NASA Astrophysics Data System (ADS)
Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin
2018-01-01
Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.
Final Report for Geometric Observers and Particle Filtering for Controlled Active Vision
2016-12-15
code) 15-12-2016 Final Report 01Sep06 - 09May11 Final Report for Geometric Observers & Particle Filtering for Controlled Active Vision 49414-NS.1Allen...Observers and Particle Filtering for Controlled Active Vision by Allen R. Tannenbaum School of Electrical and Computer Engineering Georgia Institute of...7 2.2.4 Conformal Area Minimizing Flows . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Particle Filters
Transport of the moving barrier driven by chiral active particles
NASA Astrophysics Data System (ADS)
Liao, Jing-jing; Huang, Xiao-qun; Ai, Bao-quan
2018-03-01
Transport of a moving V-shaped barrier exposed to a bath of chiral active particles is investigated in a two-dimensional channel. Due to the chirality of active particles and the transversal asymmetry of the barrier position, active particles can power and steer the directed transport of the barrier in the longitudinal direction. The transport of the barrier is determined by the chirality of active particles. The moving barrier and active particles move in the opposite directions. The average velocity of the barrier is much larger than that of active particles. There exist optimal parameters (the chirality, the self-propulsion speed, the packing fraction, and the channel width) at which the average velocity of the barrier takes its maximal value. In particular, tailoring the geometry of the barrier and the active concentration provides novel strategies to control the transport properties of micro-objects or cargoes in an active medium.
NASA Astrophysics Data System (ADS)
Park, Hyanjoo; Choe, Seunghoe; Kim, Hoyoung; Kim, Dong-Kwon; Cho, GeonHee; Park, YoonSu; Jang, Jong Hyun; Ha, Don-Hyung; Ahn, Sang Hyun; Kim, Soo-Kil
2018-06-01
Pt catalysts for water electrolysis were prepared on carbon paper by using both direct current and pulse electrodeposition. Controlling the mass transfer of Pt precursor in the electrolyte by varying the deposition potential enables the formation of various Pt particle shapes such as flower-like and polyhedral particles. Further control of the deposition parameters for pulse electrodeposition resulted in changes to the particle size and density. In particular, the upper potential of pulse was found to be the critical parameter controlling the morphology of the particles and their catalytic activity. In addition to the typical electrochemical measurements, Pt samples deposited on carbon paper were used as cathodes for a proton exchange membrane water electrolyser. This single cell test revealed that our Pt particle samples have exceptional mass activity while being cost effective.
Hot particles attract in a cold bath
NASA Astrophysics Data System (ADS)
Tanaka, Hidenori; Lee, Alpha A.; Brenner, Michael P.
2017-04-01
Controlling interactions out of thermodynamic equilibrium is crucial for designing addressable and functional self-organizing structures. These active interactions also underpin collective behavior in biological systems. Here we study a general setting of active particles in a bath of passive particles and demonstrate a mechanism for long-range attraction between active particles. The mechanism operates when the translational persistence length of the active particle motion is smaller than the particle diameter. In this limit, the system reduces to particles of higher diffusivity ("hot" particles) in a bath of particles with lower diffusivity ("cold" particles). This attractive interaction arises as a hot particle pushes cold particles away to create a large hole around itself, and the holes interact via a depletion-like attraction. Strikingly, the interaction range is more than an order of magnitude larger than the particle radius, well beyond the range of the conventional depletion force. Although the mechanism occurs outside the parameter regime of typical biological swimmers, the mechanism could be realized in the laboratory.
Optofluidics incorporating actively controlled micro- and nano-particles
Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh
2012-01-01
The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925
The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.
He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei
2016-01-01
The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Guodong; Zhai, Wei; Sun, Fengqiang, E-mail: fqsun@scnu.edu.cn
2012-12-15
Graphical abstract: Display Omitted Highlights: ► PEG was used to electro-deposit Cu{sub 2}O microcrystalline particle films. ► Morphologies of Cu{sub 2}O microcrystals could be controlled by the amount of PEG. ► The films showed regularly varied photocatalytic activities under sunlight. ► The films could be recycled and showed stable activities. -- Abstract: Morphology-controlled Cu{sub 2}O microcrystalline particle films had been successfully electrodeposited on tin-doped indium oxide glass substrates in CuSO{sub 4} solutions containing different amounts of polyethylene glycol (PEG) additives. With an increase of PEG, microcrystals gradually changed from irregular shapes to cubes, octahedrons, and spherical shapes. Sizes increasingly becamemore » smaller with an increase of PEG under the same deposition time. These films had been first used as recyclable photocatalysts and showed excellent and photocatalytic activities in photodegradation of methylene blue (MB) under sunlight. Activities were regularly varied relative to the morphologies of films controlled by the amount of PEG and could be further enhanced by adding a little amount of hydrogen peroxide in the MB solution. The method for controllable preparation of Cu{sub 2}O microcrystals with photocatalytic activities was simple and inexpensive. The as-prepared particle films could also be used in photodegradation of many other pollutants under sunlight.« less
Elasticity-induced force reversal between active spinning particles in dense passive media
Aragones, J. L.; Steimel, J. P.; Alexander-Katz, A.
2016-01-01
The self-organization of active particles is governed by their dynamic effective interactions. Such interactions are controlled by the medium in which such active agents reside. Here we study the interactions between active agents in a dense non-active medium. Our system consists of actuated, spinning, active particles embedded in a dense monolayer of passive, or non-active, particles. We demonstrate that the presence of the passive monolayer alters markedly the properties of the system and results in a reversal of the forces between active spinning particles from repulsive to attractive. The origin of such reversal is due to the coupling between the active stresses and elasticity of the system. This discovery provides a mechanism for the interaction between active agents in complex and structured media, opening up opportunities to tune the interaction range and directionality via the mechanical properties of the medium. PMID:27112961
Reconfigurable engineered motile semiconductor microparticles.
Ohiri, Ugonna; Shields, C Wyatt; Han, Koohee; Tyler, Talmage; Velev, Orlin D; Jokerst, Nan
2018-05-03
Locally energized particles form the basis for emerging classes of active matter. The design of active particles has led to their controlled locomotion and assembly. The next generation of particles should demonstrate robust control over their active assembly, disassembly, and reconfiguration. Here we introduce a class of semiconductor microparticles that can be comprehensively designed (in size, shape, electric polarizability, and patterned coatings) using standard microfabrication tools. These custom silicon particles draw energy from external electric fields to actively propel, while interacting hydrodynamically, and sequentially assemble and disassemble on demand. We show that a number of electrokinetic effects, such as dielectrophoresis, induced charge electrophoresis, and diode propulsion, can selectively power the microparticle motions and interactions. The ability to achieve on-demand locomotion, tractable fluid flows, synchronized motility, and reversible assembly using engineered silicon microparticles may enable advanced applications that include remotely powered microsensors, artificial muscles, reconfigurable neural networks and computational systems.
Zhao, Hong; Kang, Xu-liang; Chen, Xuan-li; Wang, Jie-xin; Le, Yuan; Shen, Zhi-gang; Chen, Jian-feng
2009-01-01
In vitro and in vivo antibacterial activities on the Staphylococcus aureus and Escherichia coli of the amorphous cefuroxime axetil (CFA) ultrafine particles prepared by HGAP method were investigated in this paper. The conventional sprayed CFA particles were studied as the control group. XRD, SEM, BET tests were performed to investigate the morphology changes of the samples before and after sterile. The in vitro dissolution test, minimal inhibitory concentrations (MIC) and the in vivo experiment on mice were explored. The results demonstrated that: (i) The structure, morphology and amorphous form of the particles could be affected during steam sterile process; (ii) CFA particles with different morphologies showed varied antibacterial activities; and (iii) the in vitro and in vivo antibacterial activities of the ultrafine particles prepared by HGAP is markedly stronger than that of the conventional sprayed amorphous particles.
Regolith Activation on the Lunar Surface and Its Ground Test Simulation
NASA Technical Reports Server (NTRS)
Gaier, James R.
2009-01-01
Activation of the surfaces of lunar regolith particles can occur through interactions with solar electromagnetic radiation, solar and galactic particle radiation and micrometeoroid bombardment. An attempt has been made to quantify the relative importance of each of those effects. The effects of these activated surfaces may be to enhance the adhesion and toxicity of the particles. Also key to the importance of activation is the lifetimes of activated states in various environments which is controlled by their passivation rate as well as their activation rate. Although techniques exist to characterize the extent of activation of particles in biological system, it is important to be able to quantify the activation state on the lunar surface, in ground-test vacuum systems, and in habitat atmospheres as well.
Zhong, Huan; Wang, Wen-Xiong
2009-03-01
This study compared the relative importance of three types of sorption (organic matter-particle, mercury-organic matter and mercury-particle) in controlling the overall mercury partitioning and bioavailability in sediments. We found that all three types of sorption were important for both inorganic mercury (Hg) and methylated mercury (MeHg). Mercury-particle sorption was more important than mercury-fulvic acid (FA) sorption in increasing the mercury concentrations with increasing aging. Bioavailability (quantified by gut juice extraction from sipunculans) was mainly controlled by mercury-particle sorption, while FA-particle and mercury-FA sorption were not as important, especially for MeHg. Bacterial activity also increased the partitioning of Hg or MeHg in the sediments and was further facilitated by the presence of organic matter. The bioavailability of Hg or MeHg from sediments was only slightly influenced by bacterial activity. This study highlights the importance of sorption from various sources (especially mercury-particle sorption) as well as bacteria in controlling the partitioning and bioavailability of Hg or MeHg in sediments.
Active control of nano dimers response using piezoelectric effect
NASA Astrophysics Data System (ADS)
Mekkawy, Ahmed A.; Ali, Tamer A.; Badawi, Ashraf H.
2016-09-01
Nano devices can be used as building blocks for Internet of Nano-Things network devices, such as sensors/actuators, transceivers, and routers. Although nano particles response can be engineered to fit in different regimes, for such a nano particle to be used as an active nano device, its properties should be dynamically controlled. This controllability is a challenge, and there are many proposed techniques to tune nanoparticle response on the spot through a sort of control signal, wither that signal is optical (for all-optical systems) or electronic (for opto-electronic systems). This will allow the use of nano particles as nano-switches or as dynamic sensors that can pick different frequencies depending on surrounding conditions or depending on a smart decisions. In this work, we propose a piezoelectric substrate as an active control mediator to control plasmonic gaps in nano dimers. This method allows for integrating nano devices with regular electronics while communicating control signals to nano devices through applying electric signals to a piezoelectric material, in order to control the gaps between nano particles in a nano cluster. We do a full numerical study to the system, analyzing the piezoelectric control resolution (minimum gap change step) and its effect on a nanodimer response as a nanoantenna. This analysis considers the dielectric functions of materials within the visible frequencies range. The effects of different parameters, such as the piezoelectric geometrical structure and materials, on the gap control resolution and the operating frequency are studied.
To alloy or not to alloy? Cr modified Pt/C cathode catalysts for PEM fuel cells.
Wells, Peter P; Qian, Yangdong; King, Colin R; Wiltshire, Richard J K; Crabb, Eleanor M; Smart, Lesley E; Thompsett, David; Russell, Andrea E
2008-01-01
The cathode electrocatalysts for proton exchange membrane (PEM) fuel cells are commonly platinum and platinum based alloy nanoparticles dispersed on a carbon support. Control over the particle size and composition has, historically, been attained empirically, making systematic studies of the effects of various structural parameters difficult. The controlled surface modification methodology used in this work has enabled the controlled modification of carbon supported Pt nanoparticles by Cr so as to yield nanoalloy particles with defined compositions. Subsequent heat treatment in 5% H2 in N2 resulted in the formation of a distinct Pt3Cr alloy phase which was either restricted to the surface of the particles or present throughout the bulk of the particle structure. Measurement of the oxygen reduction activity of the catalysts was accomplished using the rotating thin film electrode method and the activities obtained were related to the structure of the nanoalloy catalyst particles, largely determined using Cr K edge and Pt L3 edge XAS.
Hutchings, Graham J; Kiely, Christopher J
2013-08-20
The discovery that supported gold nanoparticles are exceptionally effective catalysts for redox reactions has led to an explosion of interest in gold nanoparticles. In addition, incorporating a second metal as an alloy with gold can enhance the catalyst performance even more. The addition of small amounts of gold to palladium, in particular, and vice versa significantly enhances the activity of supported gold-palladium nanoparticles as redox catalysts through what researchers believe is an electronic effect. In this Account, we describe and discuss methodologies for the synthesis of supported gold-palladium nanoparticles and their use as heterogeneous catalysts. In general, three key challenges need to be addressed in the synthesis of bimetallic nanoparticles: (i) control of the particle morphology, (ii) control of the particle size distribution, and (iii) control of the nanoparticle composition. We describe three methodologies to address these challenges. First, we discuss the relatively simple method of coimpregnation. Impregnation allows control of particle morphology during alloy formation but does not control the particle compositions or the particle size distribution. Even so, we contend that this method is the best preparation method in the catalyst discovery phase of any project, since it permits the investigation of many different catalyst structures in one experiment, which may aid the identification of new catalysts. A second approach, sol-immobilization, allows enhanced control of the particle size distribution and the particle morphology, but control of the composition of individual nanoparticles is not possible. Finally, a modified impregnation method can allow the control of all three of these crucial parameters. We discuss the effect of the different methodologies on three redox reactions: benzyl alcohol oxidation, toluene oxidation, and the direct synthesis of hydrogen peroxide. We show that the coimpregnation method provides the best reaction selectivity for benzyl alcohol oxidation and the direct synthesis of hydrogen peroxide. However, because of the reaction mechanism, the sol-immobilzation method gives very active and selective catalysts for toluene oxidation. We discuss the possible nature of the preferred active structures of the supported nanoparticles for these reactions. This paper is based on the IACS Heinz Heinemann Award Lecture entitled "Catalysis using gold nanoparticles" which was given in Munich in July 2012.
NASA Astrophysics Data System (ADS)
Liu, Lian; Yang, Pengfei; Li, Junying; Zhang, Zhiliang; Yu, Xi; Lu, Ling
2017-05-01
Sliver nanoparticles (AgNPs) were synthesized and functionalized with furan group on their surface, followed by the reverse Diels-Alder (DA) reaction with bismaleimide to vary the particle size, so as to give different antibacterial activities. These nanoparticles were characterized using Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Ultraviolet-Visible (UV-vis), Nanoparticle Size Analyzer and X-Ray Photoelectron Spectroscopy (XPS). It was found that the cross-linking reaction with bismaleimide had a great effect on the size of AgNPs. The size of the AgNPs could be controlled by the temperature of DA/r-DA equilibrium. The antibacterial activity was assessed using the inhibition zone diameter by introducing the particles into a media containing Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, respectively. It was found that these particles were effective bactericides. Furthermore, the antibacterial activity of the nanoparticles decreased orderly as the particle size enlarged.
A computer controlled television detector for light, X-rays and particles
NASA Technical Reports Server (NTRS)
Kalata, K.
1981-01-01
A versatile, high resolution, software configurable, two-dimensional intensified vidicon quantum detector system has been developed for multiple research applications. A thin phosphor convertor allows the detection of X-rays below 20 keV and non-relativistic particles in addition to visible light, and a thicker scintillator can be used to detect X-rays up to 100 keV and relativistic particles. Faceplates may be changed to allow any active area from 1 to 40 mm square, and active areas up to 200 mm square are possible. The image is integrated in a digital memory on any software specified array size up to 4000 x 4000. The array size is selected to match the spatial resolution, which ranges from 10 to 100 microns depending on the operating mode, the active area, and the photon or particle energy. All scan and data acquisition parameters are under software control to allow optimal data collection for each application.
NASA Astrophysics Data System (ADS)
Mishler, Grant; Tsang, Alan Cheng Hou; Pak, On Shun
2018-03-01
The transport of active and passive particles plays central roles in diverse biological phenomena and engineering applications. In this paper, we present a theoretical investigation of a system consisting of an active particle and a passive particle in a confined micro-fluidic flow. The introduction of an external flow is found to induce the capture of the passive particle by the active particle via long-range hydrodynamic interactions among the particles. This hydrodynamic capture mechanism relies on an attracting stable equilibrium configuration formed by the particles, which occurs when the external flow intensity exceeds a certain threshold. We evaluate this threshold by studying the stability of the equilibrium configurations analytically and numerically. Furthermore, we study the dynamics of typical capture and non-capture events and characterize the basins of attraction of the equilibrium configurations. Our findings reveal a critical dependence of the hydrodynamic capture mechanism on the external flow intensity. Through adjusting the external flow intensity across the stability threshold, we demonstrate that the active particle can capture and release the passive particle in a controllable manner. Such a capture-and-release mechanism is desirable for biomedical applications such as the capture and release of therapeutic payloads by synthetic micro-swimmers in targeted drug delivery.
NASA Astrophysics Data System (ADS)
Downs, Emily Elizabeth
Protein-nanostructure conjugates, particularly particles, are a subject of significant interest due to changes in their fundamental behavior compared to bulk surfaces. As the size scale of nano-structured materials and proteins are on the same order of magnitude, nanomaterial properties can heavily influence how proteins adsorb and conform to the surface. Previous work has demonstrated the ability of nanoscale surfaces to modulate protein activity, conformation, and retention by modifying the particle surface curvature, morphology, and surface charge. This work has improved our understanding of the protein material interactions, but a complete understanding is still lacking. The goal of this thesis is to investigate two missing areas of understanding using two distinct systems. The first system utilizes a particle with controlled surface energy to observe the impact of surface energy on protein-particle interactions, while the second system uses a modified Listeria-specific protein to determine how protein structure and flexibility affects protein adsorption and activity on particles. Spherical, amorphous, and uniformly doped Zn-silica particles with tailored surface energies were synthesized to understand the impact of surface energy on protein adsorption behavior. Particle surface energy increased with a decrease in particle size and greater dopant concentrations. Protein adsorption and structural loss increased with both particle size and particle surface energy. Higher surface energies promoted protein-particle association and increased protein unfolding. Particle curvature and protein steric hindrance effects limited adsorption and structural loss on smaller particles. Protein surface charge heterogeneity was also found to be linked to both protein adsorption and unfolding behavior on larger particles. Greater surface charge heterogeneity led to higher adsorption concentrations and multilayer formation. These multilayers transitioned from protein-particle interactions to protein-protein interactions and were thicker with greater surface energy, which resulted in the recovery of secondary structure in the outermost layer. To help understand the impact of protein structure on nano-bio conjugate interactions, a listeria specific protein was used. This system was chosen as it has applications in the food industry in preventing bacterial contamination. The insertion of an amino acid linker between the enzymatic and binding domain of the protein improved the flexibility between domains, leading to increased adsorption, and improved activity in both cell-wall and plating assays. Additionally, linker modified protein incorporated into the silica-polymer nanocomposite showed significant activity in a real-world example of contaminated lettuce. This thesis study has isolated the impact of surface energy and protein flexibility on protein adsorption and structure. Particle surface energy affects adsorbed protein concentration and conformation. Coupled with protein surface charge, surface energy was also found to dictate multilayer thickness. The conformational flexibility of the protein was shown to help in controlling not only protein adsorption concentration but also in retaining protein activity after immobilization. Also, a controllable synthesis method for particles with adjustable surface energy, an ideal platform for studying protein-particle interactions, has been established.
Cardozo, Viviane F; Lancheros, Cesar A C; Narciso, Adélia M; Valereto, Elaine C S; Kobayashi, Renata K T; Seabra, Amedea B; Nakazato, Gerson
2014-10-01
Bovine mastitis is a serious veterinary disease that causes great loss to the dairy industry worldwide. It is a major infectious disease and is difficult to manage and control. Furthermore, emerging multidrug resistant bacteria that cause mastitis have complicated such management. The free radical nitric oxide (NO) is a potent antimicrobial agent. Thus, the aims of this study were to prepare and evaluate the antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus (MBSA) and Escherichia coli (MBEC), which were isolated from bovine mastitis. Fifteen MBSA isolates and fifteen MBEC were collected from subclinical and clinical bovine mastitis. Biocompatible polymeric particles composed of alginate/chitosan or chitosan/sodium tripolyphosphate (TPP) were prepared and used to encapsulate mercaptosuccinic acid (MSA), which is a thiol-containing molecule. Nitrosation of thiol groups of MSA-containing particles formed S-nitroso-MSA particles, which are NO donors. The NO release kinetics from the S-nitroso-MSA particles showed sustained and controlled NO release over several hours. The antibacterial activity of NO-releasing particles was evaluated by incubating the particles with an MBSA multi-resistant strain, which is responsible for bovine mastitis. The minimum inhibitory concentration for S-nitroso-MSA-alginate/chitosan particles against MBSA ranged from 125 μg/mL to 250 μg/mL. The results indicate that NO-releasing polymeric particles are an interesting approach to combating bacteria resistance in bovine mastitis treatment and prevention. Copyright © 2014. Published by Elsevier B.V.
Self-assembly of active amphiphilic Janus particles
NASA Astrophysics Data System (ADS)
Mallory, S. A.; Alarcon, F.; Cacciuto, A.; Valeriani, C.
2017-12-01
In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of the active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.
NASA Astrophysics Data System (ADS)
Kuznetsov, Anatoly A.; Filippov, Victor I.; Nikolskaya, Tatiana A.; Budko, Andrei P.; Kovarskii, Alexander L.; Zontov, Sergei V.; Kogan, Boris Ya.; Kuznetsov, Oleg A.
2009-05-01
Biodistribution of doxorubicin and ferrocarbon carrier particles in organism during and after magnetically controlled anti-tumor drug delivery and deposition was studied. Animal tests show high concentration of the cytostatic drug in the target zone, while its concentration is three orders of magnitude lower in bloodstream and other organs. A significant depot of the drug remains on the deposited particles days after the procedure. Macrophages actively phagocytose the ferrocarbon (FeC) particles and remain viable long enough to carry them to the lymph nodes.
Nano and ultrafine particles are abundant in the atmosphere and the level of human exposure to these tiny particles is expected to increase markedly as industrial activities increase manufacturing nano-sized materials. Exposure-dose relationships and site-specific internal dose a...
Colloidal transport through trap arrays controlled by active microswimmers
NASA Astrophysics Data System (ADS)
Yang, Wen; Misko, Vyacheslav R.; Marchesoni, Fabio; Nori, Franco
2018-07-01
We investigate the dynamics of a binary mixture consisting of active and passive colloidal particles diffusing in a 2D array of truncated harmonic wells, or traps. We explore the possibility of using a small fraction of active particles to manipulate a much larger fraction of passive particles, for instance, to confine them in or extract them from the traps. The results of our study have potential application in biology and medical sciences, for example, to remove dead cells or undesired contaminants from biological systems by means of self-propelled nano-robots.
Kwak, D H; Yoo, S J; Lee, E J; Lee, J W
2010-01-01
Most of the water treatment plants applying the DAF process are faced with off-flavors control problems. For simultaneous control of particles of impurities and dissolved organics that cause pungent taste and odor in water, an effective method would be the simple application of powdered activated carbon (PAC) in the DAF process. A series of experiments were carried out to explore the feasibility for simultaneous removal of kaolin particles and organic compounds that produce off-flavors (2-MIB and geosmin). In addition, the flotation efficiency of kaolin and PAC particles adsorbing organics in the DAF process was evaluated by employing the population balance theory. The removal efficiency of 2-MIB and geosmin under the treatment condition with kaolin particles for simultaneous treatment was lower than that of the individual treatment. The decrease in the removal efficiency was probably caused by 2-MIB and geosmin remaining in the PAC particle in the treated water of DAF after bubble flotation. Simulation results obtained by the population balance model indicate, that the initial collision-attachment efficiency of PAC particles was lower than that of kaolin particles.
Nanomodified heat-accumulating materials controlled by a magnetic field
NASA Astrophysics Data System (ADS)
Shchegolkov, Alexander; Shchegolkov, Alexey; Dyachkova, Tatyana; Bodin, Nikolay; Semenov, Alexander
2017-11-01
The paper presents studies of nanomodified heat-accumulating materials controlled by a magnetic field. In order to obtain controlled heat-accumulating materials, synthetic motor oil CASTROL 0W30, ferromagnetic particles, CNTs and paraffin were used. Mechanically activated carbon nanotubes with ferromagnetic particles were used for the nanomodification of paraffin. Mechanoactivation ensured the production of ferromagnetic particles with an average particle size of 5 µm. Using an extrusion plant, a mixture of CNTs and ferromagnetic particles was introduced into the paraffin. Further, the nanomodified paraffin in a granular form was introduced into synthetic oil. To conduct experimental studies, a contactless method for measuring temperature was used. The thermal contact control with the help of the obtained nanomodified material is possible with a magnetic induction of 1250 mT, and a heat flux of about 74 kW/m2 is provided at the same time.
Flow-induced phase separation of active particles is controlled by boundary conditions.
Thutupalli, Shashi; Geyer, Delphine; Singh, Rajesh; Adhikari, Ronojoy; Stone, Howard A
2018-05-22
Active particles, including swimming microorganisms, autophoretic colloids, and droplets, are known to self-organize into ordered structures at fluid-solid boundaries. The entrainment of particles in the attractive parts of their spontaneous flows has been postulated as a possible mechanism underlying this phenomenon. Here, combining experiments, theory, and numerical simulations, we demonstrate the validity of this flow-induced ordering mechanism in a suspension of active emulsion droplets. We show that the mechanism can be controlled, with a variety of resultant ordered structures, by simply altering hydrodynamic boundary conditions. Thus, for flow in Hele-Shaw cells, metastable lines or stable traveling bands can be obtained by varying the cell height. Similarly, for flow bounded by a plane, dynamic crystallites are formed. At a no-slip wall, the crystallites are characterized by a continuous out-of-plane flux of particles that circulate and re-enter at the crystallite edges, thereby stabilizing them. At an interface where the tangential stress vanishes, the crystallites are strictly 2D, with no out-of-plane flux. We rationalize these experimental results by calculating, in each case, the slow viscous flow produced by the droplets and the long-ranged, many-body active forces and torques between them. The results of numerical simulations of motion under the action of the active forces and torques are in excellent agreement with experiments. Our work elucidates the mechanism of flow-induced phase separation in active fluids, particularly active colloidal suspensions, and demonstrates its control by boundaries, suggesting routes to geometric and topological phenomena in an active matter.
Stockmann, Chris; Romero, Erin G.; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L.; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A.; Ward, Robert M.; Veranth, John M.; Reilly, Christopher A.
2016-01-01
Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control. PMID:27758864
Deering-Rice, Cassandra E; Stockmann, Chris; Romero, Erin G; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A
2016-11-25
Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Moribe, Kunikazu; Tozuka, Yuichi; Yamamoto, Keiji
2008-02-14
Supercritical fluid technique have been exploited in extraction, separation and crystallization processes. In the field of pharmaceutics, supercritical carbon dioxide (scCO(2)) has been used for the purpose of micronization, polymorphic control, and preparation of solid dispersion and complexes. Particle design of active pharmaceutical ingredients is important to make the solid dosage forms with suitable physicochemical properties. Control of the characteristic properties of particles, such as size, shape, crystal structure and morphology is required to optimize the formulation. For solubility enhancement of poorly water-soluble drugs, preparation of the solid dispersion or the complexation with proper drugs or excipients should be a promising approach. This review focuses on aspects of polymorphic control and complexation behavior of active pharmaceutical ingredients by scCO(2) processing.
Radionuclide bone imaging in the evaluation of osseous allograft systems. Scientific report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, J.F.; Cagle, J.D.; Stevenson, J.S.
1975-02-01
Evaluation of the progress of osteogenic activity in mandibular bone grafts in dogs by a noninvasive, nondestructive radionuclide method is feasible. The method provides a meaningful sequential interpretation of osseous repair more sensitive than conventional radiography. It is presumed that accumulating hydroxyapatite is being labelled by the imaging agent technetium diphosphonate. The osseous allograft systems studied were comparable to or exceeded autografts in their repair activity in mandibular discontinuity defects as judged by radionuclide imaging. A lyophilized mandibular allograft segment augmented with autologous cancellous marrow was more active than autograft controls at 3 and 6 weeks and was the mostmore » active system studied. Allograft segments augmented with lyophilized crushed cortical allogeneic bone particles were equal to controls at 3 weeks and more active than controls at 6 weeks. Lyophilized crushed cortical allogeneic bone particles retained in a Millipore filter while not clinically stable at 6 weeks did show osteogenic activity equal to control autografts at this interval. (GRA)« less
Gan, Lin; Rudi, Stefan; Cui, Chunhua; Heggen, Marc; Strasser, Peter
2016-06-01
Dealloyed Pt bimetallic core-shell catalysts derived from low-Pt bimetallic alloy nanoparticles (e.g, PtNi3 ) have recently shown unprecedented activity and stability on the cathodic oxygen reduction reaction (ORR) under realistic fuel cell conditions and become today's catalyst of choice for commercialization of automobile fuel cells. A critical step toward this breakthrough is to control their particle size below a critical value (≈10 nm) to suppress nanoporosity formation and hence reduce significant base metal (e.g., Ni) leaching under the corrosive ORR condition. Fine size control of the sub-10 nm PtNi3 nanoparticles and understanding their size dependent ORR electrocatalysis are crucial to further improve their ORR activity and stability yet still remain unexplored. A robust synthetic approach is presented here for size-controlled PtNi3 nanoparticles between 3 and 10 nm while keeping a constant particle composition and their size-selected growth mechanism is studied comprehensively. This enables us to address their size-dependent ORR activities and stabilities for the first time. Contrary to the previously established monotonic increase of ORR specific activity and stability with increasing particle size on Pt and Pt-rich bimetallic nanoparticles, the Pt-poor PtNi3 nanoparticles exhibit an unusual "volcano-shaped" size dependence, showing the highest ORR activity and stability at the particle sizes between 6 and 8 nm due to their highest Ni retention during long-term catalyst aging. The results of this study provide important practical guidelines for the size selection of the low Pt bimetallic ORR electrocatalysts with further improved durably high activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Maag, Carl R.; Deshpande, Sunil P.; Johnson, Nicholas L.
1997-01-01
A flight experiment flown onboard the Mir space station as a part of the Euromir 95 mission is considered. The aim of the experiment was to develop a greater understanding of the effects of the space environment on materials. In addition to the active enumeration of particle impacts and trajectories, the aim was to capture hypervelocity particles for their return to earth. Postflight measurements were performed to determine the flux density, diameters and subsequent effects on various optical thermal control and structural materials. Sensors actively measured the atomic oxygen flux, the contamination depostion and their effects during the mission. Two clouds of small particles were detected during a period of 100 days onboard Mir. It is concluded that the measured momenta of these particles suggests that their size and velocity are such that they cause damage to optics and thermal control surfaces.
Chen, Yang; Wenger, John C; Yang, Fumo; Cao, Junji; Huang, Rujin; Shi, Guangming; Zhang, Shumin; Tian, Mi; Wang, Huanbo
2017-09-01
A Single Particle Aerosol Mass Spectrometer (SPAMS) was deployed in the urban area of Chongqing to characterize the particles present during a severe particulate pollution event that occurred in winter 2014-2015. The measurements were made at a time when residents engaged in traditional outdoor meat smoking activities to preserve meat before the Chinese Spring Festival. The measurement period was predominantly characterized by stagnant weather conditions, highly elevated levels of PM 2.5 , and low visibility. Eleven major single particle types were identified, with over 92.5% of the particles attributed to biomass burning emissions. Most of the particle types showed appreciable signs of aging in the stagnant air conditions. To simulate the meat smoking activities, a series of controlled smoldering experiments was conducted using freshly cut pine and cypress branches, both with and without wood logs. SPAMS data obtained from these experiments revealed a number of biomass burning particle types, including an elemental and organic carbon (ECOC) type that proved to be the most suitable marker for meat smoking activities. The traditional activity of making preserved meat in southwestern China is shown here to be a major source of particulate pollution. Improved measures to reduce emissions from the smoking of meat should be introduced to improve air quality in regions where smoking meat activity prevails. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Azarmi, Farhad; Kumar, Prashant; Mulheron, Mike; Colaux, Julien L.; Jeynes, Chris; Adhami, Siavash; Watts, John F.
2015-08-01
Understanding of the emissions of coarse (PM10 ≤10 μm), fine (PM2.5 ≤2.5 μm) and ultrafine particles (UFP <100 nm) from refurbishment activities and their dispersion into the nearby environment is of primary importance for developing efficient risk assessment and management strategies in the construction and demolition industry. This study investigates the release, occupational exposure and physicochemical properties of particulate matter, including UFPs, from over 20 different refurbishment activities occurring at an operational building site. Particles were measured in the 5-10,000-nm-size range using a fast response differential mobility spectrometer and a GRIMM particle spectrometer for 55 h over 8 days. The UFPs were found to account for >90 % of the total particle number concentrations and <10 % of the total mass concentrations released during the recorded activities. The highest UFP concentrations were 4860, 740, 650 and 500 times above the background value during wall-chasing, drilling, cementing and general demolition activities, respectively. Scanning electron microscopy, X-ray photoelectron spectroscopy and ion beam analysis were used to identify physicochemical characteristics of particles and attribute them to probable sources considering the size and the nature of the particles. The results confirm that refurbishment activities produce significant levels (both number and mass) of airborne particles, indicating a need to develop appropriate regulations for the control of occupational exposure of operatives undertaking building refurbishment.
Sierra-Vargas, Martha Patricia; Guzman-Grenfell, Alberto Martin; Blanco-Jimenez, Salvador; Sepulveda-Sanchez, Jose David; Bernabe-Cabanillas, Rosa Maria; Cardenas-Gonzalez, Beatriz; Ceballos, Guillermo; Hicks, Juan Jose
2009-06-29
The Mexico City Metropolitan Area is densely populated, and toxic air pollutants are generated and concentrated at a higher rate because of its geographic characteristics. It is well known that exposure to particulate matter, especially to fine and ultra-fine particles, enhances the risk of cardio-respiratory diseases, especially in populations susceptible to oxidative stress. The aim of this study was to evaluate the effect of fine particles on the respiratory burst of circulating neutrophils from asthmatic patients living in Mexico City. In total, 6 subjects diagnosed with mild asthma and 11 healthy volunteers were asked to participate. Neutrophils were isolated from peripheral venous blood and incubated with fine particles, and the generation of reactive oxygen species was recorded by chemiluminescence. We also measured plasma lipoperoxidation susceptibility and plasma myeloperoxidase and paraoxonase activities by spectrophotometry. Asthmatic patients showed significantly lower plasma paraoxonase activity, higher susceptibility to plasma lipoperoxidation and an increase in myeloperoxidase activity that differed significantly from the control group. In the presence of fine particles, neutrophils from asthmatic patients showed an increased tendency to generate reactive oxygen species after stimulation with fine particles (PM2.5). These findings suggest that asthmatic patients have higher oxidation of plasmatic lipids due to reduced antioxidant defense. Furthermore, fine particles tended to increase the respiratory burst of blood human neutrophils from the asthmatic group.On the whole, increased myeloperoxidase activity and susceptibility to lipoperoxidation with a concomitant decrease in paraoxonase activity in asthmatic patients could favor lung infection and hence disrupt the control of asthmatic crises.
Hougaard, Karin S; Jensen, Keld A; Nordly, Pernille; Taxvig, Camilla; Vogel, Ulla; Saber, Anne T; Wallin, Håkan
2008-01-01
Background Results from epidemiological studies indicate that particulate air pollution constitutes a hazard for human health. Recent studies suggest that diesel exhaust possesses endocrine activity and therefore may affect reproductive outcome. This study in mice aimed to investigate whether exposure to diesel exhaust particles (DEP; NIST 2975) would affect gestation, postnatal development, activity, learning and memory, and biomarkers of transplacental toxicity. Pregnant mice (C57BL/6; BomTac) were exposed to 19 mg/m3 DEP (~1·106 particles/cm3; mass median diameter ≅ 240 nm) on gestational days 9–19, for 1 h/day. Results Gestational parameters were similar in control and diesel groups. Shortly after birth, body weights of DEP offspring were slightly lower than in controls. This difference increased during lactation, so by weaning the DEP exposed offspring weighed significantly less than the control progeny. Only slight effects of exposure were observed on cognitive function in female DEP offspring and on biomarkers of exposure to particles or genotoxic substances. Conclusion In utero exposure to DEP decreased weight gain during lactation. Cognitive function and levels of biomarkers of exposure to particles or to genotoxic substances were generally similar in exposed and control offspring. The particle size and chemical composition of the DEP and differences in exposure methods (fresh, whole exhaust versus aged, resuspended DEP) may play a significant role on the biological effects observed in this compared to other studies. PMID:18331653
Pulmonary toxicity in hamsters of smoke particles from Kuwaiti oil fires.
Brain, J D; Long, N C; Wolfthal, S F; Dumyahn, T; Dockery, D W
1998-01-01
The Kuwaiti oil wells set on fire by retreating Iraqi troops at the end of the Persian Gulf War released complex particles, inorganic and organic gases, and hydrocarbons into the atmosphere, damaging the environment where many people live and work. In this study, we assessed the health effects of particles from the Kuwaiti oil fires by instilling hamsters intratracheally with particles (<3.5 microM in size) collected in Ahmadi, a residential area in Kuwait located downwind of hundreds of oil fires. Twenty-four hours after instillation, we performed bronchoalveolar lavage (BAL) to assess various indicators of pulmonary inflammation, including neutrophil and macrophage numbers; albumin, an index of air-blood barrier permeability; and activities of three enzymes: lactate dehydrogenase (LDH; an indicator of cell injury), myeloperoxidase (MPO; which indicates activation of neutrophils), and ss-N-acetylglucosaminidase (GLN; which is indicative of damage to macrophages or neutrophils). We compared the response of hamsters instilled with particles from Ahmadi to animals instilled with urban particles collected in St. Louis, Missouri. We also compared the Ahmadi particles against a highly fibrogenic positive control ([alpha]-quartz) and a relatively nontoxic negative control (iron oxide). When compared to hamsters instilled with particles from St. Louis, the animals treated with the Ahmadi particles had between 1.4- and 2.2-fold more neutrophils in their BAL fluids. The Ahmadi hamsters had more macrophages and lower MPO and LDH activities, but comparable albumin levels and GLN activities. Thus, the acute toxicity of the Ahmadi particles was roughly similar to that of urban particles collected in the United States, when identical masses were compared. However, the relatively higher concentrations of particles measured in Kuwait and Saudi Arabia during the oil fires (at times more than 16 times higher than the EPA standard) is of particular concern. In addition, since the long-term effects of exposure to these particles remains unknown, further studies are needed to fully assess the health effects of the Kuwaiti oil fires. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9449679
On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate
NASA Astrophysics Data System (ADS)
Moezzi, Amir; Cortie, Michael; Dowd, Annette; McDonagh, Andrew
2014-04-01
The decomposition of zinc hydroxide carbonate, Zn5(CO3)2(OH)6 (ZHC), into the high surface area form of ZnO known as "active zinc oxide" is examined. In particular, the nucleation and evolution of the ZnO nanocrystals is of interest as the size of these particles controls the activity of the product. The decomposition process was studied using X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and BET surface area measurements. At about 240 °C ZHC decomposes to porous ZnO in a single step. The product material has a specific surface area in the range of 47-65 m2 g-1 and initially has a crystallite size that is of the order of 10 nm. A further increase in temperature, however, causes the particles to coarsen to over 25 nm in diameter. In principle, the coarsening phenomenon may be interrupted to control the particle size.
Magnetophoretic circuits for digital control of single particles and cells
NASA Astrophysics Data System (ADS)
Lim, Byeonghwa; Reddy, Venu; Hu, Xinghao; Kim, Kunwoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B.; Kim, Cheolgi
2014-05-01
The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.
Jaques, Peter A; Portnoff, Lee
2017-12-01
The risk of workers' exposure to aerosolized particles has increased with the upsurge in the production of engineered nanomaterials. Currently, a whole-body standard test method for measuring particle penetration through protective clothing ensembles is not available. Those available for respirators neglect the most common challenges to ensembles, because they use active vacuum-based filtration, designed to simulate breathing, rather than the positive forces of wind experienced by workers. Thus, a passive method that measures wind-driven particle penetration through ensemble fabric has been developed and evaluated. The apparatus includes a multidomain magnetic passive aerosol sampler housed in a shrouded penetration cell. Performance evaluation was conducted in a recirculation aerosol wind tunnel using paramagnetic Fe 3 O 4 (i.e., iron (II, III) oxide) particles for the challenge aerosol. The particles were collected on a PVC substrate and quantified using a computer-controlled scanning electron microscope. Particle penetration levels were determined by taking the ratio of the particle number collected on the substrate with a fabric (sample) to that without a fabric (control). Results for each fabric obtained by this passive method were compared to previous results from an automated vacuum-based active fractional efficiency tester (TSI 3160), which used sodium chloride particles as the challenge aerosol. Four nonwoven fabrics with a range of thicknesses, porosities, and air permeabilities were evaluated. Smoke tests and flow modeling showed the passive sampler shroud provided smooth (non-turbulent) air flow along the exterior of the sampler, such that disturbance of flow stream lines and distortion of the particle size distribution were reduced. Differences between the active and passive approaches were as high as 5.5-fold for the fabric with the lowest air permeability (0.00067 m/sec-Pa), suggesting the active method overestimated penetration in dense fabrics because the active method draws air at a constant flow rate regardless of the resistance of the test fabric. The passive method indicated greater sensitivity since penetration decreased in response to the increase in permeability.
Brownian aggregation rate of colloid particles with several active sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V., E-mail: chern@ns.kinetics.nsc.ru
2014-08-14
We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shownmore » to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu
To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that ismore » determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.« less
NASA Astrophysics Data System (ADS)
Taleb, M.; Cherkaoui, M.; Hbib, M.
2018-05-01
Recently, renewable energy sources are impacting seriously power quality of the grids in term of frequency and voltage stability, due to their intermittence and less forecasting accuracy. Among these sources, wind energy conversion systems (WECS) received a great interest and especially the configuration with Doubly Fed Induction Generator. However, WECS strongly nonlinear, are making their control not easy by classical approaches such as a PI. In this paper, we continue deepen study of PI controller used in active and reactive power control of this kind of WECS. Particle Swarm Optimization (PSO) is suggested to improve its dynamic performances and its robustness against parameters variations. This work highlights the performances of PSO optimized PI control against classical PI tuned with poles compensation strategy. Simulations are carried out on MATLAB-SIMULINK software.
Total pollen counts do not influence active surface measurements
NASA Astrophysics Data System (ADS)
Moshammer, Hanns; Schinko, Herwig; Neuberger, Manfred
We investigated the temporal association of various aerosol parameters with pollen counts in the pollen season (April 2001) in Linz, Austria. We were especially interested in the relationship between active surface (or Fuchs' surface) because we had shown previously (Atmos. Environ. 37 (2003) 1737-1744) that this parameter during the same observation period was a better predictor for acute respiratory symptoms in school children (like wheezing, shortness of breath, and cough) and reduced lung function on the same day than particle mass (PM 10). While active surface is most sensitive for fine particles with a diameter of less than 100 nm it has no strict upper cut-off regarding particle size and so could eventually be influenced also by larger particles if their numbers were high. All particle mass parameters tested (TSP, PM 10, PM 1) were weakly ( r approximately 0.2) though significantly correlated with pollen counts but neither was active surface nor total particle counts (CPC). The weak association of particle mass and pollen counts was due mainly to similar diurnal variations and a linear trend over time. Only the mass of the coarse fraction (TSP minus PM 10) remained associated with pollen counts significantly after controlling for these general temporal patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.
The platinum 'particle size effect' on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2-10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range -2-10more » nm (0.8-1.8 mA/cm2Pt at 0.9 V vs. RHE) and plateaued over -10 nm to 2.7 mA/cm2Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.« less
Qazi, Abroon Jamal; de Silva, Clarence W.
2014-01-01
This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868
NASA Astrophysics Data System (ADS)
Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.
2018-03-01
The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.
NASA Astrophysics Data System (ADS)
Forbes, Lauren Marie
Heterogeneous catalysts have widespread industrial applications. Platinum nanomaterials in particular, due to their particularly high electrocatalytic activity and durability, are used to catalyze a wide variety of reactions, including oxygen reduction, which is frequently used as the cathode reaction in fuel cells. As platinum is a very expensive material, a high priority in fuel cell research is the exploration of less expensive, more efficient catalysts for the oxygen reduction reaction (ORR). We demonstrate here the use of phage display to identify peptides that bind to Pt (100) which were then used to synthesize platinum cubes in solution. However, while the peptides were able to control particle growth, the bio-synthesized Pt particles showed extremely poor activity when tested for ORR. This could be attributed to peptide coverage on the surface or strong interactions between particular amino acids and the metal that are detrimental for catalysis. To investigate this further, we decided to investigate the role of individual amino acids on Pt nanocrystal synthesis and catalysis. For this, we conjugated the R-groups of single amino acids to polyethylene glycol (PEG) chains. Through this work we have determined that the identity of the amino acid R-group is important in both the synthesis and the catalytic activity of the particles. For Pt nanoparticle synthesis, we found that the hydrophobicity of the functional groups affected their ability to interact well with the particles during nucleation and growth, and thus only the hydrophilic functional groups were capable of mediating the synthesis to produce well-defined faceted particles. With respect to ORR, we found distinct trends that showed that the inclusion of certain amino acids could significantly enhance catalysis---even at high polymer loadings. This work presents evidence that counters the common conception that organic capping ligands decrease catalytic activity; in fact activity may actually be improved over bare metal through judicious choice and design of ligands that inhibit Pt oxidation and control chain packing at the Pt surface. Therefore, it may be possible to have ligands on a nanoparticle surface that allow the particles to be well-dispersed on an electrode surface, while simultaneously enhancing catalysis.
Sierra-Vargas, Martha Patricia; Guzman-Grenfell, Alberto Martin; Blanco-Jimenez, Salvador; Sepulveda-Sanchez, Jose David; Bernabe-Cabanillas, Rosa Maria; Cardenas-Gonzalez, Beatriz; Ceballos, Guillermo; Hicks, Juan Jose
2009-01-01
Background The Mexico City Metropolitan Area is densely populated, and toxic air pollutants are generated and concentrated at a higher rate because of its geographic characteristics. It is well known that exposure to particulate matter, especially to fine and ultra-fine particles, enhances the risk of cardio-respiratory diseases, especially in populations susceptible to oxidative stress. The aim of this study was to evaluate the effect of fine particles on the respiratory burst of circulating neutrophils from asthmatic patients living in Mexico City. Methods In total, 6 subjects diagnosed with mild asthma and 11 healthy volunteers were asked to participate. Neutrophils were isolated from peripheral venous blood and incubated with fine particles, and the generation of reactive oxygen species was recorded by chemiluminescence. We also measured plasma lipoperoxidation susceptibility and plasma myeloperoxidase and paraoxonase activities by spectrophotometry. Results Asthmatic patients showed significantly lower plasma paraoxonase activity, higher susceptibility to plasma lipoperoxidation and an increase in myeloperoxidase activity that differed significantly from the control group. In the presence of fine particles, neutrophils from asthmatic patients showed an increased tendency to generate reactive oxygen species after stimulation with fine particles (PM2.5). Conclusion These findings suggest that asthmatic patients have higher oxidation of plasmatic lipids due to reduced antioxidant defense. Furthermore, fine particles tended to increase the respiratory burst of blood human neutrophils from the asthmatic group. On the whole, increased myeloperoxidase activity and susceptibility to lipoperoxidation with a concomitant decrease in paraoxonase activity in asthmatic patients could favor lung infection and hence disrupt the control of asthmatic crises. PMID:19563660
Impact of surface coated magnetite used in magnetic drug delivery system on immune response
NASA Astrophysics Data System (ADS)
Oaku, Yoshihiro; Tamada, Junya; Mishima, Fumihito; Akiyama, Yoko; Osako, Mariana Kiomy; Koriyama, Hiroshi; Nakagami, Hironori; Nishijima, Shigehiro
2015-05-01
Magnetic drug delivery system (MDDS) is a technique to effectively accumulate drugs, which are combined with ferromagnetic particles, into the affected area using magnetic force control. This study intends to apply MDDS for immunotherapy by enhancing immune responses by a surface treatment of a ferromagnetic particle. The objective of this study is to give the adjuvant effect to a ferromagnetic particle by the surface treatment with alum, which is known as one of the common adjuvants that activates inflammasome pathway. First, magnetite was prepared as a ferromagnetic particle and coated with alum. Alum-coated magnetite increased the expression of caspase-1, which is an activated indicator of inflammasome, in the culture of human monocyte cell (THP-1 cell). To evaluate the potential of the surface coated particles, the particles were subcutaneously injected to mice with a peptide vaccine. As a result, the antibody titer was increased by the surface coated particles as assessed by ELISA. Although a magnetic force has not yet applied in this study, the administration experiment to mice using magnetic force control is our next step. In conclusion, we modified the immune response to magnetite by coating the surface with alum. This can lead to a clinical application for vaccine therapy in future.
Workplace exposure to nanoparticles from gas metal arc welding process
NASA Astrophysics Data System (ADS)
Zhang, Meibian; Jian, Le; Bin, Pingfan; Xing, Mingluan; Lou, Jianlin; Cong, Liming; Zou, Hua
2013-11-01
Workplace exposure to nanoparticles from gas metal arc welding (GMAW) process in an automobile manufacturing factory was investigated using a combination of multiple metrics and a comparison with background particles. The number concentration (NC), lung-deposited surface area concentration (SAC), estimated SAC and mass concentration (MC) of nanoparticles produced from the GMAW process were significantly higher than those of background particles before welding ( P < 0.01). A bimodal size distribution by mass for welding particles with two peak values (i.e., 10,000-18,000 and 560-320 nm) and a unimodal size distribution by number with 190.7-nm mode size or 154.9-nm geometric size were observed. Nanoparticles by number comprised 60.7 % of particles, whereas nanoparticles by mass only accounted for 18.2 % of the total particles. The morphology of welding particles was dominated by the formation of chain-like agglomerates of primary particles. The metal composition of these welding particles consisted primarily of Fe, Mn, and Zn. The size distribution, morphology, and elemental compositions of welding particles were significantly different from background particles. Working activities, sampling distances from the source, air velocity, engineering control measures, and background particles in working places had significant influences on concentrations of airborne nanoparticle. In addition, SAC showed a high correlation with NC and a relatively low correlation with MC. These findings indicate that the GMAW process is able to generate significant levels of nanoparticles. It is recommended that a combination of multiple metrics is measured as part of a well-designed sampling strategy for airborne nanoparticles. Key exposure factors, such as particle agglomeration/aggregation, background particles, working activities, temporal and spatial distributions of the particles, air velocity, engineering control measures, should be investigated when measuring workplace exposure to nanoparticles.
Control of Reaction Kinetics During Friction Stir Processing
Das, Shamiparna; Martinez, Nelson Y.; Mishra, Rajiv S.; ...
2017-02-17
Friction stir processing (FSP) was used to successfully embed galfenol particles into aluminum (AA 1100 Al) matrix uniformly. But, intermetallic layer of Al 3Fe was formed around the galfenol particles. We estimated the activation energy for Al 3Fe formation during FSP, and attempts were made to minimize the Al 3Fe layer thickness. By changing the processing conditions, FSP successfully eliminated the intermetallic layer. Therefore, FSP, in addition to microstructural control, can successfully fabricate intermetallic-free embedded regions by controlling the reaction kinetics.
Photocatalytic/Magnetic Composite Particles
NASA Technical Reports Server (NTRS)
Wu, Chang-Yu; Goswami, Yogi; Garretson, Charles; Andino, Jean; Mazyck, David
2007-01-01
Photocatalytic/magnetic composite particles have been invented as improved means of exploiting established methods of photocatalysis for removal of chemical and biological pollutants from air and water. The photocatalytic components of the composite particles are formulated for high levels of photocatalytic activity, while the magnetic components make it possible to control the movements of the particles through the application of magnetic fields. The combination of photocatalytic and magnetic properties can be exploited in designing improved air- and water treatment reactors.
Active colloids as assembly machines
NASA Astrophysics Data System (ADS)
Goodrich, Carl; Brenner, Michael
Controlling motion at the microscopic scale is a fundamental goal in the development of biologically-inspired systems. We show that the motion of active, self-propelled colloids can be sufficiently controlled for use as a tool to assemble complex structures such as braids and weaves out of microscopic filaments. Unlike typical self-assembly paradigms, these structures are held together by geometric constraints rather than adhesive bonds. The out-of-equilibrium assembly that we propose involves precisely controlling the two-dimensional motion of active colloids so that their path has a non-trivial topology. We demonstrate with proof-of-principle Brownian dynamics simulations that, when the colloids are attached to long semi-flexible filaments, this motion causes the filaments to braid. The ability of the active particles to provide sufficient force necessary to bend the filaments into a braid depends on a number of factors, including the self-propulsion mechanism, the properties of the filament, and the maximum curvature in the braid. Our work demonstrates that non-equilibrium assembly pathways can be designed using active particles.
Montenero, Michael P; Dilbone, Elizabeth K; Waples, James T
2017-10-01
In pelagic waters, the removal of particle-reactive radionuclides is controlled by nuclide sorption to particles and subsequent settling by gravity. However, in shallow nearshore waters, the dominant mechanism of nuclide scavenging is not so clear. Understanding how particle-reactive radionuclides are scavenged from the water column is critical if these tracers are to be used as proxies of particle flux in shallow aquatic systems. In this study, we present evidence that the removal of particle-reactive radionuclides in nearshore and turbulent waters is primarily controlled by bottom scavenging. Specifically, we measured both water column and bottom sediment activities of sewage-sourced iodine-131 ( 131 I, t ½ = 8.02 days) and atmospherically-sourced beryllium-7 ( 7 Be, t ½ = 53.3 days) in a semi-enclosed harbor. We show that the water column 7 Be/ 131 I flux ratio that is required to sustain observed harbor bottom inventories of both nuclides is incongruent with 7 Be/ 131 I activity ratios on water column particles, and (2) 131 I and 7 Be derived mass fluxes of particulate matter to the harbor bottom are in concordance with each other and independently made estimates of river sediment loading to the harbor only when bottom scavenging of both particle-bound and dissolved (<0.7 μm) nuclide fractions are considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tang, Huanfeng; Huang, Zaiyin; Xiao, Ming; Liang, Min; Chen, Liying; Tan, XueCai
2017-09-01
The activities, selectivities, and stabilities of nanoparticles in heterogeneous reactions are size-dependent. In order to investigate the influencing laws of particle size and temperature on kinetic parameters in heterogeneous reactions, cubic nano-Cu2O particles of four different sizes in the range of 40-120 nm have been controllably synthesized. In situ microcalorimetry has been used to attain thermodynamic data on the reaction of Cu2O with aqueous HNO3 and, combined with thermodynamic principles and kinetic transition-state theory, the relevant reaction kinetic parameters have been evaluated. The size dependences of the kinetic parameters are discussed in terms of the established kinetic model and the experimental results. It was found that the reaction rate constants increased with decreasing particle size. Accordingly, the apparent activation energy, pre-exponential factor, activation enthalpy, activation entropy, and activation Gibbs energy decreased with decreasing particle size. The reaction rate constants and activation Gibbs energies increased with increasing temperature. Moreover, the logarithms of the apparent activation energies, pre-exponential factors, and rate constants were found to be linearly related to the reciprocal of particle size, consistent with the kinetic models. The influence of particle size on these reaction kinetic parameters may be explained as follows: the apparent activation energy is affected by the partial molar enthalpy, the pre-exponential factor is affected by the partial molar entropy, and the reaction rate constant is affected by the partial molar Gibbs energy. [Figure not available: see fulltext.
Visaveliya, Nikunjkumar; Köhler, J Michael
2015-12-22
Potential biomedical applications such as controlled delivery with sustained drug release profile demand for multifunctional polymeric particles of precise chemical composition and with welldefined physicochemical properties. The real challenge is to obtain the reproducible and homogeneous nanoparticles in a minimum number of preparation steps. Here, single-step nanoarchitectures of soft surface layered copolymer nanoparticles with a regular tuning in the size via micro flow-through assisted synthesis are reported. Interfacial copolymerization induces the controlled compartmentalization where a hydrophobic core adopts spherical shape in order to minimize the surface energy and simultaneously shelter in the hydrophilic shelllike surface layer. Surface layer can swell in the aqueous medium and allow controlled entrapping of functional hydrophobic nanoparticles in the hydrophilic interior via electrostatic interaction which can be particularly interesting for combined fluorescence activity. Furthermore, the nanoarchitecture of size and concentration controlled polymer-metal nanoassembly particles can be implemented as an ideal surface-enhanced Raman scattering substrate for detection of the trace amounts of various analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Segregation of colloidal swimmers by their activity
NASA Astrophysics Data System (ADS)
Ferrari, Melissa; Youssef, Mena; Driscoll, Michelle; Sacanna, Stefano; Pine, David; Chaikin, Paul
We study a system of micron sized self-propelled colloidal swimmers whose activity can be switched on or off with the flick of a light switch. We have designed a system where an external LED source reflects light off of an array with hundreds of thousands of independently controlled tiny mirrors, through an optical microscope, and onto the plane of the swimmers. By exposing a collection of particles to a spatial or dynamic light field, we have the ability to control the speed of a particle based on its position, and therefore the density of the collection of particles in space. Theoreticians in the field have been building a framework that describes systems which are out-of-equilibrium and we will show how our system can be useful tool in mapping these theories to experiment. Center for Bio-inspired Energy Science.
Flow Navigation by Smart Microswimmers via Reinforcement Learning
NASA Astrophysics Data System (ADS)
Colabrese, Simona; Biferale, Luca; Celani, Antonio; Gustavsson, Kristian
2017-11-01
We have numerically modeled active particles which are able to acquire some limited knowledge of the fluid environment from simple mechanical cues and exert a control on their preferred steering direction. We show that those swimmers can learn effective strategies just by experience, using a reinforcement learning algorithm. As an example, we focus on smart gravitactic swimmers. These are active particles whose task is to reach the highest altitude within some time horizon, exploiting the underlying flow whenever possible. The reinforcement learning algorithm allows particles to learn effective strategies even in difficult situations when, in the absence of control, they would end up being trapped by flow structures. These strategies are highly nontrivial and cannot be easily guessed in advance. This work paves the way towards the engineering of smart microswimmers that solve difficult navigation problems. ERC AdG NewTURB 339032.
Collective motion of active Brownian particles with polar alignment.
Martín-Gómez, Aitor; Levis, Demian; Díaz-Guilera, Albert; Pagonabarraga, Ignacio
2018-04-04
We present a comprehensive computational study of the collective behavior emerging from the competition between self-propulsion, excluded volume interactions and velocity-alignment in a two-dimensional model of active particles. We consider an extension of the active brownian particles model where the self-propulsion direction of the particles aligns with the one of their neighbors. We analyze the onset of collective motion (flocking) in a low-density regime (10% surface area) and show that it is mainly controlled by the strength of velocity-alignment interactions: the competition between self-propulsion and crowding effects plays a minor role in the emergence of flocking. However, above the flocking threshold, the system presents a richer pattern formation scenario than analogous models without alignment interactions (active brownian particles) or excluded volume effects (Vicsek-like models). Depending on the parameter regime, the structure of the system is characterized by either a broad distribution of finite-sized polar clusters or the presence of an amorphous, highly fluctuating, large-scale traveling structure which can take a lane-like or band-like form (and usually a hybrid structure which is halfway in between both). We establish a phase diagram that summarizes collective behavior of polar active brownian particles and propose a generic mechanism to describe the complexity of the large-scale structures observed in systems of repulsive self-propelled particles.
