Science.gov

Sample records for active oxidative species

  1. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

    NASA Astrophysics Data System (ADS)

    He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; Mineo, Yuki; Haruta, Masatake; Hutchings, Graham J.; Kiely, Christopher J.

    2016-09-01

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. Correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst.

  2. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

    PubMed Central

    He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; Mineo, Yuki; Haruta, Masatake; Hutchings, Graham J.; Kiely, Christopher J.

    2016-01-01

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. Correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst. PMID:27671143

  3. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

    DOE PAGES

    He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; Mineo, Yuki; Haruta, Masatake; Hutchings, Graham J.; Kiely, Christopher J.

    2016-09-27

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviors after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to revealmore » the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. As a result, correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst.« less

  4. Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin.

    PubMed

    Capdevila, Daiana A; Oviedo Rouco, Santiago; Tomasina, Florencia; Tortora, Verónica; Demicheli, Verónica; Radi, Rafael; Murgida, Daniel H

    2015-12-29

    We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein.

  5. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    SciTech Connect

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-03-07

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au{sub 3}{sup +} and Ag{sub 3}{sup +} clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au{sub 3}{sup +} the cluster itself acts as reactive species that facilitates the formation of CO{sub 2} from N{sub 2}O and CO, for silver the oxidized clusters Ag{sub 3}O{sub x}{sup +} (n= 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N{sub 2}O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  6. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    PubMed

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances.

  7. Oxidized low density lipoprotein increases acetylcholinesterase activity correlating with reactive oxygen species production.

    PubMed

    Yamchuen, Panit; Aimjongjun, Sathid; Limpeanchob, Nanteetip

    2014-12-01

    Hyperlipidemia, low density lipoproteins (LDL) and their oxidized forms, and oxidative stress are suspected to be a key combination in the onset of AD and acetylcholinesterase (AChE) plays a part in this pathology. The present study aimed to link these parameters using differentiated SH-SY5Y human neuroblastoma cells in culture. Both mildly and fully oxidized human LDL (mox- and fox-LDL), but not native (non-oxidized) LDL were cytotoxic in dose- and time-dependent patterns and this was accompanied by an increased production of intracellular reactive oxygen species (ROS). Oxidized LDL (10-200 μg/mL) augmented AChE activity after 4 and 24h treatments, respectively while the native LDL was without effect. The increased AChE with oxidized LDLs was accompanied by a proportionate increase in intracellular ROS formation (R=0.904). These findings support the notion that oxidized LDLs are cytotoxic and that their action on AChE may reduce central cholinergic transmission in AD and affirm AChE as a continued rational for anticholinesterase therapy but in conjunction with antioxidant/antihyperlipidemic cotreatments.

  8. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction.

    PubMed

    Weidinger, Adelheid; Kozlov, Andrey V

    2015-01-01

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity. PMID:25884116

  9. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction

    PubMed Central

    Weidinger, Adelheid; Kozlov, Andrey V.

    2015-01-01

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity. PMID:25884116

  10. Reactive Oxygene Species and Thioredoxin Activity in Plants at Development of Hypergravity and Oxidative Stresses

    NASA Astrophysics Data System (ADS)

    Jadko, Sergiy

    Early increasing of reactive oxygen species (ROS) content, including H2O2, occurs in plant cells under various impacts and than these ROS can function as signaling molecules in starting of cell stress responses. At the same time thioredoxins (TR) are significant ROS and H2O2 sensors and transmitters to activation of various redox sensitive proteins, transcription factors and MAP kinases. This study was aimed to investigate early increasing of ROS and H2O2 contents and TR activity in the pea roots and in tissue culture under hypergravity and oxidative stresses. Pea roots of 3-5 days old seedlings and 12-14 days old tissue culture of Arabidopsis thaliana were studied. The pea seedlings were grown on wet filter paper and the tissue culture was grown on MS medium in dark conditions under 24oC. Hypergravity stress was induced by centrifugation at 10 and 15 g. Chemiluminescence (ChL) intensity for ROS concentration, H2O2 content and TR activity were determined. All experiments were repeated by 3-5 times. Early and reliable increasing of ChL intensity and H2O2 contents in the pea roots and in the tissue culture took place under hypergravity and oxidative stresses to 30, 60 and 90 min. At the same time TR activity increased on 11 and 19 percents only to 60 and 90 min. Thus under hypergravity and oxidative stresses in both investigated plants take place early increasing of ROS and H2O2 contents which as second messengers lead to increasing of TR activity with creating of ROS-TR stress signaling pathway.

  11. Distribution of manganese species in an oxidative dimerization reaction of a bis-terpyridine mononuclear manganese (II) complex and their heterogeneous water oxidation activities.

    PubMed

    Takahashi, Kosuke; Sato, Taisei; Yamazaki, Hirosato; Yagi, Masayuki

    2015-11-01

    Heterogeneous water oxidation catalyses were studied as a synthetic model of oxygen evolving complex (OEC) in photosynthesis using mica adsorbing various manganese species. Distribution of manganese species formed in the oxidative dimerization reaction of [Mn(II)(terpy)2](2+) (terpy=2,2':6',2″-terpyridine) (1') with various oxidants in water was revealed. 1' was stoichiometrically oxidized to form di-μ-oxo dinuclear manganese complex, [(OH2)(terpy)Mn(III)(μ-O)2Mn(IV)(terpy)(OH2)](3+) (1) by KMnO4 as an oxidant. When Oxone and Ce(IV) oxidants were used, the further oxidation of 1 to [(OH2)(terpy)Mn(IV)(μ-O)2Mn(IV)(terpy)(OH2)](4+) (2) was observed after the oxidative dimerization reaction of 1'. The mica adsorbates with various composition of 1', 1 and 2 were prepared by adding mica suspension to the various oxidant-treated solutions followed by filtration. The heterogeneous water oxidation catalysis by the mica adsorbates was examined using a Ce(IV) oxidant. The observed catalytic activity of the mica adsorbates corresponded to a content of 1 (1ads) adsorbed on mica for KMnO4- and Oxone-treated systems, indicating that 1' (1'ads) and 2 (2ads) adsorbed on mica do not work for the catalysis. The kinetic analysis suggested that 1ads works for the catalysis through cooperation with adjacent 1ads or 2ads, meaning that 2ads assists the cooperative catalysis by 1ads though 2ads is not able to work for the catalysis alone. For the Ce(IV)-treated system, O2 evolution was hardly observed although the sufficient amount of 1ads was contained in the mica adsorbates. This was explained by the impeded penetration of Ce(IV) ions (as an oxidant for water oxidation) into mica by Ce(3+) cations (generated in oxidative dimerization of 1') co-adsorbed with 1ads.

  12. Role of active oxidative species on TiO2 photocatalysis of tetracycline and optimization of photocatalytic degradation conditions.

    PubMed

    Luo, Zhaohui; Li, Lu; Wei, Chuanlin; Li, Huixin; Chen, Dan

    2015-07-01

    The optimum operating conditions for TiO2 photocatalytic degradation of tetracycline antibiotic (TC) in aqueous solution and the role of active oxidative species (AOS) from UV/TiO2 in its degradation were investigated. Response surface methodology (RSM) and central composite design (CCD) were adopted to optimize three parameters: TiO2 concentration, initial pH and UV irradiation time. Radical scavengers were added to reaction solution to assess the photocatalytic reaction mechanism of TC. The results showed that 93.1% degradation efficiency was obtained under optimum conditions established during experimentation (TiO2 concentration = 2.09 g l(-1), pH = 5.56 and t = 20.95 min). These results agree with the prediction made by the proposed model. Photocatalytic degradation of TC followed a pseudo first-order reaction rate. Photogenerated holes (h+(VB)) with minor participation from superoxide anions (O2*), were responsible for TC oxidation on TiO2, while hydroxyl radicals (*OH) played a negligible role in titania-TC oxidation.

  13. Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode?

    PubMed

    Chen, Y-X; Heinen, M; Jusys, Z; Behm, R J

    2006-12-01

    We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.

  14. [Active oxygen species of Co-V-O catalysts in propane oxidative dehydrogenation analyzed by FTIR and XPS spectra].

    PubMed

    Xu, Ai-Ju; Lin, Qin; Bao, Zhaorigetu; Jia, Mei-Lin; Liu, Lian-Yun

    2009-02-01

    A series of Co-V-O (meta-CoV2O6, pyro-Co2 V2 O7, and ortho-Co3 V2 O8) catalysts were prepared by microwave oxalate co-precipitation method and characterized by (XRD), TEM, BET, FTIR, XPS, H2-TPR and conductivity measurement. The catalytic characters of the catalysts for propane oxidative dehydrogenation were investigated. The FTIR spectra of catalysts were obtained in the range of 400-1 100 cm(-1) and their major bands were assigned. The peak separation fitting of O(1s) XPS spectra was carried out and the quantity of oxygen species was calculated. The results of XRD characterization showed that pure meta-CoV2O6, pyro-Co2 V2O7, and ortho-Co3 V2O8 with nice structure were obtained. The TEM images demonstrated that the catalysts showed uniform particle with the mean particle size of 20-30 nm. The diagram of the relationship between electrical conductivity and oxygen partial pressure of Co3V2O8 and Co2 V2O7 showed dsigma/dPo2 > 0, which implied that these were p-type semiconductor, and CoV2O6 reverse showed dsigma/dPo2 < 0, which implied n-type semiconductor. 48.12%, 47.82% and 35.24% of C3 H6 selectivities were obtained for p-type semiconductor Co3 V2O8, CO2 V2O7 and n-type CoV2O6 catalysts respectively at 10% C3H6 conversion, and the results showed that p-type semiconductor catalysts Co3 V2O8 and Co2 V2O7 showed higher activity than n-type catalyst CoV2O6. The results of FTIR, XPS, H2-TPR and conductivity measurement indicated that transferring between non-stoichiometric and lattice oxygen that easily happened in Co3 V2O8 and Co2 V2O7 catalysts might promote the oxidation-reduction reaction between different valence vanadium species, and promoted the oxygen vacancy formation. Furthermore, the forming of Co-O-V bridge bond that was easy to shift between Co and V increased the mobile oxygen species of O2-, O2(2-) and O- and made the redox reaction among different valence V be realized. It is concluded that high catalytic properties of p-type semiconductor Co3 V2O8 and

  15. Structure-activity relationship of Cr/Ti-PILC catalysts using a pre-modification method for NO oxidation and their surface species study.

    PubMed

    Zhong, Lei; Yu, Yang; Cai, Wei; Geng, Xinxin; Zhong, Qin

    2015-06-14

    The performances of Cr/Ti-PILC catalysts, which were prepared by the pre-modification method, are studied for the selective catalytic oxidation of NO. The aim of this paper is to elucidate the detailed relationship between physical nanoparticle structure and chemical properties. The maximum NO conversion over the Cr-HP(3)/TP catalyst reached 71.4% at 280 °C. The catalysts were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction of H2 (H2-TPR), temperature-programmed desorption (TPD) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) techniques. The characterization results demonstrated that the enhanced catalytic activity was ascribed to several beneficial effects, which were caused by the pre-modification such as the inhibition of crystallite size, improvement of Cr species dispersion and increase of the amount of active sites. XPS and FTIR experiments indicated that two Cr(VI) species, oxidized state CrO3 and chromate species with the anionic form, were generated via pre-modification, which played different roles in the catalytic reaction. In addition, the TPR and TPD results suggest that the increased active sites (Cr(VI) species) were conducive for the preferential adsorption and activation of NO. Furthermore, DRIFTS results revealed that the intermediates, NO(+) and nitrates, interacted quickly to generate gaseous NO2.

  16. Restriction of glucose and fructose causes mild oxidative stress independently of mitochondrial activity and reactive oxygen species in Drosophila melanogaster.

    PubMed

    Rovenko, Bohdana M; Kubrak, Olga I; Gospodaryov, Dmytro V; Yurkevych, Ihor S; Sanz, Alberto; Lushchak, Oleh V; Lushchak, Volodymyr I

    2015-09-01

    Our recent study showed different effects of glucose and fructose overconsumption on the development of obese phenotypes in Drosophila. Glucose induced glucose toxicity due to the increase in circulating glucose, whereas fructose was more prone to induce obesity promoting accumulation of reserve lipids and carbohydrates (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Searching for mechanisms responsible for these phenotypes in this study, we analyzed mitochondrial activity, mitochondrial density, mtROS production, oxidative stress markers and antioxidant defense in fruit flies fed 0.25%, 4% and 10% glucose or fructose. It is shown that there is a complex interaction between dietary monosaccharide concentrations, mitochondrial activity and oxidative modifications to proteins and lipids. Glucose at high concentration (10%) reduced mitochondrial protein density and consequently respiration in flies, while fructose did not affect these parameters. The production of ROS by mitochondria did not reflect activities of mitochondrial complexes. Moreover, there was no clear connection between mtROS production and antioxidant defense or between antioxidant defense and developmental survival, shown in our previous study (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Instead, mtROS and antioxidant machinery cooperated to maintain a redox state that determined survival rates, and paradoxically, pro-oxidant conditions facilitated larva survival independently of the type of carbohydrate. It seems that in this complex system glucose controls the amount of oxidative modification regulating mitochondrial activity, while fructose regulates steady-state mRNA levels of antioxidant enzymes.

  17. Restriction of glucose and fructose causes mild oxidative stress independently of mitochondrial activity and reactive oxygen species in Drosophila melanogaster.

    PubMed

    Rovenko, Bohdana M; Kubrak, Olga I; Gospodaryov, Dmytro V; Yurkevych, Ihor S; Sanz, Alberto; Lushchak, Oleh V; Lushchak, Volodymyr I

    2015-09-01

    Our recent study showed different effects of glucose and fructose overconsumption on the development of obese phenotypes in Drosophila. Glucose induced glucose toxicity due to the increase in circulating glucose, whereas fructose was more prone to induce obesity promoting accumulation of reserve lipids and carbohydrates (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Searching for mechanisms responsible for these phenotypes in this study, we analyzed mitochondrial activity, mitochondrial density, mtROS production, oxidative stress markers and antioxidant defense in fruit flies fed 0.25%, 4% and 10% glucose or fructose. It is shown that there is a complex interaction between dietary monosaccharide concentrations, mitochondrial activity and oxidative modifications to proteins and lipids. Glucose at high concentration (10%) reduced mitochondrial protein density and consequently respiration in flies, while fructose did not affect these parameters. The production of ROS by mitochondria did not reflect activities of mitochondrial complexes. Moreover, there was no clear connection between mtROS production and antioxidant defense or between antioxidant defense and developmental survival, shown in our previous study (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Instead, mtROS and antioxidant machinery cooperated to maintain a redox state that determined survival rates, and paradoxically, pro-oxidant conditions facilitated larva survival independently of the type of carbohydrate. It seems that in this complex system glucose controls the amount of oxidative modification regulating mitochondrial activity, while fructose regulates steady-state mRNA levels of antioxidant enzymes. PMID:25941153

  18. Glycoconjugates isolated from Trypanosoma cruzi but not from Leishmania species membranes trigger nitric oxide synthesis as well as microbicidal activity in IFN-gamma-primed macrophages.

    PubMed

    Camargo, M M; Andrade, A C; Almeida, I C; Travassos, L R; Gazzinelli, R T

    1997-12-15

    In the present study, we investigated the role of glycosylphosphatidylinositol-anchored mucin-like glycoproteins (GPI-mucins) from Trypanosoma cruzi trypomastigotes in triggering the synthesis of nitric oxide as well as the microbicidal activity in murine macrophages. Our results show that GPI-mucins isolated from trypomastigote membranes are potent inducers of nitric oxide synthesis by IFN-gamma-primed macrophages, even at concentrations as low as 10 ng/ml. Our data also indicate the important role of glycosylphosphatidylinositol anchors from GPI-mucins as the second signal responsible for induction of nitric oxide synthesis by macrophages. To further investigate the role of these parasite molecules in inducing parasiticidal function, we cultured macrophages in the presence or absence of trypomastigote GPI-mucins and/or IFN-gamma and then infected these cells with either Leishmania spp. or T. cruzi. IFN-gamma was sufficient to induce microbial activity in macrophages infected with T. cruzi trypomastigotes. In contrast, killing of different species of Leishmania was further enhanced when macrophages exposed to IFN-gamma were also costimulated with trypomastigote-derived GPI-mucins. Our results also indicate that different glycolipids obtained from Leishmania major or Leishmania donovani (i.e., lipophosphoglycans or glycoinositolphospholipids) were unable to potentiate nitric oxide synthesis and/or microbicidal activity displayed by IFN-gamma-primed macrophages.

  19. Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo.

    PubMed

    Yamasaki, H

    2000-10-29

    Air pollution studies have shown that nitric oxide (NO), a gaseous free radical, is a potent photosynthetic inhibitor that reduces CO2 uptake activity in leaves. It is now recognized that NO is not only an air pollutant but also an endogenously produced metabolite, which may play a role in regulating plant cell functions. Although many studies have suggested the presence of mammalian-type NO synthase (NOS) in plants, the source of NO is still not clear. There has been a number of studies indicating that plant cells possess a nitrite-dependent NO production pathway which can be distinguished from the NOS-mediated reaction. Nitrate reductase (NR) has been recently found to be capable of producing NO through one-electron reduction of nitrite using NAD(P)H as an electron donor. This review focuses on current understanding of the mechanism for the nitrite-dependent NO production in plants. Impacts of NO produced by NR on photosynthesis are discussed in association with photo-oxidative stress in leaves.

  20. Mechanism study of the gold-catalyzed cycloisomerization of alpha-aminoallenes: oxidation state of active species and influence of counterion.

    PubMed

    Zhu, Rong-Xiu; Zhang, Dong-Ju; Guo, Jin-Xin; Mu, Jing-Lin; Duan, Chong-Gang; Liu, Cheng-Bu

    2010-04-01

    A computational study with the B3LYP density functional theory was carried out to study the reaction mechanism for the cycloisomerization of allenes catalyzed by Au(I) and Au(III) complexes. The catalytic performance of Au complexes in different oxidation states as well as the effects of the counterion on the catalytic activities has been studied in detail. Our calculations show that the catalytic reaction is initiated by coordination of the Au(I) or Au(III) catalyst to the distal double bond of allene and activation of allene toward facile nucleophilic attack, then 3-pyrroline obtained via two-step proton shift, followed by demetalation. On the basis of our calculations, H shifts are key steps of the catalytic cycle, which are significantly affected by the gold oxidation state, counterion, ligands, and assistant catalyst. AuCl is found to be more reactive than AuCl(3); however, the Au(III)-catalyzed path does not involve an oxidation state change from Au(III) to Au(I). Our calculated results rationalize the experimental findings well and overthrow the previous conjecture about Au(I) serving as the catalytically active species for Au(III)-catalyzed cycloisomerization.

  1. Bioaccumulation of Cry1Ab Protein from an Herbivore Reduces Anti-Oxidant Enzyme Activities in Two Spider Species

    PubMed Central

    Wang, Zhi; Tian, Yun; Tian, Yixing; Song, Qisheng

    2014-01-01

    Cry proteins are expressed in rice lines for lepidopteran pest control. These proteins can be transferred from transgenic rice plants to non-target arthropods, including planthoppers and then to a predatory spider. Movement of Cry proteins through food webs may reduce fitness of non-target arthropods, although recent publications indicated no serious changes in non-target populations. Nonetheless, Cry protein intoxication influences gene expression in Cry-sensitive insects. We posed the hypothesis that Cry protein intoxication influences enzyme activities in spiders acting in tri-trophic food webs. Here we report on the outcomes of experiments designed to test our hypothesis with two spider species. We demonstrated that the movement of CryAb protein from Drosophila culture medium into fruit flies maintained on the CryAb containing medium and from the flies to the spiders Ummeliata insecticeps and Pardosa pseudoannulata. We also show that the activities of three key metabolic enzymes, acetylcholine esterase (AchE), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) were significantly influenced in the spiders after feeding on Cry1Ab-containing fruit flies. We infer from these data that Cry proteins originating in transgenic crops impacts non-target arthropods at the physiological and biochemical levels, which may be one mechanism of Cry protein-related reductions in fitness of non-target beneficial predators. PMID:24454741

  2. Anti-inflammatory, anti-oxidant, and apoptotic activities of four plant species used in folk medicine in the Mediterranean basin.

    PubMed

    Amira, Smain; Dade, Martin; Schinella, Guillemo; Ríos, José-Luis

    2012-01-01

    The aim of this research was to study the potential anti-inflammatory activity of myrtle (Myrtus communis), sarsaparilla (Smilax aspera), Arabian or French lavender (Lavandula stoechas), and calamint (Calamintha nepeta) along with their apoptotic effects on the pro-inflammatory cells, and the correlation of these effects with the plants' potential anti-oxidant activity. Myrtle extract exhibited the highest inhibitory activity in the paw oedema induced by carrageenan (60% at 3 h), whereas calamint, lavender, and sarsaparilla produced inhibitions of 49%, 38%, and 47%, respectively. None of them had an effect on the TPA-induced ear oedema. Moreover, all the extracts except sarsaparilla showed different degrees of anti-oxidant activity. Lavender and myrtle at 200 μg/mL decreased cell viability by 63% and 59%, respectively, after 3 h of incubation. Neutrophil elimination through apoptosis could be implicated in the resolution of acute inflammation in the case of lavender, whereas the reduction of reactive oxygen species produced by neutrophils, such as the superoxide anion and the hydroxyl radical, could be implicated in the overall reduction of inflammation. These results may support the traditional use of these plants. PMID:22186311

  3. Macrophages generate reactive oxygen species in response to minimally oxidized LDL: TLR4- and Syk-dependent activation of Nox2

    PubMed Central

    Bae, Yun Soo; Lee, Jee Hyun; Choi, Soo Ho; Kim, Sunah; Almazan, Felicidad; Witztum, Joseph L.; Miller, Yury I.

    2009-01-01

    Oxidative modification of low-density lipoprotein (LDL) plays a causative role in the development of atherosclerosis. In this study, we demonstrate that minimally oxidized LDL (mmLDL) stimulates intracellular reactive oxygen species (ROS) generation in macrophages through NADPH oxidase 2 (gp91phox/Nox2), which in turn induces production of RANTES and migration of smooth muscle cells. Peritoneal macrophages from gp91phox/Nox2−/− mice or J774 macrophages in which Nox2 was knocked down by siRNA failed to generate ROS in response to mmLDL. Because mmLDL-induced cytoskeletal changes were dependent on TLR4, we analyzed ROS generation in peritoneal macrophages from wild type, TLR4−/−, or MyD88−/− mice and found that mmLDL-mediated ROS was generated in a TLR4-dependent, but MyD88-independent manner. Furthermore, we found that ROS generation required the recruitment and activation of spleen tyrosine kinase (Syk) and that mmLDL also induced PLCγ1 phosphorylation and PKC membrane translocation. Importantly, the PLCγ1 phosphorylation was reduced in J774 cells expressing Syk-specific shRNA. Nox2 modulated mmLDL activation of macrophages by regulating the expression of proinflammatory cytokines IL-1β, IL-6 and RANTES. We showed that purified RANTES was able to stimulate migration of mouse aortic smooth muscle cells (MASMC) and addition of neutralizing antibody against RANTES abolished the migration of MASMC stimulated by mmLDL-stimulated macrophages. These results suggest that mmLDL induces generation of ROS through sequential activation of TLR4, Syk, PLCγ1, PKC, and gp91phox/Nox2 and thereby stimulates expression of proinflammatory cytokines. These data help explain mechanisms by which endogenous ligands, such as mmLDL, can induce TLR4-dependent, proatherogenic activation of macrophages. PMID:19096031

  4. Transcription, Signaling Receptor Activity, Oxidative Phosphorylation, and Fatty Acid Metabolism Mediate the Presence of Closely Related Species in Distinct Intertidal and Cold-Seep Habitats.

    PubMed

    Van Campenhout, Jelle; Vanreusel, Ann; Van Belleghem, Steven; Derycke, Sofie

    2016-01-01

    Bathyal cold seeps are isolated extreme deep-sea environments characterized by low species diversity while biomass can be high. The Håkon Mosby mud volcano (Barents Sea, 1,280 m) is a rather stable chemosynthetic driven habitat characterized by prominent surface bacterial mats with high sulfide concentrations and low oxygen levels. Here, the nematode Halomonhystera hermesi thrives in high abundances (11,000 individuals 10 cm(-2)). Halomonhystera hermesi is a member of the intertidal Halomonhystera disjuncta species complex that includes five cryptic species (GD1-5). GD1-5's common habitat is characterized by strong environmental fluctuations. Here, we compared the transcriptomes of H. hermesi and GD1, H. hermesi's closest relative. Genes encoding proteins involved in oxidative phosphorylation are more strongly expressed in H. hermesi than in GD1, and many genes were only observed in H. hermesi while being completely absent in GD1. Both observations could in part be attributed to high sulfide concentrations and low oxygen levels. Additionally, fatty acid elongation was also prominent in H. hermesi confirming the importance of highly unsaturated fatty acids in this species. Significant higher amounts of transcription factors and genes involved in signaling receptor activity were observed in GD1 (many of which were completely absent in H. hermesi), allowing fast signaling and transcriptional reprogramming which can mediate survival in dynamic intertidal environments. GC content was approximately 8% higher in H. hermesi coding unigenes resulting in differential codon usage between both species and a higher proportion of amino acids with GC-rich codons in H. hermesi. In general our results showed that most pathways were active in both environments and that only three genes are under natural selection. This indicates that also plasticity should be taken in consideration in the evolutionary history of Halomonhystera species. Such plasticity, as well as possible

  5. Transcription, Signaling Receptor Activity, Oxidative Phosphorylation, and Fatty Acid Metabolism Mediate the Presence of Closely Related Species in Distinct Intertidal and Cold-Seep Habitats

    PubMed Central

    Van Campenhout, Jelle; Vanreusel, Ann; Van Belleghem, Steven; Derycke, Sofie

    2016-01-01

    Bathyal cold seeps are isolated extreme deep-sea environments characterized by low species diversity while biomass can be high. The Håkon Mosby mud volcano (Barents Sea, 1,280 m) is a rather stable chemosynthetic driven habitat characterized by prominent surface bacterial mats with high sulfide concentrations and low oxygen levels. Here, the nematode Halomonhystera hermesi thrives in high abundances (11,000 individuals 10 cm−2). Halomonhystera hermesi is a member of the intertidal Halomonhystera disjuncta species complex that includes five cryptic species (GD1-5). GD1-5’s common habitat is characterized by strong environmental fluctuations. Here, we compared the transcriptomes of H. hermesi and GD1, H. hermesi’s closest relative. Genes encoding proteins involved in oxidative phosphorylation are more strongly expressed in H. hermesi than in GD1, and many genes were only observed in H. hermesi while being completely absent in GD1. Both observations could in part be attributed to high sulfide concentrations and low oxygen levels. Additionally, fatty acid elongation was also prominent in H. hermesi confirming the importance of highly unsaturated fatty acids in this species. Significant higher amounts of transcription factors and genes involved in signaling receptor activity were observed in GD1 (many of which were completely absent in H. hermesi), allowing fast signaling and transcriptional reprogramming which can mediate survival in dynamic intertidal environments. GC content was approximately 8% higher in H. hermesi coding unigenes resulting in differential codon usage between both species and a higher proportion of amino acids with GC-rich codons in H. hermesi. In general our results showed that most pathways were active in both environments and that only three genes are under natural selection. This indicates that also plasticity should be taken in consideration in the evolutionary history of Halomonhystera species. Such plasticity, as well as possible

  6. Antioxidant Activity/Capacity Measurement. 3. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays.

    PubMed

    Apak, Reşat; Özyürek, Mustafa; Güçlü, Kubilay; Çapanoğlu, Esra

    2016-02-10

    There are many studies in which the antioxidant potential of different foods have been analyzed. However, there are still conflicting results and lack of information as a result of unstandardized assay techniques and differences between the principles of the methods applied. The measurement of antioxidant activity, especially in the case of mixtures, multifunctional or complex multiphase systems, cannot be evaluated satisfactorily using a simple antioxidant test due to the many variables influencing the results. In the literature, there are many antioxidant assays that are used to measure the total antioxidant activity/capacity of food materials. In this review, reactive oxygen and nitrogen species (ROS/RNS) scavenging assays are evaluated with respect to their mechanism, advantages, disadvantages, and potential use in food systems. On the other hand, in vivo antioxidant activity (AOA) assays including oxidative stress biomarkers and cellular-based assays are covered within the scope of this review. Finally, chromatographic and chemometric assays are reviewed, focusing on their benefits especially with respect to their time saving, cost-effective, and sensitive nature.

  7. Interplay between oxidant species and energy metabolism

    PubMed Central

    Quijano, Celia; Trujillo, Madia; Castro, Laura; Trostchansky, Andrés

    2015-01-01

    It has long been recognized that energy metabolism is linked to the production of reactive oxygen species (ROS) and critical enzymes allied to metabolic pathways can be affected by redox reactions. This interplay between energy metabolism and ROS becomes most apparent during the aging process and in the onset and progression of many age-related diseases (i.e. diabetes, metabolic syndrome, atherosclerosis, neurodegenerative diseases). As such, the capacity to identify metabolic pathways involved in ROS formation, as well as specific targets and oxidative modifications is crucial to our understanding of the molecular basis of age-related diseases and for the design of novel therapeutic strategies. Herein we review oxidant formation associated with the cell's energetic metabolism, key antioxidants involved in ROS detoxification, and the principal targets of oxidant species in metabolic routes and discuss their relevance in cell signaling and age-related diseases. PMID:26741399

  8. Reactive Sulfur Species-Mediated Activation of the Keap1-Nrf2 Pathway by 1,2-Naphthoquinone through Sulfenic Acids Formation under Oxidative Stress.

    PubMed

    Shinkai, Yasuhiro; Abiko, Yumi; Ida, Tomoaki; Miura, Takashi; Kakehashi, Hidenao; Ishii, Isao; Nishida, Motohiro; Sawa, Tomohiro; Akaike, Takaaki; Kumagai, Yoshito

    2015-05-18

    Sulfhydration by a hydrogen sulfide anion and electrophile thiolation by reactive sulfur species (RSS) such as persulfides/polysulfides (e.g., R-S-SH/R-S-Sn-H(R)) are unique reactions in electrophilic signaling. Using 1,2-dihydroxynaphthalene-4-thioacetate (1,2-NQH2-SAc) as a precursor to 1,2-dihydroxynaphthalene-4-thiol (1,2-NQH2-SH) and a generator of reactive oxygen species (ROS), we demonstrate that protein thiols can be modified by a reactive sulfenic acid to form disulfide adducts that undergo rapid cleavage in the presence of glutathione (GSH). As expected, 1,2-NQH2-SAc is rapidly hydrolyzed and partially oxidized to yield 1,2-NQ-SH, resulting in a redox cycling reaction that produces ROS through a chemical disproportionation reaction. The sulfenic acid forms of 1,2-NQ-SH and 1,2-NQH2-SH were detected by derivatization experiments with dimedone. 1,2-NQH2-SOH modified Keap1 at Cys171 to produce a Keap1-S-S-1,2-NQH2 adduct. Subsequent exposure of A431 cells to 1,2-NQ or 1,2-NQH2-SAc caused an extensive chemical modification of cellular proteins in both cases. Protein adduction by 1,2-NQ through a thio ether (C-S-C) bond slowly declined through a GSH-dependent S-transarylation reaction, whereas that originating from 1,2-NQH2-SAc through a disulfide (C-S-S-C) bond was rapidly restored to the free protein thiol in the cells. Under these conditions, 1,2-NQH2-SAc activated Nrf2 and upregulated its target genes, which were enhanced by pretreatment with buthionine sulfoximine (BSO), to deplete cellular GSH. Pretreatment of catalase conjugated with poly(ethylene glycol) suppressed Nrf2 activation by 1,2-NQH2-SAc. These results suggest that RSS-mediated reversible electrophilic signaling takes place through sulfenic acids formation under oxidative stress. PMID:25807370

  9. Dicobalt-μ-oxo polyoxometalate compound, [(α(2)-P2W17O61Co)2O](14-): a potent species for water oxidation, C-H bond activation, and oxygen transfer.

    PubMed

    Barats-Damatov, Delina; Shimon, Linda J W; Weiner, Lev; Schreiber, Roy E; Jiménez-Lozano, Pablo; Poblet, Josep M; de Graaf, Coen; Neumann, Ronny

    2014-02-01

    High-valent oxo compounds of transition metals are often implicated as active species in oxygenation of hydrocarbons through carbon-hydrogen bond activation or oxygen transfer and also in water oxidation. Recently, several examples of cobalt-catalyzed water oxidation have been reported, and cobalt(IV) species have been suggested as active intermediates. A reactive species, formally a dicobalt(IV)-μ-oxo polyoxometalate compound [(α2-P2W17O61Co)2O](14-), [(POMCo)2O], has now been isolated and characterized by the oxidation of a monomeric [α2-P2W17O61Co(II)(H2O)](8-), [POMCo(II)H2O], with ozone in water. The crystal structure shows a nearly linear Co-O-Co moiety with a Co-O bond length of ∼1.77 Å. In aqueous solution [(POMCo)2O] was identified by (31)P NMR, Raman, and UV-vis spectroscopy. Reactivity studies showed that [(POMCo)2O]2O] is an active compound for the oxidation of H2O to O2, direct oxygen transfer to water-soluble sulfoxides and phosphines, indirect epoxidation of alkenes via a Mn porphyrin, and the selective oxidation of alcohols by carbon-hydrogen bond activation. The latter appears to occur via a hydrogen atom transfer mechanism. Density functional and CASSCF calculations strongly indicate that the electronic structure of [(POMCo)2O]2O] is best defined as a compound having two cobalt(III) atoms with two oxidized oxygen atoms.

  10. Oxidative stress and reactive oxygen species.

    PubMed

    Galli, Francesco; Piroddi, Marta; Annetti, Claudia; Aisa, Cristina; Floridi, Emanuela; Floridi, Ardesio

    2005-01-01

    This article discusses different aspects concerning classification/nomenclature, biochemical properties and pathophysiological roles of reactive oxygen species (ROS) which are pivotal to interpret the concept of oxidative stress. In vitro studies in both the prokaryotes and eukaryotes clearly demonstrate that exogenous or constitutive and inducible endogenous sources of ROS together with cofactors such as transition metals can damage virtually all the biomolecules. This adverse chemistry is at the origin of structural and metabolic defects that ultimately may lead to cell dysfunction and death as underlying mechanisms in tissue degeneration processes. The same biomolecular interpretation of aging has been proposed to embodies an oxidative stress-based process and oxidative stress may virtually accompany all the inflammatory events. As a consequence, ROS have proposed to play several roles in the pathogenesis of chronic-degenerative conditions, such as athero-thrombotic events, neurodegeneration, cancer, some forms of anemia, auto-immune diseases, and the entire comorbidity of uremia and diabetes. Nowadays, the chance to investigate biochemical and toxicological aspects of ROS with advanced biomolecular tools has, if needed, still more emphasized the interest on this area of biomedicine. These technological advancements and the huge information available in literature represent in our time a challenge to further understand the clinical meaning of oxidative stress and to develop specific therapeutic strategies.

  11. Oxidative stress and species of genus Ganoderma (higher Basidiomycetes).

    PubMed

    Cilerdzic, Jasmina; Stajic, Mirjana; Vukojevic, Jelena; Duletic-Lausevic, Sonja

    2013-01-01

    Oxidative stress, which is a factor in the aging process and in a series of serious disorders, arises when the reactive oxygen or nitrogen species are produced in excess and the capacity of cellular antioxidant defense is insufficient to detoxify and remove them. An internal antioxidant system is not always active enough to protect the human body from oxidative stress and, therefore, it needs the help of either synthetic or natural antioxidants. Nowadays, there is a growing interest in the substitution of synthetic antioxidants, which could have toxic and mutagen effects, with natural antioxidants. Recent studies revealed that besides their high nutritional value, mushrooms have great potential as antioxidant agents. Species of the genus Ganoderma, especially G. lucidum, are well-known medicinal mushrooms that traditionally are used in the prevention and treatment of many diseases and possess appreciable antioxidant potential. PMID:23510281

  12. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

    PubMed

    Liu, Shaobin; Zeng, Tingying Helen; Hofmann, Mario; Burcombe, Ehdi; Wei, Jun; Jiang, Rongrong; Kong, Jing; Chen, Yuan

    2011-09-27

    Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model-Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O(2)(•-)) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves as redox state mediator in bacteria. Conductive rGO and Gt have higher oxidation capacities than insulating GO and GtO. Results suggest that antimicrobial actions are contributed by both membrane and oxidation stress. We propose that a three-step antimicrobial mechanism, previously used for carbon nanotubes, is applicable to graphene-based materials. It includes initial cell deposition on graphene-based materials, membrane stress caused by direct contact with sharp nanosheets, and the ensuing superoxide anion-independent oxidation. We envision that physicochemical properties of graphene-based materials, such as density of functional groups, size, and conductivity, can be precisely tailored to either reducing their health and environmental risks or increasing their application potentials.

  13. MECHANISMS OF PYRITE OXIDATION TO NON-SLAGGING SPECIES

    SciTech Connect

    Professor Reginald E. Mitchell

    2002-09-01

    A project was undertaken to characterize the oxidation of iron pyrite to the non-slagging species magnetite during pulverized coal combustion. The work was aimed at defining the pyrite transformations responsible for the higher slagging propensity of staged, low-NO{sub x} pulverized coal combustor burners. With such burners, coal is injected into a reducing environment. Consequently, the products of pyrite combustion become shifted from non-depositing, oxidized species such as Fe{sub 3}O{sub 4} to highly-depositing, reduced species such as FeO and Fe{sub 1-x}S, where x ranges from 0 to 0.125. The propensity for slagging can be minimized by the judicious redistribution of furnace air to maximize the oxide formation rate. This must be accomplished with minimal degradation of other aspects of boiler performance. To effect this, an understanding of the rate-limiting mechanisms of pyrite oxidation is required. The overall objectives of this project were to characterize the various mechanisms that control overall pyrite combustion rates and to synthesize the mechanisms into a pyrite combustion model. These objectives were achieved. The model produced has the capability of being incorporated into numerical codes developed to predict phenomena occurring in coal-fired boilers and furnaces. Such comprehensive codes can be used to formulate and test strategies for enhancing pyrite transformation rates that involve the minor adjustment of firing conditions. Ultimately, the benefit of this research project is intended to be an increase in the range of coals compatible with staged, low-NO{sub x} combustor retrofits. Project activities were aimed at identifying the mechanisms of pyrite combustion and quantifying their effects on the overall oxidation rate in order to formulate a model for pyrite conversion during coal combustion. Chemical and physical processes requiring characterization included pyrite intraparticle kinetics and mass transfer, gas-phase kinetics and mass

  14. Volatile species in halide-activated-diffusion coating packs

    NASA Technical Reports Server (NTRS)

    Bianco, Robert; Rapp, Robert A.; Jacobson, Nathan S.

    1992-01-01

    An atmospheric pressure sampling mass spectrometer was used to identify the vapor species generated in a halide-activated cementation pack. Pack powder mixtures containing a Cr-Al binary masteralloy powder, an NH4Cl activator salt, and either ZrO2 or Y2O3 (or neither) were analyzed at 1000 C. Both the equilibrium calculations for the pack and mass spectrometer results indicated that volatile AlCl(x) and CrCl(y) species were generated by the pack powder mixture; in packs containing the reactive element oxide, volatile ZrCl(z) and YCl(w) species were formed by the conversion of their oxide sources.

  15. Oxidative stress inhibition and oxidant activity by fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays.

  16. Oxidative stress inhibition and oxidant activity by fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays. PMID:26071933

  17. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii.

    PubMed

    Costa, Cristina Henning da; Perreault, François; Oukarroum, Abdallah; Melegari, Sílvia Pedroso; Popovic, Radovan; Matias, William Gerson

    2016-09-15

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr2O3-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr2O3-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr2O3-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05±0.20 and 1.35±0.06gL(-1) Cr2O3-NP were obtained after 24 and 72h of exposure, respectively. In addition, ROS levels were increased to 160.24±2.47% and 59.91±0.15% of the control value after 24 and 72h of exposition to 10gL(-1) Cr2O3-NP. At 24h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr2O3-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr2O3-NP after 24h of treatment. PMID:26803219

  18. Structure-specific reactivity of alumina supported monomeric vanadium oxide species.

    SciTech Connect

    Kim, H.; Ferguson, G. A.; Chang, L.; Zygmunt, S. A.; Stair, P. C.; Curtiss, L. A.

    2012-01-01

    Oxidative dehydrogenation (ODH) catalysts based on vanadium oxide are active for the production of alkenes, chemicals of great commercial importance. The current industrial practice for alkene production is based on energy-intensive, dehydrogenation reactions. UV resonance and visible Raman measurements, combined with density functional studies, are used to study for the first time the structure-reactivity relationships for alumina-supported monomeric vanadium oxide species. The relationship between the structure of three vanadium oxide monomeric surface species on a {theta}-alumina surface, and their reducibility by H{sub 2} was determined by following changes in the vanadia's UV Raman and resonance Raman spectra after reaction with H{sub 2} at temperatures from 450 to 650 C. The H{sub 2} reducibility sequence for the three monomeric species is bidentate > 'molecular' > tridentate. The reaction pathways for H{sub 2} reduction on the three vanadium oxide monomeric structures on a {theta}-alumina surface were investigated using density functional theory. Reduction by H{sub 2} begins with reaction at the V=O bond in all three species. However, the activation energy, Gibbs free energy change under reaction conditions, and the final V oxidation state are species-dependent. The calculated ordering of reactivity is consistent with the observed experimental ordering and provides an explanation for the ordering. The results suggest that synthesis strategies can be devised to obtain vanadium oxide structures with greatly enhanced activity for ODH resulting in more efficient catalysts.

  19. Antimicrobial Activity of Amine Oxides: Mode of Action and Structure-Activity Correlation

    PubMed Central

    Šubík, Július; Takácsová, Gizela; Pšenák, Mikuláš; Devínsky, Ferdinand

    1977-01-01

    The effect of N-alkyl derivatives of saturated heterocyclic amine oxides on the growth and metabolism of microorganisms has been studied. 4-Dodecylmorpholine-N-oxide inhibited the differentiation and growth of Bacillus cereus, of different species of filamentous fungi, and of the yeast Saccharomyces cerevisiae. For vegetative cells, the effect of 4-dodecylmorpholine-N-oxide was lethal. Cells of S. cerevisiae, after interaction with 4-dodecylmorpholine-N-oxide, released intracellular K+ and were unable to oxidize or ferment glucose. The functions of isolated yeast mitochondria were also impaired. 4-Dodecylmorpholine-N-oxide at growth-inhibiting concentrations induced rapid lysis of osmotically stabilized yeast protoplasts, with the rate of lysis a function of temperature and of amine oxide concentration. A study of the relationships between structure, antimicrobial activity, and cytolytic activity was made with a group of structurally different amine oxides involving a series of homologous 4-alkylmorpholine-N-oxides, 1-alkylpiperidine-N-oxides, 1-dodecylpyrrolidine-N-oxide, 1-dodecylperhydroasepine-N-oxide, and N,N-dimethyldodecylamine oxide. Disorganization of the membrane structure after interaction of cells with the tested amine oxides was primarily responsible for the antimicrobial activity of the amine oxides. This activity was found to be dependent on the chain length of the hydrophobic alkyl group and was only moderately influenced by other substituents of the polarized N-oxide group. PMID:409340

  20. Reactive oxygen species-activated nanomaterials as theranostic agents.

    PubMed

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use. PMID:26328770

  1. Reactive oxygen species-activated nanomaterials as theranostic agents

    PubMed Central

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use. PMID:26328770

  2. Quantum chemical study of methane oxidation species

    NASA Technical Reports Server (NTRS)

    Jackels, Charles F.

    1993-01-01

    The research funded by this project has focused on quantum chemical investigations of molecular species thought to be important in the chemistry of the earth's upper and lower atmospheres. The body of this report contains brief discussions of the results of the several phases of this investigation. In many instances these results have been presented at scientific meetings and/or published in refereed journals. Those bibliographic references are given. In addition to the study of specific chemical systems, there were several phases during the course of this investigation where much of the effort went into the development and modification of computer codes necessary to carry out these calculations on the wide range of computer equipment used during this study. This type of code maintenance and development work did not generally result in publications and presentations, but a brief review is given.

  3. Texas Endangered Species Activity Book.

    ERIC Educational Resources Information Center

    Jackson, Kathleen Marie; Campbell, Linda

    This publication is the result of the Texas Parks and Wildlife Division's (TPWD's) commitment to education and the fertile partnerships formed between TPWD biologists and educators. This activity book brings together the expertise and practical knowledge of a classroom teacher with the technical knowledge and skills of a TPWD biologist and artist.…

  4. Time-dependent reactive species formation and oxidative stress damage in the skin after UVB irradiation.

    PubMed

    Terra, V A; Souza-Neto, F P; Pereira, R C; Silva, T N X; Costa, A C C; Luiz, R C; Cecchini, R; Cecchini, A L

    2012-04-01

    This study provides evidence that skin oxidative stress injury caused by UVB irradiation is mediated predominantly by reactive oxygen species immediately after irradiation and by reactive nitrogen species at later time points. Animals were pre-treated with free radical scavengers (deferrioxamine, histidine), α-tocopherol, or inhibitors of nitric oxide synthase (NOS) (L-NAME or aminoguanidine) or left untreated and subjected to UVB irradiation. α-Tocopherol inhibited the increase in lipid peroxidation, as evaluated by chemiluminescence at 0 h and 24 h after UVB irradiation. Immediately after UVB irradiation, lipid peroxidation increased moderately and was abolished by free radical scavengers but not by NOS inhibitors. Likewise, the reduction of antioxidant capacity was not reversed by NOS inhibitors. Nitric oxide augmentation was not observed at this time point. Twenty-four hours after irradiation, increased lipid peroxidation levels and nitric oxide elevation were observed and were prevented by NOS inhibitors. Low concentrations of GSH and reduced catalase activity were also observed. Altogether, these data indicate that reactive oxygen species (singlet oxygen and hydroxyl radicals) are the principal mediators of immediate damage and that reactive nitrogen species (*NO and possibly ONOO(-)) seem to be involved later in skin oxidative injury induced by UVB radiation. The reduced catalase activity and low level of GSH suggest that *NO and H(2)O(2) may react to generate ONOO(-), a very strong lipid peroxidant species.

  5. FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESSES AND THEIR CLASSIFICATIONS.

    PubMed

    Lushchak, V I

    2015-01-01

    The phrases "free radicals" and "reactive oxygen species" (ROS) are frequently used interchangeably although this is not always correct. This article gives a brief description of two mentioned oxygen forms. During the first two-three decades after ROS discovery in biological systems (1950-1970 years) they were considered only as damaging agents, but later their involvement in organism protection and regulation of the expression of certain genes was found. The physiological state of increased steady-state ROS level along with certain physiological effects has been called oxidative stress. This paper describes ROS homeostasis and provides several classifications of oxidative stresses. The latter are based on time-course and intensity principles. Therefore distinguishing between acute and chronic stresses on the basis of the dynamics, and the basal oxidative stress, low intensity oxidative stress, strong oxidative stress, and finally a very strong oxidative stress based on the intensity of the action of the inductor of the stress are described. Potential areas of research include the development of this field with complex classification of oxidative stresses, an accurate identification of cellular targets of ROS action, determination of intracellular spatial and temporal distribution of ROS and their effects, deciphering the molecular mechanisms responsible for cell response to ROS attacks, and their participation in the normal cellular functions, i.e. cellular homeostasis and its regulation. PMID:27025055

  6. FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESSES AND THEIR CLASSIFICATIONS.

    PubMed

    Lushchak, V I

    2015-01-01

    The phrases "free radicals" and "reactive oxygen species" (ROS) are frequently used interchangeably although this is not always correct. This article gives a brief description of two mentioned oxygen forms. During the first two-three decades after ROS discovery in biological systems (1950-1970 years) they were considered only as damaging agents, but later their involvement in organism protection and regulation of the expression of certain genes was found. The physiological state of increased steady-state ROS level along with certain physiological effects has been called oxidative stress. This paper describes ROS homeostasis and provides several classifications of oxidative stresses. The latter are based on time-course and intensity principles. Therefore distinguishing between acute and chronic stresses on the basis of the dynamics, and the basal oxidative stress, low intensity oxidative stress, strong oxidative stress, and finally a very strong oxidative stress based on the intensity of the action of the inductor of the stress are described. Potential areas of research include the development of this field with complex classification of oxidative stresses, an accurate identification of cellular targets of ROS action, determination of intracellular spatial and temporal distribution of ROS and their effects, deciphering the molecular mechanisms responsible for cell response to ROS attacks, and their participation in the normal cellular functions, i.e. cellular homeostasis and its regulation.

  7. Differential production of active oxygen species in photo-symbiotic and non-symbiotic bivalves.

    PubMed

    Nakayama, K; Maruyama, T

    1998-01-01

    We investigated the generation of active oxygen species in the bivalves, Crassostrea gigas, Fulvia mutica and Tridacna crocea in order to understand the defensive mechanisms in giant clams that allow a stable association with symbiotic zooxanthellae. C. gigas produced active oxygens, superoxide anion and nitric oxide upon stimulation by phorbol myristate acetate. F. mutica generated a little amount of superoxide anion and nitric oxide, and contained significant phenoloxidase activity which catalyzes formation of quinones. T. crocea did not generate any apparent active oxygen species or quinones. The importance of lacking rapid cytotoxic responses consisting of active oxygen species to foreign organisms in the symbiotic clam is discussed.

  8. Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis

    PubMed Central

    Jin, Kyoungsuk; Chu, Arim; Park, Jimin; Jeong, Donghyuk; Jerng, Sung Eun; Sim, Uk; Jeong, Hui-Yun; Lee, Chan Woo; Park, Yong-Sun; Yang, Ki Dong; Kumar Pradhan, Gajendra; Kim, Donghun; Sung, Nark-Eon; Hee Kim, Sun; Nam, Ki Tae

    2015-01-01

    The oxygen evolution reaction (OER) is considered a major bottleneck in the overall water electrolysis process. In this work, highly active manganese oxide nano-catalysts were synthesized via hot injection. Facile surface treatment generated Mn(III) species on monodisperse 10 nm MnO nanocrystals (NCs). Size dependency of MnO NCs on OER activity was also investigated. Surprisingly, the partially oxidized MnO NCs only required 530 mV @ 5 mA cm−2 under near neutral conditions. PMID:25998696

  9. Cytotoxic activities of phytochemicals from Ferula species

    PubMed Central

    2013-01-01

    Background Ferula species are reputed in folk medicine for the treatment of a variety of disorders. There have been sporadic reports on the chemopreventive and chemosensitizing activities of some terpenoid coumarin derivatives from the genus Ferula. The present study investigated the cytotoxic activity of 11 phytochemicals (conferone, farnesiferol A, acantrifoside E, mogoltadone, diversin, galbanic acid, herniarin, 7-isopentenyloxycoumarin, umbelliprenin, stylosin and tschimgine) from Ferula species together with a newly synthesized prenylated derivative of curcumin (gercumin II). Methods Cytotoxic activity of phytochemicals was evaluated against ovarian carcinoma (CH1), lung cancer (A549) and melanoma (SK-MEL-28) cell lines using MTT assay. Results and conclusion Overall, moderate cytotoxic activity was observed from the tested compounds with IC50 values in the micromolar range. The highest activity against CH1 and A549 lines was from conferone while stylosin and tschimgine were the most potent compounds against SK-MEL-28 line. In conclusion, the findings of the present investigation did not support a potent cytotoxic activity of the tested phytochemicals against CH1, A549 and SK-MEL-28 cell lines. With respect to previous reports, the beneficial impact of these phytochemicals in cancer therapy may be more attributable to their chemopreventive or chemosensitizing activity rather than direct cytotoxic effects. PMID:23701832

  10. Collagen degrading activity associated with Mycobacterium species

    PubMed Central

    Masso, F; Paez, A; Varela, E; d Diaz; Zenteno, E; Montano, L

    1999-01-01

    BACKGROUND—The mechanism of Mycobacterium tuberculosis penetration into tissues is poorly understood but it is reasonable to assume that there is a contribution from proteases capable of disrupting the extracellular matrix of the pulmonary epithelium and the blood vessels. A study was undertaken to identify and characterise collagen degrading activity of M tuberculosis.
METHODS—Culture filtrate protein extract (CFPE) was obtained from reference mycobacterial strains and mycobacteria isolated from patients with tuberculosis. The collagen degrading activity of CFPE was determined according to the method of Johnson-Wint using 3H-type I collagen. The enzyme was identified by the Birkedal-Hansen and Taylor method and its molecular mass determined by SDS-PAGE and Sephacryl S-300 gel filtration chromatography using an electroelution purified enzyme.
RESULTS—CFPE from Mycobacterium tuberculosis strain H37Rv showed collagenolytic activity that was four times higher than that of the avirulent strain H37Ra. The 75 kDa enzyme responsible was divalent cation dependent. Other mycobacterial species and those isolated from patients with tuberculosis also had collagen degrading activity.
CONCLUSIONS—Mycobacterium species possess a metalloprotease with collagen degrading activity. The highest enzymatic activity was found in the virulent reference strain H37Rv.

 PMID:10212111

  11. Oxidants, Antioxidants, and the Beneficial Roles of Exercise-Induced Production of Reactive Species

    PubMed Central

    Gomes, Elisa Couto; Silva, Albená Nunes; de Oliveira, Marta Rubino

    2012-01-01

    This review offers an overview of the influence of reactive species produced during exercise and their effect on exercise adaptation. Reactive species and free radicals are unstable molecules that oxidize other molecules in order to become stable. Although they play important roles in our body, they can also lead to oxidative stress impairing diverse cellular functions. During exercise, reactive species can be produced mainly, but not exclusively, by the following mechanisms: electron leak at the mitochondrial electron transport chain, ischemia/reperfusion and activation of endothelial xanthine oxidase, inflammatory response, and autooxidation of catecholamines. Chronic exercise also leads to the upregulation of the body's antioxidant defence mechanism, which helps minimize the oxidative stress that may occur after an acute bout of exercise. Recent studies show a beneficial role of the reactive species, produced during a bout of exercise, that lead to important training adaptations: angiogenesis, mitochondria biogenesis, and muscle hypertrophy. The adaptations occur depending on the mechanic, and consequently biochemical, stimulus within the muscle. This is a new area of study that promises important findings in the sphere of molecular and cellular mechanisms involved in the relationship between oxidative stress and exercise. PMID:22701757

  12. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria.

    PubMed

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Koziel, Agnieszka; Majerczak, Joanna; Zoladz, Jerzy A

    2015-06-01

    Mitochondrial respiratory and phosphorylation activities, mitochondrial uncoupling, and hydrogen peroxide formation were studied in isolated rat skeletal muscle mitochondria during experimentally induced hypothermia (25 °C) and hyperthermia (42 °C) compared to the physiological temperature of resting muscle (35 °C). For nonphosphorylating mitochondria, increasing the temperature from 25 to 42 °C led to a decrease in membrane potential, hydrogen peroxide production, and quinone reduction levels. For phosphorylating mitochondria, no temperature-dependent changes in these mitochondrial functions were observed. However, the efficiency of oxidative phosphorylation decreased, whereas the oxidation and phosphorylation rates and oxidative capacities of the mitochondria increased, with increasing assay temperature. An increase in proton leak, including uncoupling protein-mediated proton leak, was observed with increasing assay temperature, which could explain the reduced oxidative phosphorylation efficiency and reactive oxygen species production.

  13. Active Oxidation of SiC

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers,Dwight L.; Harder, Bryan J.

    2011-01-01

    The high temperature oxidation of silicon carbide occurs in either a passive or active mode, depending on temperature and oxygen potential. Passive oxidation forms a protective oxide film which limits attack of the SiC:SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g.) Active oxidation forms a volatile oxide and leads to extensive attack of the SiC: SiC(s) + O2(g) = SiO(g) + CO(g). The transition points and rates of active oxidation are a major issue. Previous studies are reviewed and the leading theories of passive/active transitions summarized. Comparisons are made to the active/passive transitions in pure Si, which are relatively well-understood. Critical questions remain about the difference between the active-to-passive transition and passive-to-active transition. For Si, Wagner [2] points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO2 equilibria and the passive-to-active transition is governed by the decomposition of the SiO2 film. This suggests a significant oxygen potential difference between these two transitions and our experiments confirm this. For Si, the initial stages of active oxidation are characterized by the formation of SiO(g) and further oxidation to SiO2(s) as micron-sized rods, with a distinctive morphology. SiC shows significant differences. The active-to-passive and the passive-to-active transitions are close. The SiO2 rods only appear as the passive film breaks down. These differences are explained in terms of the reactions at the SiC/SiO2 interface. In order to understand the breakdown of the passive film, pre-oxidation experiments are conducted. These involve forming dense protective scales of 0.5, 1, and 2 microns and then subjecting the samples with these scales to a known active oxidation environment. Microstructural studies show that SiC/SiO2 interfacial reactions lead to a breakdown of the scale with a distinct morphology.

  14. Antimicrobial activities of selected Cyathus species.

    PubMed

    Liu, Ya-Jun; Zhang, Ke-Qin

    2004-02-01

    Twelve selected Cyathus species were tested for their abilities to produce antimicrobial metabolites. Most of them were found to produce secondary exo-metabolites that could induce morphological abnormalities of rice pathogenic fungi Pyricularia oryzae. Some extracts from the cultivated liquid obviously inhibited human pathogenic fungi Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans. Activities against six human pathogenic bacteria were also obtained from some of these extracts. PMID:15119855

  15. Persulfate activation during exertion of total oxidant demand.

    PubMed

    Teel, Amy L; Elloy, Farah C; Watts, Richard J

    2016-09-01

    Total oxidant demand (TOD) is a parameter that is often measured during in situ chemical oxidation (ISCO) treatability studies. The importance of TOD is based on the concept that the oxidant demand created by soil organic matter and other reduced species must be overcome before contaminant oxidation can proceed. TOD testing was originally designed for permanganate ISCO, but has also recently been applied to activated persulfate ISCO. Recent studies have documented that phenoxides activate persulfate; because soil organic matter is rich in phenolic moieties, it may activate persulfate rather than simply exerting TOD. Therefore, the generation of reactive oxygen species was investigated in three soil horizons of varied soil organic carbon content over 5-day TOD testing. Hydroxyl radical may have been generated during TOD exertion, but was likely scavenged by soil organic matter. A high flux of reductants + nucleophiles (e.g. alkyl radicals + superoxide) was generated as TOD was exerted, resulting in the rapid destruction of the probe compound hexachloroethane and the common groundwater contaminant trichloroethylene (TCE). The results of this research document that, unlike permanganate TOD, contaminant destruction does occur as TOD is exerted in persulfate ISCO systems and is promoted by the activation of persulfate by soil organic matter. Future treatability studies for persulfate ISCO should consider contaminant destruction as TOD is exerted, and the potential for persulfate activation by soil organic matter. PMID:27269993

  16. Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling

    NASA Astrophysics Data System (ADS)

    Yermolaieva, Olena; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2000-01-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are important participants in signal transduction that could provide the cellular basis for activity-dependent regulation of neuronal excitability. In young rat cortical brain slices and undifferentiated PC12 cells, paired application of depolarization/agonist stimulation and oxidation induces long-lasting potentiation of subsequent Ca2+ signaling that is reversed by hypoxia. This potentiation critically depends on NO production and involves cellular ROS utilization. The ability to develop the Ca2+ signal potentiation is regulated by the developmental stage of nerve tissue, decreasing markedly in adult rat cortical neurons and differentiated PC12 cells.

  17. Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro.

    PubMed

    Hu, C; Kitts, D D

    2005-08-01

    Flavonoids and coumaric acid derivatives were identified from dandelion flower (Taraxacum officinale). Characteristics of chain-breaking antioxidants, such as extended lag phase and reduced propagation rate, were observed in oxidation of linoleic acid emulsion with the addition of dandelion flower extract (DFE). DFE suppressed both superoxide and hydroxyl radical, while the latter was further distinguished by both site-specific and non-specific hydroxyl radical inhibition. DPPH-radical-scavenging activity and a synergistic effect with alpha-tocopherol were attributed to the reducing activity derived from phenolic content of DFE. A significant (p < 0.05) and concentration-dependent, reduced nitric oxide production from acterial-lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells was observed with the addition of DFE. Moreover, peroxyl-radical-induced intracellular oxidation of RAW264.7 cells was inhibited significantly (p < 0.05) by the addition of DFE over a range of concentrations. These results showed that the DFE possessed marked antioxidant activity in both biological and chemical models. Furthermore, the efficacy of DFE in inhibiting both reactive oxygen species and nitric oxide were attributed to its phenolic content.

  18. Reactive oxygen species inhibited by titanium oxide coatings.

    PubMed

    Suzuki, Richard; Muyco, Julie; McKittrick, Joanna; Frangos, John A

    2003-08-01

    Titanium is a successful biomaterial that possesses good biocompatibility. It is covered by a surface layer of titanium dioxide, and this oxide may play a critical role in inhibiting reactive oxygen species, such as peroxynitrite, produced during the inflammatory response. In the present study, titanium dioxide was coated onto silicone substrates by radio-frequency sputtering. Silicone coating with titanium dioxide enhanced the breakdown of peroxynitrite by 79%. At physiologic pH, the peroxynitrite donor 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1) was used to nitrate 4-hydroxyphenylacetic acid (4-HPA) to form 4-hydroxy-3-nitrophenyl acetic acid (NHPA). Titanium dioxide-coated silicone inhibited the nitration of 4-HPA by 61% compared to aluminum oxide-coated silicone and 55% compared to uncoated silicone. J774A.1 mouse macrophages were plated on oxide-coated silicone and polystyrene and stimulated to produce superoxide and interleukin-6. Superoxide production was measured by the chemiluminescent reaction with 2-methyl-6-[p-methoxyphenyl]-3,7-dihydroimidazo[1,2-a]pyrazin-3-one (MCLA). Titanium dioxide-coated silicone exhibited a 55% decrease in superoxide compared to uncoated silicone and a 165% decrease in superoxide compared to uncoated polystyrene. Titanium dioxide-coated silicone inhibited IL-6 production by 77% compared to uncoated silicone. These results show that the anti-inflammatory properties of titanium dioxide can be transferred to the surfaces of silicone substrates.

  19. What is the active species of cytochrome P450 during camphor hydroxylation? QM/MM studies of different electronic states of compound I and of reduced and oxidized iron-oxo intermediates.

    PubMed

    Altun, Ahmet; Shaik, Sason; Thiel, Walter

    2007-07-25

    We have investigated C-H hydroxylation of camphor by Compound I (Cpd I) of cytochrome P450cam in different electronic states and by its one-electron reduced and oxidized forms, using QM/MM calculations in the native protein/solvent environment. Cpd I species with five unpaired electrons (pentaradicaloids) are ca. 12 kcal/mol higher in energy than the ground state Cpd I species with three unpaired electrons (triradicaloids). The H-abstraction transition states of pentaradicaloids lie ca. 21 (9) kcal/mol above the triradicaloid (pentaradicaloid) reactants. Hydroxylation via pentaradicaloids is thus facile provided that they can react before relaxing to the ground-state triradicaloids. Excited states of Cpd I with an Fe(V)-oxo moiety lie more than 20 kcal/mol above the triradicaloid ground state in single-point gas-phase calculations, but these electronic configurations are not stable upon including the point-charge protein environment which causes SCF convergence to the triradicaloid ground state. One-electron reduced species (Cpd II) show sluggish reactivity compared with Cpd I in agreement with experimental model studies. One-electron oxidized species are more reactive than Cpd I but seem too high in energy to be accessible. The barriers to hydrogen abstraction for the various forms of Cpd I are generally not affected much by the chosen protonation states of the Asp297 and His355 residues near the propionate side chains of the heme or by the appearance of radical character at Asp297, His355, or the propionates. PMID:17595079

  20. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.

