. Increased time spent grooming in gravel enclosures may have contributed to significantly greater hair loss in those enclosures. A causal relationship between ground substrate on foraging and grooming, and therefore hair loss, is strengthened by similar changes in activity budgets and hair loss in a single group that was moved from gravel to grass substrate halfway through the study. These results add to growing evidence that substrate type in captivity is important to consider because it affects animal well-being. In particular, these results reveal that grass substrate is more effective than gravel in stimulating foraging and reducing allo-grooming to levels that are comparable to wild populations, and enable animals to maintain healthier coats.

  8. Hair Loss

    MedlinePlus

    ... lupus. If you take certain medicines or have chemotherapy for cancer, you may also lose your hair. Other causes are stress, a low protein diet, a family history, or poor nutrition. Treatment for hair loss depends on the cause. ...

  9. Hair Loss

    MedlinePlus

    ... Common baldness" usually means male-pattern baldness, or permanent-pattern baldness. It is also called androgenetic alopecia. ... will grow back normally. However, scarring can cause permanent hair loss. Hot oil hair treatments or chemicals ...

  10. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    PubMed

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration. PMID:25609845

  11. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    PubMed

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration.

  12. Hair loss

    MedlinePlus

    ... 70. PHYSICAL OR EMOTIONAL STRESS Physical or emotional stress may cause one-half to three-quarters of scalp hair ... for weeks to months after the episode of stress. Hair shedding ... long-term (chronic). Causes of this type of hair loss are: High ...

  13. Your Hair

    MedlinePlus

    ... someone's hair, the less melanin there is. A person with brown or black hair has much more melanin than someone with ... example, many blondes have light skin, whereas many people with darker skin have dark brown or black hair. And don't forget genes (genes are ...

  14. Effect of Tectona grandis Linn. seeds on hair growth activity of albino mice

    PubMed Central

    Jaybhaye, Deepali; Varma, Sushikumar; Gagne, Nitin; bonde, Vijay; Gite, Amol; Bhosle, Deepak

    2010-01-01

    The seeds of Tectona grandis Linn. are traditionally acclaimed as hair tonic in the Indian system of medicine. Studies were therefore undertaken in order to evaluate petroleum ether extract of T. grandis seeds for its effect on hair growth in albino mice. The 5% and 10% extracts incorporated into simple ointment base were applied topically on shaved denuded skin of albino mice. The time required for initiation of hair growth as well as completion of hair growth cycle was recorded. Minoxidil 2% solution was applied topically and served as positive control. The result of treatment with minoxidil 2% is 49% hair in anagenic phase. Hair growth initiation time was significantly reduced to half on treatment with the extracts compared to control animals. The treatment was successful in bringing a greater number of hair follicles (64% and 51%) in anagenic phase than standard minoxidil (49%). The results of treatment with 5% and 10% petroleum ether extracts were comparable to the positive control minoxidil. PMID:21455447

  15. Enzyme Design From the Bottom Up: An Active Nickel Electrocatalyst with a Structured Peptide Outer Coordination Sphere

    SciTech Connect

    Reback, Matthew L.; Buchko, Garry W.; Kier, Brandon L.; Ginovska-Pangovska, Bojana; Xiong, Yijia; Lense, Sheri; Hou, Jianbo; Roberts, John A.; Sorensen, Christina M.; Raugei, Simone; Squier, Thomas C.; Shaw, Wendy J.

    2014-02-03

    Functional, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts via an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well characterized hydrogen production catalyst, Ni(PPh2NPh)2. The incorporated peptide maintains its B-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (~100,000 s-1) is fully retained. The combination of an active molecular catalyst with a structured peptide outer coordination sphere provides a scaffold that permits the incorporation of features of an enzyme-like outer-coordination sphere necessary to create molecular electrocatalysts with en-hanced functionality.

  16. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities.

    PubMed

    Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2016-08-31

    Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time. PMID:27509218

  17. New activators and inhibitors in the hair cycle clock: targeting stem cells' state of competence.

    PubMed

    Plikus, Maksim V

    2012-05-01

    The timing mechanism of the hair cycle remains poorly understood. However, it has become increasingly clear that the telogen-to-anagen transition is controlled jointly by at least the bone morphogenic protein (BMP), WNT, fibroblast growth factor (FGF), and transforming growth factor (TGF)-β signaling pathways. New research shows that Fgf18 signaling in hair follicle stem cells synergizes BMP-mediated refractivity, whereas Tgf-β2 signaling counterbalances it. Loss of Fgf18 signaling markedly accelerates anagen initiation, whereas loss of Tgf-β2 signaling significantly delays it, supporting key roles for these pathways in hair cycle timekeeping. PMID:22499035

  18. New activators and inhibitors in the hair cycle clock: targeting stem cells' state of competence.

    PubMed

    Plikus, Maksim V

    2012-05-01

    The timing mechanism of the hair cycle remains poorly understood. However, it has become increasingly clear that the telogen-to-anagen transition is controlled jointly by at least the bone morphogenic protein (BMP), WNT, fibroblast growth factor (FGF), and transforming growth factor (TGF)-β signaling pathways. New research shows that Fgf18 signaling in hair follicle stem cells synergizes BMP-mediated refractivity, whereas Tgf-β2 signaling counterbalances it. Loss of Fgf18 signaling markedly accelerates anagen initiation, whereas loss of Tgf-β2 signaling significantly delays it, supporting key roles for these pathways in hair cycle timekeeping.

  19. Active stochastic oscillations and amplification of mechanical stimuli in a hair cell model

    NASA Astrophysics Data System (ADS)

    Han, Lijuan; Neiman, Alexander

    2009-03-01

    We study signal transduction in spontaneously oscillating hair bundles of an auditory hair cell using a computational model. The effects of intrinsic noise from the Brownian motion of hair bundles and from stochastic fluctuations of transduction ion channels as well as periodic fluctuations of the receptor potential are taken into account. The model shows the explosion of a canard trajectory near the Hopf bifurcation. We have found that the system's gain of weak mechanical stimuli can be greatly enhanced when the system operates slightly beyond the Hopf bifurcation, i.e. in the canard region. The gain can also be optimized by tuning the noise intensity.

  20. 76 FR 5189 - BOEMRE Information Collection Activities: 1010-0081, Operations in the Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ...: 1010-0081, Operations in the Outer Continental Shelf for Minerals Other Than Oil, Gas, and Sulphur... Shelf for Minerals Other than Oil, Gas, and Sulphur. This notice also provides the public a second... 282, Operations in the Outer Continental Shelf for Minerals Other than Oil, Gas, and Sulphur....

  1. Hair transplantation.

    PubMed

    Al-Khair, Y M

    2000-09-01

    Hair transplantation is a technique in which hair follicles are harvested from the occipital area and re-transplanted in the frontal bald area. Hair transplantation is the most common cosmetic procedure in the United States nowadays despite the fact that it is expensive. Usually, patients need more than one session to receive a cosmetically acceptable result and patients need to be understanding and have realistic expectations. Although most of our patients are males, females represent about 10-15% of our new patients. This article reviews the basic principals of hair transplantation and describes new and improved techniques of hair transplantation. PMID:11376357

  2. Hair Dyes Resorcinol and Lawsone Reduce Production of Melanin in Melanoma Cells by Tyrosinase Activity Inhibition and Decreasing Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF) Expression

    PubMed Central

    Lee, Shu-Mei; Chen, Yi-Shyan; Lin, Chih-Chien; Chen, Kuan-Hung

    2015-01-01

    Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future. PMID:25584612

  3. Hair dyes resorcinol and lawsone reduce production of melanin in melanoma cells by tyrosinase activity inhibition and decreasing tyrosinase and microphthalmia-associated transcription factor (MITF) expression.

    PubMed

    Lee, Shu-Mei; Chen, Yi-Shyan; Lin, Chih-Chien; Chen, Kuan-Hung

    2015-01-09

    Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.

  4. Hair dyes resorcinol and lawsone reduce production of melanin in melanoma cells by tyrosinase activity inhibition and decreasing tyrosinase and microphthalmia-associated transcription factor (MITF) expression.

    PubMed

    Lee, Shu-Mei; Chen, Yi-Shyan; Lin, Chih-Chien; Chen, Kuan-Hung

    2015-01-01

    Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future. PMID:25584612

  5. Outer Membrane Vesicles Mediate Transport of Biologically Active Vibrio cholerae Cytolysin (VCC) from V. cholerae Strains

    PubMed Central

    Elluri, Sridhar; Enow, Constance; Vdovikova, Svitlana; Rompikuntal, Pramod K.; Dongre, Mitesh; Carlsson, Sven; Pal, Amit; Uhlin, Bernt Eric; Wai, Sun Nyunt

    2014-01-01

    Background Outer membrane vesicles (OMVs) released from Gram-negative bacteria can serve as vehicles for the translocation of virulence factors. Vibrio cholerae produce OMVs but their putative role in translocation of effectors involved in pathogenesis has not been well elucidated. The V. cholerae cytolysin (VCC), is a pore-forming toxin that lyses target eukaryotic cells by forming transmembrane oligomeric β-barrel channels. It is considered a potent toxin that contributes to V. cholerae pathogenesis. The mechanisms involved in the secretion and delivery of the VCC have not been extensively studied. Methodology/Principal Findings OMVs from V. cholerae strains were isolated and purified using a differential centrifugation procedure and Optiprep centrifugation. The ultrastructure and the contents of OMVs were examined under the electron microscope and by immunoblot analyses respectively. We demonstrated that VCC from V. cholerae strain V:5/04 was secreted in association with OMVs and the release of VCC via OMVs is a common feature among V. cholerae strains. The biological activity of OMV-associated VCC was investigated using contact hemolytic assay and epithelial cell cytotoxicity test. It showed toxic activity on both red blood cells and epithelial cells. Our results indicate that the OMVs architecture might play a role in stability of VCC and thereby can enhance its biological activities in comparison with the free secreted VCC. Furthermore, we tested the role of OMV-associated VCC in host cell autophagy signalling using confocal microscopy and immunoblot analysis. We observed that OMV-associated VCC triggered an autophagy response in the target cell and our findings demonstrated for the first time that autophagy may operate as a cellular defence mechanism against an OMV-associated bacterial virulence factor. Conclusion/Significance Biological assays of OMVs from the V. cholerae strain V:5/04 demonstrated that OMV-associated VCC is indeed biologically active and

  6. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway.

    PubMed

    Ahmed, Mohammed I; Alam, Majid; Emelianov, Vladimir U; Poterlowicz, Krzysztof; Patel, Ankit; Sharov, Andrey A; Mardaryev, Andrei N; Botchkareva, Natalia V

    2014-11-24

    Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting β-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators β-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify β-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging. PMID:25422376

  7. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway.

    PubMed

    Ahmed, Mohammed I; Alam, Majid; Emelianov, Vladimir U; Poterlowicz, Krzysztof; Patel, Ankit; Sharov, Andrey A; Mardaryev, Andrei N; Botchkareva, Natalia V

    2014-11-24

    Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting β-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators β-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify β-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging.

  8. No Correlates for Somatic Motility in Freeze-Fractured Hair-Cell Membranes of Lizards and Birds

    NASA Astrophysics Data System (ADS)

    Köppl, C.; Forge, A.; Manley, G. A.

    2003-02-01

    It is not known whether active processes in mammals and non-mammals are due to the same underlying mechanism. To address this, we studied the size and density of particles in hair-cell membranes in mammals, in a lizard, the Tokay gecko, and in a bird, the barn owl. We surmised that if the prominent particles described in mammalian outer-hair-cell membranes are responsible for cochlear motility, a similar occurrence in non-mammalian hair cells would argue for similar mechanisms. Particle densities differed, however, substantially from those of mammals, suggesting that non-mammals have no membrane-based motility.

  9. Meningococcal Outer Membrane Vesicle Composition-Dependent Activation of the Innate Immune Response.

    PubMed

    Zariri, Afshin; Beskers, Joep; van de Waterbeemd, Bas; Hamstra, Hendrik Jan; Bindels, Tim H E; van Riet, Elly; van Putten, Jos P M; van der Ley, Peter

    2016-10-01

    Meningococcal outer membrane vesicles (OMVs) have been extensively investigated and successfully implemented as vaccines. They contain pathogen-associated molecular patterns, including lipopolysaccharide (LPS), capable of triggering innate immunity. However, Neisseria meningitidis contains an extremely potent hexa-acylated LPS, leading to adverse effects when its OMVs are applied as vaccines. To create safe OMV vaccines, detergent treatment is generally used to reduce the LPS content. While effective, this method also leads to loss of protective antigens such as lipoproteins. Alternatively, genetic modification of LPS can reduce its toxicity. In the present study, we have compared the effects of standard OMV isolation methods using detergent or EDTA with those of genetic modifications of LPS to yield a penta-acylated lipid A (lpxL1 and pagL) on the in vitro induction of innate immune responses. The use of detergent decreased both Toll-like receptor 4 (TLR4) and TLR2 activation by OMVs, while the LPS modifications reduced only TLR4 activation. Mutational removal of PorB or lipoprotein factor H binding protein (fHbp), two proteins known to trigger TLR2 signaling, had no effect, indicating that multiple TLR2 ligands are removed by detergent treatment. Detergent-treated OMVs and lpxL1 OMVs showed similar reductions of cytokine profiles in the human monocytic cell line MM6 and human dendritic cells (DCs). OMVs with the alternative penta-acylated LPS structure obtained after PagL-mediated deacylation showed reduced induction of proinflammatory cytokines interleukin-6 (IL-6) and IL-1β but not of IP-10, a typical TRIF-dependent chemokine. Taken together, these data show that lipid A modification can be used to obtain OMVs with reduced activation of innate immunity, similar to what is found after detergent treatment. PMID:27481244

  10. The active outer shell of Earth: What remains to be explored in carbon and life interactions?

    NASA Astrophysics Data System (ADS)

    Boetius, Antje

    2016-04-01

    Recent advances in methods and technologies have allowed us to explore the interaction between life and abiotic resources from nano to megascales in space and time, and this has set new challenges to the geosciences. This lecture aims at discussing key biological factors in the question of the dynamics of carbon reservoirs and fluxes on Earth, and the challenges to the geosciences to incorporate and further this knowledge. Humans themselves as one such biological factor have considerably changed the dynamics of carbon and other elements, with repercussions to most other life forms on Earth. Which other life forms shape carbon fluxes and reservoirs, and what do we know about their key traits in catalyzing geochemical reactions, their past and their future? I will use case studies from my own research field - geobiology of the oceans and the cryosphere - and from other geoscience areas to highlight the considerable non-linearity introduced by life to element fluxes and the environment; and discuss advances but also gaps in knowledge and research approaches concerning assessing and predicting carbon transformations in the active outer shell of Earth.

  11. Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere

    SciTech Connect

    Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.; O'Hagan, Molly J.; Ginovska-Pangovska, Bojana; Linehan, John C.; Shaw, Wendy J.

    2012-10-05

    The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introduce enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.

  12. 76 FR 52006 - Information Collection Activity: Leasing of Minerals Other Than Oil, Gas and Sulphur in the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... 15, 2011, we published a Federal Register notice (76 FR 21393) announcing that we would submit this... Bureau of Ocean Energy Management, Regulation and Enforcement Information Collection Activity: Leasing of... Leasing of Minerals Other than Oil, Gas and Sulphur in the Outer Continental Shelf (OMB No. 1010-...

  13. Age-related cochlear hair cell loss in the chinchilla.

    PubMed

    Bhattacharyya, T K; Dayal, V S

    1985-01-01

    The spiral organ of the chinchilla was studied by the surface-preparation technique in four different age groups: 1 month, 6 months, 1 year, and 4 years, to assess age-related hair cell loss. Decrease in hair cell population is linearly related to age, and damage rate of outer hair cells is greater than that of inner hair cells. The mean percentage of damaged total outer hair cells was 0.60%, 1.16%, 1.71%, and 7.07% in animals in 1 month, 6 months, 1 year, and 4 years of age, respectively. Outer hair cell loss was greatest in the apex of the cochlea and, of these cells, the outermost row was the most affected. Damage to inner hair cells also increases with age. Age-related apical cochlear cell loss in the chinchilla is comparable to that observed in other laboratory animals. PMID:3970507

  14. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  15. [Hair colorants].

    PubMed

    Urbanek-Karłowska, B; Luks, E; Jedra, M; Kiss, E; Malanowska, M

    1997-01-01

    The properties, mode of action and its duration of the preparations used for hair dyeing are described, together with their chemical components, and also preparations of herbal origin. The chemical reactions are described in detail which lead the development of a color polymer occurring during hair dyeing. The studies are presented which are used for toxicological assessment of the raw materials which are the components of the colorants, and the list is included of hair colorants permitted for use in Poland. PMID:9562811

  16. Sulfotransferase activity in plucked hair follicles predicts response to topical minoxidil in the treatment of female androgenetic alopecia.

    PubMed

    Roberts, Janet; Desai, Nisha; McCoy, John; Goren, Andy

    2014-01-01

    Two percent topical minoxidil is the only US Food and Drug Administration-approved drug for the treatment of female androgenetic alopecia (AGA). Its success has been limited by the low percentage of responders. Meta-analysis of several studies reporting the number of responders to 2% minoxidil monotherapy indicates moderate hair regrowth in only 13-20% of female patients. Five percent minoxidil solution, when used off-label, may increase the percentage of responders to as much as 40%. As such, a biomarker for predicting treatment response would have significant clinical utility. In a previous study, Goren et al. reported an association between sulfotransferase activity in plucked hair follicles and minoxidil response in a mixed cohort of male and female patients. The aim of this study was to replicate these findings in a well-defined cohort of female patients with AGA treated with 5% minoxidil daily for a period of 6 months. Consistent with the prior study, we found that sulfotransferase activity in plucked hair follicles predicts treatment response with 93% sensitivity and 83% specificity. Our study further supports the importance of minoxidil sulfation in eliciting a therapeutic response and provides further insight into novel targets for increasing minoxidil efficacy. PMID:24773771

  17. An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa.

    PubMed

    Casabona, Maria G; Silverman, Julie M; Sall, Khady M; Boyer, Frédéric; Couté, Yohann; Poirel, Jessica; Grunwald, Didier; Mougous, Joseph D; Elsen, Sylvie; Attree, Ina

    2013-02-01

    Pseudomonas aeruginosa is capable of injecting protein toxins into other bacterial cells through one of its three type VI secretion systems (T6SSs). The activity of this T6SS is tightly regulated on the posttranslational level by phosphorylation-dependent and -independent pathways. The phosphorylation-dependent pathway consists of a Threonine kinase/phosphatase pair (PpkA/PppA) that acts on a forkhead domain-containing protein, Fha1, and a periplasmic protein, TagR, that positively regulates PpkA. In the present work, we biochemically and functionally characterize three additional proteins of the phosphorylation-dependent regulatory cascade that controls T6S activation: TagT, TagS and TagQ. We show that similar to TagR, these proteins act upstream of the PpkA/PppA checkpoint and influence phosphorylation of Fha1 and, apparatus assembly and effector export. Localization studies demonstrate that TagQ is an outer membrane lipoprotein and TagR is associated with the outer membrane. Consistent with their homology to lipoprotein outer membrane localization (Lol) components, TagT and TagS form a stable inner membrane complex with ATPase activity. However, we find that outer membrane association of T6SS lipoproteins TagQ and TssJ1, and TagR, is unaltered in a ΔtagTS background. Notably, we found that TagQ is indispensible for anchoring of TagR to the outer membrane fraction. As T6S-dependent fitness of P. aeruginosa requires TagT, S, R and Q, we conclude that these proteins likely participate in a trans-membrane signalling pathway that promotes H1-T6SS activity under optimal environmental conditions. PMID:22765374

  18. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling.

    PubMed

    Lim, Xinhong; Tan, Si Hui; Yu, Ka Lou; Lim, Sophia Beng Hui; Nusse, Roeland

    2016-03-15

    How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation.

  19. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling.

    PubMed

    Lim, Xinhong; Tan, Si Hui; Yu, Ka Lou; Lim, Sophia Beng Hui; Nusse, Roeland

    2016-03-15

    How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation. PMID:26903625

  20. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling

    PubMed Central

    Lim, Xinhong; Tan, Si Hui; Yu, Ka Lou; Lim, Sophia Beng Hui; Nusse, Roeland

    2016-01-01

    How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation. PMID:26903625

  1. Pharmacologic interventions in aging hair

    PubMed Central

    Trüeb, Ralph M

    2006-01-01

    The appearance of hair plays an important role in people’s overall physical appearance and self-perception. With today’s increasing life-expectations, the desire to look youthful plays a bigger role than ever. The hair care industry has become aware of this and is delivering active products directed towards meeting this consumer demand. The discovery of pharmacological targets and the development of safe and effective drugs also indicate strategies of the drug industry for maintenance of healthy and beautiful hair. Hair aging comprises weathering of the hair shaft, decrease of melanocyte function, and decrease in hair production. The scalp is subject to intrinsic and extrinsic aging. Intrinsic factors are related to individual genetic and epigenetic mechanisms with interindividual variation: prototypes are familial premature graying, and androgenetic alopecia. Currently available pharmacologic treatment modalities with proven efficacy for treatment of androgenetic alopecia are topical minoxidil and oral finasteride. Extrinsic factors include ultraviolet radiation and air pollution. Experimental evidence supports the hypothesis that oxidative stress also plays a role in hair aging. Topical anti-aging compounds include photoprotectors and antioxidants. In the absence of another way to reverse hair graying, hair colorants remain the mainstay of recovering lost hair color. Topical liposome targeting for melanins, genes, and proteins selectively to hair follicles are currently under investigation. PMID:18044109

  2. A genomic region encompassing a newly identified exon provides enhancing activity sufficient for normal myo7aa expression in zebrafish sensory hair cells.

    PubMed

    Ernest, Sylvain; Rosa, Frédéric M

    2015-09-01

    MYO7A is an unconventional myosin involved in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations of MYO7A are responsible for abnormal shaping of hair bundles, resulting in human deafness and murine deafness/circling behavior. Myo7aa, expressed in SHCs of the inner ear and lateral line of zebrafish, causes circling behavior and abnormal hair cell function when deficient in mariner mutant. This work identifies a new hair cell-specific enhancer, highly conserved between species, located within Intron 2-3 of zebrafish myosin 7a (myo7aa) gene. This enhancer is contained within a 761-bp DNA fragment that encompasses a newly identified Exon of myo7aa and whose activity does not depend on orientation. Compensation of mariner mutation by expression of mCherry-Myo7aa fusion protein under the control of this 761-bp DNA fragment results in recovery of balance, normal hair bundle shape and restored hair cell function. Two smaller adjacent fragments (344-bp and 431-bp), extracted from the 761-bp fragment, both show hair cell-specific enhancing activity, with apparently reduced intensity and coverage. These data should help understand the role of Myo7aa in sensory hair cell differentiation and function. They provide tools to decipher how myo7aa gene is expressed and regulated in SHCs by allowing the identification of potential transcription factors involved in this process. The discovered enhancer could represent a new target for the identification of deafness-causing mutations affecting human MYO7A.

  3. A genomic region encompassing a newly identified exon provides enhancing activity sufficient for normal myo7aa expression in zebrafish sensory hair cells.

    PubMed

    Ernest, Sylvain; Rosa, Frédéric M

    2015-09-01

    MYO7A is an unconventional myosin involved in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations of MYO7A are responsible for abnormal shaping of hair bundles, resulting in human deafness and murine deafness/circling behavior. Myo7aa, expressed in SHCs of the inner ear and lateral line of zebrafish, causes circling behavior and abnormal hair cell function when deficient in mariner mutant. This work identifies a new hair cell-specific enhancer, highly conserved between species, located within Intron 2-3 of zebrafish myosin 7a (myo7aa) gene. This enhancer is contained within a 761-bp DNA fragment that encompasses a newly identified Exon of myo7aa and whose activity does not depend on orientation. Compensation of mariner mutation by expression of mCherry-Myo7aa fusion protein under the control of this 761-bp DNA fragment results in recovery of balance, normal hair bundle shape and restored hair cell function. Two smaller adjacent fragments (344-bp and 431-bp), extracted from the 761-bp fragment, both show hair cell-specific enhancing activity, with apparently reduced intensity and coverage. These data should help understand the role of Myo7aa in sensory hair cell differentiation and function. They provide tools to decipher how myo7aa gene is expressed and regulated in SHCs by allowing the identification of potential transcription factors involved in this process. The discovered enhancer could represent a new target for the identification of deafness-causing mutations affecting human MYO7A. PMID:25556989

  4. Arctic summary report: Outer Continental Shelf oil and gas activities in the Arctic and their onshore impacts

    NASA Astrophysics Data System (ADS)

    Lynch, C.; Slitor, D. L.; Rudolph, R. W.

    1985-01-01

    Issues and developments occuring in the Arctic Outer Continental Shelf subregion are discussed. The geology and hydrocarbon potential of the Diapir Field petroleum provinces are detailed. Recent lease sales, exploration activities, and the first development proposals for offshore areas of the North slope are considered. Issues relating to transporting resources from production islands to shore and various proposals for moving Arctic hydrocarbons to market are presented. Production projects onshore and possible support bases for offshore activity are also examined.

  5. Wnt activation protects against neomycin-induced hair cell damage in the mouse cochlea.

    PubMed

    Liu, L; Chen, Y; Qi, J; Zhang, Y; He, Y; Ni, W; Li, W; Zhang, S; Sun, S; Taketo, M M; Wang, L; Chai, R; Li, H

    2016-01-01

    Recent studies have reported the role of Wnt/β-catenin signaling in hair cell (HC) development, regeneration, and differentiation in the mouse cochlea; however, the role of Wnt/β-catenin signaling in HC protection remains unknown. In this study, we took advantage of transgenic mice to specifically knockout or overactivate the canonical Wnt signaling mediator β-catenin in HCs, which allowed us to investigate the role of Wnt/β-catenin signaling in protecting HCs against neomycin-induced damage. We first showed that loss of β-catenin in HCs made them more vulnerable to neomycin-induced injury, while constitutive activation of β-catenin in HCs reduced HC loss both in vivo and in vitro. We then showed that loss of β-catenin in HCs increased caspase-mediated apoptosis induced by neomycin injury, while β-catenin overexpression inhibited caspase-mediated apoptosis. Finally, we demonstrated that loss of β-catenin in HCs led to increased expression of forkhead box O3 transcription factor (Foxo3) and Bim along with decreased expression of antioxidant enzymes; thus, there were increased levels of reactive oxygen species (ROS) after neomycin treatment that might be responsible for the increased aminoglycoside sensitivity of HCs. In contrast, β-catenin overexpression reduced Foxo3 and Bim expression and ROS levels, suggesting that β-catenin is protective against neomycin-induced HC loss. Our findings demonstrate that Wnt/β-catenin signaling has an important role in protecting HCs against neomycin-induced HC loss and thus might be a new therapeutic target for the prevention of HC death.

  6. Wnt activation protects against neomycin-induced hair cell damage in the mouse cochlea

    PubMed Central

    Liu, L; Chen, Y; Qi, J; Zhang, Y; He, Y; Ni, W; Li, W; Zhang, S; Sun, S; Taketo, M M; Wang, L; Chai, R; Li, H

    2016-01-01

    Recent studies have reported the role of Wnt/β-catenin signaling in hair cell (HC) development, regeneration, and differentiation in the mouse cochlea; however, the role of Wnt/β-catenin signaling in HC protection remains unknown. In this study, we took advantage of transgenic mice to specifically knockout or overactivate the canonical Wnt signaling mediator β-catenin in HCs, which allowed us to investigate the role of Wnt/β-catenin signaling in protecting HCs against neomycin-induced damage. We first showed that loss of β-catenin in HCs made them more vulnerable to neomycin-induced injury, while constitutive activation of β-catenin in HCs reduced HC loss both in vivo and in vitro. We then showed that loss of β-catenin in HCs increased caspase-mediated apoptosis induced by neomycin injury, while β-catenin overexpression inhibited caspase-mediated apoptosis. Finally, we demonstrated that loss of β-catenin in HCs led to increased expression of forkhead box O3 transcription factor (Foxo3) and Bim along with decreased expression of antioxidant enzymes; thus, there were increased levels of reactive oxygen species (ROS) after neomycin treatment that might be responsible for the increased aminoglycoside sensitivity of HCs. In contrast, β-catenin overexpression reduced Foxo3 and Bim expression and ROS levels, suggesting that β-catenin is protective against neomycin-induced HC loss. Our findings demonstrate that Wnt/β-catenin signaling has an important role in protecting HCs against neomycin-induced HC loss and thus might be a new therapeutic target for the prevention of HC death. PMID:26962686

  7. 76 FR 51391 - Commercial Wind Lease Issuance and Site Characterization Activities on the Atlantic Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ....305. FOR FURTHER INFORMATION CONTACT: Michelle Morin, BOEMRE Office of Offshore Alternative Energy... Programmatic EIS for Alternative Energy Development and Production and Alternate Use of Facilities on the Outer...: Bureau of Ocean Energy Management, Regulation and Enforcement, Office of Offshore Alternative...

  8. 75 FR 54369 - BOEMRE Information Collection Activity: 1010-NEW, Upcoming Projects Considering the Use of Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ...: 1010-NEW, Upcoming Projects Considering the Use of Outer Continental Shelf Sand, Gravel, and Shell... paperwork requirements that respondents will submit to BOEMRE to obtain OCS sand, gravel, and shell...-1275. Marine Minerals Program information and procedures for obtaining sand, gravel, and...

  9. 77 FR 15118 - Information Collection Activities: Operations in the Outer Continental Shelf for Minerals Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... Continental Shelf for Minerals Other Than Oil, Gas, and Sulphur; Submitted for Office of Management and Budget... Continental Shelf for Minerals Other than Oil, Gas, and Sulphur. This notice also provides the public a second... 282, Operations in the Outer Continental Shelf for Minerals Other than Oil, Gas, and Sulphur....

  10. Detection of mercury in the 411-year-old beard hairs of the astronomer Tycho Brahe by elemental analysis in electron microscopy.

    PubMed

    Jonas, Ludwig; Jaksch, Heiner; Zellmann, Erhard; Klemm, Kerstin I; Andersen, Peter Hvilshøj

    2012-10-01

    Hairs more than 400 years old of the famous astronomer Tycho Brahe were studied by electron microscopy to evaluate the hypothesis that Johannes Kepler murdered his teacher Brahe by mercury intoxication. The beard hairs showed a well-preserved ultrastructure with typical hair scales and melanosomes. The authors detected an accumulation of electron-dense granules of about 10 nm inside the outer hair scales, but not in the hair shaft and roots. At the places of these heavy-metal-containing granules they detected mercury besides other elements by energy dispersive X-ray analysis (EDX, Oxford, UK) in a field cathode scanning electron microscope (SEM, Gemini, Zeiss). The mercury-containing granules were found over the whole length of hairs, but only in the outer hair scales. Nevertheless, surface coatings of hairs were free of mercury. This distribution of mercury does not support the murder hypothesis, but could be related to precipitation of mercury dust from the air during long-term alchemistic activities. PMID:23025649

  11. Detection of mercury in the 411-year-old beard hairs of the astronomer Tycho Brahe by elemental analysis in electron microscopy.

    PubMed

    Jonas, Ludwig; Jaksch, Heiner; Zellmann, Erhard; Klemm, Kerstin I; Andersen, Peter Hvilshøj

    2012-10-01

    Hairs more than 400 years old of the famous astronomer Tycho Brahe were studied by electron microscopy to evaluate the hypothesis that Johannes Kepler murdered his teacher Brahe by mercury intoxication. The beard hairs showed a well-preserved ultrastructure with typical hair scales and melanosomes. The authors detected an accumulation of electron-dense granules of about 10 nm inside the outer hair scales, but not in the hair shaft and roots. At the places of these heavy-metal-containing granules they detected mercury besides other elements by energy dispersive X-ray analysis (EDX, Oxford, UK) in a field cathode scanning electron microscope (SEM, Gemini, Zeiss). The mercury-containing granules were found over the whole length of hairs, but only in the outer hair scales. Nevertheless, surface coatings of hairs were free of mercury. This distribution of mercury does not support the murder hypothesis, but could be related to precipitation of mercury dust from the air during long-term alchemistic activities.

  12. A comparison of the haemagglutinating and enzymic activities of Bacteroides fragilis whole cells and outer membrane vesicles.

    PubMed

    Patrick, S; McKenna, J P; O'Hagan, S; Dermott, E

    1996-04-01

    The haemagglutinating and enzymic activities of the obligately anaerobic pathogenic bacterium Bacteroides fragilis were examined. Outer membrane vesicles are released from the surface of B. fragilis. They can be detected by electron microscopy in ultrathin sections and bacterial suspensions after negative staining. Electron microscopy and immunogold labelling with a MAb specific for surface polysaccharide of B. fragilis confirmed that the vesicles carried outer membrane associated epitopes. The haemagglutinating activity of whole cells from populations of B. fragilis strains NCTC9343, BE3 and LS66 enriched by Percoll density gradient centrifugation for a large capsule (LC), electron dense layer (EDL); non-capsulate by light microscopy) and outer membrane vesicles (OMV) which had been purified by centrifugation from EDL-enriched populations were compared using human and horse erythrocytes. The enzymic activity of OMV, LC- and EDL-enriched populations, as detected by the API ZYM kit, was compared for strains NCTC 9343 and BE3. Purified OMV from the strains examined exhibited both haemagglutinating and enzymatic activity. Haemagglutination by the EDL-enriched population was sensitive to treatment with sodium periodate. The LC-enriched population haemagglutinated only after ultrasonic removal of the capsule. This indicates that the LC masks a haemagglutinin. The results suggest a potential role for OMV in the virulence of B. fragilis. PMID:8737489

  13. Use of body hair and beard hair in hair restoration.

    PubMed

    Umar, Sanusi

    2013-08-01

    For many hair restoration patients with limited scalp donor hair it is possible to use nonhead hair sources to increase the potential follicle supply. Follicular unit extraction provides the hair restoration surgeon with a useful surgical means for accessing this valuable source of donor reserve. Nonhead hair can also be used to restore eyebrows, eyelashes, and moustaches. This article focuses on the use of body hair and beard in hair restoration. Discussed are the indications and effective techniques for performing hair transplants using non head hair donor sources, along with the pitfalls and risks of this surgical modality.