Effect of Encapsulation on Antimicrobial Activity of Herbal Extracts with Lysozyme
Matouskova, Petra; Bokrova, Jitka; Benesova, Pavla
2016-01-01
Summary Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin) on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch). Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus) and two Gram-negative (Escherichia coli and Serratia marcescens) bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries. PMID:27956862
Neural differences in processing of case particles in Japanese: an fMRI study
Hashimoto, Yosuke; Yokoyama, Satoru; Kawashima, Ryuta
2014-01-01
Introduction In subject–object–verb (SOV) languages, such as Japanese, sentence processing proceeds incrementally to the late presentation of the head (verb). Japanese case particles play a crucial role in sentence processing; however, little is known about how these particles are processed. In particular, it is still unclear how the functional difference between case particles is represented in the human brain. Methods In this study, we conducted an fMRI experiment using an event-related design to directly compare brain activity during Japanese case particle processing among the nominative case ga, accusative case o, and dative case ni. Twenty five native Japanese speakers were asked to judge whether the presented character was a particle in a particle judgment task and whether the character ended with a specific vowel in a phonological judgment task, which was used as a control condition. Results A particle comparison demonstrated that the processing of ni was associated with significantly weaker brain activity than that of ga and o in the left middle frontal gyrus (MFG) and the inferior frontal gyrus (IFG). Significantly greater brain activity associated with ni relative to ga in the right IFG was also observed. Conclusion These results suggest that the Japanese case particles ga, ni, and o are represented differently in the brain. PMID:24683511
NASA Astrophysics Data System (ADS)
Huang, Wei; Fang, Dongqing; Shang, Jing; Li, Zhengqiang; Zhang, Yang; Huo, Peng; Liu, Zhaoying; Schauer, James J.; Zhang, Yuanxun
2018-06-01
A field observation focusing on reactive oxygen species (ROS) was conducted before, during, and after the 2015 China Victory Day Parade to understand the influence of short-term emissions controls on atmospheric oxidative activity. The hourly average concentrations of PM2.5, SO2, NO, NO2, CO, O3, as well as gas and particle-phase ROS, were measured using a series of online instruments. PM2.5 concentrations during control days were significantly lower than non-control days, which directly lead to the "Parade Blue", yet reductions of most gaseous pollutants except SO2 were not so obvious as PM. Similarly, the control measures also led to a great loss of particle-phase ROS throughout the control period, while the reduction of ROS in gas phase was not obvious until the more stringent measures implemented since September 1. Furthermore, only weak positive correlations were observed among ROS and some other measured species, indicating ROS concentrations were affected by a number of comprehensive factors that single marker could not capture. Meanwhile, meteorological condition and regional transportation were also shown to be the minor factors affecting atmospheric oxidizing capacity. The results of this observation mainly revealed the control measures were conducive to reducing particle-related ROS. However, the reduction of gas-phase ROS activity was less effective given the menu of controls employed for the 2015 China Victory Day Parade. Therefore, short-term emissions controls only aimed to PM reduction and visibility improvement will produce the blue sky but will not equivalently reduce the gas-phase ROS. Supplemental control measures will be needed to further reduce gas-phase ROS concentrations.
NASA Astrophysics Data System (ADS)
Motojima, G.; Masuzaki, S.; Tanaka, H.; Morisaki, T.; Sakamoto, R.; Murase, T.; Tsuchibushi, Y.; Kobayashi, M.; Schmitz, O.; Shoji, M.; Tokitani, M.; Yamada, H.; Takeiri, Y.; The LHD Experiment Group
2018-01-01
Superior control of particle recycling and hence full governance of plasma density has been established in the Large Helical Device (LHD) using largely enhanced active pumping of the closed helical divertor (CHD). In-vessel cryo-sorption pumping systems inside the CHD in five out of ten inner toroidal divertor sections have been developed and installed step by step in the LHD. The total effective pumping speed obtained was 67 ± 5 m3 s-1 in hydrogen, which is approximately seven times larger than previously obtained. As a result, a low recycling state was observed with CHD pumping for the first time in LHD featuring excellent density control even under intense pellet fueling conditions. A global particle confinement time (τ p* ) is used for comparison of operation with and without the CHD pumping. The τ p* was evaluated from the density decay after the fueling of hydrogen pellet injection or gas puffing in NBI plasmas. A reliably low base density before the fueling and short τ p* after the fueling were obtained during the CHD pumping, demonstrating for the first time full control of the particle balance with active pumping in the CHD.
Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles
NASA Astrophysics Data System (ADS)
Smitha, S. L.; Gopchandran, K. G.
2013-02-01
Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.
Encapsulation and controlled release of retinol from silicone particles for topical delivery.
Shields, C Wyatt; White, John P; Osta, Erica G; Patel, Jerishma; Rajkumar, Shashank; Kirby, Nickolas; Therrien, Jean-Philippe; Zauscher, Stefan
2018-05-28
Retinol, a derivative of vitamin A, is a ubiquitous compound used to treat acne, reduce wrinkles and protect against conditions like psoriasis and ichthyosis. While retinol is used as the primary active ingredient (AI) in many skin care formulations, its efficacy is often limited by an extreme sensitivity to degrade and toxicity at high concentrations. While microencapsulation is an appealing method to help overcome these issues, few microencapsulation strategies have made a major translational impact due to challenges with complexity, cost, limited protection of the AI and poor control of the release of the AI. We have developed a class of silicone particles that addresses these challenges for the encapsulation, protection and controlled release of retinol and other hydrophobic compounds. The particles are prepared by the sol-gel polymerization of silane monomers, which enables their rapid and facile synthesis at scale while maintaining a narrow size distribution (i.e., CV < 20%). We show that our particles can: (i) encapsulate retinol with high efficiency (>85%), (ii) protect retinol from degradation (yielding a half-life 9× greater than unencapsulated retinol) and (iii) slowly release retinol over several hours (at rates from 0.14 to 0.67 μg cm -2 s -1/2 ). To demonstrate that the controlled release of retinol from the particles can reduce irritation, we performed a double blind study on human subjects and found that formulations containing our particles were 12-23% less irritating than identical formulations containing Microsponge® particles (an industry standard by Amcol, Inc.). To show that the silicone particles can elicit a favorable biological response, similar to the Microsponge® particles, we applied both formulations to reconstructed human epidermal tissues and found an upregulation of keratin 19 (K19) and a downregulation of K10, indicating that the reduced irritation observed in the human study was not caused by reduced activity. We also found a decrease in the production of interleukin-1α (IL-1α) compared to formulations containing the Microsponge particles, suggesting lower irritation levels and supporting the findings from the human study. Finally, we show that the silicone particles can encapsulate other AIs, including betamethasone, N, N-diethyl-meta-toluamide (DEET), homosalate and ingenol mebutate, establishing these particles as a true platform technology. Copyright © 2018. Published by Elsevier B.V.
Checking the possibility of controlling fuel element by X-ray computerized tomography
NASA Astrophysics Data System (ADS)
Trinh, V. B.; Zhong, Y.; Osipov, S. P.; Batranin, A. V.
2017-08-01
The article considers the possibility of checking fuel elements by X-ray computerized tomography. The checking tasks are based on the detection of particles of active material, evaluation of the heterogeneity of the distribution of uranium salts and the detection of clusters of uranium particles. First of all, scheme of scanning improve the performance and quality of the resulting three-dimensional images of the internal structure is determined. Further, the possibility of detecting clusters of uranium particles having the size of 1 mm3 and measuring the coordinates of clusters of uranium particles in the middle layer with the accuracy of within a voxel size (for the considered experiments of about 80 μm) is experimentally proved in the main part. The problem of estimating the heterogeneity of the distribution of the active material in the middle layer and the detection of particles of active material with a nominal diameter of 0.1 mm in the “blank” is solved.
On Roesler and Arzt's new model of creep in dispersion strengthened alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlova, A.; Cadek, J.
1992-08-01
The model of creep in dispersion (noncoherent particle) strengthened alloys assuming thermally activated detachment of dislocations from particles to be the rate controlling process, recently presented by Roesler and Arzt (1990), is correlated with some available creep and structure data for aluminum alloys strengthened by Al4C3 and Al2O3 particles. It is shown that though the model requires applied stress dependent apparent activation energy of creep, the stress dependence of creep rate can be satisfactorily accounted for even when this activation energy is stress independent, admitting a strong stress dependence of the preexponential structure factor, i.e., of the mobile dislocation density.more » On the other hand, the model is not able to account for the temperature dependence of creep rate if it is significantly stronger than that of the coefficient of lattice diffusion, as is usually the case with alloys strengthened by noncoherent particles in which the attractive dislocation/particle interaction can be expected. 14 refs.« less
Emergent ultra–long-range interactions between active particles in hybrid active–inactive systems
Steimel, Joshua P.; Aragones, Juan L.; Hu, Helen; Qureshi, Naser; Alexander-Katz, Alfredo
2016-01-01
Particle–particle interactions determine the state of a system. Control over the range of such interactions as well as their magnitude has been an active area of research for decades due to the fundamental challenges it poses in science and technology. Very recently, effective interactions between active particles have gathered much attention as they can lead to out-of-equilibrium cooperative states such as flocking. Inspired by nature, where active living cells coexist with lifeless objects and structures, here we study the effective interactions that appear in systems composed of active and passive mixtures of colloids. Our systems are 2D colloidal monolayers composed primarily of passive (inactive) colloids, and a very small fraction of active (spinning) ferromagnetic colloids. We find an emergent ultra–long-range attractive interaction induced by the activity of the spinning particles and mediated by the elasticity of the passive medium. Interestingly, the appearance of such interaction depends on the spinning protocol and has a minimum actuation timescale below which no attraction is observed. Overall, these results clearly show that, in the presence of elastic components, active particles can interact across very long distances without any chemical modification of the environment. Such a mechanism might potentially be important for some biological systems and can be harnessed for newer developments in synthetic active soft materials. PMID:27071096
Surface engineering of nanoparticles in suspension for particle based bio-sensing
Sen, Tapas; Bruce, Ian J.
2012-01-01
Surface activation of nanoparticles in suspension using amino organosilane has been carried out via strict control of a particle surface ad-layer of water using a simple but efficient protocol ‘Tri-phasic Reverse Emulsion’ (TPRE). This approach produced thin and ordered layers of particle surface functional groups which allowed the efficient conjugation of biomolecules. When used in bio-sensing applications, the resultant conjugates were highly efficient in the hybrid capture of complementary oligonucleotides and the detection of food borne microorganism. TPRE overcomes a number of fundamental problems associated with the surface modification of particles in aqueous suspension viz. particle aggregation, density and organization of resultant surface functional groups by controlling surface condensation of the aminosilane. The approach has potential for application in areas as diverse as nanomedicine, to food technology and industrial catalysis. PMID:22872809
Detection of alpha radiation in a beta radiation field
Mohagheghi, Amir H.; Reese, Robert P.
2001-01-01
An apparatus and method for detecting alpha particles in the presence of high activities of beta particles utilizing an alpha spectrometer. The apparatus of the present invention utilizes a magnetic field applied around the sample in an alpha spectrometer to deflect the beta particles from the sample prior to reaching the detector, thus permitting detection of low concentrations of alpha particles. In the method of the invention, the strength of magnetic field required to adequately deflect the beta particles and permit alpha particle detection is given by an algorithm that controls the field strength as a function of sample beta energy and the distance of the sample to the detector.
Weakly sheared active suspensions: hydrodynamics, stability, and rheology.
Cui, Zhenlu
2011-03-01
We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration.
An Active Approach to Colloidal Self-Assembly
NASA Astrophysics Data System (ADS)
Mallory, Stewart A.; Valeriani, Chantal; Cacciuto, Angelo
2018-04-01
In this review, we discuss recent advances in the self-assembly of self-propelled colloidal particles and highlight some of the most exciting results in this field, with a specific focus on dry active matter. We explore this phenomenology through the lens of the complexity of the colloidal building blocks. We begin by considering the behavior of isotropic spherical particles. We then discuss the case of amphiphilic and dipolar Janus particles. Finally, we show how the geometry of the colloids and/or the directionality of their interactions can be used to control the physical properties of the assembled active aggregates, and we suggest possible strategies for how to exploit activity as a tunable driving force for self-assembly. The unique properties of active colloids lend promise to the design of the next generation of functional, environment-sensing microstructures able to perform specific tasks in an autonomous and targeted manner.
On the CCN (de)activation nonlinearities
NASA Astrophysics Data System (ADS)
Arabas, Sylwester; Shima, Shin-ichiro
2017-09-01
We take into consideration the evolution of particle size in a monodisperse aerosol population during activation and deactivation of cloud condensation nuclei (CCN). Our analysis reveals that the system undergoes a saddle-node bifurcation and a cusp catastrophe. The control parameters chosen for the analysis are the relative humidity and the particle concentration. An analytical estimate of the activation timescale is derived through estimation of the time spent in the saddle-node bifurcation bottleneck. Numerical integration of the system coupled with a simple air-parcel cloud model portrays two types of activation/deactivation hystereses: one associated with the kinetic limitations on droplet growth when the system is far from equilibrium, and one occurring close to equilibrium and associated with the cusp catastrophe. We discuss the presented analyses in context of the development of particle-based models of aerosol-cloud interactions in which activation and deactivation impose stringent time-resolution constraints on numerical integration.
Artificial neural network based particle size prediction of polymeric nanoparticles.
Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf
2017-10-01
Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
Mudway, Ian S; Duggan, Sean T; Venkataraman, Chandra; Habib, Gazala; Kelly, Frank J; Grigg, Jonathan
2005-01-01
Background The burning of biomass in the developing world for heating and cooking results in high indoor particle concentrations. Long-term exposure to airborne particulate matter (PM) has been associated with increased rates of acute respiratory infections, chronic obstructive lung disease and cancer. In this study we determined the oxidative activity of combustion particles derived from the biomass fuel dung cake by examining their capacity to deplete antioxidants from a model human respiratory tract lining fluid (RTLF). For comparison, the observed oxidative activity was compared with that of particles derived from industrial and vehicular sources. Results Incubation of the dung cake particle suspensions in the RTLF for 4 h resulted in a mean loss of ascorbate of 72.1 ± 0.7 and 89.7 ± 2.5% at 50 and 100 μg/ml, respectively. Reduced glutathione was depleted by 49.6 ± 4.3 and 63.5 ± 22.4% under the same conditions. The capacity of these samples to deplete ascorbate was in excess of that observed with diesel or gasoline particles, but comparable to that seen with residual oil fly ash and considerably in excess of all three control particles in terms of glutathione depletion. Co-incubation with the metal chelator diethylenetriaminepentaacetate inhibited these losses, whilst minimal inhibition was seen with superoxide dismutase and catalase treatment. The majority of the activity observed appeared to be contained within aqueous particle extracts. Conclusion These data demonstrate that biomass derived particles have considerable oxidative activity, largely attributable to their transition metal content. PMID:16202154
Using active colloids as machines to weave and braid on the micrometer scale
NASA Astrophysics Data System (ADS)
Goodrich, Carl P.; Brenner, Michael P.
2017-01-01
Controlling motion at the microscopic scale is a fundamental goal in the development of biologically inspired systems. We show that the motion of active, self-propelled colloids can be sufficiently controlled for use as a tool to assemble complex structures such as braids and weaves out of microscopic filaments. Unlike typical self-assembly paradigms, these structures are held together by geometric constraints rather than adhesive bonds. The out-of-equilibrium assembly that we propose involves precisely controlling the 2D motion of active colloids so that their path has a nontrivial topology. We demonstrate with proof-of-principle Brownian dynamics simulations that, when the colloids are attached to long semiflexible filaments, this motion causes the filaments to braid. The ability of the active particles to provide sufficient force necessary to bend the filaments into a braid depends on a number of factors, including the self-propulsion mechanism, the properties of the filament, and the maximum curvature in the braid. Our work demonstrates that nonequilibrium assembly pathways can be designed using active particles.
Using active colloids as machines to weave and braid on the micrometer scale
Goodrich, Carl P.; Brenner, Michael P.
2017-01-01
Controlling motion at the microscopic scale is a fundamental goal in the development of biologically inspired systems. We show that the motion of active, self-propelled colloids can be sufficiently controlled for use as a tool to assemble complex structures such as braids and weaves out of microscopic filaments. Unlike typical self-assembly paradigms, these structures are held together by geometric constraints rather than adhesive bonds. The out-of-equilibrium assembly that we propose involves precisely controlling the 2D motion of active colloids so that their path has a nontrivial topology. We demonstrate with proof-of-principle Brownian dynamics simulations that, when the colloids are attached to long semiflexible filaments, this motion causes the filaments to braid. The ability of the active particles to provide sufficient force necessary to bend the filaments into a braid depends on a number of factors, including the self-propulsion mechanism, the properties of the filament, and the maximum curvature in the braid. Our work demonstrates that nonequilibrium assembly pathways can be designed using active particles. PMID:28034922
NASA Astrophysics Data System (ADS)
Hill, Laura E.; Gomes, Carmen L.
2014-12-01
The goal of this study was to develop an effective method to synthesize poly-n-isopropylacrylamide (PNIPAAM) nanoparticles with entrapped cinnamon bark extract (CBE) to improve its delivery to foodborne pathogens and control its release with temperature stimuli. CBE was used as a model for hydrophobic natural antimicrobials. A top-down procedure using crosslinked PNIPAAM was compared to a bottom-up procedure using NIPAAM monomer. Both processes relied on self-assembly of the molecules into micelles around the CBE at 40 °C. Processing conditions were compared including homogenization time of the polymer, hydration time prior to homogenization, lyophilization, and the effect of particle ultrafiltration. The top-down versus bottom-up synthesis methods yielded particles with significantly different characteristics, especially their release profiles and antimicrobial activities. The synthesis methods affected particle size, with the bottom-up procedure resulting in smaller (P < 0.05) diameters than the top-down procedure. The controlled release profile of CBE from nanoparticles was dependent on the release media temperature. A faster, burst release was observed at 40 °C and a slower, more sustained release was observed at lower temperatures. PNIPAAM particles containing CBE were analyzed for their antimicrobial activity against Salmonella enterica serovar Typhimurium LT2 and Listeria monocytogenes Scott A. The PNIPAAM particles synthesized via the top-down procedure had a much faster release, which led to a greater (P < 0.05) antimicrobial activity. Both of the top-down nanoparticles performed similarly, therefore the 7 min homogenization time nanoparticles would be the best for this application, as the process time is shorter and little improvement was seen by using a slightly longer homogenization.
The effects of heavy particle irradiation on exploration and response to environmental change
NASA Astrophysics Data System (ADS)
Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B.; Joseph, J.
Free radicals produced by exposure to heavy particles have been found to produce motor and behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability to detect novel arrangements in a given environment of male Sprague-Dawley rats. Using a test of spatial memory previously demonstrated to be sensitive to aging, open-field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non- radiated controls. Animals irradiated with 1.5 Gy of56Fe particles exhibited some age-like effects in animals tested, even though they were for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open-field independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects reacted significantly more to novel objects placed in the open-field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open-field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open-field exploratory behavior, but did not elicit age- like effects during the spatial and non-spatial rearrangement tasks. Supported by N.A.S.A. Grant NAG9-1190.
The effects of heavy particle irradiation on exploration and response to environmental change
NASA Astrophysics Data System (ADS)
Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.
2004-01-01
Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previously demonstrated to be sensitive to aging, open field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy ( n=10) of 56Fe heavy particle radiation or in non-radiated controls ( n=10). Animals irradiated with 1.5 Gy of 56Fe particles exhibited some age-like effects in rats tested, even though they were, for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open field, independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects spend significantly more time exploring novel objects placed in the open field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open field exploratory behavior, but did not elicit age-like effects during the spatial and non-spatial rearrangement tasks.
The effects of heavy particle irradiation on exploration and response to environmental change
NASA Technical Reports Server (NTRS)
Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.
2004-01-01
Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previously demonstrated to be sensitive to aging, open field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non-radiated controls (n=10). Animals irradiated with 1.5 Gy of 56Fe particles exhibited some age-like effects in rats tested, even though they were, for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open field, independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects spend significantly more time exploring novel objects placed in the open field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open field exploratory behavior, but did not elicit age-like effects during the spatial and non-spatial rearrangement tasks. Published by Elsevier Ltd on behalf of COSPAR.
Saallah, Suryani; Naim, M Nazli; Mokhtar, Mohd Noriznan; Abu Bakar, Noor Fitrah; Gen, Masao; Lenggoro, I Wuled
2014-10-01
In this study, the potential of electrohydrodynamic atomization or electrospraying to produce nanometer-order CGTase particles from aqueous suspension was demonstrated. CGTase enzyme was prepared in acetate buffer solution (1% v/v), followed by electrospraying in stable Taylor cone-jet mode. The deposits were collected on aluminium foil (collector) at variable distances from the tip of spraying needle, ranging from 10 to 25 cm. The Coulomb fission that occurs during electrospraying process successfully transformed the enzyme to the solid state without any functional group deterioration. The functional group verification was conducted by FTIR analysis. Comparison between the deposit and the as-received enzyme in dry state indicates almost identical spectra. By increasing the distance of the collector from the needle tip, the average particle size of the solidified enzyme was reduced from 200±117 nm to 75±34 nm. The average particle sizes produced from the droplet fission were in agreement with the scaling law models. Enzyme activity analysis showed that the enzyme retained its initial activity after the electrospraying process. The enzyme particles collected at the longest distance (25 cm) demonstrated the highest enzyme activity, which indicates that the activity was controlled by the enzyme particle size. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shan, Bonan; Wang, Jiang; Deng, Bin; Wei, Xile; Yu, Haitao; Zhang, Zhen; Li, Huiyan
2016-07-01
This paper proposes an epilepsy detection and closed-loop control strategy based on Particle Swarm Optimization (PSO) algorithm. The proposed strategy can effectively suppress the epileptic spikes in neural mass models, where the epileptiform spikes are recognized as the biomarkers of transitions from the normal (interictal) activity to the seizure (ictal) activity. In addition, the PSO algorithm shows capabilities of accurate estimation for the time evolution of key model parameters and practical detection for all the epileptic spikes. The estimation effects of unmeasurable parameters are improved significantly compared with unscented Kalman filter. When the estimated excitatory-inhibitory ratio exceeds a threshold value, the epileptiform spikes can be inhibited immediately by adopting the proportion-integration controller. Besides, numerical simulations are carried out to illustrate the effectiveness of the proposed method as well as the potential value for the model-based early seizure detection and closed-loop control treatment design.
Jaramillo, Isabel C.; Sturrock, Anne; Ghiassi, Hossein; Woller, Diana J.; Deering-Rice, Cassandra E.; Lighty, JoAnn S.; Paine, Robert; Reilly, Christopher; Kelly, Kerry E.
2017-01-01
The physicochemical properties of combustion particles that promote lung toxicity are not fully understood, hindered by the fact that combustion particles vary based on the fuel and combustion conditions. Real-world combustion-particle properties also continually change as new fuels are implemented, engines age, and engine technologies evolve. This work used laboratory-generated particles produced under controlled combustion conditions in an effort to understand the relationship between different particle properties and the activation of established toxicological outcomes in human lung cells (H441 and THP-1). Particles were generated from controlled combustion of two simple biofuel/diesel surrogates (methyl decanoate and dodecane/BD, and butanol and dodecane/AD) and compared to a widely studied reference diesel particle (NIST SRM2975/RD). BD, AD, and RD particles exhibited differences in size, surface area, extractable chemical mass, and the content of individual polycyclic aromatic hydrocarbons (PAHs). Some of these differences were directly associated with different effects on biological responses. BD particles had the greatest surface area, amount of extractable material and oxidizing potential. These particles and extracts induced cytochrome P450 1A1 and 1B1 enzyme mRNA in lung cells. AD particles and extracts had the greatest total PAH content and also caused CYP1A1 and 1B1 mRNA induction. The RD extract contained the highest relative concentration of 2-ring PAHs and stimulated the greatest level of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNFα) cytokine secretion. Finally, AD and RD were more potent activators of TRPA1 than BD, and while neither the TRPA1 antagonist HC-030031 nor the antioxidant N-acetylcysteine (NAC) affected CYP1A1 or 1B1 mRNA induction, both inhibitors reduced IL-8 secretion and mRNA induction. These results highlight that differences in fuel and combustion conditions affect the physicochemical properties of particles, and these differences, in turn, affect commonly studied biological/toxicological responses. PMID:29227181
Striped, Ellipsoidal Particles by Controlled Assembly of Diblock Copolymers
2013-04-17
morphology to a disordered bicontinuous morphology can be achieved.15,16,26−28 For poly(styrene- b -2-vinylpyridine) ( PS - b - P2VP ) materials, precise control of an...of SNPs, slow evaporation of chloroform from emulsion droplets containing PS - b - P2VP diblock copolymers resulted in solid particles with a spherical...lamellae of PS - b - P2VP and SNP necklaces decorating the outer surface could be obtained. The role of interfacially active SNPs in the morphology
Vibration Control by a Shear Type Semi-active Damper Using Magnetorheological Grease
NASA Astrophysics Data System (ADS)
Shiraishi, Toshihiko; Misaki, Hirotaka
2016-09-01
This paper describes semi-active vibration control by a controllable damper with high reliability and wide dynamic range using magnetorheological (MR) grease. Some types of cylindrical controllable dampers based on pressure difference between chambers in the dampers using “MR fluid”, whose rheological properties can be varied by applying a magnetic field, have been reported as a semi-active device. However, there are some challenging issues of them. One is to improve dispersion stability. The particles dispersed in MR fluid would make sedimentation after a period. Another is to expand dynamic range. Since cylindrical dampers require sealing elements because of pressure difference in the dampers, the dynamic range between the maximum and minimum damping force according to a magnetic field is reduced. In this study, a controllable damper using the MR effect was proposed and its performance was experimentally verified to improve the dispersion stability by using “MR grease”, which includes grease as the carrier of magnetic particles, and to expand the dynamic range by adopting a shear type structure not requiring sealing elements. Furthermore, semiactive vibration control experiments by the MR grease damper using a simple algorithm based on the skyhook damper scheme were conducted and its performance was investigated.
ZnO nanoparticles and their acarbose-capped nanohybrids as inhibitors for human salivary amylase.
Shaik, Firdoz; Kumar, Anil
2017-04-01
The authors report a controlled synthesis of biocompatible ZnO and acarbose-capped nanohybrids, and examined the inhibition activities of these nanosystems with human salivary α -amylase (HSA) activity. XRD measurements reveal ZnO present in wurtzite phase with hexagonal structure. The average size of ZnO particles for the two studied nanosystems was estimated to lie between 10 to 12 nm using Scherrer equation. These particles depict the onset of absorption at about 320 nm and the band-gap emission at about 370 nm, which are fairly blue shifted as compared with the bulk ZnO and have been understood due to the size quantisation effect. The inhibitory action of thioglycerol capped ZnO nanoparticles (SP1) and acarbose drug (used for diabetes type II) capped ZnO (SP2) for HSA was observed to 61 and72%, respectively. The inhibition activity of the SP1 alone was found to be very similar to that of acarbose and the coating of these particles with drug (SP2) demonstrated an enhancement in inhibition activity of the enzyme by about 30%. From the inhibition studies, it is confirmed that these nanosystems showed better inhibition activity at physiological temperature and pH. These nanosystems are projected to have potential applications in diabetes type II control.
Stochastic many-particle model for LFP electrodes
NASA Astrophysics Data System (ADS)
Guhlke, Clemens; Gajewski, Paul; Maurelli, Mario; Friz, Peter K.; Dreyer, Wolfgang
2018-02-01
In the framework of non-equilibrium thermodynamics, we derive a new model for many-particle electrodes. The model is applied to LiFePO4 (LFP) electrodes consisting of many LFP particles of nanometer size. The phase transition from a lithium-poor to a lithium-rich phase within LFP electrodes is controlled by both different particle sizes and surface fluctuations leading to a system of stochastic differential equations. An explicit relation between battery voltage and current controlled by the thermodynamic state variables is derived. This voltage-current relation reveals that in thin LFP electrodes lithium intercalation from the particle surfaces into the LFP particles is the principal rate-limiting process. There are only two constant kinetic parameters in the model describing the intercalation rate and the fluctuation strength, respectively. The model correctly predicts several features of LFP electrodes, viz. the phase transition, the observed voltage plateaus, hysteresis and the rate-limiting capacity. Moreover we study the impact of both the particle size distribution and the active surface area on the voltage-charge characteristics of the electrode. Finally we carefully discuss the phase transition for varying charging/discharging rates.
Redox active polymers and colloidal particles for flow batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavvalapalli, Nagarjuna; Moore, Jeffrey S.; Rodriguez-Lopez, Joaquin
The invention provides a redox flow battery comprising a microporous or nanoporous size-exclusion membrane, wherein one cell of the battery contains a redox-active polymer dissolved in the non-aqueous solvent or a redox-active colloidal particle dispersed in the non-aqueous solvent. The redox flow battery provides enhanced ionic conductivity across the electrolyte separator and reduced redox-active species crossover, thereby improving the performance and enabling widespread utilization. Redox active poly(vinylbenzyl ethylviologen) (RAPs) and redox active colloidal particles (RACs) were prepared and were found to be highly effective redox species. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPsmore » is accessible and the electrolysis products are stable upon cycling. The high concentration attainable (>2.0 M) for RAPs in common non-aqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for non-aqueous redox flow batteries based on size-selectivity.« less
Active structuring of colloidal armour on liquid drops
NASA Astrophysics Data System (ADS)
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-06-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets.
Active structuring of colloidal armour on liquid drops.
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-01-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal 'ribbons', electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of 'pupil'-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for 'smart armoured' droplets.
NASA Astrophysics Data System (ADS)
Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; Ryder, Olivia S.; Stokes, M. Dale; Beall, Charlotte M.; Collins, Douglas B.; Santander, Mitchell V.; Burrows, Susannah M.; Sultana, Camille M.; Prather, Kimberly A.
2017-07-01
The oceans represent a significant global source of atmospheric aerosols. Sea spray aerosol (SSA) particles comprise sea salts and organic species in varying proportions. In addition to size, the overall composition of SSA particles determines how effectively they can form cloud droplets and ice crystals. Thus, understanding the factors controlling SSA composition is critical to predicting aerosol impacts on clouds and climate. It is often assumed that submicrometer SSAs are mainly formed by film drops produced from bursting bubble-cap films, which become enriched with hydrophobic organic species contained within the sea surface microlayer. In contrast, jet drops formed from the base of bursting bubbles are postulated to mainly produce larger supermicrometer particles from bulk seawater, which comprises largely salts and water-soluble organic species. However, here we demonstrate that jet drops produce up to 43% of total submicrometer SSA number concentrations, and that the fraction of SSA produced by jet drops can be modulated by marine biological activity. We show that the chemical composition, organic volume fraction, and ice nucleating ability of submicrometer particles from jet drops differ from those formed from film drops. Thus, the chemical composition of a substantial fraction of submicrometer particles will not be controlled by the composition of the sea surface microlayer, a major assumption in previous studies. This finding has significant ramifications for understanding the factors controlling the mixing state of submicrometer SSA particles and must be taken into consideration when predicting SSA impacts on clouds and climate.
NASA Astrophysics Data System (ADS)
Kim, Kyoohyun; Park, Yongkeun
2017-05-01
Optical trapping can manipulate the three-dimensional (3D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and extensive computations. Here, we achieve the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3D refractive index distribution of samples. Engineering the 3D light field distribution of a trapping beam based on the measured 3D refractive index map of samples generates a light mould, which can manipulate colloidal and biological samples with arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can be directly applied in biophotonics and soft matter physics.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-12
... Fine Particle Matter and Ozone (Renewal); EPA ICR No. 2152.05, OMB Control No. 2060-0570 AGENCY... Matter and Ozone (Renewal). ICR number: EPA ICR No. 2152.05, OMB Control No. 2060-0570. ICR Status: This...
CHARACTERIZATION AND CONTROL OF FINE PARTICLES: OVERVIEW OF NRMRL RESEARCH ACTIVITIES
The paper discusses particulate matter (PM) research at EPA's National Risk Management Research Laboratory (NRMRL) designed to provide critical information regarding emission rates, characteristics, and control approaches for PM 2.5 micrometers in aerodynamic diameter and smaller...
Engineered polymeric nanoparticles for soil remediation.
Tungittiplakorn, Warapong; Lion, Leonard W; Cohen, Claude; Kim, Ju-Young
2004-03-01
Hydrophobic organic groundwater contaminants, such as polynuclear aromatic hydrocarbons (PAHs), sorb strongly to soils and are difficult to remove. We report here on the synthesis of amphiphilic polyurethane (APU) nanoparticles for use in remediation of soil contaminated with PAHs. The particles are made of polyurethane acrylate anionomer (UAA) or poly(ethylene glycol)-modified urethane acrylate (PMUA) precursor chains that can be emulsified and cross-linked in water. The resulting particles are of colloidal size (17-97 nm as measured by dynamic light scattering). APU particles have the ability to enhance PAH desorption and transport in a manner comparable to that of surfactant micelles, but unlike the surface-active components of micelles, the individual cross-linked precursor chains in APU particles are not free to sorb to the soil surface. Thus, the APU particles are stable independent of their concentration in the aqueous phase. In this paper we show that APU particles can be engineered to achieve desired properties. Our experimental results show that the APU particles can be designed to have hydrophobic interior regions that confer a high affinity for phenanthrene (PHEN) and hydrophilic surfaces that promote particle mobility in soil. The affinity of APU particles for contaminants such as PHEN can be controlled by changing the size of the hydrophobic segment used in the chain synthesis. The mobility of colloidal APU suspensions in soil is controlled by the charge density or the size of the pendent water-soluble chains that reside on the particle surface. Exemplary results are provided illustrating the influence of alternative APU particle formulations with respect to their efficacy for contaminant removal. The ability to control particle properties offers the potential to produce different nanoparticles optimized for varying contaminant types and soil conditions.
Non-plaque-forming virions of Modified Vaccinia virus Ankara express viral genes.
Lülf, Anna-Theresa; Freudenstein, Astrid; Marr, Lisa; Sutter, Gerd; Volz, Asisa
2016-12-01
In cell culture infections with vaccinia virus the number of counted virus particles is substantially higher than the number of plaques obtained by titration. We found that standard vaccine preparations of recombinant Modified Vaccinia virus Ankara produce only about 20-30% plaque-forming virions in fully permissive cell cultures. To evaluate the biological activity of the non-plaque-forming particles, we generated recombinant viruses expressing fluorescent reporter proteins under transcriptional control of specific viral early and late promoters. Live cell imaging and automated counting by fluorescent microscopy indicated that virtually all virus particles can enter cells and switch on viral gene expression. Although most of the non-plaque-forming infections are arrested at the level of viral early gene expression, we detected activation of late viral transcription in 10-20% of single infected cells. Thus, non-plaque-forming particles are biologically active, and likely contribute to the immunogenicity of vaccinia virus vaccines. Copyright © 2016 Elsevier Inc. All rights reserved.
Marciello, Marzia; Filice, Marco; Olea, David; Velez, Marisela; Guisan, José M; Mateo, Cesar
2014-12-16
The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.
Artificial chemotaxis of phoretic swimmers
NASA Astrophysics Data System (ADS)
Tatulea-Codrean, Maria; Lauga, Eric
2017-11-01
A class of artificial active particles that has received significant attention in recent years is that of phoretic swimmers. By making use of self-generated gradients (e.g. in temperature, electric potential or some chemical product) phoretic swimmers can self-propel without the complications of mobile body parts or a controlled external field. By focusing on diffusiophoresis, we will present some theoretical results on the mechanism through which phoretic particles may achieve chemotaxis and the subsequent behaviour of a dilute suspension of such particles.
Chrimes, Adam F; Khoshmanesh, Khashayar; Stoddart, Paul R; Kayani, Aminuddin A; Mitchell, Arnan; Daima, Hemant; Bansal, Vipul; Kalantar-zadeh, Kourosh
2012-05-01
We demonstrate an active microfluidic platform that integrates dielectrophoresis for the control of silver nanoparticles spacing, as they flow in a liquid channel. By careful control of the nanoparticles spacing, we can effectively increase the surface-enhanced Raman scattering (SERS) signal intensity based on augmenting the number of SERS-active hot-spots, while avoiding irreversible aggregation of the particles. The system is benchmarked using dipicolinate (2,6-pyridinedicarboxylic acid) (DPA), which is a biomarker of Bacillus anthracis. The validity of the results is discussed using several complementing characterization scenarios.
Chemical release from single-PMMA microparticles monitored by CARS microscopy
NASA Astrophysics Data System (ADS)
Enejder, Annika; Svedberg, Fredrik; Nordstierna, Lars; Nydén, Magnus
2011-03-01
Microparticles loaded with antigens, proteins, DNA, fungicides, and other functional agents emerge as ideal vehicles for vaccine, drug delivery, genetic therapy, surface- and crop protection. The microscopic size of the particles and their collective large specific surface area enables highly active and localized release of the functional substance. In order to develop designs with release profiles optimized for the specific application, it is desirable to map the distribution of the active substance within the particle and how parameters such as size, material and morphology affect release rates at single particle level. Current imaging techniques are limited in resolution, sensitivity, image acquisition time, or sample treatment, excluding dynamic studies of active agents in microparticles. Here, we demonstrate that the combination of CARS and THG microscopy can successfully be used, by mapping the spatial distribution and release rates of the fungicide and food preservative IPBC from different designs of PMMA microparticles at single-particle level. By fitting a radial diffusion model to the experimental data, single particle diffusion coefficients can be determined. We show that release rates are highly dependent on the size and morphology of the particles. Hence, CARS and THG microscopy provides adequate sensitivity and spatial resolution for quantitative studies on how singleparticle properties affect the diffusion of active agents at microscopic level. This will aid the design of innovative microencapsulating systems for controlled release.
Morphological Control of Metal Oxide-Doped Zinc Oxide and Application to Cosmetics
NASA Astrophysics Data System (ADS)
Goto, Takehiro; Yin, Shu; Sato, Tsugio; Tanaka, Takumi
2012-06-01
Zinc oxide shows excellent transparency and ultraviolet radiation shielding ability, and is used for various cosmetics.1-3 However, it possesses high catalytic activity and lower dispersibility. Therefore, spherical particles of zinc oxide have been synthesized by soft solution reaction using zinc nitrate, ethylene glycol, sodium hydroxide and triethanolamine as starting materials. After dissolving these compounds in water, the solution was heated at 90°C for 1 h to form almost mono-dispersed spherical zinc oxide particles. The particle size changed depending on zinc ion concentration, ethylene glycol concentration and so on. Furthermore, with doping some metal ions, the phtocatalytic activity could be decreased. The obtained monodispersed metal ion-doped spherical zinc oxides showed excellent UV shielding ability and low photocatalytic activity. Therefore, they are expected to be used as cosmetics ingredients.
Flow Navigation by Smart Microswimmers via Reinforcement Learning
NASA Astrophysics Data System (ADS)
Colabrese, Simona; Gustavsson, Kristian; Celani, Antonio; Biferale, Luca
2017-04-01
Smart active particles can acquire some limited knowledge of the fluid environment from simple mechanical cues and exert a control on their preferred steering direction. Their goal is to learn the best way to navigate by exploiting the underlying flow whenever possible. As an example, we focus our attention on smart gravitactic swimmers. These are active particles whose task is to reach the highest altitude within some time horizon, given the constraints enforced by fluid mechanics. By means of numerical experiments, we show that swimmers indeed learn nearly optimal strategies just by experience. A reinforcement learning algorithm allows particles to learn effective strategies even in difficult situations when, in the absence of control, they would end up being trapped by flow structures. These strategies are highly nontrivial and cannot be easily guessed in advance. This Letter illustrates the potential of reinforcement learning algorithms to model adaptive behavior in complex flows and paves the way towards the engineering of smart microswimmers that solve difficult navigation problems.
Species selection for the design of gold nanobioreactor by photosynthetic organisms
NASA Astrophysics Data System (ADS)
Dahoumane, Si Amar; Djediat, Chakib; Yéprémian, Claude; Couté, Alain; Fiévet, Fernand; Coradin, Thibaud; Brayner, Roberta
2012-06-01
The design of cell-based bioreactors for inorganic particles formation requires both a better understanding of the underlying processes and the identification of most suitable organisms. With this purpose, the process of Au3+ incorporation, intracellular reduction, and Au0 nanoparticle release in the culture medium was compared for four photosynthetic microorganisms, Klebsormidium flaccidum and Cosmarium impressulum green algae, Euglena gracilis euglenoid and Anabaena flos- aquae cyanobacteria. At low gold content, the two green algae show maintained photosynthetic activity and recovered particles (ca. 10 nm in size) are similar to internal colloids, indicating a full biological control over the whole process. In similar conditions, the euglenoid exhibits a rapid loss of biological activity, due to the absence of protective extracellular polysaccharide, but could grow again after an adaptation period. This results in a larger particle size dispersity but larger reduction yield. The cyanobacteria undergo rapid cell death, due to their prokaryotic nature, leading to high gold incorporation rate but poor control over released particle size. Similar observations can be made after addition of a larger gold salt concentration when all organisms rapidly die, suggesting that part of the process is not under biological control anymore but also involves extracellular chemical reactions. Overall, fruitful information on the whole biocrystallogenesis process is gained and most suitable species for further bioreactor design can be identified, i.e., green algae with external coating.
Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide Releasing Silica Nanoparticles
Carpenter, Alexis W.; Slomberg, Danielle L.; Rao, Kavitha S.; Schoenfisch, Mark H.
2011-01-01
A reverse microemulsion synthesis was used to prepare amine functionalized silica nanoparticles of three distinct sizes (i.e., 50, 100, and 200 nm) with identical amine concentrations. The resulting hybrid nanoparticles, consisting of N-(6 aminohexyl) aminopropyltrimethoxysilane and tetraethoxysilane, were highly monodisperse in size. N-diazeniumdiolate nitric oxide (NO) donors were subsequently formed on secondary amines while controlling reaction conditions to keep the total amount of nitric oxide (NO) released constant for each particle size. The bactericidal efficacy of the NO releasing nanoparticles against Pseudomonas aeruginosa increased with decreasing particle size. Additionally, smaller diameter nanoparticles were found to associate with the bacteria at a faster rate and to a greater extent than larger particles. Neither control (non-NO-releasing) nor NO releasing particles exhibited toxicity towards L929 mouse fibroblasts at concentrations above their respective minimum bactericidal concentrations. This study represents the first investigation of the bactericidal efficacy of NO-releasing silica nanoparticles as a function of particle size. PMID:21842899
NASA Astrophysics Data System (ADS)
Paul, Shuvojit; Kumar, Randhir; Banerjee, Ayan
2018-04-01
Two-point microrheology measurements from widely separated colloidal particles approach the bulk viscosity of the host medium more reliably than corresponding single-point measurements. In addition, active microrheology offers the advantage of enhanced signal to noise over passive techniques. Recently, we reported the observation of a motional resonance induced in a probe particle in dual-trap optical tweezers when the control particle was driven externally [Paul et al., Phys. Rev. E 96, 050102(R) (2017), 10.1103/PhysRevE.96.050102]. We now demonstrate that the amplitude and phase characteristics of the motional resonance can be used as a sensitive tool for active two-point microrheology to measure the viscosity of a viscous fluid. Thus, we measure the viscosity of viscous liquids from both the amplitude and phase response of the resonance, and demonstrate that the zero crossing of the phase response of the probe particle with respect to the external drive is superior compared to the amplitude response in measuring viscosity at large particle separations. We compare our viscosity measurements with those using a commercial rheometer and obtain an agreement ˜1 % . The method can be extended to viscoelastic material where the frequency dependence of the resonance may provide further accuracy for active microrheological measurements.
Exposure Assessment of a High-energy Tensile Test With Large Carbon Fiber Reinforced Polymer Cables.
Schlagenhauf, Lukas; Kuo, Yu-Ying; Michel, Silvain; Terrasi, Giovanni; Wang, Jing
2015-01-01
This study investigated the particle and fiber release from two carbon fiber reinforced polymer cables that underwent high-energy tensile tests until rupture. The failing event was the source of a large amount of dust whereof a part was suspected to be containing possibly respirable fibers that could cause adverse health effects. The released fibers were suspected to migrate through small openings to the experiment control room and also to an adjacent machine hall where workers were active. To investigate the fiber release and exposure risk of the affected workers, the generated particles were measured with aerosol devices to obtain the particle size and particle concentrations. Furthermore, particles were collected on filter samples to investigate the particle shape and the fiber concentration. Three situations were monitored for the control room and the machine hall: the background concentrations, the impact of the cable failure, and the venting of the exposed rooms afterward. The results showed four important findings: The cable failure caused the release of respirable fibers with diameters below 3 μm and an average length of 13.9 μm; the released particles did migrate to the control room and to the machine hall; the measured peak fiber concentration of 0.76 fibers/cm(3) and the overall fiber concentration of 0.07 fibers/cm(3) in the control room were below the Permissible Exposure Limit (PEL) for fibers without indication of carcinogenicity; and the venting of the rooms was fast and effective. Even though respirable fibers were released, the low fiber concentration and effective venting indicated that the suspected health risks from the experiment on the affected workers was low. However, the effect of long-term exposure is not known therefore additional control measures are recommended.
Continuous theory of active matter systems with metric-free interactions.
Peshkov, Anton; Ngo, Sandrine; Bertin, Eric; Chaté, Hugues; Ginelli, Francesco
2012-08-31
We derive a hydrodynamic description of metric-free active matter: starting from self-propelled particles aligning with neighbors defined by "topological" rules, not metric zones-a situation advocated recently to be relevant for bird flocks, fish schools, and crowds-we use a kinetic approach to obtain well-controlled nonlinear field equations. We show that the density-independent collision rate per particle characteristic of topological interactions suppresses the linear instability of the homogeneous ordered phase and the nonlinear density segregation generically present near threshold in metric models, in agreement with microscopic simulations.
Active structuring of colloidal armour on liquid drops
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-01-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets. PMID:23811716
Controllable synthesis of Co3O4 nanocrystals as efficient catalysts for oxygen reduction reaction
NASA Astrophysics Data System (ADS)
Li, Baoying; Zhang, Yihe; Du, Ruifeng; Liu, Lei; Yu, Xuelian
2018-03-01
The electrochemical oxygen reduction reaction (ORR) has received great attention due to its importance in fuel cells and metal-air batteries. Here, we present a simple approach to prepare non-noble metal catalyst-Co3O4 nanocrystals (NCs). The particle size and shape were simply controlled by different types and concentrations of metal precursor. Furthermore, different sizes and shapes of Co3O4 NCs are explored as electrocatalysts for ORR, and it has been observed that particles with a similar shape, and smaller particle size led to greater catalytic current densities because of the greater surface area. For particles with a comparable size, the shape or crystalline structure governed the activity of the electrocatalytic reactions. Most importantly, the 9 nm-Co3O4 were demonstrated to act as low-cost catalysts for the ORR with a similar performance to that of Pt catalysts.
Neutral particle beam intensity controller
Dagenhart, William K.
1986-01-01
A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.
Covering 71% of the Earth’s surface, oceans represent a significant global source of atmospheric aerosols. The size and composition of sea spray aerosols (SSA) affect their ability to serve as cloud seeds and thus understanding the factors controlling their composition is critical to predicting their impact on clouds and climate. SSA particles have been shown to be an external mixture of particles with different compositions. Film and jet drop production mechanisms ultimately determine the individual particle compositions which are comprised of an array of salt/organic mixtures ranging from pure sea salt to nearly pure organic particles. It is often assumedmore » that the majority of submicron SSA are formed by film drops produced from bursting hydrophobic organic-rich bubble film caps at the sea surface, and in contrast, jet drops are postulated to produce larger supermicron particles from underlying seawater comprised largely of salts and water soluble organic species. However, here we show that jet drops produced by bursting sub-100 m bubbles account for up to 40 % of all submicron particles. They have distinct chemical compositions, organic volume fractions and ice nucleating activities from submicron film drops. Thus a substantial fraction of submicron particles will not necessarily be controlled by the composition of the sea surface microlayer as has been assumed in many studies. This finding has significant ramifications for the size-resolved mixing states of SSA particles which must be taken into consideration when accessing SSA impacts on clouds.« less
Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; ...
2017-06-19
Covering 71% of the Earth’s surface, oceans represent a significant global source of atmospheric aerosols. The size and composition of sea spray aerosols (SSA) affect their ability to serve as cloud seeds and thus understanding the factors controlling their composition is critical to predicting their impact on clouds and climate. SSA particles have been shown to be an external mixture of particles with different compositions. Film and jet drop production mechanisms ultimately determine the individual particle compositions which are comprised of an array of salt/organic mixtures ranging from pure sea salt to nearly pure organic particles. It is often assumedmore » that the majority of submicron SSA are formed by film drops produced from bursting hydrophobic organic-rich bubble film caps at the sea surface, and in contrast, jet drops are postulated to produce larger supermicron particles from underlying seawater comprised largely of salts and water soluble organic species. However, here we show that jet drops produced by bursting sub-100 m bubbles account for up to 40 % of all submicron particles. They have distinct chemical compositions, organic volume fractions and ice nucleating activities from submicron film drops. Thus a substantial fraction of submicron particles will not necessarily be controlled by the composition of the sea surface microlayer as has been assumed in many studies. This finding has significant ramifications for the size-resolved mixing states of SSA particles which must be taken into consideration when accessing SSA impacts on clouds.« less
Active spacecraft potential control system selection for the Jupiter orbiter with probe mission
NASA Technical Reports Server (NTRS)
Beattie, J. R.; Goldstein, R.
1977-01-01
It is shown that the high flux of energetic plasma electrons and the reduced photoemission rate in the Jovian environment can result in the spacecraft developing a large negative potential. The effects of the electric fields produced by this charging phenomenon are discussed in terms of spacecraft integrity as well as charged particle and fields measurements. The primary area of concern is shown to be the interaction of the electric fields with the measuring devices on the spacecraft. The need for controlling the potential of the spacecraft is identified, and a system capable of active control of the spacecraft potential in the Jupiter environment is proposed. The desirability of using this system to vary the spacecraft potential relative to the ambient plasma potential is also discussed. Various charged particle release devices are identified as potential candidates for use with the spacecraft potential control system. These devices are evaluated and compared on the basis of system mass, power consumption, and system complexity and reliability.
Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; Ryder, Olivia S.; Stokes, M. Dale; Beall, Charlotte M.; Santander, Mitchell V.; Burrows, Susannah M.; Sultana, Camille M.; Prather, Kimberly A.
2017-01-01
The oceans represent a significant global source of atmospheric aerosols. Sea spray aerosol (SSA) particles comprise sea salts and organic species in varying proportions. In addition to size, the overall composition of SSA particles determines how effectively they can form cloud droplets and ice crystals. Thus, understanding the factors controlling SSA composition is critical to predicting aerosol impacts on clouds and climate. It is often assumed that submicrometer SSAs are mainly formed by film drops produced from bursting bubble-cap films, which become enriched with hydrophobic organic species contained within the sea surface microlayer. In contrast, jet drops formed from the base of bursting bubbles are postulated to mainly produce larger supermicrometer particles from bulk seawater, which comprises largely salts and water-soluble organic species. However, here we demonstrate that jet drops produce up to 43% of total submicrometer SSA number concentrations, and that the fraction of SSA produced by jet drops can be modulated by marine biological activity. We show that the chemical composition, organic volume fraction, and ice nucleating ability of submicrometer particles from jet drops differ from those formed from film drops. Thus, the chemical composition of a substantial fraction of submicrometer particles will not be controlled by the composition of the sea surface microlayer, a major assumption in previous studies. This finding has significant ramifications for understanding the factors controlling the mixing state of submicrometer SSA particles and must be taken into consideration when predicting SSA impacts on clouds and climate. PMID:28630346
Florez, Rosangela Aló Maluza; Lang, Raquel; Veridiano, Adriano Mora; Zanini, Renato de Oliveira; Calió, Pedro Luiz; Simões, Ricardo Dos Santos; Testa, José Ricardo Gurgel
2010-01-01
The etiology of idiopathic peripheral facial palsy (IPFP) is still uncertain; however, some authors suggest the possibility of a viral infection. to analyze the ultrastructure of the facial nerve seeking viral evidences that might provide etiological data. We studied 20 patients with peripheral facial palsy (PFP), with moderate to severe FP, of both genders, between 18-60 years of age, from the Clinic of Facial Nerve Disorders. The patients were broken down into two groups - Study: eleven patients with IPFP and Control: nine patients with trauma or tumor-related PFP. The fragments were obtained from the facial nerve sheath or from fragments of its stumps - which would be discarded or sent to pathology exam during the facial nerve repair surgery. The removed tissue was fixed in 2% glutaraldehyde, and studied under Electronic Transmission Microscopy. In the study group we observed an intense repair cellular activity by increased collagen fibers, fibroblasts containing developed organelles, free of viral particles. In the control group this repair activity was not evident, but no viral particles were observed. There were no viral particles, and there were evidences of intense activity of repair or viral infection.
Walking the Tightrope: Colloidal surfers mimicking molecular motors
NASA Astrophysics Data System (ADS)
Horowitz, Viva R.; Driscoll, Michelle; Ferrari, Melissa; Youssef, Mena; Sacanna, Stefano; Chaikin, Paul; Manoharan, Vinothan N.
We aim to understand cellular processes, particularly intracellular transport, at a physical level by building simple, well-\\x90controlled systems that mimic the functions of a cell. We are inspired by molecular motors such as kinesin and myosin, which create a dynamic environment that is likely necessary for the biochemical reactions that take place in a eukaryotic cell. One approach we have taken is to investigate the superdiffusive environment created by platinum Janus swimmers encapsulated in artificial cells. Now we are investigating the motion of light-activated colloidal surfers. When they are activated, these particles are attracted to each other and to surfaces, and they are self-propelled, moving via self-diffusiophoresis. On a flat surface, these properties cause the particles to form active crystal structures. When we introduce a wire to the geometry, the particles walk along a wire, reminiscent of the motion of molecular motors such as kinesin walking on a microtubule. When the wire is suspended in the center of a fluid chamber, the particles walk the tightrope. This bio-inspired research may lead to systems of particles walking networks of wires and carrying cargo through an artificial cell.
Arán-Ais, Rosa M; Dionigi, Fabio; Merzdorf, Thomas; Gocyla, Martin; Heggen, Marc; Dunin-Borkowski, Rafal E; Gliech, Manuel; Solla-Gullón, José; Herrero, Enrique; Feliu, Juan M; Strasser, Peter
2015-11-11
Multimetallic shape-controlled nanoparticles offer great opportunities to tune the activity, selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our synthetic control over particle size, composition, and shape is limited requiring trial and error. Deeper atomic-scale insight in the particle formation process would enable more rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We analyze the competition between Ni and Co precursors under coreduction "one-step" conditions when the Ni reduction rates prevailed. To tune the Co reduction rate and final content, we develop a "two-step" route and track the evolution of the composition and morphology of the particles at the atomic scale. To achieve this, scanning transmission electron microscopy and energy dispersive X-ray elemental mapping techniques are used. We provide evidence of a heterogeneous element distribution caused by element-specific anisotropic growth and create octahedral nanoparticles with tailored atomic composition like Pt1.5M, PtM, and PtM1.5 (M = Ni + Co). These trimetallic electrocatalysts have been tested toward the oxygen reduction reaction (ORR), showing a greatly enhanced mass activity related to commercial Pt/C and less activity loss than binary PtNi and PtCo after 4000 potential cycles.
Jaramillo, Isabel C; Sturrock, Anne; Ghiassi, Hossein; Woller, Diana J; Deering-Rice, Cassandra E; Lighty, JoAnn S; Paine, Robert; Reilly, Christopher; Kelly, Kerry E
2018-03-21
The physicochemical properties of combustion particles that promote lung toxicity are not fully understood, hindered by the fact that combustion particles vary based on the fuel and combustion conditions. Real-world combustion-particle properties also continually change as new fuels are implemented, engines age, and engine technologies evolve. This work used laboratory-generated particles produced under controlled combustion conditions in an effort to understand the relationship between different particle properties and the activation of established toxicological outcomes in human lung cells (H441 and THP-1). Particles were generated from controlled combustion of two simple biofuel/diesel surrogates (methyl decanoate and dodecane/biofuel-blended diesel (BD), and butanol and dodecane/alcohol-blended diesel (AD)) and compared to a widely studied reference diesel (RD) particle (NIST SRM2975/RD). BD, AD, and RD particles exhibited differences in size, surface area, extractable chemical mass, and the content of individual polycyclic aromatic hydrocarbons (PAHs). Some of these differences were directly associated with different effects on biological responses. BD particles had the greatest surface area, amount of extractable material, and oxidizing potential. These particles and extracts induced cytochrome P450 1A1 and 1B1 enzyme mRNA in lung cells. AD particles and extracts had the greatest total PAH content and also caused CYP1A1 and 1B1 mRNA induction. The RD extract contained the highest relative concentration of 2-ring PAHs and stimulated the greatest level of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNFα) cytokine secretion. Finally, AD and RD were more potent activators of TRPA1 than BD, and while neither the TRPA1 antagonist HC-030031 nor the antioxidant N-acetylcysteine (NAC) affected CYP1A1 or 1B1 mRNA induction, both inhibitors reduced IL-8 secretion and mRNA induction. These results highlight that differences in fuel and combustion conditions affect the physicochemical properties of particles, and these differences, in turn, affect commonly studied biological/toxicological responses.
Valladares, Roberto D; Nich, Christophe; Zwingenberger, Stefan; Li, Chenguang; Swank, Katherine R; Gibon, Emmanuel; Rao, Allison J; Yao, Zhenyu; Goodman, Stuart B
2014-09-01
Aseptic loosening secondary to particle-associated periprosthetic osteolysis remains a major cause of failure of total joint replacements (TJR) in the mid- and long term. As sentinels of the innate immune system, macrophages are central to the recognition and initiation of the inflammatory cascade, which results in the activation of bone resorbing osteoclasts. Toll-like receptors (TLRs) are involved in the recognition of pathogen-associated molecular patterns and danger-associated molecular patterns. Experimentally, polymethylmethacrylate and polyethylene (PE) particles have been shown to activate macrophages via the TLR pathway. The specific TLRs involved in PE particle-induced osteolysis remain largely unknown. We hypothesized that TLR-2, -4, and -9 mediated responses play a critical role in the development of PE wear particle-induced osteolysis in the murine calvarium model. To test this hypothesis, we first demonstrated that PE particles caused observable osteolysis, visible by microCT and bone histomorphometry when the particles were applied to the calvarium of C57BL/6 mice. The number of TRAP positive osteoclasts was significantly greater in the PE-treated group when compared to the control group without particles. Finally, using immunohistochemistry, TLR-2 and TLR-4 were highly expressed in PE particle-induced osteolytic lesions, whereas TLR-9 was downregulated. TLR-2 and -4 may represent novel therapeutic targets for prevention of wear particle-induced osteolysis and accompanying TJR failure. © 2013 Wiley Periodicals, Inc.
Telikepalli, Srivalli; Shinogle, Heather E.; Thapa, Prem S.; Kim, Jae Hyun; Deshpande, Meghana; Jawa, Vibha; Middaugh, C. Russell; Narhi, Linda O.; Joubert, Marisa K.; Volkin, David B.
2015-01-01
An IgG2 monoclonal antibody (mAb) solution was subjected to stirring, generating high concentrations of nanometer and subvisible particles, which were then successfully size enriched into different size bins by low speed centrifugation or a combination of gravitational sedimentation and Fluorescence-Activated Cell Sorting (FACS). The size-fractionated mAb particles were assessed for their ability to elicit the release of cytokines from a population of donor-derived human peripheral blood mononuclear cells (PBMC) at two phases of the immune response. Fractions enriched in nanometer-sized particles showed a lower response than those enriched in micron-sized particles in this assay. Particles of 5–10 μm in size displayed elevated cytokine release profiles compared to other size ranges. Stir-stressed mAb particles had amorphous morphology, contained protein with partially altered secondary structure, elevated surface hydrophobicity (compared to controls), and trace levels of elemental fluorine. FACS size-enriched the mAb particle samples, yet did not notably alter the overall morphology or composition of particles as measured by Microflow imaging, Transmission Electron Microscopy, and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy. The utility and limitations of FACS for size separation of mAb particles and potential of in-vitro PBMC studies to rank order the immunogenic potential of various types of mAb particles is discussed. PMID:25753756
Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Ting
2016-03-01
Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinarymore » collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the particle size and microcomposition in nanoscale, it is able to achieve superior electrocatalytic activities comparing with traditional preparative methods. Examples to be discussed are high surface area carbon supported Pt, PtM binary, and PtMN ternary alloys, their synthesis processes, characterizations and electrocatalytic activities towards molecular oxygen reduction.« less
Tissue Extracellular Matrix Nanoparticle Presentation in Electrospun Nanofibers
Gibson, Matt; Mao, Hai-Quan; Elisseeff, Jennifer
2014-01-01
Biomaterials derived from the decellularization of mature tissues retain biological and architectural features that profoundly influence cellular activity. However, the clinical utility of such materials remains limited as the shape and physical properties are difficult to control. In contrast, scaffolds based on synthetic polymers can be engineered to exhibit specific physical properties, yet often suffer from limited biological functionality. This study characterizes composite materials that present decellularized extracellular matrix (DECM) particles in combination with synthetic nanofibers and examines the ability of these materials to influence stem cell differentiation. Mechanical processing of decellularized tissues yielded particles with diameters ranging from 71 to 334 nm. Nanofiber scaffolds containing up to 10% DECM particles (wt/wt) derived from six different tissues were engineered and evaluated to confirm DECM particle incorporation and to measure bioactivity. Scaffolds containing bone, cartilage, and fat promoted osteogenesis at 1 and 3 weeks compared to controls. In contrast, spleen and lung DECM significantly reduced osteogenic outcomes compared to controls. These findings highlight the potential to incorporate appropriate source DECM nanoparticles within nanofiber composites to design a scaffold with bioactivity targeted to specific applications. PMID:24971329
NASA Astrophysics Data System (ADS)
Verma, Vishal; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos
2010-12-01
We assessed the contribution of water-soluble transition metals to the reactive oxygen species (ROS) activity of diesel exhaust particles (DEPs) from four heavy-duty vehicles in five retrofitted configurations (V-SCRT, Z-SCRT, DPX, hybrid, and school bus). A heavy-duty truck without any control device served as the baseline vehicle. Particles were collected from all vehicle-configurations on a chassis dynamometer under three driving conditions: cruise (80 km h -1), transient UDDS, and idle. A sensitive macrophage-based in vitro assay was used to determine the ROS activity of collected particles. The contribution of water-soluble transition metals in the measured activity was quantified by their removal using a Chelex ® complexation method. The study demonstrates that despite an increase in the intrinsic ROS activity (per mass basis) of exhaust PM with use of most control technologies, the overall ROS activity (expressed per km or per h) was substantially reduced for retrofitted configurations compared to the baseline vehicle. Chelex treatment of DEPs water extracts removed a substantial (≥70%) and fairly consistent fraction of the ROS activity, which ascertains the dominant role of water-soluble metals in PM-induced cellular oxidative stress. However, relatively lower removal of the activity in few vehicle-configurations (V-SCRT, DPX and school bus idle), despite a large aggregate metals removal, indicated that not all species were associated with the measured activity. A univariate regression analysis identified several transition metals (Fe, Cr, Co and Mn) as significantly correlated ( R > 0.60; p < 0.05) with the ROS activity. Multivariate linear regression model incorporating Fe, Cr and Co explained 90% of variability in ROS levels, with Fe accounting for the highest (84%) fraction of the variance.