    PubMed

    Babizhayev, Mark A; Yegorov, Yegor E

    2016-01-01

    The aging eye appears to be at considerable risk from oxidative stress. A great deal of research indicates that dysfunctional mitochondria are the primary site of reactive oxygen species (ROS). More than 95% of O2 produced during normal metabolism is generated by the electron transport chain in the inner mitochondrial membrane. Mitochondria are also the major target of ROS. Cataract formation, the opacification of the eye lens, is one of the leading causes of human blindness worldwide, accounting for 47.8% of all causes of blindness. Cataracts result from the deposition of aggregated proteins in the eye lens and lens fiber cell plasma membrane damage, which causes clouding of the lens, light scattering, and obstruction of vision. ROS-induced damage in the lens cell may consist of oxidation of proteins, DNA damage, and/or lipid peroxidation, all of which have been implicated in cataractogenesis. This article is an attempt to integrate how mitochondrial ROS are altered in the aging eye along with those protective and repair therapeutic systems believed to regulate ROS levels in ocular tissues and how damage to these systems contributes to age-onset eye disease and cataract formation. Mitochondria-targeted antioxidants might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo. As a result of the combination of weak metal chelating, OH and lipid peroxyl radicals scavenging, reducing activities to liberated fatty acid, and phospholipid hydroperoxides, carnosine and carcinine appear to be physiological antioxidants able to efficiently protect the lipid phase of biologic membranes and aqueous environments and act as the antiapoptotic natural drug compounds The authors developed and patented the new ophthalmic compositions, including N-acetylcarnosine, acting as a prodrug of naturally targeted to mitochondria L-carnosine endowed with pluripotent antioxidant activities combined with mitochondria

  1. Oxidation of glycosaminoglycans by free radicals and reactive oxidative species: A review of investigative methods.

    PubMed

    Parsons, B J

    2015-05-01

    Glycosaminoglycans, in particular hyaluronan (HA), and proteoglycans are components of the extracellular matrix (ECM). The ECM plays a key role in the regulation of cellular behaviour and alterations to it can modulate both the development of human diseases as well as controlling normal biochemical processes such as cell signalling and pro-inflammatory responses. For these reasons, in vitro fragmentation studies of glycosaminoglycans by free radicals and oxidative species are seen to be relevant to the understanding of in vivo studies of damage to the ECM. A wide range of investigative techniques have therefore been applied to gain insights into the relative fragmentation effects of several reactive oxidative species with the ultimate goal of determining mechanisms of fragmentation at the molecular level. These methods are reviewed here.

  2. C-H bond activation by metal-superoxo species: what drives high reactivity?

    PubMed

    Ansari, Azaj; Jayapal, Prabha; Rajaraman, Gopalan

    2015-01-01

    Metal-superoxo species are ubiquitous in metalloenzymes and bioinorganic chemistry and are known for their high reactivity and their ability to activate inert C-H bonds. The comparative oxidative abilities of M-O2(.-) species (M = Cr(III), Mn(III), Fe(III), and Cu(II)) towards C-H bond activation reaction are presented. These superoxo species generated by oxygen activation are found to be aggressive oxidants compared to their high-valent metal-oxo counterparts generated by O⋅⋅⋅O bond cleavage. Our calculations illustrate the superior oxidative abilities of Fe(III)- and Mn(III)-superoxo species compared to the others and suggest that the reactivity may be correlated to the magnetic exchange parameter.

  3. Effects of preconditioning the rhizosphere of different plant species on biotic methane oxidation kinetics.

    PubMed

    Ndanga, Éliane M; Lopera, Carolina B; Bradley, Robert L; Cabral, Alexandre R

    2016-09-01

    The rhizosphere is known as the most active biogeochemical layer of the soil. Therefore, it could be a beneficial environment for biotic methane oxidation. The aim of this study was to document - by means of batch incubation tests - the kinetics of CH4 oxidation in rhizosphere soils that were previously exposed to methane. Soils from three pre-exposure to CH4 zones were sampled: the never-before pre-exposed (NEX), the moderately pre-exposed (MEX) and the very pre-exposed (VEX). For each pre-exposure zone, the rhizosphere of several plant species was collected, pre-incubated, placed in glass vials and submitted to CH4 concentrations varying from 0.5% to 10%. The time to the beginning of CH4 consumption and the CH4 oxidation rate were recorded. The results showed that the fastest CH4 consumption occurred for the very pre-exposed rhizosphere. Specifically, a statistically significant difference in CH4 oxidation half-life was found between the rhizosphere of the VEX vegetated with a mixture of different plants and the NEX vegetated with ryegrass. This difference was attributed to the combined effect of the preconditioning level and plant species as well as to the organic matter content. Regardless of the preconditioning level, the oxidation rate values obtained in this study were comparable to those reported in the reviewed literature for mature compost.

  4. Plant species diversity affects soil-atmosphere fluxes of methane and nitrous oxide.

    PubMed

    Niklaus, Pascal A; Le Roux, Xavier; Poly, Franck; Buchmann, Nina; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Barnard, Romain L

    2016-07-01

    Plant diversity effects on ecosystem functioning can potentially interact with global climate by altering fluxes of the radiatively active trace gases nitrous oxide (N2O) and methane (CH4). We studied the effects of grassland species richness (1-16) in combination with application of fertilizer (nitrogen:phosphorus:potassium = 100:43.6:83 kg ha(-1) a(-1)) on N2O and CH4 fluxes in a long-term field experiment. Soil N2O emissions, measured over 2 years using static chambers, decreased with species richness unless fertilizer was added. N2O emissions increased with fertilization and the fraction of legumes in plant communities. Soil CH4 uptake, a process driven by methanotrophic bacteria, decreased with plant species numbers, irrespective of fertilization. Using structural equation models, we related trace gas fluxes to soil moisture, soil inorganic N concentrations, nitrifying and denitrifying enzyme activity, and the abundance of ammonia oxidizers, nitrite oxidizers, and denitrifiers (quantified by real-time PCR of gene fragments amplified from microbial DNA in soil). These analyses indicated that plant species richness increased soil moisture, which in turn increased N cycling-related activities. Enhanced N cycling increased N2O emission and soil CH4 uptake, with the latter possibly caused by removal of inhibitory ammonium by nitrification. The moisture-related indirect effects were surpassed by direct, moisture-independent effects opposite in direction. Microbial gene abundances responded positively to fertilizer but not to plant species richness. The response patterns we found were statistically robust and highlight the potential of plant biodiversity to interact with climatic change through mechanisms unrelated to carbon storage and associated carbon dioxide removal. PMID:27038993

  5. Non-heme iron hydroperoxo species in superoxide reductase as a catalyst for oxidation reactions.

    PubMed

    Rat, S; Ménage, S; Thomas, F; Nivière, V

    2014-11-25

    The non-heme high-spin ferric iron hydroperoxo species formed in superoxide reductase catalyzes oxidative aldehyde deformylation through its nucleophilic character. This species also acts as an electrophile to catalyze oxygen atom transfer in sulfoxidation reactions, highlighting the oxidation potential of non-heme iron hydroperoxo species.

  6. The Active Oxidation of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers, Dwight L.

    2009-01-01

    The high temperature oxidation of silicon carbide occurs in two very different modes. Passive oxidation forms a protective oxide film which limits further attack of the SiC: SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g) Active oxidation forms a volatile oxide and may lead to extensive attack of the SiC: SiC(s) + O2(g) = SiO(g) + CO(g) Generally passive oxidation occurs at higher oxidant pressures and active oxidation occurs at lower oxidant pressures and elevated temperatures. Active oxidation is a concern for reentry, where the flight trajectory involves the latter conditions. Thus the transition points and rates of active oxidation are a major concern. Passive/active transitions have been studied by a number of investigators. An examination of the literature indicates many questions remain regarding the effect of impurity, the hysteresis of the transition (i.e. the difference between active-to-passive and passive-toactive), and the effect of total pressure. In this study we systematically investigate each of these effects. Experiments were done in both an alumina furnace tube and a quartz furnace tube. It is known that alumina tubes release impurities such as sodium and increase the kinetics in the passive region [1]. We have observed that the active-to-passive transition occurs at a lower oxygen pressure when the experiment is conducted in alumina tubes and the resultant passive silica scale contains sodium. Thus the tests in this study are conducted in quartz tubes. The hysteresis of the transition has been discussed in the detail in the original theoretical treatise of this problem for pure silicon by Wagner [2], yet there is little mention of it in subsequent literature. Essentially Wagner points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO2 equilibria and the passive-to-active transition is governed by the decomposition of the SiO2 film. A series of experiments were conducted for active-to-passive and passive-to-active

  7. Process for preparing active oxide powders

    DOEpatents

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  8. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation

    SciTech Connect

    Klein, Stefanie; Sommer, Anja; Distel, Luitpold V.R.; Neuhuber, Winfried; Kryschi, Carola

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Ultrasmall citrate-coated SPIONs with {gamma}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} structure were prepared. Black-Right-Pointing-Pointer SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. Black-Right-Pointing-Pointer The SPION induced ROS production is due to released iron ions and catalytically active surfaces. Black-Right-Pointing-Pointer Released iron ions and SPION surfaces initiate the Fenton and Haber-Weiss reaction. Black-Right-Pointing-Pointer X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.

  9. Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage.

    PubMed

    Midorikawa, Kaoru; Uchida, Takafumi; Okamoto, Yoshinori; Toda, Chitose; Sakai, Yoshie; Ueda, Koji; Hiraku, Yusuke; Murata, Mariko; Kawanishi, Shosuke; Kojima, Nakao

    2004-12-01

    Ethylbenzene is carcinogenic to rats and mice, while it has no mutagenic activity. We have investigated whether ethylbenzene undergoes metabolic activation, leading to DNA damage. Ethylbenzene was metabolized to 1-phenylethanol, acetophenone, 2-ethylphenol and 4-ethylphenol by rat liver microsomes. Furthermore, 2-ethylphenol and 4-ethylphenol were metabolically transformed to ring-dihydroxylated metabolites such as ethylhydroquinone and 4-ethylcatechol, respectively. Experiment with 32P-labeled DNA fragment revealed that both ethylhydroquinone and 4-ethylcatechol caused DNA damage in the presence of Cu(II). These dihydroxylated compounds also induced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in calf thymus DNA in the presence of Cu(II). Catalase, methional and Cu(I)-specific chelator, bathocuproine, significantly (P<0.05) inhibited oxidative DNA damage, whereas free hydroxyl radical scavenger and superoxide dismutase did not. These results suggest that Cu(I) and H2O2 produced via oxidation of ethylhydroquinone and 4-ethylcatechol are involved in oxidative DNA damage. Addition of an endogenous reductant NADH dramatically enhanced 4-ethylcatechol-induced oxidative DNA damage, whereas ethylhydroquinone-induced DNA damage was slightly enhanced. Enhancing effect of NADH on oxidative DNA damage by 4-ethylcatechol may be explained by assuming that reactive species are generated from the redox cycle. In conclusion, these active dihydroxylated metabolites would be involved in the mechanism of carcinogenesis by ethylbenzene. PMID:15560893

  10. Oxidized Docosahexaenoic Acid Species and Lipid Peroxidation Products Increase Amyloidogenic Amyloid Precursor Protein Processing.

    PubMed

    Grimm, Marcus O W; Haupenthal, Viola J; Mett, Janine; Stahlmann, Christoph P; Blümel, Tamara; Mylonas, Nadine T; Endres, Kristina; Grimm, Heike S; Hartmann, Tobias

    2016-01-01

    One of the main characteristics of Alzheimer's disease (AD) is the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of the amyloid precursor protein (APP). Previously it has been demonstrated that polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), are associated with a reduced risk of AD caused by decreased Aβ production. However, in epidemiological studies and nutritional approaches, the outcomes of DHA-dependent treatment were partially controversial. PUFAs are very susceptible to reactive oxygen species and lipid peroxidation, which are increased during disease pathology. In line with published results, lipid peroxidation was elevated in human postmortem AD brains; especially 4-hydroxy-nonenal (HNE) was increased. To investigate whether lipid peroxidation is only a consequence or might also influence the processes leading to AD, we analyzed 7 different oxidized lipid species including 5 oxidized DHA derivatives and the lipid peroxidation products of ω-3 and ω-6 PUFAs, HNE and 4-hydroxy-hexenal, in human neuroblastoma cells and mouse mixed cortical neurons. In the presence of oxidized lipids Aβ and soluble β-secreted APP levels were elevated, whereas soluble α-secreted APP was decreased, suggesting a shift from the nonamyloidogenic to the amyloidogenic pathway of APP processing. Furthermore, β- and γ-secretase activity was increased by oxidized lipids via increased gene expression and additionally by a direct effect on β-secretase activity. Importantly, only 1% oxidized DHA was sufficient to revert the protective effect of DHA and to significantly increase Aβ production. Therefore, our results emphasize the need to prevent DHA from oxidation in nutritional approaches and might help explain the divergent results of clinical DHA studies. PMID:26642316

  11. The etiology of oxidative stress in the various species of animals, a review.

    PubMed

    Puppel, Kamila; Kapusta, Aleksandra; Kuczyńska, Beata

    2015-08-30

    Oxidative stress is the consequence of an imbalance of pro-oxidants and antioxidants leading to cell damage and tissue injury. The exhaustion of antioxidant systems is one of the reasons for the occurrence of oxidative stress, which results in avalanche production of reactive oxygen species (ROS) or free radicals. High oxidative stress is common in organs and tissues with high metabolic and energy demands, including skeletal and heart muscle, liver and blood cells. Stress arises in animals in response to unavoidable or adverse environmental conditions. In the external environment, which affects the body of the cow, there are four main groups of stressors: physical, chemical, biological and psychological. Physical stressors include fluctuations in ambient temperature as well as mechanical injuries. High ambient temperature is one of the factors affecting the productivity of cows. Biological stressors are conditioned by errors and irregularities in habits. Both of these phenomena have an adverse impact on both the resistance of animals and fertility and are the etiological agent of oxidative stress. Various mechanisms may be responsible for metal-induced oxidative stress: direct or indirect generation of ROS, depletion of glutathione and inhibition of antioxidant enzymes are well known for all redox-active and redox-inactive metals. PMID:25418967

  12. Bulk binary ZrO2-based oxides as highly active alternative-type catalysts for non-oxidative isobutane dehydrogenation.

    PubMed

    Otroshchenko, Tatyana; Radnik, Jörg; Schneider, Matthias; Rodemerck, Uwe; Linke, David; Kondratenko, Evgenii V

    2016-06-21

    Bulk binary ZrO2-based oxides efficiently catalyse non-oxidative dehydrogenation of isobutane to isobutylene. Their activity strongly depends on the kind of second metal oxide. So designed CrZrOx showed superior activity to industrially relevant catalysts with supported Pt or CrOx species. It was also stable under alternating dehydrogenation and oxidative regeneration cycles over ca. 110 h under different reaction conditions between 550 and 600 °C. PMID:27277540

  13. Low-Cost Synthesis of Smart Biocompatible Graphene Oxide Reduced Species by Means of GFP.

    PubMed

    Masullo, Tiziana; Armata, Nerina; Pendolino, Flavio; Colombo, Paolo; Lo Celso, Fabrizio; Mazzola, Salvatore; Cuttitta, Angela

    2016-02-01

    The aim of this work is focused on the engineering of biocompatible complex systems composed of an inorganic and bio part. Graphene oxide (GO) and/or graphite oxide (GtO) were taken into account as potential substrates to the linkage of the protein such as Anemonia sulcata recombinant green fluorescent protein (rAsGFP). The complex system is obtained through a reduction process between GO/GtO and rAsGFP archiving an environmentally friendly biosynthesis. Spectroscopic measurements support the formation of reduced species. In particular, photoluminescence shows a change in the activity of the protein when a bond is formed, highlighted by a loss of the maximum emission signal of rAsGFP and a redshift of the maximum absorption peak of the GO/GtO species. Moreover, the hemolysis assay reveals a lower value in the presence of less oxidized graphene species providing evidence for a biocompatible material. This singular aspect can be approached as a promising method for circulating pharmaceutical preparations via intravenous administration in the field of drug delivery. PMID:26490379

  14. Low-Cost Synthesis of Smart Biocompatible Graphene Oxide Reduced Species by Means of GFP.

    PubMed

    Masullo, Tiziana; Armata, Nerina; Pendolino, Flavio; Colombo, Paolo; Lo Celso, Fabrizio; Mazzola, Salvatore; Cuttitta, Angela

    2016-02-01

    The aim of this work is focused on the engineering of biocompatible complex systems composed of an inorganic and bio part. Graphene oxide (GO) and/or graphite oxide (GtO) were taken into account as potential substrates to the linkage of the protein such as Anemonia sulcata recombinant green fluorescent protein (rAsGFP). The complex system is obtained through a reduction process between GO/GtO and rAsGFP archiving an environmentally friendly biosynthesis. Spectroscopic measurements support the formation of reduced species. In particular, photoluminescence shows a change in the activity of the protein when a bond is formed, highlighted by a loss of the maximum emission signal of rAsGFP and a redshift of the maximum absorption peak of the GO/GtO species. Moreover, the hemolysis assay reveals a lower value in the presence of less oxidized graphene species providing evidence for a biocompatible material. This singular aspect can be approached as a promising method for circulating pharmaceutical preparations via intravenous administration in the field of drug delivery.

  15. Activation of Manganese Oxidants with Bisulfite for Enhanced Oxidation of Organic Contaminants: The Involvement of Mn(III).

    PubMed

    Sun, Bo; Guan, Xiaohong; Fang, Jingyun; Tratnyek, Paul G

    2015-10-20

    MnO4(-) was activated by HSO3(-), resulting in a process that oxidizes organic contaminants at extraordinarily high rates. The permanganate/bisulfite (PM/BS) process oxidized phenol, ciprofloxacin, and methyl blue at pHini 5.0 with rates (kobs ≈ 60-150 s(-1)) that were 5-6 orders of magnitude faster than those measured for permanganate alone, and ∼5 to 7 orders of magnitude faster than conventional advanced oxidation processes for water treatment. Oxidation of phenol was fastest at pH 4.0, but still effective at pH 7.0, and only slightly slower when performed in tap water. A smaller, but still considerable (∼3 orders of magnitude) increase in oxidation rates of methyl blue was observed with MnO2 activated by HSO3(-) (MO/BS). The above results, time-resolved spectroscopy of manganese species under various conditions, stoichiometric analysis of pH changes, and the effect of pyrophosphate on UV absorbance spectra suggest that the reactive intermediate(s) responsible for the extremely rapid oxidation of organic contaminants in the PM/BS process involve manganese(III) species with minimal stabilization by complexation. The PM/BS process may lead to a new category of advanced oxidation technologies based on contaminant oxidation by reactive manganese(III) species, rather than hydroxyl and sulfate radicals.

  16. Oxidative stress, activity behaviour and body mass in captive parrots.

    PubMed

    Larcombe, S D; Tregaskes, C A; Coffey, J; Stevenson, A E; Alexander, L G; Arnold, K E

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally 'active' individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes.

  17. Oxidative stress, activity behaviour and body mass in captive parrots.

    PubMed

    Larcombe, S D; Tregaskes, C A; Coffey, J; Stevenson, A E; Alexander, L G; Arnold, K E

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally 'active' individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes. PMID:27293729

  18. Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge.

    PubMed

    Lefkowitz, Joseph K; Guo, Peng; Rousso, Aric; Ju, Yiguang

    2015-08-13

    Speciation and temperature measurements of methane oxidation during a nanosecond repetitively pulsed discharge in a low-temperature flow reactor have been performed. Measurements of temperature and formaldehyde during a burst of pulses were made on a time-dependent basis using tunable diode laser absorption spectroscopy, and measurements of all other major stable species were made downstream of a continuously pulsed discharge using gas chromatography. The major species for a stoichiometric methane/oxygen/helium mixture with 75% dilution are H(2)O, CO, CO(2), H(2), CH(2)O, CH(3)OH, C(2)H(6), C(2)H(4) and C(2)H(2). A modelling tool to simulate homogeneous plasma combustion kinetics is assembled by combining the ZDPlasKin and CHEMKIN codes. In addition, a kinetic model for plasma-assisted combustion (HP-Mech/plasma) of methane, oxygen and helium mixtures has been assembled to simulate the measurements. Predictions can accurately capture reactant consumption as well as production of the major product species. However, significant disagreement is found for minor species, particularly CH(2)O and CH(3)OH. Further analysis revealed that the plasma-activated low-temperature oxidation pathways, particularly those involving CH(3)O(2) radical reactions and methane reactions with O((1)D), are responsible for this disagreement. PMID:26170433

  19. Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge

    PubMed Central

    Lefkowitz, Joseph K; Guo, Peng; Rousso, Aric; Ju, Yiguang

    2015-01-01

    Speciation and temperature measurements of methane oxidation during a nanosecond repetitively pulsed discharge in a low-temperature flow reactor have been performed. Measurements of temperature and formaldehyde during a burst of pulses were made on a time-dependent basis using tunable diode laser absorption spectroscopy, and measurements of all other major stable species were made downstream of a continuously pulsed discharge using gas chromatography. The major species for a stoichiometric methane/oxygen/helium mixture with 75% dilution are H2O, CO, CO2, H2, CH2O, CH3OH, C2H6, C2H4 and C2H2. A modelling tool to simulate homogeneous plasma combustion kinetics is assembled by combining the ZDPlasKin and CHEMKIN codes. In addition, a kinetic model for plasma-assisted combustion (HP-Mech/plasma) of methane, oxygen and helium mixtures has been assembled to simulate the measurements. Predictions can accurately capture reactant consumption as well as production of the major product species. However, significant disagreement is found for minor species, particularly CH2O and CH3OH. Further analysis revealed that the plasma-activated low-temperature oxidation pathways, particularly those involving CH3O2 radical reactions and methane reactions with O(1D), are responsible for this disagreement. PMID:26170433

  20. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  1. Identification of Subnanometric Ag Species, Their Interaction with Supports and Role in Catalytic CO Oxidation.

    PubMed

    Kotolevich, Yulia; Kolobova, Ekaterina; Khramov, Evgeniy; Cabrera Ortega, Jesús Efren; Farías, Mario H; Zubavichus, Yan; Zanella, Rodolfo; Mota-Morales, Josué D; Pestryakov, Alexey; Bogdanchikova, Nina; Cortés Corberán, Vicente

    2016-04-22

    The nature and size of the real active species of nanoparticulated metal supported catalysts is still an unresolved question. The technique of choice to measure particle sizes at the nanoscale, HRTEM, has a practical limit of 1 nm. This work is aimed to identify the catalytic role of subnanometer species and methods to detect and characterize them. In this frame, we investigated the sensitivity to redox pretreatments of Ag/Fe/TiO₂, Ag/Mg/TiO₂ and Ag/Ce/TiO₂ catalysts in CO oxidation. The joint application of HRTEM, SR-XRD, DRS, XPS, EXAFS and XANES methods indicated that most of the silver in all samples is in the form of Ag species with size <1 nm. The differences in catalytic properties and sensitivity to pretreatments, observed for the studied Ag catalysts, could not be explained taking into account only the Ag particles whose size distribution is measured by HRTEM, but may be explained by the presence of the subnanometer Ag species, undetectable by HRTEM, and their interaction with supports. This result highlights their role as active species and the need to take them into account to understand integrally the catalysis by supported nanometals.

  2. Identification of Subnanometric Ag Species, Their Interaction with Supports and Role in Catalytic CO Oxidation.

    PubMed

    Kotolevich, Yulia; Kolobova, Ekaterina; Khramov, Evgeniy; Cabrera Ortega, Jesús Efren; Farías, Mario H; Zubavichus, Yan; Zanella, Rodolfo; Mota-Morales, Josué D; Pestryakov, Alexey; Bogdanchikova, Nina; Cortés Corberán, Vicente

    2016-01-01

    The nature and size of the real active species of nanoparticulated metal supported catalysts is still an unresolved question. The technique of choice to measure particle sizes at the nanoscale, HRTEM, has a practical limit of 1 nm. This work is aimed to identify the catalytic role of subnanometer species and methods to detect and characterize them. In this frame, we investigated the sensitivity to redox pretreatments of Ag/Fe/TiO₂, Ag/Mg/TiO₂ and Ag/Ce/TiO₂ catalysts in CO oxidation. The joint application of HRTEM, SR-XRD, DRS, XPS, EXAFS and XANES methods indicated that most of the silver in all samples is in the form of Ag species with size <1 nm. The differences in catalytic properties and sensitivity to pretreatments, observed for the studied Ag catalysts, could not be explained taking into account only the Ag particles whose size distribution is measured by HRTEM, but may be explained by the presence of the subnanometer Ag species, undetectable by HRTEM, and their interaction with supports. This result highlights their role as active species and the need to take them into account to understand integrally the catalysis by supported nanometals. PMID:27110757

  3. Reduction of low temperature engine pollutants by understanding the exhaust species interactions in a diesel oxidation catalyst.

    PubMed

    Lefort, I; Herreros, J M; Tsolakis, A

    2014-02-18

    The interactions between exhaust gas species and their effect (promotion or inhibition) on the light-off and activity of a diesel oxidation catalyst (DOC) for the removal of pollutants are studied, using actual engine exhaust gases from the combustion of diesel, alternative fuels (rapeseed methyl ester and gas-to-liquid fuel) and diesel/propane dual fuel combustion. The activity of the catalyst was recorded during a heating temperature ramp where carbon monoxide (CO) and hydrocarbon (HC) light-off curves were obtained. From the catalyst activity tests, it was found that the presence of species including CO, medium-heavy HC, alkenes, alkanes, and NOx and their concentration influence the catalyst ability to reduce CO and total HC emissions before release to the atmosphere. CO could inhibit itself and other species oxidation (e.g., light and medium-heavy hydrocarbons) while suffering from competitive adsorption with NO. Hydrocarbon species were also found to inhibit their own oxidation as well as CO through adsorption competition. On the other hand, NO2 was found to promote low temperature HC oxidation through its partial reduction, forming NO. The understanding of these exhaust species interactions within the DOC could aid the design of an efficient aftertreatment system for the removal of diesel exhaust pollutants.

  4. Naturally occurring plant isoquinoline N-oxide alkaloids: their pharmacological and SAR activities.

    PubMed

    Dembitsky, Valery M; Gloriozova, Tatyana A; Poroikov, Vladimir V

    2015-01-15

    The present review describes research on novel natural isoquinoline alkaloids and their N-oxides isolated from different plant species. More than 200 biological active compounds have shown confirmed antimicrobial, antibacterial, antitumor, and other activities. The structures, origins, and reported biological activities of a selection of isoquinoline N-oxides alkaloids are reviewed. With the computer program PASS some additional SAR (structure-activity relationship) activities are also predicted, which point toward new possible applications of these compounds. This review emphasizes the role of isoquinoline N-oxides alkaloids as an important source of leads for drug discovery.

  5. The Economics of Saving Endangered Species: A Teaching Activity.

    ERIC Educational Resources Information Center

    Schug, Mark C.; Shaw, Jane S.

    1997-01-01

    Argues that well-intentioned government policies, such as the Endangered Species Act, can actually cause harm to endangered species by creating disincentives to preserving the habitat for endangered species. Maintains that the use of incentives can lead to voluntary species protection. Includes instructions for an in-class teaching activity. (MJP)

  6. Oxidative stress, activity behaviour and body mass in captive parrots

    PubMed Central

    Larcombe, S. D.; Tregaskes, C. A.; Coffey, J.; Stevenson, A. E.; Alexander, L. G.; Arnold, K. E.

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally ‘active’ individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes. PMID

  7. Characterization of a trinuclear ruthenium species in catalytic water oxidation by Ru(bda)(pic)2 in neutral media.

    PubMed

    Zhang, Biaobiao; Li, Fei; Zhang, Rong; Ma, Chengbing; Chen, Lin; Sun, Licheng

    2016-06-30

    A Ru(III)-O-Ru(IV)-O-Ru(III) type trinuclear species was crystallographically characterized in water oxidation by Ru(bda)(pic)2 (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; pic = 4-picoline) under neutral conditions. The formation of a ruthenium trimer due to the reaction of Ru(IV)[double bond, length as m-dash]O with Ru(II)-OH2 was fully confirmed by chemical, electrochemical and photochemical methods. Since the oxidation of the trimer was proposed to lead to catalyst decomposition, the photocatalytic water oxidation activity was rationally improved by the suppression of the formation of the trimer.

  8. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems.

    PubMed

    Bödeker, Inga T M; Clemmensen, Karina E; de Boer, Wietse; Martin, Francis; Olson, Åke; Lindahl, Björn D

    2014-07-01

    In northern forests, belowground sequestration of nitrogen (N) in complex organic pools restricts nutrient availability to plants. Oxidative extracellular enzymes produced by ectomycorrhizal fungi may aid plant N acquisition by providing access to N in macromolecular complexes. We test the hypotheses that ectomycorrhizal Cortinarius species produce Mn-dependent peroxidases, and that the activity of these enzymes declines at elevated concentrations of inorganic N. In a boreal pine forest and a sub-arctic birch forest, Cortinarius DNA was assessed by 454-sequencing of ITS amplicons and related to Mn-peroxidase activity in humus samples with- and without previous N amendment. Transcription of Cortinarius Mn-peroxidase genes was investigated in field samples. Phylogenetic analyses of Cortinarius peroxidase amplicons and genome sequences were performed. We found a significant co-localization of high peroxidase activity and DNA from Cortinarius species. Peroxidase activity was reduced by high ammonium concentrations. Amplification of mRNA sequences indicated transcription of Cortinarius Mn-peroxidase genes under field conditions. The Cortinarius glaucopus genome encodes 11 peroxidases - a number comparable to many white-rot wood decomposers. These results support the hypothesis that some ectomycorrhizal fungi--Cortinarius species in particular--may play an important role in decomposition of complex organic matter, linked to their mobilization of organically bound N.

  9. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    NASA Astrophysics Data System (ADS)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  10. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China.

    PubMed

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 10(4) to 8.5 × 10(9) copies g(-1)), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  11. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China.

    PubMed

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 10(4) to 8.5 × 10(9) copies g(-1)), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  12. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    PubMed Central

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to −25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g−1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  13. Annihilation of Leishmania by daylight responsive ZnO nanoparticles: a temporal relationship of reactive oxygen species-induced lipid and protein oxidation

    PubMed Central

    Nadhman, Akhtar; Khan, Malik Ihsanullah; Nazir, Samina; Khan, Momin; Shahnaz, Gul; Raza, Abida; Shams, Dilawar Farhan; Yasinzai, Masoom

    2016-01-01

    Lipid and protein oxidation are well-known manifestations of free radical activity and oxidative stress. The current study investigated extermination of Leishmania tropica promastigotes induced by lipid and protein oxidation with reactive oxygen species produced by PEGylated metal-based nanoparticles. The synthesized photodynamic therapy-based doped and nondoped zinc oxide nanoparticles were activated in daylight that produced reactive oxygen species in the immediate environment. Lipid and protein oxidation did not occur in dark. The major lipid peroxidation derivatives comprised of conjugated dienes, lipid hydroperoxides, and malondialdehyde whereas water, ethane, methanol, and ethanol were found as the end products. Proteins were oxidized to carbonyls, hydroperoxides, and thiol degrading products. Interestingly, lipid hydroperoxides were produced by more than twofold of the protein hydroperoxides, indicating higher degradation of lipids compared to proteins. The in vitro evidence represented a significant contribution of the involvement of both lipid and protein oxidation in the annihilated antipromastigote effect of nanoparticles. PMID:27330288

  14. Ab Initio Studies of Chlorine Oxide and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.

  15. Involvement of mitogen-activated protein kinase activation in the signal-transduction pathways of the soya bean oxidative burst.

    PubMed Central

    Taylor, A T; Kim, J; Low, P S

    2001-01-01

    The oxidative burst constitutes one of the most rapid defence responses characterized in the Plant Kingdom. We have observed that four distinct elicitors of the soya bean oxidative burst activate kinases of masses approximately 44 kDa and approximately 47 kDa. Evidence that these kinases regulate production of reactive oxygen species include: (i) their rapid activation by oxidative burst elicitors, (ii) their tight temporal correlation between activation/deactivation of the kinases and activation/deactivation of the oxidative burst, (iii) the identical pharmacological profile of kinase activation and oxidant production for 13 commonly used inhibitors, and (iv) the autologous activation of both kinases and oxidant production by calyculin A and cantharidin, two phosphatase inhibitors. Immunological and biochemical studies reveal that the activated 44 kDa and 47 kDa kinases are mitogen-activated protein (MAP) kinase family members. The kinases prefer myelin basic protein as a substrate, and they phosphorylate primarily on threonine residues. The kinases are themselves phosphorylated on tyrosine residues, and this phosphorylation is required for activity. Finally, both kinases are recognized by an antibody against activated MAP kinase immediately after (but not before) cell stimulation by elicitors. Based on these and other observations, a preliminary sequence of signalling steps linking elicitor stimulation, kinase activation and Ca(2+) entry, to initiation of oxidant production, is proposed. PMID:11311144

  16. Particulate oxidative burden associated with firework activity.

    PubMed

    Godri, Krystal J; Green, David C; Fuller, Gary W; Dall'Osto, Manuel; Beddows, David C; Kelly, Frank J; Harrison, Roy M; Mudway, Ian S

    2010-11-01

    Firework events are capable of inducing particulate matter (PM) episodes that lead to exceedances of regulatory limit values. As short-term peaks in ambient PM concentration have been associated with negative impacts on respiratory and cardiovascular health, we performed a detailed study of the consequences of firework events in London on ambient air quality and PM composition. These changes were further related to the oxidative activity of daily PM samples by assessing their capacity to drive the oxidation of physiologically important lung antioxidants including ascorbate, glutathione and urate (oxidative potential, OP). Twenty-four hour ambient PM samples were collected at the Marylebone Road sampling site in Central London over a three week period, including two major festivals celebrated with pyrotechnic events: Guy Fawkes Night and Diwali. Pyrotechnic combustion events were characterized by increased gas phase pollutants levels (NO(x) and SO(2)), elevated PM mass concentrations, and trace metal concentrations (specifically Sr, Mg, K, Ba, and Pb). Relationships between NO(x), benzene, and PM(10) were used to apportion firework and traffic source fractions. A positive significant relationship was found between PM oxidative burden and individual trace metals associated with each of these apportioned source fractions. The level of exposure to each source fraction was significantly associated with the total OP. The firework contribution to PM total OP, on a unit mass basis, was greater than that associated with traffic sources: a 1 μg elevation in firework and traffic PM fraction concentration was associated with a 6.5 ± 1.5 OP(T) μg(-1) and 5.2 ± 1.4 OP(T) μg(-1) increase, respectively. In the case of glutathione depletion, firework particulate OP (3.5 ± 0.8 OP(GSH) μg(-1)) considerably exceeded that due to traffic particles (2.2 ± 0.8 OP(GSH) μg(-1)). Therefore, in light of the elevated PM concentrations caused by firework activity and the increased

  17. Evaluation of fatty acid oxidation by reactive oxygen species induced in liquids using atmospheric-pressure nonthermal plasma jets

    NASA Astrophysics Data System (ADS)

    Tani, Atsushi; Fukui, Satoshi; Ikawa, Satoshi; Kitano, Katsuhisa

    2015-10-01

    We investigated fatty acid oxidation by atmospheric-pressure nonthermal helium plasma using linoleic acid, an unsaturated fatty acid, together with evaluating active species induced in liquids. If the ambient gas contains oxygen, direct plasma such as plasma jets coming into contact with the liquid surface supplies various active species, such as singlet oxygen, ozone, and superoxide anion radicals, to the liquid. The direct plasma easily oxidizes linoleic acid, indicating that fatty acid oxidation will occur in the direct plasma. In contrast, afterglow flow, where the plasma is terminated in a glass tube and does not touch the surface of the liquid sample, supplies mainly superoxide anion radicals. The fact that there was no clear observation of linoleic acid oxidation using the afterglow reveals that it may not affect lipids, even in an atmosphere containing oxygen. The afterglow flow can potentially be used for the sterilization of aqueous solutions using the reduced pH method, in medical and dental applications, because it provides bactericidal activity in the aqueous solution despite containing a smaller amount of active species.

  18. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure-activity relationship

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Gu, Dong; Jin, Zhao; Du, Pei-Pei; Si, Rui; Tao, Jing; Xu, Wen-Qian; Huang, Yu-Ying; Senanayake, Sanjaya; Song, Qi-Sheng; Jia, Chun-Jiang; Schüth, Ferdi

    2015-03-01

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5-0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) showed high homogeneity in the supported Au nanoparticles. The ex situ and in situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H2-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  19. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    DOE PAGES

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; et al

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore » by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.« less

  20. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    SciTech Connect

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; Jia, Chun -Jia; Schueth, Ferdi

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  1. Antifungal activity of heartwood extracts from three Juniperus species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heartwood samples from three species of Juniperus (i.e., J. virginianna, J. occidentalis, and J. ashei) were extracted with hexane, ethanol and methanol and the hexane and ethanol extracts were tested for antifungal activity against four species of wood-rot fungi. These three species represent the ...

  2. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles.

    PubMed

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV-vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. PMID:25280701

  3. Differences in ATP Generation Via Glycolysis and Oxidative Phosphorylation and Relationships with Sperm Motility in Mouse Species.

    PubMed

    Tourmente, Maximiliano; Villar-Moya, Pilar; Rial, Eduardo; Roldan, Eduardo R S

    2015-08-14

    Mouse sperm produce enough ATP to sustain motility by anaerobic glycolysis and respiration. However, previous studies indicated that an active glycolytic pathway is required to achieve normal sperm function and identified glycolysis as the main source of ATP to fuel the motility of mouse sperm. All the available evidence has been gathered from the studies performed using the laboratory mouse. However, comparative studies of closely related mouse species have revealed a wide range of variation in sperm motility and ATP production and that the laboratory mouse has comparatively low values in these traits. In this study, we compared the relative reliance on the usage of glycolysis or oxidative phosphorylation as ATP sources for sperm motility between mouse species that exhibit significantly different sperm performance parameters. We found that the sperm of species with higher oxygen consumption/lactate excretion rate ratios were able to produce higher amounts of ATP, achieving higher swimming velocities. Additionally, we show that the species with higher respiration/glycolysis ratios have a higher degree of dependence upon active oxidative phosphorylation. Moreover, we characterize for the first time two mouse species in which sperm depend on functional oxidative phosphorylation to achieve normal performance. Finally, we discuss that sexual selection could promote adaptations in sperm energetic metabolism tending to increase the usage of a more efficient pathway for the generation of ATP (and faster sperm).

  4. Iron induces protection and necrosis in cultured cardiomyocytes: Role of reactive oxygen species and nitric oxide.

    PubMed

    Munoz, Juan Pablo; Chiong, Mario; García, Lorena; Troncoso, Rodrigo; Toro, Barbra; Pedrozo, Zully; Diaz-Elizondo, Jessica; Salas, Daniela; Parra, Valentina; Núñez, Marco T; Hidalgo, Cecilia; Lavandero, Sergio

    2010-02-15

    We investigate here the role of reactive oxygen species and nitric oxide in iron-induced cardiomyocyte hypertrophy or cell death. Cultured rat cardiomyocytes incubated with 20 microM iron (added as FeCl(3)-Na nitrilotriacetate, Fe-NTA) displayed hypertrophy features that included increased protein synthesis and cell size, plus realignment of F-actin filaments along with sarcomeres and activation of the atrial natriuretic factor gene promoter. Incubation with higher Fe-NTA concentrations (100 microM) produced cardiomyocyte death by necrosis. Incubation for 24 h with Fe-NTA (20-40 microM) or the nitric oxide donor Delta-nonoate increased iNOS mRNA but decreased iNOS protein levels; under these conditions, iron stimulated the activity and the dimerization of iNOS. Fe-NTA (20 microM) promoted short- and long-term generation of reactive oxygen species, whereas preincubation with l-arginine suppressed this response. Preincubation with 20 microM Fe-NTA also attenuated the necrotic cell death triggered by 100 microM Fe-NTA, suggesting that these preincubation conditions have cardioprotective effects. Inhibition of iNOS activity with 1400 W enhanced iron-induced ROS generation and prevented both iron-dependent cardiomyocyte hypertrophy and cardioprotection. In conclusion, we propose that Fe-NTA (20 microM) stimulates iNOS activity and that the enhanced NO production, by promoting hypertrophy and enhancing survival mechanisms through ROS reduction, is beneficial to cardiomyocytes. At higher concentrations, however, iron triggers cardiomyocyte death by necrosis. PMID:19969068

  5. Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy

    PubMed Central

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P.; Peng, Luming

    2015-01-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the 17O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency 17O chemical shifts being observed for the lower coordinated surface sites. H217O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. 17O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications. PMID:26601133

  6. Cyclic Catalytic Upgrading of Chemical Species Using Metal Oxide Materials

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Schutte, Erick J. (Inventor); Rolfe, Sara L. (Inventor)

    2013-01-01

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce(sub x)B(sub y)B'(sub z)B''O(sub gamma; wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01oxides.

  7. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOEpatents

    White, James H; Schutte, Erick J; Rolfe, Sara L

    2013-05-07

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01oxides.

  8. Nitric Oxide and Reactive Oxygen Species Mediate Metabolic Changes in Barley Seed Embryo during Germination.

    PubMed

    Ma, Zhenguo; Marsolais, Frédéric; Bykova, Natalia V; Igamberdiev, Abir U

    2016-01-01

    The levels of nitric oxide (NO) and reactive oxygen species (ROS), ATP/ADP ratios, reduction levels of ascorbate and glutathione, expression of the genes encoding proteins involved in metabolism of NO and activities of the enzymes involved in fermentation and in metabolism of NO and ROS were studied in the embryos of germinating seeds of two barley (Hordeum vulgare L.) cultivars differing in dormancy level. The level of NO production continuously increased after imbibition while the level of nitrosylated SH-groups in proteins increased. This corresponded to the decrease of free SH-groups in proteins. At early stage of germination (0-48 h post imbibition) the genes encoding class 1 phytoglobin (the protein scavenging NO) and S-nitrosoglutathione reductase (scavenging S-nitrosoglutathione) were markedly expressed. More dormant cultivar exhibited lower ATP/ADP and ascorbate/dehydroascorbate ratios and lower lactate and alcohol dehydrogenase activities, while the production of NO and nitrosylation of proteins was higher as compared to the non-dormant cultivar. The obtained data indicate that at the onset of germination NO is actively generated causing nitrosylation of SH-groups and a switch from respiration to fermentation. After radicle protrusion the metabolism changes in a more reducing type as recorded by ratio of reduced and oxidized glutathione and ascorbate. The turnover of NO by the scavenging systems (phytoglobin, S-nitrosoglutathione reductase and interaction with ROS) might contribute to the maintenance of redox and energy balance of germinating seeds and lead to alleviation of dormancy.

  9. Effect of size of catalytically active phases in the dehydrogenation of alcohols and the challenging selective oxidation of hydrocarbons.

    PubMed

    Zhang, Qinghong; Deng, Weiping; Wang, Ye

    2011-09-01

    The size of the active phase is one of the most important factors in determining the catalytic behaviour of a heterogeneous catalyst. This Feature Article focuses on the size effects in two types of reactions, i.e., the metal nanoparticle-catalysed dehydrogenation of alcohols and the metal oxide nanocluster-catalysed selective oxidation of hydrocarbons (including the selective oxidation of methane and ethane and the epoxidation of propylene). For Pd or Au nanoparticle-catalysed oxidative or non-oxidative dehydrogenation of alcohols, the size of metal nanoparticles mainly controls the catalytic activity by affecting the activation of reactants (either alcohol or O(2)). The size of oxidic molybdenum species loaded on SBA-15 determines not only the activity but also the selectivity of oxygenates in the selective oxidation of ethane; highly dispersed molybdenum species are suitable for acetaldehyde formation, while molybdenum oxide nanoparticles exhibit higher formaldehyde selectivity. Cu(II) and Fe(III) isolated on mesoporous silica are highly efficient for the selective oxidation of methane to formaldehyde, while the corresponding oxide clusters mainly catalyse the complete oxidation of methane. The lattice oxygen in iron or copper oxide clusters is responsible for the complete oxidation, while the isolated Cu(I) or Fe(II) generated during the reaction can activate molecular oxygen forming active oxygen species for the selective oxidation of methane. Highly dispersed Cu(I) and Fe(II) species also function for the epoxidation of propylene by O(2) and N(2)O, respectively. Alkali metal ions work as promoters for the epoxidation of propylene by enhancing the dispersion of copper or iron species and weakening the acidity. PMID:21629889

  10. Dental resin curing blue light induced oxidative stress with reactive oxygen species production.

    PubMed

    Yoshino, Fumihiko; Yoshida, Ayaka; Okada, Eizo; Okada, Yasue; Maehata, Yojiro; Miyamoto, Chihiro; Kishimoto, Sachi; Otsuka, Takero; Nishimura, Tomoko; Lee, Masaichi Chang-il

    2012-09-01

    Dental resin curing blue light has been used in the treatment of tooth bleaching and to restore teeth with resin-based composite fillings. However, there has been little consideration of its effect on oral tissues such as dental pulp and oral mucosa. The aim of this study was to investigate whether dental resin curing blue light irradiation affects the dental pulp, especially the blood vessels that are known as the first target of reactive oxygen species (ROS), which play an important role in vascular reactivity. We found that blue light irradiation increased the level of lipid peroxidation in isolated rat aorta blood vessels by measuring malondialdehyde. Furthermore, cell proliferative activity was decreased in a time-dependent manner and apoptosis of human aorta vascular smooth muscle cells (VSMCs) was induced. These results indicated that (ROS) such as hydrogen peroxide and hydroxyl radicals were generated in VSMCs by irradiation with blue light, and they induced cytotoxicity associated with oxidative stress, which increased lipid peroxidation and apoptosis. In addition, N-acetyl-l-cysteine, which is a typical intracellular antioxidant, protected VSMCs against cytotoxicity associated with oxidative stress. These findings suggested that antioxidants may be used to prevent oxidative stress in dental pulp by repeated and/or multiple treatments with blue light irradiation in future dental treatments.

  11. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  12. Function of reactive oxygen species during animal development: passive or active?

    PubMed

    Covarrubias, Luis; Hernández-García, David; Schnabel, Denhí; Salas-Vidal, Enrique; Castro-Obregón, Susana

    2008-08-01

    Oxidative stress is considered causal of aging and pathological cell death, however, very little is known about its function in the natural processes that support the formation of an organism. It is generally thought that cells must continuously protect themselves from the possible damage caused by reactive oxygen species (ROS) (passive ROS function). However, presently, ROS are recognized as physiologically relevant molecules that mediate cell responses to a variety of stimuli, and the activities of several molecules, some developmentally relevant, are directly or indirectly regulated by oxidative stress (active ROS function). Here we review recent data that are suggestive of specific ROS functions during development of animals, particularly mammals.

  13. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions.

    PubMed

    Long, Ran; Huang, Hao; Li, Yaping; Song, Li; Xiong, Yujie

    2015-11-25

    Oxidation reactions by molecular oxygen (O2 ) over palladium (Pd)-based nanomaterials are a series of processes crucial to the synthesis of fine chemicals. In the past decades, investigations of related catalytic materials have mainly been focused on the synthesis of Pd-based nanomaterials from the angle of tailoring their surface structures, compositions and supporting materials, in efforts to improve their activities in organic reactions. From the perspective of rational materials design, it is imperative to address the fundamental issues associated with catalyst performance, one of which should be oxygen activation by Pd-based nanomaterials. Here, the fundamentals that account for the transformation from O2 to reactive oxygen species over Pd, with a focus on singlet O2 and its analogue, are introduced. Methods for detecting and differentiating species are also presented to facilitate future fundamental research. Key factors for tuning the oxygen activation efficiencies of catalytic materials are then outlined, and recent developments in Pd-catalyzed oxygen-related organic reactions are summarized in alignment with each key factor. To close, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields.

  14. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions.

    PubMed

    Long, Ran; Huang, Hao; Li, Yaping; Song, Li; Xiong, Yujie

    2015-11-25

    Oxidation reactions by molecular oxygen (O2 ) over palladium (Pd)-based nanomaterials are a series of processes crucial to the synthesis of fine chemicals. In the past decades, investigations of related catalytic materials have mainly been focused on the synthesis of Pd-based nanomaterials from the angle of tailoring their surface structures, compositions and supporting materials, in efforts to improve their activities in organic reactions. From the perspective of rational materials design, it is imperative to address the fundamental issues associated with catalyst performance, one of which should be oxygen activation by Pd-based nanomaterials. Here, the fundamentals that account for the transformation from O2 to reactive oxygen species over Pd, with a focus on singlet O2 and its analogue, are introduced. Methods for detecting and differentiating species are also presented to facilitate future fundamental research. Key factors for tuning the oxygen activation efficiencies of catalytic materials are then outlined, and recent developments in Pd-catalyzed oxygen-related organic reactions are summarized in alignment with each key factor. To close, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields. PMID:26422795

  15. Cyclic catalytic upgrading of chemical species using metal oxide materials

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Schutte, Erick J. (Inventor); Rolfe, Sara L. (Inventor)

    2010-01-01

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

  16. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOEpatents

    White, James H.; Schutte, Erick J.; Rolfe, Sara L.

    2010-11-02

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

  17. Pollution Control Meets Sustainability: Structure-Activity Studies on New Iron Oxide-Based CO Oxidation Catalysts.

    PubMed

    Schoch, Roland; Bauer, Matthias

    2016-08-01

    A new class of catalysts for the oxidation of CO based on iron oxide as a biocompatible, earth-abundant and non-toxic metal is presented. The catalytic activities achieved with these catalysts provide promising milestones towards the substitution of noble metals in CO oxidation catalysts. The catalysts can be obtained by using iron core-shell nanoparticle precursors. The metal used for the shell material determines whether the iron core is integrated in or isolated from the support. The active iron site is effectively integrated into the γ-Al2 O3 support if an aluminum shell is present in the core-shell precursor. When the metal used for the shell is different from the support, an isolated structure is formed. Using this directed synthesis approach, different iron oxide species can be obtained and their structural differences are linked to distinct catalytic activities, as demonstrated by combined in-depth analytical studies using XRD, X-ray absorption spectroscopy (XAS), UV/Vis, and Brunauer-Emmett-Teller (BET) analysis. The key species responsible for high catalytic activity is identified as isolated tetrahedrally coordinated Fe(III) centers, whereas aggregation leads to a reduction in activity.

  18. Oxidative Stress Impairs the Stimulatory Effect of S100 Proteins on Protein Phosphatase 5 Activity.

    PubMed

    Yamaguchi, Fuminori; Tsuchiya, Mitsumasa; Shimamoto, Seiko; Fujimoto, Tomohito; Tokumitsu, Hiroshi; Tokuda, Masaaki; Kobayashi, Ryoji

    2016-01-01

    Oxidative stress is the consequence of an imbalance between the production of harmful reactive oxygen species and the cellular antioxidant system for neutralization, and it activates multiple intracellular signaling pathways, including apoptosis signal-regulating kinase 1 (ASK1). Protein phosphatase 5 (PP5) is a serine/threonine phosphatase involved in oxidative stress responses. Previously, we reported that S100 proteins activate PP5 in a calcium-dependent manner. S100 proteins belong to a family of small EF-hand calcium-binding proteins involved in many processes such as cell proliferation, differentiation, apoptosis, and inflammation. Therefore, we investigated the effects of oxidative stress on S100 proteins, their interaction with PP5, and PP5 enzyme activity. Recombinant S100A2 was easily air-oxidized or Cu-oxidized, and oxidized S100A2 formed cross-linked dimers and higher molecular-mass complexes. The binding of oxidized S100A2 to PP5 was reduced, resulting in decreased PP5 activation in vitro. Oxidation also impaired S100A1, S100A6, S100B, and S100P to activate PP5, although the low dose of oxidized S100 proteins still activated PP5. Hydrogen peroxide (H2O2) induced S100A2 oxidation in human keratinocytes (HaCaT) and human hepatocellular carcinoma (Huh-7) cells. Furthermore, H2O2 reduced the binding of S100A2 to PP5 and decreased PP5 activation in HaCaT and Huh-7 cells. Importantly, even the low dose of S100A2 achieved by knocking down increased dephosphorylation of ASK1 and reduced caspase 3/7 activity in Huh-7 cells treated with H2O2. These results indicate that oxidative stress impairs the ability of S100 proteins to bind and activate PP5, which in turn modulates the ASK1-mediated signaling cascades involved in apoptosis. PMID:27600583

  19. Redox Potentials, Laccase Oxidation, and Antilarval Activities of Substituted Phenols

    PubMed Central

    Prasain, Keshar; Nguyen, Thi D. T.; Gorman, Maureen J.; Barrigan, Lydia M.; Peng, Zeyu; Kanost, Michael R.; Syed, Lateef U.; Li, Jun; Zhu, Kun Yan; Hua, Duy H.

    2012-01-01

    Laccases are copper-containing oxidases that are involved in sclerotization of the cuticle of mosquitoes and other insects. Oxidation of exogenous compounds by insect laccases may have the potential to produce reactive species toxic to insects. We investigated two classes of substituted phenolic compounds, halogenated di- and trihydroxybenzenes and substituted di-tert-butylphenols, on redox potential, oxidation by laccase and effects on mosquito larval growth. An inverse correlation between the oxidation potentials and laccase activity of halogenated hydroxybenzenes was found. Substituted di-tert-butylphenols however were found to impact mosquito larval growth and survival. In particular, 2,4-di-tert-butyl-6-(3-methyl-2-butenyl)phenol (15) caused greater than 98% mortality of Anopheles gambiae larvae in a concentration of 180 nM, whereas 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylpropanal oxime (13) and 6,8-di-tert-butyl-2,2-dimethyl-3,4-dihydro-2H-chromene (33) caused 93% and 92% mortalities in concentrations of 3.4 and 3.7 μM, respectively. Larvae treated with di-tert-butylphenolic compounds died just before pupation. PMID:22300888

  20. Reusable Oxidation Catalysis Using Metal-Monocatecholato Species in a Robust Metal–Organic Framework

    SciTech Connect

    Fei, Honghan; Shin, JaeWook; Meng, Ying Shirley; Adelhardt, Mario; Sutter, Jörg; Meyer, Karsten; Cohen, Seth M.

    2014-04-02

    An isolated metal-monocatecholato moiety has been achieved in a highly robust metal–organic framework (MOF) by two fundamentally different postsynthetic strategies: postsynthetic deprotection (PSD) and postsynthetic exchange (PSE). Compared with PSD, PSE proved to be a more facile and efficient functionalization approach to access MOFs that could not be directly synthesized under solvothermal conditions. Metalation of the catechol functionality residing in the MOFs resulted in unprecedented Fe-monocatecholato and Cr-monocatecholato species, which were characterized by X-ray absorption spectroscopy, X-band electron paramagnetic resonance spectroscopy, and ⁵⁷Fe Mössbauer spectroscopy. The resulting materials are among the first examples of Zr(IV)-based UiO MOFs (UiO = University of Oslo) with coordinatively unsaturated active metal centers. Importantly, the Cr-metalated MOFs are active and efficient catalysts for the oxidation of alcohols to ketones using a wide range of substrates. Catalysis could be achieved with very low metal loadings (0.5–1 mol %). Unlike zeolite-supported, Cr-exchange oxidation catalysts, the MOF-based catalysts reported here are completely recyclable and reusable, which may make them attractive catalysts for ‘green’ chemistry processes.

  1. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases.

    PubMed

    Klingan, Katharina; Ringleb, Franziska; Zaharieva, Ivelina; Heidkamp, Jonathan; Chernev, Petko; Gonzalez-Flores, Diego; Risch, Marcel; Fischer, Anna; Dau, Holger

    2014-05-01

    Water oxidation in the neutral pH regime catalyzed by amorphous transition-metal oxides is of high interest in energy science. Crucial determinants of electrocatalytic activity were investigated for a cobalt-based oxide film electrodeposited at various thicknesses on inert electrodes. For water oxidation at low current densities, the turnover frequency (TOF) per cobalt ion of the bulk material stayed fully constant for variation of the thickness of the oxide film by a factor of 100 (from about 15 nm to 1.5 μm). Thickness variation changed neither the nanostructure of the outer film surface nor the atomic structure of the oxide catalyst significantly. These findings imply catalytic activity of the bulk hydrated oxide material. Nonclassical dependence on pH was observed. For buffered electrolytes with pKa values of the buffer base ranging from 4.7 (acetate) to 10.3 (hydrogen carbonate), the catalytic activity reflected the protonation state of the buffer base in the electrolyte solution directly and not the intrinsic catalytic properties of the oxide itself. It is proposed that catalysis of water oxidation occurs within the bulk hydrated oxide film at the margins of cobalt oxide fragments of molecular dimensions. At high current densities, the availability of a proton-accepting base at the catalyst-electrolyte interface controls the rate of water oxidation. The reported findings may be of general relevance for water oxidation catalyzed at moderate pH by amorphous transition-metal oxides.

  2. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast.

    PubMed

    Sabeena Farvin, K H; Jacobsen, Charlotte

    2013-06-01

    Water and ethanolic extracts of 16 species of seaweeds collected along the Danish coasts were screened for antioxidant activities using four in vitro antioxidant assays (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, reducing power, ferrous ion-chelating and liposome model system). Furthermore their effectiveness in retarding lipid peroxidation in fish oil was evaluated by an accelerated stability test. Significant differences were observed in total and individual phenolic content and the antioxidant activities of seaweed species evaluated. Ethanol was more efficient for polyphenol extraction than water. Polysiphonia fucoides and all the Fucus species tested showed highest radical scavenging activity, reducing power, inhibition of oxidation in liposome model system and in fish oil and were high in phenolic content. These seaweeds could be potential rich sources of natural antioxidants for protection of foods against oxidation. In general, the various antioxidative assays correlated well with the total phenolic content, indicating that algal polyphenols are active components in these extracts. However, in some of the antioxidative assays some species with low total phenolic content also showed good antioxidative effects indicating that some other co-extracted active compounds such as pigments and tocopherols in ethanolic extracts and sulphated polysaccharides, proteins or peptides in water extracts may also contribute to the overall antioxidant properties and this needs further investigation. PMID:23411297

  3. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways

    PubMed Central

    Mishanina, Tatiana V; Libiad, Marouane; Banerjee, Ruma

    2016-01-01

    The chemical species involved in H2S signaling remain elusive despite the profound and pleiotropic physiological effects elicited by this molecule. The dominant candidate mechanism for sulfide signaling is persulfidation of target proteins. However, the relatively poor reactivity of H2S toward oxidized thiols, such as disulfides, the low concentration of disulfides in the reducing milieu of the cell and the low steady-state concentration of H2S raise questions about the plausibility of persulfide formation via reaction between an oxidized thiol and a sulfide anion or a reduced thiol and oxidized hydrogen disulfide. In contrast, sulfide oxidation pathways, considered to be primarily mechanisms for disposing of excess sulfide, generate a series of reactive sulfur species, including persulfides, polysulfides and thiosulfate, that could modify target proteins. We posit that sulfide oxidation pathways mediate sulfide signaling and that sulfurtransferases ensure target specificity. PMID:26083070

  4. Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation.

    PubMed

    Zhang, Ning; Li, Xiyu; Ye, Huacheng; Chen, Shuangming; Ju, Huanxin; Liu, Daobin; Lin, Yue; Ye, Wei; Wang, Chengming; Xu, Qian; Zhu, Junfa; Song, Li; Jiang, Jun; Xiong, Yujie

    2016-07-20

    Modern development of chemical manufacturing requires a substantial reduction in energy consumption and catalyst cost. Sunlight-driven chemical transformation by metal oxides holds great promise for this goal; however, it remains a grand challenge to efficiently couple solar energy into many catalytic reactions. Here we report that defect engineering on oxide catalyst can serve as a versatile approach to bridge light harvesting with surface reactions by ensuring species chemisorption. The chemisorption not only spatially enables the transfer of photoexcited electrons to reaction species, but also alters the form of active species to lower the photon energy requirement for reactions. In a proof of concept, oxygen molecules are activated into superoxide radicals on defect-rich tungsten oxide through visible-near-infrared illumination to trigger organic aerobic couplings of amines to corresponding imines. The excellent efficiency and durability for such a highly important process in chemical transformation can otherwise be virtually impossible to attain by counterpart materials.

  5. Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation.

    PubMed

    Zhang, Ning; Li, Xiyu; Ye, Huacheng; Chen, Shuangming; Ju, Huanxin; Liu, Daobin; Lin, Yue; Ye, Wei; Wang, Chengming; Xu, Qian; Zhu, Junfa; Song, Li; Jiang, Jun; Xiong, Yujie

    2016-07-20

    Modern development of chemical manufacturing requires a substantial reduction in energy consumption and catalyst cost. Sunlight-driven chemical transformation by metal oxides holds great promise for this goal; however, it remains a grand challenge to efficiently couple solar energy into many catalytic reactions. Here we report that defect engineering on oxide catalyst can serve as a versatile approach to bridge light harvesting with surface reactions by ensuring species chemisorption. The chemisorption not only spatially enables the transfer of photoexcited electrons to reaction species, but also alters the form of active species to lower the photon energy requirement for reactions. In a proof of concept, oxygen molecules are activated into superoxide radicals on defect-rich tungsten oxide through visible-near-infrared illumination to trigger organic aerobic couplings of amines to corresponding imines. The excellent efficiency and durability for such a highly important process in chemical transformation can otherwise be virtually impossible to attain by counterpart materials. PMID:27351805

  6. Oxidation of DNA bases by tumor promoter-activated processes.

    PubMed Central

    Frenkel, K

    1989-01-01

    Evidence has accumulated showing that active oxygen species participate in at least one stage of tumor promotion. Tumor promoters can induce various types of cells to undergo processes that result in formation of active oxygen species. They stimulate polymorphonuclear leukocytes (PMNs) to undergo an oxidative burst that is characterized by rapid formation of .O2- and H2O2. We find that in vitro formation of H2O2 by tumor promoter-activated PMNs correlates with their in vivo first-stage promoting activity. Moreover, two thymidine derivatives are formed in DNA coincubated with tumor promoter-stimulated PMNs: 5-hydroxymethyl-2'-deoxyuridine (HMdU) and thymidine glycol (dTG). The amounts of HMdU and dTG formed correlate with the first-stage tumor-promoting potencies of the agents used for PMN stimulation and with the amount of H2O2 generated. We find that HMdU is also formed in the DNA of HeLa cells coincubated with 12-O-tetradecanoylphorbol-13-acetate (TPA)-activated PMNs, with the amount of HMdU being proportional to that of TPA used. Even in the absence of PMNs, HMdU is increasingly formed in cellular DNA with increased TPA concentration, although at much lower levels than in the presence of PMNs. When rat liver microsomes are incubated with benzo[a]pyrene (BaP), a complete carcinogen, H2O2 is also generated. Production of H2O2 increases linearly with increasing concentrations of BaP. Furthermore, HMdU is formed in DNA exposed to BaP-treated microsomes, and its formation is inhibited by catalase. These results suggest that carcinogen-induced processes generating H2O2 are associated with the first-stage promoting activity of complete carcinogens. PMID:2667984

  7. Aldosterone increases kidney tubule cell oxidants through calcium-mediated activation of NADPH oxidase and nitric oxide synthase.

    PubMed

    Queisser, Nina; Schupp, Nicole; Stopper, Helga; Schinzel, Reinhard; Oteiza, Patricia I

    2011-12-01

    Chronic hyperaldosteronism has been associated with an increased cancer risk. We recently showed that aldosterone causes an increase in cell oxidants, DNA damage, and NF-κB activation. This study investigated the mechanisms underlying aldosterone-induced increase in cell oxidants in kidney tubule cells. Aldosterone caused an increase in both reactive oxygen and reactive nitrogen (RNS) species. The involvement of the activation of NADPH oxidase in the increase in cellular oxidants was demonstrated by the inhibitory action of the NADPH oxidase inhibitors DPI, apocynin, and VAS2870 and by the migration of the p47 subunit to the membrane. NADPH oxidase activation occurred as a consequence of an increase in cellular calcium levels and was mediated by protein kinase C. The prevention of RNS increase by BAPTA-AM, W-7, and L-NAME indicates a calcium-calmodulin activation of NOS. A similar pattern of effects of the NADPH oxidase and NOS inhibitors was observed for aldosterone-induced DNA damage and NF-κB activation, both central to the pathogenesis of chronic aldosteronism. In summary, this paper demonstrates that aldosterone, via the mineralocorticoid receptor, causes an increase in kidney cell oxidants, DNA damage, and NF-κB activation through a calcium-mediated activation of NADPH oxidase and NOS. Therapies targeting calcium, NOS, and NADPH oxidase could prevent the adverse effects of hyperaldosteronism on kidney function as well as its potential oncogenic action.