  14. Solar wind disturbances in th outer heliosphere caused by successive solar flares from the same active region

    NASA Technical Reports Server (NTRS)

    Akasofu, S. I.; Hakamada, K.

    1983-01-01

    Solar wind disturbances caused by successive flares from the same active region are traced to about 20 AU, using the modeling method developed by Hakamada and Akasofu (1982). It is shown that the flare-generated shock waves coalesce with the co-rotating interaction region of the interplanetary magnetic field, resulting in a large-scale magnetic field structure in the outer heliosphere. Such a structure may have considerable effects on the propagation of galactic cosmic rays.

  15. Downregulation of the renal outer medullary K(+) channel ROMK by the AMP-activated protein kinase.

    PubMed

    Siraskar, Balasaheb; Huang, Dan Yang; Pakladok, Tatsiana; Siraskar, Gulab; Sopjani, Mentor; Alesutan, Ioana; Kucherenko, Yulia; Almilaji, Ahmad; Devanathan, Vasudharani; Shumilina, Ekaterina; Föller, Michael; Munoz, Carlos; Lang, Florian

    2013-02-01

    The 5'-adenosine monophosphate-activated serine/threonine protein kinase (AMPK) is stimulated by energy depletion, increase in cytosolic Ca(2+) activity, oxidative stress, and nitric oxide. AMPK participates in the regulation of the epithelial Na(+) channel ENaC and the voltage-gated K(+) channel KCNE1/KCNQ1. It is partially effective by decreasing PIP(2) formation through the PI3K pathway. The present study explored whether AMPK regulates the renal outer medullary K(+) channel ROMK. To this end, cRNA encoding ROMK was injected into Xenopus oocytes with and without additional injection of constitutively active AMPK(γR70Q) (AMPK(α1)-HA+AMPK(β1)-Flag+AMPKγ1(R70Q)), or of inactive AMPK(αK45R) (AMPK(α1K45R)+AMPK(β1)-Flag+AMPK(γ1)-HA), and the current determined utilizing two-electrode voltage-clamp and single channel patch clamp. ROMK protein abundance was measured utilizing chemiluminescence in Xenopus oocytes and western blot in whole kidney tissue. Moreover, renal Na(+) and K(+) excretion were determined in AMPK(α1)-deficient mice (ampk ( -/- )) and wild-type mice (ampk ( +/+ )) prior to and following an acute K(+) load (111 mM KCl, 30 mM NaHCO(3), 4.7 mM NaCl, and 2.25 g/dl BSA) at a rate of 500 μl/h. As a result, coexpression of AMPK(γR70Q) but not of AMPK(αK45R) significantly decreased the current in ROMK1-expressing Xenopus oocytes. Injection of phosphatidylinositol PI((4,5))P(2) significantly increased the current in ROMK1-expressing Xenopus oocytes, an effect reversed in the presence of AMPK(γR70Q). Under control conditions, no significant differences between ampk ( -/- ) and ampk ( +/+ ) mice were observed in glomerular filtration rate (GFR), urinary flow rate, serum aldosterone, plasma Na(+), and K(+) concentrations as well as absolute and fractional Na(+) and K(+) excretion. Following an acute K(+) load, GFR, urinary flow rate, serum aldosterone, plasma Na(+), and K(+) concentration were again similar in both genotypes, but renal absolute

  16. A LAMP-based schematic prototype instrument for detection of microorganisms in human outer space activities

    NASA Astrophysics Data System (ADS)

    Hu, Yongfei; Liu, Zhiheng; Li, Junxiong; Zhu, Baoli

    One of the main tasks of human outer space exploration is to detect signs of life. Based on meteoritic evidence, common ancestry hypothesis has been posed. Therefore, searching for the fundamental molecules (DNA, RNA, and proteins) that constitute life as we know on Earth is feasible and now the typical approach. To achieve this goal, portable, robust, and highly sensitive instrument is also needed. In this study, based on Loop mediated isothermal amplification (LAMP) technique that targets life information storage molecular, DNA, we designed a schematic prototype instrument for microorganism detection. First, we designed LAMP primers used for amplification of DNA markers of Bacteria, Archaea, and Fungus; then, we optimized the LAMP reaction system for space using; and finally, we designed a prototype instrument and operating software system that are compatible with the LAMP reaction system. The results of simulation experiments showed that our instrument performed well for detecting representative microorganisms and the device can achieve semi-automatization. The detection process, from sample preparation to signal visualization, was completed in 1.5 hour. Our study provides a new method and corresponding device for detection of DNA molecular, which has great potential for applications in outer space exploration. Besides, the instrument we designed can also been used for monitoring changes of terrestrial microorganisms in outer space, for example in aircraft.

  17. Hair growth in neonatally undernourished rats.

    PubMed

    Salas, M; Pulido, S; Torrero, C; Regalado, M; Loranca, A

    1995-01-01

    Interaction between neonatal undernutrition and the increased self-grooming activity upon hair growth of several body areas was analyzed in rats of 10, 20 and 30 days of age. Light microscopic observations on methylene blue impregnated hairs showed that these perinatal influences delayed the growth of hair follicles and thickness and length of hair measurements of the head and thoracic areas. The hair growth of lateral abdominal regions was less affected. Data suggest that hair alterations are primarily related to food deprivation since hair follicle measures of all skin areas were more affected than the distal hair measurements. Moreover, the distribution of impaired hair growth on different body areas correlates well with the increased self-grooming components associated to neonatal undernourishment. PMID:8914627

  18. The sup-pf-2 mutations of Chlamydomonas alter the activity of the outer dynein arms by modification of the gamma-dynein heavy chain

    PubMed Central

    1996-01-01

    The sup-pf-2 mutation is a member of a group of dynein regulatory mutations that are capable of restoring motility to paralyzed central pair or radial spoke defective strains. Previous work has shown that the flagellar beat frequency is reduced in sup-pf-2, but little else was known about the sup-pf-2 phenotype (Huang, B., Z. Ramanis, and D.J.L. Luck. 1982. Cell. 28:115-125; Brokaw, C.J., and D.J.L. Luck. 1985. Cell Motil. 5:195-208). We have reexamined sup-pf-2 using improved biochemical and structural techniques and by the analysis of additional sup-pf-2 alleles. We have found that the sup-pf-2 mutations are associated with defects in the outer dynein arms. Biochemical analysis of sup-pf-2-1 axonemes indicates that both axonemal ATPase activity and outer arm polypeptides are reduced by 40-50% when compared with wild type. By thin-section EM, these defects correlate with an approximately 45% loss of outer dynein arm structures. Interestingly, this loss is biased toward a subset of outer doublets, resulting in a radial asymmetry that may reflect some aspect of outer arm assembly. The defects in outer arm assembly do not appear to result from defects in either the outer doublet microtubules or the outer arm docking structures, but rather appear to result from defects in outer dynein arm components. Analysis of new sup-pf-2 mutations indicates that the severity of the outer arm assembly defects varies with different alleles. Complementation tests and linkage analysis reveal that the sup- pf-2 mutations are alleles of the PF28/ODA2 locus, which is thought to encode the gamma-dynein heavy chain subunit of the outer arm. The sup- pf-2 mutations therefore appear to alter the activity of the outer dynein arms by modification of the gamma-dynein heavy chain. PMID:8991096

  19. Nutrition and hair: deficiencies and supplements.

    PubMed

    Finner, Andreas M

    2013-01-01

    Hair follicle cells have a high turnover. A caloric deprivation or deficiency of several components, such as proteins, minerals, essential fatty acids, and vitamins, caused by inborn errors or reduced uptake, can lead to structural abnormalities, pigmentation changes, or hair loss, although exact data are often lacking. The diagnosis is established through a careful history, clinical examination of hair loss activity, and hair quality and confirmed through targeted laboratory tests. Examples of genetic hair disorders caused by reduced nutritional components are zinc deficiency in acrodermatitis enteropathica and copper deficiency in Menkes kinky hair syndrome.

  20. Splitting hairs.

    PubMed

    Eisenstein, Michael

    2005-11-01

    A dual-transgenic mouse with localized expression of two different fluorescent markers is the foundation for an inventive strategy for dissecting hair follicles and isolating their component cell populations.

  1. Hair Loss

    MedlinePlus

    ... En Español Making a Change – Your Personal Plan Hot Topics Meningitis Choosing Your Mood Prescription Drug Abuse ... much heat on your hair (like using a hot iron or hot blow drying). Another type of ...

  2. Hair shape of curly hair.

    PubMed

    Bernard, Bruno A

    2003-06-01

    The hair follicle is a unique composite organ, composed of epithelial and dermal compartments interacting with each other in a surprisingly autonomous way. This is a self-renewing organ that seems to be a true paradigm of epithelial and mesenchymal interactions. Each of the follicular compartments is endowed with a specific differentiation pathway under the control of an intricate network of growth factors, cytokines, and hormones. As observed for ethnic hairs, even the shape of the hair shaft is intrinsically programmed from the bulb.

  3. Estimation of the outer-sphere contribution to the activation volume for electron exchange reactions using the mean spherical approximation

    NASA Astrophysics Data System (ADS)

    Takagi, Hideo D.; Swaddle, Thomas W.

    1996-01-01

    The outer-sphere contribution to the volume of activation of homogeneous electron exchange reactions is estimated for selected solvents on the basis of the mean spherical approximation (MSA), and the calculated values are compared with those estimated by the Strank-Hush-Marcus (SHM) theory and with activation volumes obtained experimentally for the electron exchange reaction between tris(hexafluoroacetylacetonato)ruthenium(III) and -(II) in acetone, acetonitrile, methanol and chloroform. The MSA treatment, which recognizes the molecular nature of the solvent, does not improve significantly upon the continuous-dielectric SHM theory, which represents the experimental data adequately for the more polar solvents.

  4. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK

    SciTech Connect

    Li, Wei; Man, Xiao-Yong; Li, Chun-Ming; Chen, Jia-Qi; Zhou, Jiong; Cai, Sui-Qing; Lu, Zhong-Fa; Zheng, Min

    2012-08-15

    Vascular endothelial growth factor (VEGF) is one of the strongest regulators of physiological and pathological angiogenesis. VEGF receptor 2 (VEGFR-2), the primary receptor for VEGF, is thought to mediate major functional effects of VEGF. Previously, we have localized both VEGF and VEGFR-2 in human hair follicles. In this study, we further defined the expression and roles of VEGFR-2 on human hair follicle dermal papilla (DP) cells. The expression of VEGFR-2 on DP cells was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis separately, and localization of VEGFR-2 was defined by immunofluorescence. The effect of VEGF on DP cells was analyzed by MTT assays and specific inhibitors. Finally, the role of VEGF involved in the signaling pathways was investigated by Western blot. RT-PCR and Western blot analysis demonstrated the expression of VEGFR-2 on DP cells. Immunostaining for VEGFR-2 showed strong signal on cultured human DP cells in vitro. Exogenous VEGF{sub 165} stimulated proliferation of DP cells in a dose-dependent manner. Furthermore, this stimulation was blocked by a VEGFR-2 neutralizing antibody (MAB3571) and an ERK inhibitor (PD98059). VEGF{sub 165}-induced phosphorylation of ERK1/2 was abolished by MAB3571 and PD98059, while the phosphorylation of p38, JNK and AKT were not changed by VEGF{sub 165}. Taken together, VEGFR-2 is expressed on primary human hair follicle DP cells and VEGF induces proliferation of DP cells through VEGFR-2/ERK pathway, but not p38, JNK or AKT signaling. -- Highlights: Black-Right-Pointing-Pointer We examine the expression of VEGFR-2 on cultured human dermal papilla (DP) cells. Black-Right-Pointing-Pointer VEGF{sub 165} stimulated proliferation of human DP cells in a dose-dependent manner. Black-Right-Pointing-Pointer This stimulation was through VEGFR-2-mediated activation of ERK.

  5. Mild maternal iron deficiency anemia induces DPOAE suppression and cochlear hair cell apoptosis by caspase activation in young guinea pigs.

    PubMed

    Yu, Fei; Hao, Shuai; Zhao, Yue; Ren, Yahao; Yang, Jun; Sun, Xiance; Chen, Jie

    2014-01-01

    Iron deficiency (ID) anemia (IDA) alters auditory neural normal development in the mammalian cochlea. Previous results suggest that mild maternal IDA during pregnancy and lactation altered the hearing and nervous system development of the young offspring, but the mechanisms underlying the association are incompletely understood. The objective of this study was to evaluate the role of apoptosis in the development of sensory hair cells following mild maternal IDA during pregnancy and lactation. We established a maternal anemia model in female guinea pigs by using a mild iron deficient diet. The offspring were weaned on postnatal day (PND) 9 and then was given the iron sufficient diet. Maternal blood samples were collected on gestational day (GD) 21, GD 42, GD 63 and PND 9, serum level of iron (SI) or hemoglobin (Hb) was measured. Blood samples of pups were collected on PND 9 for SI measurement. On PND 24, pups were examined the distortion product otoacoustic emission (DPOAE) task, and then the cochleae were harvested for assessment of apoptosis by immunohistochemistry of cysteine-aspartic acid proteases 3/9 (caspase-3/9) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay, and by double immunofluorescence for the colocalization of TUNEL and caspase-3. Blood samples of pups were collected on PND 24 for SI and Hb measurements. Here we show that mild maternal IDA during pregnancy and lactation resulted in hearing impairment, decreased hair cell number, caspase-3/9 activation and increased apoptotic cell number of young guinea pigs. These results indicate a key role for apoptosis in inhibition of hair cell development, caused by mild maternal IDA during pregnancy and lactation. PMID:24378594

  6. EVOLUTION OF WARPED ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI. I. ROLES OF FEEDING AT THE OUTER BOUNDARIES

    SciTech Connect

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2013-02-10

    We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 10{sup 6} yr, irrespective of the initial inclinations. If the initial inclination angles are larger than {pi}/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 10{sup 6} yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.

  7. Plant Growth Promotion Activity of Keratinolytic Fungi Growing on a Recalcitrant Waste Known as “Hair Waste”

    PubMed Central

    Cavello, Ivana A.; Crespo, Juan M.; García, Sabrina S.; Zapiola, José M.; Luna, María F.; Cavalitto, Sebastián F.

    2015-01-01

    Purpureocillium lilacinum (Thom) Samsom is one of the most studied fungi in the control of plant parasitic nematodes. However, there is not specific information on its ability to inhibit some pathogenic bacteria, fungi, or yeast. This work reports the production of several antifungal hydrolytic enzymes by a strain of P. lilacinum when it is grown in a medium containing hair waste. The growth of several plant-pathogenic fungi, Alternaria alternata, Aspergillus niger, and Fusarium culmorum, was considerably affected by the presence of P. lilacinum's supernatant. Besides antifungal activity, P. lilacinum demonstrates the capability to produce indoleacetic acid and ammonia during time cultivation on hair waste medium. Plant growth-promoting activity by cell-free supernatant was evidenced through the increase of the percentage of tomato seed germination from 71 to 85% after 48 hours. A 21-day plant growth assay using tomato plants indicates that crude supernatant promotes the growth of the plants similar to a reference fertilizer (p > 0.05). These results suggest that both strain and the supernatant may have potential to be considered as a potent biocontrol agent with multiple plant growth-promoting properties. To our knowledge, this is the first report on the antifungal, IAA production and tomato growth enhancing compounds produced by P. lilacinum LPSC #876. PMID:26697226

  8. The Effect of Autologous Activated Platelet Rich Plasma (AA-PRP) Injection on Pattern Hair Loss: Clinical and Histomorphometric Evaluation

    PubMed Central

    Cervelli, V.; Garcovich, S.; Bielli, A.; Cervelli, G.; Curcio, B. C.; Scioli, M. G.; Orlandi, A.; Gentile, P.

    2014-01-01

    To investigate the safety and clinical efficacy of AA-PRP injections for pattern hair loss. AA-PRP, prepared from a small volume of blood, was injected on half of the selected patients' scalps with pattern hair loss. The other half was treated with placebo. Three treatments were given for each patient, with intervals of 1 month. The endpoints were hair re-growth, hair dystrophy as measured by dermoscopy, burning or itching sensation, and cell proliferation as measured by Ki-67 evaluation. At the end of the 3 cycles of treatment, the patients presented clinical improvement in the mean number of hairs, with a mean increase of 18.0 hairs in the target area, and a mean increase in total hair density of 27.7 ( number of hairs/cm2) compared with baseline values. Microscopic evaluation showed the increase of epidermis thickness and of the number of hair follicles two weeks after the last AA-PRP treatment compared to baseline value (P < 0.05). We also observed an increase of Ki67+ keratinocytes of epidermis and of hair follicular bulge cells and a slight increase of small blood vessels around hair follicles in the treated skin compared to baseline (P < 0.05). PMID:24883322

  9. False-positive scalp activity in 131I imaging associated with hair coloring.

    PubMed

    Yan, Di; Doss, Mohan; Mehra, Ranee; Parsons, Rosaleen B; Milestone, Barton N; Yu, Jian Q

    2013-03-01

    A patient with metastatic papillary thyroid carcinoma (after surgical resection of tumor and positive lymph nodes) undergoing thyroid ablation therapy with (131)I is described. Whole-body scintigraphy was performed 1 wk after ablation therapy to evaluate the presence of residual disease. The whole-body images demonstrated an artifact caused by tracer accumulation in the patient's scalp related to recent hair coloring. Common etiologies of false-positive (131)I scintigraphic findings are briefly reviewed. The importance of taking preventative measures to decrease the number of false-positive findings and recognizing these findings when they occur is discussed.

  10. Removing Hair Safely

    MedlinePlus

    ... the skin, and into the hair follicle. An electric current travels down the wire and destroys the hair ... a period of time. Tweezer epilators also use electric current to remove hair. The tweezers grasp the hair ...

  11. [Hair shaft abnormalities].

    PubMed

    Itin, P H; Düggelin, M

    2002-05-01

    Hair shaft disorders may lead to brittleness and uncombable hair. In general the hair feels dry and lusterless. Hair shaft abnormalities may occur as localized or generalized disorders. Genetic predisposition or exogenous factors are able to produce and maintain hair shaft abnormalities. In addition to an extensive history and physical examination the most important diagnostic examination to analyze a hair shaft problem is light microscopy. Therapy of hair shaft disorders should focus to the cause. In addition, minimizing traumatic influences to hair shafts, such as dry hair with an electric dryer, permanent waves and dyes is important. A short hair style is more suitable for such patients with hair shaft disorders.

  12. [Hair shaft anomalies].

    PubMed

    Itin, P H

    1997-06-01

    Hair shaft disorders lead to brittle and uncombable hair. As a rule the hair feels dry and lusterless. Hair shaft abnormalities may present as localized of generalized alterations. Genetic predisposition and exogenous factors are able to produce hair shaft abnormalities. The most important examination to analyze a hair shaft problem is light microscopy. Treatment of hair shaft disorders should focus on the cause. In addition, minimizing traumatic influences to hair shafts, such as electric dryer, permanent waves and dyes is important.

  13. An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity

    PubMed Central

    Danilchanka, Olga; Sun, Jim; Pavlenok, Mikhail; Maueröder, Christian; Speer, Alexander; Siroy, Axel; Marrero, Joeli; Trujillo, Carolina; Mayhew, David L.; Doornbos, Kathryn S.; Muñoz, Luis E.; Herrmann, Martin; Ehrt, Sabine; Berens, Christian; Niederweis, Michael

    2014-01-01

    The ability to control the timing and mode of host cell death plays a pivotal role in microbial infections. Many bacteria use toxins to kill host cells and evade immune responses. Such toxins are unknown in Mycobacterium tuberculosis. Virulent M. tuberculosis strains induce necrotic cell death in macrophages by an obscure molecular mechanism. Here we show that the M. tuberculosis protein Rv3903c (channel protein with necrosis-inducing toxin, CpnT) consists of an N-terminal channel domain that is used for uptake of nutrients across the outer membrane and a secreted toxic C-terminal domain. Infection experiments revealed that CpnT is required for survival and cytotoxicity of M. tuberculosis in macrophages. Furthermore, we demonstrate that the C-terminal domain of CpnT causes necrotic cell death in eukaryotic cells. Thus, CpnT has a dual function in uptake of nutrients and induction of host cell death by M. tuberculosis. PMID:24753609

  14. Multielement analysis of human hair and kidney stones by instrumental neutron activation analysis with the k0-standardization method.

    PubMed

    Abugassa, I; Sarmani, S B; Samat, S B

    1999-06-01

    This paper focuses on the evaluation of the k0 method of instrumental neutron activation analysis in biological materials. The method has been applied in multielement analysis of human hair standard reference materials from IAEA, No. 085, No. 086 and from NIES (National Institute for Environmental Sciences) No. 5. Hair samples from people resident in different parts of Malaysia, in addition to a sample from Japan, were analyzed. In addition, human kidney stones from members of the Malaysian population have been analyzed for minor and trace elements. More than 25 elements have been determined. The samples were irradiated in the rotary rack (Lazy Susan) at the TRIGA Mark II reactor of the Malaysian Institute for Nuclear Technology and Research (MINT). The accuracy of the method was ascertained by analysis of other reference materials, including 1573 tomato leaves and 1572 citrus leaves. In this method the deviation of the 1/E1+ alpha epithermal neutron flux distribution from the 1/E law (P/T ratio) for true coincidence effects of the gamma-ray cascade and the HPGe detector efficiency were determined and corrected for.

  15. Multielement analysis of human hair and kidney stones by instrumental neutron activation analysis with the k0-standardization method.

    PubMed

    Abugassa, I; Sarmani, S B; Samat, S B

    1999-06-01

    This paper focuses on the evaluation of the k0 method of instrumental neutron activation analysis in biological materials. The method has been applied in multielement analysis of human hair standard reference materials from IAEA, No. 085, No. 086 and from NIES (National Institute for Environmental Sciences) No. 5. Hair samples from people resident in different parts of Malaysia, in addition to a sample from Japan, were analyzed. In addition, human kidney stones from members of the Malaysian population have been analyzed for minor and trace elements. More than 25 elements have been determined. The samples were irradiated in the rotary rack (Lazy Susan) at the TRIGA Mark II reactor of the Malaysian Institute for Nuclear Technology and Research (MINT). The accuracy of the method was ascertained by analysis of other reference materials, including 1573 tomato leaves and 1572 citrus leaves. In this method the deviation of the 1/E1+ alpha epithermal neutron flux distribution from the 1/E law (P/T ratio) for true coincidence effects of the gamma-ray cascade and the HPGe detector efficiency were determined and corrected for. PMID:10355102

  16. Aminoglycoside-induced phosphatidylserine externalisation in sensory hair cells is regionally restricted, rapid and reversible

    PubMed Central

    Goodyear, R.J.; Gale, J.E.; Ranatunga, K.M.; Kros, C.J.; Richardson, G.P.

    2012-01-01

    The aminophospholipid phosphatidylserine (PS) is normally restricted to the inner leaflet of the plasmalemma. During certain cellular processes, including apoptosis, PS translocates to the outer leaflet and can be labelled with externally-applied annexin-V, a calcium-dependent PS-binding protein. In mouse cochlear cultures, annexin-V labelling reveals the aminoglycoside antibiotic neomycin induces rapid PS externalisation, specifically on the apical surface of hair cells. PS externalisation is observed within ~75 seconds of neomycin perfusion, first on the hair bundle and then on membrane blebs forming around the apical surface. Whole-cell capacitance also increases significantly within minutes of neomycin application indicating blebbing is accompanied by membrane addition to the hair-cell surface. PS-externalisation and membrane blebbing can, nonetheless, occur independently. Pre-treating hair cells with calcium chelators, a procedure that blocks mechanotransduction, or overexpressing a PIP2-binding pleckstrin-homology domain, can reduce neomycin-induced PS externalisation, suggesting neomycin enters hair cells via transduction channels, clusters PIP2, and thereby activates lipid scrambling. The effects of short-term neomycin treatment are reversible. Following neomycin washout, PS is no longer detected on the apical surface, apical membrane blebs disappear and surface-bound annexin-V is internalised, distributing throughout the supra-nuclear cytoplasm of the hair cell. Hair cells can therefore repair, and recover from, neomycin-induced surface damage. Hair cells lacking myosin VI, a minus-end directed actin-based motor implicated in endocytosis, can also recover from brief neomycin treatment. Internalised annexin-V, however, remains below the apical surface thereby pinpointing a critical role for myosin VI in the transport of endocytosed material away from the hair cell’s periphery. PMID:18829952

  17. Enzyme design from the bottom up: an active nickel electrocatalyst with a structured peptide outer coordination sphere.

    PubMed

    Reback, Matthew L; Buchko, Garry W; Kier, Brandon L; Ginovska-Pangovska, Bojana; Xiong, Yijia; Lense, Sheri; Hou, Jianbo; Roberts, John A S; Sorensen, Christina M; Raugei, Simone; Squier, Thomas C; Shaw, Wendy J

    2014-02-01

    Catalytic, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts through an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well-characterized hydrogen production catalyst [Ni(P(Ph)2N(Ph))2](2+) (P(Ph)2N(Ph)=1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane). The incorporated peptide maintains its β-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (≈100,000 s(-1)) is enhanced compared to the parent complex ([Ni(P(Ph)2N(APPA))2](2+); ≈50,500 s(-1)). The combination of an active molecular catalyst with a structured peptide provides a scaffold that permits the incorporation of features of an enzyme-like outer-coordination sphere necessary to create molecular electrocatalysts with enhanced functionality.

  18. Compressional ULF waves in the outer magnetosphere. 2: A case study of Pc 5 type wave activity

    NASA Technical Reports Server (NTRS)

    Zhu, Xiaoming; Kivelson, Margaret G.

    1994-01-01

    In previously published work (Zhu and Kivelson, 1991) the spatial distribution of compressional magnetic pulsations of period 2 - 20 min in the outer magnetosphere was described. In this companion paper, we study some specific compressional events within our data set, seeking to determine the structure of the waves and identifying the wave generation mechanism. We use both the magnetic field and three-dimensional plasma data observed by the International Sun-Earth Explorer (ISEE) 1 and/or 2 spacecraft to characterize eight compressional ultra low frequency (ULF) wave events with frequencies below 8 mHz in the outer magnetosphere. High time resolution plasma data for the event of July 24, 1978, made possible a detailed analysis of the waves. Wave properties specific to the event of July 24, 1978, can be summarized as follows: (1) Partial plasma pressures in the different energy ranges responded to the magnetic field pressure differently. In the low-energy range they oscillated in phase with the magnetic pressure, while oscillations in higher-energy ranges were out-of-phase; (2) Perpendicular wavelengths for the event were determined to be 60,000 and 30,000 km in the radial and azimuthal directions, respectively. Wave properties common to all events can be summarized as follows: (1) Compressional Pc 5 wave activity is correlated with Beta, the ratio of the plasma pressure to the magnetic pressure; the absolute magnitude of the plasma pressure plays a minor role for the wave activity; (2) The magnetic equator is a node of the compressional perturbation of the magnetic field; (3) The criterion for the mirror mode instability is often satisfied near the equator in the outer magnetosphere when the compressional waves are present. We believe these waves are generated by internal magnetohydrodynamic (MHD) instabilities.

  19. Beyond the Active Site: The Impact of the Outer Coordination Sphere on Electrocatalysts for Hydrogen Production and Oxidation

    SciTech Connect

    Ginovska-Pangovska, Bojana; Dutta, Arnab; Reback, Matthew L.; Linehan, John C.; Shaw, Wendy J.

    2014-08-19

    Hydrogenase enzymes provide inspiration for investigations of molecular catalysts utilizing structural and functional mimics of the active site. However, the resulting active site mimics cannot match the combination of high rates and low overpotentials of the enzyme, suggesting that the rest of the protein scaffold, i.e., the outer coordination sphere, is necessary for the efficiency of hydrogenase. Therefore, inclusion of outer coordination sphere elements onto molecular catalysts may enable us to achieve and ultimately surpass the overall enzymatic efficiency. In an effort to identify and include the missing enzymatic features, there has been recent effort to understand the effect of outer coordination sphere elements on molecular catalysts for hydrogen oxidation and production. Our focus has been to utilize amino acid or peptide based scaffolds on an active functional mimic for hydrogen oxidation and production, [Ni(PR2NR’2)2]2+. This bottom-up approach, i.e, building an outer coordination sphere around a functional molecular catalyst, has allowed us to evaluate individual contributions to catalysis, including enhancing proton movement, concentrating substrate and introducing structural features to control reactivity. Collectively, these studies have resulted in catalysts that can operate faster, can operate at lower overpotentials, have enhanced water solubility, and/or can provide more stability to oxygen or extreme conditions such as strongly acidic or basic conditions than their unmodified parent complexes. Common mechanisms have yet to be defined to predictably control these processes but our growing knowledge in this area is essential for the eventual mimicry of enzymes for developing efficient molecular catalysts for practical use. This account reviews previously published work supported by the US DOE Basic Energy Sciences (BES), Physical Bioscience program, the Office of Science Early Career Research Program through the USDOE, BES, the Center for

  20. Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth.

    PubMed

    Dong, Liang; Hao, Haojie; Xia, Lei; Liu, Jiejie; Ti, Dongdong; Tong, Chuan; Hou, Qian; Han, Qingwang; Zhao, Yali; Liu, Huiling; Fu, Xiaobing; Han, Weidong

    2014-01-01

    Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engage in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP's ability to induce hair cycling and regeneration.

  1. Hair colouring, permanent styling and hair structure.

    PubMed

    Harrison, S; Sinclair, R

    2003-07-01

    Hair is an important component of body image and has immense psychological importance for both men and women. Women, in particular, over the ages have modified their appearance through changing their hair colour or style. Hair can be straight, wavy or curly, blonde, black, brown or red. These natural variations are an important part of our identity that can be manipulated according to the dictates of fashion, culture or society. Different types of hair have varying affinity for the different colouring and waving methods. Damaged hair also has a different affinity for hair products than normal healthy hair. The hair shaft is remarkably strong and resistant to the extremes of nature. Hair cosmetics are widely available and manipulate the structural properties of hair. Whilst most procedures are safe, there is considerable potential for damage to the hair and hair problems of acute onset, including hair breakage, hair loss and loss of condition, are frequently blamed on the last product used on the hair. Hair problems are particularly prevalent among people who repeatedly alter the natural style of their hair.

  2. "My hair or my health:" Overcoming barriers to physical activity in African American women with a focus on hairstyle-related factors.

    PubMed

    Huebschmann, Amy G; Campbell, Lucille Johnson; Brown, Candace S; Dunn, Andrea L

    2016-01-01

    Physical activity disparities among African American (AA) women may be related to sociocultural barriers, including difficulties with restyling hair after exercise. We sought to identify physical activity barriers and facilitators in AA women with a focus on sociocultural factors related to hairstyle maintenance. Participants (n = 51) were AA women aged 19-73 years who completed valid surveys and participated in structured focus groups, stratified by age and physical activity levels, from November 2012 to February 2013. The Constant Comparison method was used to develop qualitative themes for barriers and facilitators. The most frequently reported general physical activity barrier among exercisers was "lack of money" (27%) and among non-exercisers was "lack of self-discipline" (57%). A hairstyle-related barrier of "sweating out my hairstyle" was reported by 7% of exercisers and 29% of non-exercisers. This hairstyle-related barrier included the need for extra time and money to restyle hair due to perspiration. Hairstyle-related facilitators included: prioritizing health over hairstyle and high self-efficacy to restyle hair after perspiration. Participants were interested in resources to simplify hairstyle maintenance. AA women whose hairstyle is affected by perspiration may avoid physical activity due to time and financial burdens. Increasing self-efficacy to restyle hair after perspiration may help to overcome this barrier.

  3. Age-induced hair greying - the multiple effects of oxidative stress.

    PubMed

    Seiberg, M

    2013-12-01

    An obvious sign of ageing is hair greying, or the loss of pigment production and deposition within the hair shafts. Numerous mechanisms, acting at different levels and follicular locations, contribute to hair greying, ranging from melanocyte stem cells defects to follicular melanocyte death. One key issue that is in common to these processes is oxidative damage. At the hair follicle stem cells niche, oxidative stress, accelerated by B-cell lymphoma 2 gene (BCL-2) depletion, leads to selective apoptosis and diminution of melanocyte stem cells, reducing the repopulation of newly formed anagen follicles. Melanotic bulbar melanocytes express high levels of BCL-2 to enable survival from melanogenesis- and ultraviolet A (UVA)-induced reactive oxygen species (ROS) attacks. With ageing, the bulbar melanocyte expression of anti-oxidant proteins such as BCL-2, and possibly TRP-2, is reduced, and the dedicated enzymatic anti-oxidant defence system throughout the follicle weakens, resulting in enhanced oxidative stress. A marked reduction in catalase expression and activity results in millimolar accumulation of hydrogen peroxide, contributing to bulbar melanocyte malfunction and death. Interestingly, amelanotic melanocytes at the outer root sheath (ORS) are somewhat less affected by these processes and survive for longer time even within the white, ageing hair follicles. Better understanding of the overtime susceptibility of melanocytes to oxidative stress at the different follicular locations might yield clues to possible therapies for the prevention and reversal of hair greying.