Karakatsani, Anna; Analitis, Antonis; Perifanou, Dimitra; Ayres, Jon G; Harrison, Roy M; Kotronarou, Anastasia; Kavouras, Ilias G; Pekkanen, Juha; Hämeri, Kaarle; Kos, Gerard Pa; de Hartog, Jeroen J; Hoek, Gerard; Katsouyanni, Klea
2012-10-05
Particulate matter air pollution has been associated with adverse health effects. The fraction of ambient particles that are mainly responsible for the observed health effects is still a matter of controversy. Better characterization of the health relevant particle fraction will have major implications for air quality policy since it will determine which sources should be controlled.The RUPIOH study, an EU-funded multicentre study, was designed to examine the distribution of various ambient particle metrics in four European cities (Amsterdam, Athens, Birmingham, Helsinki) and assess their health effects in participants with asthma or COPD, based on a detailed exposure assessment. In this paper the association of central site measurements with respiratory symptoms and restriction of activities is examined. At each centre a panel of participants with either asthma or COPD recorded respiratory symptoms and restriction of activities in a diary for six months. Exposure assessment included simultaneous measurements of coarse, fine and ultrafine particles at a central site. Data on gaseous pollutants were also collected. The associations of the 24-hour average concentrations of air pollution indices with the health outcomes were assessed in a hierarchical modelling approach. A city specific analysis controlling for potential confounders was followed by a meta-analysis to provide overall effect estimates. A 10 μg/m3 increase in previous day coarse particles concentrations was positively associated with most symptoms (an increase of 0.6 to 0.7% in average) and limitation in walking (OR= 1.076, 95% CI: 1.026-1.128). Same day, previous day and previous two days ozone concentrations were positively associated with cough (OR= 1.061, 95% CI: 1.013-1.111; OR= 1.049, 95% CI: 1.016-1.083 and OR= 1.059, 95% CI: 1.027-1.091, respectively). No consistent associations were observed between fine particle concentrations, nitrogen dioxide and respiratory health effects. As for particle number concentrations negative association (mostly non-significant at the nominal level) was observed with most symptoms whilst the positive association with limitation of activities did not reach the nominal level of significance. The observed associations with coarse particles are in agreement with the findings of toxicological studies. Together they suggest it is prudent to regulate also coarse particles in addition to fine particles.
Generalized Archimedes' principle in active fluids
NASA Astrophysics Data System (ADS)
Razin, Nitzan; Voituriez, Raphael; Elgeti, Jens; Gov, Nir S.
2017-09-01
We show how a gradient in the motility properties of noninteracting pointlike active particles can cause a pressure gradient that pushes a large inert object. We calculate the force on an object inside a system of active particles with position-dependent motion parameters, in one and two dimensions, and show that a modified Archimedes' principle is satisfied. We characterize the system, both in terms of the model parameters and in terms of experimentally measurable quantities: the spatial profiles of the density, velocity and pressure. This theoretical analysis is motivated by recent experiments, which showed that the nucleus of a mouse oocyte (immature egg cell) moves from the cortex to the center due to a gradient of activity of vesicles propelled by molecular motors; it more generally applies to artificial systems of controlled localized activity.
Generalized Archimedes' principle in active fluids.
Razin, Nitzan; Voituriez, Raphael; Elgeti, Jens; Gov, Nir S
2017-09-01
We show how a gradient in the motility properties of noninteracting pointlike active particles can cause a pressure gradient that pushes a large inert object. We calculate the force on an object inside a system of active particles with position-dependent motion parameters, in one and two dimensions, and show that a modified Archimedes' principle is satisfied. We characterize the system, both in terms of the model parameters and in terms of experimentally measurable quantities: the spatial profiles of the density, velocity and pressure. This theoretical analysis is motivated by recent experiments, which showed that the nucleus of a mouse oocyte (immature egg cell) moves from the cortex to the center due to a gradient of activity of vesicles propelled by molecular motors; it more generally applies to artificial systems of controlled localized activity.
NASA Astrophysics Data System (ADS)
Al-Mashat, H.; Kristensen, L.; Sultana, C. M.; Prather, K. A.
2016-12-01
The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds. The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds.
Xing, X H; Inoue, T; Tanji, Y; Unno, H
1999-01-01
In order to examine the microbial degradation of p-nitrophenol (PNP) by a mixed culture system and simultaneous removal of nitrite released via the degradation, an activated sludge retained in porous carrier particles and a suspension culture as a control were acclimated to artificial sewage containing PNP as the sole carbon source. The adaptation of microbes retained in porous carrier particles to PNP was faster than that of suspended microbes by more than 20 d. After microbial adaptation to PNP, it was degraded completely without significant accumulation of intermediate metabolites. The PNP degradation activity of the retained microbes was more than 2 times higher than that of the suspended microbes. By increasing the retained microbial concentration, nitrite released from the degraded PNP was removed by denitrification. This research demonstrates that using microbes retained in porous carrier particles is not only effective for reduction of acclimation time but also enables simultaneous removal of the nitrogen compounds resulting from the degradation of nitroaromatics.
Turner, N W; Bloxham, M; Piletsky, S A; Whitcombe, M J; Chianella, I
2016-12-19
Metered dose inhalers (MDI) and multidose powder inhalers (MPDI) are commonly used for the treatment of chronic obstructive pulmonary diseases and asthma. Currently, analytical tools to monitor particle/particle and particle/surface interaction within MDI and MPDI at the macro-scale do not exist. A simple tool capable of measuring such interactions would ultimately enable quality control of MDI and MDPI, producing remarkable benefits for the pharmaceutical industry and the users of inhalers. In this paper, we have investigated whether a quartz crystal microbalance (QCM) could become such a tool. A QCM was used to measure particle/particle and particle/surface interactions on the macroscale, by additions of small amounts of MDPI components, in the powder form into a gas stream. The subsequent interactions with materials on the surface of the QCM sensor were analyzed. Following this, the sensor was used to measure fluticasone propionate, a typical MDI active ingredient, in a pressurized gas system to assess its interactions with different surfaces under conditions mimicking the manufacturing process. In both types of experiments the QCM was capable of discriminating interactions of different components and surfaces. The results have demonstrated that the QCM is a suitable platform for monitoring macro-scale interactions and could possibly become a tool for quality control of inhalers.
Teychene, Benoît; Guigui, Christelle; Cabassud, Corinne
2011-02-01
For membrane bioreactors (MBR) applied to wastewater treatment membrane fouling is still the prevalent issue. The main limiting phenomena related to fouling is a sudden jump of the transmembrane pressure (TMP) often attributed to the collapse of the fouling layer. Among existing techniques to avoid or to delay this collapse, the addition of active particles membrane fouling reducers (polymer, resins, powdered activated carbon (PAC), zeolithe...) showed promising results. Thus the main objective of this work is to determine if fouling can be reduced by inclusion of inert particles (500 nm and inert compared to other fouling reducers) and which is the impact on filtration performances of the structuring of the fouling. Those particles were chosen for their different surface properties and their capability to form well structured layer. Results, obtained at constant pressure in dead end mode, show that the presence of particles changes foulant deposition and induces non-compressible fouling (in the range of 0.5-1 bar) and higher rejection values compared to filtration done on supernatant alone. Indeed dead end filtration tests show that whatever interactions between biofluid and particles, the addition of particles leads to better filtration performances (in terms of rejection, and fouling layer compressibility). Moreover results confirm the important role played by macromolecular compounds, during supernatant filtration, creating highly compressible and reversible fouling. In conclusion, this study done at lab-scale suggests the potential benefit to engineer fouling structure to control or to delay the collapse of the fouling layer. Finally this study offers the opportunities to enlarge the choice of membrane fouling reducers by taking into consideration their ability to form more consistent fouling (i.e. rigid, structured fouling). Copyright © 2010 Elsevier Ltd. All rights reserved.
Rocket effluent: Its ice nucleation activity and related properties
NASA Technical Reports Server (NTRS)
Parungo, F. P.; Allee, P. A.
1978-01-01
To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager 1 and 2 launches. The aerosol's morphology, concentration, and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei and modify local weather in suitable meteorological conditions.
Colour-barcoded magnetic microparticles for multiplexed bioassays.
Lee, Howon; Kim, Junhoi; Kim, Hyoki; Kim, Jiyun; Kwon, Sunghoon
2010-09-01
Encoded particles have a demonstrated value for multiplexed high-throughput bioassays such as drug discovery and clinical diagnostics. In diverse samples, the ability to use a large number of distinct identification codes on assay particles is important to increase throughput. Proper handling schemes are also needed to readout these codes on free-floating probe microparticles. Here we create vivid, free-floating structural coloured particles with multi-axis rotational control using a colour-tunable magnetic material and a new printing method. Our colour-barcoded magnetic microparticles offer a coding capacity easily into the billions with distinct magnetic handling capabilities including active positioning for code readouts and active stirring for improved reaction kinetics in microscale environments. A DNA hybridization assay is done using the colour-barcoded magnetic microparticles to demonstrate multiplexing capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarisien, M.; Plaisir, C.; Gobet, F.
2011-02-15
We present a stand-alone system to characterize the high-energy particles emitted in the interaction of ultrahigh intensity laser pulses with matter. According to the laser and target characteristics, electrons or protons are produced with energies higher than a few mega electron volts. Selected material samples can, therefore, be activated via nuclear reactions. A multidetector, named NATALIE, has been developed to count the {beta}{sup +} activity of these irradiated samples. The coincidence technique used, designed in an integrated system, results in very low background in the data, which is required for low activity measurements. It, therefore, allows a good precision onmore » the nuclear activation yields of the produced radionuclides. The system allows high counting rates and online correction of the dead time. It also provides, online, a quick control of the experiment. Geant4 simulations are used at different steps of the data analysis to deduce, from the measured activities, the energy and angular distributions of the laser-induced particle beams. Two applications are presented to illustrate the characterization of electrons and protons.« less
Threshold Switchable Particles (TSPs) To Control Internal Hemorrhage
2016-09-01
hemorrhage at local sites. Four collaborating laboratories worked together under this contract to define threshold levels of activators of blood clotting...such that the candidate clotting activators will circulate in the blood at a concentration below the threshold necessary to trigger clotting, but...accumulation of the activators at sites of internal injury/bleeding will cause the local concentration of clotting activators to exceed the clotting
Conductivity versus Dielectric Mechanisms for Electrorheology
NASA Astrophysics Data System (ADS)
Davis, L. C.
1997-03-01
Electrorheological (ER) fluids are continuously and rapidly controllable by an electric field. Controllability of these materials permits the construction of novel intelligent systems such as semiactively controlled shock absorbers and vibration dampers, tunable composite beams and panels, and even reconfigurable Braille arrays. The eventual success of these applications depends in part on developing improved ER fluids, which requires a fundamental understanding of the physics and chemistry of these materials. ER fluids generally consist of highly polarizable colloidal particles suspended in an insulating oil. Particles are typically 1-10 microns in diameter and can be of a wide variety of materials including zeolites, barium titanate, conducting polymers, and oxide-coated metals. Electric fields of magnitude 1-5 kV/mm induce particle chaining and concomitant shear stresses of order 1 kPa. Recent experiments (J. M. Ginder and S. L. Ceccio, J. Rheol. 39, 211 (1995)) using square-wave electric-field excitation have helped to elucidate the mechanisms of ER activity. Immediately after a step-function increase of electric field, chaining occurs due to particle-particle forces arising from dielectric polarization (dipoles and higher multipoles), i.e., it is controlled by the dielectric mismatch between particles and fluid. On a longer time scale, currents flow in the fluid and in the particles so that the forces are eventually dominated by the conductivity mismatch. Characteristic times for the transition between the two regimes are 10-50 ms. Likewise, in the frequency domain, conductivity mismatch dominates the dc response of ER fluids whereas dielectric effects dominate for high frequencies. A theory of ER fluids is given including a model for non-linear effects at high electric fields.
Visual Tracking Using 3D Data and Region-Based Active Contours
2016-09-28
adaptive control strategies which explicitly take uncertainty into account. Filtering methods ranging from the classical Kalman filters valid for...linear systems to the much more general particle filters also fit into this framework in a very natural manner. In particular, the particle filtering ...the number of samples required for accurate filtering increases with the dimension of the system noise. In our approach, we approximate curve
Harrison, Michael; Moyna, Niall M; Zderic, Theodore W; O'Gorman, Donal J; McCaffrey, Noel; Carson, Brian P; Hamilton, Marc T
2012-07-10
Many of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS), it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects. Using a randomized cross-over design, very low density lipoprotein (VLDL) responses were evaluated in eight men on the morning after i) an inactive control trial (CON), ii) exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF), and iii) after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL). The intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG) determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70-120 nm (large) particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43-55 nm (medium) particle range. VLDL-TG in smaller particles (29-43 nm) was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL) activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state. These findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in LPL activity.
2012-01-01
Background Many of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS), it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects. Methods Using a randomized cross-over design, very low density lipoprotein (VLDL) responses were evaluated in eight men on the morning after i) an inactive control trial (CON), ii) exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF), and iii) after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL). Results The intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG) determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70–120 nm (large) particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43–55 nm (medium) particle range. VLDL-TG in smaller particles (29–43 nm) was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL) activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state. Conclusions These findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in LPL activity. PMID:22672707
Stochastic Resonance and First Arrival Time for Excitable Systems
NASA Astrophysics Data System (ADS)
Duki, Solomon Fekade; Taye, Mesfin Asfaw
2018-04-01
We study the noise induced thermally activated barrier crossing of Brownian particles that hop in a piecewise linear potential. Using the exact analytic solutions and via numerical simulations not only we explore the dependence for the first passage time of a single particle but also we calculate the first arrival time for one particle out of N particles. The first arrival time decreases as the number of particles increases as expected. We then explore the thermally activated barrier crossing rate of the system in the presence of time varying signal. The dependence of signal to noise ratio SNR as well as the power amplification (η ) on model parameters is explored. η and SNR depict a pronounced peak at particular noise strength. In the presence of N particles, η is considerably amplified as N steps up showing the weak periodic signal plays a vital role in controlling the noise induced dynamics of the system. Moreover, for the sake of generality, the viscous friction γ is considered to decrease exponentially when the temperature T of the medium increases (γ =Be^{-A T} ) as proposed originally by Reynolds (Philos Trans R Soc Lond 177:157, 1886).
Stochastic Resonance and First Arrival Time for Excitable Systems
NASA Astrophysics Data System (ADS)
Duki, Solomon Fekade; Taye, Mesfin Asfaw
2018-06-01
We study the noise induced thermally activated barrier crossing of Brownian particles that hop in a piecewise linear potential. Using the exact analytic solutions and via numerical simulations not only we explore the dependence for the first passage time of a single particle but also we calculate the first arrival time for one particle out of N particles. The first arrival time decreases as the number of particles increases as expected. We then explore the thermally activated barrier crossing rate of the system in the presence of time varying signal. The dependence of signal to noise ratio SNR as well as the power amplification (η ) on model parameters is explored. η and SNR depict a pronounced peak at particular noise strength. In the presence of N particles, η is considerably amplified as N steps up showing the weak periodic signal plays a vital role in controlling the noise induced dynamics of the system. Moreover, for the sake of generality, the viscous friction γ is considered to decrease exponentially when the temperature T of the medium increases (γ =Be^{-A T}) as proposed originally by Reynolds (Philos Trans R Soc Lond 177:157, 1886).
Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang
2016-01-01
Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. PMID:27294931
Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang
2016-06-09
Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety.
Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles
Huber, Dale L [Albuquerque, NM
2011-07-05
A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.
O'Toole, J; Keywood, M; Sinclair, M; Leder, K
2009-01-01
The aim of this study was to address existing data gaps and to determine the size distribution of aerosols associated with water-efficient devices during typical domestic activities. This information is important to assist in understanding infection spread during water-using activities and in designing water regulations. Three water-using scenarios were evaluated: i) showering using a water-efficient showerhead; ii) use of a high pressure spray unit for cleaning cars and iii) toilet flushing using a dual flush low volume flush device. For each scenario a control condition (conventional lower efficiency device) was selected for benchmarking purposes. Shower module results highlighted the complexity of particle generation and removal processes and showed that more than 90% of total particle mass in the breathing zone was attributed to particle diameters greater than 6 mum. Conversely, results for car washing experiments showed that particle diameters up to 6 mum constituted the major part of the total mass generated by both water-efficient and conventional devices. Even under worse case scenario conditions for toilet flushing, particle measurements were at or below the level of detection of the measuring instrumentation. The data provide information that assists in health risk assessment and in determining future research directions, including methodological aspects.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2009-09-22
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2012-05-29
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R.; Maitland, Duncan J.
2014-04-01
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Synthesis, Structure, Stability and Redispersion of Gold-based Nanoparticles
NASA Astrophysics Data System (ADS)
Tiruvalam, Ram Chandra
Nanoscale gold has been shown to possess an intriguing combination of unexpected optical, photochemical and catalytic properties. The ability to control the size, shape, morphology, composition and dispersion of gold-based nanostructures is key to optimizing their performance for nanotechnology applications. The advanced electron microscopy studies described in this thesis analyze three important aspects of gold and gold-palladium alloy nanoparticles: namely, (i) the ability to synthesize gold nanoparticles of controlled size and shape in an aqueous medium; (ii) the colloidal preparation of designer gold-palladium alloys for selective oxidation catalysis; and (iii) the ability to disperse gold as finely and homogeneously as possible on a metal oxide or carbon support. The ability to exploit the nanoscale properties of gold for various engineering applications often depends on our ability to control size and shape of the nanoscale entity by careful manipulation of the synthesis parameters. We have explored an aqueous based synthesis route, using oleylamine as both a reductant and surfactant, for preparing gold nanostructures. By systematically varying synthesis parameters such as oleylamine concentration, reaction temperature, and aging time it is possible to identify processing regimens that generate Au nanostructures having either pseudo-spherical, faceted polyhedral, nanostar or wire shaped morphologies. Furthermore, by quenching the reaction partway through it is possible to create a class of metastable Au-containing structures such as nanocubes, nanoboxes and nanowires. Possible formation mechanisms for these gold based nano-objects are discussed. There is a growing interest in using supported bimetallic AuPd alloy nanoparticles for selective oxidation reactions. In this study, a systematic series of size controlled AuPd bimetallic particles have been prepared by colloidal synthesis methods. Particles having random alloy structures, as well as `designer' particles with Pd-shell/Au-core and Au-shell/Pd-core morphologies, have been prepared and immobilized on both activated carbon and TiO2 supports. These have subsequently been compared as catalysts for the direct production of H2O2 and for benzyl alcohol oxidation in an attempt to elucidate the optimum particle morphology/support combination for both these reactions. Aberration corrected analytical electron microscopy has been used extensively to characterize these sol-immobilized materials. In particular, the STEM -HAADF technique has provided invaluable new (and often unexpected) information on the atomic structure, elemental distribution within particles, and compositional variations between particles for these controlled catalyst preparations. In addition, we have been able to compare their differing thermal stability and sintering behaviors, and to demonstrate that they have quite varying wetting interactions with activated carbon and TiO2 supports. Over the course of their lifetime, many supported metal catalysts exposed to elevated temperatures tend to de-activate by nanoparticle sintering, which decreases the overall exposed metal surface area and the number of active sites available for catalysis. It is sometimes desirable to devise chemical re-dispersion treatments whereby the mean size of the particles is reduced and the catalytic activity regenerated. In this work, the possibility of re-dispersing gold nanoparticles by a simple low temperature methyl iodide (CH3 I) treatment has been investigated. A variety of characterization techniques, including EXAFS, XRD, XPS, UV-DRS and STEM-HAADF imaging has been applied to samples before and after CH3 I treatment, in an attempt to determine the efficacy of the re-dispersion method. It is shown that re-dispersion of Au nanoparticles on activated carbon, graphite, Al2 O3 and TiO2 substrates is possible to varying degrees. A complete re-dispersion of `bulk' gold nanoparticles down to the atomic scale has been achieved on activated carbon and graphite substrates, with the exclusive formation of isolated gold atoms, dimeric species, and sub-nm clusters.
Charged Particle lunar Environment Experiment (CPLEE)
NASA Technical Reports Server (NTRS)
Reasoner, D. L.
1974-01-01
Research development in the Charged Particle Lunar Environment Experiment (CPLEE) is reported. The CPLEE is ion-electron spectrometer placed on the lunar surface for the purpose of measuring charged particle fluxes impacting the moon from a variety of regions and to study the interactions between space plasmas and the lunar surface. The principal accomplishments reported include: (1) furnishing design specifications for construction of the CPLEE instruments; (2) development of an advanced computer-controlled facility for automated instrument calibration; (3) active participation in the deployment and past-deployment operational phases with regard to data verification and operational mode selection; and (4) publication of research papers, including a study of lunar photoelectrons, a study of plasmas resulting from man-made lunar impart events, a study of magnetotail and magnetosheath particle populations, and a study of solar-flare interplanetary particles.
DNA G-Wire Formation Using an Artificial Peptide is Controlled by Protease Activity.
Usui, Kenji; Okada, Arisa; Sakashita, Shungo; Shimooka, Masayuki; Tsuruoka, Takaaki; Nakano, Shu-Ichi; Miyoshi, Daisuke; Mashima, Tsukasa; Katahira, Masato; Hamada, Yoshio
2017-11-16
The development of a switching system for guanine nanowire (G-wire) formation by external signals is important for nanobiotechnological applications. Here, we demonstrate a DNA nanostructural switch (G-wire <--> particles) using a designed peptide and a protease. The peptide consists of a PNA sequence for inducing DNA to form DNA-PNA hybrid G-quadruplex structures, and a protease substrate sequence acting as a switching module that is dependent on the activity of a particular protease. Micro-scale analyses via TEM and AFM showed that G-rich DNA alone forms G-wires in the presence of Ca 2+ , and that the peptide disrupted this formation, resulting in the formation of particles. The addition of the protease and digestion of the peptide regenerated the G-wires. Macro-scale analyses by DLS, zeta potential, CD, and gel filtration were in agreement with the microscopic observations. These results imply that the secondary structure change (DNA G-quadruplex <--> DNA/PNA hybrid structure) induces a change in the well-formed nanostructure (G-wire <--> particles). Our findings demonstrate a control system for forming DNA G-wire structures dependent on protease activity using designed peptides. Such systems hold promise for regulating the formation of nanowire for various applications, including electronic circuits for use in nanobiotechnologies.
Supercritical fluid particle design for poorly water-soluble drugs (review).
Sun, Yongda
2014-01-01
Supercritical fluid particle design (SCF PD) offers a number of routes to improve solubility and dissolution rate for enhancing the bioavailability of poorly water-soluble drugs, which can be adopted through an in-depth knowledge of SCF PD processes and the molecular properties of active pharmaceutical ingredients (API) and drug delivery system (DDS). Combining with research experiences in our laboratory, this review focuses on the most recent development of different routes (nano-micron particles, polymorphic particles, composite particles and bio-drug particles) to improve solubility and dissolution rate of poorly water-soluble drugs, covering the fundamental concept of SCF and the principle of SCF PD processes which are typically used to control particle size, shape, morphology and particle form and hence enable notable improvement in the dissolution rate of the poorly water-soluble drugs. The progress of the industrialization of SCF PD processes in pharmaceutical manufacturing environment with scaled-up plant under current good manufacturing process (GMP) specification is also considered in this review.
Yunker, Peter J; Chen, Ke; Gratale, Matthew D; Lohr, Matthew A; Still, Tim; Yodh, A G
2014-05-01
This review collects and describes experiments that employ colloidal suspensions to probe physics in ordered and disordered solids and related complex fluids. The unifying feature of this body of work is its clever usage of poly(N-isopropylacrylamide) (PNIPAM) microgel particles. These temperature-sensitive colloidal particles provide experimenters with a 'knob' for in situ control of particle size, particle interaction and particle packing fraction that, in turn, influence the structural and dynamical behavior of the complex fluids and solids. A brief summary of PNIPAM particle synthesis and properties is given, followed by a synopsis of current activity in the field. The latter discussion describes a variety of soft matter investigations including those that explore formation and melting of crystals and clusters, and those that probe structure, rearrangement and rheology of disordered (jammed/glassy) and partially ordered matter. The review, therefore, provides a snapshot of a broad range of physics phenomenology which benefits from the unique properties of responsive microgel particles.
Omichi, Masaaki; Asano, Atsushi; Tsukuda, Satoshi; Takano, Katsuyoshi; Sugimoto, Masaki; Saeki, Akinori; Sakamaki, Daisuke; Onoda, Akira; Hayashi, Takashi; Seki, Shu
2014-01-01
Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules, giving size-controlled protein nanowires with an ultra-high aspect ratio of over 1,000. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin–avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength in phosphate-buffered saline. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin–biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area. PMID:24770668
Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.
Ma, Xing; Wang, Xu; Hahn, Kersten; Sánchez, Samuel
2016-03-22
The quest for biocompatible microswimmers powered by compatible fuel and with full motion control over their self-propulsion is a long-standing challenge in the field of active matter and microrobotics. Here, we present an active hybrid microcapsule motor based on Janus hollow mesoporous silica microparticles powered by the biocatalytic decomposition of urea at physiological concentrations. The directional self-propelled motion lasts longer than 10 min with an average velocity of up to 5 body lengths per second. Additionally, we control the velocity of the micromotor by chemically inhibiting and reactivating the enzymatic activity of urease. The incorporation of magnetic material within the Janus structure provides remote magnetic control on the movement direction. Furthermore, the mesoporous/hollow structure can load both small molecules and larger particles up to hundreds of nanometers, making the hybrid micromotor an active and controllable drug delivery microsystem.
NASA Astrophysics Data System (ADS)
Wang, Tie-Jun; Wang, Chuan
2016-01-01
Hyperentangled Bell-state analysis (HBSA) is an essential method in high-capacity quantum communication and quantum information processing. Here by replacing the two-qubit controlled-phase gate with the two-qubit SWAP gate, we propose a scheme to distinguish the 16 hyperentangled Bell states completely in both the polarization and the spatial-mode degrees of freedom (DOFs) of two-photon systems. The proposed scheme reduces the use of two-qubit interaction which is fragile and cumbersome, and only one auxiliary particle is required. Meanwhile, it reduces the requirement for initializing the auxiliary particle which works as a temporary quantum memory, and does not have to be actively controlled or measured. Moreover, the state of the auxiliary particle remains unchanged after the HBSA operation, and within the coherence time, the auxiliary particle can be repeatedly used in the next HBSA operation. Therefore, the engineering complexity of our HBSA operation is greatly simplified. Finally, we discuss the feasibility of our scheme with current technologies.
Bellettiere, John; Hughes, Suzanne C.; Nguyen, Benjamin; Berardi, Vincent; Liles, Sandy; Obayashi, Saori; Hofstetter, C. Richard; Blumberg, Elaine; Hovell, Melbourne F.
2017-01-01
Children are at risk for adverse health outcomes from occupant-controllable indoor airborne contaminants in their homes. Data are needed to design residential interventions for reducing low-income children's pollutant exposure. Using customized air quality monitors, we continuously measured fine particle counts (0.5 to 2.5 microns) over a week in living areas of predominantly low-income households in San Diego, California, with at least one child (under age 14) and at least one cigarette smoker. We performed retrospective interviews on home characteristics, and particle source and ventilation activities occurring during the week of monitoring. We explored the relationship between weekly mean particle counts and interview responses using graphical visualization and multivariable linear regression (base sample n = 262; complete cases n = 193). We found associations of higher weekly mean particle counts with reports of indoor smoking of cigarettes or marijuana, as well as with frying food, using candles or incense, and house cleaning. Lower particle levels were associated with larger homes. We did not observe an association between lower mean particle counts and reports of opening windows, using kitchen exhaust fans, or other ventilation activities. Our findings about sources of fine airborne particles and their mitigation can inform future studies that investigate more effective feedback on residential indoor-air-quality and better strategies for reducing occupant exposures. PMID:28545099
Klepeis, Neil E; Bellettiere, John; Hughes, Suzanne C; Nguyen, Benjamin; Berardi, Vincent; Liles, Sandy; Obayashi, Saori; Hofstetter, C Richard; Blumberg, Elaine; Hovell, Melbourne F
2017-01-01
Children are at risk for adverse health outcomes from occupant-controllable indoor airborne contaminants in their homes. Data are needed to design residential interventions for reducing low-income children's pollutant exposure. Using customized air quality monitors, we continuously measured fine particle counts (0.5 to 2.5 microns) over a week in living areas of predominantly low-income households in San Diego, California, with at least one child (under age 14) and at least one cigarette smoker. We performed retrospective interviews on home characteristics, and particle source and ventilation activities occurring during the week of monitoring. We explored the relationship between weekly mean particle counts and interview responses using graphical visualization and multivariable linear regression (base sample n = 262; complete cases n = 193). We found associations of higher weekly mean particle counts with reports of indoor smoking of cigarettes or marijuana, as well as with frying food, using candles or incense, and house cleaning. Lower particle levels were associated with larger homes. We did not observe an association between lower mean particle counts and reports of opening windows, using kitchen exhaust fans, or other ventilation activities. Our findings about sources of fine airborne particles and their mitigation can inform future studies that investigate more effective feedback on residential indoor-air-quality and better strategies for reducing occupant exposures.
NASA Astrophysics Data System (ADS)
Schill, S.; Zimmermann, K.; Ryder, O. S.; Campbell, N.; Collins, D. B.; Gianneschi, N.; Bertram, T. H.
2013-12-01
Spontaneous self-assembly of marine exudate particles has previously been observed in filtered seawater samples. The chemicophysical properties of these particles may alter the chemical composition and CCN properties of nascent marine aerosol, yet to date simultaneous measurement of seawater exudate particle formation rates and number distributions, with aerosol particle formation rates and CCN activity are lacking. Here, we use a novel Marine Aerosol Reference Tank (MART) system to experimentally mimic a phytoplankton bloom via sequential addition of biological surrogates, including sterol, galactose, lipopolysaccharide, BSA protein, and dipalmitoylphosphatidylcholine. Nascent sea-spray aerosol are generated in the MART system via a continuous plunging waterfall. Exudate particle assembly in the water is monitored via dynamic light scattering (DLS) and transmission electron microscopy (TEM) to obtain both the assembly kinetics of the particles as well as particle number distributions Simultaneous characterization of both particle production rates and super-saturated particle hygroscopicity are also discussed. This study permits analysis of the controlling role of the molecular composition of dissolved organic carbon in setting the production rates of colloidal material in the surface oceans.
Depositing nanometer-sized particles of metals onto carbon allotropes
NASA Technical Reports Server (NTRS)
Delozier, Donavon M. (Inventor); Fallbach, Michael J. (Inventor); Smith, Joseph G. (Inventor); Watson, Kent A. (Inventor); Ghose, Sayata (Inventor); Connell, John W. (Inventor)
2010-01-01
A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles. These articles are well-suited for many applications requiring thermal conductivity, electrical conductivity, antibacterial activity, catalytic activity, and combinations thereof.
Submicron particle monitoring of paving and related road construction operations.
Freund, Alice; Zuckerman, Norman; Baum, Lisa; Milek, Debra
2012-01-01
This study identified activities and sources that contribute to ultrafine and other submicron particle exposure that could trigger respiratory symptoms in highway repair workers. Submicron particle monitoring was conducted for paving, milling, and pothole repair operations in a major metropolitan area where several highway repair workers were identified as symptomatic for respiratory illness following exposures at the 2001 World Trade Center disaster site. Exposure assessments were conducted for eight trades involved in road construction using a TSI P-Trak portable condensation particle counter. Direct readings near the workers' breathing zones and observations of activities and potential sources were logged on 7 days on 27 workers using four different models of pavers and two types of millers. Average worker exposure levels ranged from 2 to 3 times background during paving and from 1 to 4 times background during milling. During asphalt paving, average personal exposures to submicron particulates were 25,000-60,000, 28,000-70,000, and 23,000-37,000 particles/ cm(3) for paver operators, screed operators, and rakers, respectively. Average personal exposures during milling were 19,000-111,000, 28,000-81,000, and 19,000 particles/cm(3) for the large miller operators, miller screed operators, and raker, respectively. Personal peak exposures were measured up to 467,000 and 455,000 particles/cm(3) in paving and milling, respectively. Several sources of submicron particles were identified. These included the diesel and electric fired screed heaters; engine exhaust from diesel powered construction vehicles passing by or idling; raking, dumping, and paving of asphalt; exhaust from the hotbox heater; pavement dust or fumes from milling operations, especially when the large miller started and stopped; and secondhand cigarette smoke. To reduce the potential for health effects in workers, over 40 recommendations were made to control exposures, including improved maintenance of paver ventilation systems; diesel fume engineering controls; reduced idling; provision of cabs for the operators; and improved dust suppression systems on the milling machine.
NASA Astrophysics Data System (ADS)
Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier
2016-04-01
Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice crystals. [1] Koop, T. Atmospheric water, Water: Fundamentals as the Basis for Understanding the Environment and Promoting Technology, 187, 45-75 (2015). [2] Hoose & Möhler. Atmospheric Chemistry and Physics. 12, 9817-9854. (2012) [3] Schumann et al. Journal of Applied Meteorology and Climatology. 51, 1391-1406 (2012)
Janjua, Muhammad Ramzan Saeed Ashraf; Jamil, Saba; Jahan, Nazish; Khan, Shanza Rauf; Mirza, Saima
2017-05-31
Morphologically controlled synthesis of ferric oxide nano/micro particles has been carried out by using solvothermal route. Structural characterization displays that the predominant morphologies are porous hollow spheres, microspheres, micro rectangular platelets, octahedral and irregular shaped particles. It is also observed that solvent has significant effect on morphology such as shape and size of the particles. All the morphologies obtained by using different solvents are nearly uniform with narrow size distribution range. The values of full width at half maxima (FWHM) of all the products were calculated to compare their size distribution. The FWHM value varies with size of the particles for example small size particles show polydispersity whereas large size particles have shown monodispersity. The size of particles increases with decrease in polarity of the solvent whereas their shape changes from spherical to rectangular/irregular with decrease in polarity of the solvent. The catalytic activities of all the products were investigated for both dry and wet processes such as thermal decomposition of ammonium per chlorate (AP) and reduction of 4-nitrophenol in aqueous media. The results indicate that each product has a tendency to act as a catalyst. The porous hollow spheres decrease the thermal decomposition temperature of AP by 140 °C and octahedral Fe 3 O 4 particles decrease the decomposition temperature by 30 °C. The value of apparent rate constant (k app ) of reduction of 4-NP has also been calculated.
Distinguishing remobilized ash from erupted volcanic plumes using space-borne multi-angle imaging.
Flower, Verity J B; Kahn, Ralph A
2017-10-28
Volcanic systems are comprised of a complex combination of ongoing eruptive activity and secondary hazards, such as remobilized ash plumes. Similarities in the visual characteristics of remobilized and erupted plumes, as imaged by satellite-based remote sensing, complicate the accurate classification of these events. The stereo imaging capabilities of the Multi-angle Imaging SpectroRadiometer (MISR) were used to determine the altitude and distribution of suspended particles. Remobilized ash shows distinct dispersion, with particles distributed within ~1.5 km of the surface. Particle transport is consistently constrained by local topography, limiting dispersion pathways downwind. The MISR Research Aerosol (RA) retrieval algorithm was used to assess plume particle microphysical properties. Remobilized ash plumes displayed a dominance of large particles with consistent absorption and angularity properties, distinct from emitted plumes. The combination of vertical distribution, topographic control, and particle microphysical properties makes it possible to distinguish remobilized ash flows from eruptive plumes, globally.
NASA Astrophysics Data System (ADS)
Pérez, Nicolás; Moya, C.; Tartaj, P.; Labarta, A.; Batlle, X.
2017-01-01
The control of magnetic interactions is becoming essential to expand/improve the applicability of magnetic nanoparticles (NPs). Here, we show that an optimized microemulsion method can be used to obtain homogenous silica coatings on even single magnetic nuclei of highly crystalline Fe3-xO4 NPs (7 and 16 nm) derived from a high-temperature method. We show that the thickness of this coating is controlled almost at will allowing much higher average separation among particles as compared to the oleic acid coating present on pristine NPs. Magnetic susceptibility studies show that the thickness of the silica coating allows the control of magnetic interactions. Specifically, as this effect is better displayed for the smallest particles, we show that dipole-dipole interparticle interactions can be tuned progressively for the 7 nm NPs, from almost non-interacting to strongly interacting particles at room temperature. The quantitative analysis of the magnetic properties unambiguously suggests that dipolar interactions significantly broaden the effective distribution of energy barriers by spreading the distribution of activation magnetic volumes.
Zafeiri, I; Smith, P; Norton, I T; Spyropoulos, F
2017-07-19
The quest to identify and use bio-based particles with a Pickering stabilisation potential for food applications has lately been particularly substantial and includes, among other candidates, lipid-based particles. The present study investigates the ability of solid lipid particles to stabilise oil-in-water (o/w) emulsions against coalescence. Results obtained showed that emulsion stability could be achieved when low amounts (0.8 wt/wt%) of a surface active species (e.g. Tween 80 or NaCas) were used in particles' fabrication. Triple staining of the o/w emulsions enabled the visualisation of emulsion droplets' surface via confocal microscopy. This revealed an interfacial location of the lipid particles, hence confirming stabilisation via a Pickering mechanism. Emulsion droplet size was controlled by varying several formulation parameters, such as the type of the lipid and surface active component, the processing route and the polarity of the dispersed phase. Differential scanning calorimetry (DSC) was employed as the analytical tool to quantify the amount of crystalline material available to stabilise the emulsion droplets at different intervals during the experimental timeframe. Dissolution of lipid particles in the oil phase was observed and evolved distinctly between a wax and a triglyceride, and in the presence of a non-ionic surfactant and a protein. Yet, this behaviour did not result in emulsion destabilisation. Moreover, emulsion's thermal stability was found to be determined by the behaviour of lipid particles under temperature effects.
Synthesis of Monodisperse Chitosan Nanoparticles and in Situ Drug Loading Using Active Microreactor.
Kamat, Vivek; Marathe, Ila; Ghormade, Vandana; Bodas, Dhananjay; Paknikar, Kishore
2015-10-21
Chitosan nanoparticles are promising drug delivery vehicles. However, the conventional method of unregulated mixing during ionic gelation limits their application because of heterogeneity in size and physicochemical properties. Therefore, a detailed theoretical analysis of conventional and active microreactor models was simulated. This led to design and fabrication of a polydimethylsiloxane microreactor with magnetic micro needles for the synthesis of monodisperse chitosan nanoparticles. Chitosan nanoparticles synthesized conventionally, using 0.5 mg/mL chitosan, were 250 ± 27 nm with +29.8 ± 8 mV charge. Using similar parameters, the microreactor yielded small size particles (154 ± 20 nm) at optimized flow rate of 400 μL/min. Further optimization at 0.4 mg/mL chitosan concentration yielded particles (130 ± 9 nm) with higher charge (+39.8 ± 5 mV). The well-controlled microreactor-based mixing generated highly monodisperse particles with tunable properties including antifungal drug entrapment (80%), release rate, and effective activity (MIC, 1 μg/mL) against Candida.
Complex collective dynamics of active torque-driven colloids at interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snezhko, Alexey
Modern self-assembly techniques aiming to produce complex structural order or functional diversity often rely on non-equilibrium conditions in the system. Light, electric, or magnetic fields are predominantly used to modify interaction profiles of colloidal particles during self-assembly or induce complex out-of-equilibrium dynamic ordering. The energy injection rate, properties of the environment are important control parameters that influence the outcome of active (dynamic) self-assembly. The current review is focused on a case of collective dynamics and self-assembly of particles with externally driven torques coupled to a liquid or solid interface. The complexity of interactions in such systems is further enriched bymore » strong hydrodynamic coupling between particles. Unconventionally ordered dynamic self-assembled patterns, spontaneous symmetry breaking phenomena, self-propulsion, and collective transport have been reported in torque-driven colloids. Some of the features of the complex collective behavior and dynamic pattern formation in those active systems have been successfully captured in simulations.« less
Bai, Kelvin; Barnett, Gregory V; Kar, Sambit R; Das, Tapan K
2017-04-01
Characterization of submicron protein particles continues to be challenging despite active developments in the field. NTA is a submicron particle enumeration technique, which optically tracks the light scattering signal from suspended particles undergoing Brownian motion. The submicron particle size range NTA can monitor in common protein formulations is not well established. We conducted a comprehensive investigation with several protein formulations along with corresponding placebos using NTA to determine submicron particle size distributions and shed light on potential non-particle origin of size distribution in the range of approximately 50-300 nm. NTA and DLS are performed on polystyrene size standards as well as protein and placebo formulations. Protein formulations filtered through a 20 nm filter, with and without polysorbate-80, show NTA particle counts. As such, particle counts above 20 nm are not expected in these solutions. Several other systems including positive and negative controls were studied using NTA and DLS. These apparent particles measured by NTA are not observed in DLS measurements and may not correspond to real particles. The intent of this article is to raise awareness about the need to interpret particle counts and size distribution from NTA with caution.
NASA Astrophysics Data System (ADS)
Voth, Greg A.; Kramel, Stefan; Menon, Udayshankar K.; Koch, Donald L.
2017-11-01
We experimentally measure the sedimentation of non-spherical particles in isotropic turbulence. We obtain time-resolved 3D orientations of the particles along with the fluid velocity field around them in a vertical water tunnel. An active jet array with 40 individually controllable jets enables us to adjust the turbulence intensity and observe the transition from strongly aligned to randomized particle orientations. We focus on the orientation statistics of ramified particles formed from several slender arms, including fibers and particles with three arms in planar symmetry (triads), which allows us to study alignment of both fibers and disk-like particles. We can predict the turbulent intensity at which the transition from aligned to randomized particle orientations occurs using a non-dimensional settling factor given by the ratio of rotation timescale of the turbulence at the scale of the particle to the rotation timescale of a particles in quiescent flow due to inertial torques. A model of ramified particle motion based on slender body theory provides accurate predictions of the vertical and horizontal particle velocities relative to the turbulent fluid. Supported by Army Research Office Grant W911NF1510205.
Manipulation of long-term dynamics in a colloidal active matter system using speckle light fields
NASA Astrophysics Data System (ADS)
Pince, Ercag; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio
Particles undergoing a stochastic motion within a disordered medium is a ubiquitous physical and biological phenomena. Examples can be given from organelles performing tasks in the cytoplasm to large animals moving in patchy environment. Here, we use speckle light fields to study the anomalous diffusion in an active matter system consisting of micron-sized silica particles(diameter 5 μm) and motile bacterial cells (E. coli). The speckle light fields are generated by mode mixing inside a multimode optical fiber where a small amount of incident laser power is needed to obtain an effective disordered optical landscape for the purpose of optical manipulation. We experimentally show how complex potentials contribute to the long-term dynamics of the active matter system and observed an enhanced diffusion of particles interacting with the active bacterial bath in the speckle light fields. We showed that this effect can be tuned and controlled by varying the intensity and the statistical properties of the speckle pattern. Potentially, these results could be of interest for many technological applications, such as the manipulation of microparticles inside optically disordered media of biological interest.
Schick, Isabel; Lorenz, Steffen; Gehrig, Dominik; Schilmann, Anna-Maria; Bauer, Heiko; Panthöfer, Martin; Fischer, Karl; Strand, Dennis; Laquai, Frédéric; Tremel, Wolfgang
2014-02-12
Monodisperse multifunctional and nontoxic Au@MnO Janus particles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique with precise control over domain sizes, surface functionalization, and dye labeling. The metal oxide domain could be coated selectively with a thin silica layer, leaving the metal domain untouched. In particular, size and morphology of the individual (metal and metal oxide) domains could be controlled by adjustment of the synthetic parameters. The SiO2 coating of the oxide domain allows biomolecule conjugation (e.g., antibodies, proteins) in a single step for converting the photoluminescent and superparamagnetic Janus nanoparticles into multifunctional efficient vehicles for theranostics. The Au@MnO@SiO2 Janus particles were characterized using high-resolution transmission electron microscopy (HR-)TEM, powder X-ray diffraction (PXRD), optical (UV-vis) spectroscopy, confocal laser fluorescence scanning microscopy (CLSM), and dynamic light scattering (DLS). The functionalized nanoparticles were stable in buffer solution or serum, showing no indication of aggregation. Biocompatibility and potential biomedical applications of the Au@MnO@SiO2 Janus particles were assayed by a cell viability analysis by coincubating the Au@MnO@SiO2 Janus particles with Caki 1 and HeLa cells. Time-resolved fluorescence spectroscopy in combination with CLSM revealed the silica-coated Au@MnO@SiO2 Janus particles to be highly two-photon active; no indication for an electronic interaction between the dye molecules incorporated in the silica shell surrounding the MnO domains and the attached Au domains was found; fluorescence quenching was observed when dye molecules were bound directly to the Au domains.
Fan, Yi-Ou; Zhang, Ying-Hua; Zhang, Xiao-Peng; Liu, Bing; Ma, Yi-xin; Jin, Yi-he
2006-09-01
To compare the effects of nanosized and microsized silicon dioxide on spermatogenesis function of male rats exposed by inhalation. 45 male rats were randomly divided into control group and four experimental groups which were exposed by 100 mg/m3 or 300 mg/m3 nanosized and microsized silicon dioxide in inhalation chambers 2 hours every other day. Age-matched rats were exposed to room air with the same condition and served as controls. 65 days later, the testicular and epididymal viscera coefficients, the quantity and quality of sperm were examined and the histopathological assessment was done. The changes in biochemical parameters in serum and testes were also measured. Nanosized silicon dioxide could induce histopathological changes of testes in rats, and the effect was higher than that of microsized particles at the same concentration. Nanosized silicon dioxide could reduce the sperm counts of rats and the testicular LDH-C4 activities, increase MDA levels in the testes and the effect was higher than that of microsized particles at the same concentration. Nanosized silicon dioxide could lead to the reduction of sperm motility, testicular LDH-C4 activities and 8-hydroxydeoxyguanosine (8-OHdG) concentration in serum elevation in particles-exposed rats compared with the control animals, but there are no significant difference compared with that of microsized particles at the same concentration. The present findings suggest a different effect of impairment of sperm production and maturation induced by inhalation of nanosized and microsized silicon dioxide, and nanosized silicon dioxide exerted more severe reaction.
Liu, Jie; Fan, Xiayue; Liu, Xiaorui; Song, Zhishuang; Deng, Yida; Han, Xiaopeng; Hu, Wenbin; Zhong, Cheng
2017-06-07
A new approach has been developed for in situ preparing cubic-shaped Pt particles with (100) preferential orientation on the surface of the conductive support by using a quick, one-step, and clean electrochemical method with periodic square-wave potential. The whole electrochemical deposition process is very quick (only 6 min is required to produce cubic Pt particles), without the use of particular capping agents. The shape and the surface structure of deposited Pt particles can be controlled by the lower and upper potential limits of the square-wave potential. For a frequency of 5 Hz and an upper potential limit of 1.0 V (vs saturated calomel electrode), as the lower potential limit decreases to the H adsorption potential region, the Pt deposits are changed from nearly spherical particles to cubic-shaped (100)-oriented Pt particles. High-resolution transmission electron microscopy and selected-area electron diffraction reveal that the formed cubic Pt particles are single-crystalline and enclosed by (100) facets. Cubic Pt particles exhibit characteristic H adsorption/desorption peaks corresponding to the (100) preferential orientation. Ge irreversible adsorption indicates that the fraction of wide Pt(100) surface domains is 47.8%. The electrocatalytic activities of different Pt particles are investigated by ammonia electro-oxidation, which is particularly sensitive to the amount of Pt(100) sites, especially larger (100) domains. The specific activity of cubic Pt particles is 3.6 times as high as that of polycrystalline spherical Pt particles, again confirming the (100) preferential orientation of Pt cubes. The formation of cubic-shaped Pt particles is related with the preferential electrochemical deposition and dissolution processes of Pt, which are coupled with the periodic desorption and adsorption processes of O-containing species and H adatoms.
Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics.
Chen, Dong; Weavers, Linda K; Walker, Harold W
2006-02-01
In this study, the effect of particle characteristics on the ultrasonic control of membrane fouling was investigated. Ultrasound at 20 kHz was applied to a cross-flow filtration system with gamma-alumina membranes in the presence of colloidal silica particles. Experimental results indicated that particle concentration affected the ability of ultrasound to control membrane fouling, with less effective control of fouling at higher particle concentrations. Measurements of sound wave intensity and images of the cavitation region indicated that particles induced additional cavitation bubbles near the ultrasonic source, which resulted in less turbulence reaching the membrane surface and subsequently less effective control of fouling. When silica particles were modified to be hydrophobic, greater inducement of cavitation bubbles near the ultrasonic source occurred for a fixed concentration, also resulting in less effective control of fouling. Particle size influenced the cleaning ability of ultrasound, with better permeate recovery observed with larger particles. Particle size did not affect sound wave intensity, suggesting that the more effective control of fouling by large particles was due to greater lift and cross-flow drag forces on larger particles compared to smaller particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tvermoes, Brooke E., E-mail: brooke.tvermoes@cardn
The objective of this preliminary study was to evaluate the threshold for immune stimulation in mice following local exposure to metal particles and ions representative of normal-functioning cobalt-chromium (CoCr) metal-on-metal (MoM) hip implants. The popliteal lymph node assay (PLNA) was used in this study to assess immune responses in BALB/c mice following treatment with chromium-oxide (Cr{sub 2}O{sub 3}) particles, metal salts (CoCl{sub 2}, CrCl{sub 3} and NiCl{sub 2}), or Cr{sub 2}O{sub 3} particles together with metal salts using single-dose exposures representing approximately 10 days (0.000114 mg), 19 years (0.0800 mg), and 40 years (0.171 mg) of normal implant wear. Themore » immune response elicited following treatment with Cr{sub 2}O{sub 3} particles together with metal salts was also assessed at four additional doses equivalent to approximately 1.5 months (0.0005 mg), 0.6 years (0.0025 mg), 2.3 years (0.01 mg), and 9.3 years (0.04 mg) of normal implant wear. Mice were injected subcutaneously (50 μL) into the right hind foot with the test article, or with the relevant vehicle control. The proliferative response of the draining lymph node cells (LNC) was measured four days after treatment, and stimulation indices (SI) were derived relative to vehicle controls. The PLNA was negative (SI < 3) for all Cr{sub 2}O{sub 3} particle doses, and was also negative at the lowest dose of the metal salt mixture, and the lowest four doses of the Cr{sub 2}O{sub 3} particles with metal salt mixture. The PLNA was positive (SI > 3) at the highest two doses of the metal salt mixture and the highest three doses of the Cr{sub 2}O{sub 3} particles with the metal salt mixture. The provisional NOAEL and LOAEL values identified in this study for immune activation corresponds to Co and Cr concentrations in the synovial fluid approximately 500 and 2000 times higher than that reported for normal-functioning MoM hip implants, respectively. Overall, these results indicate that normal wear conditions are unlikely to result in immune stimulation in individuals not previously sensitized to metals. - Highlights: • Immune responses in mice were assessed following treatment with Cr2O3 particles with metal salts. • The PLNA was negative (SI < 3) for all Cr2O3 particle doses. • A LOAEL for immune activation was identified at 0.04 mg of metal particles with metal salts. • A NOAEL for immune activation was identified at 0.01 mg of metal particles with metal salts.« less
Woraprayote, Weerapong; Kingcha, Yutthana; Amonphanpokin, Pannawit; Kruenate, Jittiporn; Zendo, Takeshi; Sonomoto, Kenji; Benjakul, Soottawat; Visessanguan, Wonnop
2013-10-15
A novel poly(lactic acid) (PLA)/sawdust particle (SP) biocomposite film with anti-listeria activity was developed by incorporation of pediocin PA-1/AcH (Ped) using diffusion coating method. Sawdust particle played an important role in embedding pediocin into the hydrophobic PLA film. The anti-listeria activity of the PLA/SP biocomposite film incorporated with Ped (PLA/SP+Ped) was detected, while no activity against the tested pathogen was observed for the control PLA films (without SP and/or Ped). Dry-heat treatment of film before coating with Ped resulted in the highest Ped adsorption (11.63 ± 3.07 μg protein/cm(2)) and the highest anti-listeria activity. A model study of PLA/SP+Ped as a food-contact antimicrobial packaging on raw sliced pork suggests a potential inhibition of Listeria monocytogenes (99% of total listerial population) on raw sliced pork during the chilled storage. This study supports the feasibility of using PLA/SP+Ped film to reduce the initial load of L. monocytogenes on the surface of raw pork. © 2013.
Mitochondrial fluctuations as a measure of active biomechanical properties of mammalian cells
NASA Astrophysics Data System (ADS)
Xu, Wenlong; Alizadeh, Elaheh; Castle, Jordan; Prasad, Ashok
A single-cell assay of mechanical properties would give significant insights into cellular processes. Force spectrum microscopy is one such technique, which involves both active and passive particle tracking microrheology on the same cells. Since active microrheology requires expensive instruments, it is of great interest to develop simpler alternatives. Here we study an alternative using endogenous mitochondrial fluctuations, rather than fluorescent beads, in particle tracking microrheology. Mitochondria of the C3H-10T1/2 cell line are labeled and tracked using confocal microscopy, their mean square displacement (MSD) measured, and mechanical parameters calculated. Active fluctuations are distinguished from passive fluctuations by treatment with ATP synthesis inhibitors. We find that the MSD of mitochondria resembles that of particles in viscoelastic media. However, comparisons of MSD between controls and cells disrupted in the actin or microtubule network showed surprisingly small effects, while ATP-depleted cells showed significantly decreased MSD, and characteristics of thermally driven fluctuations. Both active and ATP-depleted parameters showed heterogeneity among cells and between cell lines. This method is potentially very useful due to its simplicity. We gratefully acknowledge support from NSF CAREER Grant PHY-1151454 awarded to Ashok Prasad.
NASA Technical Reports Server (NTRS)
Calle, C. I.; Buhler, C. R.; McFall, J. L.; Snyder, S. J.
2009-01-01
Particle removal during lunar exploration activities is of prime importance for the success of robotic and human exploration of the moon. We report on our efforts to use electrostatic and dielectrophoretic forces to develop a dust removal technology that prevents the accumulation of dust on solar panels and removes dust adhering to those surfaces. Testing of several prototypes showed solar shield output above 90% of the initial potentials after dust clearing.
Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles
NASA Astrophysics Data System (ADS)
Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar
2016-04-01
Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more detail to gain additional information on the trigger of the enhanced ice nucleation activity of soil dust. References Rogers (1988): Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies Steinke et al. (In preparation for submission): Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina and Germany
Cheng, Yu; Muroski, Megan E; Petit, Dorothée C M C; Mansell, Rhodri; Vemulkar, Tarun; Morshed, Ramin A; Han, Yu; Balyasnikova, Irina V; Horbinski, Craig M; Huang, Xinlei; Zhang, Lingjiao; Cowburn, Russell P; Lesniak, Maciej S
2016-02-10
Magnetic particles that can be precisely controlled under a magnetic field and transduce energy from the applied field open the way for innovative cancer treatment. Although these particles represent an area of active development for drug delivery and magnetic hyperthermia, the in vivo anti-tumor effect under a low-frequency magnetic field using magnetic particles has not yet been demonstrated. To-date, induced cancer cell death via the oscillation of nanoparticles under a low-frequency magnetic field has only been observed in vitro. In this report, we demonstrate the successful use of spin-vortex, disk-shaped permalloy magnetic particles in a low-frequency, rotating magnetic field for the in vitro and in vivo destruction of glioma cells. The internalized nanomagnets align themselves to the plane of the rotating magnetic field, creating a strong mechanical force which damages the cancer cell structure inducing programmed cell death. In vivo, the magnetic field treatment successfully reduces brain tumor size and increases the survival rate of mice bearing intracranial glioma xenografts, without adverse side effects. This study demonstrates a novel approach of controlling magnetic particles for treating malignant glioma that should be applicable to treat a wide range of cancers. Copyright © 2015 Elsevier B.V. All rights reserved.
Activation of natural killer cells by hepatitis C virus particles in vitro
Farag, M M S; Weigand, K; Encke, J; Momburg, F
2011-01-01
Little is known about the ability of hepatitis C virus (HCV) to alter early innate immune responses in infected patients. Previous studies have shown that natural killer (NK) cells are functionally impaired after interaction of recombinant HCV glycoprotein E2 with the co-stimulatory CD81 molecule in vitro; however, the functional consequences of a prolonged contact of NK cells with HCV particles have remained unclear. We have examined the phenotypes of purified, interleukin-2-activated NK cells from healthy donors and HCV genotype 1b patients after culture for 5 days with HCV pseudoparticles (HCVpp) and serum samples containing HCV genotype 1b. NK cells from healthy donors and chronic HCV patients were found to up-regulate receptors associated with activation (NKp46, NKp44, NKp30, NKG2D), while NK receptors from the killer cell immunoglobulin-like receptor family (KIR/CD158), predominantly having an inhibitory function, were significantly down-modulated after culture in the presence of HCV particles compared with control cultures of NK cells. HCV-infected sera and HCVpp elicited significantly higher secretion of the NK effector lymphokines interferon-γ and tumour necrosis factor-α. Furthermore, HCV stimulated the cytotoxic potential of NK cells from normal donors and patients. The enhanced activation of NK cells after prolonged culture with HCVpp or HCV-containing sera for 5 days suggests that these innate effector cells may play an important role in viral control during early phases of HCV infection. PMID:21682720
Pinchasik, Bat-El; Möhwald, Helmuth; Skirtach, Andre G
2014-07-09
Bubbles are widely used by animals in nature in order to fulfill important functions. They are used by animals in order to walk underwater or to stabilize themselves at the water/air interface. The main aim of this work is to imitate such phenomena, which is the essence of biomimetics. Here, bubbles are used to propel and to control the location of Janus particles in an aqueous medium. The synthesis of Janus SiO2-Ag and polystyrene-Ag (PS-Ag) particles through embedment in Parafilm is presented. The Janus particles, partially covered with catalytically active Ag nanoparticles, are redispersed in water and placed on a glass substrate. The active Ag sites are used for the splitting of H2O2 into water and oxygen. As a result, an oxygen bubble is formed on one side of the particle and promotes its propulsion. Once formed, the bubble-particle complex is stable and therefore, can be manipulated by tuning hydrophilic-hydrophobic interactions with the surface. In this way a transition between two- and three- dimensional motion is possible by changing the hydrophobicity of the substrate. Similar principles are used in nature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Zhong; Yin, Wei; Zara, Janette N.; Li, Weiming; Kwak, Jinny; Mamidi, Rachna; Lee, Min; Siu, Ronald K.; Ngo, Richard; Wang, Joyce; Carpenter, Doug; Zhang, Xinli; Wu, Benjamin; Ting, Kang; Soo, Chia
2010-01-01
Healing of contaminated/infected bone defects is a significant clinical challenge. Prevalence of multi-antibiotic resistant organisms has renewed interest in the use of antiseptic silver as an effective, but less toxic antimicrobial with decreased potential for bacterial resistance. In this study, we demonstrated that metallic nanosilver particles (with a size of 20–40 nm)-poly(lactic-co-glycolic acid) (PLGA) composite grafts have strong antibacterial properties. In addition, nanosilver particles-PLGA composite grafts did not inhibit adherence, proliferation, alkaline phosphatase activity, or mineralization of ongrowth MC3T3-E1 pre-osteoblasts compared to PLGA controls. Furthermore, nanosilver particles did not affect the osteoinductivity of bone morphogenetic protein 2 (BMP-2). Infected femoral defects implanted with BMP-2 coupled 2.0% nanosilver particles-PLGA composite grafts healed in 12 weeks without evidence of residual bacteria. In contrast, BMP-2 coupled PLGA control grafts failed to heal in the presence of continued bacterial colonies. Our results indicate that nanosilver of defined particle size is bactericidal without discernable in vitro and in vivo cytotoxicity or negative effects on BMP-2 osteoinductivity, making it an ideal antimicrobial for bone regeneration in infected wounds. PMID:20864167
DNA-guided nanoparticle assemblies
Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel
2013-07-16
In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying <.about.10% of the unit cell, are formed. Designs and pathways amenable to the crystallization of particle assemblies are identified. In some embodiments, a plasmonic crystal is provided. In some aspects, a method for controlling the properties of particle assemblages is provided. In some embodiments a catalyst is formed from nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.
Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
Hansen, Thomas W; Delariva, Andrew T; Challa, Sivakumar R; Datye, Abhaya K
2013-08-20
Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental understanding of catalyst sintering is very important for achieving clean energy and a clean environment, and for efficient chemical conversion processes with atom selectivity. Scientists have proposed two mechanisms for sintering of nanoparticles: particle migration and coalescence (PMC) and Ostwald ripening (OR). PMC involves the mobility of particles in a Brownian-like motion on the support surface, with subsequent coalescence leading to nanoparticle growth. In contrast, OR involves the migration of adatoms or mobile molecular species, driven by differences in free energy and local adatom concentrations on the support surface. In this Account, we divide the process of sintering into three phases. Phase I involves rapid loss in catalyst activity (or surface area), phase II is where sintering slows down, and phase III is where the catalyst may reach a stable performance. Much of the previous work is based on inferences from catalysts that were observed before and after long term treatments. While the general phenomena can be captured correctly, the mechanisms cannot be determined. Advancements in the techniques of in situ TEM allow us to observe catalysts at elevated temperatures under working conditions. We review recent evidence obtained via in situ methods to determine the relative importance of PMC and OR in each of these phases of catalyst sintering. The evidence suggests that, in phase I, OR is responsible for the rapid loss of activity that occurs when particles are very small. Surprisingly, very little PMC is observed in this phase. Instead, the rapid loss of activity is caused by the disappearance of the smallest particles. These findings are in good agreement with representative atomistic simulations of sintering. In phase II, sintering slows down since the smallest particles have disappeared. We now see a combination of PMC and OR, but do not fully understand the relative contribution of each of these processes to the overall rates of sintering. In phase III, the particles have grown large and other parasitic phenomena, such as support restructuring, can become important, especially at high temperatures. Examining the evolution of particle size and surface area with time, we do not see a stable or equilibrium state, especially for catalysts operating at elevated temperatures. In conclusion, the recent literature, especially on in situ studies, shows that OR is the dominant process causing the growth of nanoparticle size. Consequently, this leads to the loss of surface area and activity. While particle migration could be controlled through suitable structuring of catalyst supports, it is more difficult to control the mobility of atomically dispersed species. These insights into the mechanisms of sintering could help to develop sinter-resistant catalysts, with the ultimate goal of designing catalysts that are self-healing.
NASA Astrophysics Data System (ADS)
Hiron, T.; Hoffmann, N.; Peckhaus, A.; Kiselev, A. A.; Leisner, T.; Flossmann, A. I.
2016-12-01
One of the main challenges in understanding the evolution of Earth's climate resides in the understanding the role of ice nucleation on the development of tropospheric clouds as well as its initiation. K-feldspar is known to be a very active ice nucleating particle and this study focuses on the characterization of its activity in two heterogeneous nucleation modes, immersion and deposition freezing.We use a newly built humidity-controlled cold stage allowing the simultaneous observation of up to 2000 identical 0.6-nanoliter droplets containing suspension of mineral dust particles. The droplets are first cooled down to observe immersion freezing, the obtained ice crystals are then evaporated and finally, the residual particles are exposed to the water vapor supersaturated with respect to ice.The ice nucleation abilities for the individual residual particles are then compared for the different freezing modes and correlation between immersion ice nuclei and deposition ice nuclei is investigated.Based on the electron microscopy analysis of the residual particles, we discuss the possible relationship between the ice nucleation properties of feldspar and its microstructure. Finally, we discuss the atmospheric implications of our experimental results, using DESCAM, a 1.5D bin-resolved microphysics model.
Development of risk-based nanomaterial groups for occupational exposure control
NASA Astrophysics Data System (ADS)
Kuempel, E. D.; Castranova, V.; Geraci, C. L.; Schulte, P. A.
2012-09-01
Given the almost limitless variety of nanomaterials, it will be virtually impossible to assess the possible occupational health hazard of each nanomaterial individually. The development of science-based hazard and risk categories for nanomaterials is needed for decision-making about exposure control practices in the workplace. A possible strategy would be to select representative (benchmark) materials from various mode of action (MOA) classes, evaluate the hazard and develop risk estimates, and then apply a systematic comparison of new nanomaterials with the benchmark materials in the same MOA class. Poorly soluble particles are used here as an example to illustrate quantitative risk assessment methods for possible benchmark particles and occupational exposure control groups, given mode of action and relative toxicity. Linking such benchmark particles to specific exposure control bands would facilitate the translation of health hazard and quantitative risk information to the development of effective exposure control practices in the workplace. A key challenge is obtaining sufficient dose-response data, based on standard testing, to systematically evaluate the nanomaterials' physical-chemical factors influencing their biological activity. Categorization processes involve both science-based analyses and default assumptions in the absence of substance-specific information. Utilizing data and information from related materials may facilitate initial determinations of exposure control systems for nanomaterials.
Effects of Ni particle morphology on cell performance of Na/NiCl2 battery
NASA Astrophysics Data System (ADS)
Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan
2017-11-01
Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.
Zhang, Xin; Wang, Zhuang; Wang, Se; Fang, Hao; Zhang, Fan; Wang, De-Gao
2017-01-02
Freshwater dispersion stability and ecotoxicological effects of titanium nitride (TiN) with particle size of 20 nm, 50 nm, and 2-10 μm in the presence of dissolved organic matter (DOM) at various concentrations were studied. The TiN particles that had a more negative zeta potential and smaller hydrodynamic size showed more stable dispersion in an aqueous medium when DOM was present than when DOM was absent. Biochemical assays indicated that relative to the control, the TiN particles in the presence of DOM alleviated to some extent the antioxidative stress enzyme activity in Scenedesmus obliquus. In addition, it was found that the TiN with a primary size of 50 nm at a high concentration presented a significant impact on non-enzymatic antioxidant defense in algal cells.
NASA Astrophysics Data System (ADS)
Tomori, Zoltan; Keša, Peter; Nikorovič, Matej; Kaůka, Jan; Zemánek, Pavel
2016-12-01
We proposed the improved control software for the holographic optical tweezers (HOT) proper for simple semi-automated sorting. The controller receives data from both the human interface sensors and the HOT microscope camera and processes them. As a result, the new positions of active laser traps are calculated, packed into the network format and sent to the remote HOT. Using the photo-polymerization technique, we created a sorting container consisting of two parallel horizontal walls where one wall contains "gates" representing a place where the trapped particle enters into the container. The positions of particles and gates are obtained by image analysis technique which can be exploited to achieve the higher level of automation. Sorting is documented on computer game simulation and the real experiment.
NASA Astrophysics Data System (ADS)
Monticelli, M.; Albisetti, E.; Petti, D.; Conca, D. V.; Falcone, M.; Sharma, P. P.; Bertacco, R.
2015-05-01
In-vitro tests and analyses are of fundamental importance for investigating biological mechanisms in cells and bio-molecules. The controlled application of forces to activate specific bio-pathways and investigate their effects, mimicking the role of the cellular environment, is becoming a prominent approach in this field. In this work, we present a non-invasive magnetic on-chip platform which allows for the manipulation of magnetic particles, through micrometric magnetic conduits of Permalloy patterned on-chip. We show, from simulations and experiments, that this technology permits to exert a finely controlled force on magnetic beads along the chip surface. This force can be tuned from few to hundreds pN by applying a variable external magnetic field.
The Isolated Synthetic Jet in Crossflow: A Benchmark for Flow Control Simulation
NASA Technical Reports Server (NTRS)
Schaeffler, Norman W.; Jenkins, Luther N.
2006-01-01
An overview of the data acquisition, reduction, and uncertainty of experimental measurements made of the flowfield created by the interaction of an isolated synthetic jet and a turbulent boundary layer is presented. The experimental measurements were undertaken to serve as the second of three computational fluid dynamics validation databases for Active Flow Control. The validation databases were presented at the NASA Langley Research Center Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control in March, 2004. Detailed measurements were made to document the boundary conditions for the flow and also for the phase-averaged flowfield itself. Three component Laser-Doppler Velocimetry, 2-D Particle Image Velocimetry, and Stereo Particle Image Velocimetry were utilized to document the phase-averaged velocity field and the turbulent stresses.
The Isolated Synthetic Jet in Crossflow: A Benchmark for Flow Control Simulation
NASA Technical Reports Server (NTRS)
Schaeffler, Norman W.; Jenkins, Luther N.
2004-01-01
An overview of the data acquisition, reduction, and uncertainty of experimental measurements of the flowfield created by the interaction of an isolated synthetic jet and a turbulent boundary layer is presented. The experimental measurements were undertaken to serve as the second of three computational fluid dynamics validation databases for Active Flow Control. The validation databases were presented at the NASA Langley Research Center Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control in March, 2004. Detailed measurements were made to document the boundary conditions for the flow and also for the phase-averaged flowfield itself. Three component Laser-Doppler Velocimetry, 2-D Particle Image Velocimetry, and Stereo Particle Image Velocimetry were utilized to document the phase averaged velocity field and the turbulent stresses.
NASA Astrophysics Data System (ADS)
Belov, Oleg
Space radiation is one of the factors representing a significant health risk to the astronauts during deep-space missions. A most harmful component of space radiation beyond the Earth's magnetosphere is the galactic cosmic rays which are composed of high-energy protons, α particles, and high charge and energy (HZE) nuclei. Recent studies performed at particle accelerators have revealed a significant impact of HZE nuclei on the central nervous system and, in particular, on the cognitive functions. However the exact molecular mechanisms behind the observed impairments remain mostly unclear. This research is focused on study of early and long-term effects of low- and high-linear-energy-transfer (LET) radiation on the rat behavior and monoamine metabolism in the brain regions involved in behavior and motor control and form emotional and motivational states. Different groups of rats were whole-body exposed to 500 MeV/u (12) C particles (LET 10.6 keV/µm) available at the Nuclotron accelerator of the Joint Institute for Nuclear Research (Dubna, Russia) and to gamma rays at the equivalent dose of 1 Gy. An additional group of animals was sham-irradiated and considered as a control. The isolated brain regions have included the prefrontal cortex, nucleus accumbens, hypothalamus, hippocampus, and striatum where we determined the concentrations of noradrenalin, dopamine and its metabolites 3,4-doxyphenylacetic acid, homovanillic acid, and 3-methoxytyramine and serotonin and its metabolite 5-hydroxyindoleacetic acid. The following effects were observed in the different periods after irradiation. 1 day after exposure to (12) C particles strong changes in the concentration of monoamines and their metabolites were observed in three structures, namely, the prefrontal cortex, nucleus accumbens, and hippocampus. However, significant changes were found in the prefrontal cortex and weaker changes were seen in the nucleus accumbens, whereas changes were insignificant in the hippocampus. The experiments revealed the high sensitivity and reactivity of the prefrontal cortex, which we relate to the key role of this structure in essential processes of behavior. 30 days after irradiation with (12) C particles and gamma rays behavioral reactions of rats were evaluated by the open field test. The measurements have revealed differences between the effects observed after irradiation with HZE nuclei and gamma-rays at the same dose. The effect of accelerated carbon ions consisted in increasing motion activity measured as the number of sector border crossings and inhibiting exploratory activity of the animals estimated by burrowing, while gamma-irradiation had a significant impact only on the latter index. The rats' total activity increased by 18% after irradiation with (12) C ions, but exposure to gamma rays caused no significant differences from the control values. However the changes in total activity index after sparsely and densely ionizing radiations were also significant. In parallel to the analysis of monoamine metabolism, exploratory behavior, and general activity, some other immunohematological criteria were estimated on the 30th day after exposure to (12) C particles and gamma rays. The significant differences between the HZE-, gamma-irradiated, and control groups were found in the bone marrow cellularity. The changes in spleen mass were significant only between control and each of irradiated group whereas effects of (12) C and gamma rays were near the same. The similar difference was observed for the number of leucocytes in peripheral blood.
New particle formation in the Svalbard region 2006-2015
NASA Astrophysics Data System (ADS)
Heintzenberg, Jost; Tunved, Peter; Galí, Martí; Leck, Caroline
2017-05-01
Events of new particle formation (NPF) were analyzed in a 10-year data set of hourly particle size distributions recorded on Mt. Zeppelin, Spitsbergen, Svalbard. Three different types of NPF events were identified through objective search algorithms. The first and simplest algorithm utilizes short-term increases in particle concentrations below 25 nm (PCT (percentiles) events). The second one builds on the growth of the sub-50 nm diameter median (DGR (diameter growth) events) and is most closely related to the classical banana type
of event. The third and most complex, multiple-size approach to identifying NPF events builds on a hypothesis suggesting the concurrent production of polymer gel particles at several sizes below ca. 60 nm (MEV (multi-size growth) events). As a first and general conclusion, we can state that NPF events are a summer phenomenon and not related to Arctic haze, which is a late winter to early spring feature. The occurrence of NPF events appears to be somewhat sensitive to the available data on precipitation. The seasonal distribution of solar flux suggests some photochemical control that may affect marine biological processes generating particle precursors and/or atmospheric photochemical processes that generate condensable vapors from precursor gases. Notably, the seasonal distribution of the biogenic methanesulfonate (MSA) follows that of the solar flux although it peaks before the maxima in NPF occurrence. A host of ancillary data and findings point to varying and rather complex marine biological source processes. The potential source regions for all types of new particle formation appear to be restricted to the marginal-ice and open-water areas between northeastern Greenland and eastern Svalbard. Depending on conditions, yet to be clarified new particle formation may become visible as short bursts of particles around 20 nm (PCT events), longer events involving condensation growth (DGR events), or extended events with elevated concentrations of particles at several sizes below 100 nm (MEV events). The seasonal distribution of NPF events peaks later than that of MSA and DGR, and in particular than that of MEV events, which reach into late summer and early fall with open, warm, and biologically active waters around Svalbard. Consequently, a simple model to describe the seasonal distribution of the total number of NPF events can be based on solar flux and sea surface temperature, representing environmental conditions for marine biological activity and condensation sink, controlling the balance between new particle nucleation and their condensational growth. Based on the sparse knowledge about the seasonal cycle of gel-forming marine microorganisms and their controlling factors, we hypothesize that the seasonal distribution of DGR and, more so, MEV events reflect the seasonal cycle of the gel-forming phytoplankton.
Hierarchical Self-Assembly of Light Guided Spinning Microgears
NASA Astrophysics Data System (ADS)
Aubret, Antoine; Youssef, Mena; Sacanna, Stefano; Palacci, Jeremie; Sacanna Group, NYU Team
2017-11-01
In this work, we demonstrate the self-assembly of microgears obtained from the guided construction of tailored self-propelled particles used as primary building blocks. The experiment relies on our control of phoretic phenomena: the migration of particles in a solute gradient. We activate a photocatalytic material, the hematite, and trigger the decomposition of hydrogen peroxide to set concentration gradient. We use this effect to engineer phototactic swimmers, attracted to the region of high illumination. We guide the swimmers to form robust and highly persistent microgears. They interact with each other through hydrodynamics and diffusiophoretically through the chemical clouds of fuel consumption. Multiple rotors are studied and we specifically address the dynamics of two rotors. We show that the microgears move collectively or synchronize thanks to the interaction of their chemical clouds. Increasing the number of microrotors (N = 2 - 7), we form an active crystal which can rotate, re-organize, change shape, and exhibit phase synchronization between its individual components. Such crystal made of non-equilibrium rotating gears at the microscale is unique. Our study paves the way for better understanding and control of emergent phenomena in collection of active spinning particles. It is a promising avenue for the creation of cutting-edge materials using emergent behavior from hierarchical self-assembly to unveil untapped functionalities. This work is supported by NSF CAREER DMR 1554724.
Suzuki, Masashi; Aki, Atsushi; Mizuki, Toru; Maekawa, Toru; Usami, Ron; Morimoto, Hisao
2015-01-01
We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles.
Sicard, François; Striolo, Alberto
2017-06-29
The buckling mechanism in droplets stabilized by solid particles (armored droplets) is tackled at a mesoscopic level using dissipative particle dynamics simulations. We consider one spherical water droplet in a decane solvent coated with nanoparticle monolayers of two different types: Janus (particles whose surface shows two regions with different wetting properties) and homogeneous. The chosen particles yield comparable initial three-phase contact angles, selected to maximize the adsorption energy at the interface. We study the interplay between the evolution of droplet shape, layering of the particles, and their distribution at the interface when the volume of the droplets is reduced. We show that Janus particles affect strongly the shape of the droplet with the formation of a crater-like depression. This evolution is actively controlled by a close-packed particle monolayer at the curved interface. In contrast, homogeneous particles follow passively the volume reduction of the droplet, whose shape does not deviate too much from spherical, even when a nanoparticle monolayer/bilayer transition is detected at the interface. We discuss how these buckled armored droplets might be of relevance in various applications including potential drug delivery systems and biomimetic design of functional surfaces.
IMPLICIT DUAL CONTROL BASED ON PARTICLE FILTERING AND FORWARD DYNAMIC PROGRAMMING.
Bayard, David S; Schumitzky, Alan
2010-03-01
This paper develops a sampling-based approach to implicit dual control. Implicit dual control methods synthesize stochastic control policies by systematically approximating the stochastic dynamic programming equations of Bellman, in contrast to explicit dual control methods that artificially induce probing into the control law by modifying the cost function to include a term that rewards learning. The proposed implicit dual control approach is novel in that it combines a particle filter with a policy-iteration method for forward dynamic programming. The integration of the two methods provides a complete sampling-based approach to the problem. Implementation of the approach is simplified by making use of a specific architecture denoted as an H-block. Practical suggestions are given for reducing computational loads within the H-block for real-time applications. As an example, the method is applied to the control of a stochastic pendulum model having unknown mass, length, initial position and velocity, and unknown sign of its dc gain. Simulation results indicate that active controllers based on the described method can systematically improve closed-loop performance with respect to other more common stochastic control approaches.
Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers.
Mikl, Martin; Vendra, Georgia; Kiebler, Michael A
2011-09-30
Messenger RNA localization involves the assembly of ribonucleoprotein particles (RNPs) and their subsequent transport along the cytoskeleton to their final destination. Here, we provide new evidence that microtubule-associated protein 2 (MAP2), calcium/calmodulin-dependent protein kinase II (CaMKIIα) and β-actin RNAs localize to dendrites in distinct RNPs, which contain--unexpectedly--very few RNA molecules. The number of MAP2 molecules per particle is affected by synaptic activity and Staufen 2, indicating that RNP composition is tightly controlled. Our data suggest that the independent localization of individual RNAs in low copy numbers could contribute to tighter temporal and spatial control of expression in neurons and synapse-specific plasticity.
Luminescence studies of CdS spherical particles via hydrothermal synthesis
NASA Astrophysics Data System (ADS)
Xu, Guo Qin; Liu, Bing; Xu, Shi Jie; Chew, Chwee Har; Chua, Soo Jin; Gana, Leong Ming
2000-06-01
The spherical particles of CdS consisting of nanoparticles (∼100 nm) were synthesized by a hydrothermal process. The particle formation and growth depend on the rate of sulfide-ion generation and diffusion-controlled aggregation of nanoparticles. As demonstrated in the profiles of powder X-ray diffraction, the crystalline phases are governed by the reaction temperature. Photoluminescence studies on CdS particles show two emission bands at the room temperature. The red emission at 680 nm is due to sulfur vacancies, and a new infrared red (IR) emission at 760 nm is attributed to self-activated centers. A red shift of IR band with the decrease of temperature was explained with a configurational coordinate model. The different saturation limits for the red and IR bands are discussed in terms of the formation of donor-acceptor pairs and exciton in CdS particles.
NASA Astrophysics Data System (ADS)
Fan, S.; Yu, S.; Lai, B.; Gao, Y.
2017-12-01
Iron is a limiting micronutrient element critical for the marine ecosystem. In the extensive high-nutrient low-chlorophyll (HNLC) regions of the Southern Ocean, the activities of phytoplankton are partly controlled by iron (Fe) from different sources, including atmospheric deposition. Among important properties of atmospheric Fe are the elemental composition and Fe oxidation state of Fe-containing aerosol particles, as these properties affect aerosol Fe solubility. To explore these issues, aerosol samples were collected at Palmer Station in West Antarctic Peninsula. Samples were analyzed by submicron synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) spectroscopy for the Fe oxidation state and elemental composition of aerosol particles. The morphological information of aerosol particles was also observed by the high-resolution fluorescence microscopy, revealing possible sources and formation processes of iron-containing particles. More detailed results will be discussed in this presentation.
Moreno-Sánchez, R; Bravo, C; Westerhoff, H V
1999-09-01
Two complementary methods were used to determine how the rate of respiration and that of ATP hydrolysis were controlled in rat liver submitochondrial particles. In the first, 'direct control analysis' method, respiration was titrated with malonate, antimycin or cyanide at 20, 30 and 37 degrees C, to determine the flux control exerted by succinate dehydrogenase, cytochrome bc1 complex and cytochrome c oxidase, respectively. Together, the three respiratory complexes only controlled the flux by about 50%, leaving the other 50% of flux control to the H+ leak. In the second, 'elasticity based' method, the elasticity coefficients of the respiratory chain or the H+-ATPase and the H+ leak towards the H+ gradient were determined. Then, the flux control coefficients were calculated using the connectivity and summation laws of metabolic control theory. The correspondence between the flux control coefficients determined in the two ways validated the two methods. This allowed us to use the second method to analyse what was the kinetic origin of the observed distribution of control. Control of ATP hydrolysis by the ATPase decreased with increasing ATPase activity; hence, the control exerted by the H+ leak increased with increasing ATPase activity, due to a diminishing elasticity towards the H+ gradient. Reverse electron transport was mainly controlled by the ATPase; the sum of flux control coefficients of succinate dehydrogenase, NADH-CoQ oxidoreductase, and H+-ATPase yielded a value greater than one, indicating that the H+ leak exerted a significant negative control on this pathway.
PIT-tagged particle study of bed mobility in a Maine salmon river impacted by logging activities
NASA Astrophysics Data System (ADS)
Thompson, D. M.; Fixler, S. A.; Roberts, K. E.; McKenna, M.; Marshall, A. E.; Koenig, S.
2017-12-01
Presenting an interim report on a study on the Narraguagus River in Maine, which utilizes laser total stations cross-sectional surveys and tracking of passive integrated transponder (PIT) tags embedded in glass spheres to document changes in channel-bed characteristics associated with large wood (LW) additions and natural spawning activities. In 2016, work was initiated to monitor changes in bed elevation and sediment mobility with the addition of LW to the Narraguagus River as part of a restoration effort. Ten cross-sections, spaced 5-m apart, were established and surveyed with a laser total station in each of three different study reaches. The study sites include a control reach, a section with anticipated spawning activities and a site with ongoing LW placement. A grid of 200 glass spheres embedded with PIT tags, with twenty alternating 25-mm and 40-mm size particles equally spaced along each of the ten transects, were placed to serve as point sensors to detect sediment mobilization within each reach. In 2017, the site was revisited to determine if differences in PIT-tagged tracer particle mobilization reflect locations were LW was added and places where Atlantic salmon (Salmo salar) and sea lamprey (Petromyzon marinus) construct spawning redds. The positions of PIT-tagged tracer particles was recorded, but particles were not disturbed or uncovered to permit study of potential reworking of buried tracer particles the following year. Full tracer particle recovery will be determined in 2018 to determine if depths of tracer burial and changes in bed elevation vary among places near redds, LW and main channel locations. The data will be used to determine if salmon redds are preferentially located in either places with greater evidence of sediment reworking or alternatively in stable areas? The study will help determine the degree of bed disruption associated with spawning activities and whether LW placement encourages similar sediment mobilization processes.
NASA Astrophysics Data System (ADS)
Ren, Kun; Liu, Yi; He, Xiaoyan; Li, Hua
2015-10-01
Hollow inorganic microspheres with controlled internal pores in close-cell configuration are usually constructed by submicron-sized particles. Fast and efficient large-scale production of the microspheres with tunable sizes yet remains challenging. Here, we report a suspension plasma spray route for making hollow microspheres from nano titania particles. The processing permits most nano particles to retain their physiochemical properties in the as-sprayed microspheres. The microspheres have controllable interior cavities and mesoporous shell of 1-3 μm in thickness. Spray parameters and organic content in the starting suspension play the key role in regulating the efficiency of accomplishing the hollow sphere structure. For the ease of collecting the spheres for recycling use, ferriferous oxide particles were used as additives to make Fe3O4-TiO2 hollow magnetic microspheres. The spheres can be easily recycled through external magnetic field collection after each time use. Photocatalytic anti-bacterial activities of the hollow spheres were assessed by examining their capability of degrading methylene blue and sterilizing Escherichia coli bacteria. Excellent photocatalytic performances were revealed for the hollow spheres, giving insight into their potential versatile applications.
NASA Astrophysics Data System (ADS)
Byun, Aram; Jeong, Eun Seon; Kim, Jin Woong
2014-03-01
Microgels are colloidal gel particles that consist of chemically cross-linked three-dimensional polymer networks. They play an essential role in delivery and release of active ingredients in medicine, cosmetics, food, and even autonomic self-healing applications. Despite their wide applicability, permeability control through the hydrogel phase is limited due to its intrinsic loose network nature. Herein, we introduce generation of hollow-structured microgel particles whose interfaces were patched with graphene oxide (GO) sheets. The whole fabrication procedure was carried out in a microcapillary device in a single step. GO sheets have an ability to adhere to both O/W and W/O interfaces. Taking advantages of this behavior, we generated monodisperse O/W/O double emulsion whose interfaces were patched with GO sheets. Solidification of the aqueous middle phase to the hydrogel phase gave rise to uniform GO-patched microgel shell particles. Furthermore, we demonstrated that the permeation of molecules through the shell could be controlled even to small molecular length scales due to the adsorption of GO.
Can, Zhang; Wenjun, Liu; Wen, Sun; Minglu, Zhang; Lingjia, Qian; Cuiping, Li; Fang, Tian
2013-07-01
In this paper, endotoxin contamination was determined in treated water following each unit of a drinking water treatment plant (WTP) in Beijing, China and its source water (SW) from a long water diversion channel (Shijiazhuang-Beijing) originating from four reservoirs in Hebei province, China. The total-endotoxin activities in SW ranged from 21 to 41 EU/ml at five selected cross sections of the diversion channel. The total-endotoxin in raw water of the WTP ranged from 11 to 16 EU/ml due to dilution and pretreatment during water transportation from Tuancheng Lake to the WTP, and finished water of the WTP ranged from 4 to 10 EU/ml, showing a 49% decrease following the full-scale treatment process at the WTP. Compared with the 31% removal of free-endotoxin, the WTP removed up to 71% of bound-endotoxin in raw water. The traditional treatment processes (coagulation, sedimentation and filtration) in the WTP removed substantial amounts of total-endotoxin (up to 63%), while endotoxin activities increased after granular activated carbon (GAC) adsorption and chlorination. The total-endotoxin in the actual water was composed of free-endotoxin and bound-endotoxin (endotoxin aggregates, bacteria-bound endotoxins and particle-attached endotoxins). The endotoxin aggregates, bacteria-bound endotoxins and particle-attached endotoxins co-exist as suspended particles in water, and only the bacteria-bound endotoxins were correlated with bacterial cells suspended in water. The particle distribution of endotoxin aggregates in ultrapure water was also tested and the results showed that the majority (64-89%) of endotoxin aggregates had diameters <2 μm. The endotoxin contamination and control in treated water following each unit of the WTP processes and its SW from reservoirs are discussed and compared with regard to bacterial cell counts and particle characteristics, which were dependent, to a certain extent, on different flow rates and turbulence of the water environments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Light generated bubble for microparticle propulsion.
Frenkel, Ido; Niv, Avi
2017-06-06
Light activated motion of micron-sized particles with effective forces in the range of micro-Newtons is hereby proposed and demonstrated. Our investigation shows that this exceptional amount of force results from accumulation of light-generated heat by a micron-sized particle that translates into motion due to a phase transition in the nearby water. High-speed imagery indicates the role of bubble expansion and later collapse in this event. Comparing observations with known models reveals a dynamic behavior controlled by polytropic trapped vapor and the inertia of the surrounding liquid. The potential of the proposed approach is demonstrated by realization of disordered optical media with binary light-activated switching from opacity to high transparency.
Stability of lipid encapsulated ferulic acid particles
USDA-ARS?s Scientific Manuscript database
Encapsulation of bioactive compounds by a solid lipid matrix provides stability and a mechanism for controlled release in formulated products. Phenolic compounds exhibit antioxidant and antimicrobial activities and have applications as functional food and feed additives. Ferulic acid, a common pheno...
Nano-Enabled Technologies for Naval Aviation Applications
2015-06-05
4. Reduced self- discharge DEW 1. Active materials (silicon based/anode only); 2. Active materials coated on CNTs surface; 3...polymer film capacitors have the potential to provide higher energy density, higher power density, reduce weight, improve duty cycles (fast discharge and...dependent excess of 200C) 4. Nano-particle dispersion 5. Understanding discharge rate 6. Design and control of the interface 1. Increased
Takahashi, Masaki; Koizumi, Hiromu; Chun, Wang-Jae; Kori, Makoto; Imaoka, Takane; Yamamoto, Kimihisa
2017-01-01
The catalytic activity of alloy nanoparticles depends on the particle size and composition ratio of different metals. Alloy nanoparticles composed of Pd, Pt, and Au are widely used as catalysts for oxidation reactions. The catalytic activities of Pt and Au nanoparticles in oxidation reactions are known to increase as the particle size decreases and to increase on the metal-metal interface of alloy nanoparticles. Therefore, multimetallic nanoclusters (MNCs) around 1 nm in diameter have potential as catalysts for oxidation reactions. However, there have been few reports describing the preparation of uniform alloy nanoclusters. We report the synthesis of finely controlled MNCs (around 1 nm) using a macromolecular template with coordination sites arranged in a gradient of basicity. We reveal that Cu-Pt-Au MNCs supported on graphitized mesoporous carbon show catalytic activity that is 24 times greater than that of a commercially available Pt catalyst for aerobic oxidation of hydrocarbons. In addition, solvent-free aerobic oxidation of hydrocarbons to ketones at room temperature, using small amounts of a radical initiator, was achieved as a heterogeneous catalytic reaction for the first time. PMID:28782020
Controlled release from drug microparticles via solventless dry-polymer coating.
Capece, Maxx; Barrows, Jason; Davé, Rajesh N
2015-04-01
A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Suzuki, Masashi; Aki, Atsushi; Mizuki, Toru; Maekawa, Toru; Usami, Ron; Morimoto, Hisao
2015-01-01
We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles. PMID:25993268
Jaisi, Deb P.; Ji, Shanshan; Dong, Hailiang; Blake, Ruth E.; Eberl, Dennis D.; Kim, Jinwook
2008-01-01
River-dominated delta areas are primary sites of active biogeochemical cycling, with productivity enhanced by terrestrial inputs of nutrients. Particle aggregation in these areas primarily controls the deposition of suspended particles, yet factors that control particle aggregation and resulting sedimentation in these environments are poorly understood. This study was designed to investigate the role of microbial Fe(III) reduction and solution chemistry in aggregation of suspended particles in the Mississippi Delta. Three representative sites along the salinity gradient were selected and sediments were collected from the sediment-water interface. Based on quantitative mineralogical analyses 88–89 wt.% of all minerals in the sediments are clays, mainly smectite and illite. Consumption of SO42− and the formation of H2S and pyrite during microbial Fe(III) reduction of the non-sterile sediments by Shewanella putrefaciens CN32 in artificial pore water (APW) media suggest simultaneous sulfate and Fe(III) reduction activity. The pHPZNPC of the sediments was ≤3.5 and their zeta potentials at the sediment-water interface pH (6.9–7.3) varied from −35 to −45 mV, suggesting that both edges and faces of clay particles have negative surface charge. Therefore, high concentrations of cations in pore water are expected to be a predominant factor in particle aggregation consistent with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Experiments on aggregation of different types of sediments in the same APW composition revealed that the sediment with low zeta potential had a high rate of aggregation. Similarly, addition of external Fe(II) (i.e. not derived from sediments) was normally found to enhance particle aggregation and deposition in all sediments, probably resulting from a decrease in surface potential of particles due to specific Fe(II) sorption. Scanning and transmission electron microscopy (SEM, TEM) images showed predominant face-to-face clay aggregation in native sediments and composite mixtures of biopolymer, bacteria, and clay minerals in the bioreduced sediments. However, a clear need remains for additional information on the conditions, if any, that favor the development of anoxia in deep- and bottom-water bodies supporting Fe(III) reduction and resulting in particle aggregation and sedimentation.
Correlation between Surface Tension and Water Activity in New Particle Formation
NASA Astrophysics Data System (ADS)
Daskalakis, E.; Salameh, A.
2016-12-01
The impact of aerosol properties on cloud dynamics and the radiative balance of the atmosphere relies on the parametrizations of cloud droplet formation. Such parametrization is based on equilibrium thermodynamics proposed by Köhler in 1936. There is considerable debate in the literature on the importance of factors like the surface tension depression or the water activity decrease for the correct parametrization. To gain fundamental insight into New Particle Formation (NPF), or Cloud Condensation Nuclei (CCN) activation one has to study microscopic properties of aqueous droplets, involving surface and bulk dynamics. The surface tension of droplets can be associated with the effects from Organic Matter (OM), whereas the static dielectric constant of water reflects the structure and dynamics of ions within solutions and can present a measure of water activity. In this study we employ Molecular Dynamics Simulations on aquatic droplets that contain surface active OM (acetaldehyde, methylglyoxal) and salts. We give insight into the dynamics of aquatic droplets with radials of 3.6nm at a level of detail that is not accessible experimentally (J. Phys. Chem. C 2016, 120:11508). We propose that as the surface tension of an aquatic droplet is decreased in the presence of surface-active OM, the water activity is affected as well. This is due to the fact that the water dipoles are oriented based on the salt morphology within the droplet. We suggest that the surface tension depression can be accompanied by the water activity change. This can be associated with the possible effects of surface-active species in terms of salt morphology transitions within an aerosol at the NPF and early particle growth time scales. Based on this study, surface-active OM seems important in controlling (a) the salt morphology transitions within a nucleus during NPF and particle growth and (b) a correlation between surface activity and water activity of ionic aquatic droplets. The latter correlation could be a fundamental property to consider when assessing NPF and the Köhler theory.
Advances in heterogeneous ice nucleation research: Theoretical modeling and measurements
NASA Astrophysics Data System (ADS)
Beydoun, Hassan
In the atmosphere, cloud droplets can remain in a supercooled liquid phase at temperatures as low as -40 °C. Above this temperature, cloud droplets freeze via heterogeneous ice nucleation whereby a rare and poorly understood subset of atmospheric particles catalyze the ice phase transition. As the phase state of clouds is critical in determining their radiative properties and lifetime, deficiencies in our understanding of heterogeneous ice nucleation poses a large uncertainty on our efforts to predict human induced global climate change. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established model and parameterizations that accurately predict heterogeneous ice nucleation. Conversely, the sparsity of reliable measurement techniques available struggle to be interpreted by a single consistent theoretical or empirical framework, which results in layers of uncertainty when attempting to extrapolate useful information regarding ice nucleation for use in atmospheric cloud models. In this dissertation a new framework for describing heterogeneous ice nucleation is developed. Starting from classical nucleation theory, the surface of an ice nucleating particle is treated as a continuum of heterogeneous ice nucleating activity and a particle specific distribution of this activity g is derived. It is hypothesized that an individual particle species exhibits a critical surface area. Above this critical area the ice nucleating activity of a particle species can be described by one g distribution, g, while below it g expresses itself expresses externally resulting in particle to particle variability in ice nucleating activity. The framework is supported by cold plate droplet freezing measurements for dust and biological particles in which the total surface area of particle material available is varied. Freezing spectra above a certain surface area are shown to be successfully fitted with g while a process of random sampling from g can predict the freezing behavior below the identified critical surface area threshold. The framework is then extended to account for droplets composed of multiple particle species and successfully applied to predict the freezing spectra of a mixed proxy for an atmospheric dust-biological particle system. The contact freezing mode of ice nucleation, whereby a particle induces freezing upon collision with a droplet, is thought to be more efficient than particle initiated immersion freezing from within the droplet bulk. However, it has been a decades' long challenge to accurately measure this ice nucleation mode, since it necessitates reliably measuring the rate at which particles hit a droplet surface combined with direct determination of freezing onset. In an effort to remedy this longstanding deficiency a temperature controlled chilled aerosol optical tweezers capable of stably isolating water droplets in air at subzero temperatures has been designed and implemented. The new temperature controlled system retains the powerful capabilities of traditional aerosol optical tweezers: retrieval of a cavity enhanced Raman spectrum which could be used to accurately determine the size and refractive index of a trapped droplet. With these capabilities, it is estimated that the design can achieve ice supersaturation conditions at the droplet surface. It was also found that a KCl aqueous droplet simultaneously cooling and evaporating exhibited a significantly higher measured refractive index at its surface than when it was held at a steady state temperature. This implies the potential of a "salting out" process. Sensitivity of the cavity enhanced Raman spectrum as well as the visual image of a trapped droplet to dust particle collisions is shown, an important step in measuring collision frequencies of dust particles with a trapped droplet. These results may pave the way for future experiments of the exceptionally poorly understood contact freezing mode of ice nucleation.
NASA Astrophysics Data System (ADS)
Shantz, N. C.; Pierce, J. R.; Chang, R. Y.-W.; Vlasenko, A.; Riipinen, I.; Sjostedt, S.; Slowik, J. G.; Wiebe, A.; Liggio, J.; Abbatt, J. P. D.; Leaitch, W. R.
2012-02-01
Evolution of the cloud condensation nucleus (CCN) activity of 36 ± 4 nm diameter anthropogenic aerosol particles at a water supersaturation of 1.0 ± 0.1% is examined for particle nucleation and growth. During the early stages of one event, relatively few of the anthropogenic particles at 36 nm were CCN active and their growth rates by water condensation were delayed relative to ammonium sulphate particles. As the event progressed, the particle size distribution evolved to larger sizes and the relative numbers of particles at 36 nm that were CCN active increased until all the 36 nm particles were activating at the end of the event. Based on the chemistry of larger particles and the results from an aerosol chemical microphysics box model, the increase in CCN activity of the particles was most likely the result of the condensation of sulphate in this case. Despite the increased CCN activity, a delay was observed in the initial growth of these particles into cloud droplets, which persisted even when the aerosol was most CCN active later in the afternoon. Simulations show that the delay in water uptake is explained by a reduction of the mass accommodation coefficient assuming that the composition of the 36 nm particles is the same as the measured composition of the 60-100 nm particles.
Brodersen, Kasper E; Hammer, Kathrine J; Schrameyer, Verena; Floytrup, Anja; Rasheed, Michael A; Ralph, Peter J; Kühl, Michael; Pedersen, Ole
2017-01-01
HIGHLIGHTS: Sedimentation of fine sediment particles onto seagrass leaves severely hampers the plants' performance in both light and darkness, due to inadequate internal plant aeration and intrusion of phytotoxic H 2 S. Anthropogenic activities leading to sediment re-suspension can have adverse effects on adjacent seagrass meadows, owing to reduced light availability and the settling of suspended particles onto seagrass leaves potentially impeding gas exchange with the surrounding water. We used microsensors to determine O 2 fluxes and diffusive boundary layer (DBL) thickness on leaves of the seagrass Zostera muelleri with and without fine sediment particles, and combined these laboratory measurements with in situ microsensor measurements of tissue O 2 and H 2 S concentrations. Net photosynthesis rates in leaves with fine sediment particles were down to ~20% of controls without particles, and the compensation photon irradiance increased from a span of 20-53 to 109-145 μmol photons m -2 s -1 . An ~2.5-fold thicker DBL around leaves with fine sediment particles impeded O 2 influx into the leaves during darkness. In situ leaf meristematic O 2 concentrations of plants exposed to fine sediment particles were lower than in control plants and exhibited long time periods of complete meristematic anoxia during night-time. Insufficient internal aeration resulted in H 2 S intrusion into the leaf meristematic tissues when exposed to sediment resuspension even at relatively high night-time water-column O 2 concentrations. Fine sediment particles that settle on seagrass leaves thus negatively affect internal tissue aeration and thereby the plants' resilience against H 2 S intrusion.
Factors controlling particle number concentration and size at metro stations
NASA Astrophysics Data System (ADS)
Reche, C.; Moreno, T.; Martins, V.; Minguillón, M. C.; Jones, T.; de Miguel, E.; Capdevila, M.; Centelles, S.; Querol, X.
2017-05-01
An extensive air quality campaign was performed at differently designed station platforms in the Barcelona metro system, aiming to investigate the factors governing airborne particle number (N) concentrations and their size distributions. The study of the daily trends of N concentrations by different size ranges shows that concentrations of N0.3-10 are closely related with the schedule of the metro service. Conversely, the hourly variation of N0.007-10 (mainly composed of ultrafine particles) could be partly governed by the entrance of particles from outdoor emissions through mechanical ventilation. Measurements under different ventilation settings at three metro platforms reveal that the effect on air quality linked to changes in the tunnel ventilation depends on the station design. Night-time maintenance works in tunnels are frequent activities in the metro system; and after intense prolonged works, these can result in higher N concentrations at platforms during the following metro operating hours (by up to 30%), this being especially evident for N1-10. Due to the complex mixture of factors controlling N, together with the differences in trends recorded for particles within different size ranges, developing an air quality strategy at metro systems is a great challenge. When compared to street-level urban particles concentrations, the priority in metro air quality should be dealing with particles coarser than 0.3 μm. In fact, the results suggest that at narrow platforms served by single-track tunnels the current forced tunnel ventilation during operating hours is less efficient in reducing coarse particles compared to fine.
Activation of natural killer cells by hepatitis C virus particles in vitro.
Farag, M M S; Weigand, K; Encke, J; Momburg, F
2011-09-01
Little is known about the ability of hepatitis C virus (HCV) to alter early innate immune responses in infected patients. Previous studies have shown that natural killer (NK) cells are functionally impaired after interaction of recombinant HCV glycoprotein E2 with the co-stimulatory CD81 molecule in vitro; however, the functional consequences of a prolonged contact of NK cells with HCV particles have remained unclear. We have examined the phenotypes of purified, interleukin-2-activated NK cells from healthy donors and HCV genotype 1b patients after culture for 5 days with HCV pseudoparticles (HCVpp) and serum samples containing HCV genotype 1b. NK cells from healthy donors and chronic HCV patients were found to up-regulate receptors associated with activation (NKp46, NKp44, NKp30, NKG2D), while NK receptors from the killer cell immunoglobulin-like receptor family (KIR/CD158), predominantly having an inhibitory function, were significantly down-modulated after culture in the presence of HCV particles compared with control cultures of NK cells. HCV-infected sera and HCVpp elicited significantly higher secretion of the NK effector lymphokines interferon-γ and tumour necrosis factor-α. Furthermore, HCV stimulated the cytotoxic potential of NK cells from normal donors and patients. The enhanced activation of NK cells after prolonged culture with HCVpp or HCV-containing sera for 5 days suggests that these innate effector cells may play an important role in viral control during early phases of HCV infection. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.
Viscous drag reduction in boundary layers
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)
1990-01-01
The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.
NASA Technical Reports Server (NTRS)
Randall, B. A.
1973-01-01
A comprehensive study of the temporal behavior of trapped protons, alpha particles and ions (Z 2) in outer zone of the earth's magnetosphere has been made. These observations were made by the Injun V satellite during the first 21 months of operation, August 1968 to May 1970. Rapid increases in the observed number of particles followed by slower exponential decay characterize the data. Comparisons are made with the temporal behavior of interplanetary particles of the same energy observed by Explorer 35. Increases in the trapped fluxes generally correspond to enhanced interplanetary activity. The energy spectra of protons and alpha particles at L = 3 have similar shapes when compared on an energy per charge basis while the respective polar cap spectra have similar shape on an energy per nucleon basis. Apparent inward trans-L motion of energetic protons is observed. These particles are diffused inward by a process involving fluctuating electric fields. The loss of trapped low altitude protons, alpha particles and ions (Z 2) is controlled by coulombic energy loss in the atmosphere.
Bi, Xiufang; Hemar, Yacine; Balaban, Murat O; Liao, Xiaojun
2015-11-01
The effect of ultrasound treatment on particle size, color, viscosity, polyphenol oxidase (PPO) activity and microstructure in diluted avocado puree was investigated. The treatments were carried out at 20 kHz (375 W/cm(2)) for 0-10 min. The surface mean diameter (D[3,2]) was reduced to 13.44 μm from an original value of 52.31 μm by ultrasound after 1 min. A higher L(∗) value, ΔE value and lower a(∗) value was observed in ultrasound treated samples. The avocado puree dilution followed pseudoplastic flow behavior, and the viscosity of diluted avocado puree (at 100 s(-1)) after ultrasound treatment for 1 min was 6.0 and 74.4 times higher than the control samples for dilution levels of 1:2 and 1:9, respectively. PPO activity greatly increased under all treatment conditions. A maximum increase of 25.1%, 36.9% and 187.8% in PPO activity was found in samples with dilution ratios of 1:2, 1:5 and 1:9, respectively. The increase in viscosity and measured PPO activity might be related to the decrease in particle size. The microscopy images further confirmed that ultrasound treatment induced disruption of avocado puree structure. Copyright © 2015 Elsevier B.V. All rights reserved.
Interphase and particle dispersion correlations in polymer nanocomposites
NASA Astrophysics Data System (ADS)
Senses, Erkan
Particle dispersion in polymer matrices is a major parameter governing the mechanical performance of polymer nanocomposites. Controlling particle dispersion and understanding aging of composites under large shear and temperature variations determine the processing conditions and lifetime of composites which are very important for diverse applications in biomedicine, highly reinforced materials and more importantly for the polymer composites with adaptive mechanical responses. This thesis investigates the role of interphase layers between particles and polymer matrices in two bulk systems where particle dispersion is altered upon deformation in repulsive composites, and good-dispersion of particles is retained after multiple oscillatory shearing and aging cycles in attractive composites. We demonstrate that chain desorption and re-adsorption processes in attractive composites under shear can effectively enhance the bulk microscopic mechanical properties, and long chains of adsorbed layers lead to a denser entangled interphase layer. We further designed experiments where particles are physically adsorbed with bimodal lengths of homopolymer chains to underpin the entanglement effect in interphases. Bimodal adsorbed chains are shown to improve the interfacial strength and used to modulate the elastic properties of composites without changing the particle loading, dispersion state or polymer conformation. Finally, the role of dynamic asymmetry (different mobilities in polymer blends) and chemical heterogeneity in the interphase layer are explored in systems of poly(methyl methacrylate) adsorbed silica nanoparticles dispersed in poly(ethylene oxide) matrix. Such nanocomposites are shown to exhibit unique thermal-stiffening behavior at temperatures above glass transitions of both polymers. These interesting findings suggest that the mobility of the surface-bound polymer is essential for reinforcement in polymer nanocomposites, contrary to existing glassy layer theories for polymers on attractive particle surfaces. The shown thermally-induced stiffening behavior is reversible and makes this interfacial mechanism highly attractive in developing new active, remotely controllable engineered materials from non-responsive components.
Nanoparticle motion on the surface of drying droplets
NASA Astrophysics Data System (ADS)
Zhao, Mingfei; Yong, Xin
2018-03-01
Advances in solution-based printing and surface patterning techniques for additive manufacturing demand a clear understanding of particle dynamics in drying colloidal droplets and its relationship with deposit structure. Although the evaporation-driven deposition has been studied thoroughly for the particles dispersed in the bulk of the droplet, few investigations have focused on the particles strongly adsorbed to the droplet surface. We modeled the assembly and deposition of the surface-active particles in a drying sessile droplet with a pinned contact line by the multiphase lattice Boltzmann-Brownian dynamics method. The particle trajectory and its area density profile characterize the assembly dynamics and deposition pattern development during evaporation. While the bulk-dispersed particles continuously move to the contact line, forming the typical "coffee-ring" deposit, the interface-bound particles migrate first toward the apex and then to the contact line as the droplet dries out. To understand this unexpected behavior, we resolve the droplet velocity field both in the bulk and within the interfacial region. The simulation results agree well with the analytical solution for the Stokes flow inside an evaporating droplet. At different stages of evaporation, our study reveals that the competition between the tangential surface flow and the downward motion of the evaporating liquid-vapor interface governs the dynamics of the interface-bound particles. In particular, the interface displacement contributes to the particle motion toward the droplet apex in a short phase, while the outward advective flow prevails at the late stage of drying and carries the particles to the contact line. The final deposit of the surface-adsorbed particles exhibits a density enhancement at the center, in addition to a coffee ring. Despite its small influence on the final deposit in the present study, the distinct dynamics of surface-active particles due to the interfacial confinement could offer a new route to deposition control when combined with Marangoni effects.
NASA Astrophysics Data System (ADS)
Hao, Lingyun; Gong, Xinglong; Xuan, Shouhu; Zhang, Hong; Gong, Xiuqing; Jiang, Wanquan; Chen, Zuyao
2006-10-01
SiO 2@CdSe core-shell particles were fabricated by controllable deposition CdSe nanoparticles on silica colloidal spheres. Step-wise coating process was tracked by the TEM and XRD measurements. In addition, SiO 2@CdSe/polypyrrole(PPy) multi-composite particles were synthesized based on the as-prepared SiO 2@CdSe particles by cationic polymerization. The direct electrochemistry of myoglobin (Mb) could be performed by immobilizing Mb on the surface of SiO 2@CdSe particles. Immobilized with Mb, SiO 2@CdSe/PPy-Mb also displayed good bioelectrochemical activity. It confirmed the good biocompatible property of the materials with protein. CdSe hollow capsules were further obtained as the removal of the cores of SiO 2@CdSe spheres. Hollow and porous character of CdSe sub-meter size capsules made them becoming hopeful candidates as drug carriers. Doxorubicin, a typical an antineoplastic drug, was introduced into the capsules. A good sustained drug release behavior of the loading capsules was discovered via performing a release test in the PBS buffer (pH 7.4) solution at 310 k. Furthermore, SiO 2@CdSe/PPy could be converted to various smart hollow capsules via selectively removal of their relevant components.
NASA Astrophysics Data System (ADS)
Iwata, Ayumi; Matsuki, Atsushi
2018-02-01
In order to better characterize ice nucleating (IN) aerosol particles in the atmosphere, we investigated the chemical composition, mixing state, and morphology of atmospheric aerosols that nucleate ice under conditions relevant for mixed-phase clouds. Five standard mineral dust samples (quartz, K-feldspar, Na-feldspar, Arizona test dust, and Asian dust source particles) were compared with actual aerosol particles collected from the west coast of Japan (the city of Kanazawa) during Asian dust events in February and April 2016. Following droplet activation by particles deposited on a hydrophobic Si (silicon) wafer substrate under supersaturated air, individual IN particles were located using an optical microscope by gradually cooling the temperature to -30 °C. For the aerosol samples, both the IN active particles and non-active particles were analyzed individually by atomic force microscopy (AFM), micro-Raman spectroscopy, and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX). Heterogeneous ice nucleation in all standard mineral dust samples tested in this study was observed at consistently higher temperatures (e.g., -22.2 to -24.2 °C with K-feldspar) than the homogeneous freezing temperature (-36.5 °C). Meanwhile, most of the IN active atmospheric particles formed ice below -28 °C, i.e., at lower temperatures than the standard mineral dust samples of pure components. The most abundant IN active particles above -30 °C were predominantly irregular solid particles that showed clay mineral characteristics (or mixtures of several mineral components). Other than clay, Ca-rich particles internally mixed with other components, such as sulfate, were also regarded as IN active particle types. Moreover, sea salt particles were predominantly found in the non-active fraction, and internal mixing with sea salt clearly acted as a significant inhibiting agent for the ice nucleation activity of mineral dust particles. Also, relatively pure or fresh calcite, Ca(NO3)2, and (NH4)2SO4 particles were more often found in the non-active fraction. In this study, we demonstrated the capability of the combined single droplet freezing method and thorough individual particle analysis to characterize the ice nucleation activity of atmospheric aerosols. We also found that dramatic changes in the particle mixing states during long-range transport had a complex effect on the ice nucleation activity of the host aerosol particles. A case study in the Asian dust outflow region highlighted the need to consider particle mixing states, which can dramatically influence ice nucleation activity.
Genina, Natalja; Räikkönen, Heikki; Antikainen, Osmo; Heinämäki, Jyrki; Yliruusi, Jouko
2010-09-01
An ultrasound-assisted powder-coating technique was used to produce a homogeneous powder formulation of a low-dose active pharmaceutical ingredient (API). The powdered particles of microcrystalline cellulose (MCC; Avicel® PH-200) were coated with a 4% m/V aqueous solution of riboflavin sodium phosphate, producing a uniform drug layer on the particle surfaces. It was possible to regulate the amount of API in the treated powder. The thickness of the API layer on the surface of the MCC particles increased near linearly as the number of coating cycles increased, allowing a precise control of the drug content. The tablets (n = 950) prepared from the coated powder showed significantly improved weight and content uniformity in comparison with the reference tablets compressed from a physical binary powder mixture. This was due to the coated formulation remaining uniform during the entire tabletting process, whereas the physical mixture of the powders was subject to segregation. In conclusion, the ultrasound-assisted technique presented here is an effective tool for homogeneous drug coating of powders of irregular particle shape and broad particle size distribution, improving content uniformity of low-dose API in tablets, and consequently, ensuring the safe delivery of a potent active substance to patients.
Stafforini, D M; Carter, M E; Zimmerman, G A; McIntyre, T M; Prescott, S M
1989-01-01
Platelet-activating factor (PAF) has been implicated as a mediator of inflammation, allergy, shock, and thrombosis. A specific degradative enzyme, PAF acetylhydrolase (EC 3.1.1.47), is found in plasma and could regulate the concentration of PAF in blood. In plasma, 70% of the PAF acetylhydrolase is found with low density lipoprotein (LDL), and the remainder is in high density lipoprotein (HDL). In previous studies we found that with subsaturating concentrations of PAF the activity in LDL seemed to be the relevant one; e.g., depletion of LDL slowed degradation of PAF, while removal of HDL accelerated the degradation slightly. We have pursued this observation by using plasma from humans with lipoprotein mutations. In abetalipoproteinemia, all of the PAF acetylhydrolase activity was in HDL, whereas in Tangier disease all of the activity was in LDL. In both conditions the total activity measured in an optimized assay was normal or increased. However, when we measured the t1/2 of PAF in plasma, we found that it was prolonged in subjects with abetalipoproteinemia compared to normal controls. Conversely, the t1/2 in Tangier plasma was shortened. We next demonstrated that the PAF acetylhydrolase in HDL was recognized by an antibody to the enzyme purified from LDL, establishing that the enzyme in the two particles is the same protein. Finally, we inactivated the PAF acetylhydrolase in isolated lipoprotein particles and then reconstituted them with enzyme from the opposite particle. The reconstituted particles were used to measure the t1/2 of PAF, and we again found that the LDL particle was more efficient. We conclude that the lipoprotein environment of the PAF acetylhydrolase markedly influences its catalytic behavior. This may be important in pathophysiology and will complicate attempts to assess the role of this enzyme in such circumstances. Images PMID:2928339
NASA Astrophysics Data System (ADS)
Sullivan, Ryan Christopher
Mineral dust particles are a major component of tropospheric aerosol mass and affect regional and global atmospheric chemistry and climate. Dust particles experience heterogeneous reactions with atmospheric gases that alter the gas and particle-phase chemistry. These in turn influence the warm and cold cloud nucleation ability and optical properties of the dust particles. This dissertation investigates the atmospheric chemistry of mineral dust particles and their role in warm cloud nucleation through a combination of synergistic field measurements, laboratory experiments, and theoretical modeling. In-situ measurements made with a single-particle mass spectrometer during the ACE-Asia field campaign in 2001 provide the motivation for this work. The observed mixing state of the individual ambient particles with secondary organic and inorganic components is described in Chapter 2. A large Asian dust storm occurred during the campaign and produced dramatic changes in the aerosol's composition and mixing state. The effect of particle size and mineralogy on the atmospheric processing of individual dust particles is explored in Chapters 3 & 4. Sulfate was found to accumulate preferentially in submicron iron and aluminosilicate-rich dust particles, while nitrate and chloride were enriched in supermicron calcite-rich dust. The mineral dust (and sea salt particles) were also enriched in oxalic acid, the dominant component of water soluble organic carbon. Chapter 5 explores the roles of gas-phase photochemistry and partitioning of the diacids to the alkaline particles in producing this unique behavior. The effect of the dust's mixing state with secondary organic and inorganic components on the dust particles' solubility, hygroscopicity, and thus warm cloud nucleation properties is explored experimentally and theoretically in Chapter 6. Cloud condensation nucleation (CCN) activation curves revealed that while calcium nitrate and calcium chloride particles were very hygroscopic and CCN-active, due to the high solubility of these compounds, calcium sulfate and calcium oxalate were not. Particles composed of these two sparingly soluble compounds had apparent hygroscopicities similar to pure calcium carbonate. This implies that the commonly made assumption that all dust particles become more hygroscopic after atmospheric processing must be revisited. Calcium sulfate and oxalate represent two forms of aged mineral dust particles that remain non-hygroscopic and thus have poor CCN nucleation ability. The particle generation method (dry versus wet) was found to significantly affect the chemistry and hygroscopicity of the aerosolized particles. Finally, in Chapter 7 the timescale for the atmospheric conversion of insoluble calcite particles to soluble, CCN-active calcium nitrate particles was derived from aerosol flow tube experiments. The reaction rate is rapid was used to estimate the conversion of calcite particles to very hygroscopic particles can occur in just a few hours of exposure to tropospheric levels of nitric acid. This process will therefore be controlled by the availability of nitric acid and its precursors, as opposed to the available atmospheric reaction time.
Monodisperse Block Copolymer Particles with Controllable Size, Shape, and Nanostructure
NASA Astrophysics Data System (ADS)
Shin, Jae Man; Kim, Yongjoo; Kim, Bumjoon; PNEL Team
Shape-anisotropic particles are important class of novel colloidal building block for their functionality is more strongly governed by their shape, size and nanostructure compared to conventional spherical particles. Recently, facile strategy for producing non-spherical polymeric particles by interfacial engineering received significant attention. However, achieving uniform size distribution of particles together with controlled shape and nanostructure has not been achieved. Here, we introduce versatile system for producing monodisperse BCP particles with controlled size, shape and morphology. Polystyrene-b-polybutadiene (PS-b-PB) self-assembled to either onion-like or striped ellipsoid particle, where final structure is governed by amount of adsorbed sodium dodecyl sulfate (SDS) surfactant at the particle/surrounding interface. Further control of molecular weight and particle size enabled fine-tuning of aspect ratio of ellipsoid particle. Underlying physics of free energy for morphology formation and entropic penalty associated with bending BCP chains strongly affects particle structure and specification.