  8. Active sites and mechanisms for direct oxidation of benzene to phenol over carbon catalysts.

    PubMed

    Wen, Guodong; Wu, Shuchang; Li, Bo; Dai, Chunli; Su, Dang Sheng

    2015-03-23

    The direct oxidation of benzene to phenol with H2 O2 as the oxidizer, which is regarded as an environmentally friendly process, can be efficiently catalyzed by carbon catalysts. However, the detailed roles of carbon catalysts, especially what is the active site, are still a topic of debate controversy. Herein, we present a fundamental consideration of possible mechanisms for this oxidation reaction by using small molecular model catalysts, Raman spectra, static secondary ion mass spectroscopy (SIMS), DFT calculations, quasi in situ ATR-IR and UV spectra. Our study indicates that the defects, being favorable for the formation of active oxygen species, are the active sites for this oxidation reaction. Furthermore, one type of active defect, namely the armchair configuration defect was successfully identified.

  9. Mitochondrial reactive oxygen species production by fish muscle mitochondria: Potential role in acute heat-induced oxidative stress.

    PubMed

    Banh, Sheena; Wiens, Lilian; Sotiri, Emianka; Treberg, Jason R

    2016-01-01

    Acute heat challenge is known to induce cell-level oxidative stress in fishes. Mitochondria are well known for the capacity to make reactive oxygen species (ROS) and as such are often implicated as a source of the oxidants associated with this thermally-induced oxidative stress. This implication is often asserted, despite little direct data for mitochondrial ROS metabolism in fishes. Here we characterize mitochondrial ROS metabolism in three Actinopterygian fish species at two levels, the capacity for superoxide/H2O2 production and the antioxidant thiol-reductase enzyme activities. We find that red muscle mitochondria from all three species have measurable ROS production and respond to different assay conditions consistent with what might be anticipated; assuming similar relative contributions from difference ROS producing sites as found in rat skeletal muscle mitochondria. Although there are species and assay specific exceptions, fish mitochondria may have a greater capacity to produce ROS than that found in the rat when either normalized to respiratory capacity or determined at a common assay temperature. The interspecific differences in ROS production are not correlated with thiol-based antioxidant reductase activities. Moreover, mimicking an acute in vivo heat stress by comparing the impact of increasing assay temperature on these processes in vitro, we find evidence supporting a preferential activation of mitochondrial H2O2 production relative to the increase in the capacity of reductase enzymes to supply electrons to the mitochondrial matrix peroxidases. This supports the contention that mitochondria may be, at least in part, responsible for the ROS that lead to oxidative stress in fish tissues exposed to acute heat challenge.

  10. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles.

    PubMed

    Li, Yang; Zhang, Wen; Niu, Junfeng; Chen, Yongsheng

    2012-06-26

    Oxidative stress induced by reactive oxygen species (ROS) is one of the most important antibacterial mechanisms of engineered nanoparticles (NPs). To elucidate the ROS generation mechanisms, we investigated the ROS production kinetics of seven selected metal-oxide NPs and their bulk counterparts under UV irradiation (365 nm). The results show that different metal oxides had distinct photogenerated ROS kinetics. Particularly, TiO(2) nanoparticles and ZnO nanoparticles generated three types of ROS (superoxide radical, hydroxyl radical, and singlet oxygen), whereas other metal oxides generated only one or two types or did not generate any type of ROS. Moreover, NPs yielded more ROS than their bulk counterparts likely due to larger surface areas of NPs providing more absorption sites for UV irradiation. The ROS generation mechanism was elucidated by comparing the electronic structures (i.e., band edge energy levels) of the metal oxides with the redox potentials of various ROS generation, which correctly interpreted the ROS generation of most metal oxides. To develop a quantitative relationship between oxidative stress and antibacterial activity of NPs, we examined the viability of E. coli cells in aqueous suspensions of NPs under UV irradiation, and a linear correlation was found between the average concentration of total ROS and the bacterial survival rates (R(2) = 0.84). Although some NPs (i.e., ZnO and CuO nanoparticles) released toxic ions that partially contributed to their antibacterial activity, this correlation quantitatively linked ROS production capability of NPs to their antibacterial activity as well as shed light on the applications of metal-oxide NPs as potential antibacterial agents.

  11. Tungsten species in natural ferromanganese oxides related to its different behavior from molybdenum in oxic ocean

    NASA Astrophysics Data System (ADS)

    Kashiwabara, Teruhiko; Takahashi, Yoshio; Marcus, Matthew A.; Uruga, Tomoya; Tanida, Hajime; Terada, Yasuko; Usui, Akira

    2013-04-01

    The tungsten (W) species in marine ferromanganese oxides were investigated by wavelength dispersive XAFS method. We found that the W species are in distorted Oh symmetry in natural ferromanganese oxides. The host phase of W is suggested to be Mn oxides by μ-XRF mapping. We also found that the W species forms inner-sphere complexes in hexavalent state and distorted Oh symmetry on synthetic ferrihydrite, goethite, hematite, and δ-MnO2. The molecular-scale information of W indicates that the negatively-charged WO42- ion mainly adsorbs on the negatively-charged Mn oxides phase in natural ferromanganese oxides due to the strong chemical interaction. In addition, preferential adsorption of lighter W isotopes is expected based on the molecular symmetry of the adsorbed species, implying the potential significance of the W isotope systems similar to Mo. Adsorption experiments of W on synthetic ferrihydrite and δ-MnO2 were also conducted. At higher equilibrium concentration, W exhibits behaviors similar to Mo on δ-MnO2 due to their formations of inner-sphere complexes. On the other hand, W shows a much larger adsorption on ferrihydrite than Mo. This is due to the formation of the inner- and outer-sphere complexes for W and Mo on ferrihydrite, respectively. Considering the lower equilibrium concentration such as in oxic seawater, however, the enrichment of W into natural ferromanganese oxides larger than Mo may be controlled by the different stabilities of their inner-sphere complexes on the Mn oxides. These two factors, (i) the stability of inner-sphere complexes on the Mn oxides and (ii) the mode of attachment on ferrihydrite (inner- or outer-sphere complex), are the causes of the different behaviors of W and Mo on the surface of the Fe/Mn (oxyhydr)oxides.

  12. Enhancement of photocatalytic activity of titanium(IV) oxide with molybdenum(VI) oxide

    SciTech Connect

    Lee, W.; Do, Y.R.; Dwight, K.; Wold, A. . Dept. of Chemistry)

    1993-11-01

    The addition of MoO[sub 3] to TiO[sub 2] enhanced its photocatalytic properties by 100%. This may be related to an increase in the rate of transfer of electrons from the TiO[sub 2] to the outer system, via the formation of a reduced molybdenum species. Samples of MoO[sub 3]/TiO[sub 2] mixed oxide powders were prepared by two methods: (1) the incipient wetness impregnation of ammonium paramolybdate onto TiO[sub 2] (P25), followed by a heat treatment, and (2) the ultrasonic nebulization and flame hydrolysis of a mixed ethanol solution of molybdenyl acetylacetonate and dipropoxy-titanium-bis(acetylacetonate). The photocatalytic activities of TiO[sub 2] based catalysts were evaluated by the degradation of 1,4-dichlorobenzene (DCB). TiO[sub 2] has promising applications in the treatment of both waste and drinking water.

  13. Using Temperature-Dependent Phenomena at Oxide Surfaces for Species Recognition in Chemical Sensing.

    NASA Astrophysics Data System (ADS)

    Semancik, Steve; Meier, Douglas; Evju, Jon; Benkstein, Kurt; Boger, Zvi; Montgomery, Chip

    2006-03-01

    Nanostructured films of SnO2 and TiO2 have been deposited on elements in MEMS arrays to fabricate solid state conductometric gas microsensors. The multilevel platforms within an array, called microhotplates, are individually addressable for localized temperature control and measurement of sensing film electrical conductance. Temperature variations of the microhotplates are employed in thermally-activated CVD oxide film growth, and for rapid temperature-programmed operation of the microsensors. Analytical information on environmental gas phase composition is produced temporally as purposeful thermal fluctuations provide energetic and kinetic control of surface reaction and adsorption/desorption phenomena. Resulting modulations of oxide adsorbate populations cause changing charge transfer behavior and measurable conductance responses. Rich data streams from different sensing films in the arrays have been analyzed by Artificial Neural Networks (ANN) to successfully recognize low concentration species in mixed gases. We illustrate capabilities of the approach and technology in the homeland security area, where dangerous chemicals (TICs, CWSs and CWAs) have been detected at 10-100 ppb levels in interference-spiked air backgrounds.

  14. Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels

    PubMed Central

    Hyder, Fahmeed; Rothman, Douglas L.; Bennett, Maxwell R.

    2013-01-01

    The continuous need for ion gradient restoration across the cell membrane, a prerequisite for synaptic transmission and conduction, is believed to be a major factor for brain’s high oxidative demand. However, do energy requirements of signaling and nonsignaling components of cortical neurons and astrocytes vary with activity levels and across species? We derived oxidative ATP demand associated with signaling (Ps) and nonsignaling (Pns) components in the cerebral cortex using species-specific physiologic and anatomic data. In rat, we calculated glucose oxidation rates from layer-specific neuronal activity measured across different states, spanning from isoelectricity to awake and sensory stimulation. We then compared these calculated glucose oxidation rates with measured glucose metabolic data for the same states as reported by 2-deoxy-glucose autoradiography. Fixed values for Ps and Pns were able to predict the entire range of states in the rat. We then calculated glucose oxidation rates from human EEG data acquired under various conditions using fixed Ps and Pns values derived for the rat. These calculated metabolic data in human cerebral cortex compared well with glucose metabolism measured by PET. Independent of species, linear relationship was established between neuronal activity and neuronal oxidative demand beyond isoelectricity. Cortical signaling requirements dominated energy demand in the awake state, whereas nonsignaling requirements were ∼20% of awake value. These predictions are supported by 13C magnetic resonance spectroscopy results. We conclude that mitochondrial energy support for signaling and nonsignaling components in cerebral cortex are conserved across activity levels in mammalian species. PMID:23319606

  15. Nitro-oxidative species in vivo biosensing: challenges and advances with focus on peroxynitrite quantification.

    PubMed

    Peteu, Serban F; Boukherroub, Rabah; Szunerits, Sabine

    2014-08-15

    The importance of the so-called reactive nitrogen and oxygen species (RNOS) in biology and food technology has been widely recognized. However when these species are in excess, the steady-state maintained by physiological processes is disturbed. At this point, the nitro oxidative metabolic stress develops and its action in vivo over time leads to nitro-oxidative reactions in food and in living organisms, but also results in chronic degenerative diseases. Analytical methods enabling the assessment of the total antioxidant activity of a biological sample or a plant extract is therefore largely sought after. The ability of biosensors for rapid and real-time analysis that decreases the assay time and the possibility of automated and multi-analyte analysis at low cost has also allowed the quantitative and qualitative detection of RNOS. Among these RNOS, peroxynitrite (ONOO(-)) is a well-known inflammatory mediator during a number of physiological and pathological processes. Consequently, many efforts are underway to detect peroxynitrite in the biomedical field. This urgent demand makes the development of ONOO(-) specific probes of great interest. Not only they can be useful for the detection of disease states, but they will also allow for a screening-type analysis of potential signal transduction pathways in the cells. This invited review will critically discuss for the first time the very latest advancements and the challenges in the field of peroxynitrite biosensors and probes for in vivo and in vitro studies. Also, the main trends will be extracted, in order to chart the future directions and hence create an instrumental outlook.

  16. Nitric Oxide and Reactive Oxygen Species Mediate Metabolic Changes in Barley Seed Embryo during Germination

    PubMed Central

    Ma, Zhenguo; Marsolais, Frédéric; Bykova, Natalia V.; Igamberdiev, Abir U.

    2016-01-01

    The levels of nitric oxide (NO) and reactive oxygen species (ROS), ATP/ADP ratios, reduction levels of ascorbate and glutathione, expression of the genes encoding proteins involved in metabolism of NO and activities of the enzymes involved in fermentation and in metabolism of NO and ROS were studied in the embryos of germinating seeds of two barley (Hordeum vulgare L.) cultivars differing in dormancy level. The level of NO production continuously increased after imbibition while the level of nitrosylated SH-groups in proteins increased. This corresponded to the decrease of free SH-groups in proteins. At early stage of germination (0–48 h post imbibition) the genes encoding class 1 phytoglobin (the protein scavenging NO) and S-nitrosoglutathione reductase (scavenging S-nitrosoglutathione) were markedly expressed. More dormant cultivar exhibited lower ATP/ADP and ascorbate/dehydroascorbate ratios and lower lactate and alcohol dehydrogenase activities, while the production of NO and nitrosylation of proteins was higher as compared to the non-dormant cultivar. The obtained data indicate that at the onset of germination NO is actively generated causing nitrosylation of SH-groups and a switch from respiration to fermentation. After radicle protrusion the metabolism changes in a more reducing type as recorded by ratio of reduced and oxidized glutathione and ascorbate. The turnover of NO by the scavenging systems (phytoglobin, S-nitrosoglutathione reductase and interaction with ROS) might contribute to the maintenance of redox and energy balance of germinating seeds and lead to alleviation of dormancy. PMID:26909088

  17. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    PubMed

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-01-01

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. PMID:27517893

  18. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    PubMed

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-01-01

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  19. Generation of oxidative species from ultraviolet light induced photolysis of fructose.

    PubMed

    Elsinghorst, Aachen; Tikekar, Rohan V

    2014-07-01

    Fructose has shown significant reactivity during ultraviolet light (UV, 254nm) processing of fruit juices that can adversely affect product quality. The present study demonstrates that this reactivity of fructose is due to the oxidative nature of products formed from UV induced photolysis of fructose. This was accomplished using fluorescein, a fluorescent dye that loses fluorescence intensity upon reaction with oxidative species. Fructose caused a concentration dependent decay of fluorescence from fluorescein only in presence of UV, indicating oxidative nature of photolysis products of fructose. The transient oxidative species including free radicals and not one of the final photolysis products, furan, were responsible for fluorescence decay. Addition of an antioxidant and removal of oxygen from solution lowered the rate of fluorescence decay, suggesting strategies that can be employed to lower the deleterious effects of fructose on products. The understanding developed can be used to optimise UV processing of juices. PMID:24518343

  20. Mechanisms of pyrite oxidation to non-slagging species. Quarterly report, January 1--March 31, 1997

    SciTech Connect

    Akan-Etuk, A.E.J.; Mitchell, R.E.

    1997-12-31

    This document is the eleventh quarterly status report on a project that is concerned with enhancing the transformation of iron pyrite to non-slagging species during staged, low-NO{sub x} pulverized coal (P.C.) combustion. The research project is intended to advance PETC`s efforts to improve the technical understanding of the high-temperature chemical and physical processes involved in the utilization of coal. The work focuses on the mechanistic description and rate quantification of the effects of fuel properties and combustion environment on the oxidation of iron pyrite to form the non-slagging species magnetite. Activities during this report period were associated with the numerical encoding of the pyrite combustion model. The computer program resulting from the efforts put forth is intended to provide predictive capabilities with respect to pyrite composition during pulverized coal firing. The subroutines that have been written to track the fate of a pyrite particle of specified size and composition flowing in a gaseous environment of specified oxygen concentration, temperature, and velocity are being debugged and tested.

  1. Enhanced nitric oxide and reactive oxygen species production and damage after inhalation of silica.

    PubMed

    Porter, Dale W; Millecchia, Lyndell; Robinson, Victor A; Hubbs, Ann; Willard, Patsy; Pack, Donna; Ramsey, Dawn; McLaurin, Jeff; Khan, Amir; Landsittel, Douglas; Teass, Alexander; Castranova, Vincent

    2002-08-01

    In previous reports from this study, measurements of pulmonary inflammation, bronchoalveolar lavage cell cytokine production and nuclear factor-kappa B activation, cytotoxic damage, and fibrosis were detailed. In this study, we investigated the temporal relationship between silica inhalation, nitric oxide (NO), and reactive oxygen species (ROS) production, and damage mediated by these radicals in the rat. Rats were exposed to a silica aerosol (15 mg/m(3) silica, 6 h/day, 5 days/wk) for 116 days. We report time-dependent changes in 1) activation of alveolar macrophages and concomitant production of NO and ROS, 2) immunohistochemical localization of inducible NO synthase and the NO-induced damage product nitrotyrosine, 3) bronchoalveolar lavage fluid NO(x) and superoxide dismutase concentrations, and 4) lung lipid peroxidation levels. The major observations made in this study are as follows: 1) NO and ROS production and resultant damage increased during silica exposure, and 2) the sites of inducible NO synthase activation and NO-mediated damage are associated anatomically with pathological lesions in the lungs. PMID:12114212

  2. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts.

    PubMed

    Surendranath, Yogesh; Dinca, Mircea; Nocera, Daniel G

    2009-02-25

    Electrolysis of Co(2+) in phosphate, methylphosphonate, and borate electrolytes effects the electrodeposition of an amorphous highly active water oxidation catalyst as a thin film on an inert anode. Electrodeposition of a catalytically competent species immediately follows oxidation of Co(2+) to Co(3+) in solution. Methylphosphonate and borate electrolytes support catalyst activity comparable to that observed for phosphate. Catalytic activity for O(2) generation in aqueous solutions containing 0.5 M NaCl is retained for catalysts grown from phosphate electrolyte.

  3. The anti-oxidant activity of turmeric (Curcuma longa).

    PubMed

    Selvam, R; Subramanian, L; Gayathri, R; Angayarkanni, N

    1995-07-01

    The turmeric anti-oxidant protein (TAP) had been isolated from the aqueous extract of turmeric. The anti-oxidant principle was found to be a heat stable protein. Trypsin treatment abolished the anti-oxidant activity. The anti-oxidant principle had an absorbance maximum at 280 nm. After gel filtration, the protein showed a 2-fold increase in anti-oxidant activity and showed 2 bands in the SDS-PAGE with approximate molecular weight range of 24,000 Da. The protein showed a concentration-dependent inhibitory effect on the promoter induced lipid peroxidation. A 50% inhibitory activity of lipid peroxidation was observed at a protein concentration of 50 micrograms/ml. Ca(2+)-ATPase of rat brain homogenate was protected to nearly 50% of the initial activity from the lipid peroxidant induced inactivation by this protein. This protection of Ca(2+)-ATPase activity was found to be associated with the prevention of loss of -SH groups.

  4. Insights into synergistic effect of chromium oxides and ceria supported on Ti-PILC for NO oxidation and their surface species study

    NASA Astrophysics Data System (ADS)

    Zhong, Lei; Cai, Wei; Yu, Yang; Zhong, Qin

    2015-01-01

    The insights of synergistic effect between chromium oxides and ceria supported on Ti-PILC were studied for NO oxidation. The aim of this study was to investigate the role of chromium oxides and ceria and their synergistic effect in textural properties, redox performance and surface species over the Cr1-xCex/TP catalysts. These catalysts were investigated in detail by means of Brunauer-Emmertt-Teller (BET) surface area analysis, X-ray diffraction (XRD), transmission electron microscope (TEM), temperature-programmed reduction of H2 (H2-TPR), temperature-programmed desorption (NO-TPD, O2-TPD), photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS). It has been found that CrOx were beneficial to adsorb and activate NO to form NO+ and then generate nitrates while ceria were inclined to activate O2 via oxygen vacancies to produce nitrates. Besides, the results of in situ DRIFTS further demonstrated that surface species were associated with not only reaction atmosphere but also reaction temperature. Hence, a possible reaction model was tentatively proposed.

  5. The lipocalin alpha1-microglobulin protects erythroid K562 cells against oxidative damage induced by heme and reactive oxygen species.

    PubMed

    Olsson, Magnus G; Olofsson, Tor; Tapper, Hans; Akerstrom, Bo

    2008-08-01

    Alpha(1)-microglobulin is a 26 kDa plasma and tissue glycoprotein that belongs to the lipocalin protein superfamily. Recent reports show that it is a reductase and radical scavenger and that it binds heme and has heme-degrading properties. This study has investigated the protective effects of alpha(1)-microglobulin against oxidation by heme and reactive oxygen species in the human erythroid cell line, K562. The results show that alpha(1)-microglobulin prevents intracellular oxidation and up-regulation of heme oxygenase-1 induced by heme, hydrogen peroxide and Fenton reaction-generated hydroxyl radicals in the culture medium. It also reduces the cytosol of non-oxidized cells. Endogeneous expression of alpha(1)-microglobulin was up-regulated by these oxidants and silencing of the alpha(1)-microglobulin expression increased the cytosol oxidation. alpha(1)-microglobulin also inhibited cell death caused by heme and cleared cells from bound heme. Binding of heme to alpha(1)-microglobulin increased the radical reductase activity of the protein as compared to the apo-protein. Finally, alpha(1)-microglobulin was localized mainly at the cell surface both when administered exogeneously and in non-treated cells. The results suggest that alpha(1)-microglobulin is involved in the defence against oxidative cellular injury caused by haemoglobin and heme and that the protein may employ both heme-scavenging and one-electron reduction of radicals to achieve this.

  6. Colloidal polyaniline dispersions: antibacterial activity, cytotoxicity and neutrophil oxidative burst.

    PubMed

    Kucekova, Zdenka; Humpolicek, Petr; Kasparkova, Vera; Perecko, Tomas; Lehocký, Marián; Hauerlandová, Iva; Sáha, Petr; Stejskal, Jaroslav

    2014-04-01

    Polyaniline colloids rank among promising application forms of this conducting polymer. Cytotoxicity, antibacterial activity, and neutrophil oxidative burst tests were performed on cells treated with colloidal polyaniline dispersions. The antibacterial effect of colloidal polyaniline against gram-positive and gram-negative bacteria was most pronounced for Bacillus cereus and Escherichia coli, with a minimum inhibitory concentration of 3,500 μg mL(-1). The data recorded on human keratinocyte (HaCaT) and a mouse embryonic fibroblast (NIH/3T3) cell lines using an MTT assay and flow cytometry indicated a concentration-dependent cytotoxicity of colloid, with the absence of cytotoxic effect at around 150 μg mL(-1). The neutrophil oxidative burst test then showed that colloidal polyaniline, in concentrations <150 μg mL(-1), was not able to stimulate the production of reactive oxygen species in neutrophils and whole human blood. However, it worked efficiently as a scavenger of those already formed.

  7. Microfluidic Electrochemical Sensor for On-line Monitoring of Aerosol Oxidative Activity

    PubMed Central

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S.

    2012-01-01

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species (ROS) in and around human tissues, leading to oxidative stress. We report here, a system employing a microfluidic electrochemical sensor coupled directly to a Particle-into-Liquid-Sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol assay (DTT assay) where after oxidized by PM, the remaining reduced DTT was analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. Cobalt (II) phthalocyanine (CoPC)-modified carbon paste was used as the working electrode material allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R2 from 0.86–.97) with a time-resolution of approximately 3 minutes. PMID:22651886

  8. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    SciTech Connect

    Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna; Jana, Madhurya; Pramanik, Panchanan; Karmakar, Parimal

    2014-11-15

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.

  9. Comparison of cytotoxic activities of extracts from Selaginella species

    PubMed Central

    Li, Juan; Lei, Xiang; Chen, Ke-li

    2014-01-01

    Background: Selaginella species are resurrection plants, which are known, possess various molecular bioactivities depending on species, but only a few species have been detailed observe in the advanced research. Objective: The objective of the following study is to compare the chemical profiles of different species of Selaginella and to investigate cytotoxicity and induction of apoptosis activities of some species of Selaginella. Materials and Methods: The high-performance liquid chromatography (HPLC) method was developed for chemical analysis. Ethyl acetate, ethanol and water-soluble extracts from seven Selaginella species were submitted to 3-(4,5-dimenthyl thizol-2-yl)-2,5-diphenyl tetrazolium bromide assay, flow cytometry, deoxyribonucleic acid (DNA) laddering analysis and caspase-3 expression using Bel-7402, HT-29 and HeLa cells. Results: The HPLC analysis revealed two major common peaks, which were identified as amentoflavone and robustaflavone and another three main peaks in their chromatograms. The results showed that S. labordei, Selaginella tamariscina and Selaginella uncinata had relatively stronger activities on Bel-7402 and HeLa cells and Selaginella moellendorfii had moderate antiproliferation activities, but Selaginella remotifolia and Selaginella pulvinata had almost no inhibitory activities. The main active components were in the ethyl acetate extracts which had abundant biflavonoids. The effects of these extracts on cell proliferation and apoptosis in different cells were not the same, they were more apparent on HeLa cells than on HT-29 cells. The assay of DNA laddering analysis and caspase-3 expression further confirmed that inducing cell apoptosis was one of antitumor mechanisms and antitumor activities of Selaginella species were related to apoptosis induced by caspase family. Conclusion: S. labordei, S. tamariscina and S. uncinata would be potential antitumor agents. PMID:25422557

  10. Catalytic activity of metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide

    SciTech Connect

    Marshneva, V.I.; Mokrinskii, V.V.

    1989-02-01

    Separate investigations have been made of the catalytic activities of a wide range of oxides by groups I-VIII metals in the Claus reaction and oxidation of H/sub 2/S by oxygen. Only 9 of 21 oxides used in the Claus reaction exhibit stable activity. The remaining oxides are deactivated, mainly by absorbing H/sub 2/S and being converted into sulfides. There are similar tendencies in the changes of sulfur formation specific velocities in both processes in the series of stable oxides V/sub 2/O/sub 5/, TiO/sub 2/, Mn/sub 2/O/sub 3/, Al/sub 2/O/sub 3/, MgO, Cr/sub 2/O/sub 3/. Vanadium pentoxide is the most active catalyst in the total and partial oxidations of H/sub 2/S and the Claus reaction.

  11. Toxic oxidant species and their impact on the pulmonary surfactant system.

    PubMed

    Putman, E; van Golde, L M; Haagsman, H P

    1997-01-01

    In this review the effects of oxidant inhalation on the pulmonary surfactant system of laboratory animals are discussed. Oxidant lung injury is a complex phenomenon with many aspects. Inhaled oxidants interact primarily with the epithelial lining fluid (ELF), a thin layer covering the epithelial cells of the lung which contains surfactant and antioxidants. In the upper airways this layer is thick and contains high levels of antioxidants. Therefore oxidant injury in this area is rare and is more common in the lower airways where the ELF is thin and contains fewer antioxidants. In the ELF oxidants can react with antioxidants or biomolecules, resulting in inactivation of the biomolecules or in the formation of even more reactive agents. Oxidation of extracellular surfactant constituents may impair its function and affect breathing. Oxidized ELF constituents may promote inflammation and edema, which will impair the surfactant system further. Animal species differences in respiratory tract anatomy, ventilatory rate, and antioxidant levels influence susceptibility to oxidants. The oxidant exposure dose dictates injury, subsequent repair processes, and tolerance induction.

  12. Oxidative Profile and δ-Aminolevulinate Dehydratase Activity in Healthy Pregnant Women with Iron Supplementation.

    PubMed

    De Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B; Neme, Walter S; Gallarreta, Francisco M P; Gonçalves, Thissiane L

    2016-05-03

    An oxidative burst occurs during pregnancy due to the large consumption of oxygen in the tissues and an increase in metabolic demands in response to maternal physiological changes and fetal growth. This study aimed to determine the oxidative profile and activity of δ-aminolevulinate dehydratase (δ-ALA-D) in pregnant women who received iron supplementation. Oxidative stress parameters were evaluated in 25 pregnant women with iron supplementation, 25 pregnant women without supplementation and 25 non-pregnant women. The following oxidative stress parameters were evaluated: thiobarbituric acid reactive substances (TBARS), protein thiol groups (P-SH), non-protein thiol levels (NP-SH), vitamin C levels, catalase and δ-ALA-D activity. Markers of oxidative stress and cell damage, such as TBARS in plasma were significantly higher in pregnant women without supplementation. Levels of P-SH, NP-SH and δ-ALA-D activity were significantly lower in pregnant women without supplementation compared to non-pregnant and pregnant women with supplementation, while vitamin C levels were significantly lower in pregnant women without supplementation when compared to non-pregnant women. The increase in the generation of oxidative species and decrease of antioxidants suggest the loss of physiological oxidative balance during normal pregnancy, which was not observed in pregnant women with iron supplementation, suggesting a protective effect of iron against oxidative damage.

  13. Oxidative Profile and δ-Aminolevulinate Dehydratase Activity in Healthy Pregnant Women with Iron Supplementation

    PubMed Central

    De Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B.; Neme, Walter S.; Gallarreta, Francisco M. P.; Gonçalves, Thissiane L.

    2016-01-01

    An oxidative burst occurs during pregnancy due to the large consumption of oxygen in the tissues and an increase in metabolic demands in response to maternal physiological changes and fetal growth. This study aimed to determine the oxidative profile and activity of δ-aminolevulinate dehydratase (δ-ALA-D) in pregnant women who received iron supplementation. Oxidative stress parameters were evaluated in 25 pregnant women with iron supplementation, 25 pregnant women without supplementation and 25 non-pregnant women. The following oxidative stress parameters were evaluated: thiobarbituric acid reactive substances (TBARS), protein thiol groups (P-SH), non-protein thiol levels (NP-SH), vitamin C levels, catalase and δ-ALA-D activity. Markers of oxidative stress and cell damage, such as TBARS in plasma were significantly higher in pregnant women without supplementation. Levels of P-SH, NP-SH and δ-ALA-D activity were significantly lower in pregnant women without supplementation compared to non-pregnant and pregnant women with supplementation, while vitamin C levels were significantly lower in pregnant women without supplementation when compared to non-pregnant women. The increase in the generation of oxidative species and decrease of antioxidants suggest the loss of physiological oxidative balance during normal pregnancy, which was not observed in pregnant women with iron supplementation, suggesting a protective effect of iron against oxidative damage. PMID:27153075

  14. Aldosterone Increases Oxidant Stress to Impair Guanylyl Cyclase Activity by Cysteinyl Thiol Oxidation in Vascular Smooth Muscle Cells*S⃞

    PubMed Central

    Maron, Bradley A.; Zhang, Ying-Yi; Handy, Diane E.; Beuve, Annie; Tang, Shiow-Shih; Loscalzo, Joseph; Leopold, Jane A.

    2009-01-01

    Hyperaldosteronism is associated with impaired endothelium-dependent vascular reactivity owing to increased reactive oxygen species and decreased bioavailable nitric oxide (NO·); however, the effects of aldosterone on vasodilatory signaling pathways in vascular smooth muscle cells (VSMC) remain unknown. Soluble guanylyl cyclase (GC) is a heterodimer that is activated by NO· to convert cytosolic GTP to cGMP, a second messenger required for normal VSMC relaxation. Here, we show that aldosterone (10-9-10-7 mol/liter) diminishes GC activity by activating NADPH oxidase in bovine aortic VSMC to increase reactive oxygen species levels and induce oxidative posttranslational modification(s) of Cys-122, a β1-subunit cysteinyl residue demonstrated previously to modulate NO· sensing by GC. In VSMC treated with aldosterone, Western immunoblotting detected evidence of GC β1-subunit disulfide bonding, whereas mass spectrometry analysis of a homologous peptide containing the Cys-122-bearing sequence exposed to conditions of increased oxidant stress confirmed cysteinyl sulfinic acid (m/z 435), sulfonic acid (m/z 443), and disulfide (m/z 836) bond formation. The functional effect of these modifications was examined by transfecting COS-7 cells with wild-type GC or mutant GC containing an alanine substitution at Cys-122 (C122A). Exposure to aldosterone or hydrogen peroxide (H2O2) significantly decreased cGMP levels in cells expressing wild-type GC. In contrast, aldosterone or H2O2 did not influence cGMP levels in cells expressing the mutant C122A GC, confirming that oxidative modification of Cys-122 specifically impairs GC activity. These findings demonstrate that pathophysiologically relevant concentrations of aldosterone increase oxidant stress to convert GC to an NO·-insensitive state, resulting in disruption of normal vasodilatory signaling pathways in VSMC. PMID:19141618

  15. Aldosterone increases oxidant stress to impair guanylyl cyclase activity by cysteinyl thiol oxidation in vascular smooth muscle cells.

    PubMed

    Maron, Bradley A; Zhang, Ying-Yi; Handy, Diane E; Beuve, Annie; Tang, Shiow-Shih; Loscalzo, Joseph; Leopold, Jane A

    2009-03-20

    Hyperaldosteronism is associated with impaired endothelium-dependent vascular reactivity owing to increased reactive oxygen species and decreased bioavailable nitric oxide (NO(.)); however, the effects of aldosterone on vasodilatory signaling pathways in vascular smooth muscle cells (VSMC) remain unknown. Soluble guanylyl cyclase (GC) is a heterodimer that is activated by NO(.) to convert cytosolic GTP to cGMP, a second messenger required for normal VSMC relaxation. Here, we show that aldosterone (10(-9)-10(-7) mol/liter) diminishes GC activity by activating NADPH oxidase in bovine aortic VSMC to increase reactive oxygen species levels and induce oxidative posttranslational modification(s) of Cys-122, a beta(1)-subunit cysteinyl residue demonstrated previously to modulate NO(.) sensing by GC. In VSMC treated with aldosterone, Western immunoblotting detected evidence of GC beta(1)-subunit disulfide bonding, whereas mass spectrometry analysis of a homologous peptide containing the Cys-122-bearing sequence exposed to conditions of increased oxidant stress confirmed cysteinyl sulfinic acid (m/z 435), sulfonic acid (m/z 443), and disulfide (m/z 836) bond formation. The functional effect of these modifications was examined by transfecting COS-7 cells with wild-type GC or mutant GC containing an alanine substitution at Cys-122 (C122A). Exposure to aldosterone or hydrogen peroxide (H(2)O(2)) significantly decreased cGMP levels in cells expressing wild-type GC. In contrast, aldosterone or H(2)O(2) did not influence cGMP levels in cells expressing the mutant C122A GC, confirming that oxidative modification of Cys-122 specifically impairs GC activity. These findings demonstrate that pathophysiologically relevant concentrations of aldosterone increase oxidant stress to convert GC to an NO(.)-insensitive state, resulting in disruption of normal vasodilatory signaling pathways in VSMC.

  16. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease.

    PubMed Central

    Rachmilewitz, D; Stamler, J S; Bachwich, D; Karmeli, F; Ackerman, Z; Podolsky, D K

    1995-01-01

    Recent studies have suggested that nitric oxide (NO.), the product of nitric oxide synthase in inflammatory cells, may play a part in tissue injury and inflammation through its oxidative metabolism. In this study the colonic generation of oxides of nitrogen (NOx) and nitric oxide synthase activity was determined in ulcerative colitis and Crohn's disease. Colonic biopsy specimens were obtained from inflammatory bowel disease patients and from normal controls. Mucosal explants were cultured in vitro for 24 hours and NOx generation was determined. Nitric oxide synthase activity was monitored by the conversion of [3H]-L-arginine to citrulline. Median NOx generation by inflamed colonic mucosa of patients with active ulcerative colitis and Crohn's colitis was 4.2- and 8.1-fold respectively higher than that by normal human colonic mucosa. In ulcerative colitis and Crohn's colitis nitric oxide synthase activity was 10.0- and 3.8-fold respectively higher than in normal subjects. Colonic NOx generation is significantly decreased by methylprednisolone and ketotifen. The decrease in NOx generation by cultured colonic mucosa induced by methylprednisolone suggests that NO synthase activity is induced during the culture and the steroid effect may contribute to its therapeutic effect. Enhanced colonic NOx generation by stimulated nitric oxide synthase activity in ulcerative colitis and Crohn's disease may contribute to tissue injury. PMID:7541008

  17. Interplays between nitric oxide and reactive oxygen species in cryptogein signalling.

    PubMed

    Kulik, Anna; Noirot, Elodie; Grandperret, Vincent; Bourque, Stéphane; Fromentin, Jérôme; Salloignon, Pauline; Truntzer, Caroline; Dobrowolska, Grażyna; Simon-Plas, Françoise; Wendehenne, David

    2015-02-01

    Nitric oxide (NO) has many functions in plants. Here, we investigated its interplays with reactive oxygen species (ROS) in the defence responses triggered by the elicitin cryptogein. The production of NO induced by cryptogein in tobacco cells was partly regulated through a ROS-dependent pathway involving the NADPH oxidase NtRBOHD. In turn, NO down-regulated the level of H2O2. Both NO and ROS synthesis appeared to be under the control of type-2 histone deacetylases acting as negative regulators of cell death. Occurrence of an interplay between NO and ROS was further supported by the finding that cryptogein triggered a production of peroxynitrite (ONOO(-)). Next, we showed that ROS, but not NO, negatively regulate the intensity of activity of the cryptogein-induced protein kinase NtOSAK. Furthermore, using a DNA microarray approach, we identified 15 genes early induced by cryptogein via NO. A part of these genes was also modulated by ROS and encoded proteins showing sequence identity to ubiquitin ligases. Their expression appeared to be negatively regulated by ONOO(-), suggesting that ONOO(-) mitigates the effects of NO and ROS. Finally, we provided evidence that NO required NtRBOHD activity for inducing cell death, thus confirming previous assumption that ROS channel NO through cell death pathways. PMID:24506708

  18. Invasive predator snake induces oxidative stress responses in insular amphibian species.

    PubMed

    Pinya, Samuel; Tejada, Silvia; Capó, Xavier; Sureda, Antoni

    2016-10-01

    The presence of predators induces physiological stress responses in preys to avoid being captured. A stressful situation enhances reactive oxygen species production with potential damage to macromolecules and alterations in oxidant defences levels. The antioxidant enzyme response of the endemic Majorcan Midwife toad (Alytes muletensis) and the Balearic green toad (Bufotes balearicus) tadpoles against an invasive predator, the viperine snake (Natrix maura) was investigated. Tadpoles were introduced in aquaria containing N. maura exudates during 24h. Antioxidant enzyme activities - catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) - and reduced glutathione (GSH) and malondialdehyde (MDA) concentrations were measured in tadpoles. The presence of snake exudates induced a significant increase in CAT and GR activities and in GSH levels (p<0.05) in A. muletensis tadpoles, whereas no significant differences were reported in any of the parameters analysed in B. balearicus tadpoles. In conclusion, the presence of N. maura exudates is capable to induce an antipredatory response in the endemic A. muletensis tadpoles but not in B. balearicus. PMID:27213671

  19. Exposure to Hydrogen Peroxide Induces Oxidation and Activation of AMP-activated Protein Kinase*

    PubMed Central

    Zmijewski, Jaroslaw W.; Banerjee, Sami; Bae, Hongbeom; Friggeri, Arnaud; Lazarowski, Eduardo R.; Abraham, Edward

    2010-01-01

    Although metabolic conditions associated with an increased AMP/ATP ratio are primary factors in the activation of 5′-adenosine monophosphate-activated protein kinase (AMPK), a number of recent studies have shown that increased intracellular levels of reactive oxygen species can stimulate AMPK activity, even without a decrease in cellular levels of ATP. We found that exposure of recombinant AMPKαβγ complex or HEK 293 cells to H2O2 was associated with increased kinase activity and also resulted in oxidative modification of AMPK, including S-glutathionylation of the AMPKα and AMPKβ subunits. In experiments using C-terminal truncation mutants of AMPKα (amino acids 1–312), we found that mutation of cysteine 299 to alanine diminished the ability of H2O2 to induce kinase activation, and mutation of cysteine 304 to alanine totally abrogated the enhancing effect of H2O2 on kinase activity. Similar to the results obtained with H2O2-treated HEK 293 cells, activation and S-glutathionylation of the AMPKα subunit were present in the lungs of acatalasemic mice or mice treated with the catalase inhibitor aminotriazole, conditions in which intracellular steady state levels of H2O2 are increased. These results demonstrate that physiologically relevant concentrations of H2O2 can activate AMPK through oxidative modification of the AMPKα subunit. The present findings also imply that AMPK activation, in addition to being a response to alterations in intracellular metabolic pathways, is directly influenced by cellular redox status. PMID:20729205

  20. Active Oxidation of a UHTC-Based CMC

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Splinter, Scott C.

    2012-01-01

    The active oxidation of ceramic matrix composites (CMC) is a severe problem that must be avoided for multi-use hypersonic vehicles. Much work has been performed studying the active oxidation of silicon-based CMCs such as C/SiC and SiC-coated carbon/carbon (C/C). Ultra high temperature ceramics (UTHC) have been proposed as a possible material solution for high-temperature applications on hypersonic vehicles. However, little work has been performed studying the active oxidation of UHTCs. The intent of this paper is to present test data indicating an active oxidation process for a UHTC-based CMC similar to the active oxidation observed with Si-based CMCs. A UHTC-based CMC was tested in the HyMETS arc-jet facility (or plasma wind tunnel, PWT) at NASA Langley Research Center, Hampton, VA. The coupon was tested at a nominal surface temperature of 3000 F (1650 C), with a stagnation pressure of 0.026 atm. A sudden and large increase in surface temperature was noticed with negligible increase in the heat flux, indicative of the onset of active oxidation. It is shown that the surface conditions, both temperature and pressure, fall within the region for a passive to active transition (PAT) of the oxidation.

  1. CRYOGENIC TRAPPING OF OXIDIZED MERCURY SPECIES FROM COMBUSTION FLUE GAS. (R827649)

    EPA Science Inventory

    To further understand the speciation and partitioning of mercury species in combustion systems, it is necessary to be able to identify and quantitate the various forms of oxidized mercury. Currently accepted methods for speciating mercury (Ontario Hydro Method, EPA Method 29, ...

  2. Electron Spin Resonance (ESR) detection of active oxygen species and organic phases in Martian soils

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1989-01-01

    The presence of active oxygen species (O(-), O2(-), O3(-)) and other strong oxidants (Fe2O3 and Fe3O4) was invoked in interpretations of the Viking biological experiments and a model was also suggested for Martian surface chemistry. The non-biological interpretations of the biological results gain futher support as no organic compounds were detected in the Viking pyrolysis-gas chromatography mass spectrometer (GCSM) experiments at concentrations as low as 10 ppb. Electron spin resonance (ESR) measures the absorption of microwaves by a paramagnetic and/or ferromagnetic center in the presence of an external field. In many instances, ESR has the advantage of detailed submicroscopic identification of the transient species and/or unstable reaction intermediates in their environments. Since the higly active oxygen species (O(-), O2(-), O3(-), and R-O-O(-)) are all paramagnetic in nature, they can be readily detected in native form by the ESR method. Active oxygen species likely to occur in the Martian surface samples were detected by ESR in UV-irradiated samples containing MgO. A miniaturized ESR spectrometer system can be developed for the Mars Rover Sample Return Mission. The instrument can perform the following in situ Martian samples analyses: detection of active oxygen species; characterization of Martian surface chemistry and photooxidation processes; and searching for organic compounds in the form of free radicals preserved in subsoils, and detection of microfossils with Martian carbonate sediments.

  3. Electrophilic Activation of Oxidized Sulfur Ligands and Implications for the Biological Activity of Ruthenium(II) Arene Anticancer Complexes.

    PubMed

    Sriskandakumar, Thamayanthy; Behyan, Shirin; Habtemariam, Abraha; Sadler, Peter J; Kennepohl, Pierre

    2015-12-01

    Surprisingly, the anticancer activity of half-sandwich Ru arene complexes [(η(6)-arene)Ru(en)Cl](+) appears to be promoted and not inhibited by binding to the intracellular thiol glutathione. Labilization of the Ru-S bond allowing DNA binding appeared to be initiated by oxygenation of the thiolate ligand, although oxidation by itself did not seem to weaken the Ru-S bond. In this study, we have investigated the solvation and acidic perturbations of mono (sulfenato) and bis (sulfinato) oxidized species of [(η(6)-arene)Ru(en) (SR)](+) complex in the presence of Brønsted and Lewis acids. Sulfur K-edge X-ray absorption spectroscopy together with density functional theory calculations show that solvation and acidic perturbation of sulfenato species produce a significant decrease in the S3p character of the Ru-S bond (Ru4dσ* ← S1s charge donation). Also there is a drastic fall in the overall ligand charge donation to the metal center in both sulfenato and sulfinato species. Our investigation clearly shows that mono oxidized sulfenato species are most susceptible to ligand exchange, hence providing a possible pathway for in vivo activation and biological activity.

  4. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    PubMed Central

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  5. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect

    Ray, E.R.; Veyo, S.E.

    1995-12-31

    This reports on a solid oxide fuel cell demonstration program in which utilities are provided fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units serve to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  6. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity.

    PubMed

    Peng, Zeyu; Dittmer, Neal T; Lang, Minglin; Brummett, Lisa M; Braun, Caroline L; Davis, Lawrence C; Kanost, Michael R; Gorman, Maureen J

    2015-04-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism. PMID:25701385

  7. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity

    PubMed Central

    Peng, Zeyu; Dittmer, Neal T.; Lang, Minglin; Brummett, Lisa M.; Braun, Caroline L.; Davis, Lawrence C.; Kanost, Michael R.; Gorman, Maureen J.

    2015-01-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surpring because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism. PMID:25701385

  8. Reactive oxygen species and antioxidant enzymes activity of Anabaena sp. PCC 7120 (Cyanobacterium) under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Li, Gen-bao; Liu, Yong-ding; Wang, Gao-hong; Song, Li-rong

    2004-12-01

    It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of gluathione, an intracellular antioxidant, decreased in comparison with the controlled samples. The results suggested that microgravity provided by clinostat might break the oxidative/antioxidative balance. It indicated a protective mechanism in algal cells, that the total antioxidant system activity increased, which might play an important role for algal cells to adapt the environmental stress of microgravity.

  9. Annato extract and β-carotene modulate the production of reactive oxygen species/nitric oxide in neutrophils from diabetic rats

    PubMed Central

    Rossoni-Júnior, Joamyr Victor; Araújo, Glaucy Rodrigues; Pádua, Bruno da Cruz; Chaves, Míriam Martins; Pedrosa, Maria Lúcia; Silva, Marcelo Eustáquio; Costa, Daniela Caldeira

    2012-01-01

    Annatto has been identified as carotenoids that have antioxidative effects. It is well known that one of the key elements in the development of diabetic complications is oxidative stress. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen species and reactive nitrogen species as part of the body’s defense mechanisms to destroy invading pathogens. Reactive oxygen species/reactive nitrogen species are excessively produced by active peripheral neutrophils, and may damage essential cellular components, which in turn can cause vascular complications in diabetes. The present study was undertaken to evaluate the possible protective effects of annatto on the reactive oxygen species and nitric oxide (NO) inhibition in neutrophils from alloxan-induced diabetic rats. Adult female rats were divided into six groups based on receiving either a standard diet with or without supplementation of annatto extract or beta carotene. All animals were sacrificed 30 days after treatment and the neutrophils were isolated using two gradients of different densities. The reactive oxygen species and NO were quantified by a chemiluminescence and spectrophotometric assays, respectively. Our results show that neutrophils from diabetic animals produce significantly more reactive oxygen species and NO than their respective controls and that supplementation with beta carotene and annatto is able to modulate the production of these species. Annatto extract may have therapeutic potential for modulation of the balance reactive oxygen species/NO induced by diabetes. PMID:22573917

  10. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils

    PubMed Central

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M.; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'–based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  11. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils.

    PubMed

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'-based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  12. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils.

    PubMed

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'-based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils.

  13. Nitric oxide induces caspase activity in boar spermatozoa.

    PubMed

    Moran, J M; Madejón, L; Ortega Ferrusola, C; Peña, F J

    2008-07-01

    Nitric oxide (NO) is a highly reactive free radical that plays a key role in intra- and intercellular signaling. Production of radical oxygen species and an apoptotic-like phenomenon have recently been implicated in cryodamage during sperm cryopreservation. The objective of the present study was to evaluate the effect of sodium nitroprusside (SNP), an NO donor, on boar sperm viability. Semen samples were pooled from four boars that were routinely used for artificial insemination. Flow cytometry was used to compare semen incubated with SNP to control semen. Specifically, NO production was measured using the NO indicator dye diaminofluorescein diacetate, and caspase activity was determined using the permeable pan-caspase inhibitor Z-VAD linked to FITC. SNP induced a significant increase in the percentage of sperm cells showing caspase activity, from 9.3% in control samples to 76.2% in SNP-incubated samples (P<0.01). This study suggests that NO is a major free radical involved in boar sperm damage. PMID:18433854

  14. The use of a vanadium species as a catalyst in photoinduced water oxidation.

    PubMed

    Santoni, Marie-Pierre; La Ganga, Giuseppina; Mollica Nardo, Viviana; Natali, Mirco; Puntoriero, Fausto; Scandola, Franco; Campagna, Sebastiano

    2014-06-11

    The first water oxidation catalyst containing only vanadium atoms as metal centers is reported. The compound is the mixed-valence [(V(IV)5V(V)1)O7(OCH3)12](-) species, 1. Photoinduced water oxidation catalyzed by 1, in the presence of Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) and Na2S2O8, in acetonitrile/aqueous phosphate buffer takes place with a quantum yield of 0.20. A hole scavenging reaction between the photochemically generated Ru(bpy)3(3+) and 1 occurs with a bimolecular rate constant of 2.5 × 10(8) M(-1) s(-1). The time-resolved formation of the oxidized molecular catalyst 1(+) in bimolecular reactions is also evidenced for the first time by transient absorption spectroscopy. This result opens the way to the use of less expensive vanadium clusters as water oxidation catalysts in artificial photosynthesis schemes.

  15. ANTIVENOM ACTIVITIES OF SOME SPECIES OF ANDROGRAPHIS WALL

    PubMed Central

    Balu, S.; Alagesaboopathi, C.

    1995-01-01

    Antivenom activities of the alcoholic extracts of three species of Andrographis wall, were measured at a concentration of 10,25,50,75 and 100 μg/ml by in vitro assay of HRBC membrane lysis. All the extracts were found to be effective in the inhibition of in vitro HRBC lysis. The maximum antivenom activity was found in the alcoholicextract of Andrographis paniculata Nees. PMID:22556697

  16. Assessment of oxidant susceptibility of red blood cells in various species based on cell deformability.

    PubMed

    Simmonds, Michael J; Meiselman, Herbert J; Marshall-Gradisnik, Sonya M; Pyne, Michael; Kakanis, Michael; Keane, James; Brenu, Ekua; Christy, Rhys; Baskurt, Oguz K

    2011-01-01

    The present study was designed to investigate the oxidant susceptibility of red blood cells (RBC) from four species (echidna, human, koala, Tasmanian devil) based on changes in cellular deformability. These species were specifically chosen based on differences in lifestyle and/or biology associated with varied levels of oxidative stress. The major focus was the influence of superoxide radicals generated within the cell (phenazine methosulfate, PMS, 50 μM) or in the extracellular medium (xanthine oxidase-hypoxanthine, XO-HX, 0.1 U/ml XO) on RBC deformability at various shear stresses (SS). RBC deformability was assessed by laser-diffraction analysis using a "slit-flow ektacytometer". Both superoxide-generating treatments resulted in significant increases of methemoglobin for all species (p < 0.01), with Tasmanian devil RBC demonstrating the most sensitivity to either treatment. PMS caused impaired RBC deformability for all species, but vast interspecies variations were observed: human and koala cells exhibited a similar sigmoid-like response to SS, short-beaked echidna values were markedly lower and only increased slightly with SS, while Tasmanian devil RBC were extremely rigid. The effect of XO-HX on RBC deformability was less when compared with PMS (i.e., smaller increase in rigidity) with the exception of Tasmanian devil RBC which exhibited essentially no deformation even at the highest SS; Tasmanian devil RBC response to XO-HX was thus comparable to that observed with PMS. Our findings indicate that ektacytometry can be used to determine the oxidant susceptibility of RBC from different species which varies significantly among mammals representing diverse lifestyles and evolutionary histories. These differences in susceptibility are consistent with species-specific discrepancies between observed and allometrically-predicted life spans and are compatible with the oxidant theory of aging. PMID:22433570

  17. Antioxidant, antimicrobial and antiproliferative activities of five lichen species.

    PubMed

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Comić, Ljiljana; Dačić, Dragana; Curčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells.

  18. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

    PubMed Central

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Čomić, Ljiljana; Đačić, Dragana; Ćurčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells. PMID:21954369

  19. [Inhibition of aromatics on ammonia-oxidizing activity of sediment].

    PubMed

    Dong, Chun-hong; Hu, Hong-ying; Wei, Dong-bin; Huang, Xia; Qian, Yi

    2004-03-01

    The inhibition of 24 aromatics on ammonia-oxidizing activity of nitrifying bacteria in sediment was measured. The effects of the kind, number and position of substituted groups on ammonia-oxidizing activity of nitrifying bacteria were discussed. The inhibition of mono-substituted benzenes on ammonia-oxidizing activity of nitrifying bacteria were in order of -OH > -NO2 > -NH2 > -Cl > -CH3 > -H. The position of substituted groups of di-substituted benzenes also affected the inhibition, and the inhibitions of dimethylbenzenes(xylene) were in order of meta-> ortho-> para-. The increase in number of substituted group on benzene-ring enhanced the inhibition of aromatics studied in this study on nitrifying bacteria. There was a linear relationship between inhibition (IC50, mumol.L-1) of aromatics on ammonia-oxidizing activity and total electronegativity (sigma E) of aromatics: lgIC50 = 14.72 - 0.91 sigma E.

  20. Oxidative esterification via photocatalytic C-H activation

    EPA Science Inventory

    Direct oxidative esterification of alcohol via photocatalytic C-H activation has been developed using VO@g-C3N4 catalyst; an expeditious esterification of alcohols occurs under neutral conditions using visible light as the source of energy.

  1. Activities of Arginine and Ornithine Decarboxylases in Various Plant Species 1

    PubMed Central

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species. No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed. In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum. PMID:16664442

  2. Triacylglycerol accumulation and oxidative stress in Rhodococcus species: differential effects of pro-oxidants on lipid metabolism.

    PubMed

    Urbano, Susana Bequer; Di Capua, Cecilia; Cortez, Néstor; Farías, María E; Alvarez, Héctor M

    2014-03-01

    In general, members of Rhodococcus genus are highly resistant to desiccation. Desiccation is a complex process which includes the formation of reactive oxygen species that results in significant damage to cells. In this study, we demonstrate that extremophile actinobacterial strains isolated from diverse environments, mainly belonging to Rhodococcus genus, exhibited high tolerance to the pro-oxidants hydrogen peroxide (H2O2) and methyl viologen (MV). In addition, we investigated the possible interconnections between the responses of the oleaginous Rhodococcus opacus PD630 to oxidative stress and lipid metabolism, since both processes demand a metabolic reorganization of cells. Experiments with metabolic inhibitors showed differential effects of both pro-oxidants on lipid metabolism in PD630 cells. The inhibition of carotenoid biosynthesis by the addition of diphenylamine to the media negatively affected the tolerance of cells to H2O2, but not to MV. The inhibition of triacylglycerol (TAG) biosynthesis and accumulation in PD630 did not affect the tolerance of cells to H2O2 and MV; whereas, the blockage of lipolysis decreased the tolerance of cells to H2O2 (but not MV) under carbon-starvation conditions. Interestingly, the addition of MV to the media (but not H2O2) induced a reduction of TAG accumulation by cells. Resuming, results of this study revealed metabolic connections between lipid metabolism and oxidative stress responses in R. opacus PD630, and probably in other extremophile TAG-accumulating rhodococci.

  3. Redox properties and VOC oxidation activity of Cu catalysts supported on Ce₁-xSmxOδ mixed oxides.

    PubMed

    Konsolakis, Michalis; Carabineiro, Sónia A C; Tavares, Pedro B; Figueiredo, José L

    2013-10-15

    A series of Cu catalysts supported on Ce1-xSmxOδ mixed oxides with different molar contents (x=0, 0.25, 0.5, 0.75 and 1), was prepared by wet impregnation and evaluated for volatile organic compounds (VOC) abatement, employing ethyl acetate as model molecule. An extensive characterization study was undertaken in order to correlate the morphological, structural and surface properties of catalysts with their oxidation activity. The optimum performance was obtained with Cu/CeO2 catalyst, which offers complete conversion of ethyl acetate into CO2 at temperatures as low as 260°C. The catalytic performance of Cu/Ce1-xSmxOδ was interpreted on the basis of characterization studies, showing that incorporation of samarium in ceria has a detrimental effect on the textural characteristics and reducibility of catalysts. Moreover, high Sm/Ce atomic ratios (from 1 to 3) resulted in a more reduced copper species, compared to CeO2-rich supports, suggesting the inability of these species to take part in the redox mechanism of VOC abatement. Sm/Ce surface atomic ratios are always much higher than the nominal ratios indicating an impoverishment of catalyst surface in cerium oxide, which is detrimental for VOC activity. PMID:23995554

  4. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    PubMed

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  5. MUTYH promotes oxidative microglial activation and inherited retinal degeneration

    PubMed Central

    Nakatake, Shunji; Ikeda, Yasuhiro; Morioka, Noriko; Tachibana, Takashi; Fujiwara, Kohta; Yoshida, Noriko; Notomi, Shoji; Hisatomi, Toshio; Yoshida, Shigeo; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog–mediated (MUYTH-mediated) base excision repair (BER), thereby exacerbating retinal inflammation and degeneration. In the early stage of retinal degeneration, oxidative DNA damage accumulated in the microglia and caused single-strand breaks (SSBs) and poly(ADP-ribose) polymerase activation. In contrast, Mutyh deficiency in rd10 mice prevented SSB formation in microglia, which in turn suppressed microglial activation and photoreceptor cell death. Moreover, Mutyh-deficient primary microglial cells attenuated the polarization to the inflammatory and cytotoxic phenotype under oxidative stress. Thus, MUTYH-mediated BER in oxidative microglial activation may be a novel target to dampen the disease progression in RP and other neurodegenerative disorders that are associated with oxidative stress.

  6. MUTYH promotes oxidative microglial activation and inherited retinal degeneration

    PubMed Central

    Nakatake, Shunji; Ikeda, Yasuhiro; Morioka, Noriko; Tachibana, Takashi; Fujiwara, Kohta; Yoshida, Noriko; Notomi, Shoji; Hisatomi, Toshio; Yoshida, Shigeo; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog–mediated (MUYTH-mediated) base excision repair (BER), thereby exacerbating retinal inflammation and degeneration. In the early stage of retinal degeneration, oxidative DNA damage accumulated in the microglia and caused single-strand breaks (SSBs) and poly(ADP-ribose) polymerase activation. In contrast, Mutyh deficiency in rd10 mice prevented SSB formation in microglia, which in turn suppressed microglial activation and photoreceptor cell death. Moreover, Mutyh-deficient primary microglial cells attenuated the polarization to the inflammatory and cytotoxic phenotype under oxidative stress. Thus, MUTYH-mediated BER in oxidative microglial activation may be a novel target to dampen the disease progression in RP and other neurodegenerative disorders that are associated with oxidative stress. PMID:27699246

  7. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments

    PubMed Central

    Thomas, François; Giblin, Anne E.; Cardon, Zoe G.; Sievert, Stefan M.

    2014-01-01

    Salt marshes are highly productive ecosystems hosting an intense sulfur (S) cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB). Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT)-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere. PMID:25009538

  8. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase

    PubMed Central

    Sanchez–Padilla, J.; Guzman, J.N.; Ilijic, E.; Kondapalli, J.; Galtieri, D.J.; Yang, B.; Schieber, S.; Oertel, W.; Wokosin, D.; Schumacker, P. T.; Surmeier, D. J.

    2014-01-01

    Summary Loss of noradrenergic locus coeruleus (LC) neurons is a prominent feature of aging–related neurodegenerative diseases, like Parkinson’s disease (PD). The basis of this vulnerability is not understood. To explore possible physiological determinants, LC neurons were studied using electrophysiological and optical approaches in ex vivo mouse brain slices. These studies revealed that autonomous activity in LC neurons was accompanied by oscillations in dendritic Ca2+ concentration attributable to opening of L–type Ca2+ channels. This oscillation elevated mitochondrial oxidant stress and was attenuated by inhibition of nitric oxide synthase. The relationship between activity and stress was malleable, as arousal and carbon dioxide, each increased the spike rate, but differentially affected mitochondrial oxidant stress. Oxidant stress also was increased in an animal model of PD. Thus, our results point to activity–dependent Ca2+ entry and a resulting mitochondrial oxidant stress as factors contributing to the vulnerability of LC neurons. PMID:24816140

  9. Oxidation, characterization, and separation of non-pertechnetate species in Hanford wastes

    SciTech Connect

    Schroeder, N.C.

    1997-10-01

    Under DOE`s privatization initiative, Lockheed Martin and British Nuclear Fuels Limited are preparing to stabilize the caustic tank waste generated from plutonium production at the Hanford Site. Pretreatment of Hanford tank waste will separate it into low-level waste (LLW) and high-level waste (HLW) fractions. The scope of the technetium problem is indicated by its inventory in the waste: {approximately}2000 kg. Technetium would normally exist as the pertechnetate anion, TcO{sub 4}{sup {minus}}, in aqueous solution. However, evidence obtained at Los Alamos National Laboratory (LANL) indicates that the combination of radiolysis, heat, organic complexants, and time may have reduced and complexed a significant fraction of the technetium in the tank waste. These species are in a form that is not amenable to current separation techniques based on pertechnetate removal. Thus, it is crucial that methods be developed to set technetium to pertechnetate so these technologies can meet the required technetium decontamination factor. If this is not possible, then alternative separation processes will need to be developed to remove these non-pertechnetate species from the waste. The simplest, most cost-effective approach to this problem is to convert the non-pertechnetate species to pertechnetate. Chemical, electrochemical, and photochemical oxidation methods, as well as hydrothermal treatment, are being applied to Hanford waste samples to ensure that the method works on the unknown technetium species in the waste. The degree of oxidation will be measured by determining the technetium distribution coefficient, {sup Tc}K{sub d}, between the waste and Reillex{trademark}-HPQ resin, and comparing it to the true pertechnetate K{sub d} value for the waste matrix. Other species in the waste, including all the organic material, could be oxidized by these methods, thus selective oxidation is desirable to minimize the cost, time, and secondary waste generation.

  10. Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.

    1996-01-01

    Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25??C. For an aqueous transition metal m, such reactions are 3[Fe2+Fe3+2]O4(magnetite) + 2/nmz ??? 4[Fe3+2]O3(maghemite) + Fe2+ + 2/nmz-n and 3[Fe2+Ti]O3(ilmenite) + 2/nmz ??? Fe3+2Ti3O9(pseudorutile) + Fe2+ + 2/nmz-n, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] ??? [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 ?? 10-10 mol m-2 s-1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe2+ is oxidized homogeneously in solution to Fe3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental

  11. Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation.

    PubMed

    Subramanian, Mahesh; Goswami, Manish; Chakraborty, Saikat; Jawali, Narendra

    2014-01-01

    Resveratrol (5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol), a redox active phytoalexin with a large number of beneficial activities is also known for antibacterial property. However the mechanism of action of resveratrol against bacteria remains unknown. Due to its extensive redox property it was envisaged if reactive oxygen species (ROS) generation by resveratrol could be a reason behind its antibacterial activity. Employing Escherichia coli as a model organism we have evaluated the role of diffusible reactive oxygen species in the events leading to inhibition of this organism by resveratrol. Evidence for the role of ROS in E. coli treated with resveratrol was investigated by direct quantification of ROS by flow cytometry, supplementation with ROS scavengers, depletion of intracellular glutathione, employing mutants devoid of enzymatic antioxidant defences, induction of adaptive response prior to resveratrol challenge and monitoring oxidative stress response elements oxyR, soxS and soxR upon resveratrol treatment. Resveratrol treatment did not result in scavengable ROS generation in E. coli cells. However, evidence towards membrane damage was obtained by potassium leakage (atomic absorption spectrometry) and propidium iodide uptake (flow cytometry and microscopy) as an early event. Based on the comprehensive evidences this study concludes for the first time the antibacterial property of resveratrol against E. coli does not progress via the diffusible ROS but is mediated by site-specific oxidative damage to the cell membrane as the primary event.