  4. Hair Loss

    MedlinePlus

    ... psychosocial impact of hair loss have found patients’ self-esteem, body image and self-confidence to be negatively ... 1-2 Known psychosocial complications include depression, low self-esteem, altered self-image, and less frequent and enjoyable ...

  5. Research Advances: Pacific Northwest National Laboratory Finds New Way to Detect Destructive Enzyme Activity--Hair Dye Relies on Nanotechnology--Ways to Increase Shelf Life of Milk

    ERIC Educational Resources Information Center

    King, Angela G.

    2007-01-01

    Recent advances in various research fields are described. Scientists at the Pacific Northwest National Laboratory have found a new way to detect destructive enzyme activity, scientists in France have found that an ancient hair dye used by ancient people in Greece and Rome relied on nanotechnology and in the U.S. scientists are developing new…

  6. OmpC-like porin from outer membrane of Yersinia enterocolitica: molecular structure and functional activity.

    PubMed

    Vostrikova, O P; Isaeva, M P; Likhatskaya, G N; Novikova, O D; Kim, N Yu; Khomenko, V A; Solov'eva, T F

    2013-05-01

    OmpC-like porin was isolated from the outer membrane (OM) of Yersinia enterocolitica cultured at 37°C (the "warm" variant) and its physicochemical and functional properties were studied. The amino acid sequence of OmpC porin was established, and the primary structure and transmembrane topology of this protein were analyzed in comparison with the OmpF porin isolated from Y. enterocolitica cultured at 6°C (the "cold" variant). Both porins of Y. enterocolitica had a high homology degree (65%) between themselves and with OmpC and OmpF porins from OM of Escherichia coli (58 and 76% homology, respectively). The secondary structure of OmpC and OmpF porins from OM of Y. enterocolitica consists of 16 β-strands connected by short "periplasmic" and longer "extracellular" loops with disordered structure, according to the topological model developed for porins of E. coli. The molecular structures of OmpC and OmpF porins of Y. enterocolitica have significant differences in the structure of the "extracellular" loops and in the position of one of three tryptophan residues. Using the bilayer lipid membrane (BLM) technique, pores formed by OmpC porin of Y. enterocolitica were shown to differ in electrophysiological characteristics from channels of OmpF protein of this microorganism. The isolated OmpC porin reconstructed into BLM displayed functional plasticity similarly to OmpF protein and nonspecific porins of other enterobacteria. The conductivity level of the channels formed by this protein in the BLM was regulated by value of the applied potential.

  7. Two substorm studies of relations between westward electric fields in the outer plasmasphere, auroral activity, and geomagnetic perturbations

    NASA Technical Reports Server (NTRS)

    Carpenter, D. L.; Akasofu, S.

    1972-01-01

    Temporal variations of the westward component of the magnetospheric convection electric field in the outer plasmasphere were compared to auroral activity near L = 7, and to variations in the geomagnetic field at middle and high latitudes. The substorms occurred on July 29, 1965 near 0530 UT and on August 20, 1965 near 0730 UT. The results on westward electric field E(w) were obtained by the whistler method using data from Eights, Antarctica (L is approximately 4). All sky camera records were obtained from Byrd, Antarctica, (L is approximately 7), located within about 1 hour of Eights in magnetic local time. It was found that E(w) within the outer plasmasphere increased rapidly to substorm levels about the time of auroral expansion at nearby longitudes. This behavior is shown to differ from results on E(w) from balloons, which show E(w) reaching enhanced levels prior to the expansion. A close temporal relation was found between the rapid, substorm associated increases in E(w) and a well known type of nightside geomagnetic perturbation. Particularly well defined was the correlation of E(w) rise and a large deviation of the D component at middle latitudes.

  8. Elongated Structure of the Outer-Membrane Activator of Peptidoglycan Synthesis LpoA: Implications for PBP1A Stimulation

    PubMed Central

    Jean, Nicolas L.; Bougault, Catherine M.; Lodge, Adam; Derouaux, Adeline; Callens, Gilles; Egan, Alexander J.F.; Ayala, Isabel; Lewis, Richard J.; Vollmer, Waldemar; Simorre, Jean-Pierre

    2014-01-01

    Summary The bacterial cell envelope contains the stress-bearing peptidoglycan layer, which is enlarged during cell growth and division by membrane-anchored synthases guided by cytoskeletal elements. In Escherichia coli, the major peptidoglycan synthase PBP1A requires stimulation by the outer-membrane-anchored lipoprotein LpoA. Whereas the C-terminal domain of LpoA interacts with PBP1A to stimulate its peptide crosslinking activity, little is known about the role of the N-terminal domain. Herein we report its NMR structure, which adopts an all-α-helical fold comprising a series of helix-turn-helix tetratricopeptide-repeat (TPR)-like motifs. NMR spectroscopy of full-length LpoA revealed two extended flexible regions in the C-terminal domain and limited, if any, flexibility between the N- and C-terminal domains. Analytical ultracentrifugation and small-angle X-ray scattering results are consistent with LpoA adopting an elongated shape, with dimensions sufficient to span from the outer membrane through the periplasm to interact with the peptidoglycan synthase PBP1A. PMID:24954617

  9. Endo-beta-mannanase activity increases in the skin and outer pericarp of tomato fruits during ripening.

    PubMed

    Bewley, J D; Banik, M; Bourgault, R; Feurtado, J A; Toorop, P; Hilhorst, H W

    2000-03-01

    Activity of endo-beta-mannanase increases during ripening of tomato (Lycopersicon esculentum Mill.) fruit of the cultivar Trust. beta-Mannoside mannohydrolase is also present during ripening, but its pattern of activity is different from that of endo-beta-mannanase. The increase in endo-beta-mannanase activity is greatest in the skin, and less in the outer and inner pericarp regions. This enzyme is probably bound to the walls of the outermost cell layers of the fruit during ripening, and it requires a high-salt buffer for effective extraction. The enzyme protein, as detected immunologically on Western blots, is present during the early stages of ripening, before any enzyme activity is detectable. The mRNA for the enzyme is also present at these stages; endo-beta-mannanase may be produced and sequestered in a mature-sized inactive form during early ripening. Most non-ripening mutants of tomato exhibit reduced softening and lower endo-beta-mannanase activity, but a cause-and-effect relationship between the enzyme and ripening is unlikely because some cultivars which ripen normally do not exhibit any endo-beta-mannanase activity in the fruit.

  10. 77 FR 39508 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... specific project proposals on those leases) in an identified Wind Energy Area (WEA) on the OCS offshore... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the... Activities on the Atlantic OCS Offshore RI and MA'' to: Program Manager, Office of Renewable Energy...

  11. Hair care and dyeing.

    PubMed

    Draelos, Zoe Diana

    2015-01-01

    Alopecia can be effectively camouflaged or worsened through the use of hair care techniques and dyeing. Proper hair care, involving hair styling and the use of mild shampoos and body-building conditioners, can amplify thinning scalp hair; however, chemical processing, including hair dyeing, permanent waving, and hair straightening, can encourage further hair loss through breakage. Many patients suffering from alopecia attempt to improve their hair through extensive manipulation, which only increases problems. Frequent haircuts to minimize split ends, accompanied by gentle handling of the fragile fibers, is best. This chapter offers the dermatologist insight into hair care recommendations for the alopecia patient. PMID:26370650

  12. Hair care and dyeing.

    PubMed

    Draelos, Zoe Diana

    2015-01-01

    Alopecia can be effectively camouflaged or worsened through the use of hair care techniques and dyeing. Proper hair care, involving hair styling and the use of mild shampoos and body-building conditioners, can amplify thinning scalp hair; however, chemical processing, including hair dyeing, permanent waving, and hair straightening, can encourage further hair loss through breakage. Many patients suffering from alopecia attempt to improve their hair through extensive manipulation, which only increases problems. Frequent haircuts to minimize split ends, accompanied by gentle handling of the fragile fibers, is best. This chapter offers the dermatologist insight into hair care recommendations for the alopecia patient.

  13. A Model for Amplification of Hair-Bundle Motion by Cyclical Binding of Ca2+ to Mechanoelectrical-Transduction Channels

    NASA Astrophysics Data System (ADS)

    Choe, Yong; Magnasco, Marcelo O.; Hudspeth, A. J.

    1998-12-01

    Amplification of auditory stimuli by hair cells augments the sensitivity of the vertebrate inner ear. Cell-body contractions of outer hair cells are thought to mediate amplification in the mammalian cochlea. In vertebrates that lack these cells, and perhaps in mammals as well, active movements of hair bundles may underlie amplification. We have evaluated a mathematical model in which amplification stems from the activity of mechanoelectrical-transduction channels. The intracellular binding of Ca2+ to channels is posited to promote their closure, which increases the tension in gating springs and exerts a negative force on the hair bundle. By enhancing bundle motion, this force partially compensates for viscous damping by cochlear fluids. Linear stability analysis of a six-state kinetic model reveals Hopf bifurcations for parameter values in the physiological range. These bifurcations signal conditions under which the system's behavior changes from a damped oscillatory response to spontaneous limit-cycle oscillation. By varying the number of stereocilia in a bundle and the rate constant for Ca2+ binding, we calculate bifurcation frequencies spanning the observed range of auditory sensitivity for a representative receptor organ, the chicken's cochlea. Simulations using prebifurcation parameter values demonstrate frequency-selective amplification with a striking compressive nonlinearity. Because transduction channels occur universally in hair cells, this active-channel model describes a mechanism of auditory amplification potentially applicable across species and hair-cell types.

  14. Impaired culture generated cytotoxicity with preservation of spontaneous natural killer-cell activity in cartilage-hair hypoplasia

    SciTech Connect

    Pierce, G.F.; Brovall, C.; Schacter, B.Z.; Polmar, S.H.

    1983-06-01

    Recent studies of cartilage-hair hypoplasia (CHH), a form of short-limbed dwarfism, have shown that all affected individuals have a cellular proliferation defect that results in a cellular immunodeficiency. However, only a minority of CHH individuals suffer from severe, life-threatening infections. For this reason, relevant immune defense mechanisms that may be responsible for maintaining intact host defenses in the majority of CHH individuals were studied. Spontaneous and allogeneic culture-induced (mixed lymphocyte response-MLR) specific and nonspecific (NK-like) cytotoxic mechanisms were analyzed and correlated with lymphocyte subpopulations present in CHH and normal individuals. Spontaneous natural-killer (NK) activity was present at or above normal levels, but culture-induced specific cytotoxicity and NK-like cytotoxicity as well as NK-like activity by T cell lines were significantly reduced in CHH individuals. The generation of radiation-resistant cytotoxicity, which normally occurs during allogeneic MLR, was markedly diminished in CHH, and was correlated with the decreased proliferation observed in CHH cultures. Preservation of spontaneous NK activity and loss of all forms of culture-induced cytotoxicity was associated with an increase in the proportion of lymphocytes bearing a thymic independent NK phenotype, and a significant decrease in thymic derived cytolytic T cell sub-populations in CHH individuals. Therefore, an intact cellular cytotoxic effector mechanism has been identified in CHH (i.e., NK activity).

  15. KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting Aurora B kinase activity

    PubMed Central

    Caldas, Gina V.; DeLuca, Keith F.

    2013-01-01

    Aurora B kinase phosphorylates kinetochore proteins during early mitosis, increasing kinetochore–microtubule (MT) turnover and preventing premature stabilization of kinetochore–MT attachments. Phosphorylation of kinetochore proteins during late mitosis is low, promoting attachment stabilization, which is required for anaphase onset. The kinetochore protein KNL1 recruits Aurora B–counteracting phosphatases and the Aurora B–targeting factor Bub1, yet the consequences of KNL1 depletion on Aurora B phospho-regulation remain unknown. Here, we demonstrate that the KNL1 N terminus is essential for Aurora B activity at kinetochores. This region of KNL1 is also required for Bub1 kinase activity at kinetochores, suggesting that KNL1 promotes Aurora B activity through Bub1-mediated Aurora B targeting. However, ectopic targeting of Aurora B to kinetochores does not fully rescue Aurora B activity in KNL1-depleted cells, suggesting KNL1 influences Aurora B activity through an additional pathway. Our findings establish KNL1 as a requirement for Aurora B activity at kinetochores and for wild-type kinetochore–MT attachment dynamics. PMID:24344188

  16. KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting Aurora B kinase activity.

    PubMed

    Caldas, Gina V; DeLuca, Keith F; DeLuca, Jennifer G

    2013-12-23

    Aurora B kinase phosphorylates kinetochore proteins during early mitosis, increasing kinetochore–microtubule (MT) turnover and preventing premature stabilization of kinetochore–MT attachments. Phosphorylation of kinetochore proteins during late mitosis is low, promoting attachment stabilization, which is required for anaphase onset. The kinetochore protein KNL1 recruits Aurora B–counteracting phosphatases and the Aurora B–targeting factor Bub1, yet the consequences of KNL1 depletion on Aurora B phospho-regulation remain unknown. Here, we demonstrate that the KNL1 N terminus is essential for Aurora B activity at kinetochores. This region of KNL1 is also required for Bub1 kinase activity at kinetochores, suggesting that KNL1 promotes Aurora B activity through Bub1-mediated Aurora B targeting. However, ectopic targeting of Aurora B to kinetochores does not fully rescue Aurora B activity in KNL1-depleted cells, suggesting KNL1 influences Aurora B activity through an additional pathway. Our findings establish KNL1 as a requirement for Aurora B activity at kinetochores and for wild-type kinetochore–MT attachment dynamics.

  17. Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis.

    PubMed

    Ding, Yi; Fujimoto, L Miya; Yao, Yong; Plano, Gregory V; Marassi, Francesca M

    2015-02-01

    The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways.

  18. Investigation into the scattering of light by human hair.

    PubMed

    Bustard, H K; Smith, R W

    1991-08-20

    We describe a general investigation into the scattering of light by human hair. The main features of the intensity distribution produced by light scattered by an individual hair are identified. Qualitative explanations for the features are advanced in terms of the arrangement of the outer structure of the hair and its level of pigmentation. Contrast gloss values are calculated in an attempt to quantify the appearance of hair. These values are found to depend not only on the properties of hair, such as color and condition, but also on the direction and polarization state of the incident light. In assessing the effects of cosmetic treatments on hair, gloss values are shown to be useful where readings from treated hairs are compared with those from a control sample investigated in the same conditions.

  19. Metals in female scalp hair globally and its impact on perceived hair health.

    PubMed

    Godfrey, Simon; Staite, William; Bowtell, Philip; Marsh, Jennifer

    2013-06-01

    Globally, billions of individuals wash their hair in water, which acts as an exogenous metal source. Many studies which measure the metal levels found on human hair specifically aim to remove exogenous materials prior to analysis. Although this is needed when using hair analysis to probe the impact of the local environment on endogenous metal levels, it is not relevant for understanding exactly what is on hair as a result of contact with its daily environment. Understanding these levels are important, as the presence of redox active metals, such as copper and iron, can impact fibre health, either as a result of UV irradiation, or during the hair colouring process. A global hair sampling study of over 300 individuals from nine countries has been performed, and the combined endogenous and exogenous metals analysed. The levels measured vary widely, even within the narrow geography of each hair sampling location. The levels of calcium, magnesium, copper and iron were not correlated, and within each location, there are expected to be individuals with high metal levels. Levels increased from hair root to tip for calcium, magnesium and copper, attributed to hair contact with the environment showing the impact of exogenous metals in the overall levels on hair. Levels of redox metals were comparable between individuals who coloured or did not colour their hair, although water hardness ions were statistically significantly higher for hair colouring individuals. Individuals who perceived their hair health as poor had higher metal levels on their hair. Controlling metals on hair, either by preventing their binding during environmental contact, or through controlling their ability to cause hair damage, should lead to improved consumer perceived hair health.

  20. 78 FR 8190 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ...-1340 or Michelle.Morin@boem.gov . SUPPLEMENTARY INFORMATION: Background: On December 13, 2012, BOEM published the Notice in the Federal Register (77 FR 74218) inviting Federal, state, local government... Assessment Activities on the OCS Offshore North Carolina. FOR FURTHER INFORMATION CONTACT: Michelle...

  1. 77 FR 5560 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... project proposals on those leases) in identified Wind Energy Areas (WEAs) on the OCS offshore New Jersey... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the... site assessment plans (SAPs) on those leases. BOEM may issue one or more commercial wind energy...

  2. 78 FR 33908 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... identified Wind Energy Area (WEA) on the OCS offshore Rhode Island (RI) and Massachusetts (MA). The revised... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the.... BOEM may issue one or more commercial wind energy leases in the WEA. The competitive lease process...

  3. Enteropathogenic Escherichia coli outer membrane proteins induce iNOS by activation of NF-kappaB and MAP kinases.

    PubMed

    Malladi, Vasantha; Puthenedam, Manjula; Williams, Peter H; Balakrishnan, Arun

    2004-12-01

    Enteropathogenic Escherichia coli (EPEC) infects the human intestinal epithelium and is a major cause of infantile diarrhea in developing countries. Nitric oxide (NO) is an important modulator of intestinal inflammatory response. The aim of the present study was to investigate whether EPEC outer membrane proteins (OMPs) up regulate epithelial cell expression of inducible nitric oxide synthase (iNOS) and to examine the role of NF-kappaB and MAP kinases (MAPK) on nitrite production. iNOS mRNA expression was assessed by RT-PCR. Nitrite levels were measured by Griess reaction. NF-kappaB activation by OMPs was evaluated by EMSA and immunoblotting was done to detect MAPK activation. EPEC OMP up regulated iNOS, induced nitrite production and NF-kappaB and MAPK were activated in caco-2 cells. The nitrite levels decreased when NF-kappaB and MAPK inhibitors were used. Thus, EPEC OMPs induce iNOS expression and NO production through activation of NF-kappaB and MAPK.

  4. Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo.

    PubMed

    Cox, Brandon C; Chai, Renjie; Lenoir, Anne; Liu, Zhiyong; Zhang, LingLi; Nguyen, Duc-Huy; Chalasani, Kavita; Steigelman, Katherine A; Fang, Jie; Rubel, Edwin W; Cheng, Alan G; Zuo, Jian

    2014-02-01

    Loss of cochlear hair cells in mammals is currently believed to be permanent, resulting in hearing impairment that affects more than 10% of the population. Here, we developed two genetic strategies to ablate neonatal mouse cochlear hair cells in vivo. Both Pou4f3(DTR/+) and Atoh1-CreER™; ROSA26(DTA/+) alleles allowed selective and inducible hair cell ablation. After hair cell loss was induced at birth, we observed spontaneous regeneration of hair cells. Fate-mapping experiments demonstrated that neighboring supporting cells acquired a hair cell fate, which increased in a basal to apical gradient, averaging over 120 regenerated hair cells per cochlea. The normally mitotically quiescent supporting cells proliferated after hair cell ablation. Concurrent fate mapping and labeling with mitotic tracers showed that regenerated hair cells were derived by both mitotic regeneration and direct transdifferentiation. Over time, regenerated hair cells followed a similar pattern of maturation to normal hair cell development, including the expression of prestin, a terminal differentiation marker of outer hair cells, although many new hair cells eventually died. Hair cell regeneration did not occur when ablation was induced at one week of age. Our findings demonstrate that the neonatal mouse cochlea is capable of spontaneous hair cell regeneration after damage in vivo. Thus, future studies on the neonatal cochlea might shed light on the competence of supporting cells to regenerate hair cells and on the factors that promote the survival of newly regenerated hair cells.

  5. Hair bleach poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002702.htm Hair bleach poisoning To use the sharing features on this page, please enable JavaScript. Hair bleach poisoning occurs when someone swallows hair bleach or ...

  6. A study of some trace elements in fingernail and hair of Egyptian bilharzial patients using short neutron activation.

    PubMed

    el-Khatib, A M; el-Mohandes, A

    1992-01-01

    The concentration of 10 elements has been determined in fingernail and hair of four groups representing normal and hepatosplenic (bilharzial) subjects. Samples were collected from rural inhabitants to the east of Alexandria City and irradiated with thermal neutrons from a Triga Mark III Reactor, for 10 minutes. Measurements were made using HPGe detector, ADC and PDP 11/34. The analysis were performed using the RAYGUNprogram. The results showed an increase in the concentration of Al, Cl and I in both fingernail and hair of bilharzial patients than normal while Mg, Ca, K, Mn, Cu, and Sr decreased. Most of the elements showed a higher concentration in fingernail than in hair. PMID:1296974

  7. Proteomic Analysis of Hair Follicles

    NASA Astrophysics Data System (ADS)

    Ishioka, Noriaki; Terada, Masahiro; Yamada, Shin; Seki, Masaya; Takahashi, Rika; Majima, Hideyuki J.; Higashibata, Akira; Mukai, Chiaki

    2013-02-01

    Hair root cells actively divide in a hair follicle, and they sensitively reflect physical conditions. By analyzing the human hair, we can know stress levels on the human body and metabolic conditions caused by microgravity environment and cosmic radiation. The Japan Aerospace Exploration Agency (JAXA) has initiated a human research study to investigate the effects of long-term space flight on gene expression and mineral metabolism by analyzing hair samples of astronauts who stayed in the International Space Station (ISS) for 6 months. During long-term flights, the physiological effects on astronauts include muscle atrophy and bone calcium loss. Furthermore, radiation and psychological effects are important issue to consider. Therefore, an understanding of the effects of the space environment is important for developing countermeasures against the effects experienced by astronauts. In this experiment, we identify functionally important target proteins that integrate transcriptome, mineral metabolism and proteome profiles from human hair. To compare the protein expression data with the gene expression data from hair roots, we developed the protein processing method. We extracted the protein from five strands of hair using ISOGEN reagents. Then, these extracted proteins were analyzed by LC-MS/MS. These collected profiles will give us useful physiological information to examine the effect of space flight.

  8. Mycophenolate antagonizes IFN-γ-induced catagen-like changes via β-catenin activation in human dermal papilla cells and hair follicles.

    PubMed

    Ryu, Sunhyo; Lee, Yonghee; Hyun, Moo Yeol; Choi, Sun Young; Jeong, Kwan Ho; Park, Young Min; Kang, Hoon; Park, Kui Young; Armstrong, Cheryl A; Johnson, Andrew; Song, Peter I; Kim, Beom Joon

    2014-01-01

    Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs.

  9. Mycophenolate Antagonizes IFN-γ-Induced Catagen-Like Changes via β-Catenin Activation in Human Dermal Papilla Cells and Hair Follicles

    PubMed Central

    Ryu, Sunhyo; Lee, Yonghee; Hyun, Moo Yeol; Choi, Sun Young; Jeong, Kwan Ho; Park, Young Min; Kang, Hoon; Park, Kui Young; Armstrong, Cheryl A.; Johnson, Andrew; Song, Peter I.; Kim, Beom Joon

    2014-01-01

    Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs. PMID:25247578

  10. Neutron activation analysis and X-ray Rayleigh and Raman scattering of hair and nail clippings as noninvasive bioindicators for Cu liver status in Labrador Retrievers

    PubMed Central

    Bueno, Maria Izabel Maretti Silveira; Bortoleto, Gisele G.; Hoffmann, Gaby; van den Ingh, Ted S. G. A. M.; Rothuizen, Jan

    2008-01-01

    The heritability of chronic hepatitis in the Labrador Retriever is studied with the aim of identifying the related gene mutation. Identification of cases and controls is largely based on instrumental neutron activation analysis (INAA) Cu determination in liver biopsies. The burden for these companion animals may be reduced if nail clippings and hair (fur) could serve as a noninvasive indicator for the hepatic Cu concentrations. No correlation was found between hepatic Cu concentrations and Cu concentrations in hair and nail samples. However, hair and nail samples were also analyzed by X-ray tube excitation, taking advantage of the X-ray Compton, Rayleigh, and Raman scattering which reflects the organic components such as the type of melanin. Principal component analysis provided first indications that some differentiation between healthy and sick dogs could indeed be obtained from hair and nail analysis. Figure Principal component analysis of scattered region of x-ray fluorescence spectra of Labrador dog nails, demonstrating the differentiation towards dogs with high and low Cu liver levels (respectively positive and negative PC2 values) reflecting hepatitis, as well as gender (PC1: negative values for female and positive values for males) PMID:18264701

  11. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type.

    PubMed

    Rahmani, Waleed; Abbasi, Sepideh; Hagner, Andrew; Raharjo, Eko; Kumar, Ranjan; Hotta, Akitsu; Magness, Scott; Metzger, Daniel; Biernaskie, Jeff

    2014-12-01

    The dermal papilla (DP) provide instructive signals required to activate epithelial progenitors and initiate hair follicle regeneration. DP cell numbers fluctuate over the hair cycle, and hair loss is associated with gradual depletion/atrophy of DP cells. How DP cell numbers are maintained in healthy follicles remains unclear. We performed in vivo fate mapping of adult hair follicle dermal sheath (DS) cells to determine their lineage relationship with DP and found that a subset of DS cells are retained following each hair cycle, exhibit self-renewal, and repopulate the DS and the DP with new cells. Ablating these hair follicle dermal stem cells and their progeny retarded hair regrowth and altered hair type specification, suggesting that they function to modulate normal DP function. This work identifies a bipotent stem cell within the adult hair follicle mesenchyme and has important implications toward restoration of hair growth after injury, disease, and aging.

  12. Rare, threatened, and endangered vertebrates of southwest Florida and potential OCS (outer continental shelf) activity impacts

    SciTech Connect

    Woolfender, G.E.

    1983-02-01

    The eight southwestern Florida counties include populations of 68 vertebrates considered in this report as rare, threatened, or endangered. The terrestrial and near-shore habitats of the study area and the habitat preferences of each of the 68 vertebrates are described. Each vertebrate is listed in the habitats it occupies, and information about reproduction, feeding, and where available, population estimates, is given under the habitat considered most important for each species. The distributions of the rare, threatened and endangered vertebrates by county and habitat demonstrate the relative importance of the southernmost counties (Monroe and Collier) and wetland and coastal habitats. Activities contributing to the decline of these 68 vertebrates are assessed and habitat loss is overwhelmingly more important for all.

  13. Pharmacological evaluation of Mallotus philippinensis (Lam.) Muell.-Arg. fruit hair extract for anti-inflammatory, analgesic and hypnotic activity

    PubMed Central

    Gangwar, Mayank; Gautam, Manish Kumar; Ghildiyal, Shivani; Nath, Gopal; Goel, Raj Kumar

    2016-01-01

    Objective: Recently, we observed wound healing activity of 50% ethanol extract of Mallotus philippinensis Muell. Arg (MP) fruit hairs extract (MPE). In several intestinal infections, localized inflammation is of common occurrence and hence we evaluated the anti-inflammatory, analgesic and hypnotic activity of MPE in different rat experimental models. Materials and Methods: Anti-inflammatory activity was evaluated by carrageenan (acute) and turpentine oil induced formalin (subacute) induced paw edema and while granuloma pouch (subacute) in rats. Analgesic and hypnotic activity of MPE was undertaken by tail-flick, hot-plate, and acetic acid-induced writhing tests while pentobarbitone-induced hypnotic potentiation in rats. Results: MPE at a dose of 200 mg/kg at 3 h after their administration showed inhibition of formalin-induced paw edema by 41.60% (P < 0.001) and carrageenan-induced paw edema by 55.30% (P < 0.001). After 7 days of treatments, MPE showed 38.0% (P < 0.001) inhibition against formalin-induced paw edema and reduced weight of turpentine-induced granuloma pouch by 29.6% (P < 0.01) and volume of exudates by 26.1% (P < 0.01), respectively. MPE (200 mg/kg) showed dose-dependent elevation in pain threshold and peak analgesic effect at 120 min as evidenced by increased latency period in tail flick method and increased reaction time in the hot-plate test while the reduction in the number of acetic acid-induced writhes by 45.7% (P < 0.001). The pentobarbitone-induced hypnosis model showed potentiation, as defined by increased duration of sleep in treated group rats as compared to control. Conclusion: Thus, the study revealed MPE is effective in reducing acute and subacute inflammation and showed effective and similar analgesic activity. This seemed to be safe in the treatment of pain and inflammation. PMID:27069718

  14. Ginsenoside F2 reduces hair loss by controlling apoptosis through the sterol regulatory element-binding protein cleavage activating protein and transforming growth factor-β pathways in a dihydrotestosterone-induced mouse model.

    PubMed

    Shin, Heon-Sub; Park, Sang-Yong; Hwang, Eun-Son; Lee, Don-Gil; Mavlonov, Gafurjon Turdalievich; Yi, Tae-Hoo

    2014-01-01

    This study was conducted to test whether ginsenoside F2 can reduce hair loss by influencing sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and the transforming growth factor beta (TGF-β) pathway of apoptosis in dihydrotestosterone (DHT)-treated hair cells and in a DHT-induced hair loss model in mice. Results for ginsenoside F2 were compared with finasteride. DHT inhibits proliferation of hair cells and induces androgenetic alopecia and was shown to activate an apoptosis signal pathway both in vitro and in vivo. The cell-based 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the proliferation rates of DHT-treated human hair dermal papilla cells (HHDPCs) and HaCaTs increased by 48% in the ginsenoside F2-treated group and by 12% in the finasteride-treated group. Western blot analysis showed that ginsenoside F2 decreased expression of TGF-β2 related factors involved in hair loss. The present study suggested a hair loss related pathway by changing SCAP related apoptosis pathway, which has been known to control cholesterol metabolism. SCAP, sterol regulatory element-binding protein (SREBP) and caspase-12 expression in the ginsenoside F2-treated group were decreased compared to the DHT and finasteride-treated group. C57BL/6 mice were also prepared by injection with DHT and then treated with ginsenoside F2 or finasteride. Hair growth rate, density, thickness measurements and tissue histotological analysis in these groups suggested that ginsenoside F2 suppressed hair cell apoptosis and premature entry to catagen more effectively than finasteride. Our results indicated that ginsenoside F2 decreased the expression of TGF-β2 and SCAP proteins, which have been suggested to be involved in apoptosis and entry into catagen. This study provides evidence those factors in the SCAP pathway could be targets for hair loss prevention drugs.