Yan, Jing-Kun; Qiu, Wen-Yi; Wang, Yao-Yao; Wu, Jian-Yong
2017-07-19
Polyelectrolyte complex nanoparticles (PEC NPs) were fabricated via electrostatic interactions between positively charged heat-denatured lactoferrin (LF) particles and negatively charged pectin. The obtained PEC NPs were then utilized as curcumin carriers. PEC NPs were prepared by mixing 1.0 mg/mL solutions of heat-denatured LF and pectin at a mass ratio of 1:1 (w/w) in the absence of NaCl at pH 4.50. PEC NPs that were prepared under optimized conditions were spherical in shape with a particle size of ∼208 nm and zeta potential of ∼-32 mV. Hydrophobic curcumin was successfully encapsulated into LF/pectin PEC NPs with high encapsulation efficiency (∼85.3%) and loading content (∼13.4%). The in vitro controlled release and prominent antioxidant activities of curcumin from LF/pectin PEC NPs were observed. The present work provides a facile and fast method to synthesize nanoscale food-grade delivery systems for the improved water solubility, controlled release, and antioxidant activity of hydrophobic curcumin.
Process-based control of HAPs emissions from drying wood flakes.
Banerjee, Sujit; Pendyala, Krishna; Buchanan, Mike; Yang, Rallming; Abu-Daabes, Malyuba; Otwell, Lawrence P E
2006-04-01
Industrial wood flake drying generates methanol, formaldehyde, and other hazardous air pollutants (HAPs). A simple theoretical model shows that particles smaller than 400 microm will begin to thermally degrade and release disproportionately large quantities of HAPs. This is confirmed in full-scale practice where particles smaller than 500 microm show visible signs of charring. Laboratory measurement of the activation energy for the breakdown of wood tissue into methanol and formaldehyde led to a value of about 17 kcal/mol. The apparent activation energy measured in the field was higher. This result was obtained under nonisothermal conditions and is biased high by the fines fraction of the furnish, which is exposed to elevated temperatures. It is proposed that a combination of screening out the fines fraction smaller than 500 microm and reducing the dryer inlet temperature will substantially reduce emissions, possibly to the point where control devices can be downsized or eliminated. Our findings allow these HAPs reductions to be semiquantitatively estimated.
Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers
Mikl, Martin; Vendra, Georgia; Kiebler, Michael A
2011-01-01
Messenger RNA localization involves the assembly of ribonucleoprotein particles (RNPs) and their subsequent transport along the cytoskeleton to their final destination. Here, we provide new evidence that microtubule-associated protein 2 (MAP2), calcium/calmodulin-dependent protein kinase II (CaMKIIα) and β-actin RNAs localize to dendrites in distinct RNPs, which contain—unexpectedly—very few RNA molecules. The number of MAP2 molecules per particle is affected by synaptic activity and Staufen 2, indicating that RNP composition is tightly controlled. Our data suggest that the independent localization of individual RNAs in low copy numbers could contribute to tighter temporal and spatial control of expression in neurons and synapse-specific plasticity. PMID:21869818
NASA Astrophysics Data System (ADS)
Yu, Lina; Wang, Dongfeng; Su, Lin; Luo, Yi; Sun, Liping; Xue, Changhu
2005-07-01
Hydrolysis activities of PACC (particle of agarose-Ce4+ complex, newly made through double emulsification) for compounds containing phosphodiester or peptide bonds were studied. The results showed that PACC could hydrolyze organophosphorous pesticides not only in water but also in vegetable juice or tea extract. Hydrolysis rates of methamidophos, omethoate and chlorpyrifos in water are 32.39%, 27.12% and 46.62% respectively, those of chlorpyrifos and methamidophos in mung sprout juice 38.28% and 35.45% respectively, and that of chlorpyrifos in tea extract 59.76%. Hydrolysis rates of BSA (bovine serum albumin) in water and protein in tea extract by PACC increase by 54.30% and 86.46% respectively as compared with the control.
Electron beam injection into space plasmas
NASA Astrophysics Data System (ADS)
Matsumoto, H.
1985-12-01
Eight papers presented at the URSI Open Symposium on Active Experiments in Space Plasma on August 30-31, 1984 are reviewed. Consideration is given to in-space electron beam experiments studying means of controlling the electrical potential of low earth orbit vehicles and nonlinear wave excitation in the magnetosphere. The results from the Space Experiments with Particle Accelerators (SEPAC) flown on Spacelab-1 are described; the use of a computer to interpret the SEPAC wave-particle interaction and charge potential data is discussed. Two laboratory simulation experiments analyzing the beam-plasma discharge phenomenon are examined.
The Auroral Particles experiment
NASA Technical Reports Server (NTRS)
1981-01-01
An instrument for the detection of particles in the energy range of 0.1 ev to 80 Kev was designed, built, tested, calibrated, and flown onboard the spacecraft ATS-6. Data from this instrument generated the following research: intensive studies of the plasma in the vicinity of the spacecraft; global variations of plasmas; correlative studies using either other spacecraft or ground based measurements; and studies of spacecraft interactions with ambient plasmas including charging, local electric fields due to differential charging, and active control of spacecraft potential. Results from this research are presented.
Ultrasound assisted deposition of silica coatings on titanium
NASA Astrophysics Data System (ADS)
Kaş, Recep; Ertaş, Fatma Sinem; Birer, Özgür
2012-10-01
We present a novel ultrasound assisted method for silica coating of titanium surfaces. The coatings are formed by “smashing” silica nanoparticles onto activated titanium surface in solution using intense ultrasonic field. Homogeneous silica coatings are formed by deposition of dense multiple layers of silica nanoparticles. Since the nanoparticles also grow during the reaction, the layers of the coatings have smaller particles on the substrate and larger particles towards the surface. The thickness of the coatings can be controlled with several experimental parameters. Silica layers with thickness over 200 nm are readily obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar
Separation of particles that play a role in cloud activation and ice nucleation from interstitial aerosols has become necessary to further understand aerosol-cloud interactions. The pumped counterflow virtual impactor (PCVI), which uses a vacuum pump to accelerate the particles and increase their momentum, provides an accessible option for dynamic and inertial separation of cloud elements. However, the use of a traditional PCVI to extract large cloud hydrometeors is difficult mainly due to its small cut-size diameters (< 5 µm). Here, for the first time we describe a development of an ice-selecting PCVI (IS-PCVI) to separate ice in controlled mixed-phase cloudmore » system based on the particle inertia with the cut-off diameter ≥ 10 µm. We also present its laboratory application demonstrating the use of the impactor under a wide range of temperature and humidity conditions. The computational fluid dynamics simulations were initially carried out to guide the design of the IS-PCVI. After fabrication, a series of validation laboratory experiments were performed coupled with the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) expansion cloud simulation chamber. In the AIDA chamber, test aerosol particles were exposed to the ice supersaturation conditions (i.e., RH ice > 100 %), where a mixture of droplets and ice crystals was formed during the expansion experiment. In parallel, the flow conditions of the IS-PCVI were actively controlled, such that it separated ice crystals from a mixture of ice crystals and cloud droplets, which were of diameter ≥ 10 µm. These large ice crystals were passed through the heated evaporation section to remove the water content. Afterwards, the residuals were characterized with a suite of online and offline instruments downstream of the IS-PCVI. These results were used to assess the optimized operating parameters of the device in terms of (1) the critical cut-size diameter, (2) the transmission efficiency and (3) the counterflow-to-input flow ratio. Particle losses were characterized by comparing the residual number concentration to the rejected interstitial particle number concentration. Overall results suggest that the IS-PCVI enables inertial separation of particles with a volume-equivalent particle size in the range of ~ 10–30 µm in diameter with small inadvertent intrusion (~ 5 %) of unwanted particles.« less
NASA Astrophysics Data System (ADS)
Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar; Schnaiter, Martin; Vogt, Steffen; Vochezer, Paul; Järvinen, Emma; Wagner, Robert; Bell, David M.; Wilson, Jacqueline; Zelenyuk, Alla; Cziczo, Daniel J.
2016-08-01
Separation of particles that play a role in cloud activation and ice nucleation from interstitial aerosols has become necessary to further understand aerosol-cloud interactions. The pumped counterflow virtual impactor (PCVI), which uses a vacuum pump to accelerate the particles and increase their momentum, provides an accessible option for dynamic and inertial separation of cloud elements. However, the use of a traditional PCVI to extract large cloud hydrometeors is difficult mainly due to its small cut-size diameters (< 5 µm). Here, for the first time we describe a development of an ice-selecting PCVI (IS-PCVI) to separate ice in controlled mixed-phase cloud system based on the particle inertia with the cut-off diameter ≥ 10 µm. We also present its laboratory application demonstrating the use of the impactor under a wide range of temperature and humidity conditions. The computational fluid dynamics simulations were initially carried out to guide the design of the IS-PCVI. After fabrication, a series of validation laboratory experiments were performed coupled with the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) expansion cloud simulation chamber. In the AIDA chamber, test aerosol particles were exposed to the ice supersaturation conditions (i.e., RHice > 100 %), where a mixture of droplets and ice crystals was formed during the expansion experiment. In parallel, the flow conditions of the IS-PCVI were actively controlled, such that it separated ice crystals from a mixture of ice crystals and cloud droplets, which were of diameter ≥ 10 µm. These large ice crystals were passed through the heated evaporation section to remove the water content. Afterwards, the residuals were characterized with a suite of online and offline instruments downstream of the IS-PCVI. These results were used to assess the optimized operating parameters of the device in terms of (1) the critical cut-size diameter, (2) the transmission efficiency and (3) the counterflow-to-input flow ratio. Particle losses were characterized by comparing the residual number concentration to the rejected interstitial particle number concentration. Overall results suggest that the IS-PCVI enables inertial separation of particles with a volume-equivalent particle size in the range of ~ 10-30 µm in diameter with small inadvertent intrusion (~ 5 %) of unwanted particles.
Real time monitoring in-vivo micro-environment through the wound heal mechanism
NASA Astrophysics Data System (ADS)
Yan, Jack
2013-02-01
One of the In-vivo system's challenge is real time display the sensing information. Usually Ultrasound, CT, MRI, PET are used to get the internal information, this thesis proposed another approach to address the display challenge. Special nano-particles are in-taken or injected to living subject (usually into blood circulation) to sense and collect psychological information when the active particles pass through the tissues of interest. Using the wound healing mechanism, these activated particles (Information collected) can be drifted out to the wound area and adhibited close to the skin, then skin can show different color if the activated particles are concentrated enough in the specific area to create a skin screen. The skin screen can display the blood status, internal organ's temperature, pressure depending the nano-particles' function and their pathway. This approach can also be used to display in-body video if the particles are sensitive and selective enough. In the future, the skin screen can be bio-computer's monitor. The wound healing in an animal model normally divides in four phase: Hemostasis, Inflammation, Proliferation and Maturation. Hemostasis phase is to form a stable clot sealing the damaged vessel. Inflammation phase causes the blood vessels to become leaky releasing plasma and PMN's (polymorphonucleocytes) into the surrounding tissue and provide the first line of defense against infection. Proliferation phase involves replacement of dermal tissues and sometimes subdermal tissues in deeper wounds as well as contraction of the wound. Maturation phase remodels the dermal tissues mainly by fibroblast to produce greater tensile strength. The skin screen wound will be carefully controlled to be triggered at dermis layer.
Apparatus for rapid measurement of aerosol bulk chemical composition
Lee, Yin-Nan E.; Weber, Rodney J.
2003-01-01
An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.
Apparatus for rapid measurement of aerosol bulk chemical composition
Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas
2006-04-18
An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.
Contribution of indoor-generated particles to residential exposure
NASA Astrophysics Data System (ADS)
Isaxon, C.; Gudmundsson, A.; Nordin, E. Z.; Lönnblad, L.; Dahl, A.; Wieslander, G.; Bohgard, M.; Wierzbicka, A.
2015-04-01
The majority of airborne particles in residences, when expressed as number concentrations, are generated by the residents themselves, through combustion/thermal related activities. These particles have a considerably smaller diameter than 2.5 μm and, due to the combination of their small size, chemical composition (e.g. soot) and intermittently very high concentrations, should be regarded as having potential to cause adverse health effects. In this study, time resolved airborne particle measurements were conducted for seven consecutive days in 22 randomly selected homes in the urban area of Lund in southern Sweden. The main purpose of the study was to analyze the influence of human activities on the concentration of particles in indoor air. Focus was on number concentrations of particles with diameters <300 nm generated by indoor activities, and how these contribute to the integrated daily residential exposure. Correlations between these particles and soot mass concentration in total dust were also investigated. It was found that candle burning and activities related to cooking (using a frying pan, oven, toaster, and their combinations) were the major particle sources. The frequency of occurrence of a given concentration indoors and outdoors was compared for ultrafine particles. Indoor data was sorted into non-occupancy and occupancy time, and the occupancy time was further divided into non-activity and activity influenced time. It was found that high levels (above 104 cm-3) indoors mainly occur during active periods of occupancy, while the concentration during non-activity influenced time differs very little from non-occupancy time. Total integrated daily residential exposure of ultrafine particles was calculated for 22 homes, the contribution from known activities was 66%, from unknown activities 20%, and from background/non-activity 14%. The collected data also allowed for estimates of particle source strengths for specific activities, and for some activities it was possible to estimate correlations between the number concentration of ultrafine particles and the mass concentration of soot in total dust in 10 homes. Particle source strengths (for 7 specific activities) ranged from 1.6·1012 to 4.5·1012 min-1. The correlation between ultrafine particles and mass concentration of soot in total dust varied between 0.37 and 0.85, with an average of 0.56 (Pearson correlation coefficient). This study clearly shows that due to the importance of indoor sources, residential exposure to ultrafine particles cannot be characterized by ambient measurements alone.
Sharma, Vishal; Köllmer, Melanie; Szymusiak, Magdalena; Nitsche, Ludwig C; Gemeinhart, Richard A; Liu, Ying
2014-03-10
Heterogeneous toroidal-spiral particles (TSPs) were generated by polymer droplet sedimentation, interaction, and cross-linking. TSPs provide a platform for encapsulation and release of multiple compounds of different sizes and physicochemical properties. As a model system, we demonstrate the encapsulation and independently controlled release of an anti-VEGFR-2 antibody and irinotecan for the treatment of glioblastoma multiforme. The anti-VEGFR-2 antibody was released from the TS channels and its binding to HUVECs was confirmed by confocal microscopy and flow cytometry, suggesting active antibody encapsulation and release. Irinotecan, a small molecule drug, was released from the dense polymer matrix of poly(ethylene glycol) diacrylate (MW ~ 700 g/mol; PEGDA 700). Released irinotecan inhibited the proliferation of U251 malignant glioma cells. Since the therapeutic compounds are released through different pathways, specifically diffusion through the polymer matrix versus TS channels, the release rate can be controlled independently through the design of the structure and material of particle components.
Particulates and fine dust removal: processes and equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sittig, M.
1977-01-01
Particulates and fine dust created by man's activities contribute significantly to all major aspects of air pollution. While the generation of natural fine dusts is also very large in some parts of the earth, industrially generated, particle-loaded air emissions may push the particulate level to a point where acceptable air quality standards are exceeded continuously. How to reduce such emissions at the source, and what processes and equipment to use, is the subject of this book, which is based on reports of federally-financed air pollution studies as well as U.S. patents. Following an introduction with an overview of industrial particulatemore » emissions, emission data and emission control processes are discussed for the following specific industries: airlines; asphalt; cement; coal; electric utilities; ferrous metals; fertilizer; food; forest products; paper; chemicals; nonferrous metals; nuclear; petroleum refining; stone and clay; and textiles. Conventional and innovative particle removal devices are described. The disposal of collected particles is discussed. The economic and energy consumption aspects of particulate control are presented. (LCL)« less
Particle size distribution control of Pt particles used for particle gun
NASA Astrophysics Data System (ADS)
Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.
2017-07-01
The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.
Performance of particulate containment at nanotechnology workplaces
NASA Astrophysics Data System (ADS)
Lo, Li-Ming; Tsai, Candace S.-J.; Dunn, Kevin H.; Hammond, Duane; Marlow, David; Topmiller, Jennifer; Ellenbecker, Michael
2015-11-01
The evaluation of engineering controls for the production or use of carbon nanotubes (CNTs) was investigated at two facilities. These control assessments are necessary to evaluate the current status of control performance and to develop proper control strategies for these workplaces. The control systems evaluated in these studies included ventilated enclosures, exterior hoods, and exhaust filtration systems. Activity-based monitoring with direct-reading instruments and filter sampling for microscopy analysis were used to evaluate the effectiveness of control measures at study sites. Our study results showed that weighing CNTs inside the biological safety cabinet can have a 37 % reduction on the particle concentration in the worker's breathing zone, and produce a 42 % lower area concentration outside the enclosure. The ventilated enclosures used to reduce fugitive emissions from the production furnaces exhibited good containment characteristics when closed, but they failed to contain emissions effectively when opened during product removal/harvesting. The exhaust filtration systems employed for exhausting these ventilated enclosures did not provide promised collection efficiencies for removing engineered nanomaterials from furnace exhaust. The exterior hoods were found to be a challenge for controlling emissions from machining nanocomposites: the downdraft hood effectively contained and removed particles released from the manual cutting process, but using the canopy hood for powered cutting of nanocomposites created 15-20 % higher ultrafine (<500 nm) particle concentrations at the source and at the worker's breathing zone. The microscopy analysis showed that CNTs can only be found at production sources but not at the worker breathing zones during the tasks monitored.
Dynamics of Deformable Active Particles under External Flow Field
NASA Astrophysics Data System (ADS)
Tarama, Mitsusuke
2017-10-01
In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeno, Wade F.; Johnson, Kaitlin E.; Sasaki, Darryl Y.
We use fluorescence microscopy to examine the dynamics of the crowding-induced mixing transition of liquid ordered (L o)–liquid disordered (L d) phase separated lipid bilayers when the following particles of increasing size bind to either the L o or L d phase: Ubiquitin, green fluorescent protein (GFP), and nanolipoprotein particles (NLPs) of two diameters. These proteinaceous particles contained histidine-tags, which were phase targeted by binding to iminodiacetic acid (IDA) head groups, via a Cu 2+ chelating mechanism, of lipids that specifically partition into either the Lo phase or Ld phase. The degree of steric pressure was controlled by varying themore » size of the bound particle (10–240 kDa) and the amount of binding sites present (i.e., DPIDA concentrations of 9 and 12 mol%) in the supported lipid multibilayer platform used here. We develop a mass transfer-based diffusional model to analyze the observed L o phase domain dissolution that, along with visual observations and activation energy calculations, provides insight into the sequence of events in crowding-induced mixing. Furthermore, our results suggest that the degree of steric pressure and target phase influence not only the efficacy of steric-pressure induced mixing, but the rate and controlling mechanism for which it occurs.« less
Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion
Wang, Zhen; Wang, Yapei
2016-01-01
Pickering emulsions with the use of particles as emulsifiers have been extensively used in scientific research and industrial production due to their edge in biocompatibility and stability compared with traditional emulsions. The control over Pickering emulsion stability and type plays a significant role in these applications. Among the present methods to build controllable Pickering emulsions, tuning the amphiphilicity of particles is comparatively effective and has attracted enormous attention. In this review, we highlight some recent advances in tuning the amphiphilicity of particles for controlling the stability and type of Pickering emulsions. The amphiphilicity of three types of particles including rigid particles, soft particles, and Janus particles are tailored by means of different mechanisms and discussed here in detail. The stabilization-destabilization interconversion and phase inversion of Pickering emulsions have been successfully achieved by changing the surface properties of these particles. This article provides a comprehensive review of controllable Pickering emulsions, which is expected to stimulate inspiration for designing and preparing novel Pickering emulsions, and ultimately directing the preparation of functional materials. PMID:28774029
NASA Astrophysics Data System (ADS)
Ragusa, Jorge Alejandro
Tuberculosis, a highly contagious disease, ranks as the second leading cause of death from an infectious disease, and remains a major global health problem. In 2013, 9 million new cases were diagnosed and 1.5 million people died worldwide from tuberculosis. This dissertation aims at developing a new, ultrafine particle-based efficient antibiotic delivery system for the treatment of tuberculosis. The carrier material to make the rifampicin (RIF)-loaded particles is a low molecular weight star-shaped polymer produced from glucosamine (molecular core building unit) and L-lactide (GluN-LLA). Stable particles with a very high 50% drug loading capacity were made via electrohydrodynamic atomization. Prolonged release (>14 days) of RIF from these particles is demonstrated. Drug release data fits the Korsmeyer-Peppas equation, which suggests the occurrence of a modified diffusion-controlled RIF release mechanism, and is also supported by differential scanning calorimetry and drug leaching tests. Cytotoxicity tests on Mycobacterium smegmatis showed that antibiotic-free GluN-LLA and polylactides (PLA) (reference material) particles did not show any significant anti-bacterial activity. The minimum inhibitory concentration and minimum bactericidal concentration values obtained for RIF-loaded particles showed 2- to 4-fold improvements in the anti-bacterial activity relative to the free drug. Cytotoxicity tests on macrophages indicated an increment in cell death as particle dose increased, but was not significantly affected by material type or particle size. Confocal microscopy was used to track internalization and localization of particles in the macrophages. GluN-LLA particles led to higher uptakes than the PLA particles. In addition, after phagocytosis, the GluN-LLA particles stayed in the cytoplasm and the particles showed a favorable long term drug release effect in killing intracellular bacteria compared to free RIF. The studies presented and discussed in this dissertation suggest that these drug carrier materials are potentially very attractive candidates for the development of high-payload, sustained-release antibiotic/resorbable polymer particle systems for treating bacterial lung infections.
Nano iron particles transport in fractured rocks: laboratory and field scale
NASA Astrophysics Data System (ADS)
Cohen, Meirav; Weisbrod, Noam
2017-04-01
Our study deals with the transport potential of nano iron particles (NIPs) in fractured media. Two different systemswere used to investigate transport on two scales: (1 )a laboratory flow system of a naturally discrete fractured chalk core, 0.43 and 0.18 m in length and diamater, respectively; and (2) a field system of hydraulically connected boreholes located 47 m apart which penetrate a fractured chalk aquifer. We started by testing the transport potential of various NIPs under different conditions. Particle stability experiments were conducted using various NIPs and different stabilizersat two ionic strengths. Overall, four different NIPs and three stabilizers were tested. Particles and solution properties (stability, aggregate/particle size, viscosity and density) were tested in batch experiments, and transport experiments (breakthrough curves (BTCs) and recovery) were conduted in the fractured chalk core. We have learned that the key parameters controlling particle transport are the particle/aggregate size and stability, which govern NIP settling rates and ultimately their migration distance. The governing mechanism controlling NIP transport was found to be sedimentation, and to a much lesser extent, processes such as diffusion, straining or interception. On the basis of these experiments, Carbo-Iron® particles ( 800 nm activated carbon particles doped with nano zero valent iron particles) and Carboxymethyl cellulose (CMC) stabilizer were selected for the field test injection. In the field, Carbo-Iron particles were initially injected into the fractured aquifer using an excess of stabilizer in order to ensure maximum recovery. This resulted in high particle recovery and fast arrival time, similar to the ideal tracer (iodide). The high recovery of the stable particle solution emphasized the importance of particle stability for transport in fractures. To test mobility manipulation potential of the particles and simulate more realistic scenarios, a second field experiment was conducted where the CMC - Carbo Iron ratio was reduced from 0.8:1 to 0.05:1. As expected, the lower stabilizer ratio resulted in lower recovery of the particles, demonstrating that particle mobility can be manipulated by changing stabilizer concentration. Additionally, a sudden increase in the hydraulic gradient between the injection and pumping well resulted in the release and remobilization of Carbo-iron particles which had settled within the fractures, indicating thatparticle settling is reversible within the aquifer.
The API 120: A portable neutron generator for the associated particle technique
NASA Astrophysics Data System (ADS)
Chichester, D. L.; Lemchak, M.; Simpson, J. D.
2005-12-01
The API 120 is a lightweight, portable neutron generator for active neutron interrogation (ANI) field work exploiting the associated particle technique. It incorporates a small sealed-tube accelerator, an all digital control system with smart on-board diagnostics, a simple platform-independent control interface and a comprehensive safety interlock philosophy with provisions for wireless control. The generator operates in a continuous output mode using either the D-D or D-T fusion reactions. To register the helium ion associated with fusion, the system incorporates a high resolution fiber optic imaging plate that may be coated with one of several different phosphors. The ion beam on the target measures less than 2 mm in diameter, thus making the system suitable for multi-dimensional imaging. The system is rated at 1E7 n/s for over 1000 h although higher yields are possible. The overall weight is 12 kg; power consumption is less than 50 W.
NASA Astrophysics Data System (ADS)
Sang, Ming-huang; Nie, Li-ping
2017-11-01
We demonstrate that a seven-particle entangled state can be used to realize the deterministic asymmetric bidirectional controlled quantum information transmission by performing only Bell-state measurement and two-particle projective measurement and single-particle measurement. In our protocol, Alice can teleport an arbitrary unknown single-particle state to Bob and at the same time Bob can remotely prepare an arbitrary known two-particle state for Alice via the control of the supervisor Charlie.
Stochastic dynamics of coupled active particles in an overdamped limit
NASA Astrophysics Data System (ADS)
Ann, Minjung; Lee, Kong-Ju-Bock; Park, Pyeong Jun
2015-10-01
We introduce a model for Brownian dynamics of coupled active particles in an overdamped limit. Our system consists of several identical active particles and one passive particle. Each active particle is elastically coupled to the passive particle and there is no direct coupling among the active particles. We investigate the dynamics of the system with respect to the number of active particles, viscous friction, and coupling between the active and passive particles. For this purpose, we consider an intracellular transport process as an application of our model and perform a Brownian dynamics simulation using realistic parameters for processive molecular motors such as kinesin-1. We determine an adequate energy conversion function for molecular motors and study the dynamics of intracellular transport by multiple motors. The results show that the average velocity of the coupled system is not affected by the number of active motors and that the stall force increases linearly as the number of motors increases. Our results are consistent with well-known experimental observations. We also examine the effects of coupling between the motors and the cargo, as well as of the spatial distribution of the motors around the cargo. Our model might provide a physical explanation of the cooperation among active motors in the cellular transport processes.
Brodersen, Kasper E.; Hammer, Kathrine J.; Schrameyer, Verena; Floytrup, Anja; Rasheed, Michael A.; Ralph, Peter J.; Kühl, Michael; Pedersen, Ole
2017-01-01
HIGHLIGHTS: Sedimentation of fine sediment particles onto seagrass leaves severely hampers the plants' performance in both light and darkness, due to inadequate internal plant aeration and intrusion of phytotoxic H2S. Anthropogenic activities leading to sediment re-suspension can have adverse effects on adjacent seagrass meadows, owing to reduced light availability and the settling of suspended particles onto seagrass leaves potentially impeding gas exchange with the surrounding water. We used microsensors to determine O2 fluxes and diffusive boundary layer (DBL) thickness on leaves of the seagrass Zostera muelleri with and without fine sediment particles, and combined these laboratory measurements with in situ microsensor measurements of tissue O2 and H2S concentrations. Net photosynthesis rates in leaves with fine sediment particles were down to ~20% of controls without particles, and the compensation photon irradiance increased from a span of 20–53 to 109–145 μmol photons m−2 s−1. An ~2.5-fold thicker DBL around leaves with fine sediment particles impeded O2 influx into the leaves during darkness. In situ leaf meristematic O2 concentrations of plants exposed to fine sediment particles were lower than in control plants and exhibited long time periods of complete meristematic anoxia during night-time. Insufficient internal aeration resulted in H2S intrusion into the leaf meristematic tissues when exposed to sediment resuspension even at relatively high night-time water-column O2 concentrations. Fine sediment particles that settle on seagrass leaves thus negatively affect internal tissue aeration and thereby the plants' resilience against H2S intrusion. PMID:28536583
Burn Control in Fusion Reactors via Isotopic Fuel Tailoring
NASA Astrophysics Data System (ADS)
Boyer, Mark D.; Schuster, Eugenio
2011-10-01
The control of plasma density and temperature are among the most fundamental problems in fusion reactors and will be critical to the success of burning plasma experiments like ITER. Economic and technological constraints may require future commercial reactors to operate with low temperature, high-density plasma, for which the burn condition may be unstable. An active control system will be essential for stabilizing such operating points. In this work, a volume-averaged transport model for the energy and the densities of deuterium and tritium fuel ions, as well as the alpha particles, is used to synthesize a nonlinear feedback controller for stabilizing the burn condition. The controller makes use of ITER's planned isotopic fueling capability and controls the densities of these ions separately. The ability to modulate the DT fuel mix is exploited in order to reduce the fusion power during thermal excursions without the need for impurity injection. By moving the isotopic mix in the plasma away from the optimal 50:50 mix, the reaction rate is slowed and the alpha-particle heating is reduced to desired levels. Supported by the NSF CAREER award program (ECCS-0645086).
Particle damping applied research on mining dump truck vibration control
NASA Astrophysics Data System (ADS)
Song, Liming; Xiao, Wangqiang; Guo, Haiquan; Yang, Zhe; Li, Zeguang
2018-05-01
Vehicle vibration characteristics has become an important evaluation indexes of mining dump truck. In this paper, based on particle damping technology, mining dump truck vibration control was studied by combining the theoretical simulation with actual testing, particle damping technology was successfully used in mining dump truck cab vibration control. Through testing results analysis, with a particle damper, cab vibration was reduced obviously, the methods and basis were provided for vehicle vibration control research and particle damping technology application.
Anticariogenic Activity of Black Tea - An Invivo Study.
Arya, Vishal; Taneja, Lavina; Srivastava, Ankit; Nandlal, Swati
2016-03-01
Teas is known for its anticariogenic properties and various mechanisms have been invoked to explain this effect. One such proposed mechanism is inhibition of salivary alpha amylase activity by endogenous tannins present in tea. The objective of the present study was to determine whether or not the ingestion of black tea decoction inhibits the enzyme salivary amylase and thus interferes with the release of maltose from intraoral entrapped particles of food. A total of 30 children in the age group of 12 - 15 years were selected for the study. After two hours of fasting subjects consumed two salted crackers for 60 second following which they rinsed with water (control solution) and then with 1.5% black tea decoction (test solution) next day. Retained food particles were recovered from buccal aspect of left mandibular premolar and salivary amylase activity was noted via chromatography. Paired t-test was applied for statistical analysis. Maltose to Sucrose ratio was used to evaluate the result. The average ratio was 3.27 for control solution and 1.82 for test solution. The results were statistically highly significant (p <0.005). Tea inhibited the activity of salivary amylase and this inhibition assumes a special significance when it is considered that the effect of tea could be manifested over a prolonged period of time, as in a real life situation.
Driouch, Habib; Hänsch, Robert; Wucherpfennig, Thomas; Krull, Rainer; Wittmann, Christoph
2012-02-01
The present study describes the design of bio-pellet morphologies of the industrial working horse Aspergillus niger strains in submerged culture. The novel approach recruits the intended addition of titanate microparticles (TiSiO(4), 8 µm) to the growth medium. As tested for two recombinant strains producing fructofuranosidase and glucoamylase, the enzyme titer by the titanate-enhanced cultures in shake flasks was increased 3.7-fold to 150 U/mL (for fructofuranosidase) and 9.5-fold to 190 U/mL (for glucoamylase) as compared to the control. This could be successfully utilized for improved enzyme production in stirred tank reactors. Stimulated by the particles, the achieved final glucoamylase activity of 1,080 U/mL (fed-batch) and 320 U/mL (batch) was sevenfold higher as compared to the conventional processes. The major reason for the enhanced production was the close association between the titanate particles and the fungal cells. Already below 2.5 g/L the micromaterial was found inside the pellets, including single particles embedded as 50-150 µm particle aggregates in the center resulting in core shell pellets. With increasing titanate levels the pellet size decreased from 1,700 µm (control) to 300 µm. Fluorescence based resolution of GFP expression revealed that the large pellets of the control were only active in a 200 µm surface layer. This matches with the critical penetration depth for nutrients and oxygen typically observed for fungal pellets. The biomass within the titanate derived fungal pellets, however, was completely active. This was due a reduced thickness of the biomass layer via smaller pellets as well as the core shell structure. Moreover, also the created loose inner pellet structure enabled a higher mass transfer and penetration depths for up to 500 µm. The creation of core-shell pellets has not been achieved previously by the addition of microparticles, for example, made of talc or alumina. Due to this, the present work opens further possibilities to use microparticles for tailor-made morphology design of filamentous fungi, especially for pellet based processes which have a long and strong industrial relevance for industrial production. Copyright © 2011 Wiley Periodicals, Inc.
Forces in inhomogeneous open active-particle systems.
Razin, Nitzan; Voituriez, Raphael; Elgeti, Jens; Gov, Nir S
2017-11-01
We study the force that noninteracting pointlike active particles apply to a symmetric inert object in the presence of a gradient of activity and particle sources and sinks. We consider two simple patterns of sources and sinks that are common in biological systems. We analytically solve a one-dimensional model designed to emulate higher-dimensional systems, and study a two-dimensional model by numerical simulations. We specify when the particle flux due to the creation and annihilation of particles can act to smooth the density profile that is induced by a gradient in the velocity of the active particles, and find the net resultant force due to both the gradient in activity and the particle flux. These results are compared qualitatively to observations of nuclear motion inside the oocyte, that is driven by a gradient in activity of actin-coated vesicles.
Single-particle states vs. collective modes: friends or enemies ?
NASA Astrophysics Data System (ADS)
Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.
2018-05-01
The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The collective mode arises as the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger spacings between relevant single particle states. Thus, the single-particle state and the collective mode are "enemies" against each other. However, the nuclear forces are rich enough so as to enhance relevant collective mode by reducing the resistance power by changing single-particle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, the quantum self-organization occurs: single-particle energies can be self-organized by (i) two quantum liquids, e.g., protons and neutrons, (ii) monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger.
Hu, Yunjie; Lin, Jun; Zhang, Suanqin; Kong, Lingdong; Fu, Hongbo; Chen, Jianmin
2015-04-01
For a better understanding of metal particle morphology and behaviors in China, atmospheric aerosols were sampled in the summer of 2012 in Beijing. The single-particle analysis shows various metal-bearing speciations, dominated by oxides, sulfates and nitrates. A large fraction of particles is soluble. Sources of Fe-bearing particles are mainly steel industries and oil fuel combustion, whereas Zn- and Pb-bearing particles are primarily contributed by waste incineration, besides industrial combustion. Other trace metal particles play a minor rule, and may come from diverse origins. Mineral dust and anthropogenic source like vehicles and construction activities are of less importance to metal-rich particles. Statistics of 1173 analyzed particles show that Fe-rich particles (48.5%) dominate the metal particles, followed by Zn-rich particles (34.9%) and Pb-rich particles (15.6%). Compared with the abundances among clear, haze and fog conditions, a severe metal pollution is identified in haze and fog episodes. Particle composition and elemental correlation suggest that the haze episodes are affected by the biomass burning in the southern regions, and the fog episodes by the local emission with manifold particle speciation. Our results show the heterogeneous reaction accelerated in the fog and haze episodes indicated by more zinc nitrate or zinc sulfate instead of zinc oxide or carbonate. Such information is useful in improving our knowledge of fine airborne metal particles on their morphology, speciation, and solubility, all of which will help the government introduce certain control to alleviate metal pollution. Copyright © 2014 Elsevier B.V. All rights reserved.
Peptide/protein vaccine delivery system based on PLGA particles.
Allahyari, Mojgan; Mohit, Elham
2016-03-03
Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted.
Peptide/protein vaccine delivery system based on PLGA particles
Allahyari, Mojgan; Mohit, Elham
2016-01-01
abstract Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted. PMID:26513024
Wan, Gwo-Hwa; Wu, Chieh-Liang; Chen, Yi-Fang; Huang, Sheng-Hsiu; Wang, Yu-Ling; Chen, Chun-Wan
2014-01-01
Humans produce exhaled breath particles (EBPs) during various breath activities, such as normal breathing, coughing, talking, and sneezing. Airborne transmission risk exists when EBPs have attached pathogens. Until recently, few investigations had evaluated the size and concentration distributions of EBPs from mechanically ventilated patients with different ventilation mode settings. This study thus broke new ground by not only evaluating the size concentration distributions of EBPs in mechanically ventilated patients, but also investigating the relationship between EBP level and positive expiratory end airway pressure (PEEP), tidal volume, and pneumonia. This investigation recruited mechanically ventilated patients, with and without pneumonia, aged 20 years old and above, from the respiratory intensive care unit of a medical center. Concentration distributions of EBPs from mechanically ventilated patients were analyzed with an optical particle analyzer. This study finds that EBP concentrations from mechanically ventilated patients during normal breathing were in the range 0.47-2,554.04 particles/breath (0.001-4.644 particles/mL). EBP concentrations did not differ significantly between the volume control and pressure control modes of the ventilation settings in the mechanically ventilated patients. The patient EBPs were sized below 5 µm, and 80% of them ranged from 0.3 to 1.0 µm. The EBPs concentrations in patients with high PEEP (> 5 cmH₂O) clearly exceeded those in patients with low PEEP (≤ 5 cmH₂O). Additionally, a significant negative association existed between pneumonia duration and EBPs concentration. However, tidal volume was not related to EBPs concentration.
Mucosal and systemic adjuvant activity of alphavirus replicon particles
NASA Astrophysics Data System (ADS)
Thompson, Joseph M.; Whitmore, Alan C.; Konopka, Jennifer L.; Collier, Martha L.; Richmond, Erin M. B.; Davis, Nancy L.; Staats, Herman F.; Johnston, Robert E.
2006-03-01
Vaccination represents the most effective control measure in the fight against infectious diseases. Local mucosal immune responses are critical for protection from, and resolution of, infection by numerous mucosal pathogens. Antigen processing across mucosal surfaces is the natural route by which mucosal immunity is generated, as peripheral antigen delivery typically fails to induce mucosal immune responses. However, we demonstrate in this article that mucosal immune responses are evident at multiple mucosal surfaces after parenteral delivery of Venezuelan equine encephalitis virus replicon particles (VRP). Moreover, coinoculation of null VRP (not expressing any transgene) with inactivated influenza virions, or ovalbumin, resulted in a significant increase in antigen-specific systemic IgG and fecal IgA antibodies, compared with antigen alone. Pretreatment of VRP with UV light largely abrogated this adjuvant effect. These results demonstrate that alphavirus replicon particles possess intrinsic systemic and mucosal adjuvant activity and suggest that VRP RNA replication is the trigger for this activity. We feel that these observations and the continued experimentation they stimulate will ultimately define the specific components of an alternative pathway for the induction of mucosal immunity, and if the activity is evident in humans, will enable new possibilities for safe and inexpensive subunit and inactivated vaccines. vaccine vector | Venezuelan equine encephalitis virus | viral immunology | RNA virus
Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin.
Morçöl, T; Nagappan, P; Nerenbaum, L; Mitchell, A; Bell, S J D
2004-06-11
An oral delivery system for insulin was developed and functional activity was tested in a non-obese diabetic (NOD) mice model. Calcium phosphate particles containing insulin was synthesized in the presence of PEG-3350 and modified by aggregating the particles with caseins to obtain the calcium phosphate-PEG-insulin-casein (CAPIC) oral insulin delivery system. Single doses of CAPIC formulation were tested in NOD mice under fasting or fed conditions to evaluate the glycemic activity. The blood glucose levels were monitored every 1-2h for 12h following the treatments using an ACCU CHECK blood glucose monitoring system. Orally administered and subcutaneously injected free insulin solution served as controls in the study. Based on the results obtained we propose that: (1). the biological activity of insulin is preserved in CAPIC formulation; (2). insulin in CAPIC formulations, but not the free insulin, displays a prolonged hypoglycemic effect after oral administration to diabetic mice; (3). CAPIC formulation protects insulin from degradation while passing through the acidic environment of the GI track until it is released in the less acidic environment of the intestines where it can be absorbed in its biologically active form; (4). CAPIC formulation represents a new and unique oral delivery system for insulin and other macromolecules.
A facile production of microporous carbon spheres and their electrochemical performance in EDLC
NASA Astrophysics Data System (ADS)
Xia, Xiaohong; Shi, Lei; Liu, Hongbo; Yang, Li; He, Yuede
2012-03-01
In the absence of activation process, we prepared a series of carbon particles from saccharine, in which hydrothermal carbonization method was used. These particles have spherical or near-spherical morphology, controllable monodisperse particle size from the analyses of SEM. Raman and XRD results show that they are nongraphitizable. The BET surface area of these carbon spherules is around 400-500 m2 g-1 and the microporosity is about 84%, suggesting that the carbon particles are rich in micropores. The electrochemical behaviors were characterized by means of galvanostatic charging/discharging, cycle voltammetry and impedance spectroscopy. The results show that the specific capacitance of sucrose-based carbon spherule reached 164 F g-1 in 30% KOH electrolyte and a high volumetric capacitance over 170 F cm-3 was obtained. These carbon spherules could be promising materials for EDLC according to their facile preparation way, low cost and high packing density.
Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases.
Lin, Chi-Ying; Lin, Shih-Jie; Yang, Yi-Chen; Wang, Der-Yuan; Cheng, Hwei-Fang; Yeh, Ming-Kung
2015-01-01
Vaccination, which provides effective, safe infectious disease protection, is among the most important recent public health and immunological achievements. However, infectious disease remains the leading cause of death in developing countries because several vaccines require repeated administrations and children are often incompletely immunized. Microsphere-based systems, providing controlled release delivery, can obviate the need for repeat immunizations. Here, we review the function of sustained and pulsatile release of biodegradable polymeric microspheres in parenteral and mucosal single-dose vaccine administration. We also review the active-targeting function of polymeric particles. With their shield and co-delivery functions, polymeric particles are applied to develop single-dose and mucosally administered vaccines as well as to improve subunit vaccines. Because polymeric particles are easily surface-modified, they have been recently used in vaccine development for cancers and many infectious diseases without effective vaccines (e.g., human immunodeficiency virus infection). These polymeric particle functions yield important vaccine carriers and multiple benefits.
Disorder-mediated crowd control in an active matter system
NASA Astrophysics Data System (ADS)
Pinçe, Erçağ; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio
2016-03-01
Living active matter systems such as bacterial colonies, schools of fish and human crowds, display a wealth of emerging collective and dynamic behaviours as a result of far-from-equilibrium interactions. The dynamics of these systems are better understood and controlled considering their interaction with the environment, which for realistic systems is often highly heterogeneous and disordered. Here, we demonstrate that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals. At equilibrium, colloidal particles always gather at the bottom of any attractive potential; however, under non-equilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential. The depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviours far from equilibrium.
Pakulska, Malgosia M.; Elliott Donaghue, Irja; Obermeyer, Jaclyn M.; Tuladhar, Anup; McLaughlin, Christopher K.; Shendruk, Tyler N.; Shoichet, Molly S.
2016-01-01
Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules. PMID:27386554
Release of ultrafine particles from three simulated building processes
NASA Astrophysics Data System (ADS)
Kumar, Prashant; Mulheron, Mike; Som, Claudia
2012-03-01
Building activities are recognised to produce coarse particulate matter but less is known about the release of airborne ultrafine particles (UFPs; those below 100 nm in diameter). For the first time, this study has investigated the release of particles in the 5-560 nm range from three simulated building activities: the crushing of concrete cubes, the demolition of old concrete slabs, and the recycling of concrete debris. A fast response differential mobility spectrometer (Cambustion DMS50) was used to measure particle number concentrations (PNC) and size distributions (PNDs) at a sampling frequency of 10 Hz in a confined laboratory room providing controlled environment and near-steady background PNCs. The sampling point was intentionally kept close to the test samples so that the release of new UFPs during these simulated processes can be quantified. Tri-modal particle size distributions were recorded for all cases, demonstrating different peak diameters in fresh nuclei (<10 nm), nucleation (10-30 nm) and accumulation (30-300 nm) modes for individual activities. The measured background size distributions showed modal peaks at about 13 and 49 nm with average background PNCs 1.47 × 104 cm-3. These background modal peaks shifted towards the larger sizes during the work periods (i.e. actual experiments) and the total PNCs increased between 2 and 17 times over the background PNCs for different activities. After adjusting for background concentrations, the net release of PNCs during cube crushing, slab demolition, and `dry' and `wet' recycling events were measured as 0.77, 19.1, 22.7 and 1.76 (×104) cm-3, respectively. The PNDs were converted into particle mass concentrations (PMCs). While majority of new PNC release was below 100 nm (i.e. UFPs), the bulk of new PMC emissions were constituted by the particles over 100 nm; 95, 79, 73 and 90% of total PNCs, and 71, 92, 93 and 91% of total PMCs, for cube crushing, slab demolition, dry recycling and wet recycling, respectively. The results of this study firmly elucidate the release of UFPs and raise a need for further detailed studies and designing health and safety related exposure guidelines for laboratory workplaces and operational building sites.
NASA Astrophysics Data System (ADS)
Knopf, D. A.; Alpert, P. A.; Wang, B.; OBrien, R. E.; Moffet, R. C.; Aller, J. Y.; Laskin, A.; Gilles, M.
2013-12-01
Atmospheric ice formation represents one of the least understood atmospheric processes with important implications for the hydrological cycle and climate. Current freezing descriptions assume that ice active sites on the particle surface initiate ice nucleation, however, the nature of these sites remains elusive. Here, we present a new experimental method that allows us to relate physical and chemical properties of individual particles with observed water uptake and ice nucleation ability using a combination of micro-spectroscopic and optical single particle analytical techniques. We apply this method to field-collected particles and particles generated via bursting of bubbles produced by glass frit aeration and plunging water impingement jets in a mesocosm containing artificial sea water and bacteria and/or phytoplankton. The most efficient ice nuclei (IN) within a particle population are identified and characterized. Single particle characterization is achieved by computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy. A vapor controlled cooling-stage coupled to an optical microscope is used to determine the onsets of water uptake, immersion freezing, and deposition ice nucleation of the individual particles as a function of temperature (T) as low as 200 K and relative humidity (RH) up to water saturation. In addition, we perform CCSEM/EDX to obtain on a single particle level the elemental composition of the entire particle population. Thus, we can determine if the IN are exceptional in nature or belong to a major particle type class with respect to composition and size. We find that ambient and sea spray particles are coated by organic material and can induce ice formation under tropospheric relevant conditions. Micro-spectroscopic single particle analysis of the investigated particle samples invokes a potential paradigm shift: Individual ice nucleating particle composition indicates that IN are similar to the majority of particles in the population and not exceptional. This suggests that composition alone may not be a determinant for IN identification. Furthermore, the results suggest that particle abundance may be a crucial parameter for IN efficiency when predicting cloud glaciation processes. These findings would have important consequences for cloud modeling, laboratory ice nucleation experiments, and field measurements.
Collective rotations of active particles interacting with obstacles
NASA Astrophysics Data System (ADS)
Mokhtari, Zahra; Aspelmeier, Timo; Zippelius, Annette
2017-10-01
We consider active particles in a heterogeneous medium, modeled by static, random obstacles. In accordance with the known tendency of active particles to cluster, we observe accumulation and crystallization of active particles around the obstacles which serve as nucleation sites. In the limit of high activity, the crystals start to rotate spontaneously, resembling a rotating rigid body. We trace the occurrence of these oscillations to the enhanced attraction of particles whose orientation points along the rotational velocity as compared to those whose orientation points in the opposite direction.
Linear response approach to active Brownian particles in time-varying activity fields
NASA Astrophysics Data System (ADS)
Merlitz, Holger; Vuijk, Hidde D.; Brader, Joseph; Sharma, Abhinav; Sommer, Jens-Uwe
2018-05-01
In a theoretical and simulation study, active Brownian particles (ABPs) in three-dimensional bulk systems are exposed to time-varying sinusoidal activity waves that are running through the system. A linear response (Green-Kubo) formalism is applied to derive fully analytical expressions for the torque-free polarization profiles of non-interacting particles. The activity waves induce fluxes that strongly depend on the particle size and may be employed to de-mix mixtures of ABPs or to drive the particles into selected areas of the system. Three-dimensional Langevin dynamics simulations are carried out to verify the accuracy of the linear response formalism, which is shown to work best when the particles are small (i.e., highly Brownian) or operating at low activity levels.
Battiston, Enrico; Salvatici, Maria C; Lavacchi, Alessandro; Gatti, Antonietta; Di Marco, Stefano; Mugnai, Laura
2018-02-19
The present study evaluated a biocompatible material for plant protection with the aim of reducing the amount of active substance applied. We used a synthetic hydroxyapatite (HA) that has been studied extensively as a consequence of its bioactivity and biocompatibility. An aggregation between HA nanoparticles and four Cu(II) compounds applied to Vitis vinifera L. leaves as a pesticide was studied. Formulations were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS) and electron microscopy and applied in planta to verify particle aggregation and efficiency in controlling the pathogen Plasmopara viticola. The XRD patterns showed different crystalline phases dependig on the Cu(II) compound formulated with HA particles, DLS showed that nanostructured particles are stable as aggregates out of the nanometer range and, in all formulations, transmission electron microscopy (TEM) and environmental scanning electron microscopy (ESEM) microscopy showed large aggregates which were partially nanostructured and were recognized as stable in their micrometric dimensions. Such particles did not show phytotoxic effects after their application in planta. A formulation based on HA and a soluble Cu(II) compound showed promising results in the control of the fungal pathogen, confirming the potential role of HA as an innovative delivery system of Cu(II) ions. The present work indicates the possibility of improving the biological activity of a bioactive substance by modifying its structure through an achievable formulation with a biocompatible material. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Hernáez, Álvaro; Castañer, Olga; Elosua, Roberto; Pintó, Xavier; Estruch, Ramón; Salas-Salvadó, Jordi; Corella, Dolores; Arós, Fernando; Serra-Majem, Lluis; Fiol, Miquel; Ortega-Calvo, Manuel; Ros, Emilio; Martínez-González, Miguel Ángel; de la Torre, Rafael; López-Sabater, M Carmen; Fitó, Montserrat
2017-02-14
The biological functions of high-density lipoproteins (HDLs) contribute to explaining the cardioprotective role of the lipoprotein beyond quantitative HDL cholesterol levels. A few small-scale interventions with a single antioxidant have improved some HDL functions. However, to date, no long-term, large-scale, randomized controlled trial has been conducted to assess the effects of an antioxidant-rich dietary pattern (such as a traditional Mediterranean diet [TMD]) on HDL function in humans. This study was performed in a random subsample of volunteers from the PREDIMED Study (Prevención con Dieta Mediterránea; n=296) after a 1-year intervention. We compared the effects of 2 TMDs, one enriched with virgin olive oil (TMD-VOO; n=100) and the other enriched with nuts (TMD-Nuts; n=100), with respect to a low-fat control diet (n=96). We assessed the effects of both TMDs on the role of HDL particles on reverse cholesterol transport (cholesterol efflux capacity, HDL ability to esterify cholesterol, and cholesteryl ester transfer protein activity), HDL antioxidant properties (paraoxonase-1 arylesterase activity and total HDL antioxidant capacity on low-density lipoproteins), and HDL vasodilatory capacity (HDL ability to induce the release of nitric oxide in endothelial cells). We also studied the effects of a TMD on several HDL quality-related characteristics (HDL particle oxidation, resistance against oxidative modification, main lipid and protein composition, and size distribution). Both TMDs increased cholesterol efflux capacity relative to baseline ( P =0.018 and P =0.013 for TMD-VOO and TMD-Nuts, respectively). The TMD-VOO intervention decreased cholesteryl ester transfer protein activity (relative to baseline, P =0.028) and increased HDL ability to esterify cholesterol, paraoxonase-1 arylesterase activity, and HDL vasodilatory capacity (relative to control, P =0.039, P =0.012, and P =0.026, respectively). Adherence to a TMD induced these beneficial changes by improving HDL oxidative status and composition. The 3 diets increased the percentage of large HDL particles (relative to baseline, P <0.001). The TMD, especially when enriched with virgin olive oil, improved HDL atheroprotective functions in humans. URL: http://www.controlled-trials.com. Unique identifier: ISRCTN35739639. © 2017 American Heart Association, Inc.
Improved methods for measuring and assessing microenvironmental exposure in individuals are needed. How human activities affect particulate matter in the personal cloud is poorly understood. A quality assurance tool to aid the study of particle transport mechanisms (e.g., re-en...
Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in China
NASA Astrophysics Data System (ADS)
Yu, Huan; Zhou, Luyu; Dai, Liang; Shen, Wenchao; Dai, Wei; Zheng, Jun; Ma, Yan; Chen, Mindong
2016-03-01
Particle size distribution down to 1.4 nm was measured in the urban atmosphere of Nanjing, China, in spring, summer, and winter during 2014-2015. Sub-3 nm particle event, which is equivalent to nucleation event, occurred on 42 out of total 90 observation days, but new particles could grow to cloud condensation nuclei (CCN)-active sizes on only 9 days. In summer, infrequent nucleation was limited by both unfavorable meteorological conditions (high temperature and relative humidity - RH) and reduced anthropogenic precursor availability due to strict emission control measures during the 2014 Youth Olympic Games in Nanjing. The limiting factors for nucleation in winter and spring were meteorological conditions (radiation, temperature, and RH) and condensation sink, but for the further growth of sub-3 nm particles to CCN-active sizes, anthropogenic precursors again became limiting factors. Nucleation events were strong in the polluted urban atmosphere. Initial J1.4 at the onset and peak J1.4 at the noontime could be up to 2.1 × 102 and 2.5 × 103 cm-3 s-1, respectively, during the eight nucleation events selected from different seasons. Time-dependent J1.4 usually showed good linear correlations with a sulfuric acid proxy for every single event (R2 = 0.56-0.86, excluding a day with significant nocturnal nucleation), but the correlation among all eight events deteriorated (R2 = 0.17) due to temperature or season change. We observed that new particle growth rate (GR) did not increase monotonically with particle size, but had a local maximum up to 25 nm h-1 between 1 and 3 nm. The existence of local maxima GR in sub-3 nm size range, though sensitive to measurement uncertainties, gives new insight into cluster dynamics in polluted environments. In this study such growth rate behavior was interpreted as the solvation effect of organic activating vapor in newly formed inorganic nuclei.
Rudell, B.; Wass, U.; Horstedt, P.; Levin, J. O.; Lindahl, R.; Rannug, U.; Sunesson, A. L.; Ostberg, Y.; Sandstrom, T.
1999-01-01
OBJECTIVES: To evaluate the efficiency of different automotive cabin air filters to prevent penetration of components of diesel exhaust and thereby reduce biomedical effects in human subjects. Filtered air and unfiltered diluted diesel exhaust (DDE) were used as negative and positive controls, respectively, and were compared with exposure to DDE filtered with four different filter systems. METHODS: 32 Healthy non- smoking subjects (age 21-53) participated in the study. Each subject was exposed six times for 1 hour in a specially designed exposure chamber: once to air, once to unfiltered DDE, and once to DDE filtered with the four different cabin air filters. Particle concentrations during exposure to unfiltered DDE were kept at 300 micrograms/m3. Two of the filters were particle filters. The other two were particle filters combined with active charcoal filters that might reduce certain gaseous components. Subjective symptoms were recorded and nasal airway lavage (NAL), acoustic rhinometry, and lung function measurements were performed. RESULTS: The two particle filters decreased the concentrations of diesel exhaust particles by about half, but did not reduce the intensity of symptoms induced by exhaust. The combination of active charcoal filters and a particle filter significantly reduced the symptoms and discomfort caused by the diesel exhaust. The most noticable differences in efficacy between the filters were found in the reduction of detection of an unpleasant smell from the diesel exhaust. In this respect even the two charcoal filter combinations differed significantly. The efficacy to reduce symptoms may depend on the abilities of the filters investigated to reduce certain hydrocarbons. No acute effects on NAL, rhinometry, and lung function variables were found. CONCLUSIONS: This study has shown that the use of active charcoal filters, and a particle filter, clearly reduced the intensity of symptoms induced by diesel exhaust. Complementary studies on vehicle cabin air filters may result in further diminishing the biomedical effects of diesel exhaust in subjects exposed in traffic and workplaces. PMID:10450238
Polarity control at interfaces: Quantifying pseudo-solvent effects in nano-confined systems
Singappuli-Arachchige, Dilini; Manzano, J. Sebastian; Sherman, Lindy M.; ...
2016-08-02
Surface functionalization controls local environments and induces solvent-like effects at liquid–solid interfaces. We explored structure–property relationships between organic groups bound to pore surfaces of mesoporous silica nanoparticles and Stokes shifts of the adsorbed solvatochromic dye Prodan. Correlating shifts of the dye on the surfaces with its shifts in solvents resulted in a local polarity scale for functionalized pores. The scale was validated by studying the effects of pore polarity on quenching of Nile Red fluorescence and on the vibronic band structure of pyrene. Measurements were done in aqueous suspensions of porous particles, proving that the dielectric properties in the poresmore » are different from the bulk solvent. The precise control of pore polarity was used to enhance the catalytic activity of TEMPO in the aerobic oxidation of furfuryl alcohol in water. Furthermore, an inverse relationship was found between pore polarity and activity of TEMPO in the pores, demonstrating that controlling the local polarity around an active site allows modulating the activity of nanoconfined catalysts.« less
Hirata, Megumi; Yasukawa, Tsutomu; Wiedemann, Peter; Kimura, Erika; Kunou, Noriyuki; Eichler, Wolfram; Takase, Ayae; Sato, Rina; Ogura, Yuichiro
2009-07-01
Abnormal fundus autofluorescence (FAF) is associated with the incidence or progression of dry and wet age-related macular degeneration (AMD). We previously developed a rabbit AMD model with drusen and type-1 choroidal neovascularization (CNV) that mimics the accumulation of lipofuscin using artificial glycoxidized particles. The objective of the current study was to investigate in vitro effects of glycoxidized particles on retinal pigment epithelial (RPE) cells, and the FAF and fate of injected particles in this model. Glycoxidized particles were prepared by a 4-day incubation of water-in-oil emulsions of serum albumin and glycolaldehyde to allow glycoxidation and consequent cross-linking. After particles were added in the culture medium of confluent human RPE cells, cell viability, adhesion activity, and proliferation activity were assessed by cell counting. In anesthetized rabbits, 250 microg of glycoxidized particles were injected into the subretinal space to induce experimental AMD. FAF measurement and angiography with sodium fluorescein and indocyanine green were performed periodically using the Heidelberg Retina Angiograph 2 (HRA2). The eyes enucleated, and the lung and the spleen, excised at week 4 or 12, were histologically evaluated by light and fluorescence microscopy. Glycoxidized particles phagocytosed did not impair the cell viability, adhesion, and proliferation of RPE cells, as compared with RPE cells in controls. HRA2 showed different patterns of abnormal FAF in the area with the implanted glycoxidized particles, similar to pathological FAF patterns in aging human eyes with or without AMD. Histologic examination showed accumulated glycoxidized particles and large lipofuscin granules with green autofluorescence in and under the RPE and at the margins of or beneath drusen, possibly associated with abnormal FAF. In addition, some particles were detected in the lung and the spleen. Glycoxidized particles phagocytosed might stay in RPE cells without any acute biological reaction. Our rabbit model of AMD simulated abnormal FAF patterns observed in aging human eyes with or without AMD. Glycoxidized particles phagocytosed by RPE cells could be deposited on Bruch's membrane in rabbits, possibly excreted in part into choroidal circulation. This model may be useful for understanding various patterns of abnormal FAF histologically, and for elucidating the pathogenesis of AMD.
NASA Astrophysics Data System (ADS)
Kanji, Z. A.; Mahrt, F.; David, R.; Marcolli, C.; Lohmann, U.; Fahrni, J.; Brühwiler, D.
2017-12-01
Heterogeneous ice nucleation (HIN) onto soot particles from previous studies have produced inconsistent results of temperature and relative humidity conditions required for freezing depending on the source of soot particle investigated. The ability of soot to act as HIN depended on the type of soot and size of particle. Often homogenous freezing conditions or water saturation conditions were required to freeze soot particles, rendering HIN irrelevant. Using synthesised mesoporous silica particles, we show pore condensation and freezing works with experiments performed in the Zurich Ice Nucleation Chamber (ZINC). By testing a variety of soot particles in parallel in the Horizontal Ice Nucleation Chamber (HINC), we suggest that previously observed HIN on soot particles is not the responsible mechanism for ice formation. Laboratory generated CAST brown and black soot, commercially available soot and acid treated soot were investigated for their ice nucleation abilities in the mixed-phase and cirrus cloud temperature regimes. No heterogeneous ice nucleation activity is inferred at T > -38 °C (mixed-phase cloud regime), however depending on particle size and soot type, HIN was observed for T < -38 °C (cirrus could regime). Nevertheless, we question if this is caused by a heterogeneous phase change due the presence of a so called active site or due to pore-condensation of water as predicted by the inverse Kelvin effect followed by homogeneous nucleation of ice in the pores or cavities that are ubiquitous in soot particles between the primary spherules. The ability of some particles to freeze at lower relative humidity compared to others demonstrates why hydrophobicity plays a role in ice nucleation, i.e. controlling the conditions at which these cavities fill with water. Thus for more hydrophobic particles pore filling occurs at higher relative humidity, and therefore freezing of pore water and ice crystal growth. Future work focusses on testing the cloud processing ability of soot particles and water adsorption isotherms of the different soot samples to support the hydrophobicity inferences from the ice nucleation results.