  12. Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation

    PubMed Central

    Subramanian, Mahesh; Goswami, Manish; Chakraborty, Saikat; Jawali, Narendra

    2014-01-01

    Resveratrol (5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol), a redox active phytoalexin with a large number of beneficial activities is also known for antibacterial property. However the mechanism of action of resveratrol against bacteria remains unknown. Due to its extensive redox property it was envisaged if reactive oxygen species (ROS) generation by resveratrol could be a reason behind its antibacterial activity. Employing Escherichia coli as a model organism we have evaluated the role of diffusible reactive oxygen species in the events leading to inhibition of this organism by resveratrol. Evidence for the role of ROS in E. coli treated with resveratrol was investigated by direct quantification of ROS by flow cytometry, supplementation with ROS scavengers, depletion of intracellular glutathione, employing mutants devoid of enzymatic antioxidant defences, induction of adaptive response prior to resveratrol challenge and monitoring oxidative stress response elements oxyR, soxS and soxR upon resveratrol treatment. Resveratrol treatment did not result in scavengable ROS generation in E. coli cells. However, evidence towards membrane damage was obtained by potassium leakage (atomic absorption spectrometry) and propidium iodide uptake (flow cytometry and microscopy) as an early event. Based on the comprehensive evidences this study concludes for the first time the antibacterial property of resveratrol against E. coli does not progress via the diffusible ROS but is mediated by site-specific oxidative damage to the cell membrane as the primary event. PMID:25009788

  13. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1oxidizing agent. Photocatalytic water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. PMID:25044528

  14. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1oxidizing agent. Photocatalytic water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers.

  15. Enzymatic Manganese(II) Oxidation by Metabolically Dormant Spores of Diverse Bacillus Species

    PubMed Central

    Francis, Chris A.; Tebo, Bradley M.

    2002-01-01

    Bacterial spores are renowned for their longevity, ubiquity, and resistance to environmental insults, but virtually nothing is known regarding whether these metabolically dormant structures impact their surrounding chemical environments. In the present study, a number of spore-forming bacteria that produce dormant spores which enzymatically oxidize soluble Mn(II) to insoluble Mn(IV) oxides were isolated from coastal marine sediments. The highly charged and reactive surfaces of biogenic metal oxides dramatically influence the oxidation and sorption of both trace metals and organics in the environment. Prior to this study, the only known Mn(II)-oxidizing sporeformer was the marine Bacillus sp. strain SG-1, an extensively studied bacterium in which Mn(II) oxidation is believed to be catalyzed by a multicopper oxidase, MnxG. Phylogenetic analysis based on 16S rRNA and mnxG sequences obtained from 15 different Mn(II)-oxidizing sporeformers (including SG-1) revealed extensive diversity within the genus Bacillus, with organisms falling into several distinct clusters and lineages. In addition, active Mn(II)-oxidizing proteins of various sizes, as observed in sodium dodecyl sulfate-polyacrylamide electrophoresis gels, were recovered from the outer layers of purified dormant spores of the isolates. These are the first active Mn(II)-oxidizing enzymes identified in spores or gram-positive bacteria. Although extremely resistant to denaturation, the activities of these enzymes were inhibited by azide and o-phenanthroline, consistent with the involvement of multicopper oxidases. Overall, these studies suggest that the commonly held view that bacterial spores are merely inactive structures in the environment should be revised. PMID:11823231

  16. Characterization of the Arene-Oxidizing Intermediate in ToMOH as a Diiron(III) Species

    PubMed Central

    Murray, Leslie J.; Naik, Sunil G.; Ortillo, Danilo O.; García-Serres, Ricardo; Lee, Jessica K.; Huynh, Boi Hanh; Lippard, Stephen J.

    2008-01-01

    We report the generation and characterization of a diiron(III) intermediate formed during reaction with dioxygen of the reduced hydroxylase component of toluene/o-xylene monooxygenase from Pseudomonas sp. OX1. The decay rate of this species is accelerated upon mixing with phenol, a substrate for this system. Under steady state conditions, hydrogen peroxide was generated in the absence of substrate. The oxidized hydroxylase also decomposed hydrogen peroxide to liberate dioxygen in the absence of reducing equivalents. This activity suggests that dioxygen activation may be reversible. The linear free energy relationship determined from hydroxylation of para substituted phenols under steady state turnover has a negative slope. A value of ρ < 0 is consistent with electrophilic attack by the oxidizing intermediate on the aromatic substrates. The results from these steady and pre-steady state experiments provide compelling evidence that the diiron(III) intermediate is the active oxidant in ToMO and a peroxodiiron(III) transient, despite differences between its optical and Mössbauer spectroscopic parameters and those of other peroxodiiron(III) centers. PMID:17967027

  17. Activation of the JAK-STAT pathway by reactive oxygen species.

    PubMed

    Simon, A R; Rai, U; Fanburg, B L; Cochran, B H

    1998-12-01

    Reactive oxygen species (ROS) play an important role in the pathogenesis of many human diseases, including the acute respiratory distress syndrome, Parkinson's disease, pulmonary fibrosis, and Alzheimer's disease. In mammalian cells, several genes known to be induced during the immediate early response to growth factors, including the protooncogenes c-fos and c-myc, have also been shown to be induced by ROS. We show that members of the STAT family of transcription factors, including STAT1 and STAT3, are activated in fibroblasts and A-431 carcinoma cells in response to H2O2. This activation occurs within 5 min, can be inhibited by antioxidants, and does not require protein synthesis. STAT activation in these cell lines is oxidant specific and does not occur in response to superoxide- or nitric oxide-generating stimuli. Buthionine sulfoximine, which depletes intracellular glutathione, also activates the STAT pathway. Moreover, H2O2 stimulates the activity of the known STAT kinases JAK2 and TYK2. Activation of STATs by platelet-derived growth factor (PDGF) is significantly inhibited by N-acetyl-L-cysteine and diphenylene iodonium, indicating that ROS production contributes to STAT activation in response to PDGF. These findings indicate that the JAK-STAT pathway responds to intracellular ROS and that PDGF uses ROS as a second messenger to regulate STAT activation.

  18. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS.

    PubMed

    Qadir, Kamran; Joo, Sang Hoon; Mun, Bongjin S; Butcher, Derek R; Renzas, J Russell; Aksoy, Funda; Liu, Zhi; Somorjai, Gabor A; Park, Jeong Young

    2012-11-14

    Recent progress in colloidal synthesis of nanoparticles with well-controlled size, shape, and composition, together with development of in situ surface science characterization tools, such as ambient pressure X-ray photoelectron spectroscopy (APXPS), has generated new opportunities to unravel the surface structure of working catalysts. We report an APXPS study of Ru nanoparticles to investigate catalytically active species on Ru nanoparticles under oxidizing, reducing, and CO oxidation reaction conditions. The 2.8 and 6 nm Ru nanoparticle model catalysts were synthesized in the presence of poly(vinyl pyrrolidone) polymer capping agent and deposited onto a flat Si support as two-dimensional arrays using the Langmuir-Blodgett deposition technique. Mild oxidative and reductive characteristics indicate the formation of surface oxide on the Ru nanoparticles, the thickness of which is found to be dependent on nanoparticle size. The larger 6 nm Ru nanoparticles were oxidized to a smaller extent than the smaller Ru 2.8 nm nanoparticles within the temperature range of 50-200 °C under reaction conditions, which appears to be correlated with the higher catalytic activity of the bigger nanoparticles. We found that the smaller Ru nanoparticles form bulk RuO(2) on their surfaces, causing the lower catalytic activity. As the size of the nanoparticle increases, the core-shell type RuO(2) becomes stable. Such in situ observations of Ru nanoparticles are useful in identifying the active state of the catalysts during use and, hence, may allow for rational catalyst designs for practical applications.

  19. Plant species richness increases phosphatase activities in an experimental grassland

    NASA Astrophysics Data System (ADS)

    Hacker, Nina; Wilcke, Wolfgang; Oelmann, Yvonne

    2014-05-01

    Plant species richness has been shown to increase aboveground nutrient uptake requiring the mobilization of soil nutrient pools. For phosphorus (P) the underlying mechanisms for increased P release in soil under highly diverse grassland mixtures remain obscure because aboveground P storage and concentrations of inorganic and organic P in soil solution and differently reactive soil P pools are unrelated (Oelmann et al. 2011). The need of plants and soil microorganisms for P can increase the exudation of enzymes hydrolyzing organically bound P (phosphatases) which might represent an important release mechanism of inorganic P in a competitive environment such as highly diverse grassland mixtures. Our objectives were to test the effects of i) plant functional groups (legumes, grasses, non-leguminous tall and small herbs), and of (ii) plant species richness on microbial P (Pmic) and phosphatase activities in soil. In autumn 2013, we measured Pmic and alkaline phosphomonoesterase and phosphodiesterase activities in soil of 80 grassland mixtures comprising different community compositions and species richness (1, 2, 4, 8, 16, 60) in the Jena Experiment. In general, Pmic and enzyme activities were correlated (r = 0.59 and 0.46 for phosphomonoesterase and phosphodiesterase activities, respectively; p

  20. Xanthine oxidase inhibitory activity of extracts prepared from Polygonaceae species.

    PubMed

    Orbán-Gyapai, Orsolya; Lajter, Ildikó; Hohmann, Judit; Jakab, Gusztáv; Vasas, Andrea

    2015-03-01

    The xanthine oxidase (XO) inhibitory activity of aqueous and organic extracts of 27 selected species belonging in five genera (Fallopia, Oxyria, Persicaria, Polygonum and Rumex) of the family Polygonaceae occurring in the Carpathian Basin were tested in vitro. From different plant parts (aerial parts, leaves, flowers, fruits and roots), a total of 196 extracts were prepared by subsequent extraction with methanol and hot H2O and solvent-solvent partition of the MeOH extract yielding n-hexane, chloroform and 50% MeOH subextracts. It was found that the chloroform subextracts and/or the remaining 50% MeOH extracts of Fallopia species (F. bohemica, F. japonica and F. sachalinensis), Rumex species (R. acetosa, R. acetosella, R. alpinus, R. conglomeratus, R. crispus, R. hydrolapathus, R. pulcher, R. stenophyllus, R. thyrsiflorus, R. obtusifolius subsp. subalpinus, R. patientia) and Polygonum bistorta, Polygonum hydropiper, Polygonum lapathifolium and Polygonum viviparum demonstrated the highest XO inhibitory activity (>85% inhibition) at 400 µg/mL. The IC50 values of the active extracts were also determined. On the basis of the results, these plants, and especially P. hydropiper and R. acetosella, are considered worthy of activity-guided phytochemical investigations.

  1. A comparative study on immunomodulatory activity of polysaccharides from two official species of Ganoderma (Lingzhi).

    PubMed

    Meng, Lan-Zhen; Xie, Jing; Lv, Guang-Ping; Hu, De-Jun; Zhao, Jing; Duan, Jin-Ao; Li, Shao-Ping

    2014-01-01

    Two Ganoderma species, G. lucidum and G. sinense, are listed as Lingzhi in Chinese Pharmacopoeia and they are considered to have the same therapeutic effects. Polysaccharides were the main immunomodulatory and anticancer components in Ganoderma. In this study, the chemical characters and the effects of polysaccharides from G. lucidum (GLPS) and G. sinense (GSPS) on macrophage functions were investigated and compared. Chemical studies showed that GLPS and GSPS were different, displaying various molecular weight distribution and ratio of monosaccharide components. In vitro pharmacological studies showed that both GLPS and GSPS had potent effects on macrophage functions, such as promoting macrophage phagocytosis, increasing their release of nitric oxide and cytokines interleukin (IL)-1α, IL-6, IL-10, and tumor necrosis factor-α. Generally, GLPS was more powerful than GSPS. This study is helpful to elucidate the active components and pharmacological variation between the 2 Ganoderma species. The structure-activity relationship of polysaccharides from Ganoderma needs further study.

  2. Calorimetry, activity, and micro-FTIR analysis of CO chemisorption, titration, and oxidation on supported Pt

    NASA Technical Reports Server (NTRS)

    Sermon, Paul A.; Self, Valerie A.; Vong, Mariana S. W.; Wurie, Alpha T.

    1990-01-01

    The value of in situ analysis on CO chemisorption, titration and oxidation over supported Pt catalysts using calorimetry, catalytic and micro-FTIR methods is illustrated using silica- and titania-supported samples. Isothermal CO-O and O2-CO titrations have not been widely used on metal surfaces and may be complicated if some oxide supports are reduced by CO titrant. However, they can illuminate the kinetics of CO oxidation on metal/oxide catalysts since during such titrations all O and CO coverages are scanned as a function of time. There are clear advantages in following the rates of the catalyzed CO oxidation via calorimetry and gc-ms simultaneously. At lower temperatures the evidence they provide is complementary. CO oxidation and its catalysis of CO oxidation have been extensively studied with hysteresis and oscillations apparent, and the present results suggest the benefits of a combined approach. Silica support porosity may be important in defining activity-temperature hysteresis. FTIR microspectroscopy reveals the chemical heterogeneity of the catalytic surfaces used; it is interesting that the evidence with regard to the dominant CO surface species and their reactivities with regard to surface oxygen for present oxide-supported Pt are different from those seen on graphite-supported Pt.

  3. Nitric oxide increases tolerance responses to moderate water deficit in leaves of Phaseolus vulgaris and Vigna unguiculata bean species.

    PubMed

    Zimmer-Prados, Lucas Martins; Moreira, Ana Sílvia Franco Pinheiro; Magalhaes, Jose Ronaldo; França, Marcel Giovanni Costa

    2014-07-01

    Drought stress is one of the most intensively studied and widespread constraints, and nitric oxide (NO) is a key signaling molecule involved in the mediation of abiotic stresses in plants. We demonstrated that a sprayed solution of NO from donor sodium nitroprusside increased drought stress tolerance responses in both sensitive (Phaseolus vulgaris) and tolerant (Vigna unguiculata) beans. In intact plants subjected to halting irrigation, NO increased the leaf relative water content and stomatal conductance in both species. After cutting leaf discs and washing them, NO induced increased electrolyte leakage, which was more evident in the tolerant species. These leaf discs were then subjected to different water deficits, simulating moderate and severe drought stress conditions through polyethylene glycol solutions. NO supplied at moderate drought stress revealed a reduced membrane injury index in sensitive species. In hydrated discs and at this level of water deficit, NO increased the electron transport rate in both species, and a reduction of these rates was observed at severe stress levels. Taken together, it can be shown that NO has an effective role in ameliorating drought stress effects, activating tolerance responses at moderate water deficit levels and in both bean species which present differential drought tolerance.

  4. Nitric oxide increases tolerance responses to moderate water deficit in leaves of Phaseolus vulgaris and Vigna unguiculata bean species.

    PubMed

    Zimmer-Prados, Lucas Martins; Moreira, Ana Sílvia Franco Pinheiro; Magalhaes, Jose Ronaldo; França, Marcel Giovanni Costa

    2014-07-01

    Drought stress is one of the most intensively studied and widespread constraints, and nitric oxide (NO) is a key signaling molecule involved in the mediation of abiotic stresses in plants. We demonstrated that a sprayed solution of NO from donor sodium nitroprusside increased drought stress tolerance responses in both sensitive (Phaseolus vulgaris) and tolerant (Vigna unguiculata) beans. In intact plants subjected to halting irrigation, NO increased the leaf relative water content and stomatal conductance in both species. After cutting leaf discs and washing them, NO induced increased electrolyte leakage, which was more evident in the tolerant species. These leaf discs were then subjected to different water deficits, simulating moderate and severe drought stress conditions through polyethylene glycol solutions. NO supplied at moderate drought stress revealed a reduced membrane injury index in sensitive species. In hydrated discs and at this level of water deficit, NO increased the electron transport rate in both species, and a reduction of these rates was observed at severe stress levels. Taken together, it can be shown that NO has an effective role in ameliorating drought stress effects, activating tolerance responses at moderate water deficit levels and in both bean species which present differential drought tolerance. PMID:25049456

  5. AUTOFLUORESCENCE IN PRIMARY RAINBOW TROUT HEPATOCYTES INTERFERES WITH MEASUREMENT OF OXIDATIVE ACTIVITY VIA THE EXOGENOUS PROBE, DCF, BUT PROVIDES INTRINSIC MEASURE OF CELLULAR OXIDATIVE STATE

    EPA Science Inventory

    The compound 2', 7'-dichlorodihydrofluoroscein diacetate is a probe commonly used to detect oxidative activity in live cells. Studies were undertaken to measure reactive oxygen species generated in freshly isolated rainbow trout hepatocytes exposed to a variety of redox cycling c...

  6. Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  7. Xanthine oxidase inhibitory activity of Lychnophora species from Brazil ("Arnica").

    PubMed

    Filha, Z S Ferraz; Vitolo, I F; Fietto, L G; Lombardi, J A; Saúde-Guimarães, D A

    2006-08-11

    Twenty-two extracts from five Lychnophora species and one Lychnophoriopsis species, traditionally used in Brazil as analgesic, anti-inflammatory, and to treat bruise and rheumatism were examined for the inhibition of xanthine oxidase (XO), the enzyme that catalyses the metabolism of hypoxanthine and xanthine into uric acid. Sixteen extracts were tested. All of them were found to have excellent XO inhibitory activity, with inhibitions greater than 38% at 100 microg/mL in the assay mixture. The most active plants examined were Lychnophora trichocarpha, Lychnophora ericoides, Lychnophora staavioides and Lychnophoriopsis candelabrum, with inhibitions of 77%, 78%, 66% and 63% at 100 microg/mL, respectively, and IC(50) values of 6.16, 8.28, 33.97 and 37.70 microg/mL, respectively.

  8. Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation.

    PubMed

    Qin, Wenxiu; Wang, Yujun; Fang, Guodong; Wu, Tongliang; Liu, Cun; Zhou, Dongmei

    2016-05-01

    Natural organic matter (NOM) significantly affects the fate, bioavailability, and toxicity of arsenic in the environment. In the present study, we investigated the oxidation of As(III) in the presence of hydroquinone (HQ) and benzoquinone (BQ), which were selected as model quinone moieties for NOM. It was found that As(III) was oxidized to As(V) in the presence of HQ or BQ at neutral conditions, and the oxidation efficiency of As(III) increased from 33% to 92% in HQ solutions and from 0 to 80% in BQ solutions with pH increasing from 6.5 to 8.5. The oxidation mechanism was further explored with electron spin resonance (ESR) technique. The results showed that semiquinone radicals (SQ(-)) were generated from the comproportionation reaction between BQ and HQ, which mediated the formation of superoxide anion (O2(-)), hydrogen peroxide (H2O2) and hydroxyl radical (OH). Both the SQ(-), H2O2 and OH contributed to the oxidation of As(III). The increase of pH favored the formation of SQ(-), and thus promoted the generation of reactive oxygen species (ROS) as well as As(III) oxidation. Increasing concentrations of HQ and BQ from 0.1 to 1.0 mM enhanced As(III) oxidation from 65% to 94% and from 10% to 53%, respectively. The findings of this study facilitate our understanding of the fate and transformation of As(III) in organic-rich aquatic environments and highlight quinone moieties as the potential oxidants for As(III) in the remediation of arsenic contaminated sites.

  9. Biological activity of oxidized and reduced iodinated bombesins

    SciTech Connect

    Vigna, S.R.; Giraud, A.S.; Reeve, J.R. Jr.; Walsh, J.H.

    1988-07-01

    A method is reported for preparing oxidized and reduced iodinated Tyr4-bombesin. Iodogen was used to iodinate Tyr4-bombesin and the reaction products were separated by reverse-phase HPLC. The peak of oxidized label was then reduced by incubation with 725 mM dithiothreitol at 80 degrees C (pH 8.0) for one hour and the reaction products separated by HPLC as before. The reduced but not oxidized peaks of /sup 125/I-Tyr4-bombesin stimulated amylase release from rat pancreatic acini in vitro. We conclude that oxidation of bombesin producing C-terminal methionine sulfoxide destroys the biological activity of the peptide and that this form of oxidation can be reversed.

  10. Lignite slime as activator in production of oxidized asphalts

    SciTech Connect

    Gureev, A.A.; Gorlov, E.G.; Leont'eva, O.B.; Zotova, O.V.

    1988-03-01

    The possibility of activation of the oxidation of straight-run resids to asphalts by the addition of lignite slimes obtained in the liquefaction of coals of the Kansk-Achinsk basin was studied on the basis of a hypothesis formulated with due regard for the principles of physicochemical mechanics of petroleum disperse systems. A reduction of the air bubble size in the oxidizing vessel should lead to an increase in the total surface of oxidation and hence to a shortening of the time required for oxidation of the feed. A straight-run vacuum resid from mixed West Siberian and Ukhta crudes was used. The resid was oxidized with and without the addition of slime.

  11. Trolox-Sensitive Reactive Oxygen Species Regulate Mitochondrial Morphology, Oxidative Phosphorylation and Cytosolic Calcium Handling in Healthy Cells

    PubMed Central

    Distelmaier, Felix; Valsecchi, Federica; Forkink, Marleen; van Emst-de Vries, Sjenet; Swarts, Herman G.; Rodenburg, Richard J.T.; Verwiel, Eugène T.P.; Smeitink, Jan A.M.; Willems, Peter H.G.M.

    2012-01-01

    Abstract Aims: Cell regulation by signaling reactive oxygen species (sROS) is often incorrectly studied through extracellular oxidant addition. Here, we used the membrane-permeable antioxidant Trolox to examine the role of sROS in mitochondrial morphology, oxidative phosphorylation (OXPHOS), and cytosolic calcium (Ca2+) handling in healthy human skin fibroblasts. Results and Innovation: Trolox treatment reduced the levels of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydro-fluorescein (CM-H2DCF) oxidizing ROS, lowered cellular lipid peroxidation, and induced a less oxidized mitochondrial thiol redox state. This was paralleled by increased glutathione- and mitofusin-dependent mitochondrial filamentation, increased expression of fully assembled mitochondrial complex I, elevated activity of citrate synthase and OXPHOS enzymes, and a higher cellular O2 consumption. In contrast, Trolox did not alter hydroethidium oxidation, cytosolic thiol redox state, mitochondrial NAD(P)H levels, or mitochondrial membrane potential. Whole genome expression profiling revealed that Trolox did not trigger significant changes in gene expression, suggesting that Trolox acts downstream of this process. Cytosolic Ca2+ transients, induced by the hormone bradykinin, were of a higher amplitude and decayed faster in Trolox-treated cells. These effects were dose-dependently antagonized by hydrogen peroxide. Conclusions: Our findings suggest that Trolox-sensitive sROS are upstream regulators of mitochondrial mitofusin levels, morphology, and function in healthy human skin fibroblasts. This information not only facilitates the interpretation of antioxidant effects in cell models (of oxidative-stress), but also contributes to a better understanding of ROS-related human pathologies, including mitochondrial disorders. Antioxid. Redox Signal. 17, 1657–1669. PMID:22559215

  12. Pd-Catalyzed C-H activation/oxidative cyclization of acetanilide with norbornene: concise access to functionalized indolines.

    PubMed

    Gao, Yang; Huang, Yubing; Wu, Wanqing; Huang, Kefan; Jiang, Huanfeng

    2014-08-01

    An efficient Pd-catalyzed oxidative cyclization reaction for the synthesis of functionalized indolines by direct C-H activation of acetanilide has been developed. The norbornylpalladium species formed via direct ortho C-H activation of acetanilides is supposed to be a key intermediate in this transformation. PMID:24942255

  13. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect

    Veyo, S.E.

    1995-08-01

    The development of a viable fuel cell driven electrical power generation system involves not only the development of cell and stack technology, but also the development of the overall system concept, the strategy for control, and the ancillary subsystems. The design requirements used to guide system development must reflect a customer focus in order to evolve a commercial product. In order to obtain useful customer feedback, Westinghouse has practiced the deployment with customers of fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units have served to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  14. Influence of Ce/Zr ratio on CO oxidation activity of ceria-zirconia supported Cu catalyst

    NASA Astrophysics Data System (ADS)

    Hattori, Masatomo; Haneda, Masaaki; Ozawa, Masakuni

    2016-01-01

    The influence of Ce/Zr ratios in the cerium-rich region on the dispersibility and reduction property of Cu catalysts supported on ceria-zirconia composite oxides was investigated. In the catalysts, the dispersibility of copper oxide species on ceria-zirconia supports was different depending on Ce/Zr ratio. The particle size of copper oxide species on Ce0.7Zr0.3O2 was smaller than that on Ce0.5Zr0.5O2. CO oxidation activity of 1.0 wt % Cu/Ce0.7Zr0.3O2 was higher than that of 1.0 wt % Cu/Ce0.5Zr0.5O2. Temperature programmed reduction by CO (CO-TPR) measurement revealed that the reducibility of Cu/Ce0.7Zr0.3O2 was higher than that of Cu/Ce0.5Zr0.5O2. The temperature of the first peak in CO-TPR profiles for both catalysts was in good agreement with the temperature at which the conversion of CO reached 50% (T50). It is suggested that the copper oxide species — ceria-zirconia interaction influences the activation of oxygen at the interface between copper oxide species and ceria-zirconia, resulting in different catalytic performance for CO oxidation.

  15. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria.

    PubMed

    Wang, Yan-Wen; Cao, Aoneng; Jiang, Yu; Zhang, Xin; Liu, Jia-Hui; Liu, Yuanfang; Wang, Haifang

    2014-02-26

    New materials with good antibacterial activity and less toxicity to other species attract numerous research interest. Taking advantage of zinc oxide (ZnO) and graphene oxide (GO), the ZnO/GO composites were prepared by a facile one-pot reaction to achieve superior antibacterial properties without damaging other species. In the composites, ZnO nanoparticles (NPs), with a size of about 4 nm, homogeneously anchored onto GO sheets. The typical bacterium Escherichia coli and HeLa cell were used to evaluate the antibacterial activity and cytotoxicity of the ZnO/GO composites, respectively. The synergistic effects of GO and ZnO NPs led to the superior antibacterial activity of the composites. GO helped the dispersion of ZnO NPs, slowed the dissolution of ZnO, acted as the storage site for the dissolved zinc ions, and enabled the intimate contact of E. coli with ZnO NPs and zinc ions as well. The close contact enhanced the local zinc concentration pitting on the bacterial membrane and the permeability of the bacterial membrane and thus induced bacterial death. In addition, the ZnO/GO composites were found to be much less toxic to HeLa cells, compared to the equivalent concentration of ZnO NPs in the composites. The results indicate that the ZnO/GO composites are promising disinfection materials to be used in surface coatings on various substrates to effectively inhibit bacterial growth, propagation, and survival in medical devices.

  16. Phenolic composition and antioxidant activities of two Phlomis species: A correlation study.

    PubMed

    Zhang, Yuan; Wang, Zhe-zhi

    2009-09-01

    Two traditional Chinese medicines (Phlomis umbrosa Turcz. and Phlomis megalantha Diels), as well as five pure phenolic compounds (protocatechic, chlorogenic, benzoic, rosmarinic acid, and rutin) have been studied for antioxidant activities in acetone and methanol extracts from leaves. An HPLC method was developed to quantify the amounts of 14 phenolic compounds in the leaf extracts. The antioxidant capacities of the studied species are high. Almost all samples were capable of directly scavenging DPPH and superoxide free radicals, inhibiting linoleic acid oxidation, acting as reducing agents, and reducing plasmid DNA damage induced by hydroxyl radicals. Among different extracts, the acetone extract of P. megalantha exhibited the highest antioxidant activity. The major phenolic compounds identified were protocatechic, chlorogenic, caffeic, rosmarinic acid, and (-)-epicatechin. Antioxidant activities of pure compounds and correlation analysis indicated that protocatechic and rosmarinic acids were the major contributors to the observed antioxidant activities of the investigated Phlomis extracts. PMID:19748456

  17. Paraoxonase Activity and Oxidative Status in Patients with Tinnitus

    PubMed Central

    Akyüz, Servet; Somuk, Battal Tahsin; Soyalic, Harun; Yılmaz, Beyhan; Taskin, Abdullah; Bilinc, Hasan; Aksoy, Nurten

    2016-01-01

    Background and Objectives The aim of this study was to investigate serum paraoxanase-1 (PON) activity, total oxidant status (TOS), total antioxidant status (TAS), and the oxidative stress index (OSI) in tinnitus; and to compare the results with data from healthy subjects. Subjects and Methods A total of 114 subjects-54 patients with tinnitus and 60 healthy controls were enrolled in this study. Serum PON activity, TOS, TAS, and OSI levels were measured. Results In the tinnitus group, TAS, and PON were significantly lower than in the control group (p<0.001). However, the TOS, and OSI levels were significantly higher in the tinnitus group than in the control group (p<0.001). Conclusions According to the data obtained from the present study, patients with tinnitus were exposed to potent oxidative stress. Oxidative stress may be the key contributing factor to the pathogenesis of tinnitus. PMID:27144229

  18. Cancer chemopreventive activity of terpenoid coumarins from Ferula species.

    PubMed

    Iranshahi, Mehrdad; Kalategi, Farhad; Rezaee, Ramin; Shahverdi, Ahmad Reza; Ito, Chihiro; Furukawa, Hiroshi; Tokuda, Harukuni; Itoigawa, Masataka

    2008-02-01

    Several natural products have been found to have anti-tumor promoting activity. In the present study, we carried out a primary screening of ten terpenoid coumarins isolated from plants of the Ferula species, examining their possible inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12- O-tetradecanoylphorbol 13-acetate (TPA) in Raji cells. Auraptene (7-geranyloxycoumarin, 1) and umbelliprenin (7-farnesyloxycoumarin, 2) were found to significantly inhibit EBV-EA activation and preserved the high viability of Raji cells, suggesting that they might be valuable anti-tumor-promoting agents (IC (50) 8.3 and 9.1 nM, respectively). Our findings revealed that the presence of a prenyl moiety in the terpenoid coumarins plays an important role in anti-tumor promoting activity as previously reported for xanthones, coumarins, flavonoids and phenylpropanoids.

  19. Role of reactive oxygene species, peroxiredoxins and thioredoxins in reaction of plants to hypergravity and oxidative stresses

    NASA Astrophysics Data System (ADS)

    Jadko, Sergiy

    Early increasing of reactive oxygen species (ROS) concentration, including H2O2, occur in plant cells under various impacts and these ROS can function as signaling molecules in starting of cell stress responses. Peroxiredoxins (Prx) and thioredoxins (Trx) are significant cell ROS/H2O2 sensors and transmitters. Prx besides its antioxidant activity, participate in creating of stress redox signals by destroying of H2O2 and reducing of Trx. Than these reduced Trx lead to activation of various redox sensitive proteins, transcription factors and MAP kinases. This study aimed to investigate early increasing of ROS and H2O2 contents and Prx and Trx activities in pea roots and arabidopsis tissue culture cells under hypergravity and oxidative stresses. Pea roots of 3-5 days old seedlings and 12 days old tissue culture of Arabidopsis thaliana from leaves were studied. Pea seedlings were grown on wet filter paper and the tissue culture was grown on MS medium in dark conditions under 24oC. Hypergravity stress was induced by centrifugation at 15 g. Chemiluminescence (ChL) intensity for ROS concentration, H2O2 content and Prx and Trx activities were determined. All experiments were repeated by 3-4 times. Early increasing of ChL intensity and H2O2 content in the pea roots and arabidopsis tissue culture cells took place under hypergravity and oxidative stresses and its were higher corresponding controls on average on 25, 21 and 17 percents to 30, 60 and 90 min. At the same time Prx and Trx activities increased on 7, 13 and 16 percents. Thus under hypergravity and oxidative stresses in both investigated plants take place early increasing of ROS and H2O2 contents which as second messengers can lead to ROS/H2O2-dependent increasing of Prx and Trx activities with creating of H2O2-Prx-Trx signaling pathway.

  20. Gold-catalyzed oxidative cycloadditions to activate a quinoline framework.

    PubMed

    Huple, Deepak B; Ghorpade, Satish; Liu, Rai-Shung

    2013-09-23

    Going for gold! Gold-catalyzed reactions of 3,5- and 3,6-dienynes with 8-alkylquinoline oxides results in an oxidative cycloaddition with high stereospecificity (see scheme; EWG = electron-withdrawing group); this process involves a catalytic activation of a quinoline framework. The reaction mechanism involves the intermediacy of α-carbonyl pyridinium ylides (I) in a concerted [3+2]-cycloaddition with a tethered alkene.

  1. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    DOE PAGES

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; Bobb-Semple, Dara; Tao, Jing; Tong, Xiao; Wang, Lei; Lewis, Crystal S.; Vuklmirovic, Miomir; Zhu, Yimei; et al

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs).more » Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.« less

  2. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    SciTech Connect

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; Bobb-Semple, Dara; Tao, Jing; Tong, Xiao; Wang, Lei; Lewis, Crystal S.; Vuklmirovic, Miomir; Zhu, Yimei; Adzic, Radoslav R.

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs). Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.

  3. Oxidative stress is decreased in physically active sickle cell SAD mice.

    PubMed

    Charrin, Emmanuelle; Aufradet, Emeline; Douillard, Aymeric; Romdhani, Aymen; Souza, Genevieve De; Bessaad, Amine; Faes, Camille; Chirico, Erica N; Pialoux, Vincent; Martin, Cyril

    2015-03-01

    Oxidative stress plays a crucial role in sickle cell disease (SCD) physiopathology. Given that chronic physical activity is known to decrease reactive oxygen species (ROS) and increase nitric oxide (NO) bioavailability in healthy subjects and in patients with cardiovascular or inflammatory pathologies, modulating these factors involved in the severity of the pathology could also be beneficial in SCD. This study aimed to determine if 8 weeks of increased physical activity (PA) by voluntary wheel running affects the hypoxia/reoxygenation (H/R) responses by reducing oxidative stress and increasing NO synthesis in sickle SAD mice. Nitrite/nitrate (NOx) concentrations, NOS3 mRNA expression and phosphorylated-endothelial nitric oxide synthase immunostaining were increased in the lungs of the PA groups after H/R stress. Moreover, lipid peroxidation in the heart was decreased in PA SAD mice. The improvement of antioxidant activity at rest and the decrease in haemolysis may explain this reduced oxidative stress. These results suggest that physical activity probably diminishes some deleterious effects of H/R stress in SAD mice and could be protective against vascular occlusions. PMID:25382268

  4. Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress.

    PubMed

    Reuland, Danielle J; Khademi, Shadi; Castle, Christopher J; Irwin, David C; McCord, Joe M; Miller, Benjamin F; Hamilton, Karyn L

    2013-03-01

    Increased production of reactive oxygen species has been implicated in the pathogenesis of cardiovascular disease (CVD), and enhanced endogenous antioxidants have been proposed as a mechanism for regulating redox balance. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcriptional regulator of phase II antioxidant enzymes, and activation of Nrf2 has been suggested to be an important step in attenuating oxidative stress associated with CVD. A well-defined combination of five widely studied medicinal plants derived from botanical sources (Bacopa monniera, Silybum marianum (milk thistle), Withania somnifera (Ashwagandha), Camellia sinensis (green tea), and Curcuma longa (turmeric)) has been shown to activate Nrf2 and induce phase II enzymes through the antioxidant response element. The purpose of these experiments was to determine if treatment of cardiomyocytes with this phytochemical composition, marketed as Protandim, activates Nrf2, induces phase II detoxification enzymes, and protects cardiomyocytes from oxidant-induced apoptosis in a Nrf2-dependent manner. In cultured HL-1 cardiomyocytes, phytochemical treatment was associated with nuclear accumulation of Nrf2, significant induction of phase II enzymes, and concomitant protection against hydrogen peroxide-induced apoptosis. The protection against oxidant stress was abolished when Nrf2 was silenced by shRNA, suggesting that our phytochemical treatment worked through the Nrf2 pathway. Interestingly, phytochemical treatment was found to be a more robust activator of Nrf2 than oxidant treatment, supporting the use of the phytochemicals as a potential treatment to increase antioxidant defenses and protect heart cells against an oxidative challenge.

  5. Influence of Alpha and Gamma-Iron Oxide Nanoparticles on Marine Microalgae Species.

    PubMed

    Demir, Veysel; Ates, Mehmet; Arslan, Zikri; Camas, Mustafa; Celik, Fatih; Bogatu, Corneliu; Can, Şafak Seyhaneyildiz

    2015-12-01

    The effects of alpha-iron oxide (α-Fe2O3) and gamma-iron oxide (γ-Fe2O3) nanoparticles (NPs) on marine microalgae species (Nannochloropsis sp. and Isochrysis sp.) were investigated in this study. Both Fe2O3 NPs covered the surface of algae with the agglomerates of the nanoparticles. This form of physical NP toxicity significantly decreased the sizes of phytoplankton. Both NPs were toxic to the tested algal species, while α-Fe2O3 showed less toxicity than γ-Fe2O3 NPs for both algal species. A comparative analysis of growth data of the two algal species treated with α-Fe2O3 or γ-Fe2O3 NPs revealed that Isochrysis sp. are more sensitive than Nannochloropsis sp. Toxicity of these widely used NPs to primary producers forming the base of the food chain in aquatic environments might result in widespread adverse effects on aquatic environmental health. PMID:26276558

  6. Particulate Matter Oxidative Potential from Waste Transfer Station Activity

    PubMed Central

    Godri, Krystal J.; Duggan, Sean T.; Fuller, Gary W.; Baker, Tim; Green, David; Kelly, Frank J.; Mudway, Ian S.

    2010-01-01

    Background Adverse cardiorespiratory health is associated with exposure to ambient particulate matter (PM). The highest PM concentrations in London occur in proximity to waste transfer stations (WTS), sites that experience high numbers of dust-laden, heavy-duty diesel vehicles transporting industrial and household waste. Objective Our goal was to quantify the contribution of WTS emissions to ambient PM mass concentrations and oxidative potential. Methods PM with a diameter < 10 μm (PM10) samples were collected daily close to a WTS. PM10 mass concentrations measurements were source apportioned to estimate local versus background sources. PM oxidative potential was assessed using the extent of antioxidant depletion from a respiratory tract lining fluid model. Total trace metal and bioavailable iron concentrations were measured to determine their contribution to PM oxidative potential. Results Elevated diurnal PM10 mass concentrations were observed on all days with WTS activity (Monday–Saturday). Variable PM oxidative potential, bioavailable iron, and total metal concentrations were observed on these days. The contribution of WTS emissions to PM at the sampling site, as predicted by microscale wind direction measurements, was correlated with ascorbate (r = 0.80; p = 0.030) and glutathione depletion (r = 0.76; p = 0.046). Increased PM oxidative potential was associated with aluminum, lead, and iron content. Conclusions PM arising from WTS activity has elevated trace metal concentrations and, as a consequence, increased oxidative potential. PM released by WTS activity should be considered a potential health risk to the nearby residential community. PMID:20368130

  7. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species

    SciTech Connect

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg{sup 2+} ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn{sup 2+}); and (3) by inducing reactive oxygen species (ROS). Hg{sup 2+} causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn{sup 2+} release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn{sup 2+} or Hg{sup 2+}. Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg{sup 2+}-induced oxidation, because phosphatase activity is inhibited at concentrations of Hg{sup 2+} that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system.

  8. CO oxidation on nanoporous gold: A combined TPD and XPS study of active catalysts

    SciTech Connect

    Röhe, Sarah; Frank, Kristian; Schaefer, Andreas; Wittstock, Arne; Zielasek, Volkmar; Rosenauer, Andreas; Bäumer, Marcus

    2012-11-30

    Disks of nanoporous gold (np-Au), produced by leaching of silver from AgAu alloy and prepared as active catalysts for CO oxidation in a continuous-flow reactor, were investigated in detail by x-ray photoelectron spectroscopy and temperature-programmed desorption spectroscopy in ultra-high vacuum. Np-Au exhibits several oxygen species on and in the surface: Chemisorbed oxygen (Oact), probably generated at residual silver sites at the surface, is readily available after np-Au preparation and consumed by CO oxidation. It can be replenished on activated np-Au by exposure to O2. In addition, strongly bound oxygen, probably at subsurface sites, is present as a major species and not consumed by CO oxidation. Pronounced CO desorption at temperatures above 200 K observed after exposing np-Au to CO at 105 K indicates an additional, more stable type of CO binding sites on np-Au as compared to pure gold. Only CO at these binding sites is consumed by oxidation reaction with Oact. In conclusion, we propose that the presence of strongly bound subsurface oxygen stabilizes CO adsorption on np-Au, thereby being as crucial for the observed catalytic activity of np-Au as residual silver.

  9. Volatile Hydroxide Species of Common Protective Oxides and their Role in High Temperature Corrosion

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1996-01-01

    Thermodynamic data for volatile hydroxides and oxyhydroxides formed from the reaction of water vapor with Cr2O3, SiO2, A12O3, Y2O3,. and ZrO2 were assembled. The volatile species formed at temperatures between 800 and 2200K in model combustion environments containing 10% water vapor and 10% oxygen at 1 and 10 bar total pressure were calculated using free energy minimization techniques. Assuming an acceptable maximum vapor pressure limit for volatile species of 10 bar, an upper use temperature for these oxides was determined at 1 and 10 bar total pressure. The dependence of these volatile species on both water vapor and oxygen pressure was determined.

  10. Computer Modeling of Transport of Oxidizing Species in Grain Boundaries during Zirconium Corrosion

    SciTech Connect

    Xian-Ming Bai; Yongfeng Zhang; Michael R. Tonks

    2014-06-01

    Zirconium (Zr) based alloys are widely used as the cladding materials in light-water reactors. The water-side corrosion of these alloys degrades their structural integrity and poses serious safety concerns. During the Zr corrosion process, a thin Zr oxide (ZrO2) layer forms on the alloy surface and serves as a barrier layer for further corrosion. The majority of the oxide has the monoclinic phase. At the transition region between the oxide and the metal, the oxide contains a thin layer of stabilized tetragonal phase. It is found that the texture of the tetragonal layer determines the protectiveness of the oxide for corrosion. The transport of oxidizing species, such as anion defects, cation defects, and electron through the tetragonal oxide layer could be the rate limiting step of the corrosion. The defect diffusion can be affected by the growing stresses and microstructures such as grain boundaries and dislocations. In this work molecular dynamics simulations are used to investigate the anion and cation diffusion in bulk and at grain boundaries in tetragonal ZrO2. The results show that defect diffusion at grain boundaries is complex and the behavior strongly depends on the grain boundary type. For most of the grain boundaries studied the defect diffusion are much slower than in the bulk, implying that grain boundaries may not be fast defect transport paths during corrosion. The connection between the modeling results and published experimental work will also be discussed. This work is funded by the Laboratory Directed Research and Development (LDRD) program at Idaho National Laboratory.

  11. Whole Blood Cholinesterase Activity in 20 Species of Wild Birds.

    PubMed

    Horowitz, Igal H; Yanco, Esty G; Landau, Shmulik; Nadler-Valency, Rona; Anglister, Nili; Bueller-Rosenzweig, Ariela; Apelbom-Halbersberg, Tal; Cuneah, Olga; Hanji, Vera; Bellaiche, Michel

    2016-06-01

    Clinical signs of organophosphate and carbamate intoxication in wild birds can be mistaken for those of other diseases, thus potentially delaying diagnosis and implementation of life-saving treatment. The objective of this study was to determine the reference interval for blood cholinesterase activity in 20 different wild avian species from 7 different orders, thereby compiling a reference database for wildlife veterinarians. Blood was collected from birds not suspected of having organophosphate or carbamate toxicosis, and the modified Michel method, which determines the change in blood pH that directly correlates with cholinesterase activity, was used to measure blood cholinesterase levels. Results of change in blood pH values ranged from 0.11 for the white-tailed eagle ( Haliaeetus albicilla ) to 0.90 for the honey buzzard ( Pernis apivorus ). The results showed that even within the same family, interspecies differences in normal cholinesterase blood activity were not uncommon. The findings emphasized the importance of determining reference intervals for avian blood cholinesterase activity at the species level.

  12. Whole Blood Cholinesterase Activity in 20 Species of Wild Birds.

    PubMed

    Horowitz, Igal H; Yanco, Esty G; Landau, Shmulik; Nadler-Valency, Rona; Anglister, Nili; Bueller-Rosenzweig, Ariela; Apelbom-Halbersberg, Tal; Cuneah, Olga; Hanji, Vera; Bellaiche, Michel

    2016-06-01

    Clinical signs of organophosphate and carbamate intoxication in wild birds can be mistaken for those of other diseases, thus potentially delaying diagnosis and implementation of life-saving treatment. The objective of this study was to determine the reference interval for blood cholinesterase activity in 20 different wild avian species from 7 different orders, thereby compiling a reference database for wildlife veterinarians. Blood was collected from birds not suspected of having organophosphate or carbamate toxicosis, and the modified Michel method, which determines the change in blood pH that directly correlates with cholinesterase activity, was used to measure blood cholinesterase levels. Results of change in blood pH values ranged from 0.11 for the white-tailed eagle ( Haliaeetus albicilla ) to 0.90 for the honey buzzard ( Pernis apivorus ). The results showed that even within the same family, interspecies differences in normal cholinesterase blood activity were not uncommon. The findings emphasized the importance of determining reference intervals for avian blood cholinesterase activity at the species level. PMID:27315378

  13. Reactive oxygen species mediate nitric oxide production through ERK/JNK MAPK signaling in HAPI microglia after PFOS exposure.

    PubMed

    Wang, Cheng; Nie, Xiaoke; Zhang, Yan; Li, Ting; Mao, Jiamin; Liu, Xinhang; Gu, Yiyang; Shi, Jiyun; Xiao, Jing; Wan, Chunhua; Wu, Qiyun

    2015-10-15

    Perfluorooctane sulfonate (PFOS), an emerging persistent contaminant that is commonly encountered during daily life, has been shown to exert toxic effects on the central nervous system (CNS). However, the molecular mechanisms underlying the neurotoxicity of PFOS remain largely unknown. It has been widely acknowledged that the inflammatory mediators released by hyper-activated microglia play vital roles in the pathogenesis of various neurological diseases. In the present study, we examined the impact of PFOS exposure on microglial activation and the release of proinflammatory mediators, including nitric oxide (NO) and reactive oxidative species (ROS). We found that PFOS exposure led to concentration-dependent NO and ROS production by rat HAPI microglia. We also discovered that there was rapid activation of the ERK/JNK MAPK signaling pathway in the HAPI microglia following PFOS treatment. Moreover, the PFOS-induced iNOS expression and NO production were attenuated after the inhibition of ERK or JNK MAPK by their corresponding inhibitors, PD98059 and SP600125. Interestingly, NAC, a ROS inhibitor, blocked iNOS expression, NO production, and activation of ERK and JNK MAPKs, which suggested that PFOS-mediated microglial NO production occurs via a ROS/ERK/JNK MAPK signaling pathway. Finally, by exposing SH-SY5Y cells to PFOS-treated microglia-conditioned medium, we demonstrated that NO was responsible for PFOS-mediated neuronal apoptosis.

  14. Chemical constituents and biological activities of two Iranian Cystoseira species.

    PubMed

    Yegdaneh, Afsaneh; Ghannadi, Alireza; Dayani, Ladan

    2016-07-01

    The marine environment represents approximately half of the global biodiversity and could provide unlimited biological resources for the production of therapeutic drugs. Marine seaweeds comprise few thousands of species representing a considerable part of the littoral biomass. Extracts of the Cystoseira indica and Cystoseira merica were subjected to phytochemical and cytotoxicity evaluation. The amount of total phenol was determined with Folin-Ciocalteu reagent. Cytotoxicity was characterized by IC50 of human cancer cell lines including MCF-7 (human breast adenocarcinoma), HeLa (cervical carcinoma), and HT-29 (human colon adenocarcinoma) using Sulforhodamin assay. Antioxidant activities were evaluated using 2,2-diphenylpicrylhydrazyl (DPPH) method. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant constituents in these Cystoseira species while cyanogenic and cardiac glycosides were the least ones. C. indica had the higher content of total phenolics and also showed higher antioxidant activity. Cytotoxic results showed that both species inhibited cell growth effectively, especially against MCF-7 cell line. The present findings suggest potential pharmacological applications of selected seaweeds but require further investigation and identification of their bioactive principles. PMID:27651811

  15. Chemical constituents and biological activities of two Iranian Cystoseira species

    PubMed Central

    Yegdaneh, Afsaneh; Ghannadi, Alireza; Dayani, Ladan

    2016-01-01

    The marine environment represents approximately half of the global biodiversity and could provide unlimited biological resources for the production of therapeutic drugs. Marine seaweeds comprise few thousands of species representing a considerable part of the littoral biomass. Extracts of the Cystoseira indica and Cystoseira merica were subjected to phytochemical and cytotoxicity evaluation. The amount of total phenol was determined with Folin-Ciocalteu reagent. Cytotoxicity was characterized by IC50 of human cancer cell lines including MCF-7 (human breast adenocarcinoma), HeLa (cervical carcinoma), and HT-29 (human colon adenocarcinoma) using Sulforhodamin assay. Antioxidant activities were evaluated using 2,2-diphenylpicrylhydrazyl (DPPH) method. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant constituents in these Cystoseira species while cyanogenic and cardiac glycosides were the least ones. C. indica had the higher content of total phenolics and also showed higher antioxidant activity. Cytotoxic results showed that both species inhibited cell growth effectively, especially against MCF-7 cell line. The present findings suggest potential pharmacological applications of selected seaweeds but require further investigation and identification of their bioactive principles. PMID:27651811

  16. Chemical constituents and biological activities of two Iranian Cystoseira species

    PubMed Central

    Yegdaneh, Afsaneh; Ghannadi, Alireza; Dayani, Ladan

    2016-01-01

    The marine environment represents approximately half of the global biodiversity and could provide unlimited biological resources for the production of therapeutic drugs. Marine seaweeds comprise few thousands of species representing a considerable part of the littoral biomass. Extracts of the Cystoseira indica and Cystoseira merica were subjected to phytochemical and cytotoxicity evaluation. The amount of total phenol was determined with Folin-Ciocalteu reagent. Cytotoxicity was characterized by IC50 of human cancer cell lines including MCF-7 (human breast adenocarcinoma), HeLa (cervical carcinoma), and HT-29 (human colon adenocarcinoma) using Sulforhodamin assay. Antioxidant activities were evaluated using 2,2-diphenylpicrylhydrazyl (DPPH) method. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant constituents in these Cystoseira species while cyanogenic and cardiac glycosides were the least ones. C. indica had the higher content of total phenolics and also showed higher antioxidant activity. Cytotoxic results showed that both species inhibited cell growth effectively, especially against MCF-7 cell line. The present findings suggest potential pharmacological applications of selected seaweeds but require further investigation and identification of their bioactive principles.

  17. Oxidized glutathione mediates cation channel activation in calf vascular endothelial cells during oxidant stress.

    PubMed

    Koliwad, S K; Elliott, S J; Kunze, D L

    1996-08-15

    1. The oxidant, tert-butylhydroperoxide (tBuOOH) depolarizes calf pulmonary artery endothelial cells by activating a non-selective cation channel. To identify the molecular mediator of channel activation during oxidant stress, the patch-clamp technique was used to compare tBuOOH-induced changes in membrane potential and channel activity with those induced by oxidized glutathione (GSSG), a cytosolic product of oxidant metabolism. 2. When recording pipettes contained GSSG (2 mM), whole-cell zero-current potential measured immediately following pipette break-in was not different from control values (-57 mV). However, within 20 min of break-in, zero-current potential was depolarized to -7 mV. The time course of depolarization was dependent on the concentration of GSSG and was accelerated by inhibition of GSSG metabolism. 3. In excised membrane patches, channels were activated by internal GSSG, but not by internal tBuOOH, reduced glutathione (GSH), or external GSSG. Channels were equal in size (28 pS) and in ionic selectivity to those activated by incubation of intact cells with tBuOOH. As little as 20 microM GSSG was sufficient to maximally activate channels. However, the time course of channel activation was concentration dependent between 20 microM and 2 mM GSSG. 4. Channel activation by GSSG was reversed by GSH and by increasing the [GSH]:[GSSG] ratio. Likewise, channel activation by pre-incubation of intact cells with tBuOOH was reversed by GSH applied after patch excision. 5. These results strongly suggest that GSSG is an endogenous intracellular mediator of channel activation and depolarization during oxidant stress. PMID:8866350

  18. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    PubMed

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex

  19. Cholesteryl Ester Hydroperoxides Are Biologically Active Components of Minimally Oxidized Low Density Lipoprotein*S⃞

    PubMed Central

    Harkewicz, Richard; Hartvigsen, Karsten; Almazan, Felicidad; Dennis, Edward A.; Witztum, Joseph L.; Miller, Yury I.

    2008-01-01

    Oxidation of low density lipoprotein (LDL) occurs in vivo and significantly contributes to the development of atherosclerosis. An important mechanism of LDL oxidation in vivo is its modification with 12/15-lipoxygenase (LO). We have developed a model of minimally oxidized LDL (mmLDL) in which native LDL is modified by cells expressing 12/15LO. This mmLDL activates macrophages inducing membrane ruffling and cell spreading, activation of ERK1/2 and Akt signaling, and secretion of proinflammatory cytokines. In this study, we found that many of the biological activities of mmLDL were associated with cholesteryl ester (CE) hydroperoxides and were diminished by ebselen, a reducing agent. Liquid chromatography coupled with mass spectroscopy demonstrated the presence of many mono- and polyoxygenated CE species in mmLDL but not in native LDL. Nonpolar lipid extracts of mmLDL activated macrophages, although to a lesser degree than intact mmLDL. The macrophage responses were also induced by LDL directly modified with immobilized 12/15LO, and the nonpolar lipids extracted from 12/15LO-modified LDL contained a similar set of oxidized CE. Cholesteryl arachidonate modified with 12/15LO also activated macrophages and contained a similar collection of oxidized CE molecules. Remarkably, many of these oxidized CE were found in the extracts of atherosclerotic lesions isolated from hyperlipidemic apoE–/– mice. These results suggest that CE hydroperoxides constitute a class of biologically active components of mmLDL that may be relevant to proinflammatory activation of macrophages in atherosclerotic lesions. PMID:18263582

  20. Catalytic oxidation ofS(IV) on activated carbon in aqueous suspension: kinetics and mechanism

    SciTech Connect

    Brodzinsky, R.

    1981-02-01

    Activated carbon and combustion produced soot particles have been studied for their catalytic effect on the oxidation of aqueous sulfur(IV) species. Detailed kinetic studies of the reaction were performed on three different activated carbons and on a soot collected in a highway tunnel. Combustion produced soots were tested for their catalytic behavior and found to be similar to the activated carbons. The reaction rate was found to be linearly dependent on the concentration of carbon particles in the solution. The rate was found to follow a Langmuir adsorption isotherm for its dependence on oxygen and the product of two adsorption isotherms for S(IV). The reaction is independent of the pH of the solution when the pH is below 7.6. The reaction does not occur when the pH is above 7.6. The three aqueous S(IV) species are catalyzed in their oxidation by the carbon particles in a similar manner. Activation energies for the reactions on the different carbons are all about 8.5 kcal/mole. A possible four-step reaction mechanism is proposed. It consists of the adsorption of a dissolved oxygen molecule onto the carbon surface, followed by the adsorption of two S(IV) molecules or ions. These are oxidized on the surface to sulfate, which desorbs from the surface, regenerating the catalytically active site.

  1. Induction of ROS generation by fluconazole in Candida glabrata: activation of antioxidant enzymes and oxidative DNA damage.

    PubMed

    Mahl, Camila Donato; Behling, Camile Saul; Hackenhaar, Fernanda S; de Carvalho e Silva, Mélany Natuane; Putti, Jordana; Salomon, Tiago B; Alves, Sydney Hartz; Fuentefria, Alexandre; Benfato, Mara S

    2015-07-01

    In this study, we assessed the generation of reactive oxygen species (ROS) induced by subinhibitory concentration of fluconazole in susceptible and resistant Candida glabrata strains at stationary growth phase and measured their oxidative responses parameters: glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione-S-transferase (GST), consumption of hydrogen peroxide, and total glutathione, as well as oxidative damage in lipids, proteins, and DNA. Data showed that fluconazole increased generation of ROS and GPx and SOD enzymatic activity in treated cells; however, these enzymatic activities did not differ between resistant and susceptible strains. Susceptible strains exhibited higher GST activity than resistant, and when susceptible cells were treated with fluconazole, GST activity decreased. Fluconazole treatment cause oxidative damage only in DNA. There are a possible participation of ROS, as organic peroxides and O2(•-), in antifungal mechanism of fluconazole, which results in higher GPx and SOD enzymatic activities and oxidative DNA damage in C. glabrata.

  2. Bioreductively Activated Reactive Oxygen Species (ROS) Generators as MRSA Inhibitors.

    PubMed

    Khodade, Vinayak S; Sharath Chandra, Mallojjala; Banerjee, Ankita; Lahiri, Surobhi; Pulipeta, Mallikarjuna; Rangarajan, Radha; Chakrapani, Harinath

    2014-07-10

    The number of cases of drug resistant Staphylococcus aureus infections is on the rise globally and new strategies to identify drug candidates with novel mechanisms of action are in urgent need. Here, we report the synthesis and evaluation of a series of benzo[b]phenanthridine-5,7,12(6H)-triones, which were designed based on redox-active natural products. We find that the in vitro inhibitory activity of 6-(prop-2-ynyl)benzo[b]phenanthridine-5,7,12(6H)-trione (1f) against methicillin-resistant Staphylococcus aureus (MRSA), including a panel of patient-derived strains, is comparable or better than vancomycin. We show that the lead compound generates reactive oxygen species (ROS) in the cell, contributing to its antibacterial activity. PMID:25050164

  3. 2,4,6-Trichlorophenol mediated increases in extracellular peroxidase activity in three species of Lemnaceae.

    PubMed

    Biswas, Dilip K; Scannell, Gillian; Akhmetov, Nurlan; Fitzpatrick, Dara; Jansen, Marcel A K

    2010-11-01

    Chlorinated phenols, or chlorophenols, are persistent priority pollutants that are widespread in the environment. Class III peroxidases are well-characterised plant enzymes that can catalyse the oxidative dechlorination of chlorophenols. Expression of these enzymes by plants is commonly associated with plant stress, therefore limiting scope for phytoremediation. In this study, we have quantitatively compared peroxidase activity and phytotoxicity as a function of 2,4,6-trichlorophenol (TCP) concentration in three species of Lemnaceae; Lemna minor, Lemna gibba and Landoltia punctata. Effects of TCP on the growth rates of the three species differed considerably with L. punctata being the most tolerant species. TCP also affected photosynthetic parameters, causing a decrease in open photosystem II reaction centres (qP) and, in L. punctata only, a decrease in non-photochemical quenching (qN). In parallel, TCP exposure resulted in increased peroxidase activity in all three species. Peroxidase activity in L. minor and L. gibba displayed an inverse relationship with biomass accumulation, i.e. the more growth reduction the more peroxidase activity. In contrast, induction of peroxidase activity in L. punctata was bi-phasic, with a TCP-induced activity peak at concentrations that had no major effect on growth, and further induction under phytotoxic concentrations. The mechanism by which L. punctata recognises and responds to low concentrations of an anthropogenic compound, in the absence of wide-ranging stress, remains enigmatic. However, we conclude that this "window" of peroxidase production in the absence of major growth inhibition offers potential for the development of sustainable, peroxidise-mediated phytoremediation systems. PMID:20810175

  4. Lactate does not activate NF-κB in oxidative tumor cells

    PubMed Central

    Van Hée, Vincent F.; Pérez-Escuredo, Jhudit; Cacace, Andrea; Copetti, Tamara; Sonveaux, Pierre

    2015-01-01

    The lactate anion is currently emerging as an oncometabolite. Lactate, produced and exported by glycolytic and glutaminolytic cells in tumors, can be recycled as an oxidative fuel by oxidative tumors cells. Independently of hypoxia, it can also activate transcription factor hypoxia-inducible factor-1 (HIF-1) in tumor and endothelial cells, promoting angiogenesis. These protumoral activities of lactate depend on lactate uptake, a process primarily facilitated by the inward, passive lactate-proton symporter monocarboxylate transporter 1 (MCT1); the conversion of lactate and NAD+ to pyruvate, NADH and H+ by lactate dehydrogenase-1 (LDH-1); and a competition between pyruvate and α-ketoglutarate that inhibits prolylhydroxylases (PHDs). Endothelial cells do not primarily use lactate as an oxidative fuel but, rather, as a signaling agent. In addition to HIF-1, lactate can indeed activate transcription factor nuclear factor-κB (NF-κB) in these cells, through a mechanism not only depending on PHD inhibition but also on NADH alimenting NAD(P)H oxidases to generate reactive oxygen species (ROS). While NF-κB activity in endothelial cells promotes angiogenesis, NF-κB activation in tumor cells is known to stimulate tumor progression by conferring resistance to apoptosis, stemness, pro-angiogenic and metastatic capabilities. In this study, we therefore tested whether exogenous lactate could activate NF-κB in oxidative tumor cells equipped for lactate signaling. We report that, precisely because they are oxidative, HeLa and SiHa human tumor cells do not activate NF-κB in response to lactate. Indeed, while lactate-derived pyruvate is well-known to inhibit PHDs in these cells, we found that NADH aliments oxidative phosphorylation (OXPHOS) in mitochondria rather than NAD(P)H oxidases in the cytosol. These data were confirmed using oxidative human Cal27 and MCF7 tumor cells. This new information positions the malate-aspartate shuttle as a key player in the oxidative metabolism

  5. Generation of radical species from dihydropyrazines having DNA strand-breakage activity and other characteristics.

    PubMed

    Yamaguchi, Tadatoshi; Matsumoto, Shigenobu; Masumizu, Toshiki; Takechi, Shinji; Ishida, Takumi; Takeshita, Keizo; Kansui, Hisao; Kunieda, Takehisa

    2012-01-01

    The various biological activity of dihydropyrazines(DHPs)due to the radical generation potency has been described in previous papers. Detailed data about radical species generating be mentioned here. The electron spin resonance (ESR) spin-trapping technique revealed that DHPs generate free radical species such as ·OH, ·OOH, ·CHR(2) and ·CR(3). Oxygen radicals and two carbon-centered radicals were detected as adducts of the spin traps DMPO and DBNBS, respectively. All the 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)- and 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS)-adducts of compounds DHP-1-8 exhibited approximately the same signal patterns, with various levels of intensity depending on the substituent of the dihydropyrazine ring. The ESR signal intensity of DHPs also increased remarkably upon addition of Cu(2+), resulting that the effects of DHPs were enhanced. PMID:22689402

  6. Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs.

    PubMed

    Peng, Libin; Wang, Li; Hu, Xingting; Wu, Peihui; Wang, Xueqing; Huang, Chumei; Wang, Xiangyang; Deng, Dayi

    2016-11-15

    The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar. Based on the kinetic analysis and experimental results, the contributions of ultrasound, persulfate and elevated reaction temperature to PAHs oxidation were characterized, and the effects of ultrasonic intensity and oxidant dosage on PAHs oxidation efficiency were investigated. In addition, the results indicate that individual PAH degradability is closely related to its reactivity as well, and the high reactivity of 4-6 ringed PAHs substantially improves their degradability. PMID:27450342

  7. Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs.

    PubMed

    Peng, Libin; Wang, Li; Hu, Xingting; Wu, Peihui; Wang, Xueqing; Huang, Chumei; Wang, Xiangyang; Deng, Dayi

    2016-11-15

    The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar. Based on the kinetic analysis and experimental results, the contributions of ultrasound, persulfate and elevated reaction temperature to PAHs oxidation were characterized, and the effects of ultrasonic intensity and oxidant dosage on PAHs oxidation efficiency were investigated. In addition, the results indicate that individual PAH degradability is closely related to its reactivity as well, and the high reactivity of 4-6 ringed PAHs substantially improves their degradability.

  8. Reactive oxygen species production and antioxidant enzyme activity during epididymal sperm maturation in Corynorhinus mexicanus bats.

    PubMed

    Arenas-Ríos, Edith; Rosado García, Adolfo; Cortés-Barberena, Edith; Königsberg, Mina; Arteaga-Silva, Marcela; Rodríguez-Tobón, Ahiezer; Fuentes-Mascorro, Gisela; León-Galván, Miguel Angel

    2016-03-01

    Prolonged sperm storage in the epididymis of Corynorhinus mexicanus bats after testicular regression has been associated with epididymal sperm maturation in the caudal region, although the precise factors linked with this phenomenon are unknown. The aim of this work is to determine the role of reactive oxygen species (ROS) and changes in antioxidant enzymatic activity occurring in the spermatozoa and epididymal fluid over time, in sperm maturation and storage in the caput, corpus and cauda of the bat epididymis. Our data showed that an increment in ROS production coincided with an increase in superoxide dismutase (SOD) activity in epididymal fluid and with a decrease in glutathione peroxidase (GPX) activity in the spermatozoa in at different time points and epididymal regions. The increase in ROS production was not associated with oxidative damage measured by lipid peroxidation. The results of the current study suggest the existence of a shift in the redox balance, which might be associated with sperm maturation and storage.