  15. Cytotoxic and Inflammatory Responses Induced by Outer Membrane Vesicle-Associated Biologically Active Proteases from Vibrio cholerae

    PubMed Central

    Mondal, Ayan; Tapader, Rima; Chatterjee, Nabendu Sekhar; Ghosh, Amit; Sinha, Ritam; Koley, Hemanta; Saha, Dhira Rani; Chakrabarti, Manoj K.; Wai, Sun Nyunt

    2016-01-01

    Proteases in Vibrio cholerae have been shown to play a role in its pathogenesis. V. cholerae secretes Zn-dependent hemagglutinin protease (HAP) and calcium-dependent trypsin-like serine protease (VesC) by using the type II secretion system (TIISS). Our present studies demonstrated that these proteases are also secreted in association with outer membrane vesicles (OMVs) and transported to human intestinal epithelial cells in an active form. OMV-associated HAP induces dose-dependent apoptosis in Int407 cells and an enterotoxic response in the mouse ileal loop (MIL) assay, whereas OMV-associated VesC showed a hemorrhagic fluid response in the MIL assay, necrosis in Int407 cells, and an increased interleukin-8 (IL-8) response in T84 cells, which were significantly reduced in OMVs from VesC mutant strain. Our results also showed that serine protease VesC plays a role in intestinal colonization of V. cholerae strains in adult mice. In conclusion, our study shows that V. cholerae OMVs secrete biologically active proteases which may play a role in cytotoxic and inflammatory responses. PMID:26930702

  16. Assembling Composite Dermal Papilla Spheres with Adipose-derived Stem Cells to Enhance Hair Follicle Induction.

    PubMed

    Huang, Chin-Fu; Chang, Ya-Ju; Hsueh, Yuan-Yu; Huang, Chia-Wei; Wang, Duo-Hsiang; Huang, Tzu-Chieh; Wu, Yi-Ting; Su, Fong-Chin; Hughes, Michael; Chuong, Cheng-Ming; Wu, Chia-Ching

    2016-01-01

    Intradermal adipose tissue plays an essential role for hair follicles (HFs) regeneration by regulating hair cycles. However, the effect of reconstruction of HFs and the involvement of adipose-related cells are poorly understood. We investigated assembly strategies for the interactions of dermal papilla (DP) cells with adipose-derived stem cells (ASCs) in promoting hair formation. DP cells lose DP traits during adherent culture, but preserved DP markers with a unified sphere diameter by seeding on chitosan-coated microenvironments. Next, ASCs isolated from rats were co-cultured with DP spheres by different assembling approaches to determine their interactions; a mixed sphere of ASCs with DP cells (MA-DPS), or a core-shell structure, outer ASCs shell and an inner DP core (CSA-DPS). CSA-DPS exhibited superior DP characteristics compared to MA-DPS. Conditional medium from ASCs, but not differentiated adipocytes, promoted DP markers and functional alkaline phosphatase activity from the DP cells. In vivo patch assay showed the core-shell assembling of CSA-DPS can reconstruct cellular arrangements and microenvironmental niches as dominated by PPARα signal in ASCs to induce the greater hair induction than MA-DPS or DP spheres alone. Therefore, the assembling of a core-shell sphere for DP with ASCs could reconstruct the HF cellular arrangement for hair formation. This paper set the groundwork for further evaluation of the input of other cell types. PMID:27210831

  17. Assembling Composite Dermal Papilla Spheres with Adipose-derived Stem Cells to Enhance Hair Follicle Induction

    PubMed Central

    Huang, Chin-Fu; Chang, Ya-Ju; Hsueh, Yuan-Yu; Huang, Chia-Wei; Wang, Duo-Hsiang; Huang, Tzu-Chieh; Wu, Yi-Ting; Su, Fong-Chin; Hughes, Michael; Chuong, Cheng-Ming; Wu, Chia-Ching

    2016-01-01

    Intradermal adipose tissue plays an essential role for hair follicles (HFs) regeneration by regulating hair cycles. However, the effect of reconstruction of HFs and the involvement of adipose-related cells are poorly understood. We investigated assembly strategies for the interactions of dermal papilla (DP) cells with adipose-derived stem cells (ASCs) in promoting hair formation. DP cells lose DP traits during adherent culture, but preserved DP markers with a unified sphere diameter by seeding on chitosan-coated microenvironments. Next, ASCs isolated from rats were co-cultured with DP spheres by different assembling approaches to determine their interactions; a mixed sphere of ASCs with DP cells (MA-DPS), or a core-shell structure, outer ASCs shell and an inner DP core (CSA-DPS). CSA-DPS exhibited superior DP characteristics compared to MA-DPS. Conditional medium from ASCs, but not differentiated adipocytes, promoted DP markers and functional alkaline phosphatase activity from the DP cells. In vivo patch assay showed the core-shell assembling of CSA-DPS can reconstruct cellular arrangements and microenvironmental niches as dominated by PPARα signal in ASCs to induce the greater hair induction than MA-DPS or DP spheres alone. Therefore, the assembling of a core-shell sphere for DP with ASCs could reconstruct the HF cellular arrangement for hair formation. This paper set the groundwork for further evaluation of the input of other cell types. PMID:27210831

  18. Assembling Composite Dermal Papilla Spheres with Adipose-derived Stem Cells to Enhance Hair Follicle Induction.

    PubMed

    Huang, Chin-Fu; Chang, Ya-Ju; Hsueh, Yuan-Yu; Huang, Chia-Wei; Wang, Duo-Hsiang; Huang, Tzu-Chieh; Wu, Yi-Ting; Su, Fong-Chin; Hughes, Michael; Chuong, Cheng-Ming; Wu, Chia-Ching

    2016-05-23

    Intradermal adipose tissue plays an essential role for hair follicles (HFs) regeneration by regulating hair cycles. However, the effect of reconstruction of HFs and the involvement of adipose-related cells are poorly understood. We investigated assembly strategies for the interactions of dermal papilla (DP) cells with adipose-derived stem cells (ASCs) in promoting hair formation. DP cells lose DP traits during adherent culture, but preserved DP markers with a unified sphere diameter by seeding on chitosan-coated microenvironments. Next, ASCs isolated from rats were co-cultured with DP spheres by different assembling approaches to determine their interactions; a mixed sphere of ASCs with DP cells (MA-DPS), or a core-shell structure, outer ASCs shell and an inner DP core (CSA-DPS). CSA-DPS exhibited superior DP characteristics compared to MA-DPS. Conditional medium from ASCs, but not differentiated adipocytes, promoted DP markers and functional alkaline phosphatase activity from the DP cells. In vivo patch assay showed the core-shell assembling of CSA-DPS can reconstruct cellular arrangements and microenvironmental niches as dominated by PPARα signal in ASCs to induce the greater hair induction than MA-DPS or DP spheres alone. Therefore, the assembling of a core-shell sphere for DP with ASCs could reconstruct the HF cellular arrangement for hair formation. This paper set the groundwork for further evaluation of the input of other cell types.

  19. Physiological Maturation of Regenerating Hair Cells

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    2003-01-01

    The bullfrog saccule, a sensor of gravity and substrate-borne vibration, is a model system for hair cell transduction. Saccular hair cells also increase in number throughout adult life and rapidly recover after hair cell damage, making this organ an ideal system for studying hair cell development, repair, and regeneration. We have used of hair cell and supporting cell immunocytochemical markers to identify damaged hair cells and hair cell precursors in organotypic cultures of the bullfrog saccule. We then used an innovative combination of confocal, electron, and time-lapse microscopy to study the fate of damaged hair cells and the origin of new hair cells after gentamicin ototoxicity in normal and mitotically blocked saccular cultures. These studies have shown that gentamicin ototoxicity produces both lethal and sublethal hair cell damage. They have also shown that hair cell recovery in this organ takes place by both the repair of sublethally damaged hair cells and by the replacement of lost hair cells by mitotic regeneration. In parallel studies, we have used biophysical and molecular biological techniques to study the differentiation and innervation of developing, repairing, and regenerating hair cells. More specifically, we have used RT-PCR to obtain the bullfrog homologues of L-type voltage- gated calcium (L-VGCC) and large-conductance Ca(2+)-activated potassium (BK) channel genes. We have then obtained probes for these genes and, using in situ hybridization, begun to examine their expression in the bullfrog saccule and amphibian papilla. We have also used fluorescent-labeled channel toxins and channel toxin derivatives to determine the time of appearance of L-type voltage-gated calcium (L-VGCC) and Ca(2+)-activated potassium (BK) channels and to study dynamic changes in the number, distribution, and co-localization of these proteins in developing, repairing, and regenerating hair cells. Using time-lapse microscopy, we are also studying the dynamic relationship

  20. From Yeast to Hair Dryers: Effective Activities for Teaching Environmental Sciences.

    ERIC Educational Resources Information Center

    Nolan, Kathleen A.

    2001-01-01

    Reports on four experiments and/or activities that were used to stimulate student interest in environmental science. Makes the case that varying classroom activities in the environmental science classroom makes the teaching and learning experience more alive and vital to both instructor and student. (Author/MM)

  1. Study of hair surface energy and conditioning.

    PubMed

    Gao, Timothy; He, Yingxia; Landa, Peter; Tien, Jung-Mei

    2011-01-01

    A new test method has been developed to determine surface energy of hair fibers through measurements of contact angles at two hair/liquid interfaces. By measuring changes in surface energy of the same hair fiber before and after a cosmetic treatment, effects of active ingredients and the performance of tested formulations can be evaluated.The establishment of the method is based on Fowkes theory (1,2) described with two components, a dispersive and a non-dispersive component. The non-polar liquid used in this study was diiodomethane, and the polar liquid was benzyl alcohol. A Kruss 100 Tensiometer was used to measure contact angles of hair fibers. Virgin dark brown and regular bleached hairs were treated with selected conditioner formulations. Reductions in combing forces of hair tresses before and after respective treatments were correlated with decreases in average surface energy of hair fibers obtained from the corresponding tresses.Experimental results indicate that the average surface energy of hair fibers treated with conditioners decreases and the hydrophobicity of the hair surface increases, the results correlate well with the reduction in combing forces after respective treatments. This research work provides a new methodology to evaluate/screen conditioning performance of hair care ingredients and formulations for development of better products. PMID:21635842

  2. Study of hair surface energy and conditioning.

    PubMed

    Gao, Timothy; He, Yingxia; Landa, Peter; Tien, Jung-Mei

    2011-01-01

    A new test method has been developed to determine surface energy of hair fibers through measurements of contact angles at two hair/liquid interfaces. By measuring changes in surface energy of the same hair fiber before and after a cosmetic treatment, effects of active ingredients and the performance of tested formulations can be evaluated.The establishment of the method is based on Fowkes theory (1,2) described with two components, a dispersive and a non-dispersive component. The non-polar liquid used in this study was diiodomethane, and the polar liquid was benzyl alcohol. A Kruss 100 Tensiometer was used to measure contact angles of hair fibers. Virgin dark brown and regular bleached hairs were treated with selected conditioner formulations. Reductions in combing forces of hair tresses before and after respective treatments were correlated with decreases in average surface energy of hair fibers obtained from the corresponding tresses.Experimental results indicate that the average surface energy of hair fibers treated with conditioners decreases and the hydrophobicity of the hair surface increases, the results correlate well with the reduction in combing forces after respective treatments. This research work provides a new methodology to evaluate/screen conditioning performance of hair care ingredients and formulations for development of better products.

  3. Neisseria gonorrhoeae acquire a new principal outer-membrane protein when transformed to resistance to serum bactericidal activity.

    PubMed Central

    Hildebrandt, J F; Mayer, L W; Wang, S P; Buchanan, T M

    1978-01-01

    Resistance to the complement-dependent bactericidal activity of normal human serum is found in nearly all Neisseria gonorrhoeae strains causing disseminated gonococcal infection. Transformation of serum-sensitive gonococcal strain NRL 7189 to serum resistance using deoxyribonucleic acid from three separate disseminated-infection gonococci was accompanied by simultaneous structural and antigenic changes in the principal outer-membrane protein (POMP) of the transformants. In each of 10 separate transformations, there was a reduction in subunit molecular weight of the POMP from that in the recipient (39,000) to that in the deoxyribonucleic acid donors (36,500). Also, in each instance the POMP antigenic type, as measured by enzyme-linked immunosorbent assay, converted from that of the recipient to an antigenic type common to each DGI donor strain. This conversion of POMP antigen was reflected in part by changes in the surface fluorescence of the transformed gonococci to the microimmunofluorescence pattern of the donor strains. These results suggested that serum resistance of gonococci is related to the possession of a POMP of characteristic subunit molecular weight and antigenicity. Images PMID:78895

  4. Hair cosmetics: an overview.

    PubMed

    Gavazzoni Dias, Maria Fernanda Reis

    2015-01-01

    Hair cosmetics are an important tool that helps to increase patient's adhesion to alopecia and scalp treatments. This article reviews the formulations and the mode of action of hair cosmetics: Shampoos, conditioners, hair straightening products, hair dyes and henna; regarding their prescription and safetiness. The dermatologist's knowledge of hair care products, their use, and their possible side effects can extend to an understanding of cosmetic resources and help dermatologists to better treat hair and scalp conditions according to the diversity of hair types and ethnicity. PMID:25878443

  5. Hair Cosmetics: An Overview

    PubMed Central

    Gavazzoni Dias, Maria Fernanda Reis

    2015-01-01

    Hair cosmetics are an important tool that helps to increase patient's adhesion to alopecia and scalp treatments. This article reviews the formulations and the mode of action of hair cosmetics: Shampoos, conditioners, hair straightening products, hair dyes and henna; regarding their prescription and safetiness. The dermatologist's knowledge of hair care products, their use, and their possible side effects can extend to an understanding of cosmetic resources and help dermatologists to better treat hair and scalp conditions according to the diversity of hair types and ethnicity. PMID:25878443

  6. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling

    PubMed Central

    Sennett, Rachel; Rendl, Michael

    2012-01-01

    Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. PMID:22960356

  7. Inner dynein arms but not outer dynein arms require the activity of kinesin homologue protein KHP1(FLA10) to reach the distal part of flagella in Chlamydomonas

    PubMed Central

    1996-01-01

    Inner dynein arms, but not outer dynein arms, require the activity of KHP1(FLA10) to reach the distal part of axonemes before binding to outer doublet microtubules. We have analyzed the rescue of inner or outer dynein arms in quadriflagellate dikaryons by immunofluorescence microscopy of p28(IDA4), an inner dynein arm light chain, or IC69(ODA6), an outer dynein arm intermediate chain. In dikaryons two strains with different genetic backgrounds share the cytoplasm. As a consequence, wild-type axonemal precursors are transported to and assembled in mutant axonemes to complement the defects. The rescue of inner dynein arms containing p28 in ida4-wild-type dikaryons progressively occurred from the distal part of the axonemes and with time was extended towards the proximal part. In contrast, the rescue of outer dynein arms in oda2-wild-type dikaryons progressively occurred along the entire length of the axoneme. Rescue of inner dynein arms containing p28 in ida4fla10-fla10 dikaryons was similar to the rescue observed in ida4-wild-type dikaryons at 21 degrees C, whereas it was inhibited at 32 degrees C, a nonpermissive temperature for KHP1(FLA10). In contrast, rescue of outer dynein arms in oda2fla10-fla10 dikaryons was similar to the rescue observed in oda2-wild-type dikaryons at both 21 degrees and 32 degrees C and was not inhibited at 32 degrees C. Positioning of substructures in the internal part of the axonemal shaft requires the activity of kinesin homologue protein 1. PMID:8609169

  8. [Hair and their environment].

    PubMed

    Piérard-Franchimont, C; Piérard, G E

    2015-02-01

    Hair is influenced by the effects of the daily environment. Some toxic xenobiotics slow down or block the cell renewal of the hair matrix, thus inhibiting hair growth. The ultraviolet light obviously influences the physical structure and physiology of the hair follicle. Tobacco is similarly responsible for negative influences on the evolution of various alopecias. Several cosmetic procedures for maintaining and making hair more attractive are not always harmless, and they occasionally represent a possible origin for alopecia. PMID:26011990

  9. Hair loss in women.

    PubMed

    Harfmann, Katya L; Bechtel, Mark A

    2015-03-01

    Hair loss is a common cause of morbidity for many women. As a key member of the woman's health care team, the obstetrician/gynecologist may be the first person to evaluate the complaint of hair loss. Common types of nonscarring hair loss, including female pattern hair loss and telogen effluvium, may be diagnosed and managed by the obstetrician/gynecologist. A systematic approach to diagnosis and management of these common forms of hair loss is presented. PMID:25517757

  10. Hair loss in women.

    PubMed

    Harfmann, Katya L; Bechtel, Mark A

    2015-03-01

    Hair loss is a common cause of morbidity for many women. As a key member of the woman's health care team, the obstetrician/gynecologist may be the first person to evaluate the complaint of hair loss. Common types of nonscarring hair loss, including female pattern hair loss and telogen effluvium, may be diagnosed and managed by the obstetrician/gynecologist. A systematic approach to diagnosis and management of these common forms of hair loss is presented.

  11. Ion beam microanalysis of human hair follicles

    NASA Astrophysics Data System (ADS)

    Kertész, Zs.; Szikszai, Z.; Pelicon, P.; Simčič, J.; Telek, A.; Bíró, T.

    2007-07-01

    Hair follicle is an appendage organ of the skin which is of importance to the survival of mammals and still maintains significance for the human race - not just biologically, but also through cosmetic and commercial considerations. However data on composition of hair follicles are scarce and mostly limited to the hair shaft. In this study we provide detailed information on the elemental distribution in human hair follicles in different growth phases (anagen and catagen) using a scanning proton microprobe. The analysis of skin samples obtained from human adults undergoing plastic surgery and of organ-cultured human hair follicles may yield a new insight into the function, development and cyclic activity of the hair follicle.

  12. a Kcnq-Type Potassium Current in Cochlear Inner Hair Cells

    NASA Astrophysics Data System (ADS)

    Oliver, D.; Fakler, B.

    2003-02-01

    Auditory inner hair cells (IHCs) display large outwardly rectifying K currents, composed of a fast and a slower component that correspond to BK-type and delayed rectifier channels, respectively. In constrast, membrane conductance of outer hair cells (OHCs) is dominated by a K conductance with an unusually negative activation range, most likely mediated by KCNQ4 channels. Here, we show that IHCs of the murine cochlea express a K current with identical properties, i.e. steady-state activation at resting potential (VR), deactivation below -80 mV, and a high sensitivity towards the KCNQ channel blocker linopirdine. The negative activation range suggests a role in the maintenance of the IHC's resting potential. Accordingly, selective block of this current decreased VR by +7 mV. Mutations in the KCNQ4 gene underly the dominant progressive hearing loss, DFNA2. Our results suggest that impairment of IHC function contributes to the DFNA2 phenotype.

  13. Foxp1 Regulates the Proliferation of Hair Follicle Stem Cells in Response to Oxidative Stress during Hair Cycling.

    PubMed

    Zhao, Jianzhi; Li, Hanjun; Zhou, Rujiang; Ma, Gang; Dekker, Joseph D; Tucker, Haley O; Yao, Zhengju; Guo, Xizhi

    2015-01-01

    Hair follicle stem cells (HFSCs) in the bugle circularly generate outer root sheath (ORS) through linear proliferation within limited cycles during anagen phases. However, the mechanisms controlling the pace of HFSC proliferation remain unclear. Here we revealed that Foxp1, a transcriptional factor, was dynamically relocated from the nucleus to the cytoplasm of HFSCs in phase transitions from anagen to catagen, coupled with the rise of oxidative stress. Mass spectrum analyses revealed that the S468 phosphorylation of Foxp1 protein was responsive to oxidative stress and affected its nucleocytoplasmic translocation. Foxp1 deficiency in hair follicles led to compromised ROS accrual and increased HFSC proliferation. And more, NAC treatment profoundly elongated the anagen duration and HFSC proliferation in Foxp1-deficient background. Molecularly, Foxp1 augmented ROS levels through suppression of Trx1-mediated reductive function, thereafter imposing the cell cycle arrest by modulating the activity of p19/p53 pathway. Our findings identify a novel role for Foxp1 in controlling HFSC proliferation with cellular dynamic location in response to oxidative stress during hair cycling.

  14. Foxp1 Regulates the Proliferation of Hair Follicle Stem Cells in Response to Oxidative Stress during Hair Cycling

    PubMed Central

    Zhao, Jianzhi; Li, Hanjun; Zhou, Rujiang; Ma, Gang; Dekker, Joseph D.; Tucker, Haley O.; Yao, Zhengju; Guo, Xizhi

    2015-01-01

    Hair follicle stem cells (HFSCs) in the bugle circularly generate outer root sheath (ORS) through linear proliferation within limited cycles during anagen phases. However, the mechanisms controlling the pace of HFSC proliferation remain unclear. Here we revealed that Foxp1, a transcriptional factor, was dynamically relocated from the nucleus to the cytoplasm of HFSCs in phase transitions from anagen to catagen, coupled with the rise of oxidative stress. Mass spectrum analyses revealed that the S468 phosphorylation of Foxp1 protein was responsive to oxidative stress and affected its nucleocytoplasmic translocation. Foxp1 deficiency in hair follicles led to compromised ROS accrual and increased HFSC proliferation. And more, NAC treatment profoundly elongated the anagen duration and HFSC proliferation in Foxp1-deficient background. Molecularly, Foxp1 augmented ROS levels through suppression of Trx1-mediated reductive function, thereafter imposing the cell cycle arrest by modulating the activity of p19/p53 pathway. Our findings identify a novel role for Foxp1 in controlling HFSC proliferation with cellular dynamic location in response to oxidative stress during hair cycling. PMID:26171970

  15. Functional maturation of the exocytotic machinery at gerbil hair cell ribbon synapses.

    PubMed

    Johnson, Stuart L; Franz, Christoph; Knipper, Marlies; Marcotti, Walter

    2009-04-15

    Auditory afferent fibre activity in mammals relies on neurotransmission at hair cell ribbon synapses. Developmental changes in the Ca(2+) sensitivity of the synaptic machinery allow inner hair cells (IHCs), the primary auditory receptors, to encode Ca(2+) action potentials (APs) during pre-hearing stages and graded receptor potentials in adult animals. However, little is known about the time course of these changes or whether the kinetic properties of exocytosis differ as a function of IHC position along the immature cochlea. Furthermore, the role of afferent transmission in outer hair cells (OHCs) is not understood. Calcium currents and exocytosis (measured as membrane capacitance changes: DeltaC(m)) were measured with whole-cell recordings from immature gerbil hair cells using near-physiological conditions. The kinetics, vesicle pool depletion and Ca(2+) coupling of exocytosis were similar in apical and basal immature IHCs. This could indicate that possible differences in AP activity along the immature cochlea do not require synaptic specialization. Neurotransmission in IHCs became mature from postnatal day 20 (P20), although changes in its Ca(2+) dependence occurred at P9-P12 in basal and P12-P15 in apical cells. OHCs showed a smaller DeltaC(m) than IHCs that was reflected by fewer active zones in OHCs. Otoferlin, the proposed Ca(2+) sensor in cochlear hair cells, was similarly distributed in both cell types despite the high-order exocytotic Ca(2+) dependence in IHCs and the near-linear relation in OHCs. The results presented here provide a comprehensive study of the function and development of hair cell ribbon synapses. PMID:19237422

  16. New trichoscopy findings in trichotillomania: flame hairs, V-sign, hook hairs, hair powder, tulip hairs.

    PubMed

    Rakowska, Adriana; Slowinska, Monika; Olszewska, Malgorzata; Rudnicka, Lidia

    2014-05-01

    Differential diagnosis of trichotillomania is often difficult in clinical practice. Trichoscopy (hair and scalp dermoscopy) effectively supports differential diagnosis of various hair and scalp diseases. The aim of this study was to assess the usefulness of trichoscopy in diagnosing trichotillomania. The study included 370 patients (44 with trichotillomania, 314 with alopecia areata and 12 with tinea capitis). Statistical analysis revealed that the main and most characteristic trichoscopic findings of trichotillomania are: irregularly broken hairs (44/44; 100% of patients), v-sign (24/44; 57%), flame hairs (11/44; 25%), hair powder (7/44; 16%) and coiled hairs (17/44; 39%). Flame hairs, v-sign, tulip hairs, and hair powder were newly identified in this study. In conclusion, we describe here specific trichoscopy features, which may be applied in quick, non-invasive, in-office differential diagnosis of trichotillomania.

  17. New trichoscopy findings in trichotillomania: flame hairs, V-sign, hook hairs, hair powder, tulip hairs.

    PubMed

    Rakowska, Adriana; Slowinska, Monika; Olszewska, Malgorzata; Rudnicka, Lidia

    2014-05-01

    Differential diagnosis of trichotillomania is often difficult in clinical practice. Trichoscopy (hair and scalp dermoscopy) effectively supports differential diagnosis of various hair and scalp diseases. The aim of this study was to assess the usefulness of trichoscopy in diagnosing trichotillomania. The study included 370 patients (44 with trichotillomania, 314 with alopecia areata and 12 with tinea capitis). Statistical analysis revealed that the main and most characteristic trichoscopic findings of trichotillomania are: irregularly broken hairs (44/44; 100% of patients), v-sign (24/44; 57%), flame hairs (11/44; 25%), hair powder (7/44; 16%) and coiled hairs (17/44; 39%). Flame hairs, v-sign, tulip hairs, and hair powder were newly identified in this study. In conclusion, we describe here specific trichoscopy features, which may be applied in quick, non-invasive, in-office differential diagnosis of trichotillomania. PMID:24096547

  18. Amino acid substitution converts WEREWOLF function from an activator to a repressor of Arabidopsis non-hair cell development.

    PubMed

    Tominaga-Wada, Rumi; Nukumizu, Yuka; Wada, Takuji

    2012-02-01

    Root hair cell or non-hair cell fate determination in Arabidopsis thaliana root epidermis is model system for plant cell development. Two types of MYB transcription factors, the R2R3-type MYB, WEREWOLF (WER), and an R3-type MYB, CAPRICE (CPC), are involved in this cell fate determination process. To study the molecular basis of this process, we analyzed the functional relationship of WER and CPC. WER-CPC chimeric constructs were made from WER where all or parts of the MYB R3 region were replaced with the corresponding regions from CPC R3, and the constructs were introduced into the cpc-2 mutant. Although, the WER gene did not rescue the cpc-2 mutant 'small number of root hairs' phenotype, the WER-CPC chimera with two amino acids substitution (WC6) completely rescued the cpc-2 mutant phenotype. Furthermore, the WER-CPC chimera with 37 amino acids substitution (WC5) excessively rescued the cpc-2 mutant and induced 2.5 times more root hairs than wild-type. Consistent with this phenotype, GL2 gene expression was strongly reduced in WC5 in a cpc-2 background. Our results suggest that swapping at least two amino acids is sufficient to convert WER to CPC function. Therefore, these key residues may have strongly contributed to the selection of these important functions over evolution.

  19. The Nicotinic Receptor of Cochlear Hair Cells: A Possible Pharmacotherapeutic Target?

    PubMed Central

    Elgoyhen, Ana Belén; Katz, Eleonora; Fuchs, Paul A.

    2009-01-01

    Mechanosensory hair cells of the organ of Corti transmit information regarding sound to the central nervous system by way of peripheral afferent neurons. In return, the central nervous system provides feedback and modulates the afferent stream of information through efferent neurons. The medial olivocochlear efferent system makes direct synaptic contacts with outer hair cells and inhibits amplification brought about by the active mechanical process inherent to these cells. This feedback system offers the potential to improve the detection of signals in background noise, to selectively attend to particular signals, and to protect the periphery from damage caused by overly loud sounds. Acetylcholine released at the synapse between efferent terminals and outer hair cells activates a peculiar nicotinic cholinergic receptor subtype, the α9α10 receptor. At present no pharmacotherapeutic approaches have been designed that target this cholinergic receptor to treat pathologies of the auditory system. The potential use of α9α10 selective drugs in conditions such as noise-induced hearing loss, tinnitus and auditory processing disorders is discussed. PMID:19481062

  20. Integral hair lipid in human hair follicle.

    PubMed

    Lee, Won-Soo

    2011-12-01

    Integral hair lipid (IHL) is bound to the keratinized cell surface to make an environmentally resistant lipid envelope. It is mainly positioned on the hair cuticle and inner root sheath. IHL in the hair follicle may regard as hair barrier to be similar to the epidermal lipid layer functioning as skin barrier. Major constituents of IHL are fatty acid, phytosphingosine, ceramide in decreasing order. Minor constituents of IHL are cholesterol, cholesterol sulfate and cholesterol oleate. Cuticle or cortical cell surface in hair are abundant in fatty acids unlike the keratinized area of epidermis or sebaceous gland, and about 30-40% of such fatty acids are composed of 18-methyl-eicosanoic acid which is known to be bound to proteins by ester or thioester bond. Various factors including moisture, solvent, oxidative damage during bleaching or permanent waving affect IHL. Photochemical changes also can occur in IHL as well as in hair protein and hair pigment. Lipid metabolism is thought to play an essential role in lipid envelope of hair, but also involvement in hair development and function.

  1. Promotion Effect of Apo-9'-fucoxanthinone from Sargassum muticum on Hair Growth via the Activation of Wnt/β-Catenin and VEGF-R2.

    PubMed

    Kang, Jung-Il; Yoo, Eun-Sook; Hyun, Jin-Won; Koh, Young-Sang; Lee, Nam Ho; Ko, Mi-Hee; Ko, Chang-Sik; Kang, Hee-Kyoung

    2016-01-01

    This study was conducted to evaluate the effects of Sargassum muticum extract and apo-9'-fucoxanthinone, a principal component of S. muticum, on hair growth. When rat vibrissa follicles were treated with S. muticum extract for 21 d, the hair-fiber lengths for the vibrissa follicles increased significantly. Treatment with the S. muticum extract and the EtOAc fraction of the S. muticum extract markedly increased the proliferation of dermal papilla cells (DPCs) and decreased the 5α-reductase activity. In addition, the EtOAc fraction of the S. muticum extract significantly promoted anagen initiation in C57BL/6 mice. Especially, apo-9'-fucoxanthinone, an active constituent from the S. muticum extract, caused an increase in DPC proliferation and a decrease in 5α-reductase activity. To elucidate the molecular mechanisms of apo-9'-fucoxanthinone on the proliferation of DPCs, we examined the level of various signaling proteins. Apo-9'-fucoxanthinone increased the level of vascular endothelial growth factor receptor-2 (VEGF-R2), Wnt/β-catenin signaling proteins such as phospho(ser9)-glycogen synthase kinase-3β (GSK-3β) and phospho(ser552)-β-catenin, whereas apo-9'-fucoxanthinone did not affect the transforming growth factor-β (TGF-β) signaling proteins such as Smad2/3. These results suggest that apo-9'-fucoxanthinone from S. muticum could have the potential for hair growth with DPC proliferation via the activation of Wnt/β-catenin signaling and the VEGF-R2 pathway. PMID:27476937

  2. Study of colouring effect of herbal hair formulations on graying hair

    PubMed Central

    Singh, Vijender; Ali, Mohammed; Upadhyay, Sukirti

    2015-01-01

    Objective: To screen the hair colouring properties of hair colorants/ herbal hair colouring formulations. Materials and Methods: The dried aqueous herbal extracts of Gudhal leaves (Hibiscus rosa-sinensis), Jatamansi rhizome (Nardostachys jatamansi), Kuth roots (Saussurea lappa), Kattha (Acacia catechu), Amla dried fruit (Embelica officinalis), were prepared. Coffee powder (Coffea arabica) and Henna powder (Lowsonia inermis) were taken in the form of powder (# 40). Fourteen herbal hair colorants were prepared from these dried aqueous herbal extracts and powders. Activities of hair colorants were observed on sheep wool fibers. On the basis of the above observation six hair colorants were selected. These six formulations were taken for trials on human beings. Observation: The formulation coded HD-3 gave maximum colouring effect on sheep wool fibers as well as on human beings and percentage of acceptance among the volunteers were in the following order: HD- 3 > HD- 4 > HD-1 > HD-13 > HD-14 > HD-11. Results and Discussion: The remarkable results were obtained from five herbal hair colorants, viz., HD-1, HD- 3, HD- 4, HD-13 and HD-14 on sheep wool fibers and human beings. Formulation HD-3, having gudhal, jatamansi, kuth, kattha, amla, coffee and henna, was the maximum accepted formulation and suggested that these herbs in combination acts synergistically in hair colouring action. It also concluded that jatamansi, present in different hair colorants, was responsible to provide maximum blackening on hair PMID:26130937

  3. Replacing facial hair.

    PubMed

    Straub, Paul M

    2008-11-01

    The face is the second most common area for hair transplantation after the scalp. Areas that are transplanted include eyebrows, eyelashes, moustaches, beards, temples and temporal points, as well as scars either traumatic or the side effect of cosmetic procedures such as rhytidectomies or brow lifts. The hair is harvested from the same area as the hair that is transplanted to the head. For this reason, it grows longer than nongrafted facial hair and must be trimmed regularly. Occasionally, hair lower in the neck region is harvested, which is finer than occipital hair; however, because of movement in the neck area, the scars are often larger. Body hair has been suggested as donor hair but is not recommended because it spends as much as 85% of its time in the telogen phase.

  4. Skin, Hair, and Nails

    MedlinePlus

    ... special types of cells: Melanocytes produce melanin, the pigment that gives skin its color. All people have ... the epidermis). Hair also contains a yellow-red pigment; people who have blonde or red hair have ...

  5. Hair transplantation update.

    PubMed

    Rogers, Nicole E

    2015-06-01

    Contemporary hair transplant surgery offers results that are natural and undetectable. It is an excellent treatment option for male and female pattern hair loss. Patients are encouraged to also use medical therapy to help protect their surgical results and prevent ongoing thinning of the surrounding hairs. The two major techniques of donor elliptical harvesting and follicular unit extraction are discussed here. PMID:26176286

  6. Deficiency in Nucleotide Excision Repair Family Gene Activity, Especially ERCC3, Is Associated with Non-Pigmented Hair Fiber Growth

    PubMed Central

    Yu, Mei; Bell, Robert H.; Ho, Maggie M.; Leung, Gigi; Haegert, Anne; Carr, Nicholas; Shapiro, Jerry; McElwee, Kevin J.

    2012-01-01

    We conducted a microarray study to discover gene expression patterns associated with a lack of melanogenesis in non-pigmented hair follicles (HF) by microarray. Pigmented and non-pigmented HFs were collected and micro-dissected into the hair bulb (HB) and the upper hair sheaths (HS) including the bulge region. In comparison to pigmented HS and HBs, nucleotide excision repair (NER) family genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, XPA, NTPBP, HCNP, DDB2 and POLH exhibited statistically significantly lower expression in non- pigmented HS and HBs. Quantitative PCR verified microarray data and identified ERCC3 as highly differentially expressed. Immunohistochemistry confirmed ERCC3 expression in HF melanocytes. A reduction in ERCC3 by siRNA interference in human melanocytes in vitro reduced their tyrosinase production ability. Our results suggest that loss of NER gene function is associated with a loss of melanin production capacity. This may be due to reduced gene transcription and/or reduced DNA repair in melanocytes which may eventually lead to cell death. These results provide novel information with regard to melanogenesis and its regulation. PMID:22615732

  7. Gab1 and Mapk Signaling Are Essential in the Hair Cycle and Hair Follicle Stem Cell Quiescence.

    PubMed

    Akilli Öztürk, Özlem; Pakula, Hubert; Chmielowiec, Jolanta; Qi, Jingjing; Stein, Simone; Lan, Linxiang; Sasaki, Yoshiteru; Rajewsky, Klaus; Birchmeier, Walter

    2015-10-20

    Gab1 is a scaffold protein that acts downstream of receptor tyrosine kinases. Here, we produced conditional Gab1 mutant mice (by K14- and Krox20-cre) and show that Gab1 mediates crucial signals in the control of both the hair cycle and the self-renewal of hair follicle stem cells. Remarkably, mutant hair follicles do not enter catagen, the destructive phase of the hair cycle. Instead, hair follicle stem cells lose quiescence and become exhausted, and thus no stem cell niches are established in the bulges. Moreover, conditional sustained activation of Mapk signaling by expression of a gain-of-function Mek1(DD) allele (by Krox20-cre) rescues hair cycle deficits and restores quiescence of the stem cells. Our data thus demonstrate an essential role of Gab1 downstream of receptor tyrosine kinases and upstream of Shp2 and Mapk in the regulation of the hair cycle and the self-renewal of hair follicle stem cells.

  8. Evidence for biological shaping of hair ice

    NASA Astrophysics Data System (ADS)

    Hofmann, D.; Preuss, G.; Mätzler, C.