Okada, Masahiro; Yasuda, Shoji; Kimura, Tsuyoshi; Iwasaki, Mitsunobu; Ito, Seishiro; Kishida, Akio; Furuzono, Tsutomu
2006-01-01
A composite consisting of titanium dioxide (TiO2) particle, the surface of which was modified with amino groups, and a silicone substrate through covalent bonding at their interface was developed, and antibacterial and cell adhesion activities of the composite were evaluated. The density of the amino groups on the TiO2 particle surface was controlled by the reaction time of the modification reaction. The degradation rate of CH3CHO in the presence of the TiO2 particles under UV irradiation decreased with an increase in the amino group density on the TiO2 surface. On the other hand, the number of L929 cells adhering on the TiO2/silicone composite increased with an increase in the amino group density. From the above two results, the optimum density of amino groups for both photoreactivity and cell adhesiveness was estimated to be 2.0-4.0 molecules/nm2. The optimum amino group-modified TiO2/silicone composite sheet (amino group density, 3.0 molecules/nm2) showed an effective antibacterial activity for Escherichia coli bacteria under UV irradiation. (c) 2005 Wiley Periodicals, Inc
Seras-Franzoso, Joaquin; Peebo, Karl; García-Fruitós, Elena; Vázquez, Esther; Rinas, Ursula; Villaverde, Antonio
2014-03-01
Bacterial inclusion bodies (IBs) have recently been used to generate biocompatible cell culture interfaces, with diverse effects on cultured cells such as cell adhesion enhancement, stimulation of cell growth or induction of mesenchymal stem cell differentiation. Additionally, novel applications of IBs as sustained protein delivery systems with potential applications in regenerative medicine have been successfully explored. In this scenario, with IBs gaining significance in the biomedical field, the fine tuning of this functional biomaterial is crucial. In this work, the effect of temperature on fibroblast growth factor-2 (FGF-2) IB production and performance has been evaluated. FGF-2 was overexpressed in Escherichia coli at 25 and 37 °C, producing IBs with differences in size, particle structure and biological activity. Cell culture topographies made with FGF-2 IBs biofabricated at 25 °C showed higher levels of biological activity as well as a looser supramolecular structure, enabling a higher protein release from the particles. In addition, the controlled use of FGF-2 protein particles enabled the generation of functional topographies with multiple biological activities being effective on diverse cell types. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Xu, Suyun; He, Chuanqiu; Luo, Liwen; Lü, Fan; He, Pinjing; Cui, Lifeng
2015-11-01
Two sizes of conductive particles, i.e. 10-20 mesh granulated activated carbon (GAC) and 80-100 mesh powdered activated carbon (PAC) were added into lab-scale upflow anaerobic sludge blanket reactors, respectively, to testify their enhancement on the syntrophic metabolism of alcohols and volatile fatty acids (VFAs) in 95days operation. When OLR increased to more than 5.8gCOD/L/d, the differences between GAC/PAC supplemented reactors and the control reactor became more significant. The introduction of activated carbon could facilitate the enrichment of methanogens and accelerate the startup of methanogenesis, as indicated by enhanced methane yield and substrate degradation. High-throughput pyrosequencing analysis showed that syntrophic bacteria and Methanosarcina sp. with versatile metabolic capability increased in the tightly absorbed fraction on the PAC surface, leading to the promoted syntrophic associations. Thus PAC prevails over than GAC for methanogenic reactor with heavy load. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of pH-control in phosphoric acid treatment of titanium oxide and their powder properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onoda, Hiroaki, E-mail: onoda@kpu.ac.jp; Matsukura, Aki
Highlights: • The photocatalytic activity was suppressed by phosphoric acid treatment. • The obtained pigment had small particles with sub-micrometer size. • By phosphoric acid treatment, the smoothness of samples improved. - Abstract: Titanium oxide that has the photocatalytic activity is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium oxide was shaken with phosphoric acid at various pH to synthesize a novel white pigment for cosmetics. Their chemical composition, powder properties, photocatalytic activity, color phase, and smoothness were studied. The obtainedmore » materials indicated XRD peaks of titanium oxide, however, these peak intensity became weak by phosphoric acid treatment. These samples without heating and heated at 100 °C included the small particles with sub-micrometer size. The photocatalytic activity of the obtained powders became weak by phosphoric acid treatment at pH 4 and 5 to protect the sebum on the skin.« less
NASA Astrophysics Data System (ADS)
Beyerle, Andrea; Schulz, Holger; Kissel, Thomas; Stoeger, Tobias
2009-02-01
Nanotechnology is a broad, revolutionary field with promising advantages for new medicine. In this context the rapid development and improvement of so called nanocarriers is of high pharmaceutical interest and some devices are already on the market. In our project we aim to develop well characterized nanoscaled drug delivery systems for an inhalative application. To this end, we focus on the most adverse side-effects within the lung, the cytotoxic and the proinflammatory responses to these nanoparticles (NPs). Before performing any animal experiments, we start with an in vitro screening for analyzing the cytotoxic and proinflammatory effects of the investigated particles on two murine lung target cell lines, the alveolar epithelial like typ II cell line (LA4) and the alveolar macrophage cell line (MH-S). Three different endpoints were estimated, (i) cellular metabolic activity, determined by the WST-1 assay, (ii) membrane integrity, by detection of LDH release and hemolytic activity, and (iii) secretion of inflammatory mediators. To analyze the relative particle toxicity we choose two reference particles as benchmarks, (i) fine a-quartz, and (ii) ultrafine ZnO particles. The investigation of dose-response and kinetics of proinflammatory and toxic effects caused to the named cell lines provide an insight to a close evaluation of our cell based screening strategy. oc-quartz is well known for its inflammatory and toxic potential caused by inhalation, and nanosized ZnO particles - used in a broad field of nanotechnology like electronics, but also cosmetics and pharmaceuticals - is to a high degree cytotoxic and proinflammatory in vitro. Preliminary experiments indicated not only particle and cell specific inflammatory responses, but also different susceptibilities of the cell types being exposed to our benchmark particles regarding their size and surface activities. Exposure to the μm-sized a-quartz particles affected the viability of epithelia cells less than that of macrophages, pointing to the impact of particle uptake by phagocytosis. In contrast, the nanosized ZnO particles caused much stronger decrease in cell viability and higher levels of LDH in the macrophage cell line compared to epithelial cells, even though the hemolytic activity was much higher for the a-quartz particles than for the nanosized ZnO. For the proinflammatory effects, we observed a clear dose-dependent release of acute phase cytokines (TNF-α, IL-6, G-CSF> CXCL10>CCL2) for both alveolar cell lines after Min-U-Sil exposure. After ZnO treatment the cytokine responses were negligible compare to control cells. In conclusion, our data attach value to the use of different cell types to detect different pathways of toxicity generated by different particle properties. Therefore, we will establish both lung target cell lines for an in vitro screening to analyze proinflammatory and cytotoxicity effects of nanocarriers. The implementation of the two reference particles facilitate the validated classification of the cytotoxic responses caused by the NPs investigated.
Li, Zhong-Jun; Li, Chao; Zheng, Mei-Guang; Pan, Jia-Dong; Zhang, Li-Ming; Deng, Yue-Fei
2015-01-01
This study was to prepare the functionalized nano-graphene oxide (nano-GO) particles, and observe targeted fluorescence imaging and photothermy of U251 glioma cells under near infrared (NIR) exposure. The functionalized nano-GO-Tf-FITC particles were prepared and then were incubated with U251 glioma cells. Estimation of CCK8 cell activity was adopted for measurement of cytotoxicity. The effect of fluorescein imaging was detected by fluorescence microscope with anti-CD71-FITC as a control. Finally, we detected the killing efficacy with flow cytometry after an 808 nm NIR exposure. Both nano-GO-Tf-FITC group and CD71-FITC group exhibited green-yellow fluorescence, while the control group without the target molecule nano-GO-FITC was negative. The nano-GO-Tf-FITC was incubated with U251 cells at 0.1 mg/ml, 1.0 mg/ml, 3.0 mg/ml and 5.0 mg/ml. After 48 h of incubation, the absorbance was 0.747 ± 0.031, 0.732 ± 0.043, 0.698 ± 0.051 and 0.682 ± 0.039, while the absorbance of control group is 0.759 ± 0.052. There is no significant difference between the nano-GO-FITC groups and control group. In addition, the apoptosis and death index of nano-GO-Tf-FITC group was significantly higher than that of nano-GO-FITC and blank control group (P < 0.05). The nano-GO-Tf-FITC particles with good biological compatibility and low cytotoxicity are successfully made, which have an observed effect of target imaging and photothermal therapy on glioma U251 cells.
Shape and Displacement Fluctuations in Soft Vesicles Filled by Active Particles
Paoluzzi, Matteo; Di Leonardo, Roberto; Marchetti, M. Cristina; Angelani, Luca
2016-01-01
We investigate numerically the dynamics of shape and displacement fluctuations of two-dimensional flexible vesicles filled with active particles. At low concentration most of the active particles accumulate at the boundary of the vesicle where positive particle number fluctuations are amplified by trapping, leading to the formation of pinched spots of high density, curvature and pressure. At high concentration the active particles cover the vesicle boundary almost uniformly, resulting in fairly homogeneous pressure and curvature, and nearly circular vesicle shape. The change between polarized and spherical shapes is driven by the number of active particles. The center-of-mass of the vesicle performs a persistent random walk with a long time diffusivity that is strongly enhanced for elongated active particles due to orientational correlations in their direction of propulsive motion. In our model shape-shifting induces directional sensing and the cell spontaneously migrate along the polarization direction. PMID:27678166
The role of aluminum in slow sand filtration.
Weber-Shirk, Monroe L; Chan, Kwok Loon
2007-03-01
Engineering enhancement of slow sand filtration has been an enigma in large part because the mechanisms responsible for particle removal have not been well characterized. The presumed role of biological processes in the filter ripening process nearly precluded the possibility of enhancing filter performance since interventions to enhance biological activity would have required decreasing the quality of the influent water. In previous work, we documented that an acid soluble polymer controls filter performance. The new understanding that particle removal is controlled in large part by physical chemical mechanisms has expanded the possibilities of engineering slow sand filter performance. Herein, we explore the role of naturally occurring aluminum as a ripening agent for slow sand filters and the possibility of using a low dose of alum to improve filter performance or to ripen slow sand filters.
Tong, Yu; Dong, Xufeng; Qi, Min
2018-05-09
The field-induced storage modulus is an important parameter for the applications of magnetorheological (MR) elastomers. In this study, a model mechanism is established to analyze the potential benefits of using flower-like particles as the active phase compared with the benefits of using conventional spherical particles. To verify the model mechanism and to investigate the difference in dynamic viscoelasticity between MREs with spherical particles and flower-like particles, flower-like cobalt particles and spherical cobalt particles with similar particle sizes and magnetic properties are synthesized and used as the active phase to prepare MR elastomers. As the model predicts, MREs with flower-like cobalt particles present a higher crosslink density and enhanced interfacial bond strength, which leads to a higher storage modulus and higher loss modulus with respect to MREs with spherical cobalt particles. The tunable range of the field-induced storage modulus of MREs is also improved upon using the flower-like particles as the active phase.
Higher-order force moments of active particles
NASA Astrophysics Data System (ADS)
Nasouri, Babak; Elfring, Gwynn J.
2018-04-01
Active particles moving through fluids generate disturbance flows due to their activity. For simplicity, the induced flow field is often modeled by the leading terms in a far-field approximation of the Stokes equations, whose coefficients are the force, torque, and stresslet (zeroth- and first-order force moments) of the active particle. This level of approximation is quite useful, but may also fail to predict more complex behaviors that are observed experimentally. In this study, to provide a better approximation, we evaluate the contribution of the second-order force moments to the flow field and, by reciprocal theorem, present explicit formulas for the stresslet dipole, rotlet dipole, and potential dipole for an arbitrarily shaped active particle. As examples of this method, we derive modified Faxén laws for active spherical particles and resolve higher-order moments for active rod-like particles.
Entropy production of active particles and for particles in active baths
NASA Astrophysics Data System (ADS)
Pietzonka, Patrick; Seifert, Udo
2018-01-01
Entropy production of an active particle in an external potential is identified through a thermodynamically consistent minimal lattice model that includes the chemical reaction providing the propulsion and ordinary translational noise. In the continuum limit, a unique expression follows, comprising a direct contribution from the active process and an indirect contribution from ordinary diffusive motion. From the corresponding Langevin equation, this physical entropy production cannot be inferred through the conventional, yet here ambiguous, comparison of forward and time-reversed trajectories. Generalizations to several interacting active particles and passive particles in a bath of active ones are presented explicitly, further ones are briefly indicated.
NASA Astrophysics Data System (ADS)
Attal, Mikaël; Lavé, Jérôme
2009-12-01
In actively eroding landscapes, fluvial abrasion modifies the characteristics of the sediment carried by rivers and consequently has a direct impact on the ability of mountain rivers to erode their bedrock and on the characteristics and volume of the sediment exported from upland catchments. In this experimental study, we use a novel flume replicating hydrodynamic conditions prevailing in mountain rivers to investigate the role played by different controlling variables on pebble abrasion during fluvial transport. Lithology controls abrasion rates and processes, with differences in abrasion rates exceeding two orders of magnitude. Attrition as well as breaking and splitting are efficient processes in reducing particle size. Mass loss by attrition increases with particle velocity but is weakly dependent on particle size. Fragment production is enhanced by the use of large particles, high impact velocities and the presence of joints. Based on our experimental results, we extrapolate a preliminary generic relationship between pebble attrition rate and transport stage (τ*/τ*c), where τ* = fluvial Shields stress and τ*c = critical Shields stress for incipient pebble motion. This relationship predicts that attrition rates are independent of transport stage for (τ*/τ*c) ≤ 3 and increase linearly with transport stage beyond this value. We evaluate the extent to which abrasion rates control downstream fining in several different natural settings. A simplified model predicts that the most resistant lithologies control bed load flux and fining ratio and that the concavity of transport-limited river profiles should rarely exceed 0.25 in the absence of deposition and sorting.
A FPGA-based Cluster Finder for CMOS Monolithic Active Pixel Sensors of the MIMOSA-26 Family
NASA Astrophysics Data System (ADS)
Li, Qiyan; Amar-Youcef, S.; Doering, D.; Deveaux, M.; Fröhlich, I.; Koziel, M.; Krebs, E.; Linnik, B.; Michel, J.; Milanovic, B.; Müntz, C.; Stroth, J.; Tischler, T.
2014-06-01
CMOS Monolithic Active Pixel Sensors (MAPS) demonstrated excellent performances in the field of charged particle tracking. Among their strong points are an single point resolution few μm, a light material budget of 0.05% X0 in combination with a good radiation tolerance and high rate capability. Those features make the sensors a valuable technology for vertex detectors of various experiments in heavy ion and particle physics. To reduce the load on the event builders and future mass storage systems, we have developed algorithms suited for preprocessing and reducing the data streams generated by the MAPS. This real-time processing employs remaining free resources of the FPGAs of the readout controllers of the detector and complements the on-chip data reduction circuits of the MAPS.
Electron gun controlled smart structure
Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.
2001-01-01
Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.
Energetic Particles: From Sun to Heliosphere - and vice versa
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Elftmann, R.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Steinhagen, J.; Tammen, J.; Terasa, C.; Yu, J.
2016-12-01
Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.
Energetic Particles: From Sun to Heliosphere - and vice versa
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Terasa, C.; Eldrum, S.
2017-12-01
Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.
Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan
2016-01-01
Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.
The influence of human physical activity and contaminated clothing type on particle resuspension.
McDonagh, A; Byrne, M A
2014-01-01
A study was conducted to experimentally quantify the influence of three variables on the level of resuspension of hazardous aerosol particles from clothing. Variables investigated include physical activity level (two levels, low and high), surface type (four different clothing material types), and time i.e. the rate at which particles resuspend. A mixture of three monodisperse tracer-labelled powders, with median diameters of 3, 5, and 10 microns, was used to "contaminate" the samples, and the resuspended particles were analysed in real-time using an Aerodynamic Particle Sizer (APS), and also by Neutron Activation Analysis (NAA). The overall finding was that physical activity resulted in up to 67% of the contamination deposited on clothing being resuspended back into the air. A detailed examination of the influence of physical activity level on resuspension, from NAA, revealed that the average resuspended fraction (RF) of particles at low physical activity was 28 ± 8%, and at high physical activity was 30 ± 7%, while the APS data revealed a tenfold increase in the cumulative mass of airborne particles during high physical activity in comparison to that during low physical activity. The results also suggest that it is not the contaminated clothing's fibre type which influences particle resuspension, but the material's weave pattern (and hence the material's surface texture). Investigation of the time variation in resuspended particle concentrations indicated that the data were separable into two distinct regimes: the first (occurring within the first 1.5 min) having a high, positive rate of change of airborne particle concentration relative to the second regime. The second regime revealed a slower rate of change of particle concentration and remained relatively unchanged for the remainder of each resuspension event. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of nanodiamond modification of siloxane surfaces on stem cell behaviour
NASA Astrophysics Data System (ADS)
Keremidarska, M.; Hikov, T.; Radeva, E.; Pramatarova, L.; Krasteva, N.
2014-12-01
Mesenchymal stem cells (MSCs) hold a great promise for use in many cell therapies and tissue engineering due to their remarkable potential to replicate indefinitely and differentiate into various cell types. Many efforts have been put to study the factors controlling stem cell differentiation. However, still little knowledge has been gained to what extent biomaterials properties influence stem cell adhesion, growth and differentiation. Research utilizing bone marrow-derived MSCs has concentrated on development of specific materials which can enhance specific differentiation of stem cells e.g. osteogenic and chondrogenic. In the present work we have modified an organosilane, hexamethyldisiloxane (HMDS) with detonation nanodiamond (DND) particles aiming to improve adhesion, growth and osteodifferentiation of rat mesenchymal stem cells. HMDS/DND films were deposited on cover glass using two approaches: premixing of both compounds, followed by plasma polymerization (PP) and PP of HMDS followed by plasma deposition of DND particles. We did not observe however an increase in rMSCs adhesion and growth on DND-modified PPHMDS surfaces compared to unmodified PPHMDS. When we studied alkaline phosphatase (ALP) activity, which is a major sign for early osteodifferentiation, we found the highest ALP activity on the PPHMDS/DND material, prepared by consequent deposition while on the other composite material ALP activity was the lowest. These results suggested that DND-modified materials were able to control osteodifferention in MSCs depending on the deposition approach. Modification of HMDS with DND particles by consequent plasma deposition seems to be a promising approach to produce biomaterials capable to guide stem cell differentiation toward osteoblasts and thus to be used in bone tissue engineering.
Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Weiping; Liutheviciene Cordeiro, Marco Aurelio; Gong, Mingxing
Controlling of the particle size and surface strain is the key to tuning the surface chemistry and optimizing the catalytic performance of electrocatalysts. In this study, we show that by introducing both Fe and Co into Pd lattices, the surface strain of Pd nanocatalysts can be tuned to optimize their oxygen reduction activity in both fuel cells and Zn–air batteries. The Pd 2FeCo/C alloy particles are uniquely coated with an ultrathin Fe 2O 3 shell which is in situ formed during a thermal annealing treatment. The thin shell acts as an effective barrier that prevents the coalescence and ripening ofmore » Pd 2FeCo/C nanoparticles. Compared with Pd/C, Pd 2FeCo/C exhibits higher catalytic activity and long-term stability for the ORR, signifying changes in catalytic behavior due to particle sizes and strain effects. Moreover, by spontaneous decoration of Pt on the surface of Pd 2FeCo/C, the Pd 2FeCo@Pt/C core@shell structure was formed and the Pt mass activity was about 37.6 and 112.5 times higher than that on Pt/C in a 0.1 M HClO 4 and KOH solution at 0.9 V, respectively, suggesting an enhanced ORR performance after Pt decoration. More interestingly, Pd 2FeCo@Pt/C also shows a power density of ~308 mW cm -2, which is much higher than that of Pt/C (175 mW cm -2), and excellent durability in a home-made Zn–air battery.« less
Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size
Xiao, Weiping; Liutheviciene Cordeiro, Marco Aurelio; Gong, Mingxing; ...
2017-04-18
Controlling of the particle size and surface strain is the key to tuning the surface chemistry and optimizing the catalytic performance of electrocatalysts. In this study, we show that by introducing both Fe and Co into Pd lattices, the surface strain of Pd nanocatalysts can be tuned to optimize their oxygen reduction activity in both fuel cells and Zn–air batteries. The Pd 2FeCo/C alloy particles are uniquely coated with an ultrathin Fe 2O 3 shell which is in situ formed during a thermal annealing treatment. The thin shell acts as an effective barrier that prevents the coalescence and ripening ofmore » Pd 2FeCo/C nanoparticles. Compared with Pd/C, Pd 2FeCo/C exhibits higher catalytic activity and long-term stability for the ORR, signifying changes in catalytic behavior due to particle sizes and strain effects. Moreover, by spontaneous decoration of Pt on the surface of Pd 2FeCo/C, the Pd 2FeCo@Pt/C core@shell structure was formed and the Pt mass activity was about 37.6 and 112.5 times higher than that on Pt/C in a 0.1 M HClO 4 and KOH solution at 0.9 V, respectively, suggesting an enhanced ORR performance after Pt decoration. More interestingly, Pd 2FeCo@Pt/C also shows a power density of ~308 mW cm -2, which is much higher than that of Pt/C (175 mW cm -2), and excellent durability in a home-made Zn–air battery.« less
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2003-01-01
An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.
A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mocker, Anna; Bugiel, Sebastian; Srama, Ralf
Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flightmore » mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fuer Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s{sup -1}. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s{sup -1} and with diameters of between 0.05 {mu}m and 5 {mu}m. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.« less
Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marini, Sara, E-mail: s.marini@unicas.it; Buonanno, Giorgio; Queensland University of Technology, Brisbane
The objective of this study was to compare the short-term respiratory effects due to the inhalation of electronic and conventional tobacco cigarette-generated mainstream aerosols through the measurement of the exhaled nitric oxide (eNO). To this purpose, twenty-five smokers were asked to smoke a conventional cigarette and to vape an electronic cigarette (with and without nicotine), and an electronic cigarette without liquid (control session). Electronic and tobacco cigarette mainstream aerosols were characterized in terms of total particle number concentrations and size distributions. On the basis of the measured total particle number concentrations and size distributions, the average particle doses deposited inmore » alveolar and tracheobronchial regions of the lungs for a single 2-s puff were also estimated considering a subject performing resting (sitting) activity. Total particle number concentrations in the mainstream resulted equal to 3.5 ± 0.4 × 10{sup 9}, 5.1 ± 0.1 × 10{sup 9}, and 3.1 ± 0.6 × 10{sup 9} part. cm{sup −3} for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively. The corresponding alveolar doses for a resting subject were estimated equal to 3.8 × 10{sup 10}, 5.2 × 10{sup 10} and 2.3 × 10{sup 10} particles. The mean eNO variations measured after each smoking/vaping session were equal to 3.2 ppb, 2.7 ppb and 2.8 ppb for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively; whereas, negligible eNO changes were measured in the control session. Statistical tests performed on eNO data showed statistically significant differences between smoking/vaping sessions and the control session, thus confirming a similar effect on human airways whatever the cigarette smoked/vaped, the nicotine content, and the particle dose received. - Highlights: • Electronic cigarettes (with and without nicotine) mainstream aerosols were analyzed; • Particle number concentrations and size distributions were measured; • Nitric oxide exhaled by smokers before and after smoking/vaping was evaluated; • Alveolar and tracheobronchial doses of particle for a single puff were estimated; • Comparisons with conventional cigarette were made.« less
A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research
NASA Astrophysics Data System (ADS)
Mocker, Anna; Bugiel, Sebastian; Auer, Siegfried; Baust, Günter; Colette, Andrew; Drake, Keith; Fiege, Katherina; Grün, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Kempf, Sascha; Matt, Günter; Mellert, Tobias; Munsat, Tobin; Otto, Katharina; Postberg, Frank; Röser, Hans-Peter; Shu, Anthony; Sternovsky, Zoltán; Srama, Ralf
2011-09-01
Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s-1. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s-1 and with diameters of between 0.05 μm and 5 μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.
Injectable nanocomposite cryogels for versatile protein drug delivery.
Koshy, Sandeep T; Zhang, David K Y; Grolman, Joshua M; Stafford, Alexander G; Mooney, David J
2018-01-01
Sustained, localized protein delivery can enhance the safety and activity of protein drugs in diverse disease settings. While hydrogel systems are widely studied as vehicles for protein delivery, they often suffer from rapid release of encapsulated cargo, leading to a narrow duration of therapy, and protein cargo can be denatured by incompatibility with the hydrogel crosslinking chemistry. In this work, we describe injectable nanocomposite hydrogels that are capable of sustained, bioactive, release of a variety of encapsulated proteins. Injectable and porous cryogels were formed by bio-orthogonal crosslinking of alginate using tetrazine-norbornene coupling. To provide sustained release from these hydrogels, protein cargo was pre-adsorbed to charged Laponite nanoparticles that were incorporated within the walls of the cryogels. The presence of Laponite particles substantially hindered the release of a number of proteins that otherwise showed burst release from these hydrogels. By modifying the Laponite content within the hydrogels, the kinetics of protein release could be precisely tuned. This versatile strategy to control protein release simplifies the design of hydrogel drug delivery systems. Here we present an injectable nanocomposite hydrogel for simple and versatile controlled release of therapeutic proteins. Protein release from hydrogels often requires first entrapping the protein in particles and embedding these particles within the hydrogel to allow controlled protein release. This pre-encapsulation process can be cumbersome, can damage the protein's activity, and must be optimized for each protein of interest. The strategy presented in this work simply premixes the protein with charged nanoparticles that bind strongly with the protein. These protein-laden particles are then placed within a hydrogel and slowly release the protein into the surrounding environment. Using this method, tunable release from an injectable hydrogel can be achieved for a variety of proteins. This strategy greatly simplifies the design of hydrogel systems for therapeutic protein release applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Nguyen, Nhat Truong; Altomare, Marco; Yoo, JeongEun; Schmuki, Patrik
2015-05-27
Anodic self-organized TiO2 nanostumps are formed and exploited for self-ordering dewetting of Au-Ag sputtered films. This forms ordered particle configurations at the tube top (crown position) or bottom (ground position). By dealloying from a minimal amount of noble metal, porous Au nanoparticles are then formed, which, when in the crown position, allow for a drastically improved photocatalytic H2 production compared with nanoparticles produced by conventional dewetting processes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Haibao; Huang, Wei Min; Liang, Fei; Yu, Kai
2013-01-01
In the last few years, we have witnessed significant progress in developing high performance shape memory polymer (SMP) nanocomposites, in particular, for shape recovery activated by indirect heating in the presence of electricity, magnetism, light, radio frequency, microwave and radiation, etc. In this paper, we critically review recent findings in Joule heating of SMP nanocomposites incorporated with nanosized conductive electromagnetic particles by means of nanoscale control via applying an electro- and/or magnetic field. A few different nanoscale design principles to form one-/two-/three- dimensional conductive networks are discussed. PMID:28788303
Controllability of the Coulomb charging energy in close-packed nanoparticle arrays.
Duan, Chao; Wang, Ying; Sun, Jinling; Guan, Changrong; Grunder, Sergio; Mayor, Marcel; Peng, Lianmao; Liao, Jianhui
2013-11-07
We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.
Mechano-Electrochemical Interaction Gives Rise to Strain Relaxation in Sn Electrodes
Barai, Pallab; Huang, Bo; Dillon, Shen J.; ...
2016-01-01
Tin (Sn) anode active particles were electrochemically lithiated during simultaneous imaging in a scanning electron microscope. Relationships among the reaction mechanism, active particle local strain rate, particle size, and microcrack formation are elucidated to demonstrate the importance of strain relaxation due to mechano-electrochemical interaction in Sn-based electrodes under electrochemical cycling. At low rates of operation, due to significant creep relaxation, large Sn active particles, of size 1 μm, exhibit no significant surface crack formation. Microcrack formation within Sn active particles occurs due to two different mechanisms: (i)large concentration gradient induced stress at the two-phase interface, and (ii) high volume expansionmore » induced stress at the surface of the active particles. From the present study, it can be concluded that majority of the microcracks evolve at or near the particle surface due to high volume expansion induced tension. Concentration gradient induced damage prevails near the center of the active particle, though significantly smaller in magnitude. Comparison with experimental results indicates that at operating conditions of C/2, even 500 nm sized Sn active particles remain free from surface crack formation, which emphasizes the importance of creep relaxation. A phase map has been developed to demonstrate the preferred mechano-electrochemical window of operation of Sn-based electrodes.« less
McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles
2016-10-19
Using computer simulations, we study a two-dimensional system of sterically interacting self-mobile run-and-tumble disk-shaped particles with an underlying periodic quasi-one-dimensional asymmetric substrate, and show that a rich variety of collective active ratchet behaviors arise as a function of particle density, activity, substrate period, and the maximum force exerted by the substrate. The net dc drift, or ratchet transport flux, is nonmonotonic since it increases with increased activity but is diminished by the onset of self-clustering of the active particles. Increasing the particle density decreases the ratchet transport flux for shallow substrates but increases the ratchet transport flux for deep substrates due to collective hopping events. At the highest particle densities, the ratchet motion is destroyed by a self-jamming effect. We show that it is possible to realize reversals of the direction of the net dc drift in the deep substrate limit when multiple rows of active particles can be confined in each substrate minimum, permitting emergent particle-like excitations to appear that experience an inverted effective substrate potential. We map out a phase diagram of the forward and reverse ratchet effects as a function of the particle density, activity, and substrate properties.
NASA Technical Reports Server (NTRS)
Kerkar, Awdhoot V.; Henderson, Robert J. M.; Feke, Donald L.
1990-01-01
The application of steric stabilization to control particle agglomeration and packing of silicon powder in benzene and trichloroethylene is reported. The results provide useful guidelines for controlling unfavorable particle-particle interactions during nonaqueous processing of silicon-based ceramic materials. The application of steric stabilization to the control and improvement of green processing of nonaqueous silicon slips in pressure consolidation is also demonstrated.
Fluctuating chemohydrodynamics and the stochastic motion of self-diffusiophoretic particles
NASA Astrophysics Data System (ADS)
Gaspard, Pierre; Kapral, Raymond
2018-04-01
The propulsion of active particles by self-diffusiophoresis is driven by asymmetric catalytic reactions on the particle surface that generate a mechanochemical coupling between the fluid velocity and the concentration fields of fuel and product in the surrounding solution. Because of thermal and molecular fluctuations in the solution, the motion of micrometric or submicrometric active particles is stochastic. Coupled Langevin equations describing the translation, rotation, and reaction of such active particles are deduced from fluctuating chemohydrodynamics and fluctuating boundary conditions at the interface between the fluid and the particle. These equations are consistent with microreversibility and the Onsager-Casimir reciprocal relations between affinities and currents and provide a thermodynamically consistent basis for the investigation of the dynamics of active particles propelled by diffusiophoretic mechanisms.
Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C
2014-12-01
Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.
Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming
2006-10-01
By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.
NASA Astrophysics Data System (ADS)
Yahya, S. S.; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Kresnodrianto, Mahiswara, E. P.
2018-05-01
Recently, nanofluids have been widely used in heat treatment industries as quench medium with better quenching performance. The thermal conductivity of nanofluids is higher compared to conventional quench medium such as polymer, water, brine, and petroleum-based oil. This characteristic can be achieved by mixing high thermal conductivity particles in nanometer scale with a fluid as base. In this research, carbon powder and distilled water were used as nanoparticles and base respectively. The carbon source used in this research was laboratory grade carbon powder, and activated carbon as a cheaper alternative source. By adjusting the percentage of dispersed carbon particles, thermal conductivity of nanofluids could be controlled as needed. To obtain nanoscale carbon particles, planetary ball mill was used to grind laboratory-grade carbon and active carbon powder to further decrease its particle size. This milling method will provide nanoparticles with lower production cost. Milling speed and duration were set at 500 rpm and 15 hours. Scanning electron microscope (SEM) and Energy Dispersive X-Ray (EDX) were carried out respectively to determine the particle size, material identification, particle morphology. The carbon nanoparticle content in nanofluids quench mediums for this research were varied at 0.1, 0.3, and 0.5 % vol. Furthermore, these mediums were used to quench AISI 1045 carbon steel samples which had been annealed at 1000 °C. Hardness testing and metallography observation were then conducted to check the effect of different quench medium in steel samples. Preliminary characterizations showed that the carbon particle dimension after milling was hundreds of nanometers, or still in sub-micron range. Therefore, the milling process parameters are need to be optimized further. EDX observation in laboratory-grade carbon powder showed that the powder was pure carbon as expected for, but in activated carbon has some impurities. The nanofluid itself, however, was stable, despite the hydrophobic characteristic of carbon. The effect of different carbon percentages in nanofluid could give an illustration for optimal ratio of nanofluid to achieve the desired material properties.
Performance of Particulate Containment at Nanotechnology Workplaces
Lo, Li-Ming; Tsai, Candace S.-J.; Dunn, Kevin H.; Hammond, Duane; Marlow, David; Topmiller, Jennifer; Ellenbecker, Michael
2015-01-01
The evaluation of engineering controls for the production or use of carbon nanotubes (CNTs) was investigated at two facilities. These controls assessments are necessary to evaluate the current status of control performance and to develop proper control strategies for these workplaces. The control systems evaluated in these studies included ventilated enclosures, exterior hoods, and exhaust filtration systems. Activity-based monitoring with direct-reading instruments and filter sampling for microscopy analysis were used to evaluate the effectiveness of control measures at study sites. Our study results showed that weighing CNTs inside the biological safety cabinet can have a 37% reduction on the particle concentration in the worker’s breathing zone, and produce a 42% lower area concentration outside the enclosure. The ventilated enclosures used to reduce fugitive emissions from the production furnaces exhibited good containment characteristics when closed, but they failed to contain emissions effectively when opened during product removal/harvesting. The exhaust filtration systems employed for exhausting these ventilated enclosures did not provide promised collection efficiencies for removing engineered nanomaterials from furnace exhaust. The exterior hoods were found to be a challenge for controlling emissions from machining nanocomposites: the downdraft hood effectively contained and removed particles released from the manual cutting process, but using the canopy hood for powered cutting of nanocomposites created 15%–20% higher ultrafine (<500 nm) particle concentrations at the source and at the worker’s breathing zone. The microscopy analysis showed that CNTs can only be found at production sources but not at the worker breathing zones during the tasks monitored. PMID:26705393
NASA Astrophysics Data System (ADS)
Gong, Youguo; Hu, Min; Cheng, Yafang; Su, Hang; Yue, Dingli; Liu, Feng; Wiedensohler, A.; Wang, Zhibin; Kalesse, H.; Liu, Shang; Wu, Zhijun; Xiao, Kaitao; Mi, Puchun; Zhang, Yuanhang
The coagulation sink and its role in new particle formation are investigated based on data obtained during the PRIDE-PRD2004 campaign at Xinken of Pearl River Delta, China. Analysis of size distributions and mode contributions of the coagulation sink show that the observed higher load of accumulation mode particles impose a significant effect on the coagulation sink and result in higher coagulation sinks at Xinken despite of the lower total particle number compared with other areas. Hence it is concluded that the higher coagulation sink may depress the occurrence frequency of new particle formation events. The strategies targeting at controlling accumulation mode particles may have influences on the frequency of new particle formation events at this area. The factors affecting the coagulation sink are evaluated. The relatively lower ambient relative humidities may weaken the coagulation sink and facilitate the occurrence of new particle formation events during noontime, while the surmise of nucleation and growth involving organic matter may imply an actually higher coagulation sink than expected. These factors have a significant influence on the ultimate fate of the newly formed nuclei and new particle formation. A comparison of event and non-event days indicates that the coagulation sink is not the only decisive factor affecting new particle formation, other factors including the precursor vapors and photochemical activity are none the less important either. Competition of coagulation sink and high source rate leads to the occurrence of new particle formation events at Xinken.
Impact of pectin esterification on the antimicrobial activity of nisin-loaded pectin particles.
Krivorotova, Tatjana; Staneviciene, Ramune; Luksa, Juliana; Serviene, Elena; Sereikaite, Jolanta
2017-01-01
The relationship between pectin structure and the antimicrobial activity of nisin-loaded pectin particles was examined. The antimicrobial activity of five different nisin-loaded pectin particles, i.e., nisin-loaded high methoxyl pectin, low methoxyl pectin, pectic acid, dodecyl pectin with 5.4 and 25% degree of substitution were tested in the pH range of 4.0-7.0 by agar-diffusion assay and agar plate count methods. It was found that the degree of esterification of carboxyl group of galacturonic acid in pectin molecule is important for the antimicrobial activity of nisin-loaded pectin particles. Nisin-loaded particles prepared using pectic acid or the pectin with low degree of esterification exhibit higher antimicrobial activity than nisin-loaded high methoxyl pectin particles. Pectins with free carboxyl groups or of low degree of esterification are the most suitable for particles preparation. Moreover, nisin-loaded pectin particles were active at close to neutral or neutral pH values. Therefore, they could be effectively applied for food preservation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:245-251, 2017. © 2016 American Institute of Chemical Engineers.
Clegg, Paul S; Tavacoli, Joe W; Wilde, Pete J
2016-01-28
Multiple emulsions have great potential for application in food science as a means to reduce fat content or for controlled encapsulation and release of actives. However, neither production nor stability is straightforward. Typically, multiple emulsions are prepared via two emulsification steps and a variety of approaches have been deployed to give long-term stability. It is well known that multiple emulsions can be prepared in a single step by harnessing emulsion inversion, although the resulting emulsions are usually short lived. Recently, several contrasting methods have been demonstrated which give rise to stable multiple emulsions via one-step production processes. Here we review the current state of microfluidic, polymer-stabilized and particle-stabilized approaches; these rely on phase separation, the role of electrolyte and the trapping of solvent with particles respectively.
Electronically shielded solid state charged particle detector
Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.
1996-08-20
An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.
Electronically shielded solid state charged particle detector
Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.
1996-08-20
An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.
Formation of alcohol conversion catalysts
Wachs, Israel E.; Cai, Yeping
2001-01-01
The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.
Semi-active control of a sandwich beam partially filled with magnetorheological elastomer
NASA Astrophysics Data System (ADS)
Dyniewicz, Bartłomiej; Bajkowski, Jacek M.; Bajer, Czesław I.
2015-08-01
The paper deals with the semi-active control of vibrations of structural elements. Elastomer composites with ferromagnetic particles that act as magnetorheological fluids are used. The damping coefficient and the shear modulus of the elastomer increases when it is exposed to an electro-magnetic field. The control of this process in time allows us to reduce vibrations more effectively than if the elastomer is permanently exposed to a magnetic field. First the analytical solution for the vibrations of a sandwich beam filled with an elastomer is given. Then the control problem is defined and applied to the analytical formula. The numerical solution of the minimization problem results in a periodic, perfectly rectangular control function if free vibrations are considered. Such a temporarily acting magnetic field is more efficient than a constantly acting one. The surplus reaches 20-50% or more, depending on the filling ratio of the elastomer. The resulting control was verified experimentally in the vibrations of a cantilever sandwich beam. The proposed semi-active control can be directly applied to engineering vibrating structural elements, for example helicopter rotors, aircraft wings, pads under machines, and vehicles.
Ponce-Cusi, Richard; Calaf, Gloria M
2016-02-01
Globally, breast cancer in women is the leading cause of cancer death. This fact has generated an interest to obtain insight into breast tumorigenesis and also to develop drugs to control the disease. Ras is a proto-oncogene that is activated as a response to extracellular signals. As a member of the Ras GTPase superfamily, Rho-A is an oncogenic and a critical component of signaling pathways leading to downstream gene regulation. In chemotherapy, apoptosis is the predominant mechanism by which cancer cells die. However, even when the apoptotic machinery remains intact, survival signaling may antagonize the cell death by signals. The aim of this study was to evaluate 5-fluorouracil (5-FU) in cells transformed by low doses of ionizing α-particle radiation, in breast cancer cell lines on these genes, as well as apoptotic activity. We used two cell lines from an in vitro experimental breast cancer model. The MCF-10F and Tumor2 cell lines. MCF-10F was exposed to low doses of high linear energy transfer (LET) α-particles radiation (150 keV/µm). Tumor2, is a malignant and tumorigenic cell line obtained from Alpha5 (60cGy+E/60cGy+E) injected into the nude mice. Results indicated that 5-FU decreased H-ras, Rho-A, p53, Stat1 and increased Bax gene expression in Tumor2 and decreased Rac1, Rho-A, NF-κB and increased Bax and caspase-3 protein expression in Tumor2. 5-FU decreased H-ras, Bcl-xL and NF-κB and increased Bax gene expression. 5-FU decreased Rac1, Rho-A protein expression and increased Bax and caspase-3 protein expression in MDA-MB-231. Flow cytometry indicated 21.5% of cell death in the control MCF-10F and 80% in Tumor2 cell lines. It can be concluded that 5-FU may exert apoptotic activity in breast cancer cells transformed by low doses of ionizing α-particles in vitro regulating genes of Ras family and related to apoptosis such as Bax, Bcl-xL and NF-κB expression.
Particle size and support effects in electrocatalysis.
Hayden, Brian E
2013-08-20
Researchers increasingly recognize that, as with standard supported heterogeneous catalysts, the activity and selectivity of supported metal electrocatalysts are influenced by particle size, particle structure, and catalyst support. Studies using model supported heterogeneous catalysts have provided information about these effects. Similarly, model electrochemical studies on supported metal electrocatalysts can provide insight into the factors determining catalytic activity. High-throughput methods for catalyst synthesis and screening can determine systematic trends in activity as a function of support and particle size with excellent statistical certainty. In this Account, we describe several such studies investigating methods for dispersing precious metals on both carbon and oxide supports, with particular emphasis on the prospects for the development of low-temperature fuel-cell electrocatalysts. One key finding is a decrease in catalytic activity with decreasing particle size independent of the support for both oxygen reduction and CO oxidation on supported gold and platinum. For these reactions, there appears to be an intrinsic particle size effect that results in a loss of activity at particle sizes below 2-3 nm. A titania support, however, also increases activity of gold particles in the electrooxidation of CO and in the reduction of oxygen, with an optimum at 3 nm particle size. This optimum may represent the superposition of competing effects: a titania-induced enhanced activity versus deactivation at small particle sizes. The titania support shows catalytic activity at potentials where carbon-supported and bulk-gold surfaces are normally oxidized and CO electrooxidation is poisoned. On the other hand, platinum on amorphous titania shows a different effect: the oxidation reduction reaction is strongly poisoned in the same particle size range. We correlated the influence of the titania support with titania-induced changes in the surface redox behavior of the platinum particles. For both supported gold and platinum particles in electrocatalysis, we observe parallels to the effects of particle size and support in the equivalent heterogeneous catalysts. Studies of model supported-metal electrocatalysts, performs efficiently using high throughput synthetic and screening methodologies, will lead to a better understanding of the mechanisms responsible for support and particle size effects in electrocatalysis, and will drive the development of more effective and robust catalysts in the future.
Bimetallic Pt-Au Nanocatalysts on ZnO/Al2O3/Monolith for Air Pollution Control.
Kim, Ki-Joong; Ahn, Ho-Geun
2015-08-01
The catalytic activity of a monolithic catalyst with nanosized Pt and Au particles on ZnO/Al2O3 (Pt-Au/ZnO/Al2O3/M) prepared by a wash-coat method was examined, specifically for toluene oxidation. Scanning electron microscopy image showed clearly the formation of a ZnO/Al2O3 layer on the monolith. Nanosized Pt-Au particles on ZnO/Al2O3/M with different sizes could be found in the Pt-Au/ZnO/Al2O3/M catalyst. The conversion of toluene decreased with increasing toluene concentration and was also largely affected by the feed flow rate. The Pt-Au/ZnO/Al2O3/M catalysts prepared in this work have almost the same activity (molecules of toluene per second) compared with a powder Pt-Au/ZnO/Al2O3 catalyst with the same loadings of Pt and Au components; thus this catalyst could be used in controlling air pollution with very low concentrations and high flow rate.
Functionally-interdependent shape-switching nanoparticles with controllable properties
Halman, Justin R.; Satterwhite, Emily; Roark, Brandon; Chandler, Morgan; Viard, Mathias; Ivanina, Anna; Bindewald, Eckart; Kasprzak, Wojciech K.; Panigaj, Martin; Bui, My N.; Lu, Jacob S.; Miller, Johann; Khisamutdinov, Emil F.; Shapiro, Bruce A.; Dobrovolskaia, Marina A.
2017-01-01
Abstract We introduce a new concept that utilizes cognate nucleic acid nanoparticles which are fully complementary and functionally-interdependent to each other. In the described approach, the physical interaction between sets of designed nanoparticles initiates a rapid isothermal shape change which triggers the activation of multiple functionalities and biological pathways including transcription, energy transfer, functional aptamers and RNA interference. The individual nanoparticles are not active and have controllable kinetics of re-association and fine-tunable chemical and thermodynamic stabilities. Computational algorithms were developed to accurately predict melting temperatures of nanoparticles of various compositions and trace the process of their re-association in silico. Additionally, tunable immunostimulatory properties of described nanoparticles suggest that the particles that do not induce pro-inflammatory cytokines and high levels of interferons can be used as scaffolds to carry therapeutic oligonucleotides, while particles with strong interferon and mild pro-inflammatory cytokine induction may qualify as vaccine adjuvants. The presented concept provides a simple, cost-effective and straightforward model for the development of combinatorial regulation of biological processes in nucleic acid nanotechnology. PMID:28108656
Swinging motion of active deformable particles in Poiseuille flow
NASA Astrophysics Data System (ADS)
Tarama, Mitsusuke
2017-08-01
Dynamics of active deformable particles in an external Poiseuille flow is investigated. To make the analysis general, we employ time-evolution equations derived from symmetry considerations that take into account an elliptical shape deformation. First, we clarify the relation of our model to that of rigid active particles. Then, we study the dynamical modes that active deformable particles exhibit by changing the strength of the external flow. We emphasize the difference between the active particles that tend to self-propel parallel to the elliptical shape deformation and those self-propelling perpendicularly. In particular, a swinging motion around the centerline far from the channel walls is discussed in detail.
Stable environmentally sensitive cationic hydrogels for controlled delivery applications.
Deo, Namita; Ruetsch, S; Ramaprasad, K R; Kamath, Y
2010-01-01
New thermosensitive, cationic hydrogels were synthesized by the dispersion copolymerization of N-isopropylacrylamide (NIPAM) and (3-acrylamidopropyl)trimethylammonium chloride (AAPTAC). In the polymerization protocol, an amide-based comonomer, (3-acrylamidopropyl)trimethylammonium chloride, was reacted as a new alternative monomer for introducing positive charges into the thermosensitive hydrogel. The hydrogels were synthesized without making any pH adjustment in the aqueous medium. These hydrogel particles exhibited colloidal stability in the pH range of 1.5 to 11.0, while similar cationic hydrogels were reported to be unstable at pHs higher than 6. The stronger cationic character of the selected comonomer provided higher colloidal stability to the poly(NIPAM-co-AAPTAC) hydrogels. Furthermore, these hydrogels displayed sensitivity towards temperature, pH, and salt concentration. Interestingly, the particle size of hydrogels was found to be decreased significantly with an increase in temperature and salt concentration. In addition, using pyrene fluorescence spectroscopy, it was established that the hydrophobicity/hydrophilicity of the hydrogel particles was largely controlled by both pH and temperature. The thermosensitive hydrogels reported in this paper may be suitable for delivering different actives for cosmetic and medical applications. Although direct application of these hydrogel particles in cosmetics has not been shown at this stage, the methodology of making them and controlling their absorption and release properties as a function of temperature and pH has been demonstrated. Furthermore, these hydrogels may also have applications in scavenging organic and inorganic toxics.
NASA Technical Reports Server (NTRS)
Gidley, D. W.; Rich, A.; Van House, J. C.; Zitzewitz, P. W.
1981-01-01
Previous experiments undertaken in search of a correlation between the origin of optical activity in biological molecules and the helicity of beta particles emitted in nuclear beta decay have not provided any useful results. A description is presented of an experiment in which a low energy polarized positron beam of controlled helicity interacts with an optically active material to form positronium in vacuum. Advantages of the current study compared to the previous experiments are mainly related to a much greater sensitivity. Initially, it will be possible to detect a helicity-dependent asymmetry in triplet positronium formation of 1 part in 10,000. Improvements to better than 1 part in 100,000 should be attainable.
Particle monitoring and control in vacuum processing equipment
NASA Astrophysics Data System (ADS)
Borden, Peter G., Dr.; Gregg, John
1989-10-01
Particle contamination during vacuum processes has emerged as the largest single source of yield loss in VLSI manufacturing. While a number of tools have been available to help understand the sources and nature of this contamination, only recently has it been possible to monitor free particle levels within vacuum equipment in real-time. As a result, a better picture is available of how particle contamination can affect a variety of processes. This paper reviews some of the work that has been done to monitor particles in vacuum loadlocks and in processes such as etching, sputtering and ion implantation. The aim has been to make free particles in vacuum equipment a measurable process parameter. Achieving this allows particles to be controlled using statistical process control. It will be shown that free particle levels in load locks correlate to wafer surface counts, device yield and process conditions, but that these levels are considerable higher during production than when dummy wafers are run to qualify a system. It will also be shown how real-time free particle monitoring can be used to monitor and control cleaning cycles, how major episodic events can be detected, and how data can be gathered in a format suitable for statistical process control.
Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid
NASA Astrophysics Data System (ADS)
Gao, Tong; Betterton, Meredith D.; Jhang, An-Sheng; Shelley, Michael J.
2017-09-01
We analyze one of the simplest active suspensions with complex dynamics: a suspension of immotile "extensor" particles that exert active extensile dipolar stresses on the fluid in which they are immersed. This is relevant to several experimental systems, such as recently studied tripartite rods that create extensile flows by consuming a chemical fuel. We first describe the system through a Doi-Onsager kinetic theory based on microscopic modeling. This theory captures the active stresses produced by the particles that can drive hydrodynamic instabilities, as well as the steric interactions of rodlike particles that lead to nematic alignment. This active nematic system yields complex flows and disclination defect dynamics very similar to phenomenological Landau-deGennes Q -tensor theories for active nematic fluids, as well as by more complex Doi-Onsager theories for polar microtubule-motor-protein systems. We apply the quasiequilibrium Bingham closure, used to study suspensions of passive microscopic rods, to develop a nonstandard Q -tensor theory. We demonstrate through simulation that this B Q -tensor theory gives an excellent analytical and statistical accounting of the suspension's complex dynamics, at a far reduced computational cost. Finally, we apply the B Q -tensor model to study the dynamics of extensor suspensions in circular and biconcave domains. In circular domains, we reproduce previous results for systems with weak nematic alignment, but for strong alignment we find unusual dynamics with activity-controlled defect production and absorption at the boundaries of the domain. In biconcave domains, a Fredericks-like transition occurs as the width of the neck connecting the two disks is varied.
Convective Self-Sustained Motion in Mixtures of Chemically Active and Passive Particles.
Shklyaev, Oleg E; Shum, Henry; Yashin, Victor V; Balazs, Anna C
2017-08-15
We develop a model to describe the behavior of a system of active and passive particles in solution that can undergo spontaneous self-organization and self-sustained motion. The active particles are uniformly coated with a catalyst that decomposes the reagent in the surrounding fluid. The resulting variations in the fluid density give rise to a convective flow around the active particles. The generated fluid flow, in turn, drives the self-organization of both the active and passive particles into clusters that undergo self-sustained propulsion along the bottom wall of a microchamber. This propulsion continues until the reagents in the solution are consumed. Depending on the number of active and passive particles and the structure of the self-organized cluster, these assemblies can translate, spin, or remain stationary. We also illustrate a scenario in which the geometry of the container is harnessed to direct the motion of a self-organized, self-propelled cluster. The findings provide guidelines for creating autonomously moving active particles, or chemical "motors" that can transport passive cargo in microfluidic devices.
Kim, Minjoo; Jeung, Se Ri; Jeong, Tae-Sook; Lee, Sang-Hyun; Lee, Jong Ho
2014-01-01
To determine dietary effects on circulating lipoprotein-associated phospholipase A2 (Lp-PLA2) activity and enzyme activity in peripheral blood mononuclear cells (PBMCs), 99 patients with impaired fasting glucose, impaired glucose tolerance, or newly-diagnosed T2D were randomly assigned to either a control group (usual diet with refined rice) or the whole grain and legume group. Substitution of whole grains and legumes for refined rice was associated with the replacement of 7% of energy from carbohydrates with energy from protein (about 4%) and fat. After 12 weeks, the whole grain and legume group showed a significant decrease in fasting glucose, insulin, homeostasis model assessment-insulin resistance, hemoglobin A1c, malondialdehyde, plasma Lp-PLA2 activity, and oxidized LDL (ox-LDL), and an increase in LDL particle size. The changes (Δs) in these variables in the whole grain and legume group were significantly different from those in controls after adjustment for the baseline levels. When all subjects were considered, Δ plasma Lp-PLA2 positively correlated with Δ glucose, Δ PBMC Lp-PLA2, Δ ox-LDL, and Δ urinary 8-epi-prostaglandin F2α after being adjusted for confounding factors. The Δ PBMC Lp-PLA2 correlated positively with Δ glucose and Δ ox-LDL, and negatively with Δ LDL particle size and baseline PBMC Lp-PLA2. The substitution of whole grains and legumes for refined rice resulted in a reduction in Lp-PLA2 activities in plasma and PBMCs partly through improved glycemic control, increased consumption of protein relative to carbohydrate, and reduced lipid peroxides. PMID:24904022
Particles from wood smoke and road traffic differently affect the innate immune system of the lung.
Samuelsen, Mari; Cecilie Nygaard, Unni; Løvik, Martinus
2009-09-01
The effect of particles from road traffic and wood smoke on the innate immune response in the lung was studied in a lung challenge model with the intracellular bacterium Listeria monocytogenes. Female Balb/cA mice were instilled intratracheally with wood smoke particles, particles from road traffic collected during winter (studded tires used; St+), and during autumn (no studded tires; St-), or diesel exhaust particles (DEP). Simultaneously with, and 1 or 7 days after particle instillation, 10(5) bacteria were inoculated intratracheally. Bacterial numbers in the lungs and spleen 1 day after Listeria challenge were determined, as an indicator of cellular activation. In separate experiments, bronchoalveolar lavage (BAL) fluid was collected 4 h and 24 h after particle instillation. All particles tested reduced the numbers of bacteria in the lung 24 h after bacterial inoculation. When particles were given simultaneously with Listeria, the reduction was greatest for DEP, followed by St+ and St-, and least for wood smoke particles. Particle effects were no longer apparent after 7 days. Neutrophil numbers in BAL fluid were increased for all particle exposed groups. St+ and St- induced the highest levels of IL-1beta, MIP-2, MCP-1, and TNF-alpha, followed by DEP, which induced no TNF-alpha. In contrast, wood smoke particles only increased lactate dehydrogenase (LDH) activity, indicating a cytotoxic effect of these particles. In conclusion, all particles tested activated the innate immune system as determined with Listeria. However, differences in kinetics of anti-Listeria activity and levels of proinflammatory mediators point to cellular activation by different mechanisms.
Particle and Power Exhaust in EAST
NASA Astrophysics Data System (ADS)
Wang, Liang; Ding, Fang; Yu, Yaowei; Gan, Kaifu; Liang, Yunfeng; Xu, Guosheng; Xiao, Bingjia; Sun, Youwen; Luo, Guangnan; Gong, Xianzu; Hu, Jiansheng; Li, Jiangang; Wan, Baonian; Maingi, Rajesh; Guo, Houyang; Garofalo, Andrea; EAST Team
2017-10-01
A total power injection up to 0.3GJ has been achieved in EAST long pulse USN operation with ITER-like water-cooling W-monoblock divertor, which has steady-state power exhaust capability of 10 MWm-2. The peak temperature of W target saturated at t = 12 s to the value T 500oC and a heat flux 3MWm-2was maintained. Great efforts to reduce heat flux and accommodate particle exhaust simultaneously have been made towards long pulse of 102s time scale. By exploiting the observation of Pfirsch-Schlüter flow direction in the SOL, the Bt direction with Bx ∇B away from the W divertor (more particles favor outer target in USN) was adopted along with optimizing the strike point location near the pumping slot, to facilitate particle and impurity exhaust with the top cryo-pump. By tailoring the 3D divertor footprint through edge magnetic topology change, the heat load was dispersed widely and thus peak heat flux and W sputtering was well controlled. Active feedback control of total radiative power with neon seeding was achieved within frad = 17-35%, exhibiting further potential for heat flux reduction with divertor and edge radiation. Other heat flux handling techniques, including quasi snowflake configuration, will also be presented.
Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan
2010-07-01
The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules. 2010 Elsevier B.V. All rights reserved.
Dynamics of crowding-induced mixing in phase separated lipid bilayers
Zeno, Wade F.; Johnson, Kaitlin E.; Sasaki, Darryl Y.; ...
2016-10-10
We use fluorescence microscopy to examine the dynamics of the crowding-induced mixing transition of liquid ordered (L o)–liquid disordered (L d) phase separated lipid bilayers when the following particles of increasing size bind to either the L o or L d phase: Ubiquitin, green fluorescent protein (GFP), and nanolipoprotein particles (NLPs) of two diameters. These proteinaceous particles contained histidine-tags, which were phase targeted by binding to iminodiacetic acid (IDA) head groups, via a Cu 2+ chelating mechanism, of lipids that specifically partition into either the Lo phase or Ld phase. The degree of steric pressure was controlled by varying themore » size of the bound particle (10–240 kDa) and the amount of binding sites present (i.e., DPIDA concentrations of 9 and 12 mol%) in the supported lipid multibilayer platform used here. We develop a mass transfer-based diffusional model to analyze the observed L o phase domain dissolution that, along with visual observations and activation energy calculations, provides insight into the sequence of events in crowding-induced mixing. Furthermore, our results suggest that the degree of steric pressure and target phase influence not only the efficacy of steric-pressure induced mixing, but the rate and controlling mechanism for which it occurs.« less
Synthesis of sub-10 nm solid lipid nanoparticles for topical and biomarker detection applications
NASA Astrophysics Data System (ADS)
Calderón-Colón, Xiomara; Patchan, Marcia W.; Theodore, Mellisa L.; Le, Huong T.; Sample, Jennifer L.; Benkoski, Jason J.; Patrone, Julia B.
2014-02-01
Solid lipid nanoparticles (SLNs) are a promising platform for sensing in vivo biomarkers due to their biocompatibility, stability, and their ability to carry a wide range of active ingredients. The skin is a prominent target organ for numerous inflammatory and stress-related biomarkers, making it an excellent site for early detection of physiological imbalance and application of sensory nanoparticles. Though smaller particle size has generally been correlated with increased penetration of skin models, there has been little attention paid to the significance of other nanoparticle synthesis parameters with respect to their physical properties. In this study, we demonstrate the synthesis of sub-10 nm SLNs by the phase inversion temperature (PIT) method. These particles were specifically designed for topical delivery of hydrogen peroxide-detecting chemiluminescent dyes. A systematic design of experiments approach was used to investigate the role of the processing variables on SLN form and properties. The processing variables were correlated with the SLN properties (e.g., dye solubility, phase inversion temperature, particle size, polydispersity, melting point, and latent heat of melting). Statistical analysis revealed that the PIT method, while allowing total control over the thermal properties, resulted in well-controlled synthesis of ultra-small particles, while allowing great flexibility in the processing conditions and incorporated compounds.
Potential secondary hazards of Avitrol baits to sharp-shinned hawks and american kestrels
Holler, Nicholas R.; Schafer, Edward W.