  9. Antiinflammatory activities of Hungarian Stachys species and their iridoids.

    PubMed

    Háznagy-Radnai, Erzsébet; Balogh, Ágnes; Czigle, Szilvia; Máthé, Imre; Hohmann, Judit; Blazsó, Gábor

    2012-04-01

    The antiinflammatory activities of aqueous extracts prepared from the aerial parts of ten Hungarian Stachys species were investigated in vivo in the carrageenan-induced paw oedema test after intraperitoneal and oral administration to rats. Some of the extracts were found to display significant antiphlogistic effects when administered intraperitoneally and orally; in particular, the extracts of S. alpina, S. germanica, S. officinalis and S. recta demonstrated high activity following intraperitoneal administration. At the same dose of 5.0 mg/kg, these extracts exhibited similar or greater potency than that of the positive control diclofenac-Na. The main iridoids present in the investigated extracts, ajugoside, aucubin, acetylharpagide, harpagide and harpagoside, were also assayed in the same test, and high dose-dependent antiphlogistic effects were recorded for aucubin and harpagoside. These results led to the conclusion that most probably iridoids are responsible for the antiinflammatory effect of Stachys species, but other active constituents or their synergism must also be implicated in the antiinflammatory effect.

  10. In vitro free radical scavenging activity of five Salvia species.

    PubMed

    Nickavar, Bahman; Kamalinejad, Mohammad; Izadpanah, Hamidreza

    2007-10-01

    The radical scavenging activity of ethanolic extracts from five Salvia species including S. hypoleuca Benth., S. reuterana Boiss., S. verticillata L., S. virgata Jacq. and S. officinalis L. (as the reference plant with well documented free radical scavenging and antioxidant properties) was evaluated in vitro with the spectrophotometric method based on the reduction of the stable DPPH free radical. All the extracts showed radical scavenging activity, especially S. verticillata [IC50=23.53 (20.56-26.93) microg ml(-1)] and S. virgata [IC50=27.01 (24.08-30.29) microg ml(-1)] were found to be the most active species. Furthermore, the extracts were investigated regarding their total flavonoid content (TFC) by AlCl3 reagent. The extracts S. hypoleuca (TFC=53.16+/-1.95 microg mg(-1)) and S. reuterana (TFC=46.97+/-4.43 microg mg(-1)) had the highest content of flavonoid. However, a favourable correlation was not found between the radical scavenging potency and the total flavonoid content. This study suggests that S. verticillata and S. virgata are the possible sources of natural radical scavengers.

  11. Nanowires, Capacitors, and Other Novel Outer-Surface Components Involved in Electron Transfer to Fe(III) Oxides in Geobacter Species

    SciTech Connect

    Lovley, Derek, R.

    2008-12-22

    The overall goal of this project was to better understand the mechanisms by which Geobacter species transfer electrons outside the cell onto Fe(III) oxides. The rationale for this study was that Geobacter species are often the predominant microorganisms involved in in situ uranium bioremediation and the growth and activity of the Geobacter species during bioremediation is primarily supported by electron transfer to Fe(III) oxides. These studies greatly expanded the understanding of electron transfer to Fe(III). Novel concepts developed included the potential role of microbial nanowires for long range electron transfer in Geobacter species and the importance of extracytoplasmic cytochromes functioning as capacitors to permit continued electron transfer during the hunt for Fe(III) oxide. Furthermore, these studies provided target sequences that were then used in other studies to tract the activity of Geobacter species in the subsurface through monitoring the abundance of gene transcripts of the target genes. A brief summary of the major accomplishments of the project is provided.

  12. Nitric oxide and reactive oxygen species production causes progressive damage in rats after cessation of silica inhalation.

    PubMed

    Porter, Dale W; Millecchia, Lyndell L; Willard, Patsy; Robinson, Victor A; Ramsey, Dawn; McLaurin, Jeffery; Khan, Amir; Brumbaugh, Kurt; Beighley, Christoper M; Teass, Alexander; Castranova, Vincent

    2006-03-01

    Our laboratory has previously reported results from a rat silica inhalation study which determined that, even after silica exposure ended, pulmonary inflammation and damage progressed with subsequent fibrosis development. In the present study, the relationship between silica exposure, nitric oxide (NO) and reactive oxygen species (ROS) production, and the resultant pulmonary damage is investigated in this model. Rats were exposed to silica (15 mg/m3, 6 h/day) for either 20, 40, or 60 days. A portion of the rats from each exposure were sacrificed at 0 days postexposure, while another portion was maintained without further exposure for 36 days to examine recovery or progression. The major findings of this study are: (1) silica-exposed rat lungs were in a state of oxidative stress, the severity of which increased during the postexposure period, (2) silica-exposed rats had significant increase in lung NO production which increased in magnitude during the postexposure period, and (3) the presence of silica particle(s) in an alveolar macrophage (AM) was highly associated with inducible nitric oxide synthase (iNOS) protein. These data indicate that, even after silica exposure has ended, and despite declining silica lung burden, silica-induced pulmonary NO and ROS production increases, thus producing a more severe oxidative stress. A quantitative association between silica and expression of iNOS protein in AMs was also determined, which adds to our previous observation that iNOS and NO-mediated damage are associated anatomically with silica-induced pathological lesions. Future studies will be needed to determine whether the progressive oxidative stress, and iNOS activation and NO production, is a direct result of silica lung burden or a consequence of silica-induced biochemical mediators. PMID:16339787

  13. Large Roads Reduce Bat Activity across Multiple Species

    PubMed Central

    Kitzes, Justin; Merenlender, Adina

    2014-01-01

    Although the negative impacts of roads on many terrestrial vertebrate and bird populations are well documented, there have been few studies of the road ecology of bats. To examine the effects of large roads on bat populations, we used acoustic recorders to survey bat activity along ten 300 m transects bordering three large highways in northern California, applying a newly developed statistical classifier to identify recorded calls to the species level. Nightly counts of bat passes were analyzed with generalized linear mixed models to determine the relationship between bat activity and distance from a road. Total bat activity recorded at points adjacent to roads was found to be approximately one-half the level observed at 300 m. Statistically significant road effects were also found for the Brazilian free-tailed bat (Tadarida brasiliensis), big brown bat (Eptesicus fuscus), hoary bat (Lasiurus cinereus), and silver-haired bat (Lasionycteris noctivagans). The road effect was found to be temperature dependent, with hot days both increasing total activity at night and reducing the difference between activity levels near and far from roads. These results suggest that the environmental impacts of road construction may include degradation of bat habitat and that mitigation activities for this habitat loss may be necessary to protect bat populations. PMID:24823689

  14. Increased Reactive Oxygen Species Formation and Oxidative Stress in Rheumatoid Arthritis

    PubMed Central

    Mateen, Somaiya; Moin, Shagufta; Khan, Abdul Qayyum; Zafar, Atif; Fatima, Naureen

    2016-01-01

    Background Rheumatoid arthritis (RA) is an autoimmune inflammatory disorder. Highly reactive oxygen free radicals are believed to be involved in the pathogenesis of the disease. In this study, RA patients were sub-grouped depending upon the presence or absence of rheumatoid factor, disease activity score and disease duration. RA Patients (120) and healthy controls (53) were evaluated for the oxidant—antioxidant status by monitoring ROS production, biomarkers of lipid peroxidation, protein oxidation and DNA damage. The level of various enzymatic and non-enzymatic antioxidants was also monitored. Correlation analysis was also performed for analysing the association between ROS and various other parameters. Methods Intracellular ROS formation, lipid peroxidation (MDA level), protein oxidation (carbonyl level and thiol level) and DNA damage were detected in the blood of RA patients. Antioxidant status was evaluated by FRAP assay, DPPH reduction assay and enzymatic (SOD, catalase, GST, GR) and non-enzymatic (vitamin C and GSH) antioxidants. Results RA patients showed a higher ROS production, increased lipid peroxidation, protein oxidation and DNA damage. A significant decline in the ferric reducing ability, DPPH radical quenching ability and the levels of antioxidants has also been observed. Significant correlation has been found between ROS and various other parameters studied. Conclusion RA patients showed a marked increase in ROS formation, lipid peroxidation, protein oxidation, DNA damage and decrease in the activity of antioxidant defence system leading to oxidative stress which may contribute to tissue damage and hence to the chronicity of the disease. PMID:27043143

  15. The Emerging Nexus of Active DNA Demethylation and Mitochondrial Oxidative Metabolism in Post-Mitotic Neurons

    PubMed Central

    Meng, Huan; Chen, Guiquan; Gao, Hui-Ming; Song, Xiaoyu; Shi, Yun; Cao, Liu

    2014-01-01

    The variable patterns of DNA methylation in mammals have been linked to a number of physiological processes, including normal embryonic development and disease pathogenesis. Active removal of DNA methylation, which potentially regulates neuronal gene expression both globally and gene specifically, has been recently implicated in neuronal plasticity, learning and memory processes. Model pathways of active DNA demethylation involve ten-eleven translocation (TET) methylcytosine dioxygenases that are dependent on oxidative metabolites. In addition, reactive oxygen species (ROS) and oxidizing agents generate oxidative modifications of DNA bases that can be removed by base excision repair proteins. These potentially link the two processes of active DNA demethylation and mitochondrial oxidative metabolism in post-mitotic neurons. We review the current biochemical understanding of the DNA demethylation process and discuss its potential interaction with oxidative metabolism. We then summarise the emerging roles of both processes and their interaction in neural plasticity and memory formation and the pathophysiology of neurodegeneration. Finally, possible therapeutic approaches for neurodegenerative diseases are proposed, including reprogramming therapy by global DNA demethylation and mitohormesis therapy for locus-specific DNA demethylation in post-mitotic neurons. PMID:25490140

  16. Determination of oxidative stress and activities of antioxidant enzymes in guinea pigs treated with haloperidol

    PubMed Central

    GUMULEC, JAROMIR; RAUDENSKA, MARTINA; HLAVNA, MARIAN; STRACINA, TIBOR; SZTALMACHOVA, MARKETA; TANHAUSEROVA, VERONIKA; PACAL, LUKAS; RUTTKAY-NEDECKY, BRANISLAV; SOCHOR, JIRI; ZITKA, ONDREJ; BABULA, PETR; ADAM, VOJTECH; KIZEK, RENE; NOVAKOVA, MARIE; MASARIK, MICHAL

    2013-01-01

    Guinea pigs (Cavia porcellus) were treated with haloperidol (HP), and free radical (FR) and ferric reducing antioxidant power (FRAP) assays were used to determine oxidative stress levels. Furthermore, the superoxide dismutase (SOD), glutathione reductase (GR) and glutathione-S-transferase (GST) activity levels were detected and glucose levels and the reduced and oxidized glutathione (GSH/GSSG) ratio were measured in HP-treated and untreated guinea pigs. The present study demonstrated that the administration of HP causes significant oxidative stress in guinea pigs (P=0.022). In animals treated with HP, the activity of GST was significantly increased compared with a placebo (P= 0.007). The elevation of SOD and GR activity levels and increase in the levels of glutathione (GSH) in HP-treated animals were not statistically significant. In the HP-untreated animals, a significant positive correlation was observed between oxidative stress detected by the FR method and GST (r=0.88, P=0.008) and SOD (r=0.86, P= 0.01) activity levels, respectively. A significant negative correlation between the levels of plasma glucose and oxidative stress detected by the FRAP method was observed (r=−0.78, P=0.04). Notably, no significant correlations were observed in the treated animals. In the HP-treated group, two subgroups of animals were identified according to their responses to oxidative stress. The group with higher levels of plasma HP had higher enzyme activity and reactive oxygen species production compared with the group with lower plasma levels of HP. The greatest difference in activity (U/μl) between the two groups of animals was for GR. PMID:23403848

  17. A mechanistic study of limonene oxidation products and pathways following cleaning activities

    NASA Astrophysics Data System (ADS)

    Carslaw, Nicola

    2013-12-01

    Indoor air pollution has caused increasing concern since the 1970s, when the advent of stricter energy efficiency measures lead to increased reports of building related symptoms. Cleaning activities have been linked to adverse health effects indoors, although it is unclear which of the components of cleaning products cause these reported health effects. This paper uses a detailed chemical model for indoor air chemistry, to identify the species formed at the highest concentrations following use of a limonene-based cleaning product. The explicit nature of the chemical mechanism also permits the key pathways to their formation to be identified. The results show that the key species in terms of gas-phase concentration are multi-functional carbonyl species including limonaldehyde, 4-acetyl-1-methyl-1-cyclohexene and other dicarbonyl species. The particle-phase was dominated by peroxide species. The predicted gas-phase concentrations for three limonene-oxidation products were compared to recently published human reference values, but found not to be high enough to cause concern for typical indoor conditions, or under high indoor ozone conditions. However, cleaning products contain a range of terpenes other than limonene, which could also produce some of the secondary products identified here, as well as more common species such as formaldehyde, glyoxal and hydrogen peroxide. A mechanistic pathway analysis shows that the secondary products formed through limonene oxidation indoors depend critically on the competition between ozone and hydroxyl radicals, such that indoor pollutant concentrations and composition could vary widely in different locations for a nominally similar residence and indoor activities. Future studies should focus on aiming to measure multi-functional carbonyl species indoors to help validate models, whilst human reference values are needed for many more relevant species indoors.

  18. Lectin activity in mycelial extracts of Fusarium species.

    PubMed

    Bhari, Ranjeeta; Kaur, Bhawanpreet; Singh, Ram S

    2016-01-01

    Lectins are non-immunogenic carbohydrate-recognizing proteins that bind to glycoproteins, glycolipids, or polysaccharides with high affinity and exhibit remarkable ability to agglutinate erythrocytes and other cells. In the present study, ten Fusarium species previously not explored for lectins were screened for the presence of lectin activity. Mycelial extracts of F. fujikuroi, F. beomiformii, F. begoniae, F. nisikadoi, F. anthophilum, F. incarnatum, and F. tabacinum manifested agglutination of rabbit erythrocytes. Neuraminidase treatment of rabbit erythrocytes increased lectin titers of F. nisikadoi and F. tabacinum extracts, whereas the protease treatment resulted in a significant decline in agglutination by most of the lectins. Results of hapten inhibition studies demonstrated unique carbohydrate specificity of Fusarium lectins toward O-acetyl sialic acids. Activity of the majority of Fusarium lectins exhibited binding affinity to d-ribose, l-fucose, d-glucose, l-arabinose, d-mannitol, d-galactosamine hydrochloride, d-galacturonic acid, N-acetyl-d-galactosamine, N-acetyl-neuraminic acid, 2-deoxy-d-ribose, fetuin, asialofetuin, and bovine submaxillary mucin. Melibiose and N-glycolyl neuraminic acid did not inhibit the activity of any of the Fusarium lectins. Mycelial extracts of F. begoniae, F. nisikadoi, F. anthophilum, and F. incarnatum interacted with most of the carbohydrates tested. F. fujikuroi and F. anthophilum extracts displayed strong interaction with starch. The expression of lectin activity as a function of culture age was investigated. Most species displayed lectin activity on the 7th day of cultivation, and it varied with progressing of culture age. PMID:27237111

  19. Sulfur species leached from pyrite during oxidative desulfurization of coal in alkaline solutions

    SciTech Connect

    Stephenson, M.D.; Wheelock, T.D.; Markuszewski, R.

    1983-01-01

    The results indicate that thiosulfate, sulfite, and sulfate are the principal soluble sulfur species produced when coal-derived pyrite leached with a hot alkaline solution containing dissolved oxygen. The distribution of soluble sulfur species in the leachate was found to depend on leaching temperature, oxygen partial pressure, leachant composition, and time of contact. At lower temperatures and oxygen partial pressures and with a short time of contact between the leaching solution and pyrite, the leachate sulfur species were dominated by thiosulfate. However, the leachate also contained significant amounts of sulfite and sulfate. When the temperature, oxygen partial pressure, or time of contact were increased, the proportions of thiosulfate and sulfite decreased and the proportion of sulfate increased. It was observed also that reacted pyrite particles catalyzed the oxidation of thiosulfate to sulfite and sulfate. Consequently when pyrite was oxidized in a stirred reactor for 1 h at elevated temperature and oxygen partial pressure, most of the dissolved sulfur appeared as sulfate and very little as thiosulfate or sulfite. 10 references, 4 figures, 1 table.

  20. The enantiomeric composition of linalool and linalool oxide in the flowers of kiwifruit (Actinidia) species.

    PubMed

    Matich, Adam J; Bunn, Barry J; Hunt, Martin B

    2010-01-01

    A survey of linalool enantiomers in kiwifruit (Actinidia) flowers was conducted to determine their potential as sources of these valuable floral fragrances, and revealed a wide range of enantiomeric ratios. While flowers of A. polygama and A. chrysantha contained almost exclusively one enantiomer, most species contained significant amounts of both (R) and (S) isomers. In some species enantiomeric ratios of floral linalool differed between genotypes, full siblings, and in one case clones, and ratios changed from year to year as well as diurnally. Enantioselective biosynthesis of the linalool-derived furanoid and pyranoid linalool oxides was examined in flowers of an A. chrysantha and an A. polygama genotype. The flowers of both species produced almost exclusively (S)-linalool. A. chrysantha flowers incubated with rac-d5-linalool preferentially processed the (S)-isomer through to the linalool oxides. However, the A. polygama flowers were less discriminatory in their use of rac-d5-linalool and processed significant quantities of d5-(R)-linalool as well.

  1. Mechanisms of pyrite oxidation to non-slagging species. Quartery report, October 1, 1995--December 31, 1995

    SciTech Connect

    Akan-Etuk, A.E.J.; Mitchell, R.E.

    1996-03-01

    This paper presents results of investigations on the transformation of iron pyrite to non-slagging species during staged combustion of pulverized coal. Work focuses on the oxidation of iron pyrite to magnetite.

  2. Rehydration of the lichen Ramalina lacera results in production of reactive oxygen species and nitric oxide and a decrease in antioxidants.

    PubMed

    Weissman, Lior; Garty, Jacob; Hochman, Ayala

    2005-04-01

    Lichens are slow-growing associations of fungi and unicellular green algae or cyanobacteria. They are poikilohydric organisms whose lifestyle in many cases consists of alternating periods of desiccation, with low metabolic activity, and hydration, which induces increase in their metabolism. Lichens have apparently adapted to such extreme transitions between desiccation and rehydration, but the mechanisms that govern these adaptations are still poorly understood. In this study, the effect of rehydration on the production of reactive oxygen species and nitric oxide as well as low-molecular-weight antioxidants was investigated with the lichen Ramalina lacera. Rehydration of R. lacera resulted in the initiation of and a rapid increase in photosynthetic activity. Recovery of photosynthesis was accompanied by bursts of intracellular production of reactive oxygen species and nitric oxide. Laser-scanning confocal microscopy using dichlorofluorescein fluorescence revealed that formation of reactive oxygen species following rehydration was associated with both symbiotic partners of the lichen. The rate and extent of reactive oxygen species production were similar in the light and in the dark, suggesting a minor contribution of photosynthesis. Diaminofluorescein fluorescence, indicating nitric oxide formation, was detected only in fungal hyphae. Activities associated with rehydration did not have a deleterious effect on membrane integrity as assessed by measurement of electrolyte leakage, but water-soluble low-molecular-weight antioxidants decreased significantly.

  3. Anticancer activities of selected species of North American lichen extracts.

    PubMed

    Shrestha, Gajendra; El-Naggar, Atif M; St Clair, Larry L; O'Neill, Kim L

    2015-01-01

    Cancer is the second leading cause of human deaths in the USA. Despite continuous efforts to treat cancer over the past 50 years, human mortality rates have not decreased significantly. Natural products, such as lichens, have been good sources of anticancer drugs. This study reports the cytotoxic activity of crude extracts of 17 lichen species against Burkitt's lymphoma (Raji) cells. Out of the 17 lichen species, extracts from 14 species showed cytotoxicity against Raji cells. On the basis of IC50 values, we selected Xanthoparmelia chlorochroa and Tuckermannopsis ciliaris to study the mechanism of cell death. Viability of normal lymphocytes was not affected by the extracts of X. chlorochroa and T. ciliaris. We found that extracts from both lichens decreased proliferation, accumulated cells at the G0 /G1 stage, and caused apoptosis in a dose-dependent manner. Both lichen extracts also caused upregulation of p53. The T. ciliaris extract upregulated the expression of TK1 but X. chlorochroa did not. We also found that usnic, salazinic, constictic, and norstictic acids were present in the extract of X. chlorochroa, whereas protolichesterinic acid in T. ciliaris extracts. Our data demonstrate that lichen extracts merit further research as a potential source of anticancer drugs.

  4. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds.

    PubMed

    Vaïtilingom, Mickael; Deguillaume, Laurent; Vinatier, Virginie; Sancelme, Martine; Amato, Pierre; Chaumerliac, Nadine; Delort, Anne-Marie

    2013-01-01

    Within cloud water, microorganisms are metabolically active and, thus, are expected to contribute to the atmospheric chemistry. This article investigates the interactions between microorganisms and the reactive oxygenated species that are present in cloud water because these chemical compounds drive the oxidant capacity of the cloud system. Real cloud water samples with contrasting features (marine, continental, and urban) were taken from the puy de Dôme mountain (France). The samples exhibited a high microbial biodiversity and complex chemical composition. The media were incubated in the dark and subjected to UV radiation in specifically designed photo-bioreactors. The concentrations of H(2)O(2), organic compounds, and the ATP/ADP ratio were monitored during the incubation period. The microorganisms remained metabolically active in the presence of ()OH radicals that were photo-produced from H(2)O(2). This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry; first, they could directly metabolize organic carbon species, and second, they could reduce the available source of radicals through their oxidative metabolism. Consequently, molecules such as H(2)O(2) would no longer be available for photochemical or other chemical reactions, which would decrease the cloud oxidant capacity. PMID:23263871

  5. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds.

    PubMed

    Vaïtilingom, Mickael; Deguillaume, Laurent; Vinatier, Virginie; Sancelme, Martine; Amato, Pierre; Chaumerliac, Nadine; Delort, Anne-Marie

    2013-01-01

    Within cloud water, microorganisms are metabolically active and, thus, are expected to contribute to the atmospheric chemistry. This article investigates the interactions between microorganisms and the reactive oxygenated species that are present in cloud water because these chemical compounds drive the oxidant capacity of the cloud system. Real cloud water samples with contrasting features (marine, continental, and urban) were taken from the puy de Dôme mountain (France). The samples exhibited a high microbial biodiversity and complex chemical composition. The media were incubated in the dark and subjected to UV radiation in specifically designed photo-bioreactors. The concentrations of H(2)O(2), organic compounds, and the ATP/ADP ratio were monitored during the incubation period. The microorganisms remained metabolically active in the presence of ()OH radicals that were photo-produced from H(2)O(2). This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry; first, they could directly metabolize organic carbon species, and second, they could reduce the available source of radicals through their oxidative metabolism. Consequently, molecules such as H(2)O(2) would no longer be available for photochemical or other chemical reactions, which would decrease the cloud oxidant capacity.

  6. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds

    PubMed Central

    Vaïtilingom, Mickael; Deguillaume, Laurent; Vinatier, Virginie; Sancelme, Martine; Amato, Pierre; Chaumerliac, Nadine; Delort, Anne-Marie

    2013-01-01

    Within cloud water, microorganisms are metabolically active and, thus, are expected to contribute to the atmospheric chemistry. This article investigates the interactions between microorganisms and the reactive oxygenated species that are present in cloud water because these chemical compounds drive the oxidant capacity of the cloud system. Real cloud water samples with contrasting features (marine, continental, and urban) were taken from the puy de Dôme mountain (France). The samples exhibited a high microbial biodiversity and complex chemical composition. The media were incubated in the dark and subjected to UV radiation in specifically designed photo-bioreactors. The concentrations of H2O2, organic compounds, and the ATP/ADP ratio were monitored during the incubation period. The microorganisms remained metabolically active in the presence of ●OH radicals that were photo-produced from H2O2. This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry; first, they could directly metabolize organic carbon species, and second, they could reduce the available source of radicals through their oxidative metabolism. Consequently, molecules such as H2O2 would no longer be available for photochemical or other chemical reactions, which would decrease the cloud oxidant capacity. PMID:23263871

  7. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, Mickael; Deguillaume, Laurent; Vinatier, Virginie; Sancelme, Martine; Amato, Pierre; Chaumerliac, Nadine; Delort, Anne-Marie

    2013-01-01

    Within cloud water, microorganisms are metabolically active and, thus, are expected to contribute to the atmospheric chemistry. This article investigates the interactions between microorganisms and the reactive oxygenated species that are present in cloud water because these chemical compounds drive the oxidant capacity of the cloud system. Real cloud water samples with contrasting features (marine, continental, and urban) were taken from the puy de Dôme mountain (France). The samples exhibited a high microbial biodiversity and complex chemical composition. The media were incubated in the dark and subjected to UV radiation in specifically designed photo-bioreactors. The concentrations of H2O2, organic compounds, and the ATP/ADP ratio were monitored during the incubation period. The microorganisms remained metabolically active in the presence of ●OH radicals that were photo-produced from H2O2. This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry; first, they could directly metabolize organic carbon species, and second, they could reduce the available source of radicals through their oxidative metabolism. Consequently, molecules such as H2O2 would no longer be available for photochemical or other chemical reactions, which would decrease the cloud oxidant capacity.

  8. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation

    SciTech Connect

    Han, Jae Yun; Cho, Seung Sik; Yang, Ji Hye; Kim, Kyu Min; Jang, Chang Ho; Park, Da Eon; Bang, Joon Seok; Jung, Young Suk; Ki, Sung Hwan

    2015-08-15

    The chalcone compound isosalipurposide (ISPP) has been successfully isolated from the native Korean plant species Corylopsis coreana Uyeki (Korean winter hazel). However, the therapeutic efficacy of ISPP remains poorly understood. This study investigated whether ISPP has the capacity to activate NF-E2-related factor (Nrf2)-antioxidant response element (ARE) signaling and induce its target gene expression, and to determined the protective role of ISPP against oxidative injury of hepatocytes. In HepG2 cells, nuclear translocation of Nrf2 is augmented by ISPP treatment. Consistently, ISPP increased ARE reporter gene activity and the protein levels of glutamate cysteine ligase (GCL) and hemeoxygenase (HO-1), resulting in increased intracellular glutathione levels. Cells pretreated with ISPP were rescued from tert-butylhydroperoxide-induced reactive oxygen species (ROS) production and glutathione depletion and consequently, apoptotic cell death. Moreover, ISPP ameliorated the mitochondrial dysfunction and apoptosis induced by rotenone which is an inhibitor of complex 1 of the mitochondrial respiratory chain. The specific role of Nrf2 activation by ISPP was demonstrated using an ARE-deletion mutant plasmid and Nrf2-knockout cells. Finally, we observed that extracellular signal-regulated kinase (ERK) and AMP-activated protein kinase (AMPK), but not protein kinase C (PKC)-δ or other mitogen-activated protein kinases (MAPKs), are involved in the activation of Nrf2 by ISPP. Taken together, our results demonstrate that ISPP has a cytoprotective effect against oxidative damage mediated through Nrf2 activation and induction of its target gene expression in hepatocytes. - Highlights: • We investigated the effect of ISPP on Nrf2 activation. • ISPP increased Nrf2 activity and its target gene expression. • ISPP inhibited the mitochondrial dysfunction and ROS production. • Nrf2 activation by ISPP is dependent on ERK1/2 and AMPK phosphorylation. • ISPP may be a promising

  9. Oxidative Stress in the Developing Rat Brain due to Production of Reactive Oxygen and Nitrogen Species

    PubMed Central

    Wilhelm, Jiří; Vytášek, Richard; Uhlík, Jiří; Vajner, Luděk

    2016-01-01

    Oxidative stress after birth led us to localize reactive oxygen and nitrogen species (RONS) production in the developing rat brain. Brains were assessed a day prenatally and on postnatal days 1, 2, 4, 8, 14, 30, and 60. Oxidation of dihydroethidium detected superoxide; 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate revealed hydrogen peroxide; immunohistochemical proof of nitrotyrosine and carboxyethyllysine detected peroxynitrite formation and lipid peroxidation, respectively. Blue autofluorescence detected protein oxidation. The foetuses showed moderate RONS production, which changed cyclically during further development. The periods and sites of peak production of individual RONS differed, suggesting independent generation. On day 1, neuronal/glial RONS production decreased indicating that increased oxygen concentration after birth did not cause oxidative stress. Dramatic changes in the amount and the sites of RONS production occurred on day 4. Nitrotyrosine detection reached its maximum. Day 14 represented other vast alterations in RONS generation. Superoxide production in arachnoidal membrane reached its peak. From this day on, the internal elastic laminae of blood vessels revealed the blue autofluorescence. The adult animals produced moderate levels of superoxide; all other markers reached their minimum. There was a strong correlation between detection of nitrotyrosine and carboxyethyllysine probably caused by lipid peroxidation initiated with RONS. PMID:27190574

  10. Eriobotrya japonica counteracts reactive oxygen species and nitric oxide stimulated by chloramphenicol.

    PubMed

    Eraso, Alberto Jorge; Albesa, Inés

    2007-01-01

    Chloramphenicol is a toxic antibiotic used for certain infections, though aplastic anaemia is one of its side-effects. The results of our experiments showed that blood cells suffered oxidative stress in the presence of chloramphenicol, with a significant increase in reactive oxygen species (ROS) detected by luminol-chemiluminescence (CL). The extract of fruits of Eriobotrya japonica markedly decreased ROS in leukocytes and erythrocytes, the oxidative stress caused by this antibiotic. Nitro Blue Tetrazolium (NBT) assay with purified leukocytes demonstrated that the antioxidant action of E. japonica caused an intracellular reduction in ROS, and that the extracts decreased these promoters of oxidative stress to normal levels in the cytoplasm. Determinations of nitric oxide (NO) generation indicated that E. japonica extracts also inhibited the stimuli of NO provoked by chloramphenicol. This study showed that the immediate antioxidant effect of E. japonica could be associated with the action of vitamin A. The protective action of this fruit was seen on mature leukocytes and erythrocytes, beneficial effect on blood cells suggest that its extract could be used as an antioxidant agent complementing the administration of chloramphenicol, as a modern-day extension to its traditional use in Chinese medicine.

  11. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

    PubMed Central

    Kim, Jae-Hwan; Park, Eun-Young; Ha, Ho-Kyung; Jo, Chan-Mi; Lee, Won-Jae; Lee, Sung Sill; Kim, Jin Wook

    2016-01-01

    Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS). The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549) against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value) compared to trolox and vitamin E since the concentration of resveratrol was more than 50 μM. Nanoparticles prepared from β-lactoglobulin (β-lg) were successfully developed. The β-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. Fluorescein isothiocynate-conjugated β-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored H2O2-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1) signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds. PMID:26732454

  12. Effect of triiodothyronine on reactive oxygen species generation by leukocytes, indices of oxidative damage, and antioxidant reserve.

    PubMed

    Magsino, C H; Hamouda, W; Ghanim, H; Browne, R; Aljada, A; Dandona, P

    2000-06-01

    We have examined the effect of short-term triiodothyronine (T3) administration on reactive oxygen species (ROS) generation by leukocytes in 9 euthyroid subjects. At a dose of 60 microg/d orally for 7 days, T3 induced a significant increase in ROS generation by mononuclear cells (MNCs) from 183 +/- 102 mV at baseline to 313 +/- 111 mV on the seventh day (P < .02), and by polymorphonuclear leukocytes (PMNLs) from 195 +/- 94 mV at baseline to 302 +/- 104 mV on the seventh day (P < .02). There was also a significant increase in meta-tyrosine (P < .001) and ortho-tyrosine (P < .001), known indices of oxidative damage to proteins and amino acids. However, there was no increase in plasma thiobarbituric acid-reactive substances (TBARS), an index of oxidative damage to lipids, and in the level of carbonylated proteins, a less sensitive index to assess protein oxidation. There was no decrease in the level of antioxidants such as alpha-tocopherol, vitamin A, beta-carotene, lycopene, and lutein/zeaxanthin. The stimulatory effect on ROS generation may reflect a generalized increase in metabolic activity or may be a specific effect on NADPH oxidase in leukocyte membranes. The absence of a significant change in TBARS, carbonylated proteins, alpha-tocopherol, vitamin A, beta-carotene, lycopene, and lutein/zeaxanthin may reflect the short duration of the increased ROS load.

  13. Activity and species composition of aerobic methanotrophic communities in tundra soils.

    PubMed

    Vecherskaya, M S; Galchenko, V F; Sokolova, E N; Samarkin, V A

    1993-09-01

    The low-temperature, methane-oxidizing activities and species composition of methanotrophic communities in various tundra bog soils were investigated by radioisotopic and immunofluorescent methods. Methanotrophic bacteria carried out the methane oxidation process through all horizons of seasonally thawed layers down to permafrost. The highest activity of the process has been observed in the water surface layer of overmoistured soils and in water-logged moss covers. Up to 40% of(14)CH4 added was converted into(14)CO2, bacterial biomass, and organic exometabolites. By immunofluoresecent analysis it was demonstrated that the representatives of I+X (Methylomonas, Methylobacter, andMethylococcus) and II (Methylosinus, Methylocystis) methanotrophic groups occurred simultaneously in all samples at 61.6% and 38.4%, respectively. The number of methane-oxidizing bacteria in the ecosystems studied was 0.1-22.9×10(6) cells per gram of soil. Methanotrophic organisms ranged from 1% to 23% of the total bacterial number. PMID:23835752

  14. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis

    NASA Astrophysics Data System (ADS)

    Gong, Ming; Zhou, Wu; Tsai, Mon-Che; Zhou, Jigang; Guan, Mingyun; Lin, Meng-Chang; Zhang, Bo; Hu, Yongfeng; Wang, Di-Yan; Yang, Jiang; Pennycook, Stephen J.; Hwang, Bing-Joe; Dai, Hongjie

    2014-08-01

    Active, stable and cost-effective electrocatalysts are a key to water splitting for hydrogen production through electrolysis or photoelectrochemistry. Here we report nanoscale nickel oxide/nickel heterostructures formed on carbon nanotube sidewalls as highly effective electrocatalysts for hydrogen evolution reaction with activity similar to platinum. Partially reduced nickel interfaced with nickel oxide results from thermal decomposition of nickel hydroxide precursors bonded to carbon nanotube sidewalls. The metal ion-carbon nanotube interactions impede complete reduction and Ostwald ripening of nickel species into the less hydrogen evolution reaction active pure nickel phase. A water electrolyzer that achieves ~20 mA cm-2 at a voltage of 1.5 V, and which may be operated by a single-cell alkaline battery, is fabricated using cheap, non-precious metal-based electrocatalysts.

  15. Pro-oxidant activity of dietary chemopreventive agents: an under-appreciated anti-cancer property.

    PubMed

    Azmi, Asfar S; Sarkar, Fazlul H; Hadi, S M

    2013-01-01

    " Let food be thy medicine and medicine be thy food" was quoted by Hippocrates more than two thousand years ago and since ancient times the health benefits of different natural agents have been exploited. In modern research, the disease preventive benefits of many such natural agents, particularly dietary compounds and their derivatives, has been attributed to their well recognized activity as the regulators of redox state of the cell. Nevertheless, most of these studies have focused on their antioxidant activity. A large body of evidence indicates that a major fraction of these agents can elicit pro-oxidant (radical generating) behavior which has been linked to their anti-cancer effects. This editorial provides an overview of the under-appreciated pro-oxidant activity of natural products, with a special focus on their ability to generate reactive oxygen species in the presence of transition metal ions, and discusses their possible use as cancer chemotherapeutic agents. PMID:24358870

  16. Hysteresis in the Active Oxidation of SiC

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Harder, Bryan J.; Myers, Dwight L.

    2011-01-01

    Si and SiC show both passive oxidation behavior where a protective film of SiO2 forms and active oxidation behavior where a volatile suboxide SiO(g) forms. The active-to-passive and passive-to-active oxidation transitions are explored for both Si and SiC. Si shows a dramatic difference between the P(O2) for the two transitions of 10-4 bar. The active-to-passive transition is controlled by the condition for SiO2/Si equilibrium and the passive-to-active transition is controlled by the decomposition of SiO2. In the case of SiC, the P(O2) for these transitions are much closer. The active-to-passive transition appears to be controlled by the condition for SiO2/SiC equilibrium. The passive-to-active transition appears to be controlled by the interfacial reaction of SiC and SiO2 and subsequent generation of gases at the interface which leads to scale breakdown.

  17. LIPID PEROXIDATION GENERATES BIOLOGICALLY ACTIVE PHOSPHOLIPIDS INCLUDING OXIDATIVELY N-MODIFIED PHOSPHOLIPIDS

    PubMed Central

    Davies, Sean S.; Guo, Lilu

    2014-01-01

    Peroxidation of membranes and lipoproteins converts “inert” phospholipids into a plethora of oxidatively modified phospholipids (oxPL) that can act as signaling molecules. In this review, we will discuss four major classes of oxPL: mildly oxygenated phospholipids, phospholipids with oxidatively truncated acyl chains, phospholipids with cyclized acyl chains, and phospholipids that have been oxidatively N-modified on their headgroups by reactive lipid species. For each class of oxPL we will review the chemical mechanisms of their formation, the evidence for their formation in biological samples, the biological activities and signaling pathways associated with them, and the catabolic pathways for their elimination. We will end by briefly highlighting some of the critical questions that remain about the role of oxPL in physiology and disease. PMID:24704586

  18. Impact of sulfur oxides on mercury capture by activated carbon.

    PubMed

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  19. Impact of Sulfur Oxides on Mercury Capture by Activated Carbon

    SciTech Connect

    Presto, A.A.; Granite, E.J.

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  20. Nitric oxide mediates caerulein-induced suppression of locomotor activity.

    PubMed

    Volke, V; Soosaar, A; Kõks, S; Bourin, M; Männistö, P T; Vasar, E

    1996-08-01

    Caerulein, a non-selective agonist of cholecystokinin (CCK) receptors, is shown to suppress locomotor activity in rodents via stimulation of CCK(A) receptors. In the present study we examined the possible involvement of nitric oxide (NO) in caerulein-induced hypolocomotion in rats. Caerulein (10 microg/kg) markedly decreased the horizontal and vertical components of locomotor activity in rats measured in dark motility boxes. Pretreatment with a nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), at 5 mg/kg i.p., abolished the inhibiting action of caerulein on the horizontal activity, but did not affect the reduced frequency of rearing. The other doses of L-NAME (1, 10 and 20 mg/kg) were ineffective against caerulein. As L-NAME at this dose range does not stimulate locomotor activity, it is likely that NO is involved in the motor suppressant effect of systemically administered caerulein.

  1. Safrole oxide induced human umbilical vein vascular endothelial cell differentiation into neuron-like cells by depressing the reactive oxygen species level at the low concentration.

    PubMed

    Su, Le; Zhao, Jing; Zhao, Bao Xiang; Miao, Jun Ying; Yin, De Ling; Zhang, Shang Li

    2006-02-01

    Previously, we found that 5-25 microg/ml safrole oxide could inhibit apoptosis and dramatically make a morphological change in human umbilical vein vascular endothelial cells (HUVECs). But the possible mechanism by which safrole oxide function is unknown. To answer this question, in this study, we first investigated the effects of it on the activity of nitric oxide synthetase (NOS), the expressions of Fas and integrin beta4, which play important roles in HUVEC growth and apoptosis, respectively. The results showed that, at the low concentration (10 microg/ml), safrole oxide had no effects on NOS activity and the expressions of Fas and integrin beta4. Then, we investigated whether HUVECs underwent differentiation. We examined the expressions of neuron-specific enolase (NSE) and neurofilament-L (NF-L). Furthermore, we analyzed the changes of intracellular reactive oxygen species (ROS). After 10 h of treatment with 10 microg/ml safrole oxide, some HUVECs became neuron-like cells in morphology, and intensively displayed positive NSE and NF-L. Simultaneously, ROS levels dramatically decreased during HUVECs differentiation towards neuron-like cells. At the low concentration, safrole oxide induced HUVECs differentiation into neuron-like cells. Furthermore, our data suggested that safrole oxide might perform this function by depressing intracellular ROS levels instead of by affecting cell growth or apoptosis signal pathways.

  2. Sterols from Mytilidae show anti-aging and neuroprotective effects via anti-oxidative activity.

    PubMed

    Sun, Yujuan; Lin, Yanfei; Cao, Xueli; Xiang, Lan; Qi, Jianhua

    2014-11-25

    For screening anti-aging samples from marine natural products, K6001 yeast strain was employed as a bioassay system. The active mussel extract was separated to give an active sterol fraction (SF). SF was further purified, and four sterol compounds were obtained. Their structures were determined to be cholesterol (CHOL), brassicasterol, crinosterol, and 24-methylenecholesterol. All compounds showed similar anti-aging activity. To understand the action mechanism involved, anti-oxidative experiments, reactive oxygen species (ROS) assays, and malondialdehyde (MDA) tests were performed on the most abundant compound, CHOL. Results indicated that treatment with CHOL increases the survival rate of yeast under oxidative stress and decreases ROS and MDA levels. In addition, mutations of uth1, skn7, sod1, and sod2, which feature a K6001 background, were employed and the lifespans of the mutations were not affected by CHOL. These results demonstrate that CHOL exerts anti-aging effects via anti-oxidative stress. Based on the connection between neuroprotection and anti-aging, neuroprotective experiments were performed in PC12 cells. Paraquat was used to induce oxidative stress and the results showed that the CHOL and SF protect the PC12 cells from the injury induced by paraquat. In addition, these substance exhibited nerve growth factor (NGF) mimic activities again confirmed their neuroprotective function.

  3. Wet oxidative regeneration of activated carbon loaded with reactive dye.

    PubMed

    Shende, R V; Mahajani, V V

    2002-01-01

    Wet Oxidative Regeneration (WOR) of powdered activated carbon (PAC) and granular activated carbon (GAC) loaded with the reactive dyes, namely chemictive brilliant blue R and cibacron turquoise blue G, was studied. Attempts were made to regenerate the loaded carbons designated now as spent carbon. A slurry (10% w/v) of spent carbon in distilled water was oxidized by wet oxidation in the temperature range of 150-250 degrees C using oxygen partial pressures between 0.69-1.38 MPa in an 1 1 SS 316 autoclave. The percent regeneration was determined from a ratio, X(RC)/X(VC), corresponding to an equilibrium adsorption capacity of regenerated carbon/equilibrium adsorption capacity of virgin carbon from an initial adsorption period of 3 h. It was observed that the regeneration mainly occurred due to the oxidation of the adsorbates taking place on the surface of carbon. It was possible to regenerate the spent GAC and PAC to the extent of more than 98% (approximately X(RC)/X(VC) > 0.98) by wet oxidation. After four consecutive cycles of adsorption and regeneration using the same stocks of GAC, carbon weight loss observed at 200 degrees C was about 40%. SEM studies of the regenerated carbon showed widening of the pores and loss of structure between the adjacent pores as compared with the virgin carbon. PAC was found to be more suitable as compared with GAC for the adsorption and wet oxidative regeneration processes to treat the aqueous solution containing lower concentration of unhydrolyzed reactive dye. The suitability of wet oxidative regeneration is demonstrated at a bench scale to treat the synthetic reactive dye solution.

  4. Wet oxidative regeneration of activated carbon loaded with reactive dye.

    PubMed

    Shende, R V; Mahajani, V V

    2002-01-01

    Wet Oxidative Regeneration (WOR) of powdered activated carbon (PAC) and granular activated carbon (GAC) loaded with the reactive dyes, namely chemictive brilliant blue R and cibacron turquoise blue G, was studied. Attempts were made to regenerate the loaded carbons designated now as spent carbon. A slurry (10% w/v) of spent carbon in distilled water was oxidized by wet oxidation in the temperature range of 150-250 degrees C using oxygen partial pressures between 0.69-1.38 MPa in an 1 1 SS 316 autoclave. The percent regeneration was determined from a ratio, X(RC)/X(VC), corresponding to an equilibrium adsorption capacity of regenerated carbon/equilibrium adsorption capacity of virgin carbon from an initial adsorption period of 3 h. It was observed that the regeneration mainly occurred due to the oxidation of the adsorbates taking place on the surface of carbon. It was possible to regenerate the spent GAC and PAC to the extent of more than 98% (approximately X(RC)/X(VC) > 0.98) by wet oxidation. After four consecutive cycles of adsorption and regeneration using the same stocks of GAC, carbon weight loss observed at 200 degrees C was about 40%. SEM studies of the regenerated carbon showed widening of the pores and loss of structure between the adjacent pores as compared with the virgin carbon. PAC was found to be more suitable as compared with GAC for the adsorption and wet oxidative regeneration processes to treat the aqueous solution containing lower concentration of unhydrolyzed reactive dye. The suitability of wet oxidative regeneration is demonstrated at a bench scale to treat the synthetic reactive dye solution. PMID:11942707

  5. Arbutin content and antioxidant activity of some Ericaceae species.

    PubMed

    Pavlović, R D; Lakusić, B; Doslov-Kokorus, Z; Kovacević, N

    2009-10-01

    Quantitative analyses and investigation of antioxidant activity of herb and dry ethanolic extracts of five species from Ericaceae family (Arbutus unedo L., Bruckentalia spiculifolia Rchb., Calluna vulgaris Salisb., Erica arborea L. and Erica carnea L.) were performed. Total polyphenols, tannins and flavonoids were determined spectrophotometrically and arbutin content was measured both spectrophotometrically and by HPLC coupled with DAD detection. Antioxidative properites of the ethanolic extracts were tested by means of FRAP (total antioxidant capacity), lipid peroxidation and DPPH free radical scavenging activity. A significant amount of arbutin was detected only in Arbutus unedo. All samples investigated showed excellent antioxidant activity. The best inhibition of lipid peroxidation has been shown by Bruckentalia spiculifolia herb extract (62.5 microg/ml; more than 95%), which contained the highest amount of flavonoids (11.79%). The highest scavenging activity was obtained with leave extract of Arbutus unedo (IC50 = 7.14 microg/ml). The leaves of A. unedo contained a small amount of flavonoids but high content of non-tannins polyphenols. PMID:19947168

  6. Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp.

    PubMed Central

    Brinkhoff, T; Muyzer, G

    1997-01-01

    We combined traditional cultivation methods and new molecular techniques to study the diversity and habitat range of bacteria of the genus Thiomicrospira. Specific primers were designed and used in the PCR to amplify the 16S ribosomal DNA (rDNA) of Thiomicrospira spp. and thus detect the presence of these bacteria in environmental samples and enrichment cultures. By using this genus-specific PCR, we were able to amplify 722-bp-long 16S rDNA fragments from different saltwater habitats as well as from a freshwater ecosystem. Furthermore, we were able to isolate most of these bacteria in pure culture by using enrichment cultures for chemolithoautotrophic sulfur-oxidizing bacteria. With denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments followed by hybridization analysis with one of the primers as a genus-specific probe, it was possible to monitor the success of isolation. The combined approach resulted in the isolation of several chemolithoautotrophic bacteria from different habitats: e.g., a coastal sediment along the coast of Chile, a microbial mat of the hypersaline pond Solar Lake (Sinai, Egypt), and the saline spring Artern (Thuringia, Germany). In addition, four different isolates were obtained from sediment and water samples taken at Jadebusen, which is part of the German Waddensea. Comparative analysis of the nearly complete 16S rRNA sequences of these isolates indicated several new species, all grouping with the Thiomicrospira species of the gamma subdivision of the class Proteobacteria. A freshwater Thiomicrospira species could not be isolated, but sequence analysis of the PCR product obtained after amplification of the environmental DNA with the Thiomicrospira-specific primers revealed its phylogenetic affiliation. The study indicates an increased species diversity of Thiomicrospira and the ubiquity of this sulfur-oxidizing bacterium in habitats with reduced sulfur compounds. PMID:9327542

  7. Radiation induced chemical activity at iron and copper oxide surfaces

    NASA Astrophysics Data System (ADS)

    Reiff, Sarah C.

    The radiolysis of three iron oxides, two copper oxides, and aluminum oxide with varying amounts of water were performed using gamma-rays and 5 MeV 4He ions. The adsorbed water on the surfaces was characterized using temperature programmed desorption and diffuse reflectance infrared spectroscopy, which indicated that all of the oxides had chemisorbed water on the surface. Physisorbed water was observed on the Fe2O 3 and Al2O3 surfaces as well. Molecular hydrogen was produced from adsorbed water only on Fe2O3 and Al 2O3, while the other compounds did not show any hydrogen production due to the low amounts of water on the surfaces. Slurries of varying amounts of water were also examined for hydrogen production, and they showed yields that were greater than the yield for bulk water. However, the yields of hydrogen from the copper compounds were much lower than those of the iron suggesting that the copper oxides are relatively inert to radiation induced damage to nearby water. X-ray diffraction measurements did not show any indication of changes to the bulk crystal structure due to radiolysis for any of the oxides. The surfaces of the oxides were analyzed using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). For the iron samples, FeO and Fe3O4, Raman spectroscopy revealed areas of Fe2O3 had formed following irradiation with He ions. XPS indicated the formation of a new oxygen species on the iron oxide surfaces. Raman spectroscopy of the copper oxides did not reveal any changes in the surface composition, however, XPS measurements showed a decrease in the amount of OH groups on the surface of Cu2O, while for the CuO samples the amount of OH groups were found to increase following radiolysis. Pristine Al2O3 showed the presence of a surface oxyhydroxide layer which was observed to decrease following radiolysis, consistent with the formation of molecular hydrogen.

  8. Nature of Activated Manganese Oxide for Oxygen Evolution.

    PubMed

    Huynh, Michael; Shi, Chenyang; Billinge, Simon J L; Nocera, Daniel G

    2015-12-01

    Electrodeposited manganese oxide films (MnOx) are promising stable oxygen evolution catalysts. They are able to catalyze the oxygen evolution reaction in acidic solutions but with only modest activity when prepared by constant anodic potential deposition. We now show that the performance of these catalysts is improved when they are "activated" by potential cycling protocols, as measured by Tafel analysis (where lower slope is better): upon activation the Tafel slope decreases from ∼120 to ∼70 mV/decade in neutral conditions and from ∼650 to ∼90 mV/decade in acidic solutions. Electrochemical, spectroscopic, and structural methods were employed to study the activation process and support a mechanism where the original birnessite-like MnOx (δ-MnO2) undergoes a phase change, induced by comproportionation with cathodically generated Mn(OH)2, to a hausmannite-like intermediate (α-Mn3O4). Subsequent anodic conditioning from voltage cycling or water oxidation produces a disordered birnessite-like phase, which is highly active for oxygen evolution. At pH 2.5, the current density of activated MnOx (at an overpotential of 600 mV) is 2 orders of magnitude higher than that of the original MnOx and begins to approach that of Ru and Ir oxides in acid. PMID:26574923

  9. Effects of cocaine and its oxidative metabolites on mitochondrial respiration and generation of reactive oxygen species.

    PubMed

    Boess, F; Ndikum-Moffor, F M; Boelsterli, U A; Roberts, S M

    2000-09-01

    Cocaine is capable of producing severe hepatocellular necrosis in laboratory animals and humans. The mechanism of cocaine hepatotoxicity is not well understood, but appears to result from the actions of one or more N-oxidative metabolites of cocaine. Mitochondria have been proposed as critical cellular targets for cocaine toxicity, and previous studies have found depressed mitochondrial respiration and increased mitochondrial generation of reactive oxygen species (ROS) in animals treated with cocaine. To examine the potential role of cocaine N-oxidative metabolites in these effects, mitochondrial respiration and ROS generation were examined in isolated mouse mitochondria treated with cocaine and its N-oxidative metabolites-norcocaine, N-hydroxynorcocaine, and norcocaine nitroxide. Cocaine, in concentrations of 0.25 or 0.5 mM, had no effect on state 3 respiration, state 4 respiration, respiratory control ratio (RCR), or ADP/O ratio. Norcocaine (0.5 mM) inhibited state 3 respiration, and N-hydroxynorcocaine (0.5 mM) inhibited both state 3 and state 4 respiration. Norcocaine nitroxide had the greatest effect on mitochondrial respiration; the lower concentration (0.25 mM) completely inhibited both state 3 and state 4 respiration. Preincubation of mitochondria with cocaine or metabolites increased the inhibitory effect of norcocaine and N-hydroxynorcocaine, but not cocaine. Cocaine, norcocaine, and N-hydroxynorcocaine (0.1 mM) had no effect on ROS generation during state 3 respiration, and cocaine and norcocaine decreased ROS generation under state 4 conditions. Norcocaine nitroxide interfered with the fluorescence ROS assay and could not be assessed. The results suggest that the effects of cocaine on mitochondrial respiration are due to its N-oxidative metabolites. Inhibition of mitochondrial respiration by the N-oxidative metabolites of cocaine may be the underlying cause for observed ATP depletion and subsequent cell death.

  10. A pulsed electron beam synthesis of PEDOT conducting polymers by using sulfate radicals as oxidizing species

    NASA Astrophysics Data System (ADS)

    Coletta, Cecilia; Cui, Zhenpeng; Dazzi, Alexandre; Guigner, Jean-Michel; Néron, Stéphane; Marignier, Jean-Louis; Remita, Samy

    2016-09-01

    In this study, an original radiolytic method, based on pulsed electron beam irradiation, is used for the synthesis of conducting PEDOT in an aqueous solution containing EDOT monomers in the presence of potassium persulfate, K2S2O8, at 0 °C. At this low temperature, EDOT monomers are not chemically oxidized by S2O82- anions, initiating PEDOT polymerization, but are rather oxidized by sulfate radicals, SO4•-, which are radiolytically generated by the reaction of solvated electrons, produced by water radiolysis, with persulfate anions. Successfully, as demonstrated by UV-vis absorption spectrophotometry and ATR-FTIR spectroscopy, irradiating the aqueous solution, by using a series of accumulated electron pulses, enables complete EDOT oxidation and quantitative in situ PEDOT polymerization through a step-by-step oxidation mechanism. The morphology of PEDOT polymers, mixed with unreacted K2S2O8 salt, is characterized by Cryo-TEM microscopy in aqueous solution and by SEM after deposition. Successfully, in the absence of any washing step, high resolution AFM microscopy, coupled with infrared nanospectroscopy, is used to discriminate between the organic polymers and the inorganic salt and to probe the local chemical composition of PEDOT nanostructures. The results demonstrate that PEDOT polymers form globular self-assembled nanostructures which preferentially adsorb onto unreacted K2S2O8 solid nanoplates. The present results first demonstrate the efficiency of sulfate radicals as oxidizing species for the preparation of nanostructured PEDOT polymers and second highlight the promising potentiality of electron accelerators in the field of conducting polymers synthesis.

  11. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process.

    PubMed

    Fan, Yan; Ji, Yuefei; Kong, Deyang; Lu, Junhe; Zhou, Quansuo

    2015-12-30

    Sulfamethazine (SMZ) is widely used in livestock feeding and aquaculture as an antibiotic agent and growth promoter. Widespread occurrence of SMZ in surface water, groundwater, soil and sediment has been reported. In this study, degradation of SMZ by heat-activated persulfate (PS) oxidation was investigated in aqueous solution. Experimental results demonstrated that SMZ degradation followed pseudo-first-order reaction kinetics. The pseudo-first-order rate constant (kobs) was increased markedly with increasing concentration of PS and temperature. Radical scavenging tests revealed that the predominant oxidizing species was SO4·(-) with HO playing a less important role. Aniline moiety in SMZ molecule was confirmed to be the reactive site for SO4·(-) attack by comparison with substructural analogs. Nontarget natural water constituents affected SMZ removal significantly, e.g., Cl(-) and HCO3(-) improved the degradation while fulvic acid reduced it. Reaction products were enriched by solid phase extraction (SPE) and analyzed by liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-MS/MS). 6 products derived from sulfonamide S--N bond cleavage, aniline moiety oxidation and Smiles-type rearrangement were identified, and transformation pathways of SMZ oxidation were proposed. Results reveal that heat-activated PS oxidation could be an efficient approach for remediation of water contaminated by SMZ and related sulfonamides.

  12. Changes of paramagnetic species in cereal grains upon short-term ozone action as a marker of oxidative stress tolerance.

    PubMed

    Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria

    2016-01-15

    The increase of the concentration of ozone in the atmosphere, being the direct source of reactive oxygen species, results in the yield loss of agronomic crops. On the other hand, ozone is also used as a protector against microorganisms, living in plants and present in materials obtained from them, dangerous for human and animal health. In this work it has been studied if ozone in doses similar to those used for removal of microorganisms can have significant influence on the generation of stable organic radicals and changes in the character of transition metal ions and in the antioxidative biochemical parameters of cereal grains. The aim of this work was to find if the response of grains of three cereals (wheat, oat and barley) to ozone depended on their oxidative stress tolerance. The influence of direct short-term ozone application on grains of these cereals, each represented by two genotypes with different oxidative stress tolerance, was studied by biochemical analyses and by electron paramagnetic resonance (EPR) technique. Whole grains as well as their parts: embryo, endosperm and seed coat were subjected to ozone treatment for 30 min. Biochemical investigation of control samples showed that their antioxidant activity increased in order: wheatspecies (transition metal ions: Fe(III), Cu(II), Mn(II) and stable organic radicals) changed upon ozone exposure, depending on the kind of cereal, stress tolerance of particular genotype and the part of grain. The control samples of whole grains and their parts originating from sensitive genotypes contained higher amounts of stable organic radicals (semiquinone, phenoxyl and carbohydrate types) than those from tolerant ones. In embryos of grains from sensitive genotypes their amount increased upon ozone treatment stronger than in embryos from grains of tolerant cultivars. In seed coats and endosperms such relation was not found and the changes in

  13. Activity for the oxidation of methanol of a molybdena monolayer supported on tin oxide

    SciTech Connect

    Niwa, Miki; Yamada, Hidenori; Murakami, Yuichi )

    1992-03-01

    A molybdenum oxide monolayer was prepared on SnO{sub 2}, and the relationship between its structure and its activity for methanol oxidation was studied. Surface molybdate is stabilized due to the interaction with the SnO{sub 2} surface, thus forming a monolayer consisting of MoO{sub 6} in < 6nm{sup {minus}2} of the Mo surface concentration and < ca. 75% of the coverage. So far as the supported molybdenum oxide forms a monolayer, the turnover frequency of methanol oxidation increases linearly with the Mo surface concentration; this is evidence for two neighboring Mo sites as an active site for the reaction. On further loading, however, MoO{sub 3} forms a large isolated crystal in the macropore without formation of a multiple overlayer, and strong acid sites are created. Large crystals and acid sites thus formed are, however, not available for the reaction, since the turnover frequency is constant. Conclusions here drawn may be applicable to catalysts prepared by mixing oxides.

  14. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    PubMed

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people.

  15. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    PubMed

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. PMID:27224647

  16. A literature review of interaction of oxidized uranium species and uranium complexes with soluble organic matter

    USGS Publications Warehouse

    Jennings, Joan K.; Leventhal, J.S.

    1978-01-01

    Organic material is commonly found associated with uranium ores in sandstone-type deposits. This review of the literature summarizes the classes and separations of naturally occurring organic material but the emphasis is on soluble organic species. The main class of materials of interest is humic substances which are high-molecular-weight complex molecules that are soluble in alkaline solution. These humic substances are able to solubilize (make soluble) minerals and also to complex [by ion exchange and (or) chelation] many cations. The natural process of soil formation results in both mineral decomposition and element complexing by organic species. Uranium in solution, such as ground water, can form many species with other elements or complexes present depending on Eh and pH. In natural systems (oxidizing Eh, pH 5-9) the uranium is usually present as a complex with hydroxide or carbonate. Thermodynamic data for these species are presented. Interacting metals and organic materials have been observed in nature and studied in the laboratory by many workers in diverse scientific disciplines. The results are not easily compared. Measurements of the degree of complexation are reported as equilibrium stability constant determinations. This type of research has been done for Mn, Fe, Cu, Zn, Pb, Ni, Co, Mg, Ca, Al, and to a limited degree for U. The use of Conditional Stability Constants has given quantitative results in some cases. The methods utilized in experiments and calculations are reviewed.

  17. Gold nanoparticle-aluminum oxide adsorbent for efficient removal of mercury species from natural waters.

    PubMed

    Lo, Sut-I; Chen, Po-Cheng; Huang, Chih-Ching; Chang, Huan-Tsung

    2012-03-01

    We report a new adsorbent for removal of mercury species. By mixing Au nanoparticles (NPs) 13 nm in diameter with aluminum oxide (Al(2)O(3)) particles 50-200 μm in diameter, Au NP-Al(2)O(3) adsorbents are easily prepared. Three adsorbents, Al(2)O(3), Au NPs, and Au NP-Al(2)O(3), were tested for removal of mercury species [Hg(2+), methylmercury (MeHg(+)), ethylmercury (EtHg(+)), and phenylmercury (PhHg(+))]. The Au NP adsorbent has a higher binding affinity (dissociation constant; K(d) = 0.3 nM) for Hg(2+) ions than the Al(2)O(3) adsorbent (K(d) = 52.9 nM). The Au NP-Al(2)O(3) adsorbent has a higher affinity for mercury species and other tested metal ions than the Al(2)O(3) and Au NP adsorbents. The Au NP-Al(2)O(3) adsorbent provides a synergic effect and, thus, is effective for removal of most tested metal ions and organic mercury species. After preconcentration of mercury ions by an Au NP-Al(2)O(3) adsorbent, analysis of mercury ions down to the subppq level in aqueous solution was performed by inductively coupled plasma mass spectrometry (ICP-MS). The Au NP-Al(2)O(3) adsorbent allows effective removal of mercury species spiked in lake water, groundwater, and seawater with efficiencies greater than 97%. We also used Al(2)O(3) and Au NP-Al(2)O(3) adsorbents sequentially for selectively removing Hg(2+) and MeHg(+) ions from water. The low-cost, effective, and stable Au NP-Al(2)O(3) adsorbent shows great potential for economical removal of various mercury species.

  18. Novel oxidatively activated agents modify DNA and are enhanced by ercc1 silencing.

    PubMed

    Jones, Amy R; Bell-Horwath, Tiffany R; Li, Guorui; Rollmann, Stephanie M; Merino, Edward J

    2012-11-19

    Agents that chemically modify DNA form a backbone of many cancer treatments. A key problem for DNA-modifying agents is lack of specificity. To address this issue, we designed novel molecular scaffolds, termed An-Hq and An-Hq(2), which are activated by a hallmark of some cancers: elevated concentrations of reactive oxygen species. Elevated reactive oxygen species are linked to oncogenesis and are found to increase in several aggressive cancers. The agents are quinones that, upon oxidation, form highly electrophilic species. In vitro studies identified the mode of addition to DNA. The aniline portion of An-Hq serves to enhance nucleophilic addition to the ethyl phenyl ether instead of forming common Michael additions. Structural characterization showed that the agents add to 2'-deoxyguanosine at the N2,N3-positions. The product formed is a bulky hydroxy-N2,3-benzetheno-2'-deoxyguanosine adduct. In addition, the oxidatively activated agents added to 2'-deoxyadenosine and 2'-deoxycytidine but not thymidine or 2'-deoxyinosine. These findings are confirmed by primer extension analysis of a 392 base pair DNA. The full-length primer extension product was reduced by 69.0 ± 0.6% upon oxidative activation of An-Hq(2) as compared to controls. Little sequence dependence was observed with 76% of guanine, adenine, and cytosine residues showing an increase in extension stops between 2- and 4-fold above controls. Benzetheno-nucleobase addition to double-stranded DNA was confirmed by LC/MS of a self-complementary oligonucletide. Experiments were carried out to confirm in vivo DNA damage. Because of the lesion identified in vitro, we reasoned that nucleotide excision repair should be involved in reversing the effects of these oxidatively activated agents and enhance toxicity in Drosophila melanogaster. Using an RNAi-based approach, Ercc1 was silenced, and survival was monitored after injection of an agent. As expected, bulky cross-linking DNA-modifying agents, cisplatin and

  19. A Model of Reduced Kinetics for Alkane Oxidation Using Constituents and Species for N-Heptane

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth G.; Bellan, Josette

    2011-01-01

    The reduction of elementary or skeletal oxidation kinetics to a subgroup of tractable reactions for inclusion in turbulent combustion codes has been the subject of numerous studies. The skeletal mechanism is obtained from the elementary mechanism by removing from it reactions that are considered negligible for the intent of the specific study considered. As of now, there are many chemical reduction methodologies. A methodology for deriving a reduced kinetic mechanism for alkane oxidation is described and applied to n-heptane. The model is based on partitioning the species of the skeletal kinetic mechanism into lights, defined as those having a carbon number smaller than 3, and heavies, which are the complement of the species ensemble. For modeling purposes, the heavy species are mathematically decomposed into constituents, which are similar but not identical to groups in the group additivity theory. From analysis of the LLNL (Lawrence Livermore National Laboratory) skeletal mechanism in conjunction with CHEMKIN II, it is shown that a similarity variable can be formed such that the appropriately non-dimensionalized global constituent molar density exhibits a self-similar behavior over a very wide range of equivalence ratios, initial pressures and initial temperatures that is of interest for predicting n-heptane oxidation. Furthermore, the oxygen and water molar densities are shown to display a quasi-linear behavior with respect to the similarity variable. The light species ensemble is partitioned into quasi-steady and unsteady species. The reduced model is based on concepts consistent with those of Large Eddy Simulation (LES) in which functional forms are used to replace the small scales eliminated through filtering of the governing equations; in LES, these small scales are unimportant as far as the overwhelming part of dynamic energy is concerned. Here, the scales thought unimportant for recovering the thermodynamic energy are removed. The concept is tested by

  20. Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation.