    2015-04-01

    An unusual ice type, called hair ice, grows on the surface of dead wood of broad-leaf trees at temperatures slightly below 0 °C. We describe this phenomenon and present physical, chemical, and biological investigations to gain insight in the properties and processes related to hair ice. Tests revealed that the biological activity of a winter-active fungus is required in the wood for enabling the growth of hair ice. We confirmed the fungus hypothesis originally suggested by Wegener (1918) by reproducing hair ice on wood samples. Treatment by heat and fungicide, respectively, suppresses the formation of hair ice. Fruiting bodies of Asco- and Basidiomycota are identified on hair-ice carrying wood. One species, Exidiopsis effusa (Ee), has been present on all investigated samples. Both hair-ice producing wood samples and those with killed fungus show essentially the same temperature variation, indicating that the heat produced by fungal metabolism is very small, that the freezing rate is not influenced by the fungus activity and that ice segregation is the common mechanism of ice growth at the wood surface. The fungus plays the role of shaping the ice hairs and to prevent them from recrystallisation. Melted hair ice indicates the presence of organic matter. Chemical analyses show a complex mixture of several thousand CHO(N,S)-compounds similar to fulvic acids in dissolved organic matter (DOM). The evaluation reveals decomposed lignin as the main constituent. Further work is needed to clarify its role in hair-ice growth and to identify the recrystallisation inhibitor.

  9. Evidence for biological shaping of hair ice

    NASA Astrophysics Data System (ADS)

    Hofmann, D.; Preuss, G.; Mätzler, C.

    2015-07-01

    An unusual ice type, called hair ice, grows on the surface of dead wood of broad-leaf trees at temperatures slightly below 0 °C. We describe this phenomenon and present physical, chemical, and biological investigations to gain insight in the properties and processes related to hair ice. Tests revealed that the biological activity of a winter-active fungus is required in the wood for enabling the growth of hair ice. We confirmed the fungus hypothesis originally suggested by Wegener (1918) by reproducing hair ice on wood samples. Treatment by heat and fungicide suppresses the formation of hair ice. Fruiting bodies of Asco- and Basidiomycota are identified on hair-ice-carrying wood. One species, Exidiopsis effusa (Ee), was present on all investigated samples. Both hair-ice-producing wood samples and those with killed fungus show essentially the same temperature variation, indicating that the heat produced by fungal metabolism is very small, that the freezing rate is not influenced by the fungus activity, and that ice segregation is the common mechanism of ice growth on the wood surface. The fungus plays the role of shaping the ice hairs and preventing them from recrystallisation. Melted hair ice indicates the presence of organic matter. Chemical analyses show a complex mixture of several thousand CHO(N,S) compounds similar to fulvic acids in dissolved organic matter (DOM). The evaluation reveals decomposed lignin as being the main constituent. Further work is needed to clarify its role in hair-ice growth and to identify the recrystallisation inhibitor.

  10. Hair Growth: Focus on Herbal Therapeutic Agent.

    PubMed

    Patel, Satish; Sharma, Vikas; Chauhan, Nagendra S; Thakur, Mayank; Dixit, Vinod K

    2015-01-01

    This review presents an overview on plants identified to possess hair growth activity in various ethno-botanical studies and surveys of tradition medicinal plants. It also highlights the developments in hair rejuvenation strategies from 1926 till-date and reviews the potential of herbal drugs as safer and effective alternatives. There are various causes for hair loss and the phenomenon is still not fully understood. The treatments offered include both natural or synthetic products to treat the condition of hair loss (alopecia), nonetheless natural products are continuously gaining popularity mainly due to their fewer side effects and better formulation strategies for natural product extracts. Plants have been widely used for hair growth promotion since ancient times as reported in Ayurveda, Chinese and Unani systems of medicine. This review covers information about different herbs and herbal formulation that are believed to be able to reduce the rate of hair loss and at the same time stimulate new hair growth. A focus is placed on their mechanism of action and the review also covers various isolated phytoconstituents possessing hair growth promoting effect. PMID:26058803

  11. K+ and Na+ absorption by outer sulcus epithelial cells.

    PubMed

    Marcus, D C; Chiba, T

    1999-08-01

    Transduction of sound into nerve impulses by hair cells depends on modulation of a current carried primarily by K+ into the cell across apical transduction channels that are permeable to cations. The cochlear function thus depends on active secretion of K+ accompanied by absorption of Na+ by epithelial cells enclosing the cochlear duct. The para-sensory cells which participate in the absorption of Na+ (down to the uniquely low level of 1 mM) were previously unidentified and the existence of a para-sensory pathway which actively absorbs K+ was previously unknown. A relative short circuit current (Isc,probe, measured as the extracellular current density with a vibrating electrode) was directed into the apical side of the outer sulcus epithelium, decreased by ouabain (1 mM), an inhibitor of Na+, K(+)-ATPase, and found to depend on bath Na+ and K+ but on neither Ca2+ nor Cl-. Isc,probe was shown to be an active current by its sensitivity to ouabain. On-cell patch clamp recordings of the apical membrane of outer sulcus cells displayed a channel activity, which carried inward currents under conditions identical to those used to measure Isc,probe. Both Isc,probe and non-selective cation channels (27.4+/-0.6 ps, n = 22) in excised outside-out patches from the apical membrane were inhibited by Gd3+ (1 mM). Ics,prob was also inhibited by 5 mM lidocaine, 1 mM quinine and 500 microM amiloride but not by 10 microM amiloride. These results demonstrate that outer sulcus epithelial cells contribute to the homeostasis of endolymph by actively absorbing Na+ and K+. An entry pathway in the apical membrane was shown to be through non-selective cation channels that were sensitive to Gd3+.

  12. Hair loss in children.

    PubMed

    Alves, Rubina; Grimalt, Ramon

    2015-01-01

    Hair diseases represent frequent complaints in dermatology clinics, and they can be caused by a number of conditions reflected by specific diagnoses. Hair loss is not uncommon in the pediatric group, but its patterns in this group are different from those seen in adults. Additionally, in children, these disorders can have psychological effects that can interfere with growth and development. Hair is easily accessible for examination, and dermatologists are in the enviable situation of being able to study many disorders using simple diagnostic techniques. To fully understand hair loss during childhood, a basic comprehension of normal hair growth is necessary. Knowledge of the normal range and variation observed in the hair of children further enhances its assessment. This chapter has been written in an attempt to facilitate the diagnostic process during daily practice by helping to distinguish between acquired and congenital hair diseases. It can sometimes be difficult to differentiate between abnormality and normality in neonatal hair aspects. Management of hair disorders can be quite a daunting task for the attending physician and mandates a holistic approach to the patient. Some hair disturbances have no effective treatment, and for others, no single treatment is 100% successful. If no effective treatment for a hair loss disease exists, a cosmetic approach is important. PMID:26370644

  13. [Hormones and hair growth].

    PubMed

    Trüeb, R M

    2010-06-01

    With respect to the relationship between hormones and hair growth, the role of androgens for androgenetic alopecia (AGA) and hirsutism is best acknowledged. Accordingly, therapeutic strategies that intervene in androgen metabolism have been successfully developed for treatment of these conditions. Clinical observations of hair conditions involving hormones beyond the androgen horizon have determined their role in regulation of hair growth: estrogens, prolactin, thyroid hormone, cortisone, growth hormone (GH), and melatonin. Primary GH resistance is characterized by thin hair, while acromegaly may cause hypertrichosis. Hyperprolactinemia may cause hair loss and hirsutism. Partial synchronization of the hair cycle in anagen during late pregnancy points to an estrogen effect, while aromatase inhibitors cause hair loss. Hair loss in a causal relationship to thyroid disorders is well documented. In contrast to AGA, senescent alopecia affects the hair in a diffuse manner. The question arises, whether the hypothesis that a causal relationship exists between the age-related reduction of circulating hormones and organ function also applies to hair and the aging of hair.

  14. Mutations of the Mouse ELMO Domain Containing 1 Gene (Elmod1) Link Small GTPase Signaling to Actin Cytoskeleton Dynamics in Hair Cell Stereocilia

    PubMed Central

    Johnson, Kenneth R.; Longo-Guess, Chantal M.; Gagnon, Leona H.

    2012-01-01

    Stereocilia, the modified microvilli projecting from the apical surfaces of the sensory hair cells of the inner ear, are essential to the mechanoelectrical transduction process underlying hearing and balance. The actin-filled stereocilia on each hair cell are tethered together by fibrous links to form a highly patterned hair bundle. Although many structural components of hair bundles have been identified, little is known about the signaling mechanisms that regulate their development, morphology, and maintenance. Here, we describe two naturally occurring, allelic mutations that result in hearing and balance deficits in mice, named roundabout (rda) and roundabout-2J (rda2J). Positional cloning identified both as mutations of the mouse ELMO domain containing 1 gene (Elmod1), a poorly characterized gene with no previously reported mutant phenotypes. The rda mutation is a 138 kb deletion that includes exons 1–5 of Elmod1, and rda2J is an intragenic duplication of exons 3–8 of Elmod1. The deafness associated with these mutations is caused by cochlear hair cell dysfunction, as indicated by conspicuous elongations and fusions of inner hair cell stereocilia and progressive degeneration of outer hair cell stereocilia. Mammalian ELMO-family proteins are known to be involved in complexes that activate small GTPases to regulate the actin cytoskeleton during phagocytosis and cell migration. ELMOD1 and ELMOD2 recently were shown to function as GTPase-activating proteins (GAPs) for the Arf family of small G proteins. Our finding connecting ELMOD1 deficiencies with stereocilia dysmorphologies thus establishes a link between the Ras superfamily of small regulatory GTPases and the actin cytoskeleton dynamics of hair cell stereocilia. PMID:22558334

  15. Hair cell damage recruited Lgr5-expressing cells are hair cell progenitors in neonatal mouse utricle.

    PubMed

    Lin, Jinchao; Zhang, Xiaodong; Wu, Fengfang; Lin, Weinian

    2015-01-01

    Damage-activated stem/progenitor cells play important roles in regenerating lost cells and in tissue repair. Previous studies reported that the mouse utricle has limited hair cell regeneration ability after hair cell ablation. However, the potential progenitor cell population regenerating new hair cells remains undiscovered. In this study, we first found that Lgr5, a Wnt target gene that is not usually expressed in the neonatal mouse utricle, can be activated by 24 h neomycin treatment in a sub-population of supporting cells in the striolar region of the neonatal mouse utricle. Lineage tracing demonstrated that these Lgr5-positive supporting cells could regenerate new hair cells in explant culture. We isolated the damage-activated Lgr5-positive cells with flow cytometry and found that these Lgr5-positive supporting cells could regenerate hair cells in vitro, and self-renew to form spheres, which maintained the capacity to differentiate into hair cells over seven generations of passages. Our results suggest that damage-activated Lgr5-positive supporting cells act as hair cell progenitors in the neonatal mouse utricle, which may help to uncover a potential route to regenerate hair cell in mammals.

  16. Thermoelectric Outer Planets Spacecraft (TOPS)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research and advanced development work is reported on a ballistic-mode, outer planet spacecraft using radioisotope thermoelectric generator (RTG) power. The Thermoelectric Outer Planet Spacecraft (TOPS) project was established to provide the advanced systems technology that would allow the realistic estimates of performance, cost, reliability, and scheduling that are required for an actual flight mission. A system design of the complete RTG-powered outer planet spacecraft was made; major technical innovations of certain hardware elements were designed, developed, and tested; and reliability and quality assurance concepts were developed for long-life requirements. At the conclusion of its active phase, the TOPS Project reached its principal objectives: a development and experience base was established for project definition, and for estimating cost, performance, and reliability; an understanding of system and subsystem capabilities for successful outer planets missions was achieved. The system design answered long-life requirements with massive redundancy, controlled by on-board analysis of spacecraft performance data.

  17. The presence of outer arm fucose residues on the N-glycans of tissue inhibitor of metalloproteinases-1 reduces its activity.

    PubMed

    Kim, Han Ie; Saldova, Radka; Park, Jun Hyoung; Lee, Young Hun; Harvey, David J; Wormald, Mark R; Wynne, Kieran; Elia, Giuliano; Kim, Hwa-Jung; Rudd, Pauline M; Lee, Seung-Taek

    2013-08-01

    Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits matrix metalloproteinases (MMPs) by binding at a 1:1 stoichiometry. Here we have shown the involvement of N-glycosylation in the MMP inhibitory ability of TIMP-1. TIMP-1, purified from HEK 293 cells overexpressing TIMP-1 (293 TIMP-1), showed less binding and inhibitory abilities to MMPs than TIMP-1 purified from fibroblasts or SF9 insect cells infected with TIMP-1 baculovirus. Following deglycosylation of TIMP-1, all forms of TIMP-1 showed similar levels of MMP binding and inhibition, suggesting that glycosylation is involved in the regulation of these TIMP-1 activities. Analysis of the N-glycan structures showed that SF9 TIMP-1 has the simplest N-glycan structures, followed by fibroblast TIMP-1 and 293 TIMP-1, in order of increasing complexity in their N-glycan structures. Further analyses showed that cleavage of outer arm fucose residues from the N-glycans of 293 TIMP-1 or knockdown of both FUT4 and FUT7 (which encode for fucosyltransferases that add outer arm fucose residues to N-glycans) enhanced the MMP-binding and catalytic abilities of 293 TIMP-1, bringing them up to the levels of the other TIMP-1. These results demonstrate that the ability of TIMP-1 to inhibit MMPs is at least in part regulated by outer arm fucosylation of its N-glycans.

  18. Ovine Hair Follicle Stem Cells Derived from Single Vibrissae Reconstitute Haired Skin.

    PubMed

    Zhang, Huishan; Zhang, Shoubing; Zhao, Huashan; Qiao, Jingqiao; Liu, Shuang; Deng, Zhili; Lei, Xiaohua; Ning, Lina; Cao, Yujing; Zhao, Yong; Duan, Enkui

    2015-01-01

    Hair follicle stem cells (HFSCs) possess fascinating self-renewal capacity and multipotency, which play important roles in mammalian hair growth and skin wound repair. Although HFSCs from other mammalian species have been obtained, the characteristics of ovine HFSCs, as well as the methods to isolate them have not been well addressed. Here, we report an efficient strategy to obtain multipotent ovine HFSCs. Through microdissection and organ culture, we obtained keratinocytes that grew from the bulge area of vibrissa hair follicles, and even abundant keratinocytes were harvested from a single hair follicle. These bulge-derived keratinocytes are highly positive for Krt15, Krt14, Tp63, Krt19 and Itga6; in addition to their strong proliferation abilities in vitro, these keratinocytes formed new epidermis, hair follicles and sebaceous glands in skin reconstitution experiments, showing that these are HFSCs from the bulge outer root sheath. Taken together, we developed an efficient in vitro system to enrich ovine HFSCs, providing enough HFSCs for the investigations about the ovine hair cycle, aiming to promote wool production in the future.

  19. Ovine Hair Follicle Stem Cells Derived from Single Vibrissae Reconstitute Haired Skin

    PubMed Central

    Zhang, Huishan; Zhang, Shoubing; Zhao, Huashan; Qiao, Jingqiao; Liu, Shuang; Deng, Zhili; Lei, Xiaohua; Ning, Lina; Cao, Yujing; Zhao, Yong; Duan, Enkui

    2015-01-01

    Hair follicle stem cells (HFSCs) possess fascinating self-renewal capacity and multipotency, which play important roles in mammalian hair growth and skin wound repair. Although HFSCs from other mammalian species have been obtained, the characteristics of ovine HFSCs, as well as the methods to isolate them have not been well addressed. Here, we report an efficient strategy to obtain multipotent ovine HFSCs. Through microdissection and organ culture, we obtained keratinocytes that grew from the bulge area of vibrissa hair follicles, and even abundant keratinocytes were harvested from a single hair follicle. These bulge-derived keratinocytes are highly positive for Krt15, Krt14, Tp63, Krt19 and Itga6; in addition to their strong proliferation abilities in vitro, these keratinocytes formed new epidermis, hair follicles and sebaceous glands in skin reconstitution experiments, showing that these are HFSCs from the bulge outer root sheath. Taken together, we developed an efficient in vitro system to enrich ovine HFSCs, providing enough HFSCs for the investigations about the ovine hair cycle, aiming to promote wool production in the future. PMID:26247934

  20. Biomechanical Analysis of a Filiform Mechanosensory Hair Socket of Crickets.

    PubMed

    Joshi, Kanishka; Mian, Ahsan; Miller, John

    2016-08-01

    Filiform mechanosensory hairs of crickets are of great interest to engineers because of the hairs' highly sensitive response to low-velocity air-currents. In this study, we analyze the biomechanical properties of filiform hairs of the cercal sensory system of a common house cricket. The cercal sensory system consists of two antennalike appendages called cerci that are situated at the rear of the cricket's abdomen. Each cercus is covered with 500-750 flow sensitive filiform mechanosensory hairs. Each hair is embedded in a complex viscoelastic socket that acts as a spring and dashpot system and guides the movement of the hair. When a hair deflects due to the drag force induced on its length by a moving air-current, the spiking activity of the neuron that innervates the hair changes and the combined spiking activity of all hairs is extracted by the cercal sensory system. Filiform hairs have been experimentally studied by researchers, though the basis for the hairs' biomechanical characteristics is not fully understood. The socket structure has not been analyzed experimentally or theoretically from a mechanical standpoint, and the characterization that exists is mathematical in nature and only provides a very rudimentary approximation of the socket's spring nature. This study aims to understand and physically characterize the socket's behavior and interaction with the filiform hair by examining hypotheses about the hair and socket biomechanics. A three-dimensional computer-aided design (CAD) model was first created using confocal microscopy images of the hair and socket structure of the cricket, and then finite-element analyses (FEAs) based on the physical conditions that the insect experiences were simulated. The results show that the socket can act like a spring; however, it has two-tier rotational spring constants during pre- and postcontacts of iris and hair bulge due to its constitutive nonstandard geometric shapes.

  1. Identification of Wnt/β-catenin signaling pathway in dermal papilla cells of human scalp hair follicles: TCF4 regulates the proliferation and secretory activity of dermal papilla cell.

    PubMed

    Xiong, Ya; Liu, Yi; Song, Zhiqiang; Hao, Fei; Yang, Xichuan

    2014-01-01

    It is clear that the dermal papilla cell (DPC), which is located at the bottom of the hair follicle, is a special mesenchymal component, and it plays a leading role in regulating hair follicle development and periodic regeneration. Recent studies showed that the Wnt signaling pathway through β-catenin (canonical Wnt signaling pathway) is an essential component in maintaining the hair-inducing activity of the dermal papilla and growth of hair papilla cells. However, the intrinsic pathways and regulating mechanism are largely unknown. In the previous work, we constructed a cDNA subtractive library of DPC and first found that the TCF4 gene, as a key factor of Wnt signaling pathway, was expressed as the upregulated gene of the hair follicle in low-passage DPC. This study was to explore the role of TCF4 in regulating the proliferation and secretory activity of DPC. We constructed a pcDNA3.0-TCF4 expression vector and transfected it into DPC to achieve stable expression by bangosome 2000. Furthermore, we used the method of chemosynthesis to synthesize three pairs of TCF4 siRNA and transfected them into DPC. Meanwhile, we compared the transfection group and non-transfection group. We first proposed that there was expression difference in TCF4 in DPC under different biological condition. This study may have a high impact on the molecular mechanism of follicular lesions and provide a new vision for the treatment of clinic diseases.

  2. LGR4 and LGR5 Regulate Hair Cell Differentiation in the Sensory Epithelium of the Developing Mouse Cochlea.

    PubMed

    Żak, Magdalena; van Oort, Thijs; Hendriksen, Ferry G; Garcia, Marie-Isabelle; Vassart, Gilbert; Grolman, Wilko

    2016-01-01

    In the developing cochlea, Wnt/β-catenin signaling positively regulates the proliferation of precursors and promotes the formation of hair cells by up-regulating Atoh1 expression. Not much, however, is known about the regulation of Wnt/β-catenin activity in the cochlea. In multiple tissues, the activity of Wnt/β-catenin signaling is modulated by an interaction between LGR receptors and their ligands from the R-spondin family. The deficiency in Lgr4 and Lgr5 genes leads to developmental malformations and lethality. Using the Lgr5 knock-in mouse line we show that loss of LGR5 function increases Wnt/β-catenin activity in the embryonic cochlea, resulting in a mild overproduction of inner and outer hair cells (OHC). Supernumerary hair cells are likely formed due to an up-regulation of the "pro-hair cell" transcription factors Atoh1, Nhlh1, and Pou4f3. Using a hypomorphic Lgr4 mouse model we showed a mild overproduction of OHCs in the heterozygous and homozygous Lgr4 mice. The loss of LGR4 function prolonged the proliferation in the mid-basal turn of E13 cochleae, causing an increase in the number of SOX2-positive precursor cells within the pro-sensory domain. The premature differentiation of hair cells progressed in a medial to lateral gradient in Lgr4 deficient embryos. No significant up-regulation of Atoh1 was observed following Lgr4 deletion. Altogether, our findings suggest that LGR4 and LGR5 play an important role in the regulation of hair cell differentiation in the embryonic cochlea. PMID:27559308

  3. LGR4 and LGR5 Regulate Hair Cell Differentiation in the Sensory Epithelium of the Developing Mouse Cochlea

    PubMed Central

    Żak, Magdalena; van Oort, Thijs; Hendriksen, Ferry G.; Garcia, Marie-Isabelle; Vassart, Gilbert; Grolman, Wilko

    2016-01-01

    In the developing cochlea, Wnt/β-catenin signaling positively regulates the proliferation of precursors and promotes the formation of hair cells by up-regulating Atoh1 expression. Not much, however, is known about the regulation of Wnt/β-catenin activity in the cochlea. In multiple tissues, the activity of Wnt/β-catenin signaling is modulated by an interaction between LGR receptors and their ligands from the R-spondin family. The deficiency in Lgr4 and Lgr5 genes leads to developmental malformations and lethality. Using the Lgr5 knock-in mouse line we show that loss of LGR5 function increases Wnt/β-catenin activity in the embryonic cochlea, resulting in a mild overproduction of inner and outer hair cells (OHC). Supernumerary hair cells are likely formed due to an up-regulation of the “pro-hair cell” transcription factors Atoh1, Nhlh1, and Pou4f3. Using a hypomorphic Lgr4 mouse model we showed a mild overproduction of OHCs in the heterozygous and homozygous Lgr4 mice. The loss of LGR4 function prolonged the proliferation in the mid-basal turn of E13 cochleae, causing an increase in the number of SOX2-positive precursor cells within the pro-sensory domain. The premature differentiation of hair cells progressed in a medial to lateral gradient in Lgr4 deficient embryos. No significant up-regulation of Atoh1 was observed following Lgr4 deletion. Altogether, our findings suggest that LGR4 and LGR5 play an important role in the regulation of hair cell differentiation in the embryonic cochlea. PMID:27559308

  4. Red ginseng extract promotes the hair growth in cultured human hair follicles.

    PubMed

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-03-01

    Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans.

  5. Red Ginseng Extract Promotes the Hair Growth in Cultured Human Hair Follicles

    PubMed Central

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-01-01

    Abstract Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans. PMID:25396716

  6. Red ginseng extract promotes the hair growth in cultured human hair follicles.

    PubMed

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-03-01

    Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans. PMID:25396716

  7. NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity.

    PubMed

    Bhunia, Anirban; Saravanan, Rathi; Mohanram, Harini; Mangoni, Maria L; Bhattacharjya, Surajit

    2011-07-01

    Temporins are a group of closely related short antimicrobial peptides from frog skin. Lipopolysaccharide (LPS), the major constituent of the outer membrane of gram-negative bacteria, plays important roles in the activity of temporins. Earlier studies have found that LPS induces oligomerization of temporin-1Tb (TB) thus preventing its translocation across the outer membrane and, as a result, reduces its activity on gram-negative bacteria. On the other hand, temporin-1Tl (TL) exhibits higher activity, presumably because of lack of such oligomerization. A synergistic mechanism was proposed, involving TL and TB in overcoming the LPS-mediated barrier. Here, to gain insights into interactions of TL and TB within LPS, we investigated the structures and interactions of TL, TB, and TL+TB in LPS micelles, using NMR and fluorescence spectroscopy. In the context of LPS, TL assumes a novel antiparallel dimeric helical structure sustained by intimate packing between aromatic-aromatic and aromatic-aliphatic residues. By contrast, independent TB has populations of helical and aggregated conformations in LPS. The LPS-induced aggregated states of TB are largely destabilized in the presence of TL. Saturation transfer difference NMR studies have delineated residues of TL and TB in close contact with LPS and enhanced interactions of these two peptides with LPS, when combined together. Fluorescence resonance energy transfer and (31)P NMR have pointed out the proximity of TL and TB in LPS and conformational changes of LPS, respectively. Importantly, these results provide the first structural insights into the mode of action and synergism of antimicrobial peptides at the level of the LPS-outer membrane. PMID:21586570

  8. Ethnic hair disorders.

    PubMed

    Lindsey, Scott F; Tosti, Antonella

    2015-01-01

    The management of hair and scalp conditions is difficult in any patient, especially given the emotional and psychological implications of hair loss. This undertaking becomes even more challenging in the ethnic patient. Differences in hair care practices, hair shaft morphology, and follicular architecture add complexity to the task. It is imperative that the physician be knowledgeable about these practices and the phenotypic differences seen in ethnic hair in order to appropriately diagnose and treat these patients. In this chapter, we will discuss cultural practices and morphologic differences and explain how these relate to the specific disorders seen in ethnic populations. We will also review the most prominent of the ethnic hair conditions including acquired trichorrhexis nodosa, traction alopecia, central centrifugal cicatricial alopecia, pseudofolliculitis barbae, dissecting cellulitis, and acne keloidalis nuchae. PMID:26370652

  9. Female pattern hair loss.

    PubMed

    Ioannides, Dimitrios; Lazaridou, Elizabeth

    2015-01-01

    Female pattern hair loss, or female pattern androgenetic alopecia, is a nonscarring alopecia with a multi-factorial etiology that mostly affects postmenopausal women and is characterized by a reduction in hair density over the crown and frontal scalp. The clinical picture is characterized by a diffuse rarefaction of scalp hair over the mid-frontal scalp and a more-or-less intact frontal hairline without any signs of inflammation or scarring. Although the disease poses only a cosmetic concern, it is chronic and may have a significant negative psychological impact on the affected person. The aim of treating female pattern hair loss is to reduce hair loss and, to a certain extent, succeed in promoting hair regrowth. Various treatment methods are available, but it remains unclear which are the most effective. Early initiation of treatment and the combination of various modalities seem to be more efficacious than monotherapy. PMID:26370643

  10. Ethnic hair disorders.

    PubMed

    Lindsey, Scott F; Tosti, Antonella

    2015-01-01

    The management of hair and scalp conditions is difficult in any patient, especially given the emotional and psychological implications of hair loss. This undertaking becomes even more challenging in the ethnic patient. Differences in hair care practices, hair shaft morphology, and follicular architecture add complexity to the task. It is imperative that the physician be knowledgeable about these practices and the phenotypic differences seen in ethnic hair in order to appropriately diagnose and treat these patients. In this chapter, we will discuss cultural practices and morphologic differences and explain how these relate to the specific disorders seen in ethnic populations. We will also review the most prominent of the ethnic hair conditions including acquired trichorrhexis nodosa, traction alopecia, central centrifugal cicatricial alopecia, pseudofolliculitis barbae, dissecting cellulitis, and acne keloidalis nuchae.

  11. The diaphanous Gene of Drosophila Interacts Antagonistically with multiple wing hairs and Plays a Key Role in Wing Hair Morphogenesis

    PubMed Central

    Lu, Qiuheng; Adler, Paul N.

    2015-01-01

    The Drosophila wing is covered by an array of distally pointing hairs that has served as a key model system for studying planar cell polarity (PCP). The adult cuticular hairs are formed in the pupae from cell extensions that contain extensive actin filaments and microtubules. The importance of the actin cytoskeleton for hair growth and morphogenesis is clear from the wide range of phenotypes seen in mutations in well-known actin regulators. Formin proteins promote the formation of long actin filaments of the sort thought to be important for hair growth. We report here that the formin encoding diaphanous (dia) gene plays a key role in hair morphogenesis. Both loss of function mutations and the expression of a constitutively active Dia led to cells forming both morphologically abnormal hairs and multiple hairs. The conserved frizzled (fz)/starry night (stan) PCP pathway functions to restrict hair initiation and activation of the cytoskeleton to the distal most part of wing cells. It also ensures the formation of a single hair per cell. Our data suggest that the localized inhibition of Dia activity may be part of this mechanism. We found the expression of constitutively active Dia greatly expands the region for activation of the cytoskeleton and that dia functions antagonistically with multiple wing hairs (mwh), the most downstream member of the fz/stan pathway. Further we established that purified fragments of Dia and Mwh could be co-immunoprecipitated suggesting the genetic interaction could reflect a direct physical interaction. PMID:25730111

  12. Laser hair removal pearls.

    PubMed

    Tierney, Emily P; Goldberg, David J

    2008-03-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the follicle through the targeting of melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Pearls of laser hair removal are presented in this review, focusing on four areas of recent development: 1 treatment of blond, white and gray hair; 2 paradoxical hypertrichosis; 3 laser hair removal in children; and 4 comparison of lasers and IPL. Laser and light-based technologies to remove hair represents one of the most exciting areas where discoveries by dermatologists have led to novel treatment approaches. It is likely that in the next decade, continued advancements in this field will bring us closer to the development of a more permanent and painless form of hair removal. PMID:18330794

  13. Photoaggravation of Hair Aging

    PubMed Central

    Lee, Won-Soo

    2009-01-01

    Photoaggravation of hair aging includes various chemical and physical changes in fiber properties which lead to an increase in fiber porosity, loss of mechanical strength and an increase in surface roughness. These changes come from lipid oxidation, disulfide bond cleavage, tryptophan degradation and cysteic acid formation. Hair exposed to sunlight is claimed to be more brittle, stiffer and drier than before irradiation and exhibits a reduced water-absorption capacity. Hair pigments function to provide photochemical protection to hair proteins. Hair pigments accomplish this protection by absorbing and filtering the impinging radiation and subsequently dissipating this energy as heat. However, in the process of protecting the hair proteins from light, the pigments are degraded or bleached. Dark hair is more resistant to photodegradation than light hair, because of the higher photostability of eumelanin compared to pheomelanin. Integral lipids of hair fibers are degraded by ultraviolet light, as well as by visible light, helping to explain the weakening of the cell membrane complex exposed to light radiation. PMID:20927230

  14. Tarantula hair keratitis.

    PubMed

    Mangat, Simran Singh; Newman, Bill

    2012-10-26

    We describe a 12-year-old boy in England with keratitis secondary to tarantula hairs embedded within the stroma of his cornea. Every attempt must be made to isolate these hairs at the first visit as they have a barbed nature and have a propensity to propagate through ocular tissues. A chronic keratitis requiring long-term steroid use may result if hairs persist in the cornea. Children who keep tarantulas as pets should be instructed on safe handling to prevent the tarantula from adopting defence mechanisms and shedding their hairs. PMID:23242405

  15. Laser hair removal pearls.

    PubMed

    Tierney, Emily P; Goldberg, David J

    2008-03-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the follicle through the targeting of melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Pearls of laser hair removal are presented in this review, focusing on four areas of recent development: 1 treatment of blond, white and gray hair; 2 paradoxical hypertrichosis; 3 laser hair removal in children; and 4 comparison of lasers and IPL. Laser and light-based technologies to remove hair represents one of the most exciting areas where discoveries by dermatologists have led to novel treatment approaches. It is likely that in the next decade, continued advancements in this field will bring us closer to the development of a more permanent and painless form of hair removal.

  16. Female hair restoration.

    PubMed

    Unger, Robin H

    2013-08-01

    Female hair loss is a devastating issue for women that has only relatively recently been publicly acknowledged as a significant problem. Hair transplant surgery is extremely successful in correcting the most cosmetically problematic areas of alopecia. This article discusses the surgical technique of hair transplantation in women in detail, including pearls to reduce postoperative sequelae and planning strategies to ensure a high degree of patient satisfaction. A brief overview of some of the medical treatments found to be helpful in slowing or reversing female pattern hair loss is included, addressing the available hormonal and topical treatments.

  17. Structure, activity and interactions of the cysteine deleted analog of tachyplesin-1 with lipopolysaccharide micelle: Mechanistic insights into outer-membrane permeabilization and endotoxin neutralization.