1982-01-01
Avitrol© is the registered trade name of a number of proprietary bird control products containing the active ingredient 4-aminopyridine (4-AP). Several formulations of Avitrol are available to pest control applicators for use in agricultural areas. Although individual treated bait particles contain from 0.5 to 3.0% 4-AP, the amount present in the 14 federally registered products ranges from 0.3 to 1.0%, depending on the proportion of treated to untreated particles in the ready-to-use baits. Individual birds in depredating flocks ingesting 1 or more of the treated particles exhibit erratic behavior which frightens other birds in the flock. Numerous published references are available which describe the use and results of 1 or more of these products under a variety of conditions (Goodhue and Baumgartner 1965, DeGrazio et al. 1972, Stickley et al. 1972, Dolbeer et al. 1976, Stickley et al. 1976, Besser and Guarino 1977, Knittle et al. 1977, Mott 1977, Stick ley et al. 1977, Besser 1978, Woronecki et al. 1979).
Mixing and demixing of binary mixtures of polar chiral active particles.
Ai, Bao-Quan; Shao, Zhi-Gang; Zhong, Wei-Rong
2018-05-17
We study a binary mixture of polar chiral (counterclockwise or clockwise) active particles in a two-dimensional box with periodic boundary conditions. Besides the excluded volume interactions between particles, the particles are also subjected to the polar velocity alignment. From the extensive Brownian dynamics simulations, it is found that the particle configuration (mixing or demixing) is determined by the competition between the chirality difference and the polar velocity alignment. When the chirality difference competes with the polar velocity alignment, the clockwise particles aggregate in one cluster and the counterclockwise particles aggregate in the other cluster; thus, the particles are demixed and can be separated. However, when the chirality difference or the polar velocity alignment is dominant, the particles are mixed. Our findings could be used for the experimental pursuit of the separation of binary mixtures of chiral active particles.
Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction
NASA Astrophysics Data System (ADS)
Teh, E.-J.; Johansen, C. T.
2016-11-01
Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu
It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles ismore » tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6–1.0 V) in O2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu
It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). We report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunablemore » through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. In using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe 3+ to Fe 2+) likely bonded with pyridinic N (FeN 4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H 2SO 4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μg Pt/cm 2). Finally, enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6–1.0 V) in O 2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.« less
Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; ...
2017-09-13
It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). We report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunablemore » through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. In using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe 3+ to Fe 2+) likely bonded with pyridinic N (FeN 4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H 2SO 4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μg Pt/cm 2). Finally, enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6–1.0 V) in O 2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.« less
Evaluation of Reaction Cross Section Data Used for Thin Layer Activation Technique
NASA Astrophysics Data System (ADS)
Ditrói, F.; Takács, S.; Tárkányi, F.
2005-05-01
Thin layer activation (TLA) is a widely used nuclear method to investigate and control the loss of material during wear, corrosion and erosion processes. The process requires knowledge of depth profiles of the investigated radioisotopes produced by charged particle bombardment. The depth distribution of the activity can be determined with direct, very time-consuming step by step measurement or by calculation from reliable cross section, stopping power and sample composition data. These data were checked experimentally at several points performing only a couple of measurements.
Evaluation of Reaction Cross Section Data Used for Thin Layer Activation Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ditroi, F.; Takacs, S.; Tarkanyi, F.
2005-05-24
Thin layer activation (TLA) is a widely used nuclear method to investigate and control the loss of material during wear, corrosion and erosion processes. The process requires knowledge of depth profiles of the investigated radioisotopes produced by charged particle bombardment. The depth distribution of the activity can be determined with direct, very time-consuming step by step measurement or by calculation from reliable cross section, stopping power and sample composition data. These data were checked experimentally at several points performing only a couple of measurements.
Active Brownian particles escaping a channel in single file.
Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo
2015-02-01
Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).
Active Brownian particles escaping a channel in single file
NASA Astrophysics Data System (ADS)
Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo
2015-02-01
Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).
Shmueli, Ron B.; Ohnaka, Masayuki; Miki, Akiko; Pandey, Niranjan B.; Silva, Raquel Lima e; Koskimaki, Jacob E.; Kim, Jayoung; Popel, Aleksander S.; Campochiaro, Peter A.; Green, Jordan J.
2013-01-01
Aberrant angiogenesis can cause or contribute to a number of diseases such as neovascular age-related macular degeneration (NVAMD). While current NVAMD treatments target angiogenesis, these treatments are not effective for all patients and also require frequent intravitreal injections. New agents and delivery systems to treat NVAMD could be beneficial to many patients. We have recently developed a serpin-derived peptide as an anti-angiogenic agent. Here, this peptide is investigated for activity in human retinal endothelial cells in vitro and for reducing angiogenesis in a laser-induced choroidal neovascularization mouse model of NVAMD in vivo. While frequent intravitreal injections can be tolerated clinically, reducing the number of injections can improve patient compliance, safety, and outcomes. To achieve this goal, and to maximize the in vivo activity of injected peptide, we have developed biodegradable polymers and controlled release particle formulations to extend anti-angiogenic therapy. To create these devices, the anionic peptides are first self-assembled into nanoparticles using a biodegradable cationic polymer and then as a second step, these nanoparticles are encapsulated into biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles. In situ, these particles show approximately zero-order, linear release of the anionic peptide over 200 days. These particles are made of safe, hydrolytically degradable polymers and have low endotoxin. Long-term in vivo experiments in the laser-induced neovascularization model for NVAMD show that these peptide-releasing particles decrease angiogenesis for at least fourteen weeks in vivo following a single particle dose and therefore are a promising treatment strategy for NVAMD. PMID:23849876
NASA Astrophysics Data System (ADS)
Ataol, Sibel; Tezcaner, Ayşen; Duygulu, Ozgur; Keskin, Dilek; Machin, Nesrin E.
2015-02-01
The present study evaluates the synthesis of biocompatible osteoconductive and osteoinductive nano calcium phosphate (CaP) particles by industrially applied, aerosol-derived flame spray pyrolysis method for biomedical field. Calcium phosphate nanoparticles were produced in a range of calcium-to-phosphorus ratio, (1.20-2.19) in order to analyze the morphology and crystallinity changes, and to test the bioactivity of particles. The characterization results confirmed that nanometer-sized, spherical calcium phosphate particles were produced. The average primary particle size was determined as 23 nm by counting more than 500 particles in TEM pictures. XRD patterns, HRTEM, SAED, and SEM analyses revealed the amorphous nature of the as-prepared nano calcium phosphate particles at low Ca/P ratios. Increases in the specific surface area and crystallinity were observed with the increasing Ca/P ratio. TGA-DTA analysis showed that the thermally stable crystal phases formed after 700 °C. Cell culture studies were conducted with urine-derived stem cells that possess the characteristics of mesenchymal stem cells. Synthesized amorphous nanoparticles did not have cytotoxic effect at 5-50 μg/ml concentration range. Cells treated with the as-prepared nanoparticles had higher alkaline phosphatase (ALP) enzyme activity than control cells, indicating osteogenic differentiation of cells. A slight decrease in ALP activity of cells treated with two highest Ca:P ratios at 50 μg/ml concentration was observed at day 7. The findings suggest that calcium phosphate nanoparticles produced in this work have a potential to be used as biomaterials in biomedical applications.
Study of Chemistry and Structure-Property Relationship on Tunable Plasmonic Nanostructures
NASA Astrophysics Data System (ADS)
Jing, Hao
In this dissertation, the rational design and controllable fabrication of an array of novel plasmonic nanostructures with geometrically tunable optical properties are demonstrated, including metal-semiconductor hybrid hetero-nanoparticles, bimetallic noble metal nanoparticles and hollow nanostructures (nanobox and nanocage). Firstly, I have developed a robust wet chemistry approach to the geometry control of Ag-Cu2O core-shell nanoparticles through epitaxial growth of Cu2O nanoshells on the surfaces of various Ag nanostructures, such as quasi-spherical nanoparticles, nanocubes, and nanocuboids. Precise control over the core and the shell geometries enables me to develop detailed, quantitative understanding of how the Cu2O nanoshells introduce interesting modifications to the resonance frequencies and the extinction spectral line shapes of multiple plasmon modes of the Ag cores. Secondly, I present a detailed and systematic study of the controlled overgrowth of Pd on Au nanorods. The overgrowth of Pd nanoshells with fine-controlled dimensions and architectures on single-crystalline Au nanorods through seed-mediated growth protocol in the presence of various surfactants is investigated. Thirdly, I have demonstrated that creation of high-index facets on subwavelength metallic nanoparticles provides a unique approach to the integration of desired plasmonic and catalytic properties on the same nanoparticle. Through site-selective surface etching of metallic nanocuboids whose surfaces are dominated by low-index facets, I have controllably fabricated nanorice and nanodumbbell particles, which exhibit drastically enhanced catalytic activities arising from the catalytically active high index facets abundant on the particle surfaces. And the nanorice and nanodumbbell particles also possess appealing tunable plasmonic properties that allow us to gain quantitative insights into nanoparticle-catalyzed reactions with unprecedented sensitivity and detail through time-resolved plasmon-enhanced spectroscopic measurements, such as surface-enhanced Raman scattering (SERS). Last but not least, I have demonstrated that the capability of geometry control over Ag-Pd bimetallic hollow nanostructures through nanoscale galvanic replacement can be greatly enhanced by the use of appropriate mild reducing agents, such as ascorbic acid and formaldehyde. With the aid of mild reducing agents, we have been able to fine-tailor the compositions, interior architectures, and surface morphologies of Ag-Pd bimetallic hollow nanoparticles with increased structural complexity through surface ligand-free galvanic replacement processes at room temperature. This reducing agent-mediated galvanic replacement provides a unique way of achieving both enhanced optical tunability and optimized catalytic activities through deliberate control over the geometries of complex Ag-Pd bimetallic nanoparticles.
Pavlovic, Jelica; Holder, Amara L; Yelverton, Tiffany L B
2015-09-01
Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) and varying power output (230 kW, 400 kW, and 600 kW) at 50% and 90% load to determine concentrations of gaseous (GROS) and PM reactive oxygen species (PMROS). In addition, the influence of three modern emission control technologies on ROS emissions was evaluated: active and passive diesel particulate filters (A-DPF and P-DPF) and a diesel oxidation catalyst (DOC). PMROS made up 30-50% of the total ROS measured without aftermarket controls. All applied controls removed PMROS by more than 75% on average. However, the oxidative potential of PM downstream of these devices was not diminished at the same rate and particles surviving the A-PDF had an even higher oxidative potential on a per PM mass basis compared to the particles emitted by uncontrolled gensets. Further, the GROS as compared to PMROS emissions were not reduced with the same efficiency (<36%). GROS concentrations were highest with the DOC in use, indicating continued formation of GROS with this control. Correlation analyses showed that PMROS and to a lesser extent GROS have a good correlation with semivolatile organic carbon (OC1) subfraction. In addition, results suggest that chemical composition, rather than PM size, is responsible for differences in the PM oxidative potential.
Application of Microrheology in Food Science.
Yang, Nan; Lv, Ruihe; Jia, Junji; Nishinari, Katsuyoshi; Fang, Yapeng
2017-02-28
Microrheology provides a technique to probe the local viscoelastic properties and dynamics of soft materials at the microscopic level by observing the motion of tracer particles embedded within them. It is divided into passive and active microrheology according to the force exerted on the embedded particles. Particles are driven by thermal fluctuations in passive microrheology, and the linear viscoelasticity of samples can be obtained on the basis of the generalized Stokes-Einstein equation. In active microrheology, tracer particles are controlled by external forces, and measurements can be extended to the nonlinear regime. Microrheology techniques have many advantages such as the need for only small sample amounts and a wider measurable frequency range. In particular, microrheology is able to examine the spatial heterogeneity of samples at the microlevel, which is not possible using traditional rheology. Therefore, microrheology has considerable potential for studying the local mechanical properties and dynamics of soft matter, particularly complex fluids, including solutions, dispersions, and other colloidal systems. Food products such as emulsions, foams, or gels are complex fluids with multiple ingredients and phases. Their macroscopic properties, such as stability and texture, are closely related to the structure and mechanical properties at the microlevel. In this article, the basic principles and methods of microrheology are reviewed, and the latest developments and achievements of microrheology in the field of food science are presented.
Utzschneider, Sandra; Becker, Fabian; Grupp, Thomas M; Sievers, Birte; Paulus, Alexander; Gottschalk, Oliver; Jansson, Volkmar
2010-11-01
Poly(ether ether ketone) (PEEK) and its composites are recognized as alternative bearing materials for use in arthroplasty because of their mechanical properties. The objective of this project was to evaluate the biological response of two different kinds of carbon fiber-reinforced (CFR) PEEK compared with ultra-high molecular weight polyethylene (UHMWPE) in vivo as a standard bearing material. Wear particles of the particulate biomaterials were injected into the left knee joint of female BALB/c mice. Assessment of the synovial microcirculation using intravital fluorescence microscopy as well as histological evaluation of the synovial layer were performed 7 days after particle injection. Enhanced leukocyte-endothelial cell interactions and an increase in functional capillary density as well as histological investigations revealed that all tested biomaterials caused significantly (P < 0.05) increased inflammatory reactions compared with control animals (injected with sterile phosphate-buffered saline), without any difference between the tested biomaterials (P > 0.05). These data suggest that wear debris of CFR-PEEK is comparable with UHMWPE in its biological activity. Therefore, CFR-PEEK represents an alternative bearing material because of its superior mechanical and chemical behavior without any increased biological activity of the wear particles, compared with a standard bearing material. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Hyvönen, P M; Kowolik, M J
1992-01-01
Transmission electron microscopy and standard chemiluminescence assays were used to investigate the in vivo effect of dichloromethylene bisphosphonate (clodronate) on the phagocytosis of pure hydroxyapatite particles by rat peritoneal macrophages and the production of chemiluminescence by the peritoneal exudate cells. Hydroxyapatite (control) and a hydroxyapatite/clodronate suspension (28 mumol clodronate per gram of hydroxyapatite, experimental) were injected into the peritoneum of rats, the clodronate dose being 10 micrograms/kg. Macrophages were harvested at 12, 24, 48, and 96 hours after injection and the particle phagocytosis was assessed by transmission electron microscopy. Hydroxyapatite alone was completely phagocytosed by 24 hours and hydroxyapatite reacted with clodronate was completely phagocytosed by 48 hours. From 48 hours onwards hydroxyapatite particle dissolution was observed in the phagosomes of cells in the two groups. At 48 hours the chemiluminescence produced by the peritoneal exudate cells was also measured. Clodronate and clodronate/hydroxyapatite enhanced cell activity on subsequent challenge with phorbol myristate acetate or zymosan. Clodronate seemed to exhibit an inhibitory effect on the phagocytic activity and an enhancement of the chemiluminescence production by the cells in this model, indicating that it was modifying the inflammatory cell response. Images PMID:1532298
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Imre, D. G.; Leaitch, R.; Ovchinnikov, M.; Liu, P.; Macdonald, A.; Strapp, W.; Ghan, S. J.; Earle, M. E.
2012-12-01
Single particle mass spectrometer, SPLAT II, was used to characterize the size, composition, number concentration, density, and shape of individual Arctic spring aerosol. Background particles, particles above and below the cloud, cloud droplet residuals, and interstitial particles were characterized with goal to identify the properties that separate cloud condensation nuclei (CCN) from background aerosol particles. The analysis offers a comparison between warm clouds formed on clean and polluted days, with clean days having maximum particle concentrations (Na) lower than ~250 cm-3, as compared with polluted days, in which maximum concentration was tenfold higher. On clean days, particles were composed of organics, organics mixed with sulfates, biomass burning (BB), sea salt (SS), and few soot and dust particles. On polluted days, BB, organics associated with BB, and their mixtures with sulfate dominated particle compositions. Based on the measured compositions and size distributions of cloud droplet residuals, background aerosols, and interstitial particles, we conclude that these three particle types had virtually the same compositions, which means that cloud activation probabilities were surprisingly nearly composition independent. Moreover, these conclusions hold in cases in which less than 20% or more than 90% of background particles got activated. We concluded that for the warm clouds interrogated in this study particle size played a more important factor on aerosol CCN activity. Comparative analysis of all studied clouds reveals that aerosol activation efficiency strongly depends on the aerosol concentrations, such that at Na <200 cm-3, nearly all particles activate, and at higher concentrations the activation efficiency is lower. For example, when Na was greater than 1500 cm-3, less than ~30% of particles activated. The data suggest that as the number of nucleated droplets increases, condensation on existing droplets effectively competes with particle activation, limiting maximum droplet concentrations Nd = 525 ± 50 cm-3, which is lower than the 750 cm-3 limit found by Leaitch et al. (1986) for mid-latitude continental cloud that had generally larger updraft speeds than the clouds interrogated in Arctic. These findings are important for the aerosol indirect effect, in which increase in aerosol particle number concentrations is expected to result in increase in Nd and decrease in droplet size, leading to increased cloud albedo and potentially lifetimes. Our conclusions point to limited susceptibility to changes in ambient aerosol concentrations, providing simple explanation for the finding of weaker than expected indirect effect. In summary, the data presented here show that Nd increases as the cloud base particle number concentration increases; however, they also show a limit on Nd that is in the range of 500-600 cm-3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reece, Charles E.; Ciancio, Elizabeth J.; Keyes, Katharine A.
2009-11-01
Particulate contamination on the surface of SRF cavities limits their performance via the enhanced generation of field-emitted electrons. Considerable efforts are expended to actively clean and avoid such contamination on niobium surfaces. The protocols in active use have been developed via feedback from cavity testing. This approach has the risk of over-conservatively ratcheting an ever increasing complexity of methods tied to particular circumstances. A complementary and perhaps helpful approach is to quantitatively assess the effectiveness of candidate methods at removing intentional representative particulate contamination. Toward this end, we developed a standardized contamination protocol using water suspensions of Nb{sub 2}O{sub 5}more » and SS 316 powders applied to BCP’d surfaces of standardized niobium samples yielding particle densities of order 200 particles/mm{sup 2}. From these starting conditions, controlled application of high pressure water rinse, ultrasonic cleaning, or CO{sub 2} snow jet cleaning was applied and the resulting surfaces examined via SEM/scanning EDS with particle recognition software. Results of initial parametric variations of each will be reported.« less
Ballaud, Flore; Dufresne, Alexis; Francez, André-Jean; Colombet, Jonathan; Sime-Ngando, Télesphore; Quaiser, Achim
2015-01-01
Viruses impact microbial activity and carbon cycling in various environments, but their diversity and ecological importance in Sphagnum-peatlands are unknown. Abundances of viral particles and prokaryotes were monitored bi-monthly at a fen and a bog at two different layers of the peat surface. Viral particle abundance ranged from 1.7 x 10(6) to 5.6 x 10(8) particles mL(-1), and did not differ between fen and bog but showed seasonal fluctuations. These fluctuations were positively correlated with prokaryote abundance and dissolved organic carbon, and negatively correlated with water-table height and dissolved oxygen. Using shotgun metagenomics we observed a shift in viral diversity between winter/spring and summer/autumn, indicating a seasonal succession of viral communities, mainly driven by weather-related environmental changes. Based on the seasonal asynchrony between viral and microbial diversity, we hypothesize a seasonal shift in the active microbial communities associated with a shift from lysogenic to lytic lifestyles. Our results suggest that temporal variations of environmental conditions rather than current habitat differences control the dynamics of virus-host interactions in Sphagnum-dominated peatlands.
Exposure assessment of a cyclist to PM10 and ultrafine particles.
Berghmans, P; Bleux, N; Int Panis, L; Mishra, V K; Torfs, R; Van Poppel, M
2009-02-01
Estimating personal exposure to air pollution is a crucial component in identifying high-risk populations and situations. It will enable policy makers to determine efficient control strategies. Cycling is again becoming a favorite mode of transport both in developing and in developed countries due to increasing traffic congestion and environmental concerns. In Europe, it is also seen as a healthy sports activity. However, due to high levels of hazardous pollutants in the present day road microenvironment the cyclist might be at a higher health risk due to higher breathing rate and proximity to the vehicular exhaust. In this paper we present estimates of the exposure of a cyclist to particles of various size fractions including ultrafine particles (UFP) in the town of Mol (Flanders, Belgium). The results indicate relatively higher UFP concentration exposure during morning office hours and moderate UFP levels during afternoon. The major sources of UFP and PM(10) were identified, which are vehicular emission and construction activities, respectively. We also present a dust mapping technique which can be a useful tool for town planners and local policy makers.
Active dynamics of colloidal particles in time-varying laser speckle patterns
Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; Di Leonardo, Roberto
2016-01-01
Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles. PMID:27279540
DNA Origami Patterned Colloids for Programmed Design and Chirality
NASA Astrophysics Data System (ADS)
Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna; Sha, Ruojie; Seeman, Ned; Chaikin, Paul
Micron size colloidal particles are scientifically important as model systems for equilibrium and active systems in physics, chemistry and biology and for technologies ranging from catalysis to photonics. The past decade has seen development of new particles with directional patches, lock and key reactions and specific recognition that guide assembly of structures such as complex crystalline arrays. What remains lacking is the ability to self-assemble structures of arbitrary shape with specific chirality, placement and orientation of neighbors. Here we demonstrate the adaptation of DNA origami nanotechnology to the micron colloidal scale with designed control of neighbor type, placement and dihedral angle. We use DNA origami belts with programmed flexibility, and functionality to pattern colloidal surfaces and bind particles to specific sites at specific angles and make uniquely right handed or left handed structures. The hybrid DNA origami colloid technology should allow the synthesis of designed functional structural and active materials. This work was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.
Characteristic Study of Shenmu Bituminous Coal Combustion with Online TG-MS-FTIR
NASA Astrophysics Data System (ADS)
Pan, Guanfu
2018-01-01
The combustion characteristics of Shenmu bituminous pulverized coal (SBC) were comprehensively investigated with a combined TG-MS-FTIR system by considering the effect of particle size, heating rate and total flowrate. The combustion products were accurately quantified by normalization and numerical analysis of MS results. The results indicate that the decrease of the particle size, heating rate and total flowrate result in lower ignition and burnout temperatures. The activation energy tends to be lower with smaller particle size, lower heating rate and total flowrate. The MS and FTIR results demonstrate that lower concentrations of different products, such as NO, NO2, HCN, CH4 and SO2 were produced with smaller particle size, slower heating rate and lower total flowrate. The decrease of particle size would lead to more contact area with oxygen and slower heating rate could provide more sufficient time for the diffusion. High total flowrate would reduce the oxygen adsorbability on the coal particle surface and shorten the residence time of oxygen, which makes the ignition difficult to occur. This work will guide to understand the combustion kinetics of pulverized coals and be beneficial to control the formation of pollutants.
Favorable effect of in-situ generated platinum in the membrane on fuel cell membrane durability
NASA Astrophysics Data System (ADS)
Macauley, Natalia; Wong, Ka Hung; Watson, Mark; Kjeang, Erik
2015-12-01
The overall lifetime of polymer electrolyte fuel cells is often determined by the membrane durability. Platinum, which may dissolve from the catalyst layers during fuel cell operation and deposit in the membrane, has been shown to have both positive and negative effects on membrane stability. In the present work, we analyze what specific conditions are required in order to reach a favorable, membrane stabilizing effect with the controlled use of platinum in the membrane. Using accelerated membrane durability testing, field operated membrane samples, and electron microscopy, we demonstrate that a high platinum concentration with specific particle shapes and sizes is essential for enhanced membrane stability. Specifically, star shaped and dendritic particles with high particle density and high surface area are shown to be preferable. These particles contain high levels of Pt(111) and are expected to have high catalytic activity toward peroxide quenching and crossover gas consumption, thereby mitigating chemical membrane degradation. On the other hand, small, dispersed cubic particles are found to have no effect or the opposite, negative effect on membrane stability.
NASA Astrophysics Data System (ADS)
Ren, Ji-Gang; Yang, Bin; Yi, Zhen-Huan; Zhou, Fei; Chen, Kai; Peng, Cheng-Zhi; Pan, Jian-Wei
2009-08-01
Faithful long-distance quantum teleportation necessitates prior entanglement distribution between two communicated locations. The particle carrying on the unknown quantum information is then combined with one particle of the entangled states for Bell-state measurements, which leads to a transfer of the original quantum information onto the other particle of the entangled states. However in most of the implemented teleportation experiments nowadays, the Bell-state measurements are performed even before successful distribution of entanglement. This leads to an instant collapse of the quantum state for the transmitted particle, which is actually a single-particle transmission thereafter. Thus the true distance for quantum teleportation is, in fact, only in a level of meters. In the present experiment we design a novel scheme which has overcome this limit by utilizing fiber as quantum memory. A complete quantum teleportation is achieved upon successful entanglement distribution over 967 meters in public free space. Active feed-forward control techniques are developed for real-time transfer of quantum information. The overall experimental fidelities for teleported states are better than 89.6%, which signify high-quality teleportation.
Harnessing Active Fins to Segregate Nanoparticles from Binary Mixtures
NASA Astrophysics Data System (ADS)
Liu, Ya; Kuksenok, Olga; Bhattacharya, Amitabh; Ma, Yongting; He, Ximin; Aizenberg, Joanna; Balazs, Anna
2014-03-01
One of the challenges in creating high-performance polymeric nanocomposites for optoelectronic applications, such as bilayer solar cells, is establishing effective and facile routes for controlling the properties of interface and segregation of binary particles with hole conductor particles and electron conductor particles. We model nanocomposites that encompass binary particles and binary blends in a microchannel. An array of oscillating microfins is immersed in the fluid and tethered to the floor of the microchannel; the fluid containing mixture of nanoparticles is driven along the channel by an imposed pressure gradient. During the oscillations, the fins with the specific chemical wetting reach the upper fluid when they are upright and are entirely within the lower stream when they are tilted. We introduce specific interaction between the fins and particulates in the solution. Fins can selectively ``catch'' target nanoparticles within the upper fluid stream and then release them into the lower stream. We focus on different modes of fins motion to optimize selective segregation of particles within binary mixture. Our approach provides an effective means of tailoring the properties and ultimate performance of the composites.
Bird, Scott M.; Rawlings, Andrea E.; Galloway, Johanna M.
2016-01-01
Magnetotactic bacteria are able to synthesise precise nanoparticles of the iron oxide magnetite within their cells. These particles are formed in dedicated organelles termed magnetosomes. These lipid membrane compartments use a range of biomineralisation proteins to nucleate and regulate the magnetite crystallisation process. A key component is the membrane protein Mms6, which binds to iron ions and helps to control the formation of the inorganic core. We have previously used Mms6 on gold surfaces patterned with a self-assembled monolayer to successfully produce arrays of magnetic nanoparticles. Here we use this surface system as a mimic of the interior face of the magnetosome membrane to study differences between intact Mms6 and the acid-rich C-terminal peptide subregion of the Mms6 protein. When immobilised on surfaces, the peptide is unable to reproduce the particle size or homogeneity control exhibited by the full Mms6 protein in our experimental setup. Moreover, the peptide is unable to support anchoring of a dense array of nanoparticles to the surface. This system also allows us to deconvolute particle binding from particle nucleation, and shows that Mms6 particle binding is less efficient when supplied with preformed magnetite nanoparticles when compared to particles precipitated from solution in the presence of the surface immobilised Mms6. This suggests that Mms6 binds to iron ions rather than to magnetite surfaces in our system, and is perhaps a nucleating agent rather than a controller of magnetite crystal growth. The comparison between the peptide and the protein under identical experimental conditions indicates that the full length sequence is required to support the full function of Mms6 on surfaces. PMID:27019707
Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide.
Marini, Sara; Buonanno, Giorgio; Stabile, Luca; Ficco, Giorgio
2014-07-01
The objective of this study was to compare the short-term respiratory effects due to the inhalation of electronic and conventional tobacco cigarette-generated mainstream aerosols through the measurement of the exhaled nitric oxide (eNO). To this purpose, twenty-five smokers were asked to smoke a conventional cigarette and to vape an electronic cigarette (with and without nicotine), and an electronic cigarette without liquid (control session). Electronic and tobacco cigarette mainstream aerosols were characterized in terms of total particle number concentrations and size distributions. On the basis of the measured total particle number concentrations and size distributions, the average particle doses deposited in alveolar and tracheobronchial regions of the lungs for a single 2-s puff were also estimated considering a subject performing resting (sitting) activity. Total particle number concentrations in the mainstream resulted equal to 3.5±0.4×10(9), 5.1±0.1×10(9), and 3.1±0.6×10(9) part. cm(-3) for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively. The corresponding alveolar doses for a resting subject were estimated equal to 3.8×10(10), 5.2×10(10) and 2.3×10(10) particles. The mean eNO variations measured after each smoking/vaping session were equal to 3.2ppb, 2.7ppb and 2.8ppb for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively; whereas, negligible eNO changes were measured in the control session. Statistical tests performed on eNO data showed statistically significant differences between smoking/vaping sessions and the control session, thus confirming a similar effect on human airways whatever the cigarette smoked/vaped, the nicotine content, and the particle dose received. Copyright © 2014 Elsevier Inc. All rights reserved.
Micro-rheology and interparticle interactions in aerosols probed with optical tweezers
NASA Astrophysics Data System (ADS)
Reid, Jonathan P.; Power, Rory M.; Cai, Chen; Simpson, Stephen H.
2014-09-01
Using optical tweezers for micro-rheological investigations of a surrounding fluid has been routinely demonstrated. In this work, we will demonstrate that rheological measurements of the bulk and surface properties of aerosol particles can be made directly using optical tweezers, providing important insights into the phase behavior of materials in confined environments and the rate of molecular diffusion in viscous phases. The use of holographic optical tweezers to manipulate aerosol particles has become standard practice in recent years, providing an invaluable tool to investigate particle dynamics, including evaporation/ condensation kinetics, chemical aging and phase transformation. When combined with non-linear Raman spectroscopy, the size and refractive index of a particle can be determined with unprecedented accuracy <+/- 0.05%). Active control of the relative positions of pairs of particles can allow studies of the coalescence of particles, providing a unique opportunity to investigate the bulk and surface properties that govern the hydrodynamic relaxation in particle shape. In particular, we will show how the viscosity and surface tension of particles can be measured directly in the under-damped regime at low viscosity. In the over-damped regime, we will show that viscosity measurements can extend close to the glass transition, allowing measurements over an impressive dynamic range of 12 orders of magnitude in relaxation timescale and viscosity. Indeed, prior to the coalescence event, we will show how the Brownian trajectories of trapped particles can yield important and unique insights into the interactions of aerosol particles.
Heitbrink, William A; Evans, Douglas E; Ku, Bon Ki; Maynard, Andrew D; Slavin, Thomas J; Peters, Thomas M
2009-01-01
This study investigated the relationships between particle number, surface area, and respirable mass concentration measured simultaneously in a foundry and an automotive engine machining and assembly center. Aerosol concentrations were measured throughout each plant with a condensation particle counter for number concentration, a diffusion charger for active surface area concentration, and an optical particle counter for respirable mass concentration. At selected locations, particle size distributions were characterized with the optical particle counter and an electrical low pressure impactor. Statistical analyses showed that active surface area concentration was correlated with ultrafine particle number concentration and weakly correlated with respirable mass concentration. Correlation between number and active surface area concentration was stronger during winter (R2 = 0.6 for both plants) than in the summer (R2 = 0.38 and 0.36 for the foundry and engine plant respectively). The stronger correlation in winter was attributed to use of direct-fire gas fired heaters that produced substantial numbers of ultrafine particles with a modal diameter between 0.007 and 0.023 mu m. These correlations support findings obtained through theoretical analysis. Such analysis predicts that active surface area increasingly underestimates geometric surface area with increasing particle size, particularly for particles larger than 100 nm. Thus, a stronger correlation between particle number concentration and active surface area concentration is expected in the presence of high concentrations of ultrafine particles. In general, active surface area concentration may be a concentration metric that is distinct from particle number concentration and respirable mass concentration. For future health effects or toxicological studies involving nano-materials or ultrafine aerosols, this finding needs to be considered, as exposure metrics may influence data interpretation.
Colony Rheology: Active Arthropods Generate Flows
NASA Astrophysics Data System (ADS)
Daniels, Karen; Mann, Michael; Charbonneau, Patrick
2015-03-01
Hydrodynamic-like flows are observed in biological systems as varied as bacteria, insects, birds, fish, and mammals. Both the phenomenology (e.g. front instabilities, milling motions) and the interaction types (hydrodynamic, direct contact, psychological, excluded-volume) strongly vary between systems, but a question common to all of them is to understand the role of particle-scale fluctuations in controlling large-scale rheological behaviors. We will address these questions through experiments on a new system, Tyrolichus casei (cheese mites), which live in dense, self-mixing colonies composed of a mixture of living mites and inert flour/detritus. In experiments performed in a Hele-Shaw geometry, we observe that the rheology of a colony is strongly dependent on the relative concentration of active and inactive particles. In addition to spreading flows, we also observe that the system can generate convective circulation and auto-compaction.
NASA Astrophysics Data System (ADS)
Mathis, Urs; Mohr, Martin; Forss, Anna-Maria
Particle measurements were performed in the exhaust of five light-duty vehicles (Euro-3) at +23, -7, and -20 °C ambient temperatures. The characterization included measurements of particle number, active surface area, number size distribution, and mass size distribution. We investigated two port-injection spark-ignition (PISI) vehicles, a direct-injection spark-ignition (DISI) vehicle, a compressed ignition (CI) vehicle with diesel particle filter (DPF), and a CI vehicle without DPF. To minimize sampling effects, particles were directly sampled from the tailpipe with a novel porous tube diluter at controlled sampling parameters. The diluted exhaust was split into two branches to measure either all or only non-volatile particles. Effect of ambient temperature was investigated on particle emission for cold and warmed-up engine. For the gasoline vehicles and the CI vehicle with DPF, the main portion of particle emission was found in the first minutes of the driving cycle at cold engine start. The particle emission of the CI vehicle without DPF was hardly affected by cold engine start. For the PISI vehicles, particle number emissions were superproportionally increased in the diameter size range from 0.1 to 0.3 μm during cold start at low ambient temperature. Based on the particle mass size distribution, the DPF removed smaller particles ( dp<0.5μm) more efficiently than larger particles ( dp>0.5μm). No significant effect of ambient temperature was observed when the engine was warmed up. Peak emission of volatile nanoparticles only took place at specific conditions and was poorly repeatable. Nucleation of particles was predominately observed during or after strong acceleration at high speed and during regeneration of the DPF.
Ratchet Effects in Active Matter Systems
NASA Astrophysics Data System (ADS)
Reichhardt, C. J. Olson; Reichhardt, C.
2017-03-01
Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth of possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. We describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle-particle interactions, and nondissipative effects.
Su, Yang; Wang, Yingqing; Owoseni, Olasehinde; Zhang, Yueheng; Gamliel, David Pierce; Valla, Julia A; McPherson, Gary L; John, Vijay T
2018-04-25
Thin-shelled hollow silica particles are synthesized using an aerosol-based process where the concentration of a silica precursor tetraethyl orthosilicate (TEOS) determines the shell thickness. The synthesis involves a novel concept of the salt bridging of an iron salt, FeCl 3 , to a cationic surfactant, cetyltrimethylammonium bromide (CTAB), which modulates the templating effect of the surfactant on silica porosity. The salt bridging leads to a sequestration of the surfactant in the interior of the droplet with the formation of a dense silica shell around the organic material. Subsequent calcination consistently results in hollow particles with encapsulated iron oxides. Control of the TEOS levels leads to the generation of ultrathin-shelled (∼10 nm) particles which become susceptible to rupture upon exposure to ultrasound. The dense silica shell that is formed is impervious to entry of chemical species. Mesoporosity is restored to the shell through desilication and reassembly, again using CTAB as a template. The mesoporous-shelled hollow particles show good reactivity toward the reductive dichlorination of trichloroethylene (TCE), indicating access of TCE to the particle interior. The ordered mesoporous thin-shelled particles containing active iron species are viable systems for chemical reaction and catalysis.
Hysteretic dynamics of active particles in a periodic orienting field
Romensky, Maksym; Scholz, Dimitri; Lobaskin, Vladimir
2015-01-01
Active motion of living organisms and artificial self-propelling particles has been an area of intense research at the interface of biology, chemistry and physics. Significant progress in understanding these phenomena has been related to the observation that dynamic self-organization in active systems has much in common with ordering in equilibrium condensed matter such as spontaneous magnetization in ferromagnets. The velocities of active particles may behave similar to magnetic dipoles and develop global alignment, although interactions between the individuals might be completely different. In this work, we show that the dynamics of active particles in external fields can also be described in a way that resembles equilibrium condensed matter. It follows simple general laws, which are independent of the microscopic details of the system. The dynamics is revealed through hysteresis of the mean velocity of active particles subjected to a periodic orienting field. The hysteresis is measured in computer simulations and experiments on unicellular organisms. We find that the ability of the particles to follow the field scales with the ratio of the field variation period to the particles' orientational relaxation time, which, in turn, is related to the particle self-propulsion power and the energy dissipation rate. The collective behaviour of the particles due to aligning interactions manifests itself at low frequencies via increased persistence of the swarm motion when compared with motion of an individual. By contrast, at high field frequencies, the active group fails to develop the alignment and tends to behave like a set of independent individuals even in the presence of interactions. We also report on asymptotic laws for the hysteretic dynamics of active particles, which resemble those in magnetic systems. The generality of the assumptions in the underlying model suggests that the observed laws might apply to a variety of dynamic phenomena from the motion of synthetic active particles to crowd or opinion dynamics. PMID:26040594
Neural Networks for Modeling and Control of Particle Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, A. L.; Biedron, S. G.; Chase, B. E.
Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less
Neural Networks for Modeling and Control of Particle Accelerators
NASA Astrophysics Data System (ADS)
Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.
2016-04-01
Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.
Neural Networks for Modeling and Control of Particle Accelerators
Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...
2016-04-01
Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less
NASA Astrophysics Data System (ADS)
Broekhuizen, K. E.; Thornberry, T.; Abbatt, J. P.
2003-12-01
The ability of organic aerosols to act as cloud condensation nuclei (CCN) will be discussed. A variety of laboratory experiments will be presented which address several key questions concerning organic particle activation. Does the particle phase impact activation? How does surface tension play a role and can a trace amount of a surface active species impact activation? Does a trace amount of a highly soluble species impact the activation of organic particles of moderate to low solubility? Can the activation properties of organic aerosols be enhanced through oxidative processing? To systematically address these issues, the CCN activity of various diacids such as oxalic, malonic, succinic, adipic and azelaic acid have been studied, as well as the addition of trace amounts of nonanoic acid and ammonium sulfate to examine the roles of surface active and soluble species, respectively. The first examination of the role of oxidative processing on CCN activity has involved investigating the effect of ozone oxidation on the activity of oleic acid particles.
Helicopter Fuselage Active Flow Control in the Presence of a Rotor
NASA Technical Reports Server (NTRS)
Martin, Preston B; Overmeyer, Austin D.; Tanner, Philip E.; Wilson, Jacob S.; Jenkins, Luther N.
2014-01-01
This work extends previous investigations of active flow control for helicopter fuselage drag and download reduction to include the effects of the rotor. The development of the new wind tunnel model equipped with fluidic oscillators is explained in terms of the previous test results. Large drag reductions greater than 20% in some cases were measured during powered testing without increasing, and in some cases decreasing download in forward flight. As confirmed by Particle Image Velocimetry (PIV), the optimum actuator configuration that provided a decrease in both drag and download appeared to create a virtual (fluidic) boat-tail fairing instead of attaching flow to the ramp surface. This idea of a fluidic fairing shifts the focus of 3D separation control behind bluff bodies from controlling/reattaching surface boundary layers to interacting with the wake flow.
NASA Astrophysics Data System (ADS)
Nakadate, Hiromichi; Sekizuka, Eiichi; Minamitani, Haruyuki
We aimed to study the validity of a new analytical approach that reflected the phase from platelet activation to the formation of small platelet aggregates. We hoped that this new approach would enable us to use the particle-counting method with laser-light scattering to measure platelet aggregation in healthy controls and in diabetic patients without complications. We measured agonist-induced platelet aggregation for 10 min. Agonist was added to the platelet-rich plasma 1 min after measurement started. We compared the total scattered light intensity from small aggregates over a 10-min period (established analytical approach) and that over a 2-min period from 1 to 3 min after measurement started (new analytical approach). Consequently platelet aggregation in diabetics with HbA1c ≥ 6.5% was significantly greater than in healthy controls by both analytical approaches. However, platelet aggregation in diabetics with HbA1c < 6.5%, i.e. patients in the early stages of diabetes, was significantly greater than in healthy controls only by the new analytical approach, not by the established analytical approach. These results suggest that platelet aggregation as detected by the particle-counting method using laser-light scattering could be applied in clinical examinations by our new analytical approach.
Zhang, Qiao; Jing, Dai; Zhang, Yufeng; Miron, Richard J
Bone grafting materials are frequently utilized in oral surgery and periodontology to fill bone defects and augment lost or missing bone. The purpose of this study was to compare new bone formation in bone defects created in both normal and osteoporotic animals loaded with three types of bone grafts from different origins. Forty-eight female Wistar rats were equally divided into control normal and ovariectomized animals. Bilateral 2.5-mm femur defects were created and filled with an equal weight of (1) natural bone mineral (NBM, BioOss) of bovine origin, (2) demineralized freeze-dried bone allograft (DFDBA, LifeNet), or (3) biphasic calcium phosphate (BCP, Vivoss). Following 3 and 6 weeks of healing, hematoxylin and eosin and TRAP staining was performed to determine new bone formation, material degradation, and osteoclast activity. All bone substitutes demonstrated osteoconductive potential at 3 and 6 weeks with higher osteoclast numbers observed in all ovariectomized animals. NBM displayed continual new bone formation with little to no sign of particle degradation, even in osteoporotic animals. DFDBA particles showed similar levels of new bone formation but rapid particle degradation rates with lower levels of mineralized tissue. BCP bone grafts demonstrated significantly higher new bone formation when compared with both NBM and DFDBA particles; however, the material was associated with higher osteoclast activity and particle degradation. Interestingly, in osteoporotic animals, BCP displayed synergistically and markedly more rapid rates of particle degradation. Recent modifications to synthetically fabricated materials were shown to be equally or more osteopromotive than NBM and DFDBA. However, the current BCP utilized demonstrated much faster resorption properties in osteoporotic animals associated with a decrease in total bone volume when compared with the slowly/nonresorbing NBM. The results from this study point to the clinical relevance of minimizing fast-resorbing bone grafting materials in osteoporotic phenotypes due to the higher osteoclastic activity and greater material resorption.
Viperin targets flavivirus virulence by inducing assembly of non-infectious capsid particles.
Vonderstein, Kirstin; Nilsson, Emma; Hubel, Philipp; Nygård Skalman, Lars; Upadhyay, Arunkumar; Pasto, Jenny; Pichlmair, Andreas; Lundmark, Richard; Överby, Anna K
2017-10-18
Efficient antiviral immunity requires interference with virus replication at multiple layers targeting diverse steps in the viral life cycle. Here we describe a novel flavivirus inhibition mechanism that results in interferon-mediated obstruction of tick-borne encephalitis virus particle assembly, and involves release of malfunctional membrane associated capsid (C) particles. This mechanism is controlled by the activity of the interferon-induced protein viperin, a broad spectrum antiviral interferon stimulated gene. Through analysis of the viperin-interactome, we identified the Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1), as the cellular protein targeted by viperin. Viperin-induced antiviral activity as well as C-particle release was stimulated by GBF1 inhibition and knock down, and reduced by elevated levels of GBF1. Our results suggest that viperin targets flavivirus virulence by inducing the secretion of unproductive non-infectious virus particles, by a GBF1-dependent mechanism. This yet undescribed antiviral mechanism allows potential therapeutic intervention. Importance The interferon response can target viral infection on almost every level, however, very little is known about interference of flavivirus assembly. Here we show that interferon, through the action of viperin, can disturb assembly of tick-borne encephalitis virus. The viperin protein is highly induced after viral infection and exhibit broad-spectrum antiviral activity. However, the mechanism of action is still elusive and appear to vary between the different viruses, indicating that cellular targets utilized by several viruses might be involved. In this study we show that viperin induce capsid particle release by interacting and inhibiting the function of the cellular protein Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1). GBF1 is a key protein in the cellular secretory pathway and essential in the life cycle of many viruses, also targeted by viperin, implicating GBF1 as a novel putative drug target. Copyright © 2017 Vonderstein et al.
EuCARD 2010: European coordination of accelerator research and development
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2010-09-01
Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new accelerator research infrastructures, develop the existing ones, and generally make the infrastructures more available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD -European Coordination of Accelerator R&D. EuCARD is a common venture of 37 European Accelerator Laboratories, Institutes, Universities and Industrial Partners involved in accelerator sciences and technologies. The project, initiated by ESGARD, is an Integrating Activity co-funded by the European Commission under Framework Program 7 - Capacities for a duration of four years, starting April 1st, 2009. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement - control systems, RF-gun co-design, thin-film superconducting technology, superconducting transport infrastructures, photon and particle beam measurements and control.
NASA Astrophysics Data System (ADS)
Finneran, James J.; Carder, Donald A.; Ridgway, Sam H.
2002-01-01
The relative contributions of acoustic pressure and particle velocity to the low-frequency, underwater hearing abilities of the bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas) were investigated by measuring (masked) hearing thresholds while manipulating the relationship between the pressure and velocity. This was accomplished by varying the distance within the near field of a single underwater sound projector (experiment I) and using two underwater sound projectors and an active sound control system (experiment II). The results of experiment I showed no significant change in pressure thresholds as the distance between the subject and the sound source was changed. In contrast, velocity thresholds tended to increase and intensity thresholds tended to decrease as the source distance decreased. These data suggest that acoustic pressure is a better indicator of threshold, compared to particle velocity or mean active intensity, in the subjects tested. Interpretation of the results of experiment II (the active sound control system) was difficult because of complex acoustic conditions and the unknown effects of the subject on the generated acoustic field; however, these data also tend to support the results of experiment I and suggest that odontocete thresholds should be reported in units of acoustic pressure, rather than intensity.
von Weber, Alexander; Baxter, Eric T; Proch, Sebastian; Kane, Matthew D; Rosenfelder, Michael; White, Henry S; Anderson, Scott L
2015-07-21
Understanding the factors that control electrochemical catalysis is essential to improving performance. We report a study of electrocatalytic ethanol oxidation - a process important for direct ethanol fuel cells - over size-selected Pt centers ranging from single atoms to Pt14. Model electrodes were prepared by soft-landing of mass-selected Ptn(+) on indium tin oxide (ITO) supports in ultrahigh vacuum, and transferred to an in situ electrochemical cell without exposure to air. Each electrode had identical Pt coverage, and differed only in the size of Pt clusters deposited. The small Ptn have activities that vary strongly, and non-monotonically with deposited size. Activity per gram Pt ranges up to ten times higher than that of 5 to 10 nm Pt particles dispersed on ITO. Activity is anti-correlated with the Pt 4d core orbital binding energy, indicating that electron rich clusters are essential for high activity.
Defontaine, G; Thormann, J; Lartiges, B S; El Samrani, A G; Barrs, O
2005-01-01
The role of mineral surface hydrophobicity in attachment to activated sludge flocs was investigated. Fluorite and quartz particles of similar granulometry were hydrophobized by adsorbing sodium oleate and dodecylamine chloride, respectively. Mineral hydrophobicity was assessed by flotation expriments. The attachment of particles to microbial flocs was determined by optical microscopy. The results indicate that hydrophobized particles are always better incorporated within activated sludge flocs than non-coated particles. A comparison with Aquatal particles used as sludge ballast reveals that hydrophobized minerals are associated with microbial flocs to the same extent.
Wachs, Israel E.; Cai, Yeping
2002-01-01
Preparing an aldehyde from an alcohol by contacting the alcohol in the presence of oxygen with a catalyst prepared by contacting an intimate mixture containing metal oxide support particles and particles of a catalytically active metal oxide from Groups VA, VIA, or VIIA, with a gaseous stream containing an alcohol to cause metal oxide from the discrete catalytically active metal oxide particles to migrate to the metal oxide support particles and to form a monolayer of catalytically active metal oxide on said metal oxide support particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Shiqiang; Nunna, Bharath Babu; Boscoboinik, Jorge Anibal
Nitrogen-doped graphene (N-G) catalyst emerges as one of the promising non-platinum group metal (non-PGM) catalysts with the advantages of low cost, high oxygen reduction reaction (ORR) activity, stability, and selectivity to replace expensive PGM catalysts in electrochemical systems. This research investigated nanoscale high energy wet (NHEW) ball milling for the synthesis of N-G catalysts to make conventional problems such as sintering or localized overheating issues negligible. The successful synthesis of N-G catalysts with comparable catalytic performance to 10 wt% Pt/C by using this method has been published. This paper focuses on understanding the effect of grinding speed and grinding timemore » on the particle size and chemical state of N-G catalysts through the physical and chemical characterization. The research result shows that (1) the final particle size, nitrogen doping percentage, and nitrogen bonding composition of synthesized N-G catalysts are predictable and controllable by adjusting the grinding time, the grinding speed, and other relative experimental parameters; (2) the final particle size of N-G catalysts could be estimated from the derived relation between the cracking energy density and the particle size of ground material in the NHEW ball milling process with specified experimental parameters; and (3) the chemical composition of N-G catalysts synthesized by NHEW ball milling is controllable by adjusting the grinding time and grinding speed.« less
Zhuang, Shiqiang; Nunna, Bharath Babu; Boscoboinik, Jorge Anibal; ...
2017-07-26
Nitrogen-doped graphene (N-G) catalyst emerges as one of the promising non-platinum group metal (non-PGM) catalysts with the advantages of low cost, high oxygen reduction reaction (ORR) activity, stability, and selectivity to replace expensive PGM catalysts in electrochemical systems. This research investigated nanoscale high energy wet (NHEW) ball milling for the synthesis of N-G catalysts to make conventional problems such as sintering or localized overheating issues negligible. The successful synthesis of N-G catalysts with comparable catalytic performance to 10 wt% Pt/C by using this method has been published. This paper focuses on understanding the effect of grinding speed and grinding timemore » on the particle size and chemical state of N-G catalysts through the physical and chemical characterization. The research result shows that (1) the final particle size, nitrogen doping percentage, and nitrogen bonding composition of synthesized N-G catalysts are predictable and controllable by adjusting the grinding time, the grinding speed, and other relative experimental parameters; (2) the final particle size of N-G catalysts could be estimated from the derived relation between the cracking energy density and the particle size of ground material in the NHEW ball milling process with specified experimental parameters; and (3) the chemical composition of N-G catalysts synthesized by NHEW ball milling is controllable by adjusting the grinding time and grinding speed.« less
State-of-the-art Nanofabrication in Catalysis.
Karim, Waiz; Tschupp, Simon A; Herranz, Juan; Schmidt, Thomas J; Ekinci, Yasin; van Bokhovenac, Jeroen A
2017-04-26
We present recent developments in top-down nanofabrication that have found application in catalysis research. To unravel the complexity of catalytic systems, the design and use of models with control of size, morphology, shape and inter-particle distances is a necessity. The study of well-defined and ordered nanoparticles on a support contributes to the understanding of complex phenomena that govern reactions in heterogeneous and electro-catalysis. We review the strengths and limitations of different nanolithography methods such as electron beam lithography (EBL), photolithography, extreme ultraviolet (EUV) lithography and colloidal lithography for the creation of such highly tunable catalytic model systems and their applications in catalysis. Innovative strategies have enabled particle sizes reaching dimensions below 10 nm. It is now possible to create pairs of particles with distance controlled with an extremely high precision in the order of one nanometer. We discuss our approach to study these model systems at the single-particle level using X-ray absorption spectroscopy and show new ways to fabricate arrays of single nanoparticles or nanoparticles in pairs over a large area using EBL and EUV-achromatic Talbot lithography. These advancements have provided new insights into the active sites in metal catalysts and enhanced the understanding of the role of inter-particle interactions and catalyst supports, such as in the phenomenon of hydrogen spillover. We present a perspective on future directions for employing top-down nanofabrication in heterogeneous and electrocatalysis. The rapid development in nanofabrication and characterization methods will continue to have an impact on understanding of complex catalytic processes.
Joyce, Paul; Kempson, Ivan; Prestidge, Clive A
2016-06-01
Bio-active materials consisting of lipase encapsulated within porous silica particles were engineered to control the adsorption kinetics and molecular orientation of lipase, which play critical roles in the digestion kinetics of triglycerides. The adsorption kinetics of Candida antartica lipase A (CalA) was monitored using quartz crystal microbalance with dissipation (QCM-D) and controlled by altering the hydrophobicity of a silica binding support. The extent of adsorption was 2-fold greater when CalA was adsorbed onto hydrophobic silica compared to hydrophilic silica. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) fragmentation patterns, in conjunction with multivariate statistics, demonstrated enhanced exposure of the lipase's catalytic domain, specifically the histidine group responsible for activity, when CalA was adsorbed on hydrophilic silica. Consequently, lipid digestion kinetics were enhanced when CalA was loaded in hydrophilic porous silica particles, i.e., a 2-fold increase in the pseudo-first-order rate constant for digestion when compared to free lipase. In contrast, digestion kinetics were inhibited when CalA was hosted in hydrophobic porous silica, i.e., a 5-fold decrease in pseudo-first-order rate constant for digestion when compared to free lipase. These findings provide valuable insights into the mechanism of lipase action which can be exploited to develop smarter food and drug delivery systems consisting of porous lipid-based materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Gerts, David W; Bean, Robert S; Metcalf, Richard R
2013-02-19
A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.
Characterization of jellyfish turning using 3D-PTV
NASA Astrophysics Data System (ADS)
Xu, Nicole; Dabiri, John
2017-11-01
Aurelia aurita are oblate, radially symmetric jellyfish that consist of a gelatinous bell and subumbrellar muscle ring, which contracts to provide motive force. Swimming is typically modeled as a purely vertical motion; however, asymmetric activations of swim pacemakers (sensory organs that innervate the muscle at eight locations around the bell margin) result in turning and more complicated swim behaviors. More recent studies have examined flow fields around turning jellyfish, but the input/output relationship between locomotive controls and swim trajectories is unclear. To address this, bell kinematics for both straight swimming and turning are obtained using 3D particle tracking velocimetry (3D-PTV) by injecting biocompatible elastomer tags into the bell, illuminating the tank with ultraviolet light, and tracking the resulting fluorescent particles in a multi-camera setup. By understanding these kinematics in both natural and externally controlled free-swimming animals, we can connect neuromuscular control mechanisms to existing flow measurements of jellyfish turning for applications in designing more energy efficient biohybrid robots and underwater vehicles. NSF GRFP.
Yamauchi, Naoki; Takamura, Kohtaro; Shigyo, Masayoshi; Migita, Catharina Taiko; Masuda, Yukihiro; Maekawa, Tetsuya
2014-08-01
The effect of electrostatic atomized water particles (EAWP) on degreening of green sour citrus fruit during storage was determined. Superoxide anion and hydroxyl radicals included in EAWP were present on the surface of the fruit peel after the treatment. Hydrogen peroxide was formed from EAWP in an aqueous solution, which could indicate that a hydroxyl radical of EAWP turns to hydrogen peroxide in the fruit flavedo as well as in the aqueous solution. EAWP treatment effectively suppressed the degreening of green yuzu and Nagato-yuzukichi fruits during storage at 20°C. The enhancement in K+ ion leakage of both EAWP-treated fruits reduced in comparison with the control. In spite of EAWP treatment, total peroxide level in both fruits showed almost no changes during storage, suggesting that hydrogen peroxide formed by EAWP treatment could stimulate the activation of hydrogen peroxide scavenging system and control degreening of these fruits during storage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Laser pushing or pulling of absorbing airborne particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chuji, E-mail: cw175@msstate.edu; Gong, Zhiyong; Pan, Yong-Le
2016-07-04
A single absorbing particle formed by carbon nanotubes in the size range of 10–50 μm is trapped in air by a laser trapping beam and concurrently illuminated by another laser manipulating beam. When the trapping beam is terminated, the movement of the particle controlled by the manipulating beam is investigated. We report our observations of light-controlled pushing and pulling motions. We show that the movement direction has little relationship with the particle size and manipulating beam's parameters but is dominated by the particle's orientation and morphology. With this observation, the controllable optical manipulation is now able to be generalized to arbitrarymore » particles, including irregularly shaped absorbing particles that are shown in this work.« less
NASA Astrophysics Data System (ADS)
Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.
2014-12-01
Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could reflect differences in their viscosity.
THE SEROLOGICAL SPECIFICITY OF PARTICULATE COMPONENTS DERIVED FROM VARIOUS NORMAL MAMMALIAN ORGANS
Henle, Werner; Chambers, Leslie A.; Groupé, Vincent
1941-01-01
1. Particles derived from filtrates of organ suspensions by high speed centrifugation were serologically active as shown by agglutination and complement fixation techniques. Particles from brain, liver, lung, kidney, heart muscle, spleen, testicle, and pancreas of various species have been studied. 2. All particles showed a certain degree of organ specificity with the exception of pancreas. Cross-reactions occurred between the particles from various organs from one species, which were more marked when complement fixation technique was employed than by the agglutination test. However, agglutination always appeared earlier and was stronger, and complement fixation was positive in higher dilutions of antigen in the presence of homologous antiserum than with heterologous antisera. 3. The cross-reactions did not depend on the occasional precipitins for serum and the agglutinins for the red cells of the species from which the particles were derived, nor did they bear a relation to Wassermann and Forssman antibodies present in some of the sera. 4. The organ specific differentiation of the particles from various organs could more clearly be demonstrated by two means: The antiserum could be diluted in such a way that only the homologous reaction still showed a positive result while the cross-reactions had become negative; or the cross-reacting antibodies could be absorbed by heterologous particles and the homologous reaction was still more or less intact. 5. In addition to the organ specific differentiation, most particles were found to exhibit species specificity. While the particles derived from kidney, lung, testicle, and heart muscle aggregated only in the presence of the antiserum against the corresponding organ particles from the homologous species, brain particles reacted with brain antisera against both homologous and heterologous species alike. Absorption of brain particle antisera with brain preparations from a heterologous species removed all antibodies. Liver particle preparations showed an intermediate position in that all liver preparations with the exception of rabbit liver particles were aggregated by any liver particle antiserum. However, absorption with liver particles from a heterologous species left a distinct species specific reaction in the serum. 6. The antigens involved are all destroyed by heating to 100° C. for a few minutes with the exception of brain particles, which after 20 minutes at 100° C. still gave complement fixation almost to the same strength as the untreated controls. 7. Alcoholic and ether extracts of brain reacted with the brain particle antisera only. All alcoholic or ether extracts of other organs gave no complement fixation. None of the various other organ particle antisera tested contained antibodies for these extracts. 8. The relationship between the heat-stable and the alcohol-soluble brain particle antigen studied by absorption technique revealed that there were two antigens present, both organ specific and independent of the species, the one alcohol- and ether-soluble, the other not soluble in these solvents but heat stable. Some of the sera showed besides a few species specific antibodies. 9. Preliminary evidence has been gathered to show that no iso-immunization could be obtained with any one of the organ particles. As far as cytotoxic activity of the sera is concerned only the kidney particle antisera have been studied for nephrotoxins; these failed to reveal any such activity in the mouse. PMID:19871150
Rasoulzadehzali, Monireh; Namazi, Hassan
2018-04-27
The present project describes the facile preparation of novel pH-sensitive bio-nanocomposite hydrogel beads based on chitosan (CH) and GO-Ag nanohybrid particles for controlled release of anti-cancer drugs such as doxorubicin (DOX). The loading efficiency of doxorubicin into test beads was measured via UV-vis spectroscopy analysis and was found to be high. The formation of silver nanoparticles on the GO sheets and structural characteristics were evaluated via FT-IR, TEM, XRD, and SEM techniques. In addition, the antibacterial activity, swelling and drug release profiles of prepared nanocomposite beads were evaluated. Also, in vitro drug release test was performed in order to investigate the efficiency of CH/GO-Ag nanocomposite hydrogel beads as a drug carrier for controlled release of anti-cancer drugs such as doxorubicin (DOX). A more sustained and controlled drug release profile was observed for CH/GO-Ag nanocomposite hydrogel beads that enhanced by increasing the GO-Ag nanohybrid particles content. Copyright © 2018 Elsevier B.V. All rights reserved.