    PubMed

    Gorlin, Yelena; Chung, Chia-Jung; Benck, Jesse D; Nordlund, Dennis; Seitz, Linsey; Weng, Tsu-Chien; Sokaras, Dimosthenis; Clemens, Bruce M; Jaramillo, Thomas F

    2014-04-01

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnO(x), a promising OER catalyst. We conclusively demonstrate that adding Au to MnO(x) significantly enhances OER activity relative to MnO(x) in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnO(x) catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnO(x) that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnO(x).

  1. Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation

    PubMed Central

    2015-01-01

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnOx, a promising OER catalyst. We conclusively demonstrate that adding Au to MnOx significantly enhances OER activity relative to MnOx in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnOx catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnOx that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnOx. PMID:24661269

  2. Reactive oxygen species-independent oxidation of thioredoxin in hypoxia: inactivation of ribonucleotide reductase and redox-mediated checkpoint control.

    PubMed

    Muniyappa, Harish; Song, Shiwei; Mathews, Christopher K; Das, Kumuda C

    2009-06-19

    We have investigated the role of cellular redox state on the regulation of cell cycle in hypoxia and shown that whereas cells expressing mutant thioredoxin (Trx) or a normal level of Trx undergo increased apoptosis, cells overexpressing Trx are protected against apoptosis. We show that hypoxia activates p53 and Chk1/Chk2 proteins in cells expressing normal or mutant Trx but not in cells overexpressing Trx. We also show that the activity of ribonucleotide reductase decreases in hypoxia in cells expressing redox-inactive Trx. Although hypoxia has been shown to induce reactive oxygen species (ROS) generation in the mitochondria resulting in enhanced p53 expression, our data demonstrate that hypoxia-induced p53 expression and phosphorylation are independent of ROS. Furthermore, hypoxia induces oxidation of Trx, and this oxidation is potentiated in the presence of 6-aminonicotinamide, an inhibitor of glucose-6-phosphate dehydrogenase. Taken together our study shows that Trx redox state is modulated in hypoxia independent of ROS and is a critical determinant of cell cycle regulation.

  3. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages

    PubMed Central

    Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra

    2014-01-01

    Objective To investigate antioxidant and anti-inflammatory effects of Tagetes minuta (T. minuta) essential oil. Methods In the present study T. minuta essential oil was obtained from leaves of T. minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry. The anti-oxidant capacity of T. minuta essential oil was examined by measuring reactive oxygen, reactive nitrogen species and hydrogen peroxide scavenging. The anti-inflammatory activity of T. minuta essential oil was determined through measuring NADH oxidase, inducible nitric oxide synthase and TNF-α mRNA expression in lipopolysacharide-stimulated murine macrophages using real-time PCR. Results Gas chromatography-mass spectrometry analysis indicated that the main components in the T. minuta essential oil were dihydrotagetone (33.86%), E-ocimene (19.92%), tagetone (16.15%), cis-β-ocimene (7.94%), Z-ocimene (5.27%), limonene (3.1%) and epoxyocimene (2.03%). The T. minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC50 12-15 µg/mL, which indicated a potent radical scavenging activity. In addition, T. minuta essential oil significantly reduced NADH oxidase, inducible nitric oxide synthaseand TNF-α mRNA expression in the cells at concentrations of 50 µg/mL, indicating a capacity of this product to potentially modulate/diminish immune responses. Conclusions T. minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions. PMID:25182441

  4. AMPK is involved in mediation of erythropoietin influence on metabolic activity and reactive oxygen species production in white adipocytes.

    PubMed

    Wang, Li; Di, Lijun; Noguchi, Constance Tom

    2014-09-01

    Erythropoietin, discovered for its indispensable role during erythropoiesis, has been used in therapy for selected red blood cell disorders in erythropoietin-deficient patients. The biological activities of erythropoietin have been found in animal models to extend to non-erythroid tissues due to the expression of erythropoietin receptor. We previously demonstrated that erythropoietin promotes metabolic activity and white adipocytes browning to increase mitochondrial function and energy expenditure via peroxisome proliferator-activated receptor alpha and Sirtuin1. Here we report that AMP-activated protein kinase was activated by erythropoietin possibly via Ca(2+)/calmodulin-dependent protein kinase kinase in adipocytes as well as in white adipose tissue from diet induced obese mice. Erythropoietin increased cellular nicotinamide adenine dinucleotide via increased AMP-activated protein kinase activity, possibly leading to Sirtuin1 activation. AMP-activated protein kinase knock down reduced erythropoietin mediated increase in cellular oxidative function including the increased oxygen consumption rate, fatty acid utilization and induction of key metabolic genes. Under hypoxia, adipocytes were found to generate more reactive oxygen species, and erythropoietin reduced the reactive oxygen species and increased antioxidant gene expression, suggesting that erythropoietin may provide protection from oxidative stress in adipocytes. Erythropoietin also reversed increased nicotinamide adenine dinucleotide by hypoxia via increased AMP-activated protein kinase. Additionally, AMP-activated protein kinase is found to be involved in erythropoietin stimulated increase in oxygen consumption rate, fatty acid oxidation and mitochondrial gene expression. AMP-activated protein kinase knock down impaired erythropoietin stimulated increases in antioxidant gene expression. Collectively, our findings identify the AMP-activated protein kinase involvement in erythropoietin signaling in

  5. Low Volatility Products of Aqueous Aromatic Species Oxidations in Authentic Cloud Waters

    NASA Astrophysics Data System (ADS)

    Boris, A. J.; Desyaterik, Y.; Collett, J. L.

    2012-12-01

    Regional and global discrepancies between total observed and modeled SOA mass may be accounted for in part by aqueous secondary organic aerosol (aqSOA), which is formed via photo-reactions within atmospheric waters including cloud droplets. Small, polar molecules such as glyoxal and methylglyoxal are well-studied precursors for aqSOA; however, aromatic compounds may also be aqSOA precursors. Aromatic species representative of compounds present in the atmosphere were oxidized in pure water to show whether low volatility products were formed. The species were also reacted in authentic cloud water to explore potential interactions with cloud water components. Precursors studied included homovanillic acid, 4-nitrophenol, and 2-methyl-4-nitro-phenol; hydroxyl radical was employed as an oxidant and was generated using hydrogen peroxide and a UV source with a maximum wavelength of 254 nm. Experiments without hydrogen peroxide were conducted as well. The products were analyzed on-line during the reaction using an Agilent high resolution time-of-flight electro-spray ionization mass spectrometer (HR-ESI-TOF-MS), and off-line using an Agilent 1100 Series liquid chromatograph with an HR-ESI-TOF-MS. Low volatility compounds including low molecular weight, ring-opening products and oligomeric products were generated in both pure water and cloud water samples.

  6. Generic Nitric Oxide (NO) Generating Surface by Immobilizing Organoselenium Species via Layer-by-Layer Assembly

    PubMed Central

    Yang, Jun; Welby, Jenna L.; Meyerhoff, Mark E.

    2010-01-01

    A universal nitric oxide (NO) generating surface is assembled via Layer-by-Layer (LbL) deposition of sodium alginate (Alg) and organoselenium modified polyethyleneimine (SePEI) on quartz and polymeric substrates. The immobilized SePEI species is capable of catalytically decomposing S-nitrosothiol species (RSNO) to NO in the presence of thiol reducing agents (e.g., glutathione, cysteine, etc.). The stepwise buildup of the multilayer films is monitored by UV-Vis spectroscopy, SEM and surface contact angle measurements. X-ray photoelectron spectroscopy is used to study the stoichiometry between the polyanion and polycation, and also the presence of Se in the catalytic LbL film. A reductive annealing process is necessary to improve the stability of freshly coated multilayer films via chain rearrangement. Chemiluminescence measurements illustrate the ability of the LbL films to generate NO from S-nitrosoglutathione (GSNO) in the presence of S-glutathione (GSH). Enhanced NO fluxes can be achieved by increasing the number of catalytic (SePEI/Alg) bilayers coated on the substrates. Nitric oxide generation is observed even after prolonged contact with sheep whole blood. Preliminary applications of this LbL on silicone rubber tubings and polyurethane catheters reveal similar NO generation behavior from these biomedical grade polymeric substrates. PMID:18710268

  7. Metformin prevents ischemia reperfusion-induced oxidative stress in the fatty liver by attenuation of reactive oxygen species formation.

    PubMed

    Cahova, Monika; Palenickova, Eliska; Dankova, Helena; Sticova, Eva; Burian, Martin; Drahota, Zdenek; Cervinkova, Zuzana; Kucera, Otto; Gladkova, Christina; Stopka, Pavel; Krizova, Jana; Papackova, Zuzana; Oliyarnyk, Olena; Kazdova, Ludmila

    2015-07-15

    Nonalcoholic fatty liver disease is associated with chronic oxidative stress. In our study, we explored the antioxidant effect of antidiabetic metformin on chronic [high-fat diet (HFD)-induced] and acute oxidative stress induced by short-term warm partial ischemia-reperfusion (I/R) or on a combination of both in the liver. Wistar rats were fed a standard diet (SD) or HFD for 10 wk, half of them being administered metformin (150 mg·kg body wt(-1)·day(-1)). Metformin treatment prevented acute stress-induced necroinflammatory reaction, reduced alanine aminotransferase and aspartate aminotransferase serum activity, and diminished lipoperoxidation. The effect was more pronounced in the HFD than in the SD group. The metformin-treated groups exhibited less severe mitochondrial damage (markers: cytochrome c release, citrate synthase activity, mtDNA copy number, mitochondrial respiration) and apoptosis (caspase 9 and caspase 3 activation). Metformin-treated HFD-fed rats subjected to I/R exhibited increased antioxidant enzyme activity as well as attenuated mitochondrial respiratory capacity and ATP resynthesis. The exposure to I/R significantly increased NADH- and succinate-related reactive oxygen species (ROS) mitochondrial production in vitro. The effect of I/R was significantly alleviated by previous metformin treatment. Metformin downregulated the I/R-induced expression of proinflammatory (TNF-α, TLR4, IL-1β, Ccr2) and infiltrating monocyte (Ly6c) and macrophage (CD11b) markers. Our data indicate that metformin reduces mitochondrial performance but concomitantly protects the liver from I/R-induced injury. We propose that the beneficial effect of metformin action is based on a combination of three contributory mechanisms: increased antioxidant enzyme activity, lower mitochondrial ROS production, and reduction of postischemic inflammation. PMID:26045616

  8. Metformin prevents ischemia reperfusion-induced oxidative stress in the fatty liver by attenuation of reactive oxygen species formation.

    PubMed

    Cahova, Monika; Palenickova, Eliska; Dankova, Helena; Sticova, Eva; Burian, Martin; Drahota, Zdenek; Cervinkova, Zuzana; Kucera, Otto; Gladkova, Christina; Stopka, Pavel; Krizova, Jana; Papackova, Zuzana; Oliyarnyk, Olena; Kazdova, Ludmila

    2015-07-15

    Nonalcoholic fatty liver disease is associated with chronic oxidative stress. In our study, we explored the antioxidant effect of antidiabetic metformin on chronic [high-fat diet (HFD)-induced] and acute oxidative stress induced by short-term warm partial ischemia-reperfusion (I/R) or on a combination of both in the liver. Wistar rats were fed a standard diet (SD) or HFD for 10 wk, half of them being administered metformin (150 mg·kg body wt(-1)·day(-1)). Metformin treatment prevented acute stress-induced necroinflammatory reaction, reduced alanine aminotransferase and aspartate aminotransferase serum activity, and diminished lipoperoxidation. The effect was more pronounced in the HFD than in the SD group. The metformin-treated groups exhibited less severe mitochondrial damage (markers: cytochrome c release, citrate synthase activity, mtDNA copy number, mitochondrial respiration) and apoptosis (caspase 9 and caspase 3 activation). Metformin-treated HFD-fed rats subjected to I/R exhibited increased antioxidant enzyme activity as well as attenuated mitochondrial respiratory capacity and ATP resynthesis. The exposure to I/R significantly increased NADH- and succinate-related reactive oxygen species (ROS) mitochondrial production in vitro. The effect of I/R was significantly alleviated by previous metformin treatment. Metformin downregulated the I/R-induced expression of proinflammatory (TNF-α, TLR4, IL-1β, Ccr2) and infiltrating monocyte (Ly6c) and macrophage (CD11b) markers. Our data indicate that metformin reduces mitochondrial performance but concomitantly protects the liver from I/R-induced injury. We propose that the beneficial effect of metformin action is based on a combination of three contributory mechanisms: increased antioxidant enzyme activity, lower mitochondrial ROS production, and reduction of postischemic inflammation.

  9. Effects of the reactive oxygen species hydrogen peroxide and hypochlorite on endothelial nitric oxide production.

    PubMed

    Jaimes, E A; Sweeney, C; Raij, L

    2001-10-01

    Reactive oxygen species (ROS) hydrogen peroxide (H(2)O(2)) and hypochlorite (HOCl) participate in the pathogenesis of ischemia/reperfusion injury, inflammation, and atherosclerosis. Both NO and ROS are important modulators of vascular tone and architecture and of adhesive interactions between leukocytes, platelets, and vascular endothelium. We studied the effect of H(2)O(2) and HOCl on receptor-dependent (bradykinin [10(-6) mol/L] and ADP [10(-4) mol/L]) and receptor-independent mechanisms (calcium ionophore A23187 [10(-6) mol/L]) of NO production by porcine aortic endothelial cells (ECs). Changes in the level of EC cGMP (the second messenger of NO) were used as a surrogate of NO production. EC cGMP increased 300% in response to bradykinin and A23187 and 200% in response to ADP. Exposure of ECs to H(2)O(2) (50 micromol/L) for 30 minutes significantly impaired cGMP levels in response to ADP, bradykinin, and the receptor-independent NO agonist A23187. In contrast, preincubation with HOCl (50 micromol/L) impaired cGMP production only in response to ADP and bradykinin but not A23187. These concentrations of H(2)O(2) and HOCl did not result in increased EC lethality as assessed by lactate dehydrogenase release. Neither H(2)O(2) nor HOCl affected EC cGMP production in response to NO donor sodium nitroprusside, which suggests that guanylate cyclase is resistant to these oxidants. We also demonstrated that neither H(2)O(2) nor HOCl affects endothelial NO synthase (eNOS) catalytic activity as measured by conversion of L-arginine to L-citrulline in EC homogenates supplemented with eNOS cofactors. The present studies show that H(2)O(2) impairs NO production in response to both receptor-dependent and receptor-independent agonists and that these effects are due, at least in part, to inactivation of eNOS cofactors, whereas HOCl inhibits NO production by interfering with receptor-operated mechanisms at the level of the cell membrane. Concentrations of H(2)O(2) and HOCl used in

  10. The Effects of New Alibernet Red Wine Extract on Nitric Oxide and Reactive Oxygen Species Production in Spontaneously Hypertensive Rats

    PubMed Central

    Kondrashov, Alexey; Vranková, Stanislava; Dovinová, Ima; Ševčík, Rudolf; Parohová, Jana; Barta, Andrej; Pecháňová, Olga; Kovacsová, Maria

    2012-01-01

    We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE) and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHRs). Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day) for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR. PMID:22720118

  11. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways.

    PubMed

    Wang, Yang-Gang; Cantu, David C; Lee, Mal-Soon; Li, Jun; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2016-08-24

    We present results of ab initio electronic structure and molecular dynamics simulations (AIMD), as well as a microkinetic model of CO oxidation catalyzed by TiO2 supported Au nanocatalysts. A coverage-dependent microkinetic analysis, based on energetics obtained with density functional methods, shows that the dominant kinetic pathway, activated oxygen species, and catalytic active sites are all strongly depended on both temperature and oxygen partial pressure. Under oxidizing conditions and T < 400 K, the prevalent pathway involves a dynamic single atom catalytic mechanism. This reaction is catalyzed by a transient Au-CO species that migrates from the Au-cluster onto a surface oxygen adatom. It subsequently reacts with the TiO2 support via a Mars van Krevelen mechanism to form CO2 and finally the Au atom reintegrates back into the gold cluster to complete the catalytic cycle. At 300 ≤ T ≤ 600 K, oxygen-bound single Oad-Au(+)-CO sites and the perimeter Au-sites of the nanoparticle work in tandem to optimally catalyze the reaction. Above 600 K, a variety of alternate pathways associated with both single-atom and the perimeter sites of the Au nanoparticle are found to be active. Under low oxygen pressures, Oad-Au(+)-CO species can be a source of catalyst deactivation and the dominant pathway involves only Au-perimeter sites. A detailed comparison of the current model and the existing literature resolves many apparent inconsistencies in the mechanistic interpretations. PMID:27480512

  12. Alkaloid profiling and anticholinesterase activity of South American Lycopodiaceae species.

    PubMed

    Konrath, Eduardo Luis; Ortega, María Gabriela; de Loreto Bordignon, Sérgio; Apel, Miriam Anders; Henriques, Amélia Teresinha; Cabrera, José Luis

    2013-02-01

    The alkaloid extracts of four Huperzia and one Lycopodiella species, from Brazilian habitats, were tested for their in vitro anticholinesterase activities. IC(50) values showed a potent acetylcholinesterase inhibition for H. reflexa (0.11 ± 0.05 μg/mL), followed by H. quadrifariata (2.0 ± 0.3 μg/mL), H. acerosa (5.5 ± 0.9 μg/mL), H. heterocarpon (25.6 ± 2.7 μg/mL) and L. cernua (42.6 ± 1.5 μg/mL). A lower inhibition of butyrylcholinesterase was observed for all species with the exception of H. heterocarpon (8.3 ± 0.9 μg/mL), whose alkaloid extract presented a selectivity for pseudocholinesterase. Moreover, the chemical study of the bioactive extracts performed by GC-MS, revealed the presence of a number of Lycopodium alkaloids belonging to the lycopodane, flabellidane and cernuane groups. Surprisingly, the potent acetylcholinesterase inhibitors huperzines A and B were not detected in the extracts, suggesting that other alkaloids may be responsible for such an effect. PMID:22117191

  13. Mild activation of CeO2-supported gold nanoclusters and insight into the catalytic behavior in CO oxidation.

    PubMed

    Li, Weili; Ge, Qingjie; Ma, Xiangang; Chen, Yuxiang; Zhu, Manzhou; Xu, Hengyong; Jin, Rongchao

    2016-01-28

    We report a new activation method and insight into the catalytic behavior of a CeO2-supported, atomically precise Au144(SR)60 nanocluster catalyst (where thiolate -SR = -SCH2CH2Ph) for CO oxidation. An important finding is that the activation of the catalyst is closely related to the production of active oxygen species on CeO2, rather than ligand removal of the Au144(SR)60 clusters. A mild O2 pretreatment (at 80 °C) can activate the catalyst, and the addition of reductive gases (CO or H2) can enhance the activation effects of O2 pretreatment via a redox cycle in which CO could reduce the surface of CeO2 to produce oxygen vacancies-which then adsorb and activate O2 to produce more active oxygen species. The CO/O2 pulse experiments confirm that CO is adsorbed on the cluster catalyst even with ligands on, and active oxygen species present on the surface of the pretreated catalyst reacts with CO pulses to generate CO2. The Au144(SR)60/CeO2 exhibits high CO oxidation activity at 80 °C without the removal of thiolate ligands. The surface lattice-oxygen of the support CeO2 possibly participates in the oxidation of CO over the Au144(SR)60/CeO2 catalyst.

  14. Mild activation of CeO2-supported gold nanoclusters and insight into the catalytic behavior in CO oxidation.

    PubMed

    Li, Weili; Ge, Qingjie; Ma, Xiangang; Chen, Yuxiang; Zhu, Manzhou; Xu, Hengyong; Jin, Rongchao

    2016-01-28

    We report a new activation method and insight into the catalytic behavior of a CeO2-supported, atomically precise Au144(SR)60 nanocluster catalyst (where thiolate -SR = -SCH2CH2Ph) for CO oxidation. An important finding is that the activation of the catalyst is closely related to the production of active oxygen species on CeO2, rather than ligand removal of the Au144(SR)60 clusters. A mild O2 pretreatment (at 80 °C) can activate the catalyst, and the addition of reductive gases (CO or H2) can enhance the activation effects of O2 pretreatment via a redox cycle in which CO could reduce the surface of CeO2 to produce oxygen vacancies-which then adsorb and activate O2 to produce more active oxygen species. The CO/O2 pulse experiments confirm that CO is adsorbed on the cluster catalyst even with ligands on, and active oxygen species present on the surface of the pretreated catalyst reacts with CO pulses to generate CO2. The Au144(SR)60/CeO2 exhibits high CO oxidation activity at 80 °C without the removal of thiolate ligands. The surface lattice-oxygen of the support CeO2 possibly participates in the oxidation of CO over the Au144(SR)60/CeO2 catalyst. PMID:26750474

  15. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants

    PubMed Central

    Thring, Tamsyn SA; Hili, Pauline; Naughton, Declan P

    2009-01-01

    Background Owing to their roles in tissue remodelling in health and disease, several studies have reported investigations on plant extracts as inhibitors of proteinases and as anti-oxidants. Methods The anti-ageing and anti-oxidant properties of 23 plant extracts (from 21 plant species) were assessed as anti-elastase and anti-collagenase activities and in selected anti-oxidant assays along with phenolic content. Results Anti-elastase activities were observed for nine of the extracts with inhibitory activity in the following order: white tea (~89%), cleavers (~58%), burdock root (~51%), bladderwrack (~50%), anise and angelica (~32%). Anti-collagenase activities were exhibited by sixteen plants of which the highest activity was seen in white tea (~87%), green tea (~47%), rose tincture (~41%), and lavender (~31%). Nine plant extracts had activities against both elastase (E) and collagenase (C) and were ranked in the order of white tea (E:89%, C:87%) > bladderwrack (E:50%, C:25%) > cleavers (E:58%, C:7%) > rose tincture (E:22%, C:41%) > green tea (E:10%: C:47%) > rose aqueous (E: 24%, C:26%) > angelica (E:32%, C:17%) > anise (E:32%, C:6%) > pomegranate (E:15%, C:11%). Total phenolic content varied between 0.05 and 0.26 mg gallic acid equivalents (GAE)/mL with the exception of white tea (0.77 mg GAE/mL). For anti-oxidant assessment, the Trolox equivalent anti-oxidant capacity (TEAC) assay revealed activity for all extracts. White tea had the highest activity equivalent to ~21 μM Trolox for a 6.25 μg aliquot. In addition, seven extracts exhibited activities = 10 μM Trolox with witch hazel (6.25 μg = 13 μM Trolox) and rose aqueous (6.25 μg = 10 μM Trolox) showing very high activities at low concentrations. A high activity for white tea was also found in the superoxide dismutase (SOD) assay in which it exhibited ~88% inhibition of reduction of nitroblue tetrazolium. High activities were also observed for green tea (86.41%), rose tincture (82.77%), witch hazel (82

  16. Pollutant characterization and effects of oxidants and dry deposition on seedless of pine species

    SciTech Connect

    Olsylk, D.; Bytnerowicz, A.; Takemoto, B. )

    1988-01-01

    Adverse effects of photochemical oxidants on pine species have been observed in the forests near the Los Angeles urban area for over 30 years. The injury was especially severe for P. ponderosa, resulting in loss of trees with accompanying potential for long-term effects to the conifer forest ecosytem. Ozone was considered to be the primary phytotoxic component in photochemical smog, however, little data was present concerning the role of other photochemical oxidant gases or dry deposition of particulates in effects to trees from smog. Furthermore, while much data had been collected on injury and growth effects from photochemical oxidants, little information was available on physiological mechanism for the effects-especially for trees growing in situ. The reported study emphasize, the effects of both gaseous and dry deposited particulates to pine seedlings. Needle injury and physiological responses, and whole seedling growth responses were of primary interest. Open-top field chambers, the standard experimental method for gaseous pollutant research in the field, were used for the exposures. Effort was made to characterize the gaseous and dry deposited particulate concentrations in these chambers.

  17. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  18. Biochemistry of nitric oxide and its redox-activated forms.

    PubMed

    Stamler, J S; Singel, D J; Loscalzo, J

    1992-12-18

    Nitric oxide (NO.), a potentially toxic molecule, has been implicated in a wide range of biological functions. Details of its biochemistry, however, remain poorly understood. The broader chemistry of nitrogen monoxide (NO) involves a redox array of species with distinctive properties and reactivities: NO+ (nitrosonium), NO., and NO- (nitroxyl anion). The integration of this chemistry with current perspectives of NO biology illuminates many aspects of NO biochemistry, including the enzymatic mechanism of synthesis, the mode of transport and targeting in biological systems, the means by which its toxicity is mitigated, and the function-regulating interaction with target proteins.

  19. Diclofenac and 2-anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver.

    PubMed

    Meerburg, Francis; Hennebel, Tom; Vanhaecke, Lynn; Verstraete, Willy; Boon, Nico

    2012-05-01

    The occurrence of a range of recalcitrant organic micropollutants in our aquatic environment has led to the development of various tertiary wastewater treatment methods. In this study, biogenic manganese oxides (Bio-MnOx), biogenic silver nanoparticles (Bio-Ag(0)) and ionic silver were used for the oxidative removal of the frequently encountered drug diclofenac and its dechlorinated form, 2-anilinophenylacetate (APA). Diclofenac was rapidly degraded during ongoing manganese oxidation by Pseudomonas putida MnB6. Furthermore, whereas preoxidized Bio-MnOx, Bio-Ag(0) and Ag(+) separately did not show any removal capacity for diclofenac, an enhanced removal occurred when Bio-MnOx and silver species were combined. Similar results were obtained for APA. Finally, a slow removal of diclofenac but more rapid APA degradation was observed when silver was added to manganese-free P. putida biomass. Combining these results, three mechanisms of diclofenac and APA removal could be distinguished: (i) a co-metabolic removal during active Mn(2+) oxidation by P. putida; (ii) a synergistic interaction between preoxidized Bio-MnOx and silver species; and (iii) a (bio)chemical process by biomass enriched with silver catalysts. This paper demonstrates the use of P. putida for water treatment purposes and is the first report of the application of silver combined with biogenic manganese for the removal of organic water contaminants. PMID:22221449

  20. Diclofenac and 2‐anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver

    PubMed Central

    Meerburg, Francis; Hennebel, Tom; Vanhaecke, Lynn; Verstraete, Willy; Boon, Nico

    2012-01-01

    Summary The occurrence of a range of recalcitrant organic micropollutants in our aquatic environment has led to the development of various tertiary wastewater treatment methods. In this study, biogenic manganese oxides (Bio‐MnOx), biogenic silver nanoparticles (Bio‐Ag0) and ionic silver were used for the oxidative removal of the frequently encountered drug diclofenac and its dechlorinated form, 2‐anilinophenylacetate (APA). Diclofenac was rapidly degraded during ongoing manganese oxidation by Pseudomonas putida MnB6. Furthermore, whereas preoxidized Bio‐MnOx, Bio‐Ag0 and Ag+ separately did not show any removal capacity for diclofenac, an enhanced removal occurred when Bio‐MnOx and silver species were combined. Similar results were obtained for APA. Finally, a slow removal of diclofenac but more rapid APA degradation was observed when silver was added to manganese‐free P. putida biomass. Combining these results, three mechanisms of diclofenac and APA removal could be distinguished: (i) a co‐metabolic removal during active Mn2+ oxidation by P. putida; (ii) a synergistic interaction between preoxidized Bio‐MnOx and silver species; and (iii) a (bio)chemical process by biomass enriched with silver catalysts. This paper demonstrates the use of P. putida for water treatment purposes and is the first report of the application of silver combined with biogenic manganese for the removal of organic water contaminants. PMID:22221449

  1. A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage

    SciTech Connect

    Zhang, Qian; Ma, Ruonan; Tian, Ying; Liang, Yongdong; Feng, Hongqing; Zhang, Jue; Fang, Jing

    2013-05-20

    Ar/O{sub 2} (2%) cold plasma microjet was used to create plasma-activated water (PAW). The disinfection efficacy of PAW against Staphylococcus aureus showed that PAW can effectively disinfect bacteria. Optical emission spectra and oxidation reduction potential results demonstrated the inactivation is attributed to oxidative stress induced by reactive oxygen species in PAW. Moreover, the results of X-ray photoelectron spectroscopy, atomic absorption spectrometry, and transmission electron microscopy suggested that the chemical state of cell surface, the integrity of cell membrane, as well as the cell internal components and structure were damaged by the oxidative stress.

  2. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    SciTech Connect

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho

    2013-09-20

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.

  3. Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system

    SciTech Connect

    Remick, R.J.; Ang, P.G.P.

    1984-11-27

    An electrically rechargeable anionically active reduction-oxidation electric storage-supply system and process is disclosed using a sodium or potassium sulfidepolysulfide anolyte reaction and an iodide-polyiodide, chloride-chlorine or bromide-bromine species catholyte reaction. The catholyte and anolyte are separated by an ion selective membrane permeable to positive sodium and potassium ions and substantially impermeable to negative bromide, chloride, iodide, sulfide and polysulfide ions. A flowing electrolyte system is disclosed with external electrolyte storage vessels. The apparatus and process provide an electrically rechargeable anionically active reduction-oxidation system in which the electrolytes may be maintained at near neutral or slightly basic pH, with virtually no parasitic side reactions upon charging, such as hydrogen or oxygen evolution, and the disclosed storage and supply system provides higher energy densities than referenced prior art systems.

  4. Cellular uptake and reactive oxygen species modulation of cerium oxide nanoparticles in human monocyte cell line U937.

    PubMed

    Lord, Megan S; Jung, MoonSun; Teoh, Wey Yang; Gunawan, Cindy; Vassie, James A; Amal, Rose; Whitelock, John M

    2012-11-01

    Cerium oxide nanoparticles (nanoceria) are promising materials for intracellular oxygen free radical scavenging providing a potential therapy for reactive oxygen species (ROS)-mediated inflammatory processes. In this study rhombohedral-shaped nanoceria were synthesized by flame spray pyrolysis with tuneable particle diameters between 3 and 94 nm by changing the liquid precursor flow rate. Monocytes and macrophages are major players in inflammatory processes as their production of ROS species has important downstream effects on cell signalling. Therefore, this study examined the ability of the nanoceria to be internalised by the human monocytic cell line, U937, and scavenge intracellular ROS. U937 cells activated in the presence of phorbol 12-myristate 13-acetate (PMA) were found to be more responsive to the nanoceria than U937 cells, which may not be surprising given the role of monocyte/macrophages in phagocytosing foreign material. The smaller particles were found to contain more crystal lattice defects with which to scavenge ROS, however a greater proportion of both the U937 and activated U937 cell populations responded to the larger particles. Hence all nanoceria particle sizes examined in this study were equally effective in scavenging intracellular ROS. PMID:22841920

  5. Potent Antioxidant Dendrimers Lacking Pro-oxidant Activity

    PubMed Central

    Lee, Choon Young; Sharma, Ajit; Uzarski, Rebecca L.; Cheong, Jae Eun; Xu, Hao; Held, Rich A.; Upadhaya, Samik K.; Nelson, Julie L.

    2010-01-01

    It is well known that antioxidants have protective effects against oxidative stress. Unfortunately, in the presence of transition metals, antioxidants including polyphenols with potent antioxidant activities may also exhibit pro-oxidant effects, which may irreversibly damage DNA. Therefore, antioxidants with strong free radical scavenging abilities and devoid of pro-oxidant effects would be of immense biological importance. We report two antioxidant dendrimers with a surface rich in multiple phenolic hydroxyl groups, benzylic hydrogens and electron donating ring substituents that contribute to their potent free radical quenching property. In order to minimize their pro-oxidant effects, the dendrimers were designed with a metal chelating tris(2-aminoethyl)amine (TREN) core. The dendritic antioxidants were prepared by attachment of six syringaldehyde or vanillin molecules to TREN by reductive amination. They exhibited potent radical scavenging properties: 5 times stronger than quercetin and 15 times more potent than Trolox according to the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The antioxidant dendrimers also protected low-density lipoprotein, lysozyme and DNA against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced free radical damage. More importantly, unlike quercetin and Trolox, the two TREN antioxidant dendrimers did not damage DNA via their pro-oxidant effects when incubated with physiological amounts of copper ions. The dendrimers also showed no cytotoxicity towards Chinese hamster ovary cells. PMID:20977937

  6. The Reduction of Aqueous Metal Species on the Surfaces of Fe(II)-Containing Oxides: The Role of Surface Passivation

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.

    1998-01-01

    The reduction of aqueous transition metal species at the surfaces of Fe(II)- containing oxides has important ramifications in predicting the transport behavior in ground water aquifers. Experimental studies using mineral suspensions and electrodes demonstrate that structural Fe(II) heterogeneously reduces aqueous ferric, cupric, vanadate and chromate ions on magnetite and ilmenite surfaces. The rates of metal reduction on natural oxides is strongly dependent on the extent of surface passivation and redox conditions in the weathering environment. Synchrotron studies show that surface oxidation of Fe(II)-containing oxide minerals decreases their capacity for Cr(VI) reduction at hazardous waste disposal sites.

  7. Metallothionein, oxidative stress and trace metals in gills and liver of demersal and pelagic fish species from Kuwaits' marine area.

    PubMed

    Beg, M U; Al-Jandal, N; Al-Subiai, S; Karam, Q; Husain, S; Butt, S A; Ali, A; Al-Hasan, E; Al-Dufaileej, S; Al-Husaini, M

    2015-11-30

    Two fish species yellowfin seabream (Acanthopagrus latus) and tonguesole (Cynoglossus arel) were collected from two locations in Kuwait's territorial waters in non-reproductive periods and used as bio-indicator organism for the assessment of metals in the marine environment. Species variation in fish was observed; seabream contained high metal content and metallothionein in liver and gill tissues compared to tonguesole, especially from Kuwait Bay area. Oxidative injury was registered in the gills of both species, but in tonguesole liver was also involved. Consequently, antioxidant enzyme catalase was elevated in tonguesole enabling bottom dwelling fish to combat oxidative assault. The study provided information about the current status of metals in marine sediment and levels of metals accumulated in representative species along with oxidative damage in exposed tissues and the range of biomarker protein metallothionein and enzymes of antioxidant defence mechanism enhancing our understanding about the biological response to the existing marine environment in Kuwait.

  8. Chlamydia muridarum Infection of Macrophages Elicits Bactericidal Nitric Oxide Production via Reactive Oxygen Species and Cathepsin B

    PubMed Central

    Rajaram, Krithika

    2015-01-01

    The ability of certain species of Chlamydia to inhibit the biogenesis of phagolysosomes permits their survival and replication within macrophages. The survival of macrophage-adapted chlamydiae correlates with the multiplicity of infection (MOI), and optimal chlamydial growth occurs in macrophages infected at an MOI of ≤1. In this study, we examined the replicative capacity of Chlamydia muridarum in the RAW 264.7 murine macrophage cell line at different MOIs. C. muridarum productively infected these macrophages at low MOIs but yielded few viable elementary bodies (EBs) when macrophages were infected at a moderate (10) or high (100) MOI. While high MOIs caused cytotoxicity and irreversible host cell death, macrophages infected at a moderate MOI did not show signs of cytotoxicity until late in the infectious cycle. Inhibition of host protein synthesis rescued C. muridarum in macrophages infected at a moderate MOI, implying that chlamydial growth was blocked by activated defense mechanisms. Conditioned medium from these macrophages was antichlamydial and contained elevated levels of interleukin 1β (IL-1β), IL-6, IL-10, and beta interferon (IFN-β). Macrophage activation depended on Toll-like receptor 2 (TLR2) signaling, and cytokine production required live, transcriptionally active chlamydiae. A hydroxyl radical scavenger and inhibitors of inducible nitric oxide synthase (iNOS) and cathepsin B also reversed chlamydial killing. High levels of reactive oxygen species (ROS) led to an increase in cathepsin B activity, and pharmacological inhibition of ROS and cathepsin B reduced iNOS expression. Our data demonstrate that MOI-dependent TLR2 activation of macrophages results in iNOS induction via a novel ROS- and cathepsin-dependent mechanism to facilitate C. muridarum clearance. PMID:26015483

  9. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress.

    PubMed

    Koskenkorva-Frank, Taija S; Weiss, Günter; Koppenol, Willem H; Burckhardt, Susanna

    2013-12-01

    Production of minute concentrations of superoxide (O2(*-)) and nitrogen monoxide (nitric oxide, NO*) plays important roles in several aspects of cellular signaling and metabolic regulation. However, in an inflammatory environment, the concentrations of these radicals can drastically increase and the antioxidant defenses may become overwhelmed. Thus, biological damage may occur owing to redox imbalance-a condition called oxidative and/or nitrosative stress. A complex interplay exists between iron metabolism, O2(*-), hydrogen peroxide (H2O2), and NO*. Iron is involved in both the formation and the scavenging of these species. Iron deficiency (anemia) (ID(A)) is associated with oxidative stress, but its role in the induction of nitrosative stress is largely unclear. Moreover, oral as well as intravenous (iv) iron preparations used for the treatment of ID(A) may also induce oxidative and/or nitrosative stress. Oral administration of ferrous salts may lead to high transferrin saturation levels and, thus, formation of non-transferrin-bound iron, a potentially toxic form of iron with a propensity to induce oxidative stress. One of the factors that determine the likelihood of oxidative and nitrosative stress induced upon administration of an iv iron complex is the amount of labile (or weakly-bound) iron present in the complex. Stable dextran-based iron complexes used for iv therapy, although they contain only negligible amounts of labile iron, can induce oxidative and/or nitrosative stress through so far unknown mechanisms. In this review, after summarizing the main features of iron metabolism and its complex interplay with O2(*-), H2O2, NO*, and other more reactive compounds derived from these species, the potential of various iron therapies to induce oxidative and nitrosative stress is discussed and possible underlying mechanisms are proposed. Understanding the mechanisms, by which various iron formulations may induce oxidative and nitrosative stress, will help us

  10. Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    PubMed Central

    Shah, Vishal; Shah, Shreya; Shah, Hirsh; Rispoli, Fred J.; McDonnell, Kevin T.; Workeneh, Selam; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta

    2012-01-01

    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts. PMID:23110109

  11. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth.

    PubMed

    Giannoni, Elisa; Buricchi, Francesca; Raugei, Giovanni; Ramponi, Giampietro; Chiarugi, Paola

    2005-08-01

    Src tyrosine kinases are central components of adhesive responses and are required for cell spreading onto the extracellular matrix. Among other intracellular messengers elicited by integrin ligation are reactive oxygen species, which act as synergistic mediators of cytoskeleton rearrangement and cell spreading. We report that after integrin ligation, the tyrosine kinase Src is oxidized and activated. Src displays an early activation phase, concurrent with focal adhesion formation and driven mainly by Tyr527 dephosphorylation, and a late phase, concomitant with reactive oxygen species production, cell spreading, and integrin-elicited kinase oxidation. In addition, our results suggest that reactive oxygen species are key mediators of in vitro and in vivo v-Src tumorigenic properties, as both antioxidant treatments and the oxidant-insensitive C245A and C487A Src mutants greatly decrease invasivity, serum-independent and anchorage-independent growth, and tumor onset. Therefore we propose that, in addition to the known phosphorylation/dephosphorylation circuitry, redox regulation of Src activity is required during both cell attachment to the extracellular matrix and tumorigenesis.

  12. Antioxidant and nitric oxide inhibition activities of Thai medicinal plants.

    PubMed

    Makchuchit, Sunita; Itharat, Arunporn; Tewtrakul, Supinya

    2010-12-01

    Nineteen Thai medicinal plants used in Thai traditional medicine preparation to treat colds, asthma and fever were studied for their antioxidant and NO inhibitory activities. Three extracts were obtained from each plant. First extract obtained by macerating the plant part in 95% ethanol (Et) residue was boiled in water, where water extract (EW) was obtained. The third extract (HW) was obtained by boiling each plant in water similar to that of Thai traditional medicine practice. These extracts were tested for their antioxidant activity using DPPH assay, and anti-inflammatory activity by determination of inhibitory activity on lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cell lines using Griess reagent. Results indicated that Et, EW and HW of Syzygium aromaticum showed the highest antioxidant activity (EC50 = 6.56, 4.73 and 5.30 microg/ml, respectively). Et of Atractylodes lancea exhibited the most potent inhibitory activity on lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cells, with IC50 value of 9.70 microg/ml, followed by Et of Angelica sinensis and Cuminum cyminum (IC50 = 12.52 and 13.56 microg/ml, respectively) but water extract (EW, HW) of all plants were apparently inactive. These results of anti-inflammatory activity of these plants correspond with the traditional use for fever; cold, allergic-related diseases and inflammatory-related diseases. PMID:21294419

  13. Mechanisms of pyrite oxidation to non-slagging species. Quarterly report, October 1--December 31, 1996

    SciTech Connect

    Akan-Etuk, A.E.J.; Mitchell, R.E.

    1997-12-31

    This document is the tenth quarterly status report on a project that is concerned with enhancing the transformation of iron pyrite to non-slagging species during staged, low-NO{sub x} pulverized coal (P.C.) combustion. The research project is intended to advance PETC`s efforts to improve the technical understanding of the high-temperature chemical and physical processes involved in the utilization of coal. The work focuses on the mechanistic description and rate quantification of the effects of fuel properties and combustion environment on the oxidation of iron pyrite to form the non-slagging species magnetite. During this report period numerical encoding of a pyrite combustion model was embarked upon. The effort was intended to lead to predictive capabilities with respect to pyrite composition during pulverized coal firing. Many subroutines were written of a FORTRAN computer program to track the fate of a pyrite particle by integrating time-dependent differential equations for species, momentum, and energy conservation. Inputs to the program include fuel-related properties such as particle size and composition, as well as properties of the reactor environment such as oxygen level, temperature, gas velocity, and a set of initial and final positions.

  14. Enhanced innate immune responses in a brood parasitic cowbird species: degranulation and oxidative burst

    USGS Publications Warehouse

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    We examined the relative effectiveness of two innate immune responses in two species of New World blackbirds (Passeriformes, Icteridae) that differ in resistance to West Nile virus (WNV). We measured degranulation and oxidative burst, two fundamental components of phagocytosis, and we predicted that the functional effectiveness of these innate immune responses would correspond to the species' relative resistance to WNV. The brown-headed cowbird (Molothrus ater), an obligate brood parasite, had previously shown greater resistance to infection with WNV, lower viremia and faster recovery when infected, and lower subsequent antibody titers than the red-winged blackbird (Agelaius phoeniceus), a close relative that is not a brood parasite. We found that cowbird leukocytes were significantly more functionally efficient than those of the blackbird leukocytes and 50% more effective at killing the challenge bacteria. These results suggest that further examination of innate immunity in the cowbird may provide insight into adaptations that underlie its greater resistance to WNV. These results support an eco-immunological interpretation that species like the cowbird, which inhabit ecological niches with heightened exposure to parasites, experience evolutionary selection for more effective immune responses.

  15. Proteomic analysis of cell wall in four pathogenic species of Candida exposed to oxidative stress.

    PubMed

    Ramírez-Quijas, Mayra Denisse; López-Romero, Everardo; Cuéllar-Cruz, Mayra

    2015-10-01

    In order for Candida species to adhere and colonize human host cells they must express cell wall proteins (CWP) and adapt to reactive oxygen species (ROS) generated by phagocytic cells of the human host during the respiratory burst. However, how these pathogens change the expression of CWP in response to oxidative stress (OSR) is not known. Here, fifteen moonlight-like CWP were identified that expressed differentially in four species of Candida after they were exposed to H2O2 or menadione (O2(-)). These proteins included: (i) glycolytic enzymes, such as glyceraldehyde-3-phosphate dehydrogenase (Gapdh), fructose-bisphosphate aldolase (Fba1), phosphoglycerate mutase (Gpm1), phosphoglycerate kinase (Pgk), pyruvate kinase (Pk) and enolase (Eno1); (ii) the heat shock proteins Ssb1 and Ssa2; (iii) OSR proteins such as peroxyredoxin (Tsa1), the stress protein Ddr48 (Ddr48) and glutathione reductase (Glr1); (iv) other metabolic enzymes such as ketol-acid reductoisomerase (Ilv5) and pyruvate decarboxylase (Pdc1); and (v) other proteins such as elongation factor 1-beta (Efb1) and the 14-3-3 protein homolog. RT-PCR revealed that transcription of the genes coding for some of the identified CWP are differentially regulated. To our knowledge this is the first report showing that moonlight-like CWP are the first line of defense of Candida against ROS, and that they are differentially regulated in each of these pathogens.

  16. Enhanced innate immune responses in a brood parasitic cowbird species: Degranulation and oxidative burst.

    PubMed

    Hahn, D Caldwell; Summers, Scott G; Genovese, Kenneth J; He, Haiqi; Kogut, Michael H

    2013-06-01

    We examined the relative effectiveness of two innate immune responses in two species of New World blackbirds (Passeriformes, Icteridae) that differ in resistance to West Nile virus (WNV). We measured degranulation and oxidative burst, two fundamental components of phagocytosis, and we predicted that the functional effectiveness of these innate immune responses would correspond to the species' relative resistance to WNV. The brown-headed cowbird (Molothrus ater), an obligate brood parasite, had previously shown greater resistance to infection with WNV, lower viremia and faster recovery when infected, and lower subsequent antibody titers than the red-winged blackbird (Agelaius phoeniceus), a close relative that is not a brood parasite. We found that cowbird leukocytes were significantly more functionally efficient than those of the blackbird leukocytes and 50% more effective at killing the challenge bacteria. These results suggest that further examination of innate immunity in the cowbird may provide insight into adaptations that underlie its greater resistance to WNV. These results support an eco-immunological interpretation that species like the cowbird, which inhabit ecological niches with heightened exposure to parasites, experience evolutionary selection for more effective immune responses. PMID:24689187

  17. The C-ETS2-TFEB Axis Promotes Neuron Survival under Oxidative Stress by Regulating Lysosome Activity.

    PubMed

    Ma, Shumin; Fang, Zijun; Luo, Wenwen; Yang, Yunzhi; Wang, Chenyao; Zhang, Qian; Wang, Huafei; Chen, Huaiyong; Chan, Chi Bun; Liu, Zhixue

    2016-01-01

    Excessive reactive oxygen species/reactive nitrogen species (ROS/RNS) produced as a result of ageing causes damage to macromolecules and organelles or leads to interference of cell signalling pathways, which in turn results in oxidative stress. Oxidative stress occurs in many neurodegenerative diseases (e.g., Parkinson's disease) and contributes to progressive neuronal loss. In this study, we show that cell apoptosis is induced by oxidative stress and that lysosomes play an important role in cell survival under oxidative stress. As a compensatory response to this stress, lysosomal genes were upregulated via induction of transcription factor EB (TFEB). In addition, localization of TFEB to the nucleus was increased by oxidative stress. We also confirmed that TFEB protects cells from oxidative stress both in vitro and in vivo. Finally, we found that C-ETS2 senses oxidative stress, activates TFEB transcription, and mediates the upregulation of lysosomal genes. Our results demonstrate a mechanistic pathway for inducing lysosomal activity during ageing and neurodegeneration. PMID:27195074

  18. Safrole oxide induces neuronal apoptosis through inhibition of integrin beta4/SOD activity and elevation of ROS/NADPH oxidase activity.

    PubMed

    Su, Le; Zhao, BaoXiang; Lv, Xin; Wang, Nan; Zhao, Jing; Zhang, ShangLi; Miao, JunYing

    2007-02-20

    Neuronal apoptosis is a very important event in the development of the central nervous system (CNS), but the underlying mechanisms remain to be elucidated. We have previously shown that safrole oxide, a small molecule, induces integrin beta4 expression and promotes apoptosis in vascular endothelial cells. In this study, the effects of safrole oxide on cell growth and apoptosis have been examined in primary cultures of mouse neurons. Safrole oxide was found to significantly inhibit neuronal cell growth and to induce apoptosis. The inhibitory and apoptotic activities of safrole oxide followed a dose- and time-dependent manner. Interestingly, the expression of integrin beta4 was significantly inhibited with safrole oxide treatment. Furthermore, safrole oxide dramatically increases the level of intracellular reactive oxygen species (ROS) and the activity of NADPH oxidase. Moreover, manganese-dependent superoxide dismutase (MnSOD) activity was decreased significantly with safrole oxide treatment. Our study thus demonstrates that safrole oxide induces neuronal apoptosis through integrin beta4, ROS, NADPH, and MnSOD.

  19. Leinamycin E1 acting as an anticancer prodrug activated by reactive oxygen species

    PubMed Central

    Huang, Sheng-Xiong; Yun, Bong-Sik; Ma, Ming; Basu, Hirak S.; Church, Dawn R.; Ingenhorst, Gudrun; Huang, Yong; Yang, Dong; Lohman, Jeremy R.; Tang, Gong-Li; Ju, Jianhua; Liu, Tao; Wilding, George; Shen, Ben

    2015-01-01

    Leinamycin (LNM) is a potent antitumor antibiotic produced by Streptomyces atroolivaceus S-140, featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. Upon reductive activation in the presence of cellular thiols, LNM exerts its antitumor activity by an episulfonium ion-mediated DNA alkylation. Previously, we have cloned the lnm gene cluster from S. atroolivaceus S-140 and characterized the biosynthetic machinery responsible for the 18-membered lactam backbone and the alkyl branch at C3 of LNM. We now report the isolation and characterization of leinamycin E1 (LNM E1) from S. atroolivacues SB3033, a ΔlnmE mutant strain of S. atroolivaceus S-140. Complementary to the reductive activation of LNM by cellular thiols, LNM E1 can be oxidatively activated by cellular reactive oxygen species (ROS) to generate a similar episulfonium ion intermediate, thereby alkylating DNA and leading to eventual cell death. The feasibility of exploiting LNM E1 as an anticancer prodrug activated by ROS was demonstrated in two prostate cancer cell lines, LNCaP and DU-145. Because many cancer cells are under higher cellular oxidative stress with increased levels of ROS than normal cells, these findings support the idea of exploiting ROS as a means to target cancer cells and highlight LNM E1 as a novel lead for the development of anticancer prodrugs activated by ROS. The structure of LNM E1 also reveals critical new insights into LNM biosynthesis, setting the stage to investigate sulfur incorporation, as well as the tailoring steps that convert the nascent hybrid peptide–polyketide biosynthetic intermediate into LNM. PMID:26056295

  20. Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species.

    PubMed

    Dong, Min; Vongchampa, Viengsai; Gingipalli, Lakshmaiah; Cloutier, Jean-Francois; Kow, Yoke W; O'Connor, Timothy; Dedon, Peter C

    2006-02-22

    Chronic inflammation is associated with a variety of human diseases, including cancer, with one possible mechanistic link involving over-production of nitric oxide (NO*) by activated macrophages. Subsequent reaction of NO* with superoxide in the presence of carbon dioxide yields nitrosoperoxycarbonate (ONOOCO2-), a strong oxidant that reacts with guanine in DNA to form a variety of oxidation and nitration products, such 2'-deoxy-8-oxoguanosine. Alternatively, the reaction of NO and O2 leads to the formation of N2O3, a nitrosating agent that causes nucleobase deamination to form 2'-deoxyxanthosine (dX) and 2'-deoxyoxanosine (dO) from dG; 2'-deoxyinosine (dI) from dA; and 2'-deoxyuridine (dU) from dC, in addition to abasic sites and dG-dG cross-links. The presence of both ONOOCO2- and N2O3 at sites of inflammation necessitates definition of the relative roles of oxidative and nitrosative DNA damage in the genetic toxicology of inflammation. To this end, we sought to develop enzymatic probes for oxidative and nitrosative DNA lesions as a means to quantify the two types of DNA damage in in vitro DNA damage assays, such as the comet assay and as a means to differentially map the lesions in genomic DNA by the technique of ligation-mediated PCR. On the basis of fragmentary reports in the literature, we first systematically assessed the recognition of dX and dI by a battery of DNA repair enzymes. Members of the alkylpurine DNA glycosylase family (E. coli AlkA, murine Aag, and human MPG) all showed repair activity with dX (k(cat)/Km 29 x 10(-6), 21 x 10(-6), and 7.8 x 10(-6) nM(-1) min(-1), respectively), though the activity was considerably lower than that of EndoV (8 x 10(-3) nM(-1) min(-1)). Based on these results and other published studies, we focused the development of enzymatic probes on two groups of enzymes, one with activity against oxidative damage (formamidopyrimidine-DNA glycosylase (Fpg); endonuclease III (EndoIII)) and the other with activity against

  1. Physical and chemical activation of reduced graphene oxide for enhanced adsorption and catalytic oxidation.

    PubMed

    Liu, Shizhen; Peng, Wenchao; Sun, Hongqi; Wang, Shaobin

    2014-01-21

    Physical and chemical activation of reduced graphene oxide (RGO) using different reagents, CO2, ZnCl2 and CO2/ZnCl2, to obtain highly porous and metal-free carbonaceous materials was carried out and their adsorption and catalytic behavior were investigated. Physical activation using CO2 was proved to be much more effective than chemical ZnCl2 activation, and increased the specific surface area (SSA) of RGO from ~200 to higher than 600 m(2) g(-1). Methylene blue (MB) was then used to evaluate the adsorption and catalytic activity of the activated RGO (A-RGO) materials with peroxymonosulfate (PMS) as an oxidant. It was found that the SSA and oxygen containing groups are two important factors determining the adsorptive and catalytic performance of the A-RGO materials. RGO by physicochemical CO2/ZnCl2 activation presented the best adsorption and RGO by physical CO2 activation exhibited the highest catalytic degradation of MB.

  2. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention*

    PubMed Central

    Lambert, Joshua D.; Elias, Ryan J.

    2010-01-01

    Green tea (Camellia sinensis) is rich in catechins, of which (−)-epigallocatechin-3-gallate (EGCG) is the most abundant. Studies in animal models of carcinogenesis have shown that green tea and EGCG can inhibit tumorigenesis during the initiation, promotion and progression stages. Many potential mechanisms have been proposed including both antioxidant and pro-oxidant effects, but questions remain regarding the relevance of these mechanisms to cancer prevention. In the present review we will discuss the redox chemistry of the tea catechins and the current literature on the antioxidant and pro-oxidative effects of the green tea polyphenols as they relate to cancer prevention. We report that although the catechins are chemical antioxidants which can quench free radical species and chelate transition metals, there is evidence that some of the effects of these compounds may be related to induction of oxidative stress. Such pro-oxidant effects appear to be responsible for the induction of apoptosis in tumor cells. These pro-oxidant effects may also induce endogenous antioxidant systems in normal tissues that offer protection against carcinogenic insult. This review is meant point out understudied areas and stimulate research on the topic with the hope that insights into the mechanisms of cancer preventive activity of tea polyphenols will result. PMID:20558130

  3. Upregulating of Fas, integrin beta4 and P53 and depressing of PC-PLC activity and ROS level in VEC apoptosis by safrole oxide.

    PubMed

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli

    2005-10-24

    Previously, we found that safrole oxide could trigger vascular endothelial cell (VEC) apoptosis. In this study, to investigate its mechanism to induce apoptosis in VECs, the activities of nitric oxide synthetase and phosphatidylcholine specific phospholipase C, the level of reactive oxygen species and the expressions of Fas, integrin beta4 and P53 were analyzed. The data showed that safrole oxide induced apoptosis by increasing the expressions of Fas, integrin beta4 and P53, and depressing the activity of Ca(2+)-independent phosphatidylcholine-specific phospholipase C and intracellular reactive oxygen species levels in VECs.

  4. [Photodynamic reaction and oxidative stress - influence of the photodynamic effect on the activity antioxidant enzymes].

    PubMed

    Romiszewska, Anna; Nowak-Stępniowska, Agata

    2014-01-01

    The interaction of light with a photosensitizer, accumulated in a tissue in the presence of oxygen, leads to formation of reactive oxygen species, mainly of singlet oxygen and free radicals. These factors react with biomolecules producing their oxidized states. Reactive oxygen species, such as singlet oxygen and free radicals are able to damage membranes, DNA, enzymes, structural peptides and other cellular structures leading to cell death. An antioxidant protection of cell is formed by enzymes belonging to the family of oxidoreductases: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR). Photodynamic therapy leads to the increased production of oxidizing toxic forms. It is important to analyze impact of PDT on the activity of antioxidant enzymes, such as SOD, CAT, GPx. The activity of antioxidant enzymes during the photodynamic effect is influenced by both the light energy dose and the concentration of photosensitizer. The presence only of the photosensitizer or only the light energy may also result in changes in the activity of these enzymes. The differences in changes in the activity of these enzymes depend on the type of used photosensitizer. A phenomenon of selective accumulation of photosensitizer in tumor tissues is used in the photodynamic method of tumor diagnosis and treatment.

  5. Insight into the unique oxidation chemistry of elemental mercury by chlorine-containing species: experiment and simulation.

    PubMed

    Byun, Youngchul; Cho, Moohyun; Namkung, Won; Lee, Kiman; Koh, Dong Jun; Shin, Dong Nam

    2010-03-01

    This work investigated the oxidation chemistry of elemental mercury (Hg(0)) by chlorine-containing species produced indirectly through the gas-to-solid phase reaction between NO(x) gases and NaClO(2) powder (NaClO(2)(s)), where both experiment and simulation results were compared to clarify which species are responsible for the oxidation of Hg(0). At first, we introduced 30 ppm of NO(2) into the pack-bed reactor containing NaClO(2)(s) to produce OClO species and then injected NO and Hg(0) (260 microg/Nm(3)) to Mixer, where the concentration of NO was varied up to 180 ppm and the reaction temperature was set to 130 degrees C. We observed for the first time that the degree of Hg(0) oxidation is completely controlled by the introduced concentration of NO: for example, the oxidation efficiency of Hg(0) is drastically increased to become 100% at near 7 ppm NO, but further increasing NO concentration results in the oxidation efficiency of Hg(0) being gradually decreased. The simulation results indicated that such a propensity of Hg(0) oxidation efficiency to NO concentration can be attributed to the NO concentration-dependent Cl, ClO, and Cl(2) formation which plays a critical role in the oxidation of Hg(0). PMID:20131790

  6. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon.

    PubMed

    Rungnim, Chompoonut; Promarak, Vinich; Hannongbua, Supa; Kungwan, Nawee; Namuangruk, Supawadee

    2016-06-01

    The reaction mechanisms of mercury (Hg) adsorption and oxidation on halogenated activated carbon (AC) have been completely studied for the first time using density functional theory (DFT) method. Two different halogenated AC models, namely X-AC and X-AC-X (X=Cl, Br, I), were adopted. The results revealed that HgX is found to be stable-state on the AC edge since its further desorption from the AC as HgX, or further oxidation to HgX2, are energetically unfavorable. Remarkably, the halide type does not significantly affect the Hg adsorption energy but it strongly affects the activation energy barrier of HgX formation, which obviously increases in the order HgIBr-AC>Cl-AC. Thus, the study of the complete reaction mechanism is essential because the adsorption energy can not be used as a guideline for the rational material design in the halide impregnated AC systems. The activation energy is an important descriptor for the predictions of sorbent reactivity to the Hg oxidation process. PMID:26943019

  7. Oxidative degradation of diclofenac by thermally activated persulfate: implication for ISCO.

    PubMed

    Chen, Jiabin; Qian, Yajie; Liu, Hongmei; Huang, Tianyin

    2016-02-01

    Diclofenac (DCF), one of the typically recalcitrant pharmaceuticals, has been frequently detected in groundwater in recent years. This work investigated the performance of DCF degradation by thermally activated persulfate (PS) to further understand its application in in situ chemical oxidation (ISCO) for DCF-contaminated groundwater. The effects of various factors, including activation temperature, solution pH, PS/DCF ratio, and common constitutes, e.g., HCO3(-), Cl(-) and humic acid, and the toxicity of transformation products were evaluated. The results indicated that the oxidation of DCF was well-fitted with a pseudo-first-order kinetic model, and the rate constants increased with the elevated temperatures. The rate constants from 50-70 °C were further fitted to the Arrhenius equation, yielding an activation energy of 157.63 kJ·mol(-1). In addition, the oxidation of DCF was highly pH-dependent, with the rate constants rapidly decreased from pH 5 to 7, then slightly increased at the alkaline pH. The presence of a low dosage of Cl(-)(0-10 mM) promoted the degradation of DCF, whereas high Cl(-) addition (>10 mM) inhibited DCF degradation. HCO3(-) exhibited a negligible effect on DCF removal, while natural organic matters, e.g., humic acids, lightly inhibited DCF degradation. The rapid degradation of DCF was also confirmed in the real groundwater sample, which might be attributed to the pH drop during the reaction. Moreover, the radical quenching experiments revealed that sulfate radicals (SO4·-)) was the dominant reactive species for DCF oxidation. Finally, the acute toxicity of the DCF solution, as tested with a bioluminescent assay, was gradually decreased during the reaction, indicating that a thermally activated PS oxidation was a promising alternative approach for DCF-contaminated groundwater remediation.