    PubMed

    Saravanan, Rathi; Mohanram, Harini; Joshi, Mangesh; Domadia, Prerna N; Torres, Jaume; Ruedl, Christiane; Bhattacharjya, Surajit

    2012-07-01

    Tachyplesin-1, a disulfide stabilized beta-hairpin antimicrobial peptide, can be found at the hemocytes of horse shoe crab Tachypleus tridentatus. A cysteine deleted linear analog of tachyplesin-1 or CDT (KWFRVYRGIYRRR-NH2) contains a broad spectrum of bactericidal activity with a reduced hemolytic property. The bactericidal activity of CDT stems from selective interactions with the negatively charged lipids including LPS. In this work, CDT-LPS interactions were investigated using NMR spectroscopy, optical spectroscopy and functional assays. We found that CDT neutralized LPS and disrupted permeability barrier of the outer membrane. Zeta potential and ITC studies demonstrated charge compensation and hydrophobic interactions of CDT with the LPS-outer membrane, respectively. Secondary structure of the peptide was probed by CD and FT-IR experiments indicating beta-strands and/or beta-turn conformations in the LPS micelle. An ensemble of structures, determined in LPS micelle by NMR, revealed a beta-hairpin like topology of the CDT peptide that was typified by an extended cationic surface and a relatively shorter segment of hydrophobic region. Interestingly, at the non-polar face, residue R11 was found to be in a close proximity to the indole ring of W2, suggesting a cation-n type interactions. Further, saturation transfer difference (STD) NMR studies established intimate contacts among the aromatic and cationic residues of CDT with the LPS micelle. Fluorescence and dynamic light scattering experiments demonstrated that CDT imparted structural destabilization to the aggregated states of LPS. Collectively, atomic resolution structure and interactions of CDT with the outer membrane-LPS could be exploited for developing potent broad spectrum antimicrobial and anti-sepsis agents. PMID:22464970

  18. Topical liposome targeting of dyes, melanins, genes, and proteins selectively to hair follicles.

    PubMed

    Hoffman, R M

    1998-01-01

    For therapeutic and cosmetic modification of hair, we have developed a hair-follicle-selective macromolecule and small molecule targeting system with topical application of phosphatidylcholine-based liposomes. Liposome-entrapped melanins, proteins, genes, and small-molecules have been selectively targeted to the hair follicle and hair shafts of mice. Liposomal delivery of these molecules is time dependent. Negligible amounts of delivered molecules enter the dermis, epidermis, or bloodstream thereby demonstrating selective follicle delivery. Naked molecules are trapped in the stratum corneum and are unable to enter the follicle. The potential of the hair-follicle liposome delivery system for therapeutic use for hair disease as well as for cosmesis has been demonstrated in 3-dimensional histoculture of hair-growing skin and mouse in vivo models. Topical liposome selective delivery to hair follicles has demonstrated the ability to color hair with melanin, the delivery of the active lac-Z gene to hair matrix cells and delivery of proteins as well. Liposome-targeting of molecules to hair follicles has also been achieved in human scalp in histoculture. Liposomes thus have high potential in selective hair follicle targeting of large and small molecules, including genes, opening the field of gene therapy and other molecular therapy of the hair process to restore hair growth, physiologically restore or alter hair pigment, and to prevent or accelerate hair loss.

  19. Hair Loss in New Moms

    MedlinePlus

    ... Video library Find a dermatologist Hair loss in new moms Many new moms see noticeable hair loss ... regain normal fullness even earlier. Dermatologists’ tips for new mothers If the excessive hair shedding bothers you, ...

  20. Coping with cancer - hair loss

    MedlinePlus

    ... This includes permanents and hair colors. Put away things that will put stress on your hair. This includes curling irons and brush rollers. If you blow-dry your hair, put the setting at cool or ...

  1. Why Does Hair Turn Gray?

    MedlinePlus

    ... Each hair follicle contains a certain number of pigment cells. These pigment cells continuously produce a chemical called melanin (say: ... each hair contains. As we get older, the pigment cells in our hair follicles gradually die. When ...

  2. Stimulatory effect of Brazilian propolis on hair growth through proliferation of keratinocytes in mice.

    PubMed

    Miyata, Shota; Oda, Yozo; Matsuo, Chika; Kumura, Haruto; Kobayashi, Ken

    2014-12-10

    Propolis is a natural honeybee hive product with the potential for use in the treatment of dermatological conditions, such as cutaneous abrasions, burns, and acne. In this study, we investigated whether propolis stimulates hair growth in mice. Ethanol-extracted propolis, which contains various physiologically active substances such as caffeic acid and kaempferol, stimulated anagen induction in shaved back skin. Anagen induction occurred without any detectable abnormalities in the shape of the hair follicles (HFs), hair stem cells in the bulge, proliferating hair matrix keratinocytes in the hair bulb, or localization of versican in the dermal papilla. Propolis treatment also stimulated migration of hair matrix keratinocytes into the hair shaft in HFs during late anagen in the depilated back skin. Organotypic culture of skin containing anagen stage HFs revealed significant stimulation of hair matrix keratinocyte proliferation by propolis. Furthermore, propolis facilitated the proliferation of epidermal keratinocytes. These results indicate that propolis stimulates hair growth by inducing hair keratinocyte proliferation.

  3. Stimulatory effect of Brazilian propolis on hair growth through proliferation of keratinocytes in mice.

    PubMed

    Miyata, Shota; Oda, Yozo; Matsuo, Chika; Kumura, Haruto; Kobayashi, Ken

    2014-12-10

    Propolis is a natural honeybee hive product with the potential for use in the treatment of dermatological conditions, such as cutaneous abrasions, burns, and acne. In this study, we investigated whether propolis stimulates hair growth in mice. Ethanol-extracted propolis, which contains various physiologically active substances such as caffeic acid and kaempferol, stimulated anagen induction in shaved back skin. Anagen induction occurred without any detectable abnormalities in the shape of the hair follicles (HFs), hair stem cells in the bulge, proliferating hair matrix keratinocytes in the hair bulb, or localization of versican in the dermal papilla. Propolis treatment also stimulated migration of hair matrix keratinocytes into the hair shaft in HFs during late anagen in the depilated back skin. Organotypic culture of skin containing anagen stage HFs revealed significant stimulation of hair matrix keratinocyte proliferation by propolis. Furthermore, propolis facilitated the proliferation of epidermal keratinocytes. These results indicate that propolis stimulates hair growth by inducing hair keratinocyte proliferation. PMID:25418897

  4. The mechanisms of complement activation in normal bovine serum and normal horse serum against Yersinia enterocolitica O:9 strains with different outer membrane proteins content.

    PubMed

    Miętka, K; Brzostek, K; Guz-Regner, K; Bugla-Płoskońska, G

    2016-01-01

    Yersinia enterocolitica is a common zoonotic pathogen and facultative intracellular bacterium which can survive within blood cells. Cattle and horses are considered a reservoir of Y. enterocolitica which often causes several serious syndromes associated with yersiniosis such as abortions, premature births or infertility. The aim of our investigation was to determine the vitality of Y. enterocolitica O:9 strains (Ye9) in bovine and horse sera (NBS and NHrS) and explain the role of outer membrane proteins (OMPs) in serum resistance of these bacteria. Our previous studies demonstrated moderate human serum (NHS) resistance of the wild type Ye9 strain, whereas mutants lacking YadA, Ail or OmpC remained sensitive to the bactericidal activity of NHS. The present study showed that the wild type of Ye9 strain was resistant to the bactericidal activity of both NHrS and NBS, while Ye9 mutants lacking the YadA, Ail and OmpC proteins were sensitive to NHrS and NBS as well as to NHS. The mechanisms of complement activation against Ye9 strains lacking Ail and YadA were distinguished, i.e. activation of the classical/lectin pathways decisive in the bactericidal mechanism of complement activation of NBS, parallel activation of the classical/lectin and alternative pathways of NHrS. In this research the mechanism of independent activation of the classical/lectin or the alternative pathway of NBS and NHrS against Ye9 lacking OmpC porin was also established. The results indicate that serum resistance of Ye9 is multifactorial, in which extracellular structures, i.e. outer membrane proteins (OMPs) such as Ail, OmpC or YadA, play the main role. PMID:27096793

  5. The mechanisms of complement activation in normal bovine serum and normal horse serum against Yersinia enterocolitica O:9 strains with different outer membrane proteins content.

    PubMed

    Miętka, K; Brzostek, K; Guz-Regner, K; Bugla-Płoskońska, G

    2016-01-01

    Yersinia enterocolitica is a common zoonotic pathogen and facultative intracellular bacterium which can survive within blood cells. Cattle and horses are considered a reservoir of Y. enterocolitica which often causes several serious syndromes associated with yersiniosis such as abortions, premature births or infertility. The aim of our investigation was to determine the vitality of Y. enterocolitica O:9 strains (Ye9) in bovine and horse sera (NBS and NHrS) and explain the role of outer membrane proteins (OMPs) in serum resistance of these bacteria. Our previous studies demonstrated moderate human serum (NHS) resistance of the wild type Ye9 strain, whereas mutants lacking YadA, Ail or OmpC remained sensitive to the bactericidal activity of NHS. The present study showed that the wild type of Ye9 strain was resistant to the bactericidal activity of both NHrS and NBS, while Ye9 mutants lacking the YadA, Ail and OmpC proteins were sensitive to NHrS and NBS as well as to NHS. The mechanisms of complement activation against Ye9 strains lacking Ail and YadA were distinguished, i.e. activation of the classical/lectin pathways decisive in the bactericidal mechanism of complement activation of NBS, parallel activation of the classical/lectin and alternative pathways of NHrS. In this research the mechanism of independent activation of the classical/lectin or the alternative pathway of NBS and NHrS against Ye9 lacking OmpC porin was also established. The results indicate that serum resistance of Ye9 is multifactorial, in which extracellular structures, i.e. outer membrane proteins (OMPs) such as Ail, OmpC or YadA, play the main role.

  6. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    PubMed

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  7. Deletion of Brg1 causes abnormal hair cell planer polarity, hair cell anchorage, and scar formation in mouse cochlea

    PubMed Central

    Jin, Yecheng; Ren, Naixia; Li, Shiwei; Fu, Xiaolong; Sun, Xiaoyang; Men, Yuqin; Xu, Zhigang; Zhang, Jian; Xie, Yue; Xia, Ming; Gao, Jiangang

    2016-01-01

    Hair cells (HCs) are mechanosensors that play crucial roles in perceiving sound, acceleration, and fluid motion. The precise architecture of the auditory epithelium and its repair after HC loss is indispensable to the function of organ of Corti (OC). In this study, we showed that Brg1 was highly expressed in auditory HCs. Specific deletion of Brg1 in postnatal HCs resulted in rapid HC degeneration and profound deafness in mice. Further experiments showed that cell-intrinsic polarity of HCs was abolished, docking of outer hair cells (OHCs) by Deiter’s cells (DCs) failed, and scar formation in the reticular lamina was deficient. We demonstrated that Brg1 ablation disrupted the Gαi/Insc/LGN and aPKC asymmetric distributions, without overt effects on the core planer cell polarity (PCP) pathway. We also demonstrated that Brg1-deficient HCs underwent apoptosis, and that leakage in the reticular lamina caused by deficient scar formation shifted the mode of OHC death from apoptosis to necrosis. Together, these data demonstrated a requirement for Brg1 activity in HC development and suggested a role for Brg1 in the proper cellular structure formation of HCs. PMID:27255603

  8. Healthy hair: what is it?

    PubMed

    Sinclair, Rodney D

    2007-12-01

    Shiny hair with a smooth texture and clean-cut ends or tapered tips is generally perceived to be healthy. Hair texture and shine relate to hair surface properties, whereas the integrity of hair ends relates to the hair cortex. Hair can be straight, wavy or curly, blonde, black, brown, red, gray white, and its natural variations are important to our identity. Manipulation of the normal structure of the hair shaft is epidemic and dictated by culture, fashion, and above all, celebrity. Although cosmetic procedures are intrinsically safe, there is potential for damage to the hair. Loss of lustre, frizz, split ends, and other hair problems are particularly prevalent among people who repeatedly alter the natural style of their hair or among people with hair that is intrinsically weak. This may be due to individual or racial variation or less commonly an inherited structural abnormality in hair fiber formation. Hair health is also affected by common afflictions of the scalp as well as age-related phenomena such as graying and androgenetic alopecia. Hair products that improve the structural integrity of hair fibers and increase tensile strength are available, as are products that increase hair volume, reduce frizz, improve hair manageability, and stimulate new hair growth. PMID:18004288

  9. Differentiating neoplasms of hair germ

    PubMed Central

    Headington, J. T.

    1970-01-01

    Differentiating neoplasms of hair germ are benign epithelial-mesenchymal tumours of skin in which hair follicle development may be partly or completely recapitulated. The epithelial component is equivalent to the hair germ. The mesenchymal component is equivalent to the dermal papilla. Epithelial-mesenchymal interaction results in the morphogenesis of hair follicles. In neoplasms showing stromal induction, there is centrifugal organizations: hair bulbs are found at the periphery of tumour lobules and hairs are projected centrally to lie within small keratinizing cysts. Neoplasms of hair germ without advanced morpho-differentiation are termed `trichoblastomas', and those neoplasms in which hair follicle development is advanced are called `trichogenic trichoblastomas'. Images PMID:5476873

  10. Help! It's Hair Loss!

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Help! It's Hair Loss! KidsHealth > For Kids > Help! It's Hair Loss! Print A A A Text Size ... part above the skin, is dead. (That's why it doesn't hurt to get a haircut!) This ...

  11. [Hair follicle regeneration].

    PubMed

    Itami, Satoshi

    2008-05-01

    Hair growth cycle is coordinated with complex processes that are dependent on the interactions of follicular stem cells and dermal papilla cells (DPCs). For the past 10 years, the developmental mechanism of hair follicles has been extensively studied, and spatial and temporal expressions of many molecules are required for the hair morphogenesis. These molecules are also required for hair cycle progression. Androgen receptor, which is a ligand dependent transcription factor, plays an important role in human hair cycle. Frontal scalp DPCs from androgenetic alopecia (AGA) are the target cells of androgen action. Minoxidil and Finasteride were recently introduced for the treatment of AGA, and cell therapy using DPCs is a next strategy for the innovative treatment. PMID:18464507

  12. Laser hair removal.

    PubMed

    Wanner, Molly

    2005-01-01

    Since 1996, there have been numerous advances in hair laser removal that utilize melanin as a chromophore. All of the devices on the market may be used in patients with light skin (phototypes I-III) and yield hair reduction near 75%. The ruby (694 nm) laser, alexandrite (755 nm) laser, and diode (810 nm) laser, as well as intense pulsed light are commonly used devices for hair laser removal. The long-pulsed Nd:YAG (1064 nm) laser represents the safest device for hair removal in dark-skinned patients because of its long wavelength, although the diode laser, alexandrite laser, and intense pulse light may be used. For treatment of light hair, combination radiofrequency and optical devices as well as photodynamic therapy are under investigation. PMID:16229722

  13. The calcium-sensor guanylate cyclase activating protein type 2 specific site in rod outer segment membrane guanylate cyclase type 1.

    PubMed

    Duda, Teresa; Fik-Rymarkiewicz, Ewa; Venkataraman, Venkateswar; Krishnan, Ramalingam; Koch, Karl-Wilhelm; Sharma, Rameshwar K

    2005-05-17

    The rod outer segment membrane guanylate cyclase type 1 (ROS-GC1), originally identified in the photoreceptor outer segments, is a member of the subfamily of Ca(2+)-modulated membrane guanylate cyclases. In phototransduction, its activity is tightly regulated by its two Ca(2+)-sensor protein parts, GCAP1 and GCAP2. This study maps the GCAP2-modulatory site in ROS-GC1 through the use of multiple techniques involving surface plasmon resonance binding studies with soluble ROS-GC1 constructs, coimmunoprecipitation, functional reconstitution experiments with deletion mutants, and peptide competition assays. The findings show that the sequence motif of the core GCAP2-modulatory site is Y965-N981 of ROS-GC1. The site is distinct from the GCAP1-modulatory site. It, however, partially overlaps with the S100B-regulatory site. This indicates that the Y965-N981 motif tightly controls the Ca(2+)-dependent specificity of ROS-GC1. Identification of the site demonstrates an intriguing topographical feature of ROS-GC1. This is that the GCAP2 module transmits the Ca(2+) signals to the catalytic domain from its C-terminal side and the GCAP1 module from the distant N-terminal side.

  14. Fate of Mammalian Cochlear Hair Cells and Stereocilia after Loss of the Stereocilia

    PubMed Central

    Jia, Shuping; Yang, Shiming; Guo, Weiwei; He, David Z.Z.

    2009-01-01

    Cochlear hair cells transduce mechanical stimuli into electrical activity. The site of hair cell transduction is the hair bundle, an array of stereocilia with different height arranged in a staircase. Tip links connect the apex of each stereocilium to the side of its taller neighbor. The hair bundle and tip links of hair cells are susceptible to acoustic trauma and ototoxic drugs. It has been shown that hair cells in lower vertebrates and in the mammalian vestibular system may survive bundle loss and undergo self-repair of the stereocilia. Our goals were to determine whether cochlear hair cells could survive the trauma and whether the tip link and/or the hair bundle could be regenerated. We simulated the acoustic trauma-induced tip link damage or stereociliary loss by disrupting tip links or ablating the hair bundles in the cultured organ of Corti from neonatal gerbils. Hair-cell fate and stereociliary morphology and function were examined using confocal and scanning electron microscopies and electrophysiology. Most bundleless hair cells survived and developed for about 2 weeks. However, no spontaneous hair-bundle regeneration was observed. When tip links were ruptured, repair of tip links and restoration of mechanotransduction were observed in less than 24 hours. Our study suggests that the dynamic nature of the hair cell's transduction apparatus is retained despite the fact that regeneration of the hair bundle is lost in mammalian cochlear hair cells. PMID:19955380

  15. A central to peripheral progression of cell cycle exit and hair cell differentiation in the developing mouse cristae.

    PubMed

    Slowik, Amber D; Bermingham-McDonogh, Olivia

    2016-03-01

    The inner ear contains six distinct sensory organs that each maintains some ability to regenerate hair cells into adulthood. In the postnatal cochlea, there appears to be a relationship between the developmental maturity of a region and its ability to regenerate as postnatal regeneration largely occurs in the apical turn, which is the last region to differentiate and mature during development. In the mature cristae there are also regional differences in regenerative ability, which led us to hypothesize that there may be a general relationship between the relative maturity of a region and the regenerative competence of that region in all of the inner ear sensory organs. By analyzing adult mouse cristae labeled embryonically with BrdU, we found that hair cell birth starts in the central region and progresses to the periphery with age. Since the peripheral region of the adult cristae also maintains active Notch signaling and some regenerative competence, these results are consistent with the hypothesis that the last regions to develop retain some of their regenerative ability into adulthood. Further, by analyzing embryonic day 14.5 inner ears we provide evidence for a wave of hair cell birth along the longitudinal axis of the cristae from the central regions to the outer edges. Together with the data from the adult inner ears labeled with BrdU as embryos, these results suggest that hair cell differentiation closely follows cell cycle exit in the cristae, unlike in the cochlea where they are uncoupled. PMID:26826497

  16. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon

    PubMed Central

    Kim, Chul Min

    2016-01-01

    Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6) Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms—monocots and eudicots—despite the dramatically different patterns of root hair cell development. PMID:27494519

  17. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon.

    PubMed

    Kim, Chul Min; Dolan, Liam

    2016-08-01

    Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6) Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms-monocots and eudicots-despite the dramatically different patterns of root hair cell development. PMID:27494519

  18. LSD1 is Required for Hair Cell Regeneration in Zebrafish.

    PubMed

    He, Yingzi; Tang, Dongmei; Cai, Chengfu; Chai, Renjie; Li, Huawei

    2016-05-01

    Lysine-specific demethylase 1 (LSD1/KDM1A) plays an important role in complex cellular processes such as differentiation, proliferation, apoptosis, and cell cycle progression. It has recently been demonstrated that during development, downregulation of LSD1 inhibits cell proliferation, modulates the expression of cell cycle regulators, and reduces hair cell formation in the zebrafish lateral line, which suggests that LSD1-mediated epigenetic regulation plays a key role in the development of hair cells. However, the role of LSD1 in hair cell regeneration after hair cell loss remains poorly understood. Here, we demonstrate the effect of LSD1 on hair cell regeneration following neomycin-induced hair cell loss. We show that the LSD1 inhibitor trans-2-phenylcyclopropylamine (2-PCPA) significantly decreases the regeneration of hair cells in zebrafish after neomycin damage. In addition, immunofluorescent staining demonstrates that 2-PCPA administration suppresses supporting cell proliferation and alters cell cycle progression. Finally, in situ hybridization shows that 2-PCPA significantly downregulates the expression of genes related to Wnt/β-catenin and Fgf activation. Altogether, our data suggest that downregulation of LSD1 significantly decreases hair cell regeneration after neomycin-induced hair cell loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus, LSD1 plays a critical role in hair cell regeneration and might represent a novel biomarker and potential therapeutic approach for the treatment of hearing loss.

  19. Amplitude death of coupled hair bundles with stochastic channel noise

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Joong; Ahn, Kang-Hun

    2014-04-01

    Hair cells conduct auditory transduction in vertebrates. In lower vertebrates such as frogs and turtles, due to the active mechanism in hair cells, hair bundles (stereocilia) can be spontaneously oscillating or quiescent. Recently an amplitude death phenomenon has been proposed [K.-H. Ahn, J. R. Soc. Interface, 10, 20130525 (2013)] as a mechanism for auditory transduction in frog hair-cell bundles, where sudden cessation of the oscillations arises due to the coupling between nonidentical hair bundles. The gating of the ion channel is intrinsically stochastic due to the stochastic nature of the configuration change of the channel. The strength of the noise due to the channel gating can be comparable to the thermal Brownian noise of hair bundles. Thus, we perform stochastic simulations of the elastically coupled hair bundles. In spite of stray noisy fluctuations due to its stochastic dynamics, our simulation shows the transition from collective oscillation to amplitude death as interbundle coupling strength increases. In its stochastic dynamics, the formation of the amplitude death state of coupled hair bundles can be seen as a sudden suppression of the displacement fluctuation of the hair bundles as the coupling strength increases. The enhancement of the signal-to-noise ratio through the amplitude death phenomenon is clearly seen in the stochastic dynamics. Our numerical results demonstrate that the multiple number of transduction channels per hair bundle is an important factor to the amplitude death phenomenon, because the phenomenon may disappear for a small number of transduction channels due to strong gating noise.

  20. Extraction and analysis of cortisol from human and monkey hair.

    PubMed

    Meyer, Jerrold; Novak, Melinda; Hamel, Amanda; Rosenberg, Kendra

    2014-01-01

    The stress hormone cortisol (CORT) is slowly incorporated into the growing hair shaft of humans, nonhuman primates, and other mammals. We developed and validated a method for CORT extraction and analysis from rhesus monkey hair and subsequently adapted this method for use with human scalp hair. In contrast to CORT "point samples" obtained from plasma or saliva, hair CORT provides an integrated measure of hypothalamic-pituitary-adrenocortical (HPA) system activity, and thus physiological stress, during the period of hormone incorporation. Because human scalp hair grows at an average rate of 1 cm/month, CORT levels obtained from hair segments several cm in length can potentially serve as a biomarker of stress experienced over a number of months. In our method, each hair sample is first washed twice in isopropanol to remove any CORT from the outside of the hair shaft that has been deposited from sweat or sebum. After drying, the sample is ground to a fine powder to break up the hair's protein matrix and increase the surface area for extraction. CORT from the interior of the hair shaft is extracted into methanol, the methanol is evaporated, and the extract is reconstituted in assay buffer. Extracted CORT, along with standards and quality controls, is then analyzed by means of a sensitive and specific commercially available enzyme immunoassay (EIA) kit. Readout from the EIA is converted to pg CORT per mg powdered hair weight. This method has been used in our laboratory to analyze hair CORT in humans, several species of macaque monkeys, marmosets, dogs, and polar bears. Many studies both from our lab and from other research groups have demonstrated the broad applicability of hair CORT for assessing chronic stress exposure in natural as well as laboratory settings. PMID:24513702

  1. Notch signaling in mammalian hair cell regeneration

    PubMed Central

    Slowik, Amber D.; Bermingham-McDonogh, Olivia

    2014-01-01

    In the inner ear, Notch signaling has been shown to have two key developmental roles. The first occurs early in otic development and defines the prosensory domains that will develop into the six sensory organs of the inner ear. The second role occurs later in development and establishes the mosaic-like pattern of the mechanosensory hair cells and their surrounding support cells through the more well-characterized process of lateral inhibition. These dual developmental roles have inspired several different strategies to regenerate hair cells in the mature inner ear organs. These strategies include (1) modulation of Notch signaling in inner ear stem cells in order to increase hair cell yield, (2) activation of Notch signaling in order to promote the formation of ectopic sensory regions in normally non-sensory regions within the inner ear, and (3) inhibition of Notch signaling to disrupt lateral inhibition and allow support cells to transdifferentiate into hair cells. In this review, we summarize some of the promising studies that have used these various strategies for hair cell regeneration through modulation of Notch signaling and some of the challenges that remain in developing therapies based on hair cell regeneration. PMID:25328289

  2. Elevated hair cortisol concentrations in endurance athletes.

    PubMed

    Skoluda, Nadine; Dettenborn, Lucia; Stalder, Tobias; Kirschbaum, Clemens

    2012-05-01

    Engaging in intensive aerobic exercise, specifically endurance sports, is associated with HPA axis activation indicated by elevated cortisol levels. Whether the repeated short-term elevations in cortisol levels result in higher long-term cortisol exposure of endurance athletes has been difficult to examine since traditional methods of cortisol assessments (saliva, blood, urine) reflect only relatively short time periods. Hair segment analysis provides a new method to assess cumulative cortisol secretion over prolonged time periods in a retrospective fashion. The aim of this study was to investigate cumulative cortisol secretion over several months reflecting intensive training and competitive races by examining hair cortisol levels of endurance athletes. Hair samples were obtained from 304 amateur endurance athletes (long-distance runners, triathletes, cyclists) and 70 controls. Cortisol concentrations were determined in the first to third 3-cm hair segments most proximal to the scalp. In addition, self-report measures of training volume were obtained. Endurance athletes exhibited higher cortisol levels in all three hair segments compared to controls (p<.001). Positive correlations between the cortisol concentration in the first hair segment and each indicator of training volume were found (all p<.01). These data suggest that repeated physical stress of intensive training and competitive races among endurance athletes is associated with elevated cortisol exposure over prolonged periods of time. These findings may have important implications with regard to somatic and mental health of athletes which should be investigated in future research.

  3. LSD in pubic hair in a fatality.

    PubMed

    Gaulier, Jean-michel; Maublanc, Julie; Lamballais, Florence; Bargel, Sophie; Lachâtre, Gérard

    2012-05-10

    Lysergic acid diethylamide (LSD) is a potent hallucinogen, active at very low dosage and its determination in body fluids in a forensic context may present some difficulties, even more so in hair. A dedicated liquid chromatography-electrospray-tandem mass spectrometry (LC-ES-MS/MS) assay in hair was used to document the case of a 24-year-old man found dead after a party. Briefly, after a decontamination step, a 50mg sample of the victim's pubic hair was cut into small pieces (<1mm length), and incubated overnight in 3mL of phosphate buffer pH 5 at room temperature. After a liquid-liquid extraction (dichloromethane/ether), the extract was analyzed using a LC-ES-MS/MS method exhibiting a limit of quantification of 0.5pg/mg for LSD. A LSD concentration of 0.66pg/mg of pubic hair was observed. However, this result remains difficult to interpret owing to the concomitant LSD presence in the victim's post mortem blood and urine, the lack of previously reported LSD concentrations in hair, and the absence of data about LSD incorporation and stability in pubic hair.

  4. The Outer Limits: English.

    ERIC Educational Resources Information Center

    Tyler, Barbara R.; Biesekerski, Joan

    The Quinmester course "The Outer Limits" involves an exploration of unknown worlds, mental and physical, through fiction and nonfiction. Its purpose is to focus attention on the ongoing conquest of the frontiers of the mind, the physical world, and outer space. The subject matter includes identification and investigation of unknown worlds in the…

  5. Outer planet satellites

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon.

  6. Advances in Understanding Hair Growth.

    PubMed

    Bernard, Bruno A

    2016-01-01

    In this short review, I introduce an integrated vision of human hair follicle behavior and describe opposing influences that control hair follicle homeostasis, from morphogenesis to hair cycling. The interdependence and complementary roles of these influences allow us to propose that the hair follicle is a true paradigm of a "Yin Yang" type, that is a cold/slow-hot/fast duality. Moreover, a new promising field is emerging, suggesting that glycans are key elements of hair follicle growth control. PMID:26918186

  7. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields

    PubMed Central

    Sutton, Gregory P.; Clarke, Dominic; Morley, Erica L.; Robert, Daniel

    2016-01-01

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee. PMID:27247399

  8. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields.

    PubMed

    Sutton, Gregory P; Clarke, Dominic; Morley, Erica L; Robert, Daniel

    2016-06-28

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee.

  9. Hair casts. A clinical and morphologic study.

    PubMed

    Taïeb, A; Surlève-Bazeille, J E; Maleville, J

    1985-08-01

    Idiopathic hair casts are described in two girls aged 5 and 7 years. A 0.025% tretinoin lotion seemed effective in removing the casts. Investigations, including light microscopy and transmission electron microscopy, suggest an infrainfundibular origin for these lesions, because both inner and outer root sheath components were observed in the transverse sections of the casts. A comprehensive review of the literature enabled us to classify the patients into two distinct groups: group 1 consisted of patients with idiopathic disease, showing a diffuse pattern of involvement, and group 2 consisted of patients with disease secondary to a variety of inflammatory scalp disorders.

  10. 76 FR 11811 - Environmental Document Prepared in Support of Oil and Gas Activities on the Alaska Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Register (FR) which lists all EAs and FONSIs prepared for OCS permitting activities in the Region during...)). If no EAs and FONSIs were prepared for a 3-month period, no FR Notice is required.'' BOEMRE prepares... FONSI ION Geophysical, Inc., Beaufort and Beaufort Sea and Chukchi Conduct 2D Seismic Survey......

  11. Chrysanthemum zawadskii extract induces hair growth by stimulating the proliferation and differentiation of hair matrix.

    PubMed

    Li, Zheng; Li, Jingjie; Gu, Lijuan; Begum, Shahnaz; Wang, Yunbo; Sun, Baishen; Lee, Mira; Sung, Changkeun

    2014-07-01

    Chrysanthemum zawadskii has been proven to possess hair growth activity and has been used as treatment for hair loss. The aim of this study was to provide a novel explanation of the mechanism by which Chrysanthemum zawadskii extracts (CZe) promote hair growth and to characterize the affected hair follicle (HF) regions and the progression of growth. The n-butanol and water fractions of CZe were used for hair growth induction by topical application to the backs of C57BL/6 mice for up to 30 days. To investigate cell development during HF morphogenesis, bromodeoxyuridine-labeled skin sections were detected using immunohistochemistry. The results showed that the water fraction of CZe promoted hair shaft production and induced premature entry of telogen HFs into the anagen. Subsequently, immunohistochemical studies indicated that the water fraction of CZe stimulated the differentiation and proliferation of pluripotent epidermal matrix cells in the matrix region and epithelial stem cells in the basal layer of the epidermis. Additionally, flavonoids were identified as effective constituents. Therefore, the findings of this study suggested that the water fraction of CZe may be developed as a therapeutic agent for the prevention of hair loss. PMID:24807783

  12. Eps8 Regulates Hair Bundle Length and Functional Maturation of Mammalian Auditory Hair Cells

    PubMed Central

    Waldhaus, Jörg; Xiong, Hao; Hackney, Carole M.; Holley, Matthew C.; Offenhauser, Nina; Di Fiore, Pier Paolo; Knipper, Marlies; Masetto, Sergio; Marcotti, Walter

    2011-01-01

    Hair cells of the mammalian cochlea are specialized for the dynamic coding of sound stimuli. The transduction of sound waves into electrical signals depends upon mechanosensitive hair bundles that project from the cell's apical surface. Each stereocilium within a hair bundle is composed of uniformly polarized and tightly packed actin filaments. Several stereociliary proteins have been shown to be associated with hair bundle development and function and are known to cause deafness in mice and humans when mutated. The growth of the stereociliar actin core is dynamically regulated at the actin filament barbed ends in the stereociliary tip. We show that Eps8, a protein with actin binding, bundling, and barbed-end capping activities in other systems, is a novel component of the hair bundle. Eps8 is localized predominantly at the tip of the stereocilia and is essential for their normal elongation and function. Moreover, we have found that Eps8 knockout mice are profoundly deaf and that IHCs, but not OHCs, fail to mature into fully functional sensory receptors. We propose that Eps8 directly regulates stereocilia growth in hair cells and also plays a crucial role in the physiological maturation of mammalian cochlear IHCs. Together, our results indicate that Eps8 is critical in coordinating the development and functionality of mammalian auditory hair cells. PMID:21526224

  13. Stimulation of phospholipase A2 activity in bovine rod outer segments by the beta gamma subunits of transducin and its inhibition by the alpha subunit.

    PubMed Central

    Jelsema, C L; Axelrod, J

    1987-01-01

    In the rod outer segments (ROS) of bovine retina, light activation of phospholipase A2 has been shown to occur by a transducin-dependent mechanism. In this report, the transducin-mediated stimulation of phospholipase A2 is shown to require dissociation of the alpha beta gamma heterotrimer. Addition of transducin to dark-adapted transducin-poor ROS stimulated phospholipase A2 activity only with coincident exposure to white light or, in the dark, with addition of the hydrolysis-resistant GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S]). Both light and GTP[gamma-S] induced dissociation of the transducin subunits and led to severalfold increases in the phospholipase A2 activity of transducin-rich, but not transducin-poor, ROS. In contrast, pertussis toxin treatment of transducin, which stabilizes the associated state of this G protein, prevented the stimulation of phospholipase A2 by exogenous transducin in the presence of light. Addition of purified transducin subunits to dark-adapted transducin-poor ROS revealed that phospholipase A2 stimulation occurred by action of the beta gamma subunits. This is in contrast to the transducin-mediated increase in cGMP phosphodiesterase activity, where activation occurs by action of the alpha subunit. The alpha subunit, which itself slightly stimulated phospholipase A2 activity, inhibited the beta gamma-induced stimulation of phospholipase A2. This inhibition appears to be the result of subunit reassociation since addition of GTP[gamma-S] abolished the inhibitory effect of the alpha subunit on the beta gamma-induced increase in phospholipase A2, while pertussis toxin treatment of the subunits further inhibited phospholipase A2 activity. Modulation of phospholipase A2 activity by the transducin subunit is, therefore, a mode of action for these subunits in signal transduction. PMID:3108876

  14. Hair straightener poisoning

    MedlinePlus

    How well someone does depends on how much hair straightener they swallowed and how quickly they receive treatment. The faster medical help is given, the better the chance for recovery. Extensive damage to the mouth, throat, and stomach is possible. ...

  15. Hair Treatments and Pregnancy

    MedlinePlus

    ... is likely that only a small amount of hair straightening products are actually absorbed into your system, so the developing baby would only be exposed to small amounts. I work full time as a cosmetologist and recently became ...

  16. Scurvy, corkscrew hair (image)

    MedlinePlus

    Scurvy is a nutritional disease caused by deficiency of vitamin C. Pinpoint bleeding around hair follicles, and " ... this picture, can occur as a result of scurvy. Bleeding along the gums is common. This disease ...

  17. Hair dye poisoning

    MedlinePlus

    ... are: Arsenic Bismuth Denatured alcohol Lead ( lead poisoning ) Mercury Pyrogallol Silver Hair dyes may contain other harmful ... bleeding and infection. Continued exposure to lead or mercury can lead to permanent brain and nervous system ...

  18. Hair Loss (Alopecia)

    MedlinePlus

    ... for these devices are not known. Prescription medicine Finasteride: The FDA approved this medicine to treat men ... hair re-growth in many (about 66%) men. Finasteride works by stopping the body from making a ...

  19. Significance of hair-dye base-induced sensory irritation.

    PubMed

    Fujita, F; Azuma, T; Tajiri, M; Okamoto, H; Sano, M; Tominaga, M

    2010-06-01

    Oxidation hair-dyes, which are the principal hair-dyes, sometimes induce painful sensory irritation of the scalp caused by the combination of highly reactive substances, such as hydrogen peroxide and alkali agents. Although many cases of severe facial and scalp dermatitis have been reported following the use of hair-dyes, sensory irritation caused by contact of the hair-dye with the skin has not been reported clearly. In this study, we used a self-assessment questionnaire to measure the sensory irritation in various regions of the body caused by two model hair-dye bases that contained different amounts of alkali agents without dyes. Moreover, the occipital region was found as an alternative region of the scalp to test for sensory irritation of the hair-dye bases. We used this region to evaluate the relationship of sensitivity with skin properties, such as trans-epidermal water loss (TEWL), stratum corneum water content, sebum amount, surface temperature, current perception threshold (CPT), catalase activities in tape-stripped skin and sensory irritation score with the model hair-dye bases. The hair-dye sensitive group showed higher TEWL, a lower sebum amount, a lower surface temperature and higher catalase activity than the insensitive group, and was similar to that of damaged skin. These results suggest that sensory irritation caused by hair-dye could occur easily on the damaged dry scalp, as that caused by skin cosmetics reported previously.

  20. Proanthocyanidins from grape seeds promote proliferation of mouse hair follicle cells in vitro and convert hair cycle in vivo.

    PubMed

    Takahashi, T; Kamiya, T; Yokoo, Y

    1998-11-01

    For the purpose of discovering natural products which possess hair growing activity, we examined about 1000 kinds of plant extracts concerning growth-promoting activity with respect to hair follicle cells. After an extensive search, we discovered that proanthocyanidins extracted from grape seeds promote proliferation of hair follicle cells isolated from mice by about 230% relative to controls (100%); and that proanthocyanidins possess remarkable hair-cycle-converting activity from the telogen phase to the anagen phase in C3H mice in vivo test systems. The profile of the active fraction of the proanthocyanidins was elucidated by thiolytic degradation and tannase hydrolysis. We found that the constitutive monomers were epicatechin and catechin; and that the degree of polymerization was 3.5. We demonstrated the possibility of using the proanthocyanidins extracted from grape seeds as agents inducing hair growth.

  1. The Small GTPase ROP10 of Medicago truncatula Is Required for Both Tip Growth of Root Hairs and Nod Factor-Induced Root Hair Deformation

    PubMed Central

    Lei, Ming-Juan; Wang, Qi; Li, Xiaolin; Chen, Aimin; Luo, Li; Xie, Yajun; Li, Guan; Luo, Da; Mysore, Kirankumar S.; Wen, Jiangqi; Xie, Zhi-Ping; Staehelin, Christian; Wang, Yan-Zhang

    2015-01-01

    Rhizobia preferentially enter legume root hairs via infection threads, after which root hairs undergo tip swelling, branching, and curling. However, the mechanisms underlying such root hair deformation are poorly understood. Here, we showed that a type II small GTPase, ROP10, of Medicago truncatula is localized at the plasma membrane (PM) of root hair tips to regulate root hair tip growth. Overexpression of ROP10 and a constitutively active mutant (ROP10CA) generated depolarized growth of root hairs, whereas a dominant negative mutant (ROP10DN) inhibited root hair elongation. Inoculated with Sinorhizobium meliloti, the depolarized swollen and ballooning root hairs exhibited extensive root hair deformation and aberrant infection symptoms. Upon treatment with rhizobia-secreted nodulation factors (NFs), ROP10 was transiently upregulated in root hairs, and ROP10 fused to green fluorescent protein was ectopically localized at the PM of NF-induced outgrowths and curls around rhizobia. ROP10 interacted with the kinase domain of the NF receptor NFP in a GTP-dependent manner. Moreover, NF-induced expression of the early nodulin gene ENOD11 was enhanced by the overexpression of ROP10 and ROP10CA. These data suggest that NFs spatiotemporally regulate ROP10 localization and activity at the PM of root hair tips and that interactions between ROP10 and NF receptors are required for root hair deformation and continuous curling during rhizobial infection. PMID:25794934

  2. Modeling Electrically Active Viscoelastic Membranes

    PubMed Central

    Roy, Sitikantha; Brownell, William E.; Spector, Alexander A.

    2012-01-01

    The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric) force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism. PMID:22701528

  3. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells.

    PubMed

    Parker, Andrew; Cross, Sally H; Jackson, Ian J; Hardisty-Hughes, Rachel; Morse, Susan; Nicholson, George; Coghill, Emma; Bowl, Michael R; Brown, Steve D M

    2015-12-01

    Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs) that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182) in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss.

  4. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells

    PubMed Central

    Parker, Andrew; Cross, Sally H.; Jackson, Ian J.; Hardisty-Hughes, Rachel; Morse, Susan; Nicholson, George; Coghill, Emma; Bowl, Michael R.; Brown, Steve D. M.

    2015-01-01

    ABSTRACT Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs) that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182) in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss. PMID:26542706

  5. Effect of ultraviolet radiation, smoking and nutrition on hair.

    PubMed

    Trüeb, Ralph M

    2015-01-01

    Similar to the rest of the skin, the hair is exposed to noxious environmental factors. While ultraviolet radiation (UVR) and smoking are well appreciated as major factors contributing to the extrinsic aging of the skin, their effects on the condition of hair have only lately attracted the attention of the medical community. Terrestrial solar UVR ranges from approximately 290 to 400 nm; UV-B (290-315 nm) reaches only the upper dermis, while the penetration of UV-A (315-400 nm) into the dermis increases with wavelength. The two most important chronic effects of UVR on the skin and bald scalp are photocarcinogenesis and solar elastosis; however, the effects of UVR on hair have largely been ignored. As a consequence of increased leisure time and a growing popularity of outdoor activities and holidays in the sun, the awareness of sun protection of the skin has become important and should also apply to the hair. Besides being the single-most preventable cause of significant cardiovascular and pulmonary morbidity and an important cause of death, the association of tobacco smoking with various adverse effects on the skin and hair has also been recognized. Increasing public awareness of the association between smoking and hair loss seems to offer a good opportunity for the prevention or cessation of smoking, since the appearance of hair plays an important role in the overall physical appearance and self-perception of people. Finally, the quantity and quality of hair are closely related to the nutritional state of an individual. Normal supply, uptake, and transport of proteins, calories, trace elements, and vitamins are of fundamental importance in tissues with high biosynthetic activity, such as the hair follicle. In instances of protein and calorie malnutrition as well as essential amino acid, trace element, and vitamin deficiencies, hair growth and pigmentation may be impaired. Ultimately, important commercial interest lies in the question of whether increasing the

  6. Two-state approach to stochastic hair bundle dynamics.

    PubMed

    Clausznitzer, Diana; Lindner, Benjamin; Jülicher, Frank; Martin, Pascal

    2008-04-01

    Hair cells perform the mechanoelectrical transduction of sound signals in the auditory and vestibular systems of vertebrates. The part of the hair cell essential for this transduction is the so-called hair bundle. In vitro experiments on hair cells from the sacculus of the American bullfrog have shown that the hair bundle comprises active elements capable of producing periodic deflections like a relaxation oscillator. Recently, a continuous nonlinear stochastic model of the hair bundle motion [Nadrowski, Proc. Natl. Acad. Sci. U.S.A. 101, 12195 (2004)] has been shown to reproduce the experimental data in stochastic simulations faithfully. Here, we demonstrate that a binary filtering of the hair bundle's deflection (experimental data and continuous hair bundle model) does not change significantly the spectral statistics of the spontaneous as well as the periodically driven hair bundle motion. We map the continuous hair bundle model to the FitzHugh-Nagumo model of neural excitability and discuss the bifurcations between different regimes of the system in terms of the latter model. Linearizing the nullclines and assuming perfect time-scale separation between the variables we can map the FitzHugh-Nagumo system to a simple two-state model in which each of the states corresponds to the two possible values of the binary-filtered hair bundle trajectory. For the two-state model, analytical expressions for the power spectrum and the susceptibility can be calculated [Lindner and Schimansky-Geier, Phys. Rev. E 61, 6103 (2000)] and show the same features as seen in the experimental data as well as in simulations of the continuous hair bundle model. PMID:18517650

  7. Two-state approach to stochastic hair bundle dynamics

    NASA Astrophysics Data System (ADS)

    Clausznitzer, Diana; Lindner, Benjamin; Jülicher, Frank; Martin, Pascal

    2008-04-01

    Hair cells perform the mechanoelectrical transduction of sound signals in the auditory and vestibular systems of vertebrates. The part of the hair cell essential for this transduction is the so-called hair bundle. In vitro experiments on hair cells from the sacculus of the American bullfrog have shown that the hair bundle comprises active elements capable of producing periodic deflections like a relaxation oscillator. Recently, a continuous nonlinear stochastic model of the hair bundle motion [Nadrowski , Proc. Natl. Acad. Sci. U.S.A. 101, 12195 (2004)] has been shown to reproduce the experimental data in stochastic simulations faithfully. Here, we demonstrate that a binary filtering of the hair bundle's deflection (experimental data and continuous hair bundle model) does not change significantly the spectral statistics of the spontaneous as well as the periodically driven hair bundle motion. We map the continuous hair bundle model to the FitzHugh-Nagumo model of neural excitability and discuss the bifurcations between different regimes of the system in terms of the latter model. Linearizing the nullclines and assuming perfect time-scale separation between the variables we can map the FitzHugh-Nagumo system to a simple two-state model in which each of the states corresponds to the two possible values of the binary-filtered hair bundle trajectory. For the two-state model, analytical expressions for the power spectrum and the susceptibility can be calculated [Lindner and Schimansky-Geier, Phys. Rev. E 61, 6103 (2000)] and show the same features as seen in the experimental data as well as in simulations of the continuous hair bundle model.

  8. Line and continuum radiation from the outer region of accretion discs in active galactic nuclei. I - Preliminary considerations

    NASA Astrophysics Data System (ADS)

    Collin-Souffrin, S.

    1987-06-01

    The structure and emission of the optically thin region of steady accretion discs in Active Galactic Nuclei (AGN) is investigated. It is shown that this region is located far from the center (R/RG very large 102). If its only energy source is provided by accretion, the temperature is very low (1000 - 2000K) and therefore it cannot be identified with the broad line emitting region (BLR). The overall emission of the optically thin region is negligible, except in the infrared at a few microns, where it gives some contribution of the "5 μ-bump". However it is found that, if the disc is heated by the down scattered part of the non-thermal continuum observed in AGN, the physical parameters of the optically thin region satisfy the requirements of photoionization models for the line emission. Hard X-ray heating of the external regions of accretion discs is the source of the "missing energy" in the budget of the BLR (Collin-Souffrin, 1986) and moreover gives rise to an intense infrared thermal continuum able to account for the 5 μ bump. Finally this model could solve the "Fell problem".

  9. Outer Solar System Nomenclature

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.; Grant, John (Technical Monitor)

    2003-01-01

    This grant has supported work by T. Owen and B. A. Smith on planetary and satellite nomenclature, carried out under the general auspices of the International Astronomical Union (IAU). The IAU maintains a Working Group on Planetary and Satellite Nomenclature (WGPSN) whose current chair is Prof.Kaare Aksnes of the Rosseland Institute for Theoretical Astrophysics in Oslo, Norway. Both Owen and Smith are members of the WGPSN; Owen as chair of the Outer Solar System Task Group, and Smith as chair of the Mars Task Group. The major activity during the last grant period (2002) was the approval of several new names for features on Mars by Smith's group and features on Jovian satellites plus new names for satellites of Jupiter, Saturn and Uranus by Owen's group. Much of this work was accomplished by e-mail exchanges, but the new nomenclature was formally discussed and approved at a meeting of the WGPSN held in conjunction with the Division for Planetary Sciences meeting in Birmingham, Alabama in October 2002.

  10. Outer planet satellites

    SciTech Connect

    Schenk, P.M. )

    1991-01-01

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon. 210 refs.

  11. Bering Sea summary report: Outer Continental Shelf oil and gas activities in the Bering Sea and their onshore impacts

    SciTech Connect

    Deis, J.; Pierson, R.; Kurz, F.

    1983-09-01

    Two federal offshore oil-and-gas lease sales have been held in the Bering Sea Subregion. Lease Sale 57, Norton Basin, was held on March 15, 1983. Lease Sale 70, St. George Basin, was held on April 12, 1983. The sale offered 479 tracts, of which 97 received bids. The Department of the Interior has indicated that it will accept 96 of the 97 high bids; however, to date, leases have not been awarded. The Department of the Interior was enjoined from issuing leases by the US District Court of Alaska because of possible impacts from postlease preliminary seismic activities on gray and right whales. In accordance with the Court's ruling, leases cannot be issued until the completion of a supplemental environmental impact statement, which is anticipated to occur in November 1983. Six lease offerings in the Bering Sea Subregion are scheduled through 1987. Six deep stratigraphic test wells are the only wells drilled to date in the Bering Sea Subregion. To date, oil companies have not submitted exploration plans for the Norton Basin Planning Area. Exploration in Norton Basin could begin in the summer of 1984, at the earliest. Exploration plans cannot be submitted for the St. George Basin Planning Area until the leases are awarded. At this time, various onshore areas are being considered as possible support bases for offshore oil-and-gas exploration. At this stage, before exploratory drilling has occurred and in the absence of a commercial discovery, plans for transporting petroleum from the Bering Sea to markets in the United States are unclear. The current estimates of risked resources for lands leased in Lease Sale 57, Norton Basin, are 33 million barrels of oil and 110 billion cubic feet of gas. Lease Sale 70, St. George Basin, estimates of risked resources for leased lands are 27 million barrels of oil and 310 billion cubic feet of gas. 55 references, 10 figures, 3 tables.

  12. Aging changes in hair and nails

    MedlinePlus

    ... Hair color is due to a pigment called melanin , which hair follicles produce. Follicles are structures in ... grow hair. With aging, the follicles make less melanin, and this causes gray hair. Graying often begins ...

  13. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    NASA Astrophysics Data System (ADS)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  14. The biology of hair diversity.

    PubMed

    Westgate, Gillian E; Botchkareva, Natalia V; Tobin, Desmond J

    2013-08-01

    Hair diversity, its style, colour, shape and growth pattern is one of our most defining characteristics. The natural versus temporary style is influenced by what happens to our hair during our lifetime, such as genetic hair loss, sudden hair shedding, greying and pathological hair loss in the various forms of alopecia because of genetics, illness or medication. Despite the size and global value of the hair care market, our knowledge of what controls the innate and within-lifetime characteristics of hair diversity remains poorly understood. In the last decade, drivers of knowledge have moved into the arena of genetics where hair traits are obvious and measurable and genetic polymorphisms are being found that raise valuable questions about the biology of hair growth. The recent discovery that the gene for trichohyalin contributes to hair shape comes as no surprise to the hair biologists who have believed for 100 years that hair shape is linked to the structure and function of the inner root sheath. Further conundrums awaiting elucidation include the polymorphisms in the androgen receptor (AR) described in male pattern alopecia whose location on the X chromosome places this genetic contributor into the female line. The genetics of female hair loss is less clear with polymorphisms in the AR not associated with female pattern hair loss. Lifestyle choices are also implicated in hair diversity. Greying, which also has a strong genetic component, is often suggested to have a lifestyle (stress) influence and hair follicle melanocytes show declining antioxidant protection with age and lowered resistance to stress. It is likely that hair research will undergo a renaissance on the back of the rising information from genetic studies as well as the latest contributions from the field of epigenetics.

  15. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth.

    PubMed

    Harel, Sivan; Higgins, Claire A; Cerise, Jane E; Dai, Zhenpeng; Chen, James C; Clynes, Raphael; Christiano, Angela M

    2015-10-01

    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway results in rapid onset of anagen and subsequent hair growth. We show that JAK inhibition regulates the activation of key hair follicle populations such as the hair germ and improves the inductivity of cultured human dermal papilla cells by controlling a molecular signature enriched in intact, fully inductive dermal papillae. Our findings open new avenues for exploration of JAK-STAT inhibition for promotion of hair growth and highlight the role of this pathway in regulating the activation of hair follicle stem cells. PMID:26601320

  16. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth

    PubMed Central

    Harel, Sivan; Higgins, Claire A.; Cerise, Jane E.; Dai, Zhenpeng; Chen, James C.; Clynes, Raphael; Christiano, Angela M.

    2015-01-01

    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway results in rapid onset of anagen and subsequent hair growth. We show that JAK inhibition regulates the activation of key hair follicle populations such as the hair germ and improves the inductivity of cultured human dermal papilla cells by controlling a molecular signature enriched in intact, fully inductive dermal papillae. Our findings open new avenues for exploration of JAK-STAT inhibition for promotion of hair growth and highlight the role of this pathway in regulating the activation of hair follicle stem cells. PMID:26601320

  17. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth.

    PubMed

    Harel, Sivan; Higgins, Claire A; Cerise, Jane E; Dai, Zhenpeng; Chen, James C; Clynes, Raphael; Christiano, Angela M

    2015-10-01

    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway results in rapid onset of anagen and subsequent hair growth. We show that JAK inhibition regulates the activation of key hair follicle populations such as the hair germ and improves the inductivity of cultured human dermal papilla cells by controlling a molecular signature enriched in intact, fully inductive dermal papillae. Our findings open new avenues for exploration of JAK-STAT inhibition for promotion of hair growth and highlight the role of this pathway in regulating the activation of hair follicle stem cells.

  18. sPLA2 -IIA Overexpression in Mice Epidermis Depletes Hair Follicle Stem Cells and Induces Differentiation Mediated Through Enhanced JNK/c-Jun Activation.

    PubMed

    Sarate, Rahul M; Chovatiya, Gopal L; Ravi, Vagisha; Khade, Bharat; Gupta, Sanjay; Waghmare, Sanjeev K

    2016-09-01

    Secretory phospholipase A2 Group-IIA (sPLA2 -IIA) catalyzes the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. sPLA2 -IIA is deregulated in various cancers; however, its role in hair follicle stem cell (HFSC) regulation is obscure. Here we report a transgenic mice overexpressing sPLA2 -IIA (K14-sPLA2 -IIA) showed depletion of HFSC pool. This was accompanied with increased differentiation, loss of ortho-parakeratotic organization and enlargement of sebaceous gland, infundibulum and junctional zone. The colony forming efficiency of keratinocytes was significantly reduced. Microarray profiling of HFSCs revealed enhanced level of epithelial mitogens and transcription factors, c-Jun and FosB that may be involved in proliferation and differentiation. Moreover, K14-sPLA2 -IIA keratinocytes showed enhanced activation of EGFR and JNK1/2 that led to c-Jun activation, which co-related with enhanced differentiation. Further, depletion of stem cells in bulge is associated with high levels of chromatin silencing mark, H3K27me3 and low levels of an activator mark, H3K9ac suggestive of alteration in gene expression contributing toward stem cells differentiation. Our results, first time uncovered that overexpression of sPLA2 -IIA lead to depletion of HFSCs and differentiation associated with altered histone modification. Thus involvement of sPLA2 -IIA in stem cells regulation and disease pathogenesis suggest its prospective clinical implications. Stem Cells 2016;34:2407-2417. PMID:27299855

  19. sPLA2 -IIA Overexpression in Mice Epidermis Depletes Hair Follicle Stem Cells and Induces Differentiation Mediated Through Enhanced JNK/c-Jun Activation.

    PubMed

    Sarate, Rahul M; Chovatiya, Gopal L; Ravi, Vagisha; Khade, Bharat; Gupta, Sanjay; Waghmare, Sanjeev K

    2016-09-01

    Secretory phospholipase A2 Group-IIA (sPLA2 -IIA) catalyzes the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. sPLA2 -IIA is deregulated in various cancers; however, its role in hair follicle stem cell (HFSC) regulation is obscure. Here we report a transgenic mice overexpressing sPLA2 -IIA (K14-sPLA2 -IIA) showed depletion of HFSC pool. This was accompanied with increased differentiation, loss of ortho-parakeratotic organization and enlargement of sebaceous gland, infundibulum and junctional zone. The colony forming efficiency of keratinocytes was significantly reduced. Microarray profiling of HFSCs revealed enhanced level of epithelial mitogens and transcription factors, c-Jun and FosB that may be involved in proliferation and differentiation. Moreover, K14-sPLA2 -IIA keratinocytes showed enhanced activation of EGFR and JNK1/2 that led to c-Jun activation, which co-related with enhanced differentiation. Further, depletion of stem cells in bulge is associated with high levels of chromatin silencing mark, H3K27me3 and low levels of an activator mark, H3K9ac suggestive of alteration in gene expression contributing toward stem cells differentiation. Our results, first time uncovered that overexpression of sPLA2 -IIA lead to depletion of HFSCs and differentiation associated with altered histone modification. Thus involvement of sPLA2 -IIA in stem cells regulation and disease pathogenesis suggest its prospective clinical implications. Stem Cells 2016;34:2407-2417.

  20. Isolation and characterization of an outer membrane protein of Salmonella paratyphi B: a mitogen and polyclonal activator of human B lymphocytes.

    PubMed Central

    Sager, S; Virella, G; Chen, W Y; Fudenberg, H H

    1984-01-01

    Salmonella paratyphi B (S. paratyphi B) has been previously characterized as a human T-independent polyclonal B cell activator. To define further the nature of the bacterial structure responsible for these properties, we studied the effects of autoclaving and enzyme treatment of S. paratyphi B on its stimulatory capacity. We found that both autoclaving and papain treatment decreased the ability of S. paratyphi B to induce B cell activation, while trypsin treatment did not affect this capacity. Neither type of treatment affected the binding of S. paratyphi B to lymphocytes, suggesting that binding and B cell stimulation are mediated by different structures. The observation that B cell stimulation was significantly reduced by papain treatment led us to attempt to purify membrane proteins so that we could investigate whether they shared the stimulating capacity of S. paratyphi B. A water-insoluble, 43-45,000 mol. wt. protein, rich in aspartic acid, glutamine, glycine, alanine and leucine, similar in mol. wt. and physicochemical chemical properties to the porins of other gram negative bacteria, was isolated and designated as outer membrane protein (OMP). This protein was equally efficient to S. paratyphi B in inducing T-independent B cell activation. By performing time-course studies of [3H]-thymidine incorporation we observed a burst of mitogenic activity after stimulation of PBL or purified B cells with both S. paratyphi B and OMP peaking at 48-96 hr of culture (compared to 96-120 hr for the PWM proliferation peak), and with a magnitude of roughly 10% of that observed after PWM stimulation. Given the fact that the proportion of B lymphocytes in PBL is 4-12%, it appears likely that the proliferation burst seen with S. paratyphi B and OMP corresponds to a mitogenic effect mainly restricted to the B cell population. Images Figure 1 PMID:6370841

  1. Moss hair water transport

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Wu, Nan; Hurd, Randy; Thomson, Scott; Pitt, William; Truscott, Tadd

    2013-11-01

    We present an investigation of water transportation on a moss (Syntrichia caninervis) indigenous to temperate deserts. The moss typically appears to be in a dry, brown state, but is rehydrated by water during the wet season, making the desert green. Small hairs (500-2000 μm in length, and 40 μm in diameter, d) growing out from the tip of the moss leaves transport water back to the leaves. Through high speed observations and mathematical modeling it appears that this transportation is driven by two different mechanisms. 1) Droplet transport is achieved in three ways: i) A large (10d) droplet attached between two intersecting fibers will move toward the bases of the leaves by the changing angle between the two hairs. ii) The shape of the moss hair is conical, thicker at the base, producing a gradient that moves fluid (5d) toward the leaf similar to cactus spines. iii) We also observe that in some cases a Plateau-Rayleigh instability trigger a series of droplets moving toward the base. 2) Micro-grooves on the moss hair transport a film of water along the moss hair when larger droplets are not available. These various water transportation strategies combine to help the moss to survive in the desert and provide valuable insight.

  2. Evaluation of hair humidity resistance/moisturization from hair elasticity.

    PubMed

    Gao, Timothy

    2007-01-01

    Average water regain and hair elasticity (Young's modulus) of virgin dark brown and bleached hair fibers under different relative humidity (RH) were determined. It is observed that hair water regain increases linearly with an increase in RH in the range of 40-85%; and the remaining percent of hair elasticity decreases linearly with an increase in RH in the range of 50-80%. Therefore, measurements of average hair elasticity at 50% and 80% RH, respectively, under various equilibrium times before and after cosmetic treatments can be used to evaluate effects of cosmetic treatments on water adsorption behavior of hair-improvement in hair humidity resistance or enhancement in hair moisture uptake. A Hair Humidity Resistance Factor (H(2)RF) has been defined. If R(2)HF > 1, the product improves hair humidity resistance-anti-frizz; if R(2)HF < 1, the product enhances hair water adsorption; when R(2)HF approximately 1, the product has no significant effect on hair water adsorption behavior. This method was applied to evaluate anti-frizz performance of several shampoo formulations containing Polyquaternium-10, or Polyquaternium-70, or Polyquaternium-67, or Guar Hydroxypropyltrimonium Chloride. It was found PQ-70 shampoo showed the highest H(2)RF value and the best anti-frizz performance among these tested shampoos. The results were consistent with those obtained from Image Analysis.

  3. Causes of hair loss and the developments in hair rejuvenation.

    PubMed

    Rushton, D H; Norris, M J; Dover, R; Busuttil, Nina

    2002-02-01

    Hair is considered to be a major component of an individual's general appearance. The psychological impact of hair loss results in a measurably detrimental change in self-esteem and is associated with images of reduced worth. It is not surprising that both men and women find hair loss a stressful experience. Genetic hair loss is the major problem affecting men and by the age of 50, up to 50% will be affected. Initial attempts to regenerate the lost hair have centred on applying a topical solution of between 2% to 5% minoxidil; however, the results proved disappointing. Recently, finasteride, a type II 5alpha reductase inhibitor has been found to regrow a noticeable amount of hair in about 40% of balding men. Further developments in treatments have lead to the use of a dual type I and type II inhibitor where 90% of those treated regrow a noticeable amount of hair. In women the major cause of hair loss before the age of 50 is nutritional, with 30% affected. Increased and persistent hair shedding (chronic telogen effluvium) and reduced hair volume are the principle changes occurring. The main cause appears to be depleted iron stores, compromised by a suboptimal intake of the essential amino acid l-lysine. Correction of these imbalances stops the excessive hair loss and returns the hair back to its former glory. However, it can take many months to redress the situation. PMID:18498491

  4. Evaluation of hair humidity resistance/moisturization from hair elasticity.

    PubMed

    Gao, Timothy

    2007-01-01

    Average water regain and hair elasticity (Young's modulus) of virgin dark brown and bleached hair fibers under different relative humidity (RH) were determined. It is observed that hair water regain increases linearly with an increase in RH in the range of 40-85%; and the remaining percent of hair elasticity decreases linearly with an increase in RH in the range of 50-80%. Therefore, measurements of average hair elasticity at 50% and 80% RH, respectively, under various equilibrium times before and after cosmetic treatments can be used to evaluate effects of cosmetic treatments on water adsorption behavior of hair-improvement in hair humidity resistance or enhancement in hair moisture uptake. A Hair Humidity Resistance Factor (H(2)RF) has been defined. If R(2)HF > 1, the product improves hair humidity resistance-anti-frizz; if R(2)HF < 1, the product enhances hair water adsorption; when R(2)HF approximately 1, the product has no significant effect on hair water adsorption behavior. This method was applied to evaluate anti-frizz performance of several shampoo formulations containing Polyquaternium-10, or Polyquaternium-70, or Polyquaternium-67, or Guar Hydroxypropyltrimonium Chloride. It was found PQ-70 shampoo showed the highest H(2)RF value and the best anti-frizz performance among these tested shampoos. The results were consistent with those obtained from Image Analysis. PMID:17728940

  5. Introduction to Hair-Follicle-Associated Pluripotent Stem Cells.

    PubMed

    Hoffman, Robert M

    2016-01-01

    Nestin-expressing stem cells of the hair follicle, discovered by our laboratory, have been shown to be able to form outer-root sheaths of the follicle as well as neurons and many other non-follicle cell types. We have termed the nestin-expressing stem cells of the hair follicle as hair-follicle-associated pluripotent (HAP) stem cells. We have shown that the HAP stem cells from the hair follicle can effect the repair of peripheral nerve and spinal cord injury. The hair follicle stem cells differentiate into neuronal and glial cells after transplantation to the injured peripheral nerve and spinal cord, and enhance injury repair and locomotor recovery. When the excised hair follicle with its nerve stump was placed in Gelfoam(®) 3D histoculture, HAP stem cells grew and extended the hair follicle nerve which consisted of βIII-tubulin-positive fibers with F-actin expression at the tip. These findings indicate that βIII-tubulin-positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in HAP stem cells, which appeared to play a major role in its elongation and interaction with other nerves in 3D Gelfoam(®) histoculture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. These results suggest that a major function of the HAP stem cells in the hair follicle is for growth of the follicle sensory nerve. Recently, we have shown that HAP stem cells can differentiate into beating cardiac muscle cells. HAP stem cells have critical advantages for regenerative medicine over embryonic stem (ES) cells and induced pluripotent stem (iPS) cells in that they are highly accessible from each patient, thereby eliminating immunological issues since they are autologous, require no genetic manipulation, are non-tumorigenic, and do not present ethical issues.

  6. Laser assisted hair-removal.

    PubMed

    Choudhary, S; Elsaie, M L; Nouri, K

    2009-10-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the hair follicle by targeting melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Laser hair removal is achieved through follicular unit destruction based on selective photothermolysis. The principle of selective photothermolysis predicts that the thermal injury will be restricted to a given target if there is sufficient selective absorption of light and the pulse duration is shorter than the thermal relaxation time of the target. This review will focus on the mechanisms of laser assisted hair removal and provide an update on the newer technologies emerging in the field of lasers assisted hair removal.

  7. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.

    PubMed

    Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A; Megason, Sean G; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.

  8. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.

    PubMed

    Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A; Megason, Sean G; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration. PMID:27351484

  9. Regulation of hair shedding by the type 3 IP3 receptor.

    PubMed

    Sato-Miyaoka, Mai; Hisatsune, Chihiro; Ebisui, Etsuko; Ogawa, Naoko; Takahashi-Iwanaga, Hiromi; Mikoshiba, Katsuhiko

    2012-09-01

    Here we showed that the type 3 IP(3) receptor (IP(3)R3) is specifically expressed in hair follicles of the skin and plays an important role in the regulation of the hair cycle. We found that IP(3)R3-deficient (Itpr3(-/-)) mice had prominent alopecia, which was characterized by repeated hair loss and regrowth. The alopecic stripe runs along the body axis like a wave, suggesting disturbed hair-cycle regulation. Indeed, the hair follicles of the alopecic region were in the early anagen stage. Although the hair growth and proliferation activity of the hair matrix cells in the anagen phase were normal in Itpr3(-/-) mice, telogen club hairs in the telogen-anagen transition phase were loosely attached to the hair follicles and were easily removed in contrast to the more tightly attached club hairs of Itpr3(+/+) mice. Itpr3(-/-) keratinocytes surrounding the telogen club hairs have sparse cytokeratin filaments extending in random directions, as well as less developed desmosomes. Furthermore, nuclear factor of activated T cells c1 (NFATc1) failed to translocate into the nucleus of keratin 6-positive bulge cells in Itpr3(-/-) telogen follicles. We propose that hair shedding is actively controlled by the IP(3)R3/NFAT-dependent signaling pathway, possibly through the regulation of cytokeratin filaments in keratinocytes.