  8. Chemical analysis and biological activity of the essential oils of two endemic Soqotri Commiphora species.

    PubMed

    Mothana, Ramzi A; Al-Rehaily, Adnan J; Schultze, Wulf

    2010-02-01

    The barks of two endemic Commiphora species namely, Commiphora ornifolia (Balf.f.) Gillett and Commiphora parvifolia Engl., were collected from Soqotra Island in Yemen and their essential oils were obtained by hydrodistillation. The chemical composition of both oils was investigated by GC and GC-MS. Moreover, the essential oils were evaluated for their antimicrobial activity against two Gram-positive bacteria, two Gram-negative bacteria and one yeast species by using a broth micro-dilution assay for minimum inhibitory concentrations (MIC) and for their antioxidant activity by measuring the DPPH radical scavenging activity. A total of 45 constituents of C. ornifolia (85.6%) and 44 constituents of C. parvifolia (87.1%) were identified. The oil of C. ornifolia was characterized by a high content of oxygenated monoterpenes (56.3%), of which camphor (27.3%), alpha-fenchol (15.5%), fenchone (4.4%) and borneol (2.9%) were identified as the main components. High contents of oxygenated sesquiterpenes (36.1%) and aliphatic acids (22.8%) were found in C. parvifolia oil, in which caryophyllene oxide (14.2%), beta-eudesmol (7.7%), bulnesol (5.7%), T-cadinol (3.7%) and hexadecanoic acid (18.4%) predominated. The results of the antimicrobial assay showed that both oils exhibited moderate to high antibacterial activity especially against Gram-positive bacteria. C. ornifolia oil was the most active. In addition, the DPPH-radical scavenging assay exhibited only weak antioxidant activities for both oils at the high concentration tested. PMID:20335939

  9. Exercise improves endothelial function: a local analysis of production of nitric oxide and reactive oxygen species.

    PubMed

    Tanaka, Leonardo Yuji; Bechara, Luiz Roberto Grassmann; dos Santos, Adriana Marques; Jordão, Camila Paixão; de Sousa, Luís Gustavo Oliveira; Bartholomeu, Teresa; Ventura, Laura Inês; Laurindo, Francisco Rafael Martins; Ramires, Paulo Rizzo

    2015-02-15

    This study aimed at investigating the acute effects of aerobic exercise on endothelium-dependent vasomotor function of rat aorta, as well as mechanisms involved in endothelial nitric oxide (NO) bioactivity. Wistar rats were assigned to either a resting control (C, n = 21) or acutely exercised (E, n = 21) groups (60 min, 55-60% of maximum speed). After exercise, thoracic aorta was excised and cut into rings. Two rings were promptly applied to evaluate vasomotor function and the rest of aorta was used for additional measurements. Acute exercise significantly improved maximum ACh-induced relaxation (C, 91.6 ± 1.2 vs. E, 102.4 ± 1.7%, p < 0.001) and sensitivity to ACh (C, -7.3 ± 0.06 vs. E, -7.3 ± 0.02 log M, p < 0.01), and was accompanied by significantly increases on serine1177 eNOS phosphorylation, reflecting its enhanced activation. However, acute exercise also enhanced both superoxide and hydrogen peroxide production, as assayed by dihydroethidium oxidation, lucigenin chemiluminescence and Amplex Red assays. We also provided evidence for Nox2 NADPH oxidase (Nox) activation through gp91dstat-mediated inhibition of superoxide signals. Enhanced arterial relaxations associated with acute exercise were nearly-completely prevented by catalase, suggesting a role for paracrine hydrogen peroxide. Despite increased detectable oxidant generation, cellular oxidative stress was not evident, as suggested by unaltered GSH:GSSG ratio and lipid hydroperoxides. Collectively, these results demonstrate that one bout of moderate aerobic exercise improves endothelial function by increasing NO bioavailability, while superoxide and hydrogen peroxide are generated in a controlled fashion. PMID:25619203

  10. Oxidation of flavonoids by hypochlorous acid: reaction kinetics and antioxidant activity studies.

    PubMed

    Krych-Madej, Justyna; Stawowska, Katarzyna; Gebicka, Lidia

    2016-08-01

    Flavonoids, plant polyphenols, ubiquitous components of human diet, are excellent antioxidants. Hypochlorous acid (HOCl), produced by activated neutrophils, is highly reactive chlorinating and oxidizing species. It has been reported earlier that flavonoids are chlorinated by HOCl. Here we show that flavonoids from flavonol subclass are also oxidized by HOCl, but only if the latter is in a large molar excess (≥ 10). The kinetics of this reaction was studied by stopped-flow spectrophotometry, at different pH. We found that flavonols were oxidized by HOCl with the rate constants of the order of 10(4)-10(5) M(-1) s(-1) at pH 7.5. Antioxidant activity of HOCl-modified flavonoids was measured by 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) method. Slightly higher antioxidant activity, compared to parent compounds, was observed for flavonols after their reaction with equimolar or moderate excess of HOCl whereas flavonols treated with high molar excess of HOCl exhibited decrease in antioxidant activity. The mechanism of flavonoid reaction with HOCl at physiological pH is proposed, and biological consequences of this reaction are discussed. PMID:27225705

  11. Induction of Mitochondrial Dysfunction and Oxidative Stress in Leishmania donovani by Orally Active Clerodane Diterpene

    PubMed Central

    Kathuria, Manoj; Bhattacharjee, Arindam; Sashidhara, Koneni V.; Singh, Suriya Pratap

    2014-01-01

    This study was performed to investigate the mechanistic aspects of cell death induced by a clerodane diterpene (K-09) in Leishmania donovani promastigotes that was previously demonstrated to be safe and orally active against visceral leishmaniasis (VL). K-09 caused depolarization of the mitochondrion and the generation of reactive oxygen species, triggering an apoptotic response in L. donovani promastigotes. Mitochondrial dysfunction subsequently resulted in the release of cytochrome c into the cytosol, impairing ATP production. Oxidative stress caused the depletion of reduced glutathione, while pretreatment with antioxidant N-acetyl cysteine (NAC) was able to abrogate oxidative stress. However, NAC failed to restore the mitochondrial membrane potential or intracellular calcium homeostasis after K-09 treatment, suggesting that the generation of oxidative stress is a downstream event relative to the other events. Caspase-3/-7-like protease activity and genomic DNA fragmentation were observed. Electron microscopy studies revealed gross morphological alterations typical of apoptosis, including severe mitochondrial damage, pyknosis of the nucleus, structural disruption of the mitochondrion-kinetoplast complex, flagellar pocket alterations, and the displacement of organelles. Moreover, an increased number of lipid droplets was detected after K-09 treatment, which is suggestive of altered lipid metabolism. Our results indicate that K-09 induces mitochondrial dysfunction and oxidative stress-mediated apoptotic cell death in L. donovani promastigotes, sharing many features with metazoan apoptosis. These mechanistic insights provide a basis for further investigation toward the development of K-09 as a potential drug candidate for VL. PMID:25070112

  12. Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study.

    PubMed

    Zhang, Libo; Zhou, Gang

    2016-04-14

    The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO2 is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximate to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs. PMID:27083744

  13. Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Zhou, Gang

    2016-04-01

    The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO2 is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximate to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.

  14. The Timing of Raf/ERK and AKT Activation in Protecting PC12 Cells against Oxidative Stress.

    PubMed

    Ong, Qunxiang; Guo, Shunling; Duan, Liting; Zhang, Kai; Collier, Eleanor Ann; Cui, Bianxiao

    2016-01-01

    Acute brain injuries such as ischemic stroke or traumatic brain injury often cause massive neural death and irreversible brain damage with grave consequences. Previous studies have established that a key participant in the events leading to neural death is the excessive production of reactive oxygen species. Protecting neuronal cells by activating their endogenous defense mechanisms is an attractive treatment strategy for acute brain injuries. In this work, we investigate how the precise timing of the Raf/ERK and the AKT pathway activation affects their protective effects against oxidative stress. For this purpose, we employed optogenetic systems that use light to precisely and reversibly activate either the Raf/ERK or the AKT pathway. We find that preconditioning activation of the Raf/ERK or the AKT pathway immediately before oxidant exposure provides significant protection to cells. Notably, a 15-minute transient activation of the Raf/ERK pathway is able to protect PC12 cells against oxidant strike that is applied 12 hours later, while the transient activation of the AKT pathway fails to protect PC12 cells in such a scenario. On the other hand, if the pathways are activated after the oxidative insult, i.e. postconditioning, the AKT pathway conveys greater protective effect than the Raf/ERK pathway. We find that postconditioning AKT activation has an optimal delay period of 2 hours. When the AKT pathway is activated 30min after the oxidative insult, it exhibits very little protective effect. Therefore, the precise timing of the pathway activation is crucial in determining its protective effect against oxidative injury. The optogenetic platform, with its precise temporal control and its ability to activate specific pathways, is ideal for the mechanistic dissection of intracellular pathways in protection against oxidative stress. PMID:27082641

  15. The Timing of Raf/ERK and AKT Activation in Protecting PC12 Cells against Oxidative Stress

    PubMed Central

    Ong, Qunxiang; Guo, Shunling; Duan, Liting; Zhang, Kai; Collier, Eleanor Ann; Cui, Bianxiao

    2016-01-01

    Acute brain injuries such as ischemic stroke or traumatic brain injury often cause massive neural death and irreversible brain damage with grave consequences. Previous studies have established that a key participant in the events leading to neural death is the excessive production of reactive oxygen species. Protecting neuronal cells by activating their endogenous defense mechanisms is an attractive treatment strategy for acute brain injuries. In this work, we investigate how the precise timing of the Raf/ERK and the AKT pathway activation affects their protective effects against oxidative stress. For this purpose, we employed optogenetic systems that use light to precisely and reversibly activate either the Raf/ERK or the AKT pathway. We find that preconditioning activation of the Raf/ERK or the AKT pathway immediately before oxidant exposure provides significant protection to cells. Notably, a 15-minute transient activation of the Raf/ERK pathway is able to protect PC12 cells against oxidant strike that is applied 12 hours later, while the transient activation of the AKT pathway fails to protect PC12 cells in such a scenario. On the other hand, if the pathways are activated after the oxidative insult, i.e. postconditioning, the AKT pathway conveys greater protective effect than the Raf/ERK pathway. We find that postconditioning AKT activation has an optimal delay period of 2 hours. When the AKT pathway is activated 30min after the oxidative insult, it exhibits very little protective effect. Therefore, the precise timing of the pathway activation is crucial in determining its protective effect against oxidative injury. The optogenetic platform, with its precise temporal control and its ability to activate specific pathways, is ideal for the mechanistic dissection of intracellular pathways in protection against oxidative stress. PMID:27082641

  16. When ruthenia met titania: Achieving extraordinary catalytic activity at low temperature by nanostructuring of oxides

    SciTech Connect

    Graciani, J.; Stacchiola, D.; Yang, F.; Evans, J.; Vidal, A. B.; Rodriguez, J. A.; Sanz, J. F.

    2015-09-09

    Nanostructured RuOx/TiO2(110) catalysts have a remarkable catalytic activity for CO oxidation at temperatures in the range of 350–375 K. Furthermore, the RuO2(110) surface has no activity. The state-of-the-art DFT calculations indicate that the main reasons for such an impressive improvement in the catalytic activity are: (i) a decrease of the diffusion barrier of adsorbed O atoms by around 40%, from 1.07 eV in RuO2(110) to 0.66 eV in RuOx/TiO2(110), which explains the shift of the activity to lower temperatures and (ii) a lowering of the barrier by 20% for the association of adsorbed CO and O species to give CO2 (the main barrier for the CO oxidation reaction) passing from around 0.7 eV in RuO2(110) to 0.55 eV in RuOx/TiO2(110). We show that the catalytic properties of ruthenia are strongly modified when supported as nanostructures on titania, attaining higher activity at temperatures 100 K lower than that needed for pure ruthenia. As in other systems consisting of ceria nanostructures supported on titania, nanostructured ruthenia shows strongly modified properties compared to the pure oxide, consolidating the fact that the nanostructuring of oxides is a main way to attain higher catalytic activity at lower temperatures.

  17. When ruthenia met titania: Achieving extraordinary catalytic activity at low temperature by nanostructuring of oxides

    DOE PAGES

    Graciani, J.; Stacchiola, D.; Yang, F.; Evans, J.; Vidal, A. B.; Rodriguez, J. A.; Sanz, J. F.

    2015-09-09

    Nanostructured RuOx/TiO2(110) catalysts have a remarkable catalytic activity for CO oxidation at temperatures in the range of 350–375 K. Furthermore, the RuO2(110) surface has no activity. The state-of-the-art DFT calculations indicate that the main reasons for such an impressive improvement in the catalytic activity are: (i) a decrease of the diffusion barrier of adsorbed O atoms by around 40%, from 1.07 eV in RuO2(110) to 0.66 eV in RuOx/TiO2(110), which explains the shift of the activity to lower temperatures and (ii) a lowering of the barrier by 20% for the association of adsorbed CO and O species to give CO2more » (the main barrier for the CO oxidation reaction) passing from around 0.7 eV in RuO2(110) to 0.55 eV in RuOx/TiO2(110). We show that the catalytic properties of ruthenia are strongly modified when supported as nanostructures on titania, attaining higher activity at temperatures 100 K lower than that needed for pure ruthenia. As in other systems consisting of ceria nanostructures supported on titania, nanostructured ruthenia shows strongly modified properties compared to the pure oxide, consolidating the fact that the nanostructuring of oxides is a main way to attain higher catalytic activity at lower temperatures.« less

  18. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

    PubMed Central

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng

    2016-01-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10–8~10–6 mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10–9 mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase.

  19. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

    PubMed Central

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng

    2016-01-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10–8~10–6 mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10–9 mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  20. Ozone exposure activates oxidative stress responses in murine skin.

    PubMed

    Valacchi, Giuseppe; van der Vliet, Albert; Schock, Bettina C; Okamoto, Tatsuya; Obermuller-Jevic, Ute; Cross, Carroll E; Packer, Lester

    2002-09-30

    Ozone (O(3)) is among the most reactive environmental oxidant to which skin is exposed. O(3) exposure has previously been shown to induce antioxidant depletion as well as lipid and protein oxidation in the outermost skin layer, the stratum corneum (SC), but little is known regarding the potential effects of O(3) on the skin epidermis and dermis. To evaluate such skin responses to O(3), SKH-1 hairless mice were exposed for 2 h to 8.0 ppm O(3) or to ambient air. O(3) exposure caused a significant increase in skin carbonyls (28%) compared to the skin of air exposed control animals. An evident increase in 4-hydroxynonenal-protein adducts was detected after O(3) exposure. O(3) exposure caused a rapid up-regulation of HSP27 (20-fold), and more delayed induction of HSP70 (2.8-fold) and heme oxygenase-1 (5-fold). O(3) exposure also led to the induction of nitric oxide synthase (iNOS) 6-12 h following O(3) exposure. We conclude that skin exposure to high levels of O(3) not only affects antioxidant levels and oxidation markers in the SC, but also induces stress responses in the active layers of the skin, most likely by indirect mechanisms, since it is unlikely that O(3) itself penetrates the protective SC layers.

  1. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase.

    PubMed

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng; Cui, Jianxiu

    2016-09-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10(-8)~10(-6) mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10(-9) mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  2. Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd.

    PubMed

    Scoccianti, Valeria; Bucchini, Anahi E; Iacobucci, Marta; Ruiz, Karina B; Biondi, Stefania

    2016-11-01

    Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress. PMID:27400061

  3. Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd.

    PubMed

    Scoccianti, Valeria; Bucchini, Anahi E; Iacobucci, Marta; Ruiz, Karina B; Biondi, Stefania

    2016-11-01

    Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress.

  4. Synthesis and photocatalytic activity of electrospun niobium oxide nanofibers

    SciTech Connect

    Qi, Shishun; Zuo, Ruzhong; Liu, Yi; Wang, Yu

    2013-03-15

    Graphical abstract: Different morphologies are obtained for the electrospun niobium oxide nanofibers with different phase structures. The nanofibers of the two phase structures present different band gap value and the light absorption. Hexagonal phase nanofibers show better photocatalytic activity compared with the orthorhombic nanofibers. Highlights: ► Niobium oxide nanofibers of two phase structures were fabricated by electrospinning. ► Photocatalytic properties of the niobium oxide nanofibers were first explored. ► Nanofibers of different phase structures showed different photocatalytic activities. ► Reasons for the differences in the photocatalysis were carefully discussed. - Abstract: Niobium oxide (Nb{sub 2}O{sub 5}) nanofibers have been synthesized by sol–gel based electrospinning technique. Pure hexagonal phase (H-Nb{sub 2}O{sub 5}) and orthorhombic phase (O-Nb{sub 2}O{sub 5}) nanofibers were obtained by thermally annealing the electrospun Nb{sub 2}O{sub 5}/polyvinylpyrrolidone composite fibers in air at 500 °C and 700 °C, respectively. The fibers were characterized using the X-ray diffraction, scanning electron microscopy, specific surface area analyzer and UV–vis diffuse reflectance spectroscopy. Photocatalytic activities of the obtained nanofibers were evaluated depending on the degradation of methyl orange. The results indicate that the heat-treatment temperature, the crystalline structure and the morphology affected the physical and chemical properties of the as-prepared Nb{sub 2}O{sub 5} nanofibers. The H-Nb{sub 2}O{sub 5} nanofibers obtained at lower temperature showed better potential for the application as a promising photocatalyst.

  5. Interaction between single nucleotide polymorphism in catalase gene and catalase activity under the conditions of oxidative stress.

    PubMed

    Komina, A V; Korostileva, K A; Gyrylova, S N; Belonogov, R N; Ruksha, T G

    2012-01-01

    Catalase is an antioxidant enzyme the activity of which is crucial for the protection against damage caused by reactive oxygen species. The -262C>T polymorphism in the promoter region of catalase gene was found to be associated with altered catalase levels. In this study, peripheral blood mononuclear cells catalase activity was measured after H(2)O(2)-induced oxidative stress. C/T and T/T genotypes were associated with the decrease of catalase levels in contrast to C/C donors who had elevated catalase activity in the presence of 0.4 and 0.7 mM H(2)O(2). Genotype-dependent response of catalase activity to oxidative stress might be related to the predisposition of catalase mutant allele carriers to disorders mediated by oxidative stress.

  6. Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-15

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

  7. Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2011-04-20

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

  8. Nonenzymatic oxidation of trienoic fatty acids contributes to reactive oxygen species management in Arabidopsis.

    PubMed

    Mène-Saffrané, Laurent; Dubugnon, Lucie; Chételat, Aurore; Stolz, Stéphanie; Gouhier-Darimont, Caroline; Farmer, Edward E

    2009-01-16

    In higher plants such as Arabidopsis thaliana, omega-3 trienoic fatty acids (TFAs), represented mainly by alpha-linolenic acid, serve as precursors of jasmonic acid (JA), a potent lipid signal molecule essential for defense. The JA-independent roles of TFAs were investigated by comparing the TFA- and JA-deficient fatty acid desaturase triple mutant (fad3-2 fad7-2 fad8 (fad3 fad7 fad8)) with the aos (allene oxide synthase) mutant that contains TFAs but is JA-deficient. When challenged with the fungus Botrytis, resistance of the fad3 fad7 fad8 mutant was reduced when compared with the aos mutant, suggesting that TFAs play a role in cell survival independently of being the precursors of JA. An independent genetic approach using the lesion mimic mutant accelerated cell death2 (acd2-2) confirmed the importance of TFAs in containing lesion spread, which was increased in the lines in which the fad3 fad7 fad8 and acd2-2 mutations were combined when compared with the aos acd2-2 lines. Malondialdehyde, found to result from oxidative TFA fragmentation during lesion formation, was measured by gas chromatography-mass spectrometry. Its levels correlated with the survival of the tissue. Furthermore, plants lacking TFAs overproduced salicylic acid (SA), hydrogen peroxide, and transcripts encoding several SA-regulated and SA biosynthetic proteins. The data suggest a physiological role for TFAs as sinks for reactive oxygen species.

  9. Thermoelectric misfit-layered cobalt oxides with interlayers of hydroxide and peroxide species

    SciTech Connect

    Chou, Ta-Lei; Lybeck, Jenni; Chan, Ting-Shan; Hsu, Ying-Ya; Tewari, Girish C.; Rautama, Eeva-Leena; Yamauchi, Hisao; Karppinen, Maarit

    2013-12-15

    Among the thermoelectric misfit-layered cobalt oxides, [M{sub m}A{sub 2}O{sub m+2}]{sub q}CoO{sub 2}, the parent m=0 phases exhibit divergent chemical features but are less understood than the more common m>0 members of the series. Here we synthesize Sr-for-Ca substituted [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} zero phases up to x=0.2 through low-temperature hydrothermal conversion of precursor powders of the m=1 misfit system, [Co(Ca{sub 1−x}Sr{sub x}){sub 2}O{sub 3}]{sub q}CoO{sub 2}. In the zero-phase [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} system, as the Sr content x increases the lattice expands anisotropically along the c axis such that the ab-plane dimension and the misfit parameter q remain essentially constant. X-ray absorption spectroscopy data suggest the presence of peroxide-type oxygen species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} rock-salt block and together with infrared spectroscopy, thermogravimetric and low-temperature resistivity and thermopower measurements evidence that the isovalent Sr-for-Ca substitution controls the balance between the peroxide and hydroxide species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} block but leaves the valence of Co essentially intact in the CoO{sub 2} block. The higher electrical conductivity of the Sr-substituted phases is explained as a consequence of increased carrier mobility. - Graphical abstract: Among the thermoelectric misfit-layered cobalt oxides, [M{sub m}A{sub 2}O{sub m+2}]{sub q}CoO{sub 2}, the parent zero (m=0) phases exhibit divergent chemical features. For [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2}, X-ray absorption spectroscopy data suggest the presence of peroxide-type oxygen species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} rock-salt block and together with thermogravimetric and low-temperature transport-property measurements evidence that the isovalent Sr-for-Ca substitution controls the

  10. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species

    PubMed Central

    Nathan, Carl; Cunningham-Bussel, Amy

    2014-01-01

    Reactive oxygen species (ROS) react preferentially with certain atoms to modulate functions ranging from cell homeostasis to cell death. Molecular actions include both inhibition and activation of proteins, mutagenesis of DNA and activation of gene transcription. Cellular actions include promotion or suppression of inflammation, immunity and carcinogenesis. ROS help the host to compete against microorganisms and are also involved in intermicrobial competition. ROS chemistry and their pleiotropy make them difficult to localize, to quantify and to manipulate — challenges we must overcome to translate ROS biology into medical advances. PMID:23618831

  11. Effect of Nitric Oxide on the Antifungal Activity of Oxidative Stress and Azoles Against Candida albicans.

    PubMed

    Li, De-Dong; Yang, Chang-Chun; Liu, Ping; Wang, Yan; Sun, Yan

    2016-06-01

    Nitric oxide (NO) is a small molecule with a wide range of biological activities in mammalian and bacteria. However, the role of NO in fungi, especially Candida albicans, is not clear. In this study, we confirmed the generation of endogenous NO in C. albicans, and found that the production of endogenous NO in C. albicans was associated with nitric oxide synthase pathway. Our results further indicated that the production of endogenous NO in C. albicans was reduced under oxidative stress such as menadione or H2O2 treatment. Meanwhile, exogenous NO donor, sodium nitroprusside (SNP), synergized with H2O2 against C. albicans. Interestingly, SNP could inhibit the antifungal effect of azoles against C. albicans in vitro, suggesting that NO might be involved in the resistance of C. albicans to antifungals. Collectively, this study demonstrated the production of endogenous NO in C. albicans, and indicated that NO may play an important role in the response of C. albicans to oxidative stress and azoles. PMID:27570314

  12. "Invented Invaders": An Engaging Activity to Teach Characteristics Control of Invasive Species

    ERIC Educational Resources Information Center

    Lampert, Evan

    2015-01-01

    Invasive species, defined as exotic species that reach pest status, are major threats to global biodiversity. Although invasive species can belong to any taxonomic group, general characteristics such as rapid growth and reproduction are shared by many invasive species. "Invented Invaders" is a collaborative activity in which students…

  13. Antimicrobial activity in methanolic extracts of several plant species from northern Argentina.

    PubMed

    Salvat, A; Antonacci, L; Fortunato, R H; Suarez, E Y; Godoy, H M

    2004-02-01

    Thirty-nine native plant species were collected from the provinces of Chaco and Formosa, in northern Argentina, and were screened for antimicrobial activity. The plants were dried and extracted thoroughly with methanol. The dry extracts, dissolved in dimethylsulfoxide, were tested for inhibition of microbial growth via microplate assay with an oxidation-reduction dye. The test organisms were: Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Enterococcus faecium. Inhibition of respiratory activities in some of these microbial species was produced by the extracts of Astronium balansae, Geoffroea decorticans, Peltophorum dubium, Geoffroea spinosa, Lantana balansae, Prosopis kuntzei, Prosopis ruscifolia and Bulnesia sarmientoi, with minimal inhibitory concentrations (MIC) ranging from 0.08 to 0.5 mg dry matter/ml. Further in vitro experiments measuring the growth of S. aureus in liquid culture confirmed that all of the above extracts at 2 x MIC were able to inhibit bacterial growth effectively, and that some of them (A. balansae, G. decorticans, P. dubium, G. spinosa, P. kuntzei and B. sarmientoi) were able to reduce the initial number of viable counts by at least one order of magnitude in 10 hours, indicating that these extracts should be investigated further for the possible presence of bactericidal components.

  14. Catalytic Activity and Impedance Behavior of Screen-Printed Nickel Oxide as Efficient Water Oxidation Catalysts.

    PubMed

    Singh, Archana; Fekete, Monika; Gengenbach, Thomas; Simonov, Alexandr N; Hocking, Rosalie K; Chang, Shery L Y; Rothmann, Mathias; Powar, Satvasheel; Fu, Dongchuan; Hu, Zheng; Wu, Qiang; Cheng, Yi-Bing; Bach, Udo; Spiccia, Leone

    2015-12-21

    We report that films screen printed from nickel oxide (NiO) nanoparticles and microballs are efficient electrocatalysts for water oxidation under near-neutral and alkaline conditions. Investigations of the composition and structure of the screen-printed films by X-ray diffraction, X-ray absorption spectroscopy, and scanning electron microscopy confirmed that the material was present as the cubic NiO phase. Comparison of the catalytic activity of the microball films to that of films fabricated by using NiO nanoparticles, under similar experimental conditions, revealed that the microball films outperform nanoparticle films of similar thickness owing to a more porous structure and higher surface area. A thinner, less-resistive NiO nanoparticle film, however, was found to have higher activity per Ni atom. Anodization in borate buffer significantly improved the activity of all three films. X-ray photoelectron spectroscopy showed that during anodization, a mixed nickel oxyhydroxide phase formed on the surface of all films, which could account for the improved activity. Impedance spectroscopy revealed that surface traps contribute significantly to the resistance of the NiO films. On anodization, the trap state resistance of all films was reduced, which led to significant improvements in activity. In 1.00 m NaOH, both the microball and nanoparticle films exhibit high long-term stability and produce a stable current density of approximately 30 mA cm(-2) at 600 mV overpotential.

  15. Catalytic Activity and Impedance Behavior of Screen-Printed Nickel Oxide as Efficient Water Oxidation Catalysts.

    PubMed

    Singh, Archana; Fekete, Monika; Gengenbach, Thomas; Simonov, Alexandr N; Hocking, Rosalie K; Chang, Shery L Y; Rothmann, Mathias; Powar, Satvasheel; Fu, Dongchuan; Hu, Zheng; Wu, Qiang; Cheng, Yi-Bing; Bach, Udo; Spiccia, Leone

    2015-12-21

    We report that films screen printed from nickel oxide (NiO) nanoparticles and microballs are efficient electrocatalysts for water oxidation under near-neutral and alkaline conditions. Investigations of the composition and structure of the screen-printed films by X-ray diffraction, X-ray absorption spectroscopy, and scanning electron microscopy confirmed that the material was present as the cubic NiO phase. Comparison of the catalytic activity of the microball films to that of films fabricated by using NiO nanoparticles, under similar experimental conditions, revealed that the microball films outperform nanoparticle films of similar thickness owing to a more porous structure and higher surface area. A thinner, less-resistive NiO nanoparticle film, however, was found to have higher activity per Ni atom. Anodization in borate buffer significantly improved the activity of all three films. X-ray photoelectron spectroscopy showed that during anodization, a mixed nickel oxyhydroxide phase formed on the surface of all films, which could account for the improved activity. Impedance spectroscopy revealed that surface traps contribute significantly to the resistance of the NiO films. On anodization, the trap state resistance of all films was reduced, which led to significant improvements in activity. In 1.00 m NaOH, both the microball and nanoparticle films exhibit high long-term stability and produce a stable current density of approximately 30 mA cm(-2) at 600 mV overpotential. PMID:26617200

  16. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications. PMID:25280707

  17. Pterins inhibit nitric oxide synthase activity in rat alveolar macrophages.

    PubMed Central

    Jorens, P. G.; van Overveld, F. J.; Bult, H.; Vermeire, P. A.; Herman, A. G.

    1992-01-01

    1. The synthesis of nitrite and citrulline from L-arginine by immune-stimulated rat alveolar macrophages and the modulation of this synthesis were studied. 2,4-Diamino-6-hydroxypyrimidine (DAHP), 6R-5,6,7,8-tetrahydro-L-biopterin (BH4) and L-sepiapterin were potent inhibitors of the recombinant interferon-gamma induced production of nitrogen oxides in intact cultured cells with I50 values for BH4 and L-sepiapterin of approximately 10 microM. They were equally effective in inhibiting the induced production of citrulline. This inhibitory effect was concentration-dependent for all three modulators investigated. 2. The inhibitory effects were not dependent on incubation times of either 24 or 48 h, on the immune-stimulus used (lipopolysaccharide, interferon-gamma), or whether these stimuli were added during or after the induction period. 3. Pterin-6-carboxylic acid (PCA), which cannot be converted into BH4, and methotrexate (MTX), which inhibits dihydrofolatereductase but not de novo biosynthesis of BH4, did not change the production of nitrite. 4. The data indicate that DAHP, an inhibitor of the de novo biosynthesis of the co-factor BH4, blocks the nitric oxide synthase activity in intact cells. Since the pterins BH4 and L-sepiapterin blocked the L-arginine dependent production of nitrite and citrulline, the activity of nitric oxide synthase in phagocytic cells may be regulated by metabolic endproducts of the de novo biosynthesis of BH4. PMID:1281717

  18. Occurrence and role of a Quaternary base, trimethylamine oxide, in two cockle species, Cerastoderma edule and Cerastoderma lamarcki

    NASA Astrophysics Data System (ADS)

    de Vooys, C. G. N.

    2002-02-01

    Trimethylamine oxide was demonstrated in the tissues of two European cockle species: Cerastoderma edule and Cerastoderma lamarcki (Mollusca: Bivalvia). No role in osmoregulation could be demonstrated, but a passive accumulation of the compound was found. Trimethylamine was demonstrated to be present in phytoplankton. Passive changes of the concentration of trimethylamine oxide are likely to occur in cockle tissues depending on the concentration of trimethylamine in the food.

  19. Surface Adsorbed Species: IR Studies of SO2 and H2S Adsorbed on Oxides

    NASA Astrophysics Data System (ADS)

    Lavalley, J. C.; Lamotte, J.; Saur, O.; Mohammed Saad, A. B.; Tripp, C.; Morrow, B. A.

    1985-12-01

    The adsorption of SO, on alumina leads to the formation of several species such as SO3=, HSO3- and coordinated SO2. In addition sulfates are produced under oxidizing conditions. However, definitive vibra- tional assignments are hampered by the paucity of data below 1000 cm-1 where alumina is strongly absorbing. On the other hand, silica is partially transparent at low frequencies and subtractive IR spectroscopy has permitted us to observe bands which are tentatively assigned to the SO bending modes of bisulfite (HSO3-, 635 cm-I) and disulfite (S2O5-, 660 cm-I) surface species on sodium promoted silica catalysts when SO and H2O are coadsorbed. H2S addition to a surface pretreated with SO2 gives rise to a new band at 680 cm-1 which is pos- sibly due to S2O3 orS2O on the surface. The results are discussed in terms of intermediates in the Claus process (2 H2S + SO2 + 3/n Sn + 2 H2O).

  20. Interactions between metal oxides and species of nitrogen and iodine in bioturbated marine sediments

    NASA Astrophysics Data System (ADS)

    Anschutz, Pierre; Sundby, Bjørn; Lefrançois, Lucie; Luther, George W.; Mucci, Alfonso

    2000-08-01

    oxidation of ammonia to N 2 by manganese oxides is a potential removal mechanism. It would require one quarter of the total oxygen flux. The high-resolution profiles of redox species support the conceptualization of bioturbated sediments as a spatially and temporally changing mosaic of redox reactions. They show evidence for a multitude of reactions whose relative importance will vary over time, and for reaction pathways complementing those usually considered in diagenetic studies.

  1. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms

    PubMed Central

    Øvrevik, Johan; Refsnes, Magne; Låg, Marit; Holme, Jørn A.; Schwarze, Per E.

    2015-01-01

    Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS) with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events. PMID:26147224

  2. Chemical Oxidation of Complex PAH Mixtures by Base-activated Sodium Persulfate

    NASA Astrophysics Data System (ADS)

    Hauswirth, S.; Miller, C. T.

    2013-12-01

    In situ chemical oxidation (ISCO) is an attractive approach for the remediation of recalcitrant soil and groundwater contaminants. One oxidant that has received significant recent attention is sodium persulfate, which has several advantages, including a relatively long lifetime in porous media, the ability to destroy a wide-range of chemical contaminants, and a high oxidation potential. In this study, we investigated the chemical mechanisms associated with base-activated persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) and assessed the applicability of persulfate to the remediation of porous media contaminated with non-aqueous phase liquid (NAPL) PAH mixtures. Batch experiments were conducted to determine the oxidation kinetics for individual PAH compounds, synthetic PAH mixtures, and manufactured gas plant (MGP) tars. Additional experiments were conducted with added surfactants (Triton X-100, Triton X-45, and Tween 80) to increase PAH mass transfer from the NAPL to the aqueous phase, and with radical scavengers (ethanol and tert-butyl alcohol) to identify the reactive species responsible for degradation. Degradation of total PAHs in the NAPL experiments was as high as 70%. The addition of surfactant increased initial PAH degradation rates, but also greatly increased the rate of base consumption, thereby reducing the overall fraction degraded. The degradation of individual PAHs within the NAPLs varied significantly, with the masses of some compounds remaining largely unchanged. The results of the radical scavenger and single PAH experiments suggest that the observed pattern of degradation in PAH mixtures is the result of a combination of mass transfer considerations and competition for radical species.

  3. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    SciTech Connect

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    . Collectively, these results indicate that macrophages isolated from old mice are in a preactivated state that enhances their sensitivities to LPS exposure. The hyper-responsive activation of macrophages in aged animals may act to minimize infection by general bacterial threats that arise due to age-dependent declines in adaptive immunity. Finally, however, this hypersensitivity and the associated increase in the level of formation of reactive oxygen species are likely to contribute to observed age-dependent increases in the level of oxidative damage that underlie many diseases of the elderly.

  4. Water oxidation chemistry of a synthetic dinuclear ruthenium complex containing redox-active quinone ligands.

    PubMed

    Isobe, Hiroshi; Tanaka, Koji; Shen, Jian-Ren; Yamaguchi, Kizashi

    2014-04-21

    We investigated theoretically the catalytic mechanism of electrochemical water oxidation in aqueous solution by a dinuclear ruthenium complex containing redox-active quinone ligands, [Ru2(X)(Y)(3,6-tBu2Q)2(btpyan)](m+) [X, Y = H2O, OH, O, O2; 3,6-tBu2Q = 3,6-di-tert-butyl-1,2-benzoquinone; btpyan =1,8-bis(2,2':6',2″-terpyrid-4'-yl)anthracene] (m = 2, 3, 4) (1). The reaction involves a series of electron and proton transfers to achieve redox leveling, with intervening chemical transformations in a mesh scheme, and the entire molecular structure and motion of the catalyst 1 work together to drive the catalytic cycle for water oxidation. Two substrate water molecules can bind to 1 with simultaneous loss of one or two proton(s), which allows pH-dependent variability in the proportion of substrate-bound structures and following pathways for oxidative activation of the aqua/hydroxo ligands at low thermodynamic and kinetic costs. The resulting bis-oxo intermediates then undergo endothermic O-O radical coupling between two Ru(III)-O(•) units in an anti-coplanar conformation leading to bridged μ-peroxo or μ-superoxo intermediates. The μ-superoxo species can liberate oxygen with the necessity for the preceding binding of a water molecule, which is possible only after four-electron oxidation is completed. The magnitude of catalytic current would be limited by the inherent sluggishness of the hinge-like bending motion of the bridged μ-superoxo complex that opens up the compact, hydrophobic active site of the catalyst and thereby allows water entry under dynamic conditions. On the basis of a newly proposed mechanism, we rationalize the experimentally observed behavior of electrode kinetics with respect to potential and discuss what causes a high overpotential for water oxidation by 1.

  5. Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen.

    PubMed

    Johns, James E; Alaboson, Justice M P; Patwardhan, Sameer; Ryder, Christopher R; Schatz, George C; Hersam, Mark C

    2013-12-01

    Chemically interfacing the inert basal plane of graphene with other materials has limited the development of graphene-based catalysts, composite materials, and devices. Here, we overcome this limitation by chemically activating epitaxial graphene on SiC(0001) using atomic oxygen. Atomic oxygen produces epoxide groups on graphene, which act as reactive nucleation sites for zinc oxide nanoparticle growth using the atomic layer deposition precursor diethyl zinc. In particular, exposure of epoxidized graphene to diethyl zinc abstracts oxygen, creating mobile species that diffuse on the surface to form metal oxide clusters. This mechanism is corroborated with a combination of scanning probe microscopy, Raman spectroscopy, and density functional theory and can likely be generalized to a wide variety of related surface reactions on graphene.

  6. Chlorogenic acid protects MSCs against oxidative stress by altering FOXO family genes and activating intrinsic pathway.

    PubMed

    Li, Shiyong; Bian, Hetao; Liu, Zhe; Wang, Ye; Dai, Jianghua; He, Wenfeng; Liao, Xingen; Liu, Rongrong; Luo, Jun

    2012-01-15

    Chlorogenic acid as an antioxidant exists widely in edible and medicinal plants, and can protect cell against apoptosis induced by oxidative stress. However, its molecular mechanisms remain largely unknown. Here, we showed that Chlorogenic acid suppressed reactive oxygen species increase by activation of Akt phosphorylation,and increased FOXO family genes and anti-apoptotic protein Bcl-2 expression in MSCs culturing under oxidative stress. In addition, PI-3Kinase Inhibitor (2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one, LY294002) could suppress the Chlorogenic acid-induced: (1) the cellular protective role, (2) the increase of the FOXO family genes expression, (3) increased expression of Bcl-2. These results suggested that Chlorogenic acid protected MSCs against apoptosis via PI3K/AKT signal and FOXO family genes.

  7. Design and photocatalytic activity of nanosized zinc oxides

    NASA Astrophysics Data System (ADS)

    Gancheva, M.; Markova-Velichkova, M.; Atanasova, G.; Kovacheva, D.; Uzunov, I.; Cukeva, R.

    2016-04-01

    Zinc oxide particles with various morphologies were successfully prepared via three synthesis methods: precipitation; tribophysical treatment and sonochemistry. The as-synthesized samples were characterized by X-ray diffraction (XRD); infrared spectroscopy (IR); scanning electron microscope (SEM); BET specific surface area; electron-paramagnetic resonance (EPR), UV-Vis absorption/diffuse reflectance and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities of the samples were evaluated by degradation of Malachite Green (MG) in an aqueous solution under UV and visible irradiation. The obtained ZnO powders possess crystallites size below 20 nm. The ZnO with spherical particles were obtained by precipitation method. The sonochemistry approach leads to preparation of ZnO with nanorod particles. The calculated band gaps of various ZnO powders belong to the range from 3.12 to 3.30 eV. The obtained polycrystalline zinc oxides exhibit good photocatalytic activity which is strongly influenced by the preparation conditions. The nanorod ZnO exhibits high photocatalytic activity under UV irradiation which is attributed to the morphology and the geometric surface of the particles. The ZnO obtained by precipitation has better photocatalytic efficiency under visible irradiation due to high B.E.T. specific surface area and the low level of band gap. Tribophysical treatment of a particle size-homogeneous system leads to deterioration of the photocatalytic activity of the material.

  8. Kinetics and dynamics of oxidation reactions involving an adsorbed CO species on bulk and supported platinum and copper-oxide

    SciTech Connect

    Harold, M.P.

    1991-07-01

    The proposed research is an integrated experimental and modeling study of oxidation reactions involving CO as a key player -- be it a reactant, adsorbed intermediate, and/or partial oxidation product -- in the catalytic sequence and chemistry. The reaction systems of interest in the project include CO, formaldehyde, and methanol oxidation by O{sub 2} and CO oxidation by NO, on both Pt and copper oxide catalysts. These reactions are of importance in automobile exhaust catalysis. There is a paucity of rate data in the literature for these important environmental control reactions. The goal of this research is to better understand the catalytic chemistry and kinetics of oxidations reactions involving CO as an adsorbed intermediate. Successfully meeting this goal requires an integration of basic kinetic measurements, in situ catalyst surface monitoring, kinetic modeling, and nonlinear mathematical tools.

  9. Antioxidant Activities and Oxidative Stabilities of Some Unconventional Oilseeds.

    PubMed

    Uluata, Sibel; Ozdemir, Nurhayat

    2012-04-01

    The oils of some unconventional oilseeds (hemp, radish, terebinth, stinging nettle, laurel) were obtained by a cold-press method in which the total oil content, fatty acids, tocopherol isomers, some metal contents (Ca, Mg, Fe, Cu), antioxidant activity and oxidative stability were determined. The total oil content was determined ranging between 30.68 and 43.12%, and the oil samples had large amounts of unsaturated fatty acids, with oleic acid and linoleic acid. Of all the oils, terebinth seed oil had the highest α-tocopherol content (102.21 ± 1.01 mg/kg oil). Laurel oilseed had the highest antiradical activity in both the DPPH and ABTS assays. The peroxide value of the non-oxidized oils ranged between 0.51 and 3.73 mequiv O(2)/kg oil. The TBARS value of the non-oxidized oils ranged between 0.68 ± 0.02 and 6.43 ± 0.48 mmol MA equiv/g oil. At 110 °C, the Rancimat induction period of the oils ranged between 1.32 and 43.44 h. The infrared spectra of the samples were recorded by FTIR spectroscopy. The absorbance values of the spectrum bands were observed and it was determined that some of the chemical groups of oxidized oils caused changes in absorbance. As a result of the present research, the analyzed oils could be evaluated as an alternative to traditionally consumed vegetable oils or as additives to them.

  10. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mokhtar Hefny, Mohamed; Pattyn, Cedric; Lukes, Petr; Benedikt, Jan

    2016-10-01

    A remote microscale atmospheric pressure plasma jet (µAPPJ) with He, He/H2O, He/O2, and He/O2/H2O gas mixtures was used to study the transport of reactive species from the gas phase into the liquid and the following aqueous phase chemistry. The effects induced by the µAPPJ in water were quantitatively studied using phenol as a chemical probe and by measuring H2O2 concentration and pH values. These results were combined with the analysis of the absolute densities of the reactive species and the modeling of convective/diffusion transport and recombination reactions in the effluent of the plasma jet. Additionally, modified plasma jets were used to show that the role of emitted photons in aqueous chemistry is negligible for these plasma sources. The fastest phenol degradation was measured for the He/O2 plasma, followed by He/H2O, He/O2/H2O, and He plasmas. The modeled quantitative flux of O atoms into the liquid in the He/O2 plasma case was highly comparable with the phenol degradation rate and showed a very high transfer efficiency of reactive species from the plasma into the liquid, where more than half of the O atoms leaving the jet nozzle entered the liquid. The results indicate that the high oxidative effect of He/O2 plasma was primarily due to solvated O atoms, whereas OH radicals dominated the oxidative effects induced in water by plasmas with other gas mixtures. These findings help to understand, in a quantitative way, the complex interaction of cold atmospheric plasmas with aqueous solutions and will allow a better understanding of the interaction of these plasmas with water or buffered solutions containing biological macromolecules, microorganisms, or even eukaryotic cells. Additionally, the µAPPJ He/O2 plasma source seems to be an ideal tool for the generation of O atoms in aqueous solutions for any future studies of their reactivity.

  11. Direct evidence of active surface reconstruction during oxidative dehydrogenation of propane over VMgO catalyst

    SciTech Connect

    Pantazidis, A.; Mirodatos, C.; Burrows, A.; Kiely, C.J.

    1998-07-25

    This paper presents a thorough investigation of an optimized VMgO catalyst (14 wt% V) for the oxidative dehydrogenation of propane, carried out in order to elucidate the nature and behavior of the active surface. The catalyst morphology and the surface composition are studied by means of HREM, XPS, UV-vis, XRD, and in-situ electrical conductivity techniques, as a function of the gaseous environments of the catalyst. The active surface is shown to be essentially a monolayer of amorphous VO{sub 4}{sup 3{minus}} units scattered over the magnesia as isolated and polymeric species. These surface vanadia units are found to stabilize an unusual polar (111) orientation of MgO up to temperatures of 800 C. A direct and outstanding evidence of a totally reversible phenomenon of order/disorder restructuration of this V overlayer is provided in conjunction with the redox state of the surface depending on the properties of the surrounding atmosphere (reductive or oxidative). These fast surface phenomena are assumed to determine the elementary steps of propane activation within the overall oxidative dehydrogenation of propane (ODHP) process.

  12. Impact of streambed morphology on the abundance and activity of ammonia-oxidizing bacteria.

    PubMed

    Yanuka-Golub, Keren; Arnon, Shai; Nejidat, Ali

    2014-10-01

    Ammonia oxidizers catalyze the first step of nitrification. Combined microbial nitrification-denitrification activities are essential for the removal of excess nitrogen from water bodies. In sandy streambeds, bed form structures are created by water flow and lead to the creation of heterogeneous microenvironments. The objective of this study, therefore, was to investigate the effect of bed form morphology on the abundance and activity of ammonia-oxidizing bacteria (AOB) within a benthic biofilm. An 8-month-old benthic biofilm was established in a recirculating laboratory flume under controlled flow conditions and frequent amendment with ammonium. The sand bed was arranged into bed form structures. The highest concentrations of chlorophyll a (indicative of algae) were measured on the upstream side of the bed forms. The biofilm was dominated by Nitrosospira species, and amoA gene abundance was higher on the downstream sides of the bed forms with no significant difference in oxygen consumption between the upstream and downstream sections of the bed form. In contrast, potential ammonium oxidation rates were higher on the upstream sides of the bed forms. The results suggest that bed form morphology can affect the spatial distribution and activity of AOB, possibly through the creation of distinct microhabitats. These results contribute to our understanding of nitrogen transformations and removal from streams. PMID:25056670

  13. Combined activation of methyl paraben by light irradiation and esterase metabolism toward oxidative DNA damage.

    PubMed

    Okamoto, Yoshinori; Hayashi, Tomohiro; Matsunami, Shinpei; Ueda, Koji; Kojima, Nakao

    2008-08-01

    Methyl paraben (MP) is often used as a preservative in foods, drugs, and cosmetics because of its high reliability in safety based on the rapid excretion and nonaccumulation following administration. Light irradiation sometimes produces unexpected activity from chemicals such as MP; furthermore, there is ample opportunity for MP to be exposed to sunlight. Here, we investigated whether MP shows DNA damage after sunlight irradiation. Two major photoproducts, p-hydroxybenzoic acid (PHBA) and 3-hydroxy methyl paraben (MP-3OH), were detected after sunlight irradiation to an aqueous MP solution. Both photoproducts were inactive in the in vitro DNA damage assay that measures oxidized guanine formed in calf thymus DNA in the presence of divalent copper ion, a known mediator of oxidative DNA damage. Simulated MP metabolism using dermal tissues after light irradiation produced these two photoproducts, which reacted with a microsomal fraction (S9) of the skin. A metabolite from MP-3OH, not PHBA, caused distinct DNA damage in the in vitro assay. This active metabolite was identified as protocatechuic acid, a hydrolyzed MP-3OH product. In addition, NADH, a cellular reductant, enhanced DNA damage by approximately five times. These results suggest that reactive oxygen species generated by the redox cycle via metal ion and catechol autoxidation are participating in oxidative DNA damage. This study reveals that MP might cause skin damage involving carcinogenesis through the combined activation of sunlight irradiation and skin esterases.

  14. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages.

    PubMed

    Drapier, J C; Hirling, H; Wietzerbin, J; Kaldy, P; Kühn, L C

    1993-09-01

    Biosynthesis of nitric oxide (NO) from L-arginine modulates activity of iron-dependent enzymes, including mitochondrial acontiase, an [Fe-S] protein. We examined the effect of NO on the activity of iron regulatory factor (IRF), a cytoplasmic protein which modulates both ferritin mRNA translation and transferrin receptor mRNA stability by binding to specific mRNA sequences called iron responsive elements (IREs). Murine macrophages were activated with interferon-gamma and lipopolysaccharide to induce NO synthase activity and cultured in the presence or absence of NG-substituted analogues of L-arginine which served as selective inhibitors of NO synthesis. Measurement of the nitrite concentration in the culture medium was taken as an index of NO production. Mitochondria-free cytosols were then prepared and aconitase activity as well as IRE binding activity and induction of IRE binding activity were correlated and depended on NO synthesis after IFN-gamma and/or LPS stimulation. Authentic NO gas as well as the NO-generating compound 3-morpholinosydnonimine (SIN-1) also conversely modulated aconitase and IRE binding activities of purified recombinant IRF. These results provide evidence that endogenously produced NO may modulate the post-transcriptional regulation of genes involved in iron homeostasis and support the hypothesis that the [Fe-S] cluster of IRF mediates iron-dependent regulation. PMID:7504626

  15. Activation of protease calpain by oxidized and glycated LDL increases the degradation of endothelial nitric oxide synthase

    PubMed Central

    Dong, Yunzhou; Wu, Yong; Wu, Mingyuan; Wang, Shuangxi; Zhang, Junhua; Xie, Zhonglin; Xu, Jian; Song, Ping; Wilson, Kenneth; Zhao, Zhengxing; Lyons, Timothy; Zou, Ming-Hui

    2009-01-01

    Oxidation and glycation of low-density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of ‘heavily oxidized’ glycated LDL (HOG-LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG-LDL reduced eNOS protein levels in a concentration- and time-dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca2+, augmented production of reactive oxygen species (ROS) and induction of Ca2+-dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca2+ levels abolished eNOS reduction by HOG-LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1-specific siRNA). Consistent with these results, HOG-LDL impaired acetylcholine-induced endothelium-dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG-LDL may impair endothelial function by inducing calpain-mediated eNOS degradation in a ROS- and Ca2+-dependent manner. PMID:18624772

  16. Antimicrobial and antioxidant activities of Enterococcus species isolated from meat and dairy products.

    PubMed

    Pieniz, S; Andreazza, R; Okeke, B C; Camargo, F A O; Brandelli, A

    2015-11-01

    Lactic acid bacteria (LAB) have an important role in a great variety of fermented foods. In addition to their contribution to sensory characteristics, they enhance food preservation and can be used as probiotics. In this study, the antimicrobial and antioxidant activities of culture supernatants and cell free extracts of 16 LAB isolated from meat and dairy products were investigated. The bacterial were identified by 16S rRNA sequencing. GenBank BLAST analysis revealed that all the isolates belong to Enterococcus faecium species. Antimicrobial activity against the indicator microorganism (Listeria monocytogenes) was observed at 11 culture supernatants and 4 cell free extracts. The sensibility of culture supernatant was evaluated by proteinase K and trypsin and it was observed that activity of antimicrobial substance was completely lost after the treatment. All of the isolates showed antioxidant activity as determined by the Thiobarbituric Acid Reactive Substances (TBARS) method with both types of extracts. When the antioxidant capacity was investigated using ABTS•+ method (2,2 azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) and DPPH method (2,2-diphenyl-1-picrylhydrazyl) it was observed that only culture supernatants showed antioxidant capacity. These bacteria could particularly help to reduce or inhibit pathogenic microorganisms as well as oxidative spoilage in foods and feed.

  17. Antimicrobial and antioxidant activities of Enterococcus species isolated from meat and dairy products.

    PubMed

    Pieniz, S; Andreazza, R; Okeke, B C; Camargo, F A O; Brandelli, A

    2015-11-01

    Lactic acid bacteria (LAB) have an important role in a great variety of fermented foods. In addition to their contribution to sensory characteristics, they enhance food preservation and can be used as probiotics. In this study, the antimicrobial and antioxidant activities of culture supernatants and cell free extracts of 16 LAB isolated from meat and dairy products were investigated. The bacterial were identified by 16S rRNA sequencing. GenBank BLAST analysis revealed that all the isolates belong to Enterococcus faecium species. Antimicrobial activity against the indicator microorganism (Listeria monocytogenes) was observed at 11 culture supernatants and 4 cell free extracts. The sensibility of culture supernatant was evaluated by proteinase K and trypsin and it was observed that activity of antimicrobial substance was completely lost after the treatment. All of the isolates showed antioxidant activity as determined by the Thiobarbituric Acid Reactive Substances (TBARS) method with both types of extracts. When the antioxidant capacity was investigated using ABTS•+ method (2,2 azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) and DPPH method (2,2-diphenyl-1-picrylhydrazyl) it was observed that only culture supernatants showed antioxidant capacity. These bacteria could particularly help to reduce or inhibit pathogenic microorganisms as well as oxidative spoilage in foods and feed. PMID:26675908

  18. Influence of Metal Oxides on Platinum Activity towards Methanol Oxidation in H2SO4 solution.

    PubMed

    Hameed, R M Abdel; Amin, R S; El-Khatib, K M; Fetohi, Amani E

    2016-04-01

    Pt-CeO2 /C, Pt-TiO2 /C, and Pt-ZrO2 /C electrocatalysts were prepared by using a modified microwave-assisted polyol process. Physical characterization was performed by using XRD, TEM, and EDX analyses. The incorporation of different metal oxides increased the dispersion degree of Pt nanoparticles and reduced their diameter to 2.50 and 2.33 nm when TiO2 and ZrO2 were introduced to Pt/C, respectively. The electrocatalytic activity of various electrocatalysts was examined towards methanol oxidation in H2 SO4 solution by using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. Among the studied composites, Pt-ZrO2 /C was selected to be a candidate electrocatalyst for better electrochemical performance in direct methanol fuel cells.

  19. Production of activated carbon and its catalytic application for oxidation of hydrogen sulphide

    NASA Astrophysics Data System (ADS)

    Azargohar, Ramin

    coal-based and biomass-based catalysts to 115 and 141 minutes, respectively. The average amounts of sulphur dioxide produced during the reaction time were 0.14 and 0.03% (as % of hydrogen sulphide fed to the reactor) for modified activated carbons prepared from biochar and luscar char, respectively. The effects of porous structure, surface chemistry, and ash content on the performances of these activated carbon catalysts were investigated for the direct oxidation reaction of hydrogen sulphide. The acid-treatment followed by thermal desorption of activated carbons developed the porosity which produced more surface area for active sites and in addition, provided more space for sulphur product storage resulting in higher life time for catalyst. Boehm titration and temperature program desorption showed that the modification method increased basic character of carbon surface after thermal desorption in comparison to acid-treated sample. In addition, the effects of impregnating agents (potassium iodide and manganese nitrate) and two solvents for impregnation process were studied on the performance of the activated carbon catalysts for the direct oxidation of H2S to sulphur. Sulphur L-edge X-ray near edge structure (XANES) showed that the elemental sulphur was the dominant sulphur species in the product. The kinetic study for oxidation reaction of H2S over LusAC-O-D(650) was performed for temperature range of 160-190°C, oxygen to hydrogen sulphide molar ratio of 1-3, and H2S concentration of 6000-10000 ppm at 200 kPa. The values of activation energy were 26.6 and 29.3 kJ.gmol-1 for Eley-Rideal and Langmuir-Hinshelwood mechanisms, respectively.

  20. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane.

    PubMed

    Tang, Shaobin; Cao, Zexing

    2012-12-28

    Graphene oxides (GOs) may offer extraordinary potential in the design of novel catalytic systems due to the presence of various oxygen functional groups and their unique electronic and structural properties. Using first-principles calculations, we explore the plausible mechanisms for the oxidative dehydrogenation (ODH) of propane to propene by GOs and the diffusion of the surface oxygen-containing groups under an external electric field. The present results show that GOs with modified oxygen-containing groups may afford high catalytic activity for the ODH of propane to propene. The presence of hydroxyl groups around the active sites provided by epoxides can remarkably enhance the C-H bond activation of propane and the activity enhancement exhibits strong site dependence. The sites of oxygen functional groups on the GO surface can be easily tuned by the diffusion of these groups under an external electric field, which increases the reactivity of GOs towards ODH of propane. The chemically modified GOs are thus quite promising in the design of metal-free catalysis. PMID:22801590

  1. Effect of Oxidative Stress Induced by Brevibacterium sp. BS01 on a HAB Causing Species-Alexandrium tamarense

    PubMed Central

    Zhou, Yanyan; Zhang, Bangzhou; Zhang, Su; Li, Dong; Chen, Zhangran; Li, Yi; Bai, Shijie; Lv, Jinglin; Zheng, Wei; Tian, Yun; Zheng, Tianling

    2013-01-01

    Harmful algal blooms occur all over the world, destroying aquatic ecosystems and threatening other organisms. The culture supernatant of the marine algicidal actinomycete BS01 was able to lysis dinoflagellate Alexandrium tamarense ATGD98-006. Physiological and biochemical responses to oxidative stress in A. tamarense were investigated to elucidate the mechanism involved in BS01 inhibition of algal growth. Transmission electron microscope analysis revealed that there were some chloroplast abnormalities in response to BS01 supernatant. The decrease in cellular-soluble protein content suggested that cell growth was greatly inhibited at high concentration of BS01 supernatant. The increase in the levels of reactive oxygen species (ROS) and malondialdehyde contents following exposure to BS01 supernatant indicated that algal cells suffered from oxidative damage. The content of pigment was significantly decreased after 12 h treatment, which indicated that the accumulation of ROS destroyed pigment synthesis. Moreover, the decrease of Fv/Fm ratio suggested that in the photosynthetic system, the dominant sites producing ROS were destroyed by the supernatant of the BS01 culture. The activities of the antioxidant enzymes including superoxide dismutase and peroxidase increased in a short time and decreased slightly with increasing exposure time. A real-time PCR assay showed changes in the transcript abundances of two photosynthetic genes, psbA and psbD. The results showed that BS01 supernatant reduced the expression of the psbA gene after 2 h exposure, but the expression of the psbD gene was increased at concentrations of 1.0 and 1.5%. Our results demonstrated that the expression of the psbA gene was inhibited by the BS01 supernatant, which might block the electron transport chain, significantly enhancing ROS level and excess activity of the antioxidant system. The accumulation of ROS destoryed pigment synthesis and membrane integrity, and inhibited or ultimately killed the

  2. Cell signaling through protein kinase C oxidation and activation.

    PubMed

    Cosentino-Gomes, Daniela; Rocco-Machado, Nathália; Meyer-Fernandes, José Roberto

    2012-01-01

    Due to the growing importance of cellular signaling mediated by reactive oxygen species (ROS), proteins that are reversibly modulated by these reactant molecules are of high interest. In this context, protein kinases and phosphatases, which act coordinately in the regulation of signal transduction through the phosphorylation and dephosphorylation of target proteins, have been described to be key elements in ROS-mediated signaling events. The major mechanism by which these proteins may be modified by oxidation involves the presence of key redox-sensitive cysteine residues. Protein kinase C (PKC) is involved in a variety of cellular signaling pathways. These proteins have been shown to contain a unique structural feature that is susceptible to oxidative modification. A large number of scientific studies have highlighted the importance of ROS as a second messenger in numerous cellular processes, including cell proliferation, gene expression, adhesion, differentiation, senescence, and apoptosis. In this context, the goal of this review is to discuss the mechanisms by which PKCs are modulated by ROS and how these processes are involved in the cellular response. PMID:23109817

  3. Calpain activation induced by glucose deprivation is mediated by oxidative stress and contributes to neuronal damage.

    PubMed

    Páramo, Blanca; Montiel, Teresa; Hernández-Espinosa, Diego R; Rivera-Martínez, Marlene; Morán, Julio; Massieu, Lourdes

    2013-11-01

    The mechanisms leading to neuronal death during glucose deprivation have not been fully elucidated, but a role of oxidative stress has been suggested. In the present study we have investigated whether the production of reactive oxygen species during glucose deprivation, contributes to the activation of calpain, a calcium-dependent protease involved in neuronal injury associated with brain ischemia and cerebral trauma. We have observed a rapid activation of calpain, as monitored by the cleavage of the cytoskeletal protein α-spectrin, after glucose withdrawal, which is reduced by inhibitors of xanthine oxidase, phospholipase A2 and NADPH oxidase. Results suggest that phospholipase A2 and NADPH oxidase contribute to the early activation of calpain after glucose deprivation. In particular NOX2, a member of the NADPH oxidase family is involved, since reduced stimulation of calpain activity is observed after glucose deprivation in hippocampal slices from transgenic mice lacking a functional NOX2. We observed an additive effect of the inhibitors of xanthine oxidase and phospholipase A2 on both ROS production and calpain activity, suggesting a synergistic action of these two enzymes. The present results provide new evidence showing that reactive oxygen species stimulate calpain activation during glucose deprivation and that this mechanism is involved in neuronal death. PMID:23994487

  4. Calpain activation induced by glucose deprivation is mediated by oxidative stress and contributes to neuronal damage.

    PubMed

    Páramo, Blanca; Montiel, Teresa; Hernández-Espinosa, Diego R; Rivera-Martínez, Marlene; Morán, Julio; Massieu, Lourdes

    2013-11-01

    The mechanisms leading to neuronal death during glucose deprivation have not been fully elucidated, but a role of oxidative stress has been suggested. In the present study we have investigated whether the production of reactive oxygen species during glucose deprivation, contributes to the activation of calpain, a calcium-dependent protease involved in neuronal injury associated with brain ischemia and cerebral trauma. We have observed a rapid activation of calpain, as monitored by the cleavage of the cytoskeletal protein α-spectrin, after glucose withdrawal, which is reduced by inhibitors of xanthine oxidase, phospholipase A2 and NADPH oxidase. Results suggest that phospholipase A2 and NADPH oxidase contribute to the early activation of calpain after glucose deprivation. In particular NOX2, a member of the NADPH oxidase family is involved, since reduced stimulation of calpain activity is observed after glucose deprivation in hippocampal slices from transgenic mice lacking a functional NOX2. We observed an additive effect of the inhibitors of xanthine oxidase and phospholipase A2 on both ROS production and calpain activity, suggesting a synergistic action of these two enzymes. The present results provide new evidence showing that reactive oxygen species stimulate calpain activation during glucose deprivation and that this mechanism is involved in neuronal death.

  5. Flavonoid profiles of three Bupleurum species and in vitro hepatoprotective of activity Bupleurum flavum Forsk.

    PubMed Central

    Gevrenova, Reneta; Kondeva-Burdina, Magdalena; Denkov, Nikolay; Zheleva-Dimitrova, Dimitrina

    2015-01-01

    Background: Bupleurum L. (Aspiaceae) species are used as herbal remedy in Chinese traditional medicine. Objective: The aim was to investigate the flavonoids in three annual European Bupleurum species, including B. baldense, B. affine and B. flavum, and to test their antioxidant and possible hepatoprotective effects. Materials and Methods: Flavonoids from the methanol-aqueous extracts were quantified by solid-phase extraction-high-performance liquid chromatography. Bupleurum extracts (1–220 mg/ml) were tested for their antioxidant activity in DPPH and ABTS assays, as well as on isolated liver rat microsomes. In vitro hepatoprotective activity of B. flavum flavonoid (BFF) mixture and rutin, and narcissin, isolated from the same mixture, were evaluated on carbon tetrachloride (CCl4) and tert-butyl hydroperoxide (t-BuOOH) toxicity models in isolated rat hepatocytes. Results: Narcissin was the dominant flavonol glycoside in B. flavum being present at 24.21 ± 0.19 mg/g, whilst the highest content of rutin (28.63 ± 1.57 mg/g) was found in B. baldense. B. flavum possessed the strongest DPPH (IC50 22.12 μg/ml) and ABTS (IC50 118.15 μg/ml) activity. At a concentration 1 mg/ml of BFF (rutin 197.58 mg/g, narcissin 75.74 mg/g), a stronger antioxidant effect in microsomes was evidenced in comparison with silymarin, rutin and narcissin. The hepatoprotective effect of BFF significantly reduced the elevated levels of lactate dehydrogenase and malondialdehyde, and ameliorated glutathione, being most active in t-BuOOH-induced injury model when compared with CCl4 toxicity (P < 0.001). Conclusion: In BFF, synergism of rutin and narcissin could be responsible for stronger protection against mitochondrial induced oxidative stress. PMID:25709205

  6. Study of the active surface on titanium oxide catalysts for the oxidation of hydrogen sulfide

    SciTech Connect

    Khanmamedov, T.K.; Kalinkin, A.V.; Rakhimova, N.R.

    1989-02-01

    A study was carried out on the change in the composition of a Ti-Mo-W catalyst depending on the conditions for their treatment by H/sub 2/S-SO/sub 2/ and H/sub 2/S-O/sub 2/ gas mixtures, which serve as models for the technological gases in Klaus apparatuses and the direct catalytic oxidation of H/sub 2/S. X-ray photoelectron spectroscopy was used to establish the formation of sulfur as S/sup 2/minus// and S/sup 6+/ on the surface. The presence of S/sup 6+/ along with the changes in E/sub b/ of the electrons in the T-Mo-W catalyst indicates the formation of MoS/sub 2/ and TiO(SO/sub 4/) species.

  7. Study of Chromium Oxide Activities in EAF Slags

    NASA Astrophysics Data System (ADS)

    Yan, Baijun; Li, Fan; Wang, Hui; Sichen, Du

    2016-02-01

    The activity coefficients of chromium in Cu-Cr melts were determined by equilibrating liquid copper with solid Cr2O3 in CO-CO2 atmosphere. The temperature dependence of the activity coefficients of chromium in Cu-Cr melts could be expressed as lg γ_{Cr}(s)^{0} = { 3 2 5 9( ± 1 8 6} )/T - 0. 5 9( { ± 0. 1} ). Based on the above results, the activities of bivalent and trivalent chromium oxide in some slags at 1873 K (1600 °C) were measured. The slags were equilibrated with Cu-Cr melts under two oxygen partial pressures ( {p_{O}_{ 2} }} } = 6.9 × 10-4 and 1.8 × 10-6 Pa, respectively). The morphology of the quenched slags and the solubility of chromium oxide in the melts were investigated by EPMA, SEM, and XRD. Under both oxygen partial pressures, the slags were saturated by the solid solution MgAl2- x Cr x O4- δ . At the low oxygen partial pressure (1.8 × 10-6 Pa), the content of Cr in the liquid phase varied from 0.4 to 1.6 mass pct with the total Cr content in the slags increasing from 1.3 to 10.8 mass pct. At the high oxygen partial pressure (6.9 × 10-4 Pa), the content of Cr in the liquid phase decreased to the level of 0.2 to 0.6 mass pct. Both the activities of CrO and Cr2O3 in slag were found to increase approximately linearly with the increase of the total Cr content in slag. While the oxygen partial pressure had minor effect on the activity of Cr2O3 in the slag, it had significant effect on the activity of CrO.

  8. Increased oxidation-related glutathionylation and carbonic anhydrase activity in endometriosis.

    PubMed

    Andrisani, Alessandra; Donà, Gabriella; Brunati, Anna Maria; Clari, Giulio; Armanini, Decio; Ragazzi, Eugenio; Ambrosini, Guido; Bordin, Luciana

    2014-06-01

    This study examined the possible involvement of carbonic anhydrase activation in response to an endometriosis-related increase in oxidative stress. Peripheral blood samples obtained from 27 healthy controls and 30 endometriosis patients, classified as having endometriosis by histological examination of surgical specimens, were analysed by multiple immunoassay and carbonic anhydrase activity assay. Red blood cells (RBC) were analysed for glutathionylated protein (GSSP) content in the membrane, total glutathione (GSH) in the cytosol and carbonic anhydrase concentration and activity. In association with a membrane increase of GSSP and a cytosolic decrease of GSH content in endometriosis patients, carbonic anhydrase significantly increased (P < 0.0001) both monomerization and activity compared with controls. This oxidation-induced activation of carbonic anhydrase was positively and significantly correlated with the GSH content of RBC (r = 0.9735, P < 0.001) and with the amount of the 30-kDa monomer of carbonic anhydrase (r = 0.9750, P < 0.001). Because carbonic anhydrase activation is implied in many physiological and biochemical processes linked to pathologies such as glaucoma, hypertension, obesity and infections, carbonic anhydrase activity should be closely monitored in endometriosis. These data open promising working perspectives for diagnosis and treatment of endometriosis and hopefully of other oxidative stress-related diseases. Endometriosis is a chronic disease associated with infertility and local inflammatory response, which is thought to spread rapidly throughout the body as a systemic subclinical inflammation. One of the causes in the pathogenesis/evolution of endometriosis is oxidative stress, which occurs when reactive oxygen species are produced faster than the endogenous antioxidant defence systems can neutralize them. Once produced, reactive oxygen species can alter the morphological and functional properties of endothelial cells, including

  9. Ribulose bisphosphate carboxylase activity and a Calvin cycle gene cluster in Sulfobacillus species.

    PubMed

    Caldwell, Paul E; MacLean, Martin R; Norris, Paul R

    2007-07-01

    The Calvin-Benson-Bassham (CBB) cycle has been extensively studied in proteobacteria, cyanobacteria, algae and plants, but hardly at all in Gram-positive bacteria. Some characteristics of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) and a cluster of potential CBB cycle genes in a Gram-positive bacterium are described in this study with two species of Sulfobacillus (Gram-positive, facultatively autotrophic, mineral sulfide-oxidizing acidophiles). In contrast to the Gram-negative, iron-oxidizing acidophile Acidithiobacillus ferrooxidans, Sulfobacillus thermosulfidooxidans grew poorly autotrophically unless the CO(2) concentration was enhanced over that in air. However, the RuBisCO of each organism showed similar affinities for CO(2) and for ribulose 1,5-bisphosphate, and similar apparent derepression of activity under CO(2) limitation. The red-type, form I RuBisCO of Sulfobacillus acidophilus was confirmed as closely related to that of the anoxygenic phototroph Oscillochloris trichoides. Eight genes potentially involved in the CBB cycle in S. acidophilus were clustered in the order cbbA, cbbP, cbbE, cbbL, cbbS, cbbX, cbbG and cbbT.

  10. Protein oxidation mediated by heme-induced active site conversion specific for heme-regulated transcription factor, iron response regulator

    PubMed Central

    Kitatsuji, Chihiro; Izumi, Kozue; Nambu, Shusuke; Kurogochi, Masaki; Uchida, Takeshi; Nishimura, Shin-Ichiro; Iwai, Kazuhiro; O’Brian, Mark R.; Ikeda-Saito, Masao; Ishimori, Koichiro

    2016-01-01

    The Bradyrhizobium japonicum transcriptional regulator Irr (iron response regulator) is a key regulator of the iron homeostasis, which is degraded in response to heme binding via a mechanism that involves oxidative modification of the protein. Here, we show that heme-bound Irr activates O2 to form highly reactive oxygen species (ROS) with the “active site conversion” from heme iron to non-heme iron to degrade itself. In the presence of heme and reductant, the ROS scavenging experiments show that Irr generates H2O2 from O2 as found for other hemoproteins, but H2O2 is less effective in oxidizing the peptide, and further activation of H2O2 is suggested. Interestingly, we find a time-dependent decrease of the intensity of the Soret band and appearance of the characteristic EPR signal at g = 4.3 during the oxidation, showing the heme degradation and the successive formation of a non-heme iron site. Together with the mutational studies, we here propose a novel “two-step self-oxidative modification” mechanism, during which O2 is activated to form H2O2 at the heme regulatory motif (HRM) site and the generated H2O2 is further converted into more reactive species such as ·OH at the non-heme iron site in the His-cluster region formed by the active site conversion. PMID:26729068

  11. Switching on electrocatalytic activity in solid oxide cells

    NASA Astrophysics Data System (ADS)

    Myung, Jae-Ha; Neagu, Dragos; Miller, David N.; Irvine, John T. S.

    2016-09-01

    Solid oxide cells (SOCs) can operate with high efficiency in two ways—as fuel cells, oxidizing a fuel to produce electricity, and as electrolysis cells, electrolysing water to produce hydrogen and oxygen gases. Ideally, SOCs should perform well, be durable and be inexpensive, but there are often competitive tensions, meaning that, for example, performance is achieved at the expense of durability. SOCs consist of porous electrodes—the fuel and air electrodes—separated by a dense electrolyte. In terms of the electrodes, the greatest challenge is to deliver high, long-lasting electrocatalytic activity while ensuring cost- and time-efficient manufacture. This has typically been achieved through lengthy and intricate ex situ procedures. These often require dedicated precursors and equipment; moreover, although the degradation of such electrodes associated with their reversible operation can be mitigated, they are susceptible to many other forms of degradation. An alternative is to grow appropriate electrode nanoarchitectures under operationally relevant conditions, for example, via redox exsolution. Here we describe the growth of a finely dispersed array of anchored metal nanoparticles on an oxide electrode through electrochemical poling of a SOC at 2 volts for a few seconds. These electrode structures perform well as both fuel cells and electrolysis cells (for example, at 900 °C they deliver 2 watts per square centimetre of power in humidified hydrogen gas, and a current of 2.75 amps per square centimetre at 1.3 volts in 50% water/nitrogen gas). The nanostructures and corresponding electrochemical activity do not degrade in 150 hours of testing. These results not only prove that in operando methods can yield emergent nanomaterials, which in turn deliver exceptional performance, but also offer proof of concept that electrolysis and fuel cells can be unified in a single, high-performance, versatile and easily manufactured device. This opens up the possibility of

  12. Promoting Effect of CeO2 in the Electrocatalytic Activity of Rhodium for Ethanol Electro-Oxidation

    SciTech Connect

    He, Q.; Mukerjee, S; Shyam, B; Ramaker, D; Parres-Esclapex, D; Illan-Gomez, M; Bueno-Lopez, A

    2009-01-01

    The promoting effect of ceria in the electrocatalytic activity of rhodium for ethanol electro-oxidation in alkali media has been studied. Rh/C, CeO2/C and RhCeO2/C catalysts were synthesized and characterized by TEM, XRD, XPS, TG-MS, H2-TPR and XAS. The electrocatalytic activity was studied by Cyclic Voltammetry (CV) and chronoamperometry. The onset potential of oxidation on RhCeO2/C was shifted negatively as compared to that on Rh/C, despite ceria itself does not show any electrocatalytic activity. The promoting effect of ceria has been attributed to the improved rhodium dispersion, and differences in the oxidation state of rhodium between Rh/C and RhCeO2/C were not found. The carbon support reduces rhodium species to Rh0, and also partially reduces ceria, during the samples preparation, and the surface of the carbon support is oxidised.

  13. Measurements of Gas-Wall Partitioning of Oxidized Species in Environmental Smog Chambers and Teflon Sampling Lines

    NASA Astrophysics Data System (ADS)

    Krechmer, J.; Pagonis, D.; Ziemann, P. J.; Jimenez, J. L.

    2015-12-01

    Environmental "smog" chambers have played an integral role in atmospheric aerosol research for decades. Recently, many works have demonstrated that the loss of gas-phase material to fluorinated ethylene propylene (FEP) chamber walls can have significant effects on secondary organic aerosol (SOA) yield results. The effects of gas-wall partitioning on highly oxidized species is still controversial, however. In this work we performed a series of experiments examining the losses of oxidized gas-phase compounds that were generated in-situ­ in an environmental chamber. The loss of species to the walls was measured using three chemical ionization mass spectrometry techniques: proton-transfer-reaction (PTR), nitrate (NO3-) ion, and iodide (I-). Many oxidized species have wall loss timescales ranging between 15 to 45 minutes and scale according to the molecule's estimated saturation concentration c* and functional groups. By comparing results of the different techniques, and in particular by the use of the "wall-less" NO3- source, we find that measuring species with high chamber wall-loss rates is complicated by the use of a standard ion-molecule reaction (IMR) region, as well as long Teflon sampling lines, which can be important sinks for gas-phase species. This effect is observed even for semi-volatile species and could have significant effects on ambient sampling techniques that make highly time-resolved measurements using long sampling lines, such as eddy covariance measurements.

  14. Inflammation, Cancer and Oxidative Lipoxygenase Activity are Intimately Linked

    PubMed Central

    Wisastra, Rosalina; Dekker, Frank J.

    2014-01-01

    Cancer and inflammation are intimately linked due to specific oxidative processes in the tumor microenvironment. Lipoxygenases are a versatile class of oxidative enzymes involved in arachidonic acid metabolism. An increasing number of arachidonic acid metabolites is being discovered and apart from their classically recognized pro-inflammatory effects, anti-inflammatory effects are also being described in recent years. Interestingly, these lipid mediators are involved in activation of pro-inflammatory signal transduction pathways such as the nuclear factor κB (NF-κB) pathway, which illustrates the intimate link between lipid signaling and transcription factor activation. The identification of the role of arachidonic acid metabolites in several inflammatory diseases led to a significant drug discovery effort around arachidonic acid metabolizing enzymes. However, to date success in this area has been limited. This might be attributed to the lack of selectivity of the developed inhibitors and to a lack of detailed understanding of the functional roles of arachidonic acid metabolites in inflammatory responses and cancer. This calls for a more detailed investigation of the activity of arachidonic acid metabolizing enzymes and development of more selective inhibitors. PMID:25037020

  15. Plant pathogenic Streptomyces species produce nitric oxide synthase-derived nitric oxide in response to host signals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitric oxide (NO) is a potent intercellular signal for defense, development and metabolism in animals and plants. In mammals, highly regulated nitric oxide synthases (NOSs) generate NO. NOS homologs exist in some prokaryotes, but direct evidence for NO production by these proteins has been lacking...

  16. The Active Molybdenum Oxide Phase in the Methanol Oxidation to Formaldehyde (Formox Process): A DFT Study.

    PubMed

    Rellán-Piñeiro, Marcos; López, Núria

    2015-07-01

    Methanol is oxidised to formaldehyde by the Formox process, in which molybdenum oxides, usually doped with iron, are the catalyst. The active phase of the catalysts and the reasons for the selectivity observed are still unknown. We present a density functional theory based study that indicates the unique character of Mo(VI)¢Mo(IV) pairs as the most active and selective sites and indicates the active sites on the surface, the controlling factors of selectivity, and the role of the dopant. Iron reduces the energy requirements of the redox Mo(VI)¢Mo(IV) pair by acting as an electron reservoir that sets in if required. Our present study paves the way towards a better understanding of the process.

  17. Polymorphisms in oxidative stress genes, physical activity, and breast cancer risk

    PubMed Central

    Santella, Regina M.; Cleveland, Rebecca J.; Bradshaw, Patrick T.; Millikan, Robert C.; North, Kari E.; Olshan, Andrew F.; Eng, Sybil M.; Ambrosone, Christine B.; Ahn, Jiyoung; Steck, Susan E.; Teitelbaum, Susan L.; Neugut, Alfred I.; Gammon, Marilie D.

    2013-01-01

    Purpose The mechanisms driving the physical activity–breast cancer association are unclear. Exercise both increases reactive oxygen species production, which may transform normal epithelium to a malignant phenotype, and enhances antioxidant capacity, which could protect against subsequent oxidative insult. Given the paradoxical effects of physical activity, the oxidative stress pathway is of interest. Genetic variation in CAT or antioxidant-related polymorphisms may mediate the physical activity–breast cancer association. Methods We investigated the main and joint effects of three previously unreported polymorphisms in CAT on breast cancer risk. We also estimated interactions between recreational physical activity (RPA) and 13 polymorphisms in oxidative stress-related genes. Data were from the Long Island Breast Cancer Study Project, with interview and biomarker data available on 1,053 cases and 1,102 controls. Results Women with ≥1 variant allele in CAT rs4756146 had a 23 % reduced risk of postmenopausal breast cancer compared with women with the common TT genotype (OR = 0.77; 95 % CI = 0.59–0.99). We observed two statistical interactions between RPA and genes in the anti-oxidant pathway (p = 0.043 and 0.006 for CAT and GSTP1, respectively). Highly active women harboring variant alleles in CAT rs1001179 were at increased risk of breast cancer compared with women with the common CC genotype (OR = 1.61; 95 % CI, 1.06–2.45). Risk reductions were observed among moderately active women carrying variant alleles in GSTP1 compared with women homozygous for the major allele (OR = 0.56; 95 % CI, 0.38–0.84). Conclusions Breast cancer risk may be jointly influenced by RPA and genes involved in the antioxidant pathway, but our findings require confirmation. PMID:23053794

  18. Novel pro-oxidant activity assay for polyphenols, vitamins C and E using a modified CUPRAC method.

    PubMed

    Kondakçı, Esin; Özyürek, Mustafa; Güçlü, Kubilay; Apak, Reşat

    2013-10-15

    In this study, a direct assay, a modified CUPRAC (Cupric Ion Reducing Antioxidant Capacity) method, is developed to determine transition metal ion (Cu(II))-catalyzed pro-oxidant activity of polyphenolic compounds, vitamins C and E, and herbal samples in the presence of proteins containing thiol groups. Since transition metal ion-catalyzed pro-oxidant activity of phenolics is usually initiated with the reduction of the metal to lower oxidation states (as a prerequisite of Fenton-type reactions), this method involves the reduction of copper(II) ions to copper(I) by polyphenolic compounds (simultaneously giving rise to reactive species), binding of the formed Cu(I) to egg white protein -SH groups, and liberation of copper(I)-neocuproine (Cu(I)-Nc) chelate (showing maximum absorbance at 450 nm) by treating the incubation product with a neocuproine-ammonium acetate mixture. The proposed method is validated against atomic absorption spectrometric (AAS) determination of protein-bound copper and protein carbonyl assay of oxidative stress. The proposed assay is faster and more specific than the carbonyl assay, and uses low-cost reagents and equipment. Pro-oxidant activity (i.e. proportional to absorbance) varies linearly over a relatively wide range with concentration, as opposed to the reciprocal correlations (i.e. linear regression of 1/(pro-oxidant activity) versus 1/concentration) of other similar assays. The pro-oxidant activity order of the tested antioxidant compounds in terms of 'Quercetin Equivalent Pro-oxidant Activity' (QREPA) coefficients is: gallic acid > epicatechin > quercetin ≈ catechin > α-tocopherol > rosmarinic acid > trolox > caffeic acid > ascorbic acid.

  19. Reactive Nitrogen Species Is Required for the Activation of the AMP-activated Protein Kinase by Statin in Vivo*

    PubMed Central

    Choi, Hyoung Chul; Song, Ping; Xie, Zhonglin; Wu, Yong; Xu, Jian; Zhang, Miao; Dong, Yunzhou; Wang, Shuangxi; Lau, Kai; Zou, Ming-Hui

    2008-01-01

    The AMP-activated protein kinase (AMPK) is reported to mediate the beneficial effects of statin on the vascular functions, but the biochemical mechanisms are incompletely understood. The aim of the study was to determine how statin activates AMPK. Exposure of confluent bovine aortic endothelial cells to simvastatin (statin) dose-dependently increased phosphorylation of AMPK at Thr172 and activities of AMPK, which was in parallel with increased detection of both LKB1 phosphorylation at Ser428 and LKB1 nuclear export. Furthermore, statin treatment was shown to increase protein kinase C (PKC)-ζ activity and PKC-ζ phosphorylation at Thr410/Thr403. Consistently, inhibition of PKC-ζ either by pharmacological or genetic manipulations abolished statin-enhanced LKB1 phosphorylation at Ser428, blocked LKB1 nucleus export, and prevented the subsequent activation of AMPK. Similarly, in vivo transfection of PKC-ζ-specific small interfering RNA in C57BL/6J mice significantly attenuated statin-enhanced phosphorylation of AMPK-Thr172, acetyl-CoA carboxylase (ACC)-Ser79, and LKB1-Ser428. In addition, statin significantly increased reactive oxygen species, whereas preincubation of mito-TEMPOL, a superoxide dismutase mimetic, abolished statin-enhanced phosphorylation of both AMPK-Thr172 and ACC-Ser79. Finally, in vivo administration of statin increased 3-nitrotyrosine and the phosphorylation of AMPK and ACC in C57BL/6J mice but not in mice deficient in endothelial nitric-oxide synthase. Taken together, our data suggest that AMPK activation by statin is peroxynitrite-mediated but PKC-ζ-dependent. PMID:18474592

  20. Nanostructured magnesium oxide as cure activator for polychloroprene rubber.

    PubMed

    Kar, Sritama; Bhowmick, Anil K

    2009-05-01

    The aim of this research was to synthesize magnesium oxide nanoparticles and to use them as cure activator for polychloroprene rubber (CR). The effects of counterions of magnesium salts on the homogeneous phase precipitation reaction to control size, monodispersity, crystallinity, and morphology of Mg(OH)2 nanoparticles were also investigated. Magnesium oxide nanoparticles were synthesized by optimizing the calcination temperature of Mg(OH)2 nanoparticles. Finally, the MgO nanoparticles were dispersed in polychloroprene rubber (CR) solution along with zinc oxide (ZnO) powder. The influence of MgO nanoparticles on the mechanical, dynamic mechanical and thermal properties of the resulting nanocomposites was quantified. The modulus and strength of ZnO-cured polychloroprene rubber with 4% MgO nanoparticles appeared to be superior to those with ZnO particles or ZnO with rubber grade MgO particles. These composites were further characterized by transmission electron microscopy and infrared spectroscopy in order to understand the morphology of the resulting system and the load transfer mechanism. PMID:19452982

  1. Defluorination of Aqueous Perfluorooctanesulfonate by Activated Persulfate Oxidation

    PubMed Central

    Yang, Shewei; Cheng, Jianhua; Sun, Jian; Hu, Yongyou; Liang, Xiaoyan

    2013-01-01

    Activated persulfate oxidation technologies based on sulfate radicals were first evaluated for defluorination of aqueous perfluorooctanesulfonate (PFOS). The influences of catalytic method, time, pH and K2S2O8 amounts on PFOS defluorination were investigated. The intermediate products during PFOS defluorination were detected by using LC/MS/MS. The results showed that the S2O82− had weak effect on the defluorination of PFOS, while the PFOS was oxidatively defluorinated by sulfate radicals in water. The defluorination efficiency of PFOS under various treatment was followed the order: HT (hydrothermal)/K2S2O8 > UV (ultraviolet)/K2S2O8 > Fe2+/K2S2O8 > US (ultrasound)/K2S2O8. Low pH was favorable for the PFOS defluorination with sulfate radicals. Increase in the amount of S2O82− had positive effect on PFOS defluorination. However, further increase in amounts of S2O82− caused insignificant improvement in PFOS defluorination due to elimination of sulfate radicals under high concentration of S2O82−. CF3(CF2)nCOOH (n = 0–6) were detected as intermediates during PFOS defluorination. Sulfate radicals oxidation and hydrolysis were the main mechanisms involved in defluorination process of PFOS. PMID:24116016

  2. Characterization and metal sorptive properties of oxidized active carbon.

    PubMed

    Strelko, Vladimir; Malik, Danish J

    2002-06-01

    A commercial activated carbon Chemviron F 400 has been oxidized using nitric acid in order to introduce a variety of acidic surface functional groups. Both unoxidized and oxidized carbon samples were characterized using nitrogen porosimetry, elemental analysis, pH titration, Boehm's titration, and electrophoretic mobility measurements. Results show that oxidation treatment reduced surface area and pore volume. However, the carbon surface acquires an acidic character with carboxylic groups being the dominant surface functional groups. The modified sample displays cation-exchange properties over a wide range of pH values and exhibits polyfunctional nature. Both carbon samples were challenged for the removal of transition metals such as copper(II), nickel(II), cobalt(II), zinc(II), and manganese(II). The affinity series Mn2+Zn2+ has been found to coincide with the general stability sequence of metal complexes (the Irving-Williams series). The higher preference displayed by carbons toward copper(II) is a consequence of the fact that copper(II) often forms distorted and more stable octahedral complexes. PMID:16290653

  3. Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices.

    PubMed

    Ivanov, Anton I; Malkov, Anton E; Waseem, Tatsiana; Mukhtarov, Marat; Buldakova, Svetlana; Gubkina, Olena; Zilberter, Misha; Zilberter, Yuri

    2014-03-01

    Network activation triggers a significant energy metabolism increase in both neurons and astrocytes. Questions of the primary neuronal energy substrate (e.g., glucose vs. lactate) as well as the relative contributions of glycolysis and oxidative phosphorylation and their cellular origin (neurons vs. astrocytes) are still a matter of debates. Using simultaneous measurements of electrophysiological and metabolic parameters during synaptic stimulation in hippocampal slices from mature mice, we show that neurons and astrocytes use both glycolysis and oxidative phosphorylation to meet their energy demands. Supplementation or replacement of glucose in artificial cerebrospinal fluid (ACSF) with pyruvate or lactate strongly modifies parameters related to network activity-triggered energy metabolism. These effects are not induced by changes in ATP content, pH(i), [Ca(2+)](i) or accumulation of reactive oxygen species. Our results suggest that during network activation, a significant fraction of NAD(P)H response (its overshoot phase) corresponds to glycolysis and the changes in cytosolic NAD(P)H and mitochondrial FAD are coupled. Our data do not support the hypothesis of a preferential utilization of astrocyte-released lactate by neurons during network activation in slices--instead, we show that during such activity glucose is an effective energy substrate for both neurons and astrocytes.

  4. Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices

    PubMed Central

    Ivanov, Anton I; Malkov, Anton E; Waseem, Tatsiana; Mukhtarov, Marat; Buldakova, Svetlana; Gubkina, Olena; Zilberter, Misha; Zilberter, Yuri

    2014-01-01

    Network activation triggers a significant energy metabolism increase in both neurons and astrocytes. Questions of the primary neuronal energy substrate (e.g., glucose vs. lactate) as well as the relative contributions of glycolysis and oxidative phosphorylation and their cellular origin (neurons vs. astrocytes) are still a matter of debates. Using simultaneous measurements of electrophysiological and metabolic parameters during synaptic stimulation in hippocampal slices from mature mice, we show that neurons and astrocytes use both glycolysis and oxidative phosphorylation to meet their energy demands. Supplementation or replacement of glucose in artificial cerebrospinal fluid (ACSF) with pyruvate or lactate strongly modifies parameters related to network activity-triggered energy metabolism. These effects are not induced by changes in ATP content, pHi, [Ca2+]i or accumulation of reactive oxygen species. Our results suggest that during network activation, a significant fraction of NAD(P)H response (its overshoot phase) corresponds to glycolysis and the changes in cytosolic NAD(P)H and mitochondrial FAD are coupled. Our data do not support the hypothesis of a preferential utilization of astrocyte-released lactate by neurons during network activation in slices—instead, we show that during such activity glucose is an effective energy substrate for both neurons and astrocytes. PMID:24326389

  5. Cobalt oxide nanoparticles induced oxidative stress linked to activation of TNF-α/caspase-8/p38-MAPK signaling in human leukemia cells.

    PubMed

    Chattopadhyay, Sourav; Dash, Sandeep Kumar; Tripathy, Satyajit; Das, Balaram; Kar Mahapatra, Santanu; Pramanik, Panchanan; Roy, Somenath

    2015-06-01

    The purpose of this study was to determine the intracellular signaling transduction pathways involved in oxidative stress induced by nanoparticles in cancer cells. Activation of reactive oxygen species (ROS) has some therapeutic benefits in arresting the growth of cancer cells. Cobalt oxide nanoparticles (CoO NPs) are an interesting compound for oxidative cancer therapy. Our results showed that CoO NPs elicited a significant (P <0.05) amount of ROS in cancer cells. Co-treatment with N-aceyltine cystine (an inhibitor of ROS) had a protective role in cancer cell death induced by CoO NPs. In cultured cells, the elevated level of tumor necrosis factor-alpha (TNF-α) was noted after CoO NPs treatment. This TNF-α persuaded activation of caspase-8 followed by phosphorylation of p38 mitogen-activated protein kinase and induced cell death. This study showed that CoO NPs induced oxidative stress and activated the signaling pathway of TNF-α-Caspase-8-p38-Caspase-3 to cancer cells.

  6. Synthesis of cobalt-containing mesoporous catalysts using the ultrasonic-assisted "pH-adjusting" method: Importance of cobalt species in styrene oxidation

    NASA Astrophysics Data System (ADS)

    Li, Baitao; Zhu, Yanrun; Jin, Xiaojing

    2015-01-01

    Cobalt-containing SBA-15 and MCM-41 (Co-SBA-15 and Co-MCM-41) mesoporous catalysts were prepared via ultrasonic-assisted "pH-adjusting" technique in this study. Their physiochemical structures were comprehensively characterized and correlated with catalytic activity in oxidation of styrene. The nature of cobalt species depended on the type of mesoporous silica as well as pH values. The different catalytic performance between Co-SBA-15 and Co-MCM-41 catalysts originated from cobalt species. Cobalt species were homogenously incorporated into the siliceous framework of Co-SBA-15 in single-site Co(II) state, while Co3O4 particles were loaded on Co-MCM-41 catalysts. The styrene oxidation tests showed that the single-site Co(II) state was more beneficial to the catalytic oxidation of styrene. The higher styrene conversion and benzaldehyde selectivity over Co-SBA-15 catalysts were mainly attributed to single-site Co(II) state incorporated into the framework of SBA-15. The highest conversion of styrene (34.7%) with benzaldehyde selectivity of 88.2% was obtained over Co-SBA-15 catalyst prepared at pH of 7.5, at the mole ratio of 1:1 (styrene to H2O2) at 70 °C.

  7. Soluble and immobilized graphene oxide activates complement system differently dependent on surface oxidation state.

    PubMed

    Wibroe, Peter P; Petersen, Søren V; Bovet, Nicolas; Laursen, Bo W; Moghimi, S Moein

    2016-02-01

    Graphene oxide (GO) is believed to become applicable in biomedical products and medicine, thereby necessitating appropriate safety evaluation dependent on their applications and the route of administration. We have examined the effect of GO form (in solution versus immobilized) and oxidation state on two related elements of innate immunity: the complement system and interleukin-6 (IL-6) release in human blood. In solution, there was a decrease in GO-mediated complement activation with decreasing surface oxygen content (and altered oxygen functionality), whereas with immobilized GO complement response were reversed and increased with decreasing oxygen content. GO solutions, at concentrations below complement activating threshold, did not induce IL-6 release from human blood leukocytes, and further dampened lipopolysaccharide-induced IL-6 release in the whole blood. The latter effect became more profound with GO's having higher oxygen content. This protective role of GO solutions, however, disappeared at higher concentrations above complement-activating threshold. We discuss these results in relation to GO surface structure and properties, and implications for local administration and development of GO-based implantable devices.

  8. Structure of the key species in the enzymatic oxidation of methane to methanol.

    PubMed

    Banerjee, Rahul; Proshlyakov, Yegor; Lipscomb, John D; Proshlyakov, Denis A

    2015-02-19

    Methane monooxygenase (MMO) catalyses the O2-dependent conversion of methane to methanol in methanotrophic bacteria, thereby preventing the atmospheric egress of approximately one billion tons of this potent greenhouse gas annually. The key reaction cycle intermediate of the soluble form of MMO (sMMO) is termed compound Q (Q). Q contains a unique dinuclear Fe(IV) cluster that reacts with methane to break an exceptionally strong 105 kcal mol(-1) C-H bond and insert one oxygen atom. No other biological oxidant, except that found in the particulate form of MMO, is capable of such catalysis. The structure of Q remains controversial despite numerous spectroscopic, computational and synthetic model studies. A definitive structural assignment can be made from resonance Raman vibrational spectroscopy but, despite efforts over the past two decades, no vibrational spectrum of Q has yet been obtained. Here we report the core structures of Q and the following product complex, compound T, using time-resolved resonance Raman spectroscopy (TR(3)). TR(3) permits fingerprinting of intermediates by their unique vibrational signatures through extended signal averaging for short-lived species. We report unambiguous evidence that Q possesses a bis-μ-oxo diamond core structure and show that both bridging oxygens originate from O2. This observation strongly supports a homolytic mechanism for O-O bond cleavage. We also show that T retains a single oxygen atom from O2 as a bridging ligand, while the other oxygen atom is incorporated into the product. Capture of the extreme oxidizing potential of Q is of great contemporary interest for bioremediation and the development of synthetic approaches to methane-based alternative fuels and chemical industry feedstocks. Insight into the formation and reactivity of Q from the structure reported here is an important step towards harnessing this potential. PMID:25607364

  9. Standards development of global warming gas species: methane, nitrous oxide, trichlorofluoromethane, and dichlorodifluoromethane.

    PubMed

    Rhoderick, George C; Dorko, William D

    2004-05-01

    Environmental scientists from federal agencies, such as the National Oceanic and Atmospheric Administration (NOAA), and academia have long suspected that increasing anthropogenic inputs of various trace gases into the atmosphere can cause changes in the earth's climate and protective ozone layer. Nitrous oxide and methane, cited in the Kyoto Protocol, as well astrichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12), cited in the Montreal Protocol, are all greenhouse gases and are implicated in the destruction of the stratospheric ozone layer. The lack of national standards prompted research to determine the feasibility of preparing accurate and stable standards containing these four compounds. Development of these standards would support the measurement of these species by those in the atmospheric research community not having their own source of standards. A suite of eight primary gas standards containing methane, nitrous oxide, CFC-11, and CFC-12 in a balance of air were prepared gravimetrically to bracket the ambient atmospheric concentrations. The combined uncertainties (uc) were calculated from error propagation analysis that included the weighing data from the gravimetric preparation and other sources of error such as the purity analysis of the compounds and air matrix. The expanded uncertainties (U) for the gravimetric standards were < 0.5% as calculated from the equation U = kuc, where the coverage factor k is equal to 2 for a 95% confidence interval. Analyses of the suite of standards by gas chromatography with flame-ionization and electron capture detection resulted in average absolute residuals of < 0.25% from regression models. The NIST suite of eight gravimetric standards was used to determine the concentrations in two standardsfrom NOAA. Those analyses resulted in bias across the two laboratories of < or = 2.1%. PMID:15180066

  10. Standards development of global warming gas species: methane, nitrous oxide, trichlorofluoromethane, and dichlorodifluoromethane.

    PubMed

    Rhoderick, George C; Dorko, William D

    2004-05-01

    Environmental scientists from federal agencies, such as the National Oceanic and Atmospheric Administration (NOAA), and academia have long suspected that increasing anthropogenic inputs of various trace gases into the atmosphere can cause changes in the earth's climate and protective ozone layer. Nitrous oxide and methane, cited in the Kyoto Protocol, as well astrichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12), cited in the Montreal Protocol, are all greenhouse gases and are implicated in the destruction of the stratospheric ozone layer. The lack of national standards prompted research to determine the feasibility of preparing accurate and stable standards containing these four compounds. Development of these standards would support the measurement of these species by those in the atmospheric research community not having their own source of standards. A suite of eight primary gas standards containing methane, nitrous oxide, CFC-11, and CFC-12 in a balance of air were prepared gravimetrically to bracket the ambient atmospheric concentrations. The combined uncertainties (uc) were calculated from error propagation analysis that included the weighing data from the gravimetric preparation and other sources of error such as the purity analysis of the compounds and air matrix. The expanded uncertainties (U) for the gravimetric standards were < 0.5% as calculated from the equation U = kuc, where the coverage factor k is equal to 2 for a 95% confidence interval. Analyses of the suite of standards by gas chromatography with flame-ionization and electron capture detection resulted in average absolute residuals of < 0.25% from regression models. The NIST suite of eight gravimetric standards was used to determine the concentrations in two standardsfrom NOAA. Those analyses resulted in bias across the two laboratories of < or = 2.1%.

  11. Using fluorescence-activated flow cytometry to determine reactive oxygen species formation and membrane lipid peroxidation in viable boar spermatozoa.

    PubMed

    Guthrie, H David; Welch, Glenn R

    2010-01-01

    Fluorescence-activated flow cytometry analyses were developed for determination of reactive oxygen species (ROS) formation and membrane lipid peroxidation in live spermatozoa loaded with, respectively, hydroethidine (HE) or the lipophilic probe 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid, C(11)BODIPY(581/591) (BODIPY). ROS was detected by red fluorescence emission from oxidization of HE and membrane lipid peroxidation was detected by green fluorescence emission from oxidation of BODIPY in individual live sperm. Of the reactive oxygen species generators tested, BODIPY oxidation was specific for FeSo4/ascorbate (FeAc), because menadione and H(2)O(2) had little or no effect. The oxidization of hydroethidine to ethidium was specific for menadione and H(2)O(2); FeAc had no effect. The incidence of basal or spontaneous ROS formation and membrane lipid peroxidation were low in boar sperm (<1% of live sperm) in fresh semen or after low temperature storage; however the sperm were quite susceptible to treatment-induced ROS formation and membrane lipid peroxidation. PMID:20072917

  12. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    PubMed

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  13. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    PubMed

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water. PMID:26162447

  14. Tick species (Acari: Ixodida) in Antalya City, Turkey: species diversity and seasonal activity.

    PubMed

    Koc, Samed; Aydın, Levent; Cetin, Huseyin

    2015-07-01

    Ticks (Acari: Ixodida) are an important group of ectoparasites of vertebrates. Most species are known vectors of diseases including Lyme disease, Q fever, and Crimean-Congo hemorrhagic fever. A 3-year research was conducted in Antalya, Turkey, to determine tick species composition, seasonal abundance, and spatial distribution. The study was carried out in five districts (Aksu, Dosemealtı, Kepez, Konyaaltı, and Muratpasa) of Antalya Metropolitan Municipality area in Turkey, between May 2010 and May 2013, where 1393 tick specimens were collected from domestic and wild animals (cattle, goats, sheep, hedgehogs, tortoises, dogs, cats, chickens) and from the environment. The collected ticks were preserved in 70 % alcohol and then were identified. Five genus and eight hard and soft tick species were identified, including Argas persicus, Rhipicephalus annulatus, R. sanguineus, R. turanicus, Hyalomma aegyptium, H. marginatum, Haemaphysalis parva, and Dermacentor niveus. Rhipicephalus sanguineus, R. turanicus, and H. aegyptium were the most common tick species in Antalya city. Rhipicephalus turanicus and R. sanguineus were the most abundant tick species infesting dogs in the city. The hosts of H. aegyptium are primarily tortoises in Antalya. The results of this research will contribute to establishing appropriate measures to control tick infestations on animals and humans and their environment in the city of Antalya. PMID:25869959

  15. Protein kinase D activity controls endothelial nitric oxide synthesis.

    PubMed

    Aicart-Ramos, Clara; Sánchez-Ruiloba, Lucía; Gómez-Parrizas, Mónica; Zaragoza, Carlos; Iglesias, Teresa; Rodríguez-Crespo, Ignacio

    2014-08-01

    Vascular endothelial growth factor (VEGF) regulates key functions of the endothelium, such as angiogenesis or vessel repair in processes involving endothelial nitric oxide synthase (eNOS) activation. One of the effector kinases that become activated in endothelial cells upon VEGF treatment is protein kinase D (PKD). Here, we show that PKD phosphorylates eNOS, leading to its activation and a concomitant increase in NO synthesis. Using mass spectrometry, we show that the purified active kinase specifically phosphorylates recombinant eNOS on Ser1179. Treatment of endothelial cells with VEGF or phorbol 12,13-dibutyrate (PDBu) activates PKD and increases eNOS Ser1179 phosphorylation. In addition, pharmacological inhibition of PKD and gene silencing of both PKD1 and PKD2 abrogate VEGF signaling, resulting in a clear diminished migration of endothelial cells in a wound healing assay. Finally, inhibition of PKD in mice results in an almost complete disappearance of the VEGF-induced vasodilatation, as monitored through determination of the diameter of the carotid artery. Hence, our data indicate that PKD is a new regulatory kinase of eNOS in endothelial cells whose activity orchestrates mammalian vascular tone. PMID:24928905

  16. Adsorption of arsenic species from water using activated siderite-hematite column filters.

    PubMed

    Guo, Huaming; Stüben, Doris; Berner, Zsolt; Kramar, Utz

    2008-03-01

    Arsenic is present at relatively high concentrations in surface water and groundwater as a result of both natural impacts and anthropogenic discharge, which requires proper treatment before use. The present study describes As adsorption on a siderite-hematite filter as a function of activating condition, empty bed contact time, and As species. Hydrogen peroxide activating increased As adsorption on siderite by 16.2 microg/g, and on hematite by 13.0 microg/g. The H2O2 conditioning enhanced adsorption efficiency of activated siderite-hematite filters up to throughput of 500 pore volumes of 500 microg/L As water. At values greater than 47 min, the empty bed contact time (EBCT) had only a weak influence on the removal capacity of pristine siderite-hematite filters. Due to the formation of fresh Fe(III)-oxide layer in the H2O2-conditioned filter and the pristine hematite-siderite filter, both of them may be utilized as a cost-effective reactor for treating As water. A toxicity characteristic leaching procedure (TCLP) test showed that the spent minerals were not hazardous and could be safely landfilled. PMID:17640801

  17. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    EPA Science Inventory

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  18. Structure-activity relationship of CuO/MnO2 catalysts in CO oxidation

    NASA Astrophysics Data System (ADS)

    Qian, Kun; Qian, Zhaoxia; Hua, Qing; Jiang, Zhiquan; Huang, Weixin

    2013-05-01

    A series of CuO/MnO2 catalysts with different CuO loadings were synthesized by the incipient wetness impregnation method. The catalysts were characterized by N2 adsorption-desorption isotherms, powder X-ray diffraction, X-ray photoelectron spectroscopy, H2-temperature programmed reduction, CO-temperature programmed reduction and scanning electron microscope. The CuO/MnO2 catalysts with CuO loading of 1-40% exhibit almost the same catalytic performance toward CO oxidation while those with higher CuO loadings exhibit a much poorer catalytic activity. The structural characterization results demonstrate that the CuO-MnO2 interface is the active site for CO oxidation in CuO/MnO2 catalysts and CO oxidation over CuO/MnO2 probably follows the interfacial reaction mechanism in which CO chemisorbed on CuO reacts with oxygen species on MnO2 at the CuO-MnO2 interface.

  19. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  20. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity.

    PubMed

    Quinteros, M A; Cano Aristizábal, V; Dalmasso, P R; Paraje, M G; Páez, P L

    2016-10-01

    Oxidative stress is a condition caused by the high intracellular concentrations of reactive oxygen species (ROS) that includes superoxide anion radicals, hydroxyl radicals and hydrogen peroxide. Nanoparticles could cause rapid generation of free radicals by redox reactions. ROS can react directly with membrane lipids, proteins and DNA and are normally scavenged by antioxidants that are capable of neutralizing; however, elevated concentrations of ROS in bacterial cells can result in oxidative stress. The aim of this work was contribute to the knowledge of action mechanism of silver nanoparticles (Ag-NPs) and their relation to the generation of oxidative stress in bacteria. We demonstrated that Ag-NPs generated oxidative stress in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa mediated by the increment of ROS and this increase correlated with a better antimicrobial activity. On the other hand, we showed that the oxidative stress caused by the Ag-NPs biosynthesized was associated to a variation in the level of reactive nitrogen intermediates (RNI). Oxidative stress in bacteria can result from disruption of the electronic transport chain due to the high affinity of Ag-NPs for the cell membrane. This imbalance in the oxidative stress was evidentiated by a macromolecular oxidation at level of DNA, lipids and proteins in E. coli exposed to Ag-NPs. The formation of ROS and RNI by Ag-NPs may also be considered to explain the bacterial death.

  1. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity.

    PubMed

    Quinteros, M A; Cano Aristizábal, V; Dalmasso, P R; Paraje, M G; Páez, P L

    2016-10-01

    Oxidative stress is a condition caused by the high intracellular concentrations of reactive oxygen species (ROS) that includes superoxide anion radicals, hydroxyl radicals and hydrogen peroxide. Nanoparticles could cause rapid generation of free radicals by redox reactions. ROS can react directly with membrane lipids, proteins and DNA and are normally scavenged by antioxidants that are capable of neutralizing; however, elevated concentrations of ROS in bacterial cells can result in oxidative stress. The aim of this work was contribute to the knowledge of action mechanism of silver nanoparticles (Ag-NPs) and their relation to the generation of oxidative stress in bacteria. We demonstrated that Ag-NPs generated oxidative stress in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa mediated by the increment of ROS and this increase correlated with a better antimicrobial activity. On the other hand, we showed that the oxidative stress caused by the Ag-NPs biosynthesized was associated to a variation in the level of reactive nitrogen intermediates (RNI). Oxidative stress in bacteria can result from disruption of the electronic transport chain due to the high affinity of Ag-NPs for the cell membrane. This imbalance in the oxidative stress was evidentiated by a macromolecular oxidation at level of DNA, lipids and proteins in E. coli exposed to Ag-NPs. The formation of ROS and RNI by Ag-NPs may also be considered to explain the bacterial death. PMID:27530963

  2. Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes.

    PubMed

    Ali, Abbas; Tabanca, Nurhayat; Demirci, Betul; Blythe, Eugene K; Ali, Zulfiqar; Baser, K Husnu Can; Khan, Ikhlas A

    2015-01-21

    The chemical compositions of essential oils obtained from four species of genus Salvia were analyzed by gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The main compounds identified from Salvia species essential oils were as follows: 1,8-cineole (71.7%), α-pinene (5.1%), camphor (4.4%), and β-pinene (3.8%) in Salvia apiana; borneol (17.4%), β-eudesmol (10.4%), bornyl acetate (5%), and guaiol (4.8%) in Salvia elegans; bornyl acetate (11.4%), β-caryophyllene (6.5%), caryophyllene oxide (13.5%), and spathulenol (7.0%) in Salvia leucantha; α-thujene (25.8%), viridiflorol (20.4%), β-thujene (5.7%), and camphor (6.4%) in Salvia officinalis. In biting-deterrent bioassays, essential oils of S. leucantha and S. elegans at 10 μg/cm(2) showed activity similar to that of DEET (97%, N, N-diethyl-m-toluamide) in two species of mosquitoes, whereas the activities of S. officinalis and S. apiana essential oils were lower than those of the other oils or DEET. Pure compounds β-eudesmol and guaiol showed biting-deterrent activity similar to DEET at 25 nmol/cm(2), whereas the activity of 13-epi-manool, caryophyllene oxide, borneol, bornyl acetate, and β-caryophyllene was significantly lower than that of β-eudesmol, guaiol, or DEET. All essential oils showed larvicidal activity except that of S. apiana, which was inactive at the highest dose of 125 ppm against both mosquito species. On the basis of 95% CIs, all of the essential oils showed higher toxicity in Anopheles quadrimaculatus than in Aedes aegypti. The essential oil of S. leucantha with an LC50 value of 6.2 ppm showed highest toxicity in An. quadrimaculatus.

  3. Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes.

    PubMed

    Ali, Abbas; Tabanca, Nurhayat; Demirci, Betul; Blythe, Eugene K; Ali, Zulfiqar; Baser, K Husnu Can; Khan, Ikhlas A

    2015-01-21

    The chemical compositions of essential oils obtained from four species of genus Salvia were analyzed by gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The main compounds identified from Salvia species essential oils were as follows: 1,8-cineole (71.7%), α-pinene (5.1%), camphor (4.4%), and β-pinene (3.8%) in Salvia apiana; borneol (17.4%), β-eudesmol (10.4%), bornyl acetate (5%), and guaiol (4.8%) in Salvia elegans; bornyl acetate (11.4%), β-caryophyllene (6.5%), caryophyllene oxide (13.5%), and spathulenol (7.0%) in Salvia leucantha; α-thujene (25.8%), viridiflorol (20.4%), β-thujene (5.7%), and camphor (6.4%) in Salvia officinalis. In biting-deterrent bioassays, essential oils of S. leucantha and S. elegans at 10 μg/cm(2) showed activity similar to that of DEET (97%, N, N-diethyl-m-toluamide) in two species of mosquitoes, whereas the activities of S. officinalis and S. apiana essential oils were lower than those of the other oils or DEET. Pure compounds β-eudesmol and guaiol showed biting-deterrent activity similar to DEET at 25 nmol/cm(2), whereas the activity of 13-epi-manool, caryophyllene oxide, borneol, bornyl acetate, and β-caryophyllene was significantly lower than that of β-eudesmol, guaiol, or DEET. All essential oils showed larvicidal activity except that of S. apiana, which was inactive at the highest dose of 125 ppm against both mosquito species. On the basis of 95% CIs, all of the essential oils showed higher toxicity in Anopheles quadrimaculatus than in Aedes aegypti. The essential oil of S. leucantha with an LC50 value of 6.2 ppm showed highest toxicity in An. quadrimaculatus. PMID:25531412

  4. Thermoelectric misfit-layered cobalt oxides with interlayers of hydroxide and peroxide species

    NASA Astrophysics Data System (ADS)

    Chou, Ta-Lei; Lybeck, Jenni; Chan, Ting-Shan; Hsu, Ying-Ya; Tewari, Girish C.; Rautama, Eeva-Leena; Yamauchi, Hisao; Karppinen, Maarit

    2013-12-01

    Among the thermoelectric misfit-layered cobalt oxides, [MmA2Om+2]qCoO2, the parent m=0 phases exhibit divergent chemical features but are less understood than the more common m>0 members of the series. Here we synthesize Sr-for-Ca substituted [(Ca1-xSrx)z(O,OH)2]qCoO2 zero phases up to x=0.2 through low-temperature hydrothermal conversion of precursor powders of the m=1 misfit system, [Co(Ca1-xSrx)2O3]qCoO2. In the zero-phase [(Ca1-xSrx)z(O,OH)2]qCoO2 system, as the Sr content x increases the lattice expands anisotropically along the c axis such that the ab-plane dimension and the misfit parameter q remain essentially constant. X-ray absorption spectroscopy data suggest the presence of peroxide-type oxygen species in the (Ca1-xSrx)z(O,OH)2 rock-salt block and together with infrared spectroscopy, thermogravimetric and low-temperature resistivity and thermopower measurements evidence that the isovalent Sr-for-Ca substitution controls the balance between the peroxide and hydroxide species in the (Ca1-xSrx)z(O,OH)2 block but leaves the valence of Co essentially intact in the CoO2 block. The higher electrical conductivity of the Sr-substituted phases is explained as a consequence of increased carrier mobility.

  5. Iridium Oxide Coatings with Templated Porosity as Highly Active Oxygen Evolution Catalysts: Structure-Activity Relationships.

    PubMed

    Bernicke, Michael; Ortel, Erik; Reier, Tobias; Bergmann, Arno; Ferreira de Araujo, Jorge; Strasser, Peter; Kraehnert, Ralph

    2015-06-01

    Iridium oxide is the catalytic material with the highest stability in the oxygen evolution reaction (OER) performed under acidic conditions. However, its high cost and limited availability demand that IrO2 is utilized as efficiently as possible. We report the synthesis and OER performance of highly active mesoporous IrO2 catalysts with optimized surface area, intrinsic activity, and pore accessibility. Catalytic layers with controlled pore size were obtained by soft-templating with micelles formed from amphiphilic block copolymers poly(ethylene oxide)-b-poly(butadiene)-b-poly(ethylene oxide). A systematic study on the influence of the calcination temperature and film thickness on the morphology, phase composition, accessible surface area, and OER activity reveals that the catalytic performance is controlled by at least two independent factors, that is, accessible surface area and intrinsic activity per accessible site. Catalysts with lower crystallinity show higher intrinsic activity. The catalyst surface area increases linearly with film thickness. As a result of the templated mesopores, the pore surface remains fully active and accessible even for thick IrO2 films. Even the most active multilayer catalyst does not show signs of transport limitations at current densities as high as 75 mA cm(-2) . PMID:25958795

  6. Iridium Oxide Coatings with Templated Porosity as Highly Active Oxygen Evolution Catalysts: Structure-Activity Relationships.

    PubMed

    Bernicke, Michael; Ortel, Erik; Reier, Tobias; Bergmann, Arno; Ferreira de Araujo, Jorge; Strasser, Peter; Kraehnert, Ralph

    2015-06-01

    Iridium oxide is the catalytic material with the highest stability in the oxygen evolution reaction (OER) performed under acidic conditions. However, its high cost and limited availability demand that IrO2 is utilized as efficiently as possible. We report the synthesis and OER performance of highly active mesoporous IrO2 catalysts with optimized surface area, intrinsic activity, and pore accessibility. Catalytic layers with controlled pore size were obtained by soft-templating with micelles formed from amphiphilic block copolymers poly(ethylene oxide)-b-poly(butadiene)-b-poly(ethylene oxide). A systematic study on the influence of the calcination temperature and film thickness on the morphology, phase composition, accessible surface area, and OER activity reveals that the catalytic performance is controlled by at least two independent factors, that is, accessible surface area and intrinsic activity per accessible site. Catalysts with lower crystallinity show higher intrinsic activity. The catalyst surface area increases linearly with film thickness. As a result of the templated mesopores, the pore surface remains fully active and accessible even for thick IrO2 films. Even the most active multilayer catalyst does not show signs of transport limitations at current densities as high as 75 mA cm(-2) .

  7. Visualisation of nitric oxide generated by activated murine macrophages.

    PubMed

    Leone, A M; Furst, V W; Foxwell, N A; Cellek, S; Moncada, S

    1996-04-01

    We have visualised the release and approximate diffusion profile of nitric oxide (NO) from activated murine macrophages using a high transmission microscope coupled to a high sensitivity photon counting camera. The images generated by NO were cell-associated and spread over an area of approximately 175 micrometers from the activated macrophage. The signals obtained were dependent on the presence of exogenous L-arginine in the medium and followed a time course similar to that previously described for the generation of NO by the inducible form of NO synthase. The light signal was attenuated by the inhibitor of NO synthase, N omega-nitro-L-arginine methyl ester. Studies using superoxide-deficient macrophages further confirmed that the signals detected were generated by NO rather than reactive oxygen intermediates. PMID:8660339

  8. Natural Product Nitric Oxide Chemistry: New Activity of Old Medicines

    PubMed Central

    Jiang, Hong; Torregrossa, Ashley C.; Parthasarathy, Deepa K.; Bryan, Nathan S.

    2012-01-01

    The use of complementary and alternative medicine (CAM) as a therapy and preventative care measure for cardiovascular diseases (CVD) may prove to be beneficial when used in conjunction with or in place of conventional medicine. However, the lack of understanding of a mechanism of action of many CAMs limits their use and acceptance in western medicine. We have recently recognized and characterized specific nitric oxide (NO) activity of select alternative and herbal medicines that may account for many of their reported health benefits. The ability of certain CAM to restore NO homeostasis both through enhancing endothelial production of NO and by providing a system for reducing nitrate and nitrite to NO as a compensatory pathway for repleting NO bioavailability may prove to be a safe and cost-effective strategy for combating CVD. We will review the current state of science behind NO activity of herbal medicines and their effects on CVD. PMID:22548122

  9. H2S Inhibits Hyperglycemia-Induced Intrarenal Renin-Angiotensin System Activation via Attenuation of Reactive Oxygen Species Generation

    PubMed Central

    Ni, Jun; Li, Chen; Shao, Decui; Liu, Jia; Shen, Yang; Wang, Zhen; Zhou, Li; Zhang, Wei; Huang, Yu; Yu, Chen; Wang, Rui; Lu, Limin

    2013-01-01

    Decrease in endogenous hydrogen sulfide (H2S) was reported to participate in the pathogenesis of diabetic nephropathy (DN). This study is aimed at exploring the relationship between the abnormalities in H2S metabolism, hyperglycemia-induced oxidative stress and the activation of intrarenal renin-angiotensin system (RAS). Cultured renal mesangial cells (MCs) and streptozotocin (STZ) induced diabetic rats were used for the studies. The expressions of angiotensinogen (AGT), angiotensin converting enzyme (ACE), angiotensin II (Ang II) type I receptor (AT1), transforming growth factor-β1 (TGF-β1) and collagen IV were measured by real time PCR and Western blot. Reactive oxygen species (ROS) production was assessed by fluorescent probe assays. Cell proliferation was analyzed by 5'-bromo-2'-deoxyuridine incorporation assay. Ang II concentration was measured by an enzyme immunoassay. AGT, ACE and AT1 receptor mRNA levels and Ang II concentration were increased in high glucose (HG) -treated MCs, the cell proliferation rate and the production of TGF-β1 and of collagen IV productions were also increased. The NADPH oxidase inhibitor diphenylenechloride iodonium (DPI) was able to reverse the HG-induced RAS activation and the changes in cell proliferation and collagen synthesis. Supplementation of H2S attenuated HG-induced elevations in ROS and RAS activation. Blockade on H2S biosynthesis from cystathione-γ-lyase (CSE) by DL-propargylglycine (PPG) resulted in effects similar to that of HG treatment. In STZ-induced diabetic rats, the changes in RAS were also reversed by H2S supplementation without affecting blood glucose concentration. These data suggested that the decrease in H2S under hyperglycemic condition leads to an imbalance between oxidative and reductive species. The increased oxidative species results in intrarenal RAS activation, which, in turn, contributes to the pathogenesis of renal dysfunction. PMID:24058553

  10. Assessment oxidative stress biomarkers and metal bioaccumulation in macroalgae from coastal areas with mining activities in Chile.

    PubMed

    Gaete Olivares, Hernán; Moyano Lagos, Natalia; Jara Gutierrez, Carlos; Carrasco Kittelsen, Romina; Lobos Valenzuela, Gabriela; Hidalgo Lillo, María Eliana

    2016-01-01

    The aim of this study was to evaluate the effect on seaweeds Scytosiphon lomentaria and Ulva rigida of coastal waters of sites with mining activity, using oxidative stress biomarkers and heavy metal determination both in water and in tissue. The greatest bioaccumulation factors in S. lomentaria and U. rigida were founded for iron and arsenic in Quintay. Bioaccumulation factor in S. lomentaria in descending order was Fe> Cu> Zn> Cd> Cr> As> Mo and in U. rigida, in descending order, was Fe> Cu> Cd> Zn> Cr> Mo> As. Both species had higher antioxidant activity levels in areas with high mining activities. The concentration of metals in waters such as copper and arsenic in S. lomentaria, and iron, arsenic, and cadmium in U. rigida were related with oxidative stress biomarkers measured in both species. The use of both species is proposed to monitor the bioavailability and oxidative damage in coastal areas with mining activity. This work will generate a significant knowledge about the impact of mining wastes on macroalgal community in the area of north-central Chile. PMID:26661961

  11. Assessment oxidative stress biomarkers and metal bioaccumulation in macroalgae from coastal areas with mining activities in Chile.

    PubMed

    Gaete Olivares, Hernán; Moyano Lagos, Natalia; Jara Gutierrez, Carlos; Carrasco Kittelsen, Romina; Lobos Valenzuela, Gabriela; Hidalgo Lillo, María Eliana

    2016-01-01

    The aim of this study was to evaluate the effect on seaweeds Scytosiphon lomentaria and Ulva rigida of coastal waters of sites with mining activity, using oxidative stress biomarkers and heavy metal determination both in water and in tissue. The greatest bioaccumulation factors in S. lomentaria and U. rigida were founded for iron and arsenic in Quintay. Bioaccumulation factor in S. lomentaria in descending order was Fe> Cu> Zn> Cd> Cr> As> Mo and in U. rigida, in descending order, was Fe> Cu> Cd> Zn> Cr> Mo> As. Both species had higher antioxidant activity levels in areas with high mining activities. The concentration of metals in waters such as copper and arsenic in S. lomentaria, and iron, arsenic, and cadmium in U. rigida were related with oxidative stress biomarkers measured in both species. The use of both species is proposed to monitor the bioavailability and oxidative damage in coastal areas with mining activity. This work will generate a significant knowledge about the impact of mining wastes on macroalgal community in the area of north-central Chile.

  12. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases.

    PubMed

    Callaway, Danielle A; Jiang, Jean X

    2015-07-01

    Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options.

  13. Antiurease and anti-oxidant activity of Vaccinium macrocarpon fruit.

    PubMed

    Noreen, Shabana; Shaheen, Ghazala; Akram, Muhammad; Rashid, Abid; Shah, Syed Muhammad Ali

    2016-07-01

    The objective of present study was to evaluate the antiurease and anti-oxidant activity of Vaccinium macrocarpon fruit. The parent extract was ethanolic extract while its sub fractions were prepared in n-hexane, chloroform and n-butanol. The method based on scavenging activity and reduction capability of 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH). N-butanol fraction was the most effective antioxidant with 87.0±1.15 activity but the activity was less than ascorbic acid i.e. 93.74±0.12. Highly significant urease inhibition was shown by crude ethanolic extract (71.00±0.2a) with IC50 (392.66±2.1) followed by aqueous fraction (68.00±0.5e) with IC50 (159.83±2.8). The results of crude ethanolic extract and aqueous extracts were highly significant (p<0.05) than standard Thiourea. Present study showed that Vaccinium macrocarpon exhibits potent antiurease and antioxidant activities. PMID:27592488

  14. Antiurease and anti-oxidant activity of Vaccinium macrocarpon fruit.

    PubMed

    Noreen, Shabana; Shaheen, Ghazala; Akram, Muhammad; Rashid, Abid; Shah, Syed Muhammad Ali

    2016-07-01

    The objective of present study was to evaluate the antiurease and anti-oxidant activity of Vaccinium macrocarpon fruit. The parent extract was ethanolic extract while its sub fractions were prepared in n-hexane, chloroform and n-butanol. The method based on scavenging activity and reduction capability of 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH). N-butanol fraction was the most effective antioxidant with 87.0±1.15 activity but the activity was less than ascorbic acid i.e. 93.74±0.12. Highly significant urease inhibition was shown by crude ethanolic extract (71.00±0.2a) with IC50 (392.66±2.1) followed by aqueous fraction (68.00±0.5e) with IC50 (159.83±2.8). The results of crude ethanolic extract and aqueous extracts were highly significant (p<0.05) than standard Thiourea. Present study showed that Vaccinium macrocarpon exhibits potent antiurease and antioxidant activities.

  15. Ruthenium-modified zinc oxide, a highly active vis-photocatalyst: the nature and reactivity of photoactive centres.

    PubMed

    Bloh, Jonathan Z; Dillert, Ralf; Bahnemann, Detlef W

    2014-03-28

    We recently reported a highly active photocatalyst, ruthenium-modified zinc oxide, which was found to be able to utilise the red part of the visible light spectrum for photocatalytic reactions [Bloh et al., Environ. Sci. Pollut. Res., 2012, 19, 3688-3695]. However, the origin and mechanism of the observed activity as well as the nature of the photoactive centres are still unknown. Herein, we expand on that by reporting a series of experiments specifically designed to unravel the mechanism of the visible light induced photocatalytic reactions. The absolute potentials of the valence and the conduction band edge are identified by the combined use of electrochemical impedance and UV-vis diffuse reflectance spectroscopy. The conduction band electron and the valence band hole activity are assessed through a novel approach tracing their signature oxidative species, i.e., hydrogen peroxide and hydroxyl radicals, respectively. Oxygen reduction currents are measured at different potentials to investigate the role of molecular oxygen as an electron scavenger as well as the underlying reduction pathways. Additionally, the photocatalytic activity of the samples is verified using another (ISO standard) degradation test, the gas-phase oxidation of nitric oxide. The experimental results reveal that the employed synthetic route yields a unique mixture of ruthenium(VI)-doped zinc oxide and ruthenium(VI) oxide particles with both forms of the ruthenium playing their own independent role in the enhancement of the photocatalytic activity. The ruthenium ions acting as dopants enable a better charge separation as well as the absorption of red light resulting in the direct promotion of electrons from the Ru(VI)-species to the conduction band. Both, the conduction band electrons and the thus formed Ru(VII) subsequently participate in the degradation of the pollutant molecules. The ruthenium dioxide particles, on the other hand, act as catalysts increasing the efficiency of the reaction by

  16. Sodium channel activation mechanisms. Insights from deuterium oxide substitution

    SciTech Connect

    Alicata, D.A.; Rayner, M.D.; Starkus, J.G. )

    1990-04-01

    Schauf and Bullock, using Myxicola giant axons, demonstrated that solvent substitution with deuterium oxide (D2O) significantly affects both sodium channel activation and inactivation kinetics without corresponding changes in gating current or tail current rates. They concluded that (a) no significant component of gating current derives from the final channel opening step, and (b) channels must deactivate (during tail currents) by a different pathway from that used in channel opening. By contrast, Oxford found in squid axons that when a depolarizing pulse is interrupted by a brief (approximately 100 microseconds) return to holding potential, subsequent reactivation (secondary activation) is very rapid and shows almost monoexponential kinetics. Increasing the interpulse interval resulted in secondary activation rate returning towards control, sigmoid (primary activation) kinetics. He concluded that channels open and close (deactivate) via the same pathway. We have repeated both sets of observations in crayfish axons, confirming the results obtained in both previous studies, despite the apparently contradictory conclusions reached by these authors. On the other hand, we find that secondary activation after a brief interpulse interval (50 microseconds) is insensitive to D2O, although reactivation after longer interpulse intervals (approximately 400 microseconds) returns towards a D2O sensitivity similar to that of primary activation. We conclude that D2O-sensitive primary activation and D2O-insensitive tail current deactivation involve separate pathways. However, D2O-insensitive secondary activation involves reversal of the D2O-insensitive deactivation step. These conclusions are consistent with parallel gate models, provided that one gating particle has a substantially reduced effective valence.

  17. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains

    PubMed Central

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  18. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains.

    PubMed

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent memb