  10. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration

    PubMed Central

    Obholzer, Nikolaus D.; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A.; Megason, Sean G.; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration. PMID:27351484

  11. Hair pulling: a review.

    PubMed

    Reinhardt, Viktor

    2005-10-01

    Hair pulling has been reported in humans, six different non-human primate species, mice, guineapigs, rabbits, sheep and muskox, dogs and cats. This behaviour seems to occur only in subjects who are confined in an artificial environment. It has been classified as a mental disorder in humans, as a behavioural pathology in animals. The hair is not only pulled but also, in most species, ingested. Hair pulling can be both self-directed and partner-directed, contains elements of aggression, manifests more often in females than in males, is associated with psychogenic distress, and resists treatment. Research data collected from affected animals are probably not normative, hence scientifically unreliable. The preemptive correction of husbandry deficiencies causing long-term stress may prevent the development of this bizarre behaviour in healthy subjects.

  12. Hair pulling: a review.

    PubMed

    Reinhardt, Viktor

    2005-10-01

    Hair pulling has been reported in humans, six different non-human primate species, mice, guineapigs, rabbits, sheep and muskox, dogs and cats. This behaviour seems to occur only in subjects who are confined in an artificial environment. It has been classified as a mental disorder in humans, as a behavioural pathology in animals. The hair is not only pulled but also, in most species, ingested. Hair pulling can be both self-directed and partner-directed, contains elements of aggression, manifests more often in females than in males, is associated with psychogenic distress, and resists treatment. Research data collected from affected animals are probably not normative, hence scientifically unreliable. The preemptive correction of husbandry deficiencies causing long-term stress may prevent the development of this bizarre behaviour in healthy subjects. PMID:16197702

  13. Activation of Immune and Defense Responses in the Intestinal Mucosa by Outer Membrane Vesicles of Commensal and Probiotic Escherichia coli Strains.

    PubMed

    José Fábrega, María; Aguilera, Laura; Giménez, Rosa; Varela, Encarna; Alexandra Cañas, María; Antolín, María; Badía, Josefa; Baldomà, Laura

    2016-01-01

    The influence of microbiota in human health is well-known. Imbalances in microbiome structure have been linked to several diseases. Modulation of microbiota composition through probiotic therapy is an attempt to harness the beneficial effects of commensal microbiota. Although, there is wide knowledge of the responses induced by gut microbiota, the microbial factors that mediate these effects are not well-known. Gram-negative bacteria release outer membrane vesicles (OMVs) as a secretion mechanism of microbial factors, which have an important role in intercellular communication. Here, we investigated whether OMVs from the probiotic Escherichia coli strain Nissle 1917 (EcN) or the commensal E. coli strain ECOR12 trigger immune responses in various cellular models: (i) peripheral blood mononuclear cells (PBMCs) as a model of intestinal barrier disruption, (ii) apical stimulation of Caco-2/PMBCs co-culture as a model of intact intestinal mucosa, and (iii) colonic mucosa explants as an ex vivo model. Stimulations with bacterial lysates were also performed. Whereas, both OMVs and lysates activated expression and secretion of several cytokines and chemokines in PBMCs, only OMVs induced basolateral secretion and mRNA upregulation of these mediators in the co-culture model. We provide evidence that OMVs are internalized in polarized Caco-2 cells. The activated epithelial cells elicit a response in the underlying immunocompetent cells. The OMVs effects were corroborated in the ex vivo model. This experimental study shows that OMVs are an effective strategy used by beneficial gut bacteria to communicate with and modulate host responses, activating signaling events through the intestinal epithelial barrier. PMID:27242727

  14. Activation of Immune and Defense Responses in the Intestinal Mucosa by Outer Membrane Vesicles of Commensal and Probiotic Escherichia coli Strains

    PubMed Central

    José Fábrega, María; Aguilera, Laura; Giménez, Rosa; Varela, Encarna; Alexandra Cañas, María; Antolín, María; Badía, Josefa

    2016-01-01

    The influence of microbiota in human health is well-known. Imbalances in microbiome structure have been linked to several diseases. Modulation of microbiota composition through probiotic therapy is an attempt to harness the beneficial effects of commensal microbiota. Although, there is wide knowledge of the responses induced by gut microbiota, the microbial factors that mediate these effects are not well-known. Gram-negative bacteria release outer membrane vesicles (OMVs) as a secretion mechanism of microbial factors, which have an important role in intercellular communication. Here, we investigated whether OMVs from the probiotic Escherichia coli strain Nissle 1917 (EcN) or the commensal E. coli strain ECOR12 trigger immune responses in various cellular models: (i) peripheral blood mononuclear cells (PBMCs) as a model of intestinal barrier disruption, (ii) apical stimulation of Caco-2/PMBCs co-culture as a model of intact intestinal mucosa, and (iii) colonic mucosa explants as an ex vivo model. Stimulations with bacterial lysates were also performed. Whereas, both OMVs and lysates activated expression and secretion of several cytokines and chemokines in PBMCs, only OMVs induced basolateral secretion and mRNA upregulation of these mediators in the co-culture model. We provide evidence that OMVs are internalized in polarized Caco-2 cells. The activated epithelial cells elicit a response in the underlying immunocompetent cells. The OMVs effects were corroborated in the ex vivo model. This experimental study shows that OMVs are an effective strategy used by beneficial gut bacteria to communicate with and modulate host responses, activating signaling events through the intestinal epithelial barrier. PMID:27242727

  15. Hair follicle targeting, penetration enhancement and Langerhans cell activation make cyanoacrylate skin surface stripping a promising delivery technique for transcutaneous immunization with large molecules and particle-based vaccines.

    PubMed

    Vogt, Annika; Hadam, Sabrina; Deckert, Iliane; Schmidt, Julia; Stroux, Andrea; Afraz, Zahra; Rancan, Fiorenza; Lademann, Jürgen; Combadiere, Behazine; Blume-Peytavi, Ulrike

    2015-01-01

    Transcutaneous immunization (TCI) requires targeting of a maximum number of skin antigen-presenting cells as non-invasive as possible on small skin areas. In two clinical trials, we introduced cyanoacrylate skin surface stripping (CSSS) as a safe method for TCI. Here, using ex vivo human skin, we demonstrate that one CSSS procedure removed only 30% of stratum corneum, but significantly increased the penetration of 200 nm polystyrene particles deep into vellus and intermediate hair follicles from where they could not been retrieved by conventional tape stripping. Two subsequent CSSS had no striking additional effect. CSSS increased particle penetration in superficial stratum corneum and induced Langerhans cell activation. Formulation in amphiphilic ointment or massage did not substantially influences the interfollicular penetration profiles. Hair follicle (HF) targeting by CSSS could become a highly effective tool for TCI when combined with carrier-based delivery and is gaining new attention as our understanding on the HF immune system increases. PMID:25382068

  16. Hair follicle targeting, penetration enhancement and Langerhans cell activation make cyanoacrylate skin surface stripping a promising delivery technique for transcutaneous immunization with large molecules and particle-based vaccines.

    PubMed

    Vogt, Annika; Hadam, Sabrina; Deckert, Iliane; Schmidt, Julia; Stroux, Andrea; Afraz, Zahra; Rancan, Fiorenza; Lademann, Jürgen; Combadiere, Behazine; Blume-Peytavi, Ulrike

    2015-01-01

    Transcutaneous immunization (TCI) requires targeting of a maximum number of skin antigen-presenting cells as non-invasive as possible on small skin areas. In two clinical trials, we introduced cyanoacrylate skin surface stripping (CSSS) as a safe method for TCI. Here, using ex vivo human skin, we demonstrate that one CSSS procedure removed only 30% of stratum corneum, but significantly increased the penetration of 200 nm polystyrene particles deep into vellus and intermediate hair follicles from where they could not been retrieved by conventional tape stripping. Two subsequent CSSS had no striking additional effect. CSSS increased particle penetration in superficial stratum corneum and induced Langerhans cell activation. Formulation in amphiphilic ointment or massage did not substantially influences the interfollicular penetration profiles. Hair follicle (HF) targeting by CSSS could become a highly effective tool for TCI when combined with carrier-based delivery and is gaining new attention as our understanding on the HF immune system increases.

  17. Protection of immunocompromised mice against lethal infection with Pseudomonas aeruginosa by active or passive immunization with recombinant P. aeruginosa outer membrane protein F and outer membrane protein I fusion proteins.

    PubMed Central

    von Specht, B U; Knapp, B; Muth, G; Bröker, M; Hungerer, K D; Diehl, K D; Massarrat, K; Seemann, A; Domdey, H

    1995-01-01

    Recombinant outer membrane proteins (Oprs) of Pseudomonas aeruginosa were expressed in Escherichia coli as glutathione S-transferase (GST)-linked fusion proteins. GST-linked Oprs F and I (GST-OprF190-350 [GST linked to OprF spanning amino acids 190 to 350] and GST-OprI21-83, respectively) and recombinant hybrid Oprs (GST-OprF190-342-OprI21-83 and GST-OprI21-83-OprF190-350) were isolated and tested for their efficacy as vaccines in immunodeficient mice. GST-OprF-OprI protected the mice against a 975-fold 50% lethal dose of P. aeruginosa. Expression of GST-unfused OprF-OprI failed in E. coli, although this hybrid protein has been expressed without a fusion part in Saccharomyces cerevisiae and used for immunizing rabbits. The immune rabbit sera protected severe combined deficient (SCID) mice against a 1,000-fold 50% lethal dose of P. aeruginosa. Evidence is provided to show that the most C-terminal part of OprF (i.e., amino acids 332 to 350) carries an important protective epitope. Opr-based hybrid proteins may have implications for a clinical vaccine against P. aeruginosa. PMID:7729895

  18. Complications in hair-restoration surgery.

    PubMed

    Konior, Raymond J

    2013-08-01

    Most complications associated with hair restoration are completely preventable and arise from variables that are directly controlled by the surgeon and the patient. Physicians who thoroughly grasp the nuances of modern surgical techniques and fully understand the physiologic dynamics of the balding process are least likely to generate a physician-controlled error. Highly motivated, well-educated patients who carefully follow instructions and take an active role in the postoperative recovery process minimize the chance of patient-controlled errors. This article discusses potential complications associated with surgical hair restoration, and the roles of the patient and physician in minimizing the risk of complications.

  19. Hair cortisol measurement in mitotane-treated adrenocortical cancer patients.

    PubMed

    Manenschijn, L; Quinkler, M; van Rossum, E F C

    2014-04-01

    The only approved drug for the treatment of adrenocortical cancer (ACC) is mitotane. Mitotane is adrenolytic and therefore, hydrocortisone replacement therapy is necessary. Since mitotane increases cortisol binding globulin (CBG) and induces CYP3A4 activity, high doses of hydrocortisone are thought to be required. Evaluation of hydrocortisone therapy in mitotane-treated patients has been difficult since there is no good marker to evaluate hydrocortisone therapy. Measurement of cortisol in scalp hair is a novel method that offers the opportunity to measure long-term cortisol levels. Our aim was to evaluate whether hair cortisol measurements could be useful in evaluating recent hydrocortisone treatment in mitotane-treated ACC patients. Hair cortisol levels were measured in 15 mitotane-treated ACC patients on hydrocortisone substitution and 96 healthy individuals. Cortisol levels were measured in 3 cm hair segments, corresponding to a period of 3 months. Hair cortisol levels were higher in ACC patients compared to healthy individuals (p<0.0001). Seven ACC patients (47%) had hair cortisol levels above the reference range. None of the patients had hair cortisol levels below normal. In contrast to hydrocortisone doses (β=0.03, p=0.93), hair cortisol levels were associated with BMI (β=0.53, p=0.042). There was no correlation between hair cortisol levels and hydrocortisone doses (β=0.41, p=0.13). Almost half of the ACC patients had high hair cortisol levels, suggesting long-term over-substitution of hydrocortisone in some of the patients, whereas none of the patients was under-substituted. Hair cortisol measurements might be useful in long-term monitoring hydrocortisone treatment in mitotane-treated ACC patients.

  20. Saturn's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Schardt, A. W.; Behannon, K. W.; Carbary, J. F.; Eviatar, A.; Lepping, R. P.; Siscoe, G. L.

    1983-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like Earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  1. The Outer Ejecta

    NASA Astrophysics Data System (ADS)

    Weis, Kerstin

    η Carinae is surrounded by a complex circumstellar nebula ejected during more than one eruption, the great eruption in the 1840s and the second or lesser eruption in the 1890s. Beyond the well-defined edges of its famous bipolar nebula are additional nebulous features and ejecta referred to as the outer ejecta. The outer ejecta includes a variety of structures of very different sizes and morphologies distributed in a region 0.67 pc in diameter with a mass of > 2-4 M⊙. Some individual features in the outer ejecta are moving extremely fast, up to 3,200 km/s, with most of the expansion velocities between 400-900 km/s. As a consequence of these high velocities, structures in the outer ejecta interact with the surrounding medium and with each other. The strong shocks that arise from these interactions give rise to soft X-ray emission. The global expansion pattern of the outer ejecta reveals an overall bipolar distribution, giving a symmetric structure to its morphologically more irregular appearance. The long, highly collimated filaments, called strings, are particularly unusual. The material in the strings follow a Hubble-flow and appear to originate at the central star. The properties of the nebulae associated with other LBVs also are described and compared with η Car. HR Car and AG Car show similar bipolar morphologies but are much older; HR Car's nebula may be η Car's older twin. The larger, extended nebulae detected around the giant eruption LBV P Cygni, and the extended nebulosity associated with AG Car and HR Car could be either from previous eruptions or facsimiles to η Car's outer ejecta.

  2. Study of hair shine and hair surface smoothness.

    PubMed

    Gao, Timothy; Pereira, Abel; Zhu, Sam

    2009-01-01

    A new hair visual appearance measurement system called SAMBA from Bossa Nova Technologies (Venice, CA) has been employed to measure effects of cosmetic treatments on hair shine and surface smoothness of different types of hair samples. Experimental procedures for evaluations of shine value and surface cuticle angle of hair samples treated with rinse-off products (shampoo or/and conditioner) have been successfully established and applied. We demonstrated that hair spray and conditioner formulas containing PPG-3 benzyl ether myristate (PBEM) (1) showed great performance on shine enhancement for hairs with light and medium colors. Instrumental measurement of shine values was also conducted to compare different commercial shampoo and conditioner products. This study showed reliable utility of SAMBA system and demonstrated the shine enhancement of PBEM in hair care. PMID:19450419

  3. Microrefined microfollicular hair transplant: a new modification in hair transplant.

    PubMed

    Gupta, Amit

    2014-09-01

    : Hair transplant is the most common cosmetic surgery procedure in men; at our center, we perform nearly 40 transplants a month, with nearly 450 procedures in a year. Current techniques of hair transplant are well established and several authors have had remarkable results using the current techniques of microfollicular hair transplant. Orentreich described hair transplant, Shiell has reviewed current techniques in his paper, whereas Rose reviews the latest innovations in hair transplant including Neograft and robotic procedures. We present our modifications to the process based on our experience of more than 1000 cases in the last 3 years.Microrefined microfollicular hair transplant is a procedure with innovations at each step of the standard microfollicular hair transplant procedure to improve results.The steps of the procedure are as follows: PMID:24374401

  4. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations.

    PubMed

    Hébert, J M; Rosenquist, T; Götz, J; Martin, G R

    1994-09-23

    Fibroblast growth factor 5 (FGF5) is a secreted signaling protein. Mice homozygous for a predicted null allele of the Fgf5 gene, fgf5neo, produced by gene targeting in embryonic stem cells, have abnormally long hair. This phenotype appears identical to that of mice homozygous for the spontaneous mutation angora (go). The fgf5neo and go mutations fail to complement one another, and exon 1 of Fgf5 is deleted in DNA from go homozygotes, demonstrating that go is a mutant allele of Fgf5. Expression of Fgf5 is detected in hair follicles from wild-type mice and is localized to the outer root sheath during the anagen VI phase of the hair growth cycle. These findings provide evidence that FGF5 functions as an inhibitor of hair elongation, thus identifying a molecule whose normal function is apparently to regulate one step in the progression of the follicle through the hair growth cycle.

  5. Access to novel fluorovinylidene ligands via exploitation of outer-sphere electrophilic fluorination: new insights into C-F bond formation and activation.

    PubMed

    Milner, Lucy M; Hall, Lewis M; Pridmore, Natalie E; Skeats, Matthew K; Whitwood, Adrian C; Lynam, Jason M; Slattery, John M

    2016-01-28

    Metal vinylidene complexes are widely encountered, or postulated, as intermediates in a range of important metal-mediated transformations of alkynes. However, fluorovinylidene complexes have rarely been described and their reactivity is largely unexplored. By making use of the novel outer-sphere electrophilic fluorination (OSEF) strategy we have developed a rapid, robust and convenient method for the preparation of fluorovinylidene and trifluoromethylvinylidene ruthenium complexes from non-fluorinated alkynes. Spectroscopic investigations (NMR and UV/Vis), coupled with TD-DFT studies, show that fluorine incorporation results in significant changes to the electronic structure of the vinylidene ligand. The reactivity of fluorovinylidene complexes shows many similarities to non-fluorinated analogues, but also some interesting differences, including a propensity to undergo unexpected C-F bond cleavage reactions. Heating fluorovinylidene complex [Ru(η(5)-C5H5)(PPh3)2(C[double bond, length as m-dash]C{F}R)][BF4] led to C-H activation of a PPh3 ligand to form an orthometallated fluorovinylphosphonium ligand. Reaction with pyridine led to nucleophilic attack at the metal-bound carbon atom of the vinylidene to form a vinyl pyridinium species, which undergoes both C-H and C-F activation to give a novel pyridylidene complex. Addition of water, in the presence of chloride, leads to anti-Markovnikov hydration of a fluorovinylidene complex to form an α-fluoroaldehyde, which slowly rearranges to its acyl fluoride isomer. Therefore, fluorovinylidenes ligands may be viewed as synthetic equivalents of 1-fluoroalkynes providing access to reactivity not possible by other routes. PMID:26701305

  6. Access to novel fluorovinylidene ligands via exploitation of outer-sphere electrophilic fluorination: new insights into C-F bond formation and activation.

    PubMed

    Milner, Lucy M; Hall, Lewis M; Pridmore, Natalie E; Skeats, Matthew K; Whitwood, Adrian C; Lynam, Jason M; Slattery, John M

    2016-01-28

    Metal vinylidene complexes are widely encountered, or postulated, as intermediates in a range of important metal-mediated transformations of alkynes. However, fluorovinylidene complexes have rarely been described and their reactivity is largely unexplored. By making use of the novel outer-sphere electrophilic fluorination (OSEF) strategy we have developed a rapid, robust and convenient method for the preparation of fluorovinylidene and trifluoromethylvinylidene ruthenium complexes from non-fluorinated alkynes. Spectroscopic investigations (NMR and UV/Vis), coupled with TD-DFT studies, show that fluorine incorporation results in significant changes to the electronic structure of the vinylidene ligand. The reactivity of fluorovinylidene complexes shows many similarities to non-fluorinated analogues, but also some interesting differences, including a propensity to undergo unexpected C-F bond cleavage reactions. Heating fluorovinylidene complex [Ru(η(5)-C5H5)(PPh3)2(C[double bond, length as m-dash]C{F}R)][BF4] led to C-H activation of a PPh3 ligand to form an orthometallated fluorovinylphosphonium ligand. Reaction with pyridine led to nucleophilic attack at the metal-bound carbon atom of the vinylidene to form a vinyl pyridinium species, which undergoes both C-H and C-F activation to give a novel pyridylidene complex. Addition of water, in the presence of chloride, leads to anti-Markovnikov hydration of a fluorovinylidene complex to form an α-fluoroaldehyde, which slowly rearranges to its acyl fluoride isomer. Therefore, fluorovinylidenes ligands may be viewed as synthetic equivalents of 1-fluoroalkynes providing access to reactivity not possible by other routes.

  7. Hair shafts in trichoscopy: clues for diagnosis of hair and scalp diseases.

    PubMed

    Rudnicka, Lidia; Rakowska, Adriana; Kerzeja, Marta; Olszewska, Małgorzata

    2013-10-01

    Trichoscopy (hair and scalp dermoscopy) analyzes the structure and size of growing hair shafts, providing diagnostic clues for inherited and acquired causes of hair loss. Types of hair shaft abnormalities observed include exclamation mark hairs (alopecia areata, trichotillomania, chemotherapy-induced alopecia), Pohl-Pinkus constrictions (alopecia areata, chemotherapy-induced alopecia, blood loss, malnutrition), comma hairs (tinea capitis), corkscrew hairs (tinea capitis), coiled hairs (trichotillomania), flame hairs (trichotillomania), and tulip hairs (in trichotillomania, alopecia areata). Trichoscopy allows differential diagnosis of most genetic hair shaft disorders. This article proposes a classification of hair shaft abnormalities observed by trichoscopy. PMID:24075554

  8. Advances in Understanding Hair Growth

    PubMed Central

    Bernard, Bruno A.

    2016-01-01

    In this short review, I introduce an integrated vision of human hair follicle behavior and describe opposing influences that control hair follicle homeostasis, from morphogenesis to hair cycling. The interdependence and complementary roles of these influences allow us to propose that the hair follicle is a true paradigm of a “Yin Yang” type, that is a cold/slow-hot/fast duality. Moreover, a new promising field is emerging, suggesting that glycans are key elements of hair follicle growth control. PMID:26918186

  9. Drug-induced hair loss.

    PubMed

    2016-05-01

    Hair loss can have major psychological consequences. It can be due to a wide variety of causes, including hormonal disorders, dietary factors, infections, inflammation, trauma, emotional factors, and cancer. Drugs can also induce hair loss, by interacting with the hair growth cycle. Drug-induced hair loss may be immediate or delayed, sudden or gradual, and diffuse or localised. It is usually reversible after drug discontinuation. The drugs most often implicated in hair loss are anticancer agents, interferon, azole antifungals, lithium, immunosuppressants, and many other drugs belonging to a variety of pharmacological classes. PMID:27280198

  10. Drug-induced hair loss.

    PubMed

    2016-05-01

    Hair loss can have major psychological consequences. It can be due to a wide variety of causes, including hormonal disorders, dietary factors, infections, inflammation, trauma, emotional factors, and cancer. Drugs can also induce hair loss, by interacting with the hair growth cycle. Drug-induced hair loss may be immediate or delayed, sudden or gradual, and diffuse or localised. It is usually reversible after drug discontinuation. The drugs most often implicated in hair loss are anticancer agents, interferon, azole antifungals, lithium, immunosuppressants, and many other drugs belonging to a variety of pharmacological classes.

  11. [Formaldehyde in hair shampoos].

    PubMed

    Bork, K; Heise, D; Rosinus, A

    1979-01-01

    In most hair shampoos commercially available in Western Germany formaldehyde or formaldehyde liberating substances serve as efficient preservatives especially in shampoos of the lower price group. Besides, PHB-ester, mercury containing substances and since recently brome compounds are used for this purpose. We observed a 15 year old patient who developed an allergic contact dermatitis from formaldehyde in a hair shampoo. However, compared to the widespread opportunities of exposure allergic contact dermatitis caused by hair shampoos is not very frequent. For this rarity of formaldehyde dermatitis caused by shampoos the short period of application and the low concentration because of the high dilution and perhaps the low contact dermatitis reactivity of the scalp are responsible. After all only two out of thirtyone thoroughly questioned patients, who had acquired a professional formaldehyde sensitivity elsewhere, reported a contact dermatitis caused by shampoos, which by the way appeared in the orbital region as typical. Probably allergic contact dermatitis from formaldehyde in shampoos will be expected in patients with a formaldehyde sensitivity acquired formerly elsewhere, especially professionally. To those patients formaldehyde free hair shampoos should be recommended. The declaration of formaledehyde in cosmetics, which will be legally obligatory in Germany in 1979, will be valuable for finding out the alternate products free of formaldehyde.

  12. Potassium channel conductance as a control mechanism in hair follicles.

    PubMed

    Buhl, A E; Conrad, S J; Waldon, D J; Brunden, M N

    1993-07-01

    The opening of intracellular potassium channels is a common mechanism of action for a set of anti-hypertensive drugs that includes the hair-growth-inducing agent minoxidil. Recent work suggests potassium channel openers (PCOs) also influence hair growth. Correlative studies demonstrate that a series of PCOs including minoxidil, pinacidil, P-1075, an active pinacidil analog, RP-49,356, cromakalim, and nicorandil maintain hair growth in cultured vibrissa follicles. Studies using balding stumptail macaques verify that minoxidil, P-1075, and cromakalim but not RP-49,356 stimulate hair growth. The definition of potassium channels and documentation of drug effects on these channels is classically done using electrophysiologic techniques. Such studies require the identification and isolation of target cells. Both these are among the unsolved problems in the area of hair biology. Estimating K+ flux using 86Rb+ as a K+ tracer is an accepted method of assessing potassium channel conductance in other organ systems. Both pinacidil and RP-49,356 induce measurable Rb+ flux in isolated vibrissa follicles and a hair epithelial cell line whereas neither minoxidil nor minoxidil sulfate had measurable effects. Potassium channels have been studied successfully in other organ systems using specific pharmacologic blockers for the various channel subtypes. Blockers including glyburide, tetraethylammonium, and procaine failed to inhibit minoxidil stimulation of cultured follicles. The current explosion of knowledge on potassium channel biology, cloning of channels, and continued progress in hair biology promise to clarify the role of K+ ions in the control of hair follicles.

  13. Mycorrhiza alters the profile of root hairs in trifoliate orange.

    PubMed

    Wu, Qiang-Sheng; Liu, Chun-Yan; Zhang, De-Jian; Zou, Ying-Ning; He, Xin-Hua; Wu, Qing-Hua

    2016-04-01

    Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production.

  14. Mycorrhiza alters the profile of root hairs in trifoliate orange.

    PubMed

    Wu, Qiang-Sheng; Liu, Chun-Yan; Zhang, De-Jian; Zou, Ying-Ning; He, Xin-Hua; Wu, Qing-Hua

    2016-04-01

    Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production. PMID:26499883

  15. Hair as a Biomarker of Environmental Manganese Exposure

    PubMed Central

    Eastman, Rachel R.; Jursa, Tom P.; Benedetti, Chiara; Lucchini, Roberto G.; Smith, Donald R.

    2013-01-01

    The absence of well-validated biomarkers of manganese (Mn) exposure in children remains a major obstacle for studies of Mn toxicity. We developed a hair cleaning methodology to establish the utility of hair as an exposure biomarker for Mn and other metals (Pb, Cr, Cu), using ICP-MS, scanning electron microscopy, and laser ablation ICP-MS to evaluate cleaning efficacy. Exogenous metal contamination on hair that was untreated or intentionally contaminated with dust or Mn-contaminated water was effectively removed using a cleaning method of 0.5% Triton X-100 sonication plus 1N nitric acid sonication. This cleaning method was then used on hair samples from children (n=121) in an ongoing study of environmental Mn exposure and related health effects. Mean hair Mn levels were 0.121 μg/g (median = 0.073 μg/g, range = 0.011 – 0.736 μg/g), which are ~4 to 70-fold lower than levels reported in other pediatric Mn studies. Hair Mn levels were also significantly higher in children living in the vicinity of active, but not historic, ferroalloy plant emissions compared to controls (P<0.001). These data show that exogenous metal contamination on hair can be effectively cleaned of exogenous metal contamination, and they substantiate the use of hair Mn levels as a biomarker of environmental Mn exposure in children. PMID:23259818

  16. Lack of Collagen VI Promotes Wound-Induced Hair Growth.

    PubMed

    Chen, Peiwen; Cescon, Matilde; Bonaldo, Paolo

    2015-10-01

    Collagen VI is an extracellular matrix molecule that is abundantly expressed in the skin. However, the role of collagen VI in hair follicle growth is unknown. Here, we show that collagen VI is strongly deposited in hair follicles, and is markedly upregulated by skin wounding. Lack of collagen VI in Col6a1(-/-) mice delays hair cycling and growth under physiological conditions, but promotes wound-induced hair regrowth without affecting skin regeneration. Conversely, addition of purified collagen VI rescues the abnormal wound-induced hair regrowth in Col6a1(-/-) mice. Mechanistic studies revealed that the increased wound-induced hair regrowth of Col6a1(-/-) mice is triggered by activation of the Wnt/β-catenin signaling pathway, and is abolished by inhibition of this pathway. These findings highlight the essential relationships between extracellular matrix (ECM) and hair follicle regeneration, and suggest that collagen VI could be a potential therapeutic target for hair loss and other skin-related diseases.

  17. Bmi1 regulates auditory hair cell survival by maintaining redox balance.

    PubMed

    Chen, Y; Li, L; Ni, W; Zhang, Y; Sun, S; Miao, D; Chai, R; Li, H

    2015-01-01

    Reactive oxygen species (ROS) accumulation are involved in noise- and ototoxic drug-induced hair cell loss, which is the major cause of hearing loss. Bmi1 is a member of the Polycomb protein family and has been reported to regulate mitochondrial function and ROS level in thymocytes and neurons. In this study, we reported the expression of Bmi1 in mouse cochlea and investigated the role of Bmi1 in hair cell survival. Bmi1 expressed in hair cells and supporting cells in mouse cochlea. Bmi1(-/-) mice displayed severe hearing loss and patched outer hair cell loss from postnatal day 22. Ototoxic drug-induced hair cells loss dramatically increased in Bmi1(-/-) mice compared with that in wild-type controls both in vivo and in vitro, indicating Bmi1(-/-) hair cells were significantly more sensitive to ototoxic drug-induced damage. Cleaved caspase-3 and TUNEL staining demonstrated that apoptosis was involved in the increased hair cell loss of Bmi1(-/-) mice. Aminophenyl fluorescein and MitoSOX Red staining showed the level of free radicals and mitochondrial ROS increased in Bmi1(-/-) hair cells due to the aggravated disequilibrium of antioxidant-prooxidant balance. Furthermore, the antioxidant N-acetylcysteine rescued Bmi1(-/-) hair cells from neomycin injury both in vitro and in vivo, suggesting that ROS accumulation was mainly responsible for the increased aminoglycosides sensitivity in Bmi1(-/-) hair cells. Our findings demonstrate that Bmi1 has an important role in hair cell survival by controlling redox balance and ROS level, thus suggesting that Bmi1 may work as a new therapeutic target for the prevention of hair cell death.

  18. Law in Outer Space.

    ERIC Educational Resources Information Center

    Schmidt, William G.

    1997-01-01

    Provides an overview of the current practice and fascinating future of legal issues involved in outer space exploration and colonization. Current space law, by necessity, addresses broad principles rather than specific incidents. Nonetheless, it covers a variety of issues including commercial development, rescue agreements, object registration,…

  19. Female pattern hair loss.

    PubMed

    Singal, Archana; Sonthalia, Sidharth; Verma, Prashant

    2013-01-01

    Female pattern hair loss (FPHL) is a common cause of hair loss in women characterized by diffuse reduction in hair density over the crown and frontal scalp with retention of the frontal hairline. Its prevalence increases with advancing age and is associated with significant psychological morbidity. The pathophysiology of FPHL is still not completely understood and seems to be multifactorial. Although androgens have been implicated, the involvement of androgen-independent mechanisms is evident from frequent lack of clinical or biochemical markers of hyperandrogenism in affected women. The role of genetic polymorphisms involving the androgen and estrogen receptors is being increasingly recognized in its causation and predicting treatment response to anti-androgens. There are different clinical patterns and classifications of FPHL, knowledge of which facilitates patient management and research. Chronic telogen effluvium remains as the most important differential diagnosis. Thorough history, clinical examination, and evaluation are essential to confirm diagnosis. Patients with clinical signs of androgen excess require assessment of biochemical parameters and imaging studies. It is prudent to screen the patients for metabolic syndrome and cardiovascular risk factors. The treatment comprises medical and/or surgical modalities. Medical treatment should be initiated early as it effectively arrests hair loss progression rather than stimulating regrowth. Minoxidil continues to be the first line therapy whereas anti-androgens form the second line of treatment. The progressive nature of FPHL mandates long-term treatment for sustained effect. Medical therapy may be supplemented with cosmetic concealment in those desirous of greater hair density. Surgery may be worthwhile in some carefully selected patients. PMID:23974580

  20. The Drosophila planar polarity gene multiple wing hairs directly regulates the actin cytoskeleton.

    PubMed

    Lu, Qiuheng; Schafer, Dorothy A; Adler, Paul N

    2015-07-15

    The evolutionarily conserved frizzled/starry night (fz/stan) pathway regulates planar cell polarity (PCP) in vertebrates and invertebrates. This pathway has been extensively studied in the Drosophila wing, where it is manifested by an array of distally pointing cuticular hairs. Using in vivo imaging we found that, early in hair growth, cells have multiple actin bundles and hairs that subsequently fuse into a single growing hair. The downstream PCP gene multiple wing hairs (mwh) plays a key role in this process and acts to antagonize the actin cytoskeleton. In mwh mutants hair initiation is not limited to a small region at the distal edge of pupal wing cells as in wild type, resulting in multiple hairs with aberrant polarity. Extra actin bundles/hairs are formed and do not completely fuse, in contrast to wild type. As development proceeded additional hairs continued to form, further increasing hair number. We identified a fragment of Mwh with in vivo rescue activity and that bound and bundled F-actin filaments and inhibited actin polymerization in in vitro actin assays. The loss of these activities can explain the mwh mutant phenotype. Our data suggest a model whereby, prior to hair initiation, proximally localized Mwh inhibits actin polymerization resulting in polarized activation of the cytoskeleton and hair formation on the distal side of wing cells. During hair growth Mwh is found in growing hairs, where we suggest it functions to promote the fusion of actin bundles and inhibit the formation of additional actin bundles that could lead to extra hairs.