Kind, T V
2010-01-01
The rate of Calliphora vicina haemocytic defense reaction to foreign particles injection depends on the larval age and on the previous bacterial immunization. Immunization of crop-empting larvae induces an evident increase in particles phagocytosis by juvenile plasmatocytes in 24 h after injection. Both the hemogram and the pattern of cellular defense reaction change significantly after crop-empting. Immunized larvae start intensive adhesion of foreign particles to plasmatocytes surface and formation of great aggregations of plasmatocytes (morules) no longer than in 34 min after injection. The period of particle-haemocyte adhesion is short-termed and no more than after 30 min cell aggregates dissociate and adhered charcoal particles pass to thrombocydoidal agglutinates. Unimmunized control larvae of the same age have shown no adhesion and morules formation. In immunized wadering and diapausing larvae, formation of capsules consisting of central thrombocydoidal agglutinate filled with alien particles and adherent plasmatocytes I is intensified. In contrast to moru-les, this capsule formation is not accompanied by charcoal particles adhesion to plasmatocytes. Immunization of mature larvae of C. vicina shown no prominent influence on both the rate of phagocytosis and the hyaline cells differentiation. It might be supposed that the receptors system is complex and the immunization both the mechanisms of foreigners recognition (adhesion, morulation and incapsulation) and the far more lately occurring phagocytosis.
Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases
Lin, Chi-Ying; Lin, Shih-Jie; Yang, Yi-Chen; Wang, Der-Yuan; Cheng, Hwei-Fang; Yeh, Ming-Kung
2015-01-01
Vaccination, which provides effective, safe infectious disease protection, is among the most important recent public health and immunological achievements. However, infectious disease remains the leading cause of death in developing countries because several vaccines require repeated administrations and children are often incompletely immunized. Microsphere-based systems, providing controlled release delivery, can obviate the need for repeat immunizations. Here, we review the function of sustained and pulsatile release of biodegradable polymeric microspheres in parenteral and mucosal single-dose vaccine administration. We also review the active-targeting function of polymeric particles. With their shield and co-delivery functions, polymeric particles are applied to develop single-dose and mucosally administered vaccines as well as to improve subunit vaccines. Because polymeric particles are easily surface-modified, they have been recently used in vaccine development for cancers and many infectious diseases without effective vaccines (e.g., human immunodeficiency virus infection). These polymeric particle functions yield important vaccine carriers and multiple benefits. PMID:25839217
Numerical studies from quantum to macroscopic scales of carbon nanoparticules in hydrogen plasma
NASA Astrophysics Data System (ADS)
Lombardi, Guillaume; Ngandjong, Alain; Mezei, Zsolt; Mougenot, Jonathan; Michau, Armelle; Hassouni, Khaled; Seydou, Mahamadou; Maurel, François
2016-09-01
Dusty plasmas take part in large scientific domains from Universe Science to nanomaterial synthesis processes. They are often generated by growth from molecular precursor. This growth leads to the formation of larger clusters which induce solid germs nucleation. Particle formed are described by an aerosol dynamic taking into account coagulation, molecular deposition and transport processes. These processes are controlled by the elementary particle. So there is a strong coupling between particle dynamics and plasma discharge equilibrium. This study is focused on the development of a multiscale physic and numeric model of hydrogen plasmas and carbon particles around three essential coupled axes to describe the various physical phenomena: (i) Macro/mesoscopic fluid modeling describing in an auto-coherent way, characteristics of the plasma, molecular clusters and aerosol behavior; (ii) the classic molecular dynamics offering a description to the scale molecular of the chains of chemical reactions and the phenomena of aggregation; (iii) the quantum chemistry to establish the activation barriers of the different processes driving the nanopoarticule formation.
Active Control of Separation From the Flap of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Melton, La Tunia Pack; Yao, Chung-Sheng; Seifert, Avi
2003-01-01
Active flow control in the form of periodic zero-mass-flux excitation was applied at several regions on the leading edge and trailing edge flaps of a simplified high-lift system t o delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approx.= 10) and low frequency amplitude modulation (F(+)AM approx.= 1) of the high frequency excitation were used for control. Preliminary efforts to combine leading and trailing edge flap excitations are also reported.
Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin
2016-08-10
Atmospheric fine particles (diameter < 1 μm) attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm-661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm-30 nm), Aitken mode (30 nm-100 nm), and accumulation mode (100 nm-661 nm) reached 4923 cm(-3), 12193 cm(-3) and 4801 cm(-3), respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of "repeated, short-lived" nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of developing countries.
Movement of particles using sequentially activated dielectrophoretic particle trapping
Miles, Robin R.
2004-02-03
Manipulation of DNA and cells/spores using dielectrophoretic (DEP) forces to perform sample preparation protocols for polymerized chain reaction (PCR) based assays for various applications. This is accomplished by movement of particles using sequentially activated dielectrophoretic particle trapping. DEP forces induce a dipole in particles, and these particles can be trapped in non-uniform fields. The particles can be trapped in the high field strength region of one set of electrodes. By switching off this field and switching on an adjacent electrodes, particles can be moved down a channel with little or no flow.
The ability of black carbon aerosols to absorb water and act as a cloud condensation nuclei (CCN) directly controls their lifetime in the atmosphere as well as their impact on cloud formation, thus impacting the earth’s climate. Black carbon emitted from most combustion pro...
Controlling the scattering properties of thin, particle-doped coatings
NASA Astrophysics Data System (ADS)
Rogers, William; Corbett, Madeleine; Manoharan, Vinothan
2013-03-01
Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp; Yanagisawa, Kazumichi; Murakami, Takeshi
Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particlesmore » with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.« less
Cadmium-enriched cigarette smoke-induced cytological and biochemical alterations in rat lungs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gairola, C.G.
Male Sprague-Dawley rats were exposed daily for 52 wk in a nose-only exposure system to smoke from the University of Kentucky 2R1 reference cigarettes (SM) or from cigarettes made of cadmium-enriched tobacco (Cd-SM). At sacrifice, the animals were evaluated by bronchoalveolar lavage (BAL) for inflammatory cell response in the lungs, and the cells so obtained were analyzed for phagocytosis of particles (latex and IgG-coated SRBCs) and for their ability to release oxidants upon phagocytic challenge. Additionally, lung tissues were analyzed for Cd levels and lung homogenate fractions were assayed for aryl hydrocarbon hydroxylase (AHH) as well as total and selenium-dependentmore » glutathione peroxidase (GSH-Px) activities. BAL cell counts showed a significant influx of inflammatory cells into the lungs of the Cd-SM group but not the SM group. The proportion of neutrophils in the BAL cells of the Cd-Sm group was elevated to 40 {plus minus} 9%, compared with less than 2% in the SM group. Phagocytosis of both types of particles by macrophages from SM and Cd-SM groups was similar to that of the control groups, except that a greater uptake of latex particles was seen is Cd-SM macrophages. The release of oxidants (superoxides and hydrogen peroxide) by the BAL cells was severely impaired in the Cd-SM group, whereas a slight stimulation was seen in the SM gropu. Pulmonary GSH-Px activity was the same in all groups. A significant induction of the pulmonary AHH activity was observed in the SM group only. The Cd levels in the lungs were approximately 8- and 200-fold greater than controls in SM and Cd-SM groups, respectively. These observation suggest a significant influence of tabacco Cd on the toxicity of cigarette smoke.« less
Synthesis and properties of unagglomerated nanocomposite particles for nanomedical applications
NASA Astrophysics Data System (ADS)
Rouse, Sarah M.
2005-11-01
Methods have been developed to prepare stable, unagglomerated active-medical-agent nanoparticles in a range of sizes, based on reverse-micelle microemulsion techniques. The process used to prepare monodisperse, spherical nanocomposite particles is based on methods originally outlined in detail by Adair et al. and Li et al. The "Molecular Dot" (MD) nanoparticles incorporate a variety of medically-active substances, such as organic fluorophores and therapeutic drugs, internally distributed in silica, titania, calcium phosphate, or calcium phospho-silicate matrices. The synthesis techniques have also been modified to produce nanoparticles containing combinations of fluorophores and medicinal agents, in order to monitor drug release and location. The specific biomedical application for the nanocomposite particles dictates the selection of core and shell-matrix materials. For example, the protective shell-matrices of the silica and titania MDs shield the active-medical agents from damage due to changes in pH, temperature, and other environmental effects. Conversely, the calcium phosphate and calcium phospho-silicate shell-matrix nanoparticles can potentially be engineered to dissolve in physiological environments. The method used to remove residual precursor materials while maintaining a well-dispersed assembly of nanoparticles is critical to the use of nanocolloids in medical applications. The dispersion approach is based on protection-dispersion theory tailored to accommodate the high surface areas and reactivity of sub-50 nm particles in aqueous or water/ethanol mixtures. Dispersion of the nanocomposite particles is further enhanced with the use of size-exclusion high performance liquid chromatography (HPLC) to simultaneously wash and disperse the nanocomposite particle suspensions. The state of dispersion of the nanosuspensions is evaluated using the average agglomeration number (AAN) approach in conjunction with other characterization techniques. The formulation of a non-aggregating colloid to deliver active-medical agents has the potential to revolutionize controlled, targeted, systemic delivery for a variety of drug and genetic therapies. The active-medical agent nanoparticles may be applied to a range of biomedical applications, including bioimaging, drug delivery, gene therapy, and combinations thereof. The fluorescent Molecular Dot nanoparticles have been utilized in applications such as in vitro cell labeling, as well as chemical and biological targeting. In addition, the Molecular Dots are a promising alternative to current bioimaging technologies, as the fluorescent emissions from the nanoparticulates do not exhibit blinking/intermittent qualities. (Abstract shortened by UMI.)
[Size dependent SERS activity of gold nanoparticles studied by 3D-FDTD simulation].
Li, Li-mei; Fang, Ping-ping; Yang, Zhi-lin; Huang, Wen-da; Wu, De-yin; Ren, Bin; Tian, Zhong-qun
2009-05-01
By synthesizing Au nanoparticles with the controllable size from about 16 to 160 nm and measuring their SERS activity, the authors found that Au nanoparticles film with a size in the range of 120-135 nm showed the highest SERS activity with the 632.8 nm excitation, which is different from previous experimental results and theoretical predictions. The three dimensional finite difference time domain (3D-FDTD)method was employed to simulate the size dependent SERS activity. At the 632.8 nm excitation, the particles with a size of 110 nm shows the highest enhancement under coupling condition and presents an enhancement as high as 10(9) at the hot site. If the enhancement is averaged over the whole surface, the enhancement can still be as high as 10(7), in good agreement with our experimental data. For Au nanoparticles with a larger size such as 220 nm, the multipolar effect leads to the appearance of the second maximum enhancement with the increase in particles size. The averaged enhancement for the excitation line of 325 nm is only 10(2).
Control of friction at the nanoscale
Barhen, Jacob; Braiman, Yehuda Y.; Protopopescu, Vladimir
2010-04-06
Methods and apparatus are described for control of friction at the nanoscale. A method of controlling frictional dynamics of a plurality of particles using non-Lipschitzian control includes determining an attribute of the plurality of particles; calculating an attribute deviation by subtracting the attribute of the plurality of particles from a target attribute; calculating a non-Lipschitzian feedback control term by raising the attribute deviation to a fractionary power .xi.=(2m+1)/(2n+1) where n=1, 2, 3 . . . and m=0, 1, 2, 3 . . . , with m strictly less than n and then multiplying by a control amplitude; and imposing the non-Lipschitzian feedback control term globally on each of the plurality of particles; imposing causes a subsequent magnitude of the attribute deviation to be reduced.
2014-01-01
Background Exposure to particulate matter (PM) air pollution especially derived from traffic is associated with increases in cardiorespiratory morbidity and mortality. In this study, we evaluated the ability of novel vehicle cabin air inlet filters to reduce diesel exhaust (DE)-induced symptoms and markers of inflammation in human subjects. Methods Thirty healthy subjects participated in a randomized double-blind controlled crossover study where they were exposed to filtered air, unfiltered DE and DE filtered through two selected particle filters, one with and one without active charcoal. Exposures lasted for one hour. Symptoms were assessed before and during exposures and lung function was measured before and after each exposure, with inflammation assessed in peripheral blood five hours after exposures. In parallel, PM were collected from unfiltered and filtered DE and assessed for their capacity to drive damaging oxidation reactions in a cell-free model, or promote inflammation in A549 cells. Results The standard particle filter employed in this study reduced PM10 mass concentrations within the exposure chamber by 46%, further reduced to 74% by the inclusion of an active charcoal component. In addition use of the active charcoal filter was associated by a 75% and 50% reduction in NO2 and hydrocarbon concentrations, respectively. As expected, subjects reported more subjective symptoms after exposure to unfiltered DE compared to filtered air, which was significantly reduced by the filter with an active charcoal component. There were no significant changes in lung function after exposures. Similarly diesel exhaust did not elicit significant increases in any of the inflammatory markers examined in the peripheral blood samples 5 hour post-exposure. Whilst the filters reduced chamber particle concentrations, the oxidative activity of the particles themselves, did not change following filtration with either filter. In contrast, diesel exhaust PM passed through the active charcoal combination filter appeared less inflammatory to A549 cells. Conclusions A cabin air inlet particle filter including an active charcoal component was highly effective in reducing both DE particulate and gaseous components, with reduced exhaust-induced symptoms in healthy volunteers. These data demonstrate the effectiveness of cabin filters to protect subjects travelling in vehicles from diesel exhaust emissions. PMID:24621126
Mean first passage time of active Brownian particle in one dimension
NASA Astrophysics Data System (ADS)
Scacchi, A.; Sharma, A.
2018-02-01
We investigate the mean first passage time of an active Brownian particle in one dimension using numerical simulations. The activity in one dimension is modelled as a two state model; the particle moves with a constant propulsion strength but its orientation switches from one state to other as in a random telegraphic process. We study the influence of a finite resetting rate r on the mean first passage time to a fixed target of a single free active Brownian particle and map this result using an effective diffusion process. As in the case of a passive Brownian particle, we can find an optimal resetting rate r* for an active Brownian particle for which the target is found with the minimum average time. In the case of the presence of an external potential, we find good agreement between the theory and numerical simulations using an effective potential approach.
Maxild, J; Andersen, M; Kiel, P
1978-01-01
Mutagenic activity of fume particles produced by metal arc welding on stainless steel (ss) is demonstrated by using the Salmonella/microsome mutagenicity test described by Ames et al., with strain TA100 (base-pair substitution) and TA98 (frame-shift reversion). Results of a representative but limited selection of processes and materials show that mutagenic activity is a function of process and process parameters. Welding on stainless steel produces particles that are mutagenic, whereas welding on mild steel (ms) produces particles that are not. Manual metal arc (MMA) welding on stainless steel produces particles of higher mutagenic activity than does metal inert gas (MIG) welding, and fume particles produced by MIG welding under short-arc transfer. Further studies of welding fumes (both particles and gases) must be performed to determine process parameters of significance for the mutagenic activity.
Favretto-Cristini, Nathalie; Hégron, Lise; Sornay, Philippe
2016-04-01
Some nuclear fuels are currently manufactured by a powder metallurgy process that consists of three main steps, namely preparation of the powders, powder compaction, and sintering of the compact. An optimum between size, shape and cohesion of the particles of the nuclear fuels must be sought in order to obtain a compact with a sufficient mechanical strength, and to facilitate the release of helium and fission gases during irradiation through pores connected to the outside of the pellet after sintering. Being simple to adapt to nuclear-oriented purposes, the Acoustic Emission (AE) technique is used to control the microstructure of the compact by monitoring the compaction of brittle Uranium Dioxide (UO2) particles of a few hundred micrometers. The objective is to identify in situ the mechanisms that occur during the UO2 compaction, and more specifically the particle fragmentation that is linked to the open porosity of the nuclear matter. Three zones of acoustic activity, strongly related to the applied stress, can be clearly defined from analysis of the continuous signals recorded during the compaction process. They correspond to particle rearrangement and/or fragmentation. The end of the noteworthy fragmentation process is clearly defined as the end of the significant process that increases the compactness of the material. Despite the fact that the wave propagation strongly evolves during the compaction process, the acoustic signature of the fragmentation of a single UO2 particle and a bed of UO2 particles under compaction is well identified. The waveform, with a short rise time and an exponential-like decay of the signal envelope, is the most reliable descriptor. The impact of the particle size and cohesion on the AE activity, and then on the fragmentation domain, is analyzed through the discrete AE signals. The maximum amplitude of the burst signals, as well as the mean stress corresponding to the end of the recorded AE, increase with increasing mean diameter of the particles. Moreover, the maximum burst amplitude increases with increasing particle cohesion. Copyright © 2015 Elsevier B.V. All rights reserved.
Compositions and methods for adoptive and active immunotherapy
Fahmy, Tarek; Steenblock, Erin
2014-01-14
Modular aAPCs and methods of their manufacture and use are provided. The modular aAPCs are constructed from polymeric microparticles. The aAPCs include encapsulated cytokines and coupling agents which modularly couple functional elements including T cell receptor activators, co-stimulatory molecules and adhesion molecules to the particle. The ability of these aAPCs to release cytokines in a controlled manner, coupled with their modular nature and ease of ligand attachment, results in an ideal, tunable APC capable of stimulating and expanding primary T cells.
NASA Astrophysics Data System (ADS)
Sahni, Geetika; Panwar, Amit; Kaur, Balpreet
2015-02-01
A controlled "green synthesis" approach to synthesize silver nanoparticles by Allium cepa and Musa acuminata plant extract has been reported. The effect of different process parameters, such as pH, temperature and time, on synthesis of Ag nanoparticles from plant extracts has been highlighted. The work reports an easy approach to control the kinetics of interaction of metal ions with reducing agents, stabilized by ammonia to achieve sub-10 nm particles with narrow size distribution. The nanoparticles have been characterized by UV-Visible spectra and TEM analysis. Excellent antimicrobial activity at extremely low concentration of the nanoparticles was observed against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Fusarium oxysporum which may allow their exploitation as a new generation nanoproduct in biomedical and agricultural applications.
Flocking from a quantum analogy: spin-orbit coupling in an active fluid
NASA Astrophysics Data System (ADS)
Loewe, Benjamin; Souslov, Anton; Goldbart, Paul M.
2018-01-01
Systems composed of strongly interacting self-propelled particles can form a spontaneously flowing polar active fluid. The study of the connection between the microscopic dynamics of a single such particle and the macroscopic dynamics of the fluid can yield insights into experimentally realizable active flows, but this connection is well understood in only a few select cases. We introduce a model of self-propelled particles based on an analogy with the motion of electrons that have strong spin-orbit coupling. We find that, within our model, self-propelled particles are subject to an analog of the Heisenberg uncertainty principle that relates translational and rotational noise. Furthermore, by coarse-graining this microscopic model, we establish expressions for the coefficients of the Toner-Tu equations—the hydrodynamic equations that describe an active fluid composed of these ‘active spins.’ The connection between stochastic self-propelled particles and quantum particles with spin may help realize exotic phases of matter using active fluids via analogies with systems composed of strongly correlated electrons.
Slade, Jonathan H.; Shiraiwa, Manabu; Arangio, Andrea; ...
2017-02-04
Chemical aging of organic aerosol (OA) through multiphase oxidation reactions can alter their cloud condensation nuclei (CCN) activity and hygroscopicity. However, the oxidation kinetics and OA reactivity depend strongly on the particle phase state, potentially influencing the hydrophobic-to-hydrophilic conversion rate of carbonaceous aerosol. Here, amorphous Suwannee River fulvic acid (SRFA) aerosol particles, a surrogate humic-like substance (HULIS) that contributes substantially to global OA mass, are oxidized by OH radicals at different temperatures and phase states. When oxidized at low temperature in a glassy solid state, the hygroscopicity of SRFA particles increased by almost a factor of two, whereas oxidation ofmore » liquid-like SRFA particles at higher temperatures did not affect CCN activity. Low-temperature oxidation appears to promote the formation of highly-oxygenated particle-bound fragmentation products with lower molar mass and greater CCN activity, underscoring the importance of chemical aging in the free troposphere and its influence on the CCN activity of OA.« less
Biological activity of particle exhaust emissions from light-duty diesel engines.
Carraro, E; Locatelli, A L; Ferrero, C; Fea, E; Gilli, G
1997-01-01
Whole diesel exhaust has been classified recently as a probable carcinogen, and several genotoxicity studies have found particulate exhaust to be clearly mutagenic. Moreover, genotoxicity of diesel particulate is greatly influenced by fuel nature and type of combustion. In order to obtain an effective environmental pollution control, combustion processes using alternative fuels are being analyzed presently. The goal of this study is to determine whether the installation of exhaust after treatment-devices on two light-duty, exhaust gas recirculation (EGR) valve-equipped diesel engines (1930 cc and 2500 cc) can reduce the mutagenicity associated with particles collected during U.S.A. and European driving cycles. Another interesting object was to compare the ability of alternative biodiesel and conventional diesel fuels to reduce the mutagenic activity associated with collected particles from two light duty diesel engines (both 1930 cc) during the European driving cycle. SOF mutagenicity was assayed using the Salmonella/microsome test (TA 98 and TA 100 strains, +/- S9 fraction). In the first part of our study, the highest mutagenicity was revealed by TA98 strain without enzymatic activation, suggesting a direct-acting mutagenicity prevalence in diesel particulate. The 2500 cc engine revealed twofold mutagenic activity compared with the 1930 cc engine (both EGR valve equipped), whereas an opposite result was found in particulate matter amount. The use of a noncatalytic ceramic trap produced a decrease of particle mutagenic activity in the 2500 cc car, whereas an enhancement in the 1930 cc engine was found. The catalytic converter and the electrostatic filter installed on the 2500 cc engine yielded a light particle amount and an SOF mutagenicity decrease. A greater engine stress was obtained using European driving cycles, which caused the strongest mutagenicity/km compared with the U.S.A. cycles. In the second part of the investigation, even though a small number of assays were available, exhaust emission generation by biodiesel fuel seemed to yield a smaller environmental impact than that of the referenced diesel fuel. The results point out the usefulness of mutagenicity testing in the research of both newer, more efficient automotive aftertreatment devices and less polluting fuels.
Implication of forage particle length on chewing activities and milk production in dairy goats.
Lu, C D
1987-07-01
Twenty-four primiparous Alpine does fed a high concentrate ration were utilized to study the effect of forage particle length on chewing activity, ruminal components, and milk composition. Treatments were Bermudagrass hay with mean particle length of 2.38 and 3.87 mm. Forage particle length was determined with an oscillating screen particle separator. Feeding forage with 3.87-mm mean particle length to lactating dairy goats resulted in higher total chewing and rumination times, slightly higher milk fat content, and fat-corrected milk production. Results from this experiment support the hypothesis that forage particle length affects chewing activities and production of milk fat precursors in the rumen and alters milk fat content and output of fat-corrected milk. Forage particle length appeared to be an important index for forage quality and a quantitative approach could be feasible to establish a system relating forage particle length to milk production in dairy goats.
Mabray, Marc C; Lillaney, Prasheel; Sze, Chia-Hung; Losey, Aaron D; Yang, Jeffrey; Kondapavulur, Sravani; Liu, Derek; Saeed, Maythem; Patel, Anand; Cooke, Daniel; Jun, Young-Wook; El-Sayed, Ivan; Wilson, Mark; Hetts, Steven W
2016-03-01
To establish that a magnetic device designed for intravascular use can bind small iron particles in physiologic flow models. Uncoated iron oxide particles 50-100 nm and 1-5 µm in size were tested in a water flow chamber over a period of 10 minutes without a magnet (ie, control) and with large and small prototype magnets. These same particles and 1-µm carboxylic acid-coated iron oxide beads were likewise tested in a serum flow chamber model without a magnet (ie, control) and with the small prototype magnet. Particles were successfully captured from solution. Particle concentrations in solution decreased in all experiments (P < .05 vs matched control runs). At 10 minutes, concentrations were 98% (50-100-nm particles in water with a large magnet), 97% (50-100-nm particles in water with a small magnet), 99% (1-5-µm particles in water with a large magnet), 99% (1-5-µm particles in water with a small magnet), 95% (50-100-nm particles in serum with a small magnet), 92% (1-5-µm particles in serum with a small magnet), and 75% (1-µm coated beads in serum with a small magnet) lower compared with matched control runs. This study demonstrates the concept of magnetic capture of small iron oxide particles in physiologic flow models by using a small wire-mounted magnetic filter designed for intravascular use. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.
Zeitelhofer, Manuel; Karra, Daniela; Macchi, Paolo; Tolino, Marco; Thomas, Sabine; Schwarz, Martina; Kiebler, Michael; Dahm, Ralf
2008-07-23
The dendritic localization of mRNAs and their subsequent translation at stimulated synapses contributes to the experience-dependent remodeling of synapses and thereby to the establishment of long-term memory. Localized mRNAs are transported in a translationally silent manner to distal dendrites in specific ribonucleoprotein particles (RNPs), termed transport RNPs. A recent study suggested that processing bodies (P-bodies), which have recently been identified as sites of RNA degradation and translational control in eukaryotic cells, may participate in the translational control of dendritically localized mRNAs in Drosophila neurons. This study raised the interesting question of whether dendritic transport RNPs are distinct from P-bodies or whether those structures share significant overlap in their molecular composition in mammalian neurons. Here, we show that P-body and transport RNP markers do not colocalize and are not transported together in the same particles in dendrites of mammalian neurons. Detailed time-lapse videomicroscopy analyses reveal, however, that both P-bodies and transport RNPs can interact in a dynamic manner via docking. Docking is a frequent event involving as much as 50% of all dendritic P-bodies. Chemically induced neuronal activity results in a 60% decrease in the number of P-bodies in dendrites, suggesting that P-bodies disassemble after synaptic stimulation. Our data lend support to the exciting hypothesis that dendritically localized mRNAs might be stored in P-bodies and be released and possibly translated when synapses become activated.
The Bumper Boats Effect: Effect of Inertia on Self Propelled Active Particles Systems
NASA Astrophysics Data System (ADS)
Dai, Chengyu; Bruss, Isaac; Glotzer, Sharon
Active matter has been well studied using the standard Brownian dynamics model, which assumes that the self-propelled particles have no inertia. However, many examples of active systems, such as sub-millimeter bacteria and colloids, have non-negligible inertia. Using particle-based Langevin Dynamics simulation with HOOMD-blue, we study the role of particle inertia on the collective emergent behavior of self-propelled particles. We find that inertia hinders motility-induced phase separation. This is because the effective speed of particles is reduced due to particle-particle collisions-\\x9Dmuch like bumper boats, which take time to reach terminal velocity after a crash. We are able to fully account for this effect by tracking a particle's average rather than terminal velocity, allowing us to extend the standard Brownian dynamics model to account for the effects of momentum. This study aims to inform experimental systems where the inertia of the active particles is non-negligible. We acknowledge the funding support from the Center for Bio-Inspired Energy Science (CBES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.
NASA Astrophysics Data System (ADS)
Wang, Yuying; Zhang, Fang; Li, Zhanqing; Tan, Haobo; Xu, Hanbing; Ren, Jingye; Zhao, Jian; Du, Wei; Sun, Yele
2017-04-01
A series of strict emission control measures was implemented in Beijing and the surrounding seven provinces to ensure good air quality during the 2015 China Victory Day parade, rendering a unique opportunity to investigate the anthropogenic impact of aerosol properties. Submicron aerosol hygroscopicity and volatility were measured during and after the control period using a hygroscopic and volatile tandem differential mobility analyzer (H/V-TDMA) system. Three periods, namely the control clean period (Clean1), the non-control clean period (Clean2), and the non-control pollution period (Pollution), were selected to study the effect of the emission control measures on aerosol hygroscopicity and volatility. Aerosol particles became more hydrophobic and volatile due to the emission control measures. The hygroscopicity parameter (κ) of 40-200 nm particles decreased by 32.0-8.5 % during the Clean1 period relative to the Clean2 period, while the volatile shrink factor (SF) of 40-300 nm particles decreased by 7.5-10.5 %. The emission controls also changed the diurnal variation patterns of both the probability density function of κ (κ-PDF) and the probability density function of SF (SF-PDF). During Clean1 the κ-PDF showed one nearly hydrophobic (NH) mode for particles in the nucleation mode, which was likely due to the dramatic reduction in industrial emissions of inorganic trace gases. Compared to the Pollution period, particles observed during the Clean1 and Clean2 periods exhibited a more significant nonvolatile (NV) mode throughout the day, suggesting a more externally mixed state particularly for the 150 nm particles. Aerosol hygroscopicities increased as particle sizes increased, with the greatest increases seen during the Pollution period. Accordingly, the aerosol volatility became weaker (i.e., SF increased) as particle sizes increased during the Clean1 and Clean2 periods, but no apparent trend was observed during the Pollution period. Based on a correlation analysis of the number fractions of NH and NV particles, we found that a higher number fraction of hydrophobic and volatile particles during the emission control period.
NASA Astrophysics Data System (ADS)
Nandiyanto, Asep Bayu Dani; Iskandar, Ferry; Okuyama, Kikuo
2011-12-01
Monodisperse spherical mesoporous silica nanoparticles were successfully synthesized using a liquid-phase synthesis method. The result showed particles with controllable pore size from several to tens nanometers with outer diameter of several tens nanometers. The ability in the control of pore size and outer diameter was altered by adjusting the precursor solution ratios. In addition, we have conducted the adsorption ability of the prepared particles. The result showed that large organic molecules were well-absorbed to the prepared silica porous particles, in which this result was not obtained when using commercial dense silica particle and/or hollow silica particle. With this result, the prepared mesoporous silica particles may be used efficiently in various applications, such as sensors, pharmaceuticals, environmentally sensitive pursuits, etc.
Tracking control of colloidal particles through non-homogeneous stationary flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Híjar, Humberto, E-mail: humberto.hijar@lasallistas.org.mx
2013-12-21
We consider the problem of controlling the trajectory of a single colloidal particle in a fluid with steady non-homogeneous flow. We use a Langevin equation to describe the dynamics of this particle, where the friction term is assumed to be given by the Faxén's Theorem for the force on a sphere immersed in a stationary flow. We use this description to propose an explicit control force field to be applied on the particle such that it will follow asymptotically any given desired trajectory, starting from an arbitrary initial condition. We show that the dynamics of the controlled particle can bemore » mapped into a set of stochastic harmonic oscillators and that the velocity gradient of the solvent induces an asymmetric coupling between them. We study the particular case of a Brownian particle controlled through a plane Couette flow and show explicitly that the velocity gradient of the solvent renders the dynamics non-stationary and non-reversible in time. We quantify this effect in terms of the correlation functions for the position of the controlled particle, which turn out to exhibit contributions depending exclusively on the non-equilibrium character of the state of the solvent. In order to test the validity of our model, we perform simulations of the controlled particle moving in a simple shear flow, using a hybrid method combining molecular dynamics and multi-particle collision dynamics. We confirm numerically that the proposed guiding force allows for controlling the trajectory of the micro-sized particle by obligating it to follow diverse specific trajectories in fluids with homogeneous shear rates of different strengths. In addition, we find that the non-equilibrium correlation functions in simulations exhibit the same qualitative behavior predicted by the model, thus revealing the presence of the asymmetric non-equilibrium coupling mechanism induced by the velocity gradient.« less
Method for producing ceramic particles and agglomerates
Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku
2001-01-01
A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.
Shen, Zaiyi; Würger, Alois; Lintuvuori, Juho S
2018-03-27
Using lattice Boltzmann simulations we study the hydrodynamics of an active spherical particle near a no-slip wall. We develop a computational model for an active Janus particle, by considering different and independent mobilities on the two hemispheres and compare the behaviour to a standard squirmer model. We show that the topology of the far-field hydrodynamic nature of the active Janus particle is similar to the standard squirmer model, but in the near-field the hydrodynamics differ. In order to study how the near-field effects affect the interaction between the particle and a flat wall, we compare the behaviour of a Janus swimmer and a squirmer near a no-slip surface via extensive numerical simulations. Our results show generally a good agreement between these two models, but they reveal some key differences especially with low magnitudes of the squirming parameter [Formula: see text]. Notably the affinity of the particles to be trapped at a surface is increased for the active Janus particles when compared to standard squirmers. Finally, we find that when the particle is trapped on the surface, the velocity parallel to the surface exceeds the bulk swimming speed and scales linearly with [Formula: see text].
Gas-Phase Combustion Synthesis of Nonoxide Nanoparticles in Microgravity
NASA Technical Reports Server (NTRS)
Axelbaum, R. L.; Kumfer, B. M.; Sun, Z.; Chao, B. H.
2001-01-01
Gas-phase combustion synthesis is a promising process for creating nanoparticles for the growing nanostructure materials industry. The challenges that must be addressed are controlling particle size, preventing hard agglomerates, maintaining purity, and, if nonoxides are synthesized, protecting the particles from oxidation and/or hydrolysis during post-processing. Sodium-halide Flame Encapsulation (SFE) is a unique methodology for producing nonoxide nanoparticles that addresses these challenges. This flame synthesis process incorporates sodium and metal-halide chemistry, resulting in nanoparticles that are encapsulated in salt during the early stages of their growth in the flame. Salt encapsulation has been shown to allow control of particle size and morphology, while serving as an effective protective coating for preserving the purity of the core particles. Metals and compounds that have been produced using this technology include Al, W, Ti, TiB2, AlN, and composites of W-Ti and Al-AlN. Oxygen content in SFE synthesized nano- AlN has been measured by neutron activation analysis to be as low as 0.54wt.%, as compared to over 5wt.% for unprotected AlN of comparable size. The overall objective of this work is to study the SFE process and nano-encapsulation so that they can be used to produce novel and superior materials. SFE experiments in microgravity allow the study of flame and particle dynamics without the influence of buoyancy forces. Spherical sodium-halide flames are produced in microgravity by ejecting the halide from a spherical porous burner into a quiescent atmosphere of sodium vapor and argon. Experiments are performed in the 2.2 sec Drop Tower at the NASA-Glenn Research Center. Numerical models of the flame and particle dynamics were developed and are compared with the experimental results.
Quirós, Jennifer; Gonzalo, Soledad; Jalvo, Blanca; Boltes, Karina; Perdigón-Melón, José Antonio; Rosal, Roberto
2016-09-01
Electrospun cellulose acetate composites containing silver and copper nanoparticles supported in sepiolite and mesoporous silica were prepared and tested as fungistatic membranes against the fungus Aspergillus niger. The nanoparticles were in the 3-50nm range for sepiolite supported materials and limited by the size of mesopores (5-8nm) in the case of mesoporous silica. Sepiolite and silica were well dispersed within the fibers, with larger aggregates in the micrometer range, and allowed a controlled release of metals to create a fungistatic environment. The effect was assessed using digital image analysis to evaluate fungal growth rate and fluorescence readings using a viability stain. The results showed that silver and copper nanomaterials significantly impaired the growth of fungi when the spores were incubated either in direct contact with particles or included in cellulose acetate composite membranes. The fungistatic effect took place on germinating spores before hyphae growth conidiophore formation. After 24h the cultures were separated from fungistatic materials and showed growth impairment only due to the prior exposure. Growth reduction was important for all the particles and membranes with respect to non-exposed controls. The effect of copper and silver loaded materials was not significantly different from each other with average reductions around 70% for bare particles and 50% for membranes. Copper on sepiolite was particularly efficient with a decrease of metabolic activity of up to 80% with respect to controls. Copper materials induced rapid maturation and conidiation with fungi splitting in sets of subcolonies. Metal-loaded nanomaterials acted as reservoirs for the controlled release of metals. The amount of silver or copper released daily by composite membranes represented roughly 1% of their total load of metals. Supported nanomaterials encapsulated in nanofibers allow formulating active membranes with high antifungal performance at the same time minimizing the risk of nanoparticle release into the environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Ru, Jiang-Ying; Xu, Hai-Dong; Shi, Dai; Pan, Jun-Bo; Pan, Xiao-Jin; Wang, Yan-Fen
2016-01-01
Ulinastatin, a urinary trypsin inhibitor (UTI), is widely used to clinically treat lipopolysaccharide (LPS)-related inflammatory disorders recently. Adherent pathogen-associated molecular patterns (PAMPs), of which LPS is the best-studied and classical endotoxin produced by Gram-negative bacteria, act to increase the biological activity of osteopedic wear particles such as polymethyl-methacrylate (PMMA) and titanium particles in cell culture and animal models of implant loosening. The present study was designed to explore the inhibitory effect of UTI on osteoclastogenesis and inflammatory osteolysis in LPS/PMMA-mediated Raw264.7 cells and murine osteolysis models, and investigate the potential mechanism. The in vitro study was divided into the control group, LPS-induced group, PMMA-stimulated group and UTI-pretreated group. UTI (500 or 5000 units/ml) pretreatment was followed by PMMA (0.5 mg/ml) with adherent LPS. The levels of inflammatory mediators including tumour necrosis factor-α (TNF-α), matrixmetallo-proteinases-9 (MMP-9) and interleukin-6 (IL-6), receptor activation of nuclear factor NF-κB (RANK), and cathepsin K were examined and the amounts of phosphorylated I-κB, MEK, JNK and p38 were measured. In vivo study, murine osteolysis models were divided into the control group, PMMA-induced group and UTI-treated group. UTI (500 or 5000 units/kg per day) was injected intraperitoneally followed by PMMA suspension with adherent LPS (2×108 particles/25 μl) in the UTI-treated group. The thickness of interfacial membrane and the number of infiltrated inflammatory cells around the implants were assessed, and bone mineral density (BMD), trabecular number (Tb.N.), trabecular thickness (Tb.Th.), trabecular separation (Tb.Sp.), relative bone volume over total volume (BV/TV) of distal femur around the implants were calculated. Our results showed that UTI pretreatment suppressed the secretion of proinflammatory cytokines including MMP-9, IL-6, TNF-α, RANK and cathepsin K through down-regulating the activity of nuclear factor kappa B (NF-κB) and MAPKs partly in LPS/PMMA-mediated Raw264.7 cells. Finally, UTI treatment decreased the inflammatory osteolysis reaction in PMMA-induced murine osteolysis models. In conclusion, these results confirm the anti-inflammatory potential of UTI in the prevention of particle disease. PMID:27638499
Ru, Jiang-Ying; Xu, Hai-Dong; Shi, Dai; Pan, Jun-Bo; Pan, Xiao-Jin; Wang, Yan-Fen
2016-10-01
Ulinastatin, a urinary trypsin inhibitor (UTI), is widely used to clinically treat lipopolysaccharide (LPS)-related inflammatory disorders recently. Adherent pathogen-associated molecular patterns (PAMPs), of which LPS is the best-studied and classical endotoxin produced by Gram-negative bacteria, act to increase the biological activity of osteopedic wear particles such as polymethyl-methacrylate (PMMA) and titanium particles in cell culture and animal models of implant loosening. The present study was designed to explore the inhibitory effect of UTI on osteoclastogenesis and inflammatory osteolysis in LPS/PMMA-mediated Raw264.7 cells and murine osteolysis models, and investigate the potential mechanism. The in vitro study was divided into the control group, LPS-induced group, PMMA-stimulated group and UTI-pretreated group. UTI (500 or 5000 units/ml) pretreatment was followed by PMMA (0.5 mg/ml) with adherent LPS. The levels of inflammatory mediators including tumour necrosis factor-α (TNF-α), matrixmetallo-proteinases-9 (MMP-9) and interleukin-6 (IL-6), receptor activation of nuclear factor NF-κB (RANK), and cathepsin K were examined and the amounts of phosphorylated I-κB, MEK, JNK and p38 were measured. In vivo study, murine osteolysis models were divided into the control group, PMMA-induced group and UTI-treated group. UTI (500 or 5000 units/kg per day) was injected intraperitoneally followed by PMMA suspension with adherent LPS (2×10 8 particles/25 μl) in the UTI-treated group. The thickness of interfacial membrane and the number of infiltrated inflammatory cells around the implants were assessed, and bone mineral density (BMD), trabecular number (Tb.N.), trabecular thickness (Tb.Th.), trabecular separation (Tb.Sp.), relative bone volume over total volume (BV/TV) of distal femur around the implants were calculated. Our results showed that UTI pretreatment suppressed the secretion of proinflammatory cytokines including MMP-9, IL-6, TNF-α, RANK and cathepsin K through down-regulating the activity of nuclear factor kappa B (NF-κB) and MAPKs partly in LPS/PMMA-mediated Raw264.7 cells. Finally, UTI treatment decreased the inflammatory osteolysis reaction in PMMA-induced murine osteolysis models. In conclusion, these results confirm the anti-inflammatory potential of UTI in the prevention of particle disease. © 2016 The Author(s).
Ali, Neserin; Ljunggren, Stefan; Karlsson, Helen M; Wierzbicka, Aneta; Pagels, Joakim; Isaxon, Christina; Gudmundsson, Anders; Rissler, Jenny; Nielsen, Jörn; Lindh, Christian H; Kåredal, Monica
2018-01-01
Epidemiological studies have shown that many welders experience respiratory symptoms. During the welding process a large number of airborne nanosized particles are generated, which might be inhaled and deposited in the respiratory tract. Knowledge of the underlying mechanisms behind observed symptoms is still partly lacking, although inflammation is suggested to play a central role. The aim of this study was to investigate the effects of welding fume particle exposure on the proteome expression level in welders suffering from respiratory symptoms, and changes in protein mediators in nasal lavage samples were analyzed. Such mediators will be helpful to clarify the pathomechanisms behind welding fume particle-induced effects. In an exposure chamber, 11 welders with work-related symptoms in the lower airways during the last month were exposed to mild-steel welding fume particles (1 mg/m 3 ) and to filtered air, respectively, in a double-blind manner. Nasal lavage samples were collected before, immediately after, and the day after exposure. The proteins in the nasal lavage were analyzed with two different mass spectrometry approaches, label-free discovery shotgun LC-MS/MS and a targeted selected reaction monitoring LC-MS/MS analyzing 130 proteins and four in vivo peptide degradation products. The analysis revealed 30 significantly changed proteins that were associated with two main pathways; activation of acute phase response signaling and activation of LXR/RXR, which is a nuclear receptor family involved in lipid signaling. Connective tissue proteins and proteins controlling the degradation of such tissues, including two different matrix metalloprotease proteins, MMP8 and MMP9, were among the significantly changed enzymes and were identified as important key players in the pathways. Exposure to mild-steel welding fume particles causes measurable changes on the proteome level in nasal lavage matrix in exposed welders, although no clinical symptoms were manifested. The results suggested that the exposure causes an immediate effect on the proteome level involving acute phase proteins and mediators regulating lipid signaling. Proteases involved in maintaining the balance between the formation and degradation of extracellular matrix proteins are important key proteins in the induced effects.
Abliz, Erkinay; Collins, Joshua E; Bell, Howard; Tata, Darrell B
2011-01-01
In this communication we report on a novel non-invasive methodology in utilizing "soft" energy diagnostic X-rays to indirectly activate a photo-agent utilized in photodynamic therapy (PDT): Photofrin II (Photo II) through X-ray induced luminescence from Gadolinium Oxysulfide (20 micron dimension) particles doped with Terbium: Gd
Crystallization kinetics of the borax decahydrate
NASA Astrophysics Data System (ADS)
Ceyhan, A. A.; Sahin, Ö.; Bulutcu, A. N.
2007-03-01
The growth and dissolution rates of borax decahydrate have been measured as a function of supersaturation for various particle sizes at different temperature ranges of 13 and 50 °C in a laboratory-scale fluidized bed crystallizer. The values of mass transfer coefficient, K, reaction rate constant, kr and reaction rate order, r were determined. The relative importances of diffusion and integration resistance were described by new terms named integration and diffusion concentration fraction. It was found that the overall growth rate of borax decahydrate is mainly controlled by integration (reaction) steps. It was also estimated that the dissolution region of borax decahydrate, apart from other materials, is controlled by diffusion and surface reaction. Increasing the temperature and particle size cause an increase in the values of kinetic parameters ( Kg, kr and K). The activation energies of overall, reaction and mass transfer steps were determined as 18.07, 18.79 and 8.26 kJmol -1, respectively.
Shmueli, Ron B; Ohnaka, Masayuki; Miki, Akiko; Pandey, Niranjan B; Lima e Silva, Raquel; Koskimaki, Jacob E; Kim, Jayoung; Popel, Aleksander S; Campochiaro, Peter A; Green, Jordan J
2013-10-01
Aberrant angiogenesis can cause or contribute to a number of diseases such as neovascular age-related macular degeneration (NVAMD). While current NVAMD treatments target angiogenesis, these treatments are not effective for all patients and also require frequent intravitreal injections. New agents and delivery systems to treat NVAMD could be beneficial to many patients. We have recently developed a serpin-derived peptide as an anti-angiogenic agent. Here, this peptide is investigated for activity in human retinal endothelial cells in vitro and for reducing angiogenesis in a laser-induced choroidal neovascularization mouse model of NVAMD in vivo. While frequent intravitreal injections can be tolerated clinically, reducing the number of injections can improve patient compliance, safety, and outcomes. To achieve this goal, and to maximize the in vivo activity of injected peptide, we have developed biodegradable polymers and controlled release particle formulations to extend anti-angiogenic therapy. To create these devices, the anionic peptides are first self-assembled into nanoparticles using a biodegradable cationic polymer and then as a second step, these nanoparticles are encapsulated into biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles. In situ, these particles show approximately zero-order, linear release of the anionic peptide over 200 days. These particles are made of safe, hydrolytically degradable polymers and have low endotoxin. Long-term in vivo experiments in the laser-induced neovascularization model for NVAMD show that these peptide-releasing particles decrease angiogenesis for at least fourteen weeks in vivo following a single particle dose and therefore are a promising treatment strategy for NVAMD. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Effect of Particle Composition on Hygroscopicity and Droplet Formation at CARES
NASA Astrophysics Data System (ADS)
Cziczo, D. J.; Pekour, M. S.; Hiranuma, N.; Nelson, D.
2010-12-01
During the June, 2010 Carbonaceous Aerosol and Radiative Effects Study (CARES) a custom made humidity controlled nephelometer, hereafter termed a ‘humidograph’, was deployed with a commercial cloud condensation nucleus counter (CCNC) and the particle analysis by laser mass spectrometry (PALMS) instrument. Other ancillary measurements, such as particle size distributions, were made continuously during the month. The CARES field study took place in the Sacramento, CA area. Early June was characterized by cool, wet weather with predominantly northerly flow and very low particle loading. Very little biomass burning took place and the aerosol was largely sulfate neutralized by ammonia. Later in the month a more typical flow pattern from the Sacramento urban area toward the foothills developed. During this period more biomass burning occurred and organics from anthropogenic and urban sources were present on particles. The aforementioned instruments were located in the town of Cool, CA in the Sierra foothills, approximately 50 kilometers north east of cool. This site was chosen as being on the typical summertime daily flow some hours downstream of the Sacramento urban plume. Using these instruments we were able to correlate water uptake and droplet formation with particle composition. The early period of CARES was characterized by a clear deliquescence of the aerosol at ~80% relative humidity which correlated with an ammonium neutralized sulfate aerosol composition. Few CCN were present although these activated at low supersaturations and represented a large fraction of the total aerosol over ~70 nanometers in diameter. Later in the month deliquescence was not clearly indicated for a more organic-rich and biomass burning influenced aerosol. More CCN were present although activation generally required much higher saturations.
Ogunkunle, Clement O; Jimoh, Mahboob A; Asogwa, Nnaemeka T; Viswanathan, K; Vishwakarma, Vinita; Fatoba, Paul O
2018-07-15
Increased use of nanoparticles-based products in agriculture portends important implications for agriculture. Therefore, the impact of nano-copper particles (<25 nm and 60-80 nm) on Cu uptake, bioaccumulation (roots, leaves and seeds), activity of ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and lipid peroxidation in leaves and roots of Vigna unguiculata (cowpea) was studied. Plants were exposed to four levels (0, 125, 500 and 1000 mg/kg) of 25 nm or 60-80 nm nano-Cu for 65 days. Results indicated significant (P<.05) uptake of Cu at all nano-Cu levels compared to control, and bioaccumulation increased in seeds by at least 250%. Response of antioxidant enzymes to both nano-Cu types was concentration-dependent. Activity of APX and GR was enhanced in leaves and roots in response to both nano-Cu treatments in similar patterns compared to control. Both nano-Cu increased CAT activity in roots while SOD activity reduced in both leaves and roots. This shows that response of antioxidant enzymes to nano-Cu toxicity was organ-specific in cowpea. Malondialdehyde, a measure of lipid peroxidation, increased at 500 -1000 mg/kg of 25 nm nano-Cu in leaves by average of 8.4%, and 60-80 nm nano-Cu in root by 52.8%, showing particle-size and organ-dependent toxicity of nano-Cu. In conclusion, exposure of cowpea to nano-Cu treatments increased both the uptake and bioaccumulation of Cu, and also promoted the activity of APX and GR in root and leaf tissues of cowpea. Therefore, APX- and GR-activity level could be a useful predictive biomarker of nano-Cu toxicity in cowpea. Copyright © 2018 Elsevier Inc. All rights reserved.
Active Flow Control Using Sweeping Jet Actuators on a Semi-Span Wing Model
NASA Technical Reports Server (NTRS)
Melton, LaTunia Pack; Koklu, Mehti
2016-01-01
Wind tunnel experiments were performed using active flow control on an unswept semispan wing model with a 30% chord trailing edge flap to aid in the selection of actuators for a planned high Reynolds number experiment. Two sweeping jet actuator sizes were investigated to determine the influence of actuator size on the active flow control system efficiency. Sweeping jet actuators with orifice sizes of 1 mm x 2 mm and 2 mm x 4 mm were selected because of the differences in actuator jet sweep angle. The parameters that were varied include actuator momentum, freestream velocity, and trailing edge flap deflection angle. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the two actuators. In addition to the wind tunnel experiments, benchtop studies of the actuators were performed to characterize the jets produced by each actuator. Benchtop investigations of the smaller actuator reveal that the jet exiting the actuator has a reduced sweep angle compared to published data for larger versions of this type of actuator. The larger actuator produces an oscillating jet that attaches to the external di?user walls at low supply pressures and produces the expected sweep angles. The AFC results using the smaller actuators show that while the actuators can control flow separation, the selected spacing of 3.3 cm may be too large due to the reduced sweep angle. In comparison, the spacing for the larger actuators, 6.6 cm, appears to be optimal for the Mach numbers investigated. Particle Image Velocimetry results are presented and show how the wall jets produced by the actuators cause the flow to attach to the flap surface.
Coarsening dynamics of binary liquids with active rotation.
Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M
2015-11-21
Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.
Isotopic composition of high-activity particles released in the Chernobyl accident.
Osuch, S; Dabrowska, M; Jaracz, P; Kaczanowski, J; Le Van Khoi; Mirowski, S; Piasecki, E; Szeflińska, G; Szefliński, Z; Tropiło, J
1989-11-01
Gamma spectra were measured and activities of the detected isotopes were analyzed for 206 high-activity particles (hot particles, HPs) found in northeastern Poland after the Chernobyl accident. The isotopic composition of HPs observed in gamma-activity is compared with that of the general fallout and core inventory calculations. Particle formation and a process of depletion in Ru and Cs isotopes are discussed. On the basis of a search performed a year later, some comments on the behavior of HPs in the soil are made.
Stresslets Induced by Active Swimmers.
Lauga, Eric; Michelin, Sébastien
2016-09-30
Active particles disturb the fluid around them as force dipoles, or stresslets, which govern their collective dynamics. Unlike swimming speeds, the stresslets of active particles are rarely determined due to the lack of a suitable theoretical framework for arbitrary geometry. We propose a general method, based on the reciprocal theorem of Stokes flows, to compute stresslets as integrals of the velocities on the particle's surface, which we illustrate for spheroidal chemically active particles. Our method will allow tuning the stresslet of artificial swimmers and tailoring their collective motion in complex environments.
Applicability of effective pair potentials for active Brownian particles.
Rein, Markus; Speck, Thomas
2016-09-01
We have performed a case study investigating a recently proposed scheme to obtain an effective pair potential for active Brownian particles (Farage et al., Phys. Rev. E 91, 042310 (2015)). Applying this scheme to the Lennard-Jones potential, numerical simulations of active Brownian particles are compared to simulations of passive Brownian particles interacting by the effective pair potential. Analyzing the static pair correlations, our results indicate a limited range of activity parameters (speed and orientational correlation time) for which we obtain quantitative, or even qualitative, agreement. Moreover, we find a qualitatively different behavior for the virial pressure even for small propulsion speeds. Combining these findings we conclude that beyond linear response active particles exhibit genuine non-equilibrium properties that cannot be captured by effective pair interaction alone.
Voutilainen, Arto; Kaipio, Jari P; Pekkanen, Juha; Timonen, Kirsi L; Ruuskanen, Juhani
2004-01-01
A theoretical comparison of modeled particle depositions in the human respiratory tract was performed by taking into account different particle number and mass size distributions and physical activity in an urban environment. Urban-air data on particulate concentrations in the size range 10 nm-10 microm were used to estimate the hourly average particle number and mass size distribution functions. The functions were then combined with the deposition probability functions obtained from a computerized ICRP 66 deposition model of the International Commission on Radiological Protection to calculate the numbers and masses of particles deposited in five regions of the respiratory tract of a male adult. The man's physical activity and minute ventilation during the day were taken into account in the calculations. Two different mass and number size distributions of aerosol particles with equal (computed) <10 microm particle mass concentrations gave clearly different deposition patterns in the central and peripheral regions of the human respiratory tract. The deposited particle numbers and masses were much higher during the day (0700-1900) than during the night (1900-0700) because an increase in physical activity and ventilation were temporally associated with highly increased traffic-derived particles in urban outdoor air. In future analyses of the short-term associations between particulate air pollution and health, it would not only be important to take into account the outdoor-to-indoor penetration of different particle sizes and human time-activity patterns, but also actual lung deposition patterns and physical activity in significant microenvironments.
Texture evolution during thermomechanical processing in rare earth free magnesium alloys
NASA Astrophysics Data System (ADS)
Miller, Victoria Mayne
The use of wrought magnesium alloys is highly desirable for a wide range of applications where low component weight is desirable due to the high specific strength and stiffness the alloys can achieve. However, the implementation of wrought magnesium has been hindered by the limited room temperature formability which typically results from deformation processing. This work identifies opportunities for texture modification during thermomechanical processing of conventional (rare earth free) magnesium alloys via a combination of experimental investigation and polycrystal plasticity simulations. During deformation, it is observed that a homogeneous distribution of coarse intermetallic particles efficiently weakens deformation texture at all strain levels, while a highly inhomogeneous particle distribution is only effective at high strains. The particle deformation effects are complemented by the addition of alkaline earth solute, which modifies the relative deformation mode activity. During recrystallization, grains with basal orientations recrystallize more readily than off-basal grains, despite similar levels of internal misorientation. Dislocation substructure investigations revealed that this is a result of enhanced nucleation in the basal grains due to the dominance of prismatic slip. This dissertation identifies avenues to enhance the potential formability of magnesium alloys during thermomechanical processing by minimizing the evolved texture strength. The following are the identified key aspects of microstructural control: -Maintaining a fine grain size, likely via Zener pinning, to favorably modify deformation mode activity and homogenize deformation. -Developing a coarse, homogeneously distributed population of coarse intermetallic particles to promote a diffuse deformation texture. -Minimizing the activity of prismatic slip to retard the recrystallization of grains with basal orientations, allowing the development of a more diffuse recrystallization texture.
In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris
Thomas, Vinoy; Halloran, Brian A.; Ambalavanan, Namasivayam; Catledge, Shane A.; Vohra, Yogesh K.
2012-01-01
Nanostructured diamond coatings improve the smoothness and wear characteristics of the metallic component of total hip replacements and increase the longevity of these implants, but the effect of nanodiamond wear debris on macrophages needs to be determined to estimate the long-term inflammatory effects of wear debris. The objective was to investigate the effect of the size of synthetic nanodiamond particles on macrophage proliferation (BrdU incorporation), apoptosis (Annexin-V flow cytometry), metabolic activity (WST-1 assay) and inflammatory cytokine production (qPCR). RAW 264.7 macrophages were exposed to varying sizes (6, 60, 100, 250 and 500 nm) and concentrations (0, 10, 50, 100 and 200 μg ml−1) of synthetic nanodiamonds. We observed that cell proliferation but not metabolic activity was decreased with nanoparticle sizes of 6–100 nm at lower concentrations (50 μg ml−1), and both cell proliferation and metabolic activity were significantly reduced with nanodiamond concentrations of 200 μg ml−1. Flow cytometry indicated a significant reduction in cell viability due to necrosis irrespective of particle size. Nanodiamond exposure significantly reduced gene expression of tumor necrosis factor-α, interleukin-1β, chemokine Ccl2 and platelet-derived growth factor compared to serum-only controls or titanium oxide (anatase 8 nm) nanoparticles, with variable effects on chemokine Cxcl2 and vascular endothelial growth factor. In general, our study demonstrates a size and concentration dependence of macrophage responses in vitro to nanodiamond particles as possible wear debris from diamond-coated orthopedic joint implants. PMID:22342422
Manganese oxide particles as cytoprotective, oxygen generating agents.
Tootoonchi, Mohammad Hossein; Hashempour, Mazdak; Blackwelder, Patricia L; Fraker, Christopher A
2017-09-01
Cell culture and cellular transplant therapies are adversely affected by oxidative species and radicals. Herein, we present the production of bioactive manganese oxide nanoparticles for the purpose of radical scavenging and cytoprotection. Manganese comprises the core active structure of somatic enzymes that perform the same function, in vivo. Formulated nanoparticles were characterized structurally and surveyed for maximal activity (superoxide scavenging, hydrogen peroxide scavenging with resultant oxygen generation) and minimal cytotoxicity (48-h direct exposure to titrated manganese oxide concentrations). Cytoprotective capacity was tested using cell exposure to hydrogen peroxide in the presence or absence of the nanoparticles. Several ideal compounds were manufactured and utilized that showed complete disproportionation of superoxide produced by the xanthine/xanthine oxidase reaction. Further, the nanoparticles showed catalase-like activity by completely converting hydrogen peroxide into the corresponding concentration of oxygen. Finally, the particles protected cells (murine β-cell insulinoma) against insult from hydrogen peroxide exposure. Based on these observed properties, these particles could be utilized to combat oxidative stress and inflammatory response in a variety of cell therapy applications. Maintaining viability once cells have been removed from their physiological niche, e.g. culture and transplant, demands proper control of critical variables such as oxygenation and removal of harmful substances e.g. reactive oxygen species. Limited catalysts can transform reactive oxygen species into molecular oxygen and, thereby, have the potential to maintain cell viability and function. Among these are manganese oxide particles which are the subject of this study. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter
Chen, Yue; Wu, Ting-Hsiang; Kung, Yu-Chun; Teitell, Michael A.; Chiou, Pei-Yu
2014-01-01
We report a 3D microfluidic pulsed laser-triggered fluorescence-activated cell sorter capable of sorting at a throughput of 23,000 cells sec−1 with 90% purity in high-purity mode and at a throughput of 45,000 cells sec−1 with 45% purity in enrichment mode in one stage and in a single channel. This performance is realized by exciting laser-induced cavitation bubbles in a 3D PDMS microfluidic channel to generate high-speed liquid jets that deflect detected fluorescent cells and particles focused by 3D sheath flows. The ultrafast switching mechanism (20 μsec complete on-off cycle), small liquid jet perturbation volume, and three-dimensional sheath flow focusing for accurate timing control of fast (1.5 m sec−1) passing cells and particles are three critical factors enabling high-purity sorting at high-throughput in this sorter. PMID:23844418
Pharmaceutical spray drying: solid-dose process technology platform for the 21st century.
Snyder, Herman E
2012-07-01
Requirement for precise control of solid-dosage particle properties created with a scalable process technology are continuing to expand in the pharmaceutical industry. Alternate methods of drug delivery, limited active drug substance solubility and the need to improve drug product stability under room-temperature conditions are some of the pharmaceutical applications that can benefit from spray-drying technology. Used widely for decades in other industries with production rates up to several tons per hour, pharmaceutical uses for spray drying are expanding beyond excipient production and solvent removal from crystalline material. Creation of active pharmaceutical-ingredient particles with combinations of unique target properties are now more common. This review of spray-drying technology fundamentals provides a brief perspective on the internal process 'mechanics', which combine with both the liquid and solid properties of a formulation to enable high-throughput, continuous manufacturing of precision powder properties.
Giant number fluctuations in self-propelled particles without alignment
NASA Astrophysics Data System (ADS)
Fily, Yaouen; Henkes, Silke; Marchetti, M. Cristina
2012-02-01
Giant number fluctuations are a ubiquitous property of active systems. They were predicted using a generic continuum description of active nematics, and have been observed in simulations of Vicsek-type models and in experiments on vibrated granular layers and swimming bacteria. In all of these systems, there is an alignment interaction among the self-propelled units, either imposed as a rule, or arising from hydrodynamic or other medium-mediated couplings. Here we report numerical evidence of giant number fluctuations in a minimal model of self-propelled disks in two dimensions in the absence of any alignment mechanism. The direction of self-propulsion evolves via rotational diffusion and the particles interact solely via a finite range repulsive soft potential. It can be shown that in this system self propulsion is equivalent to a non Markovian noise whose correlation time is controlled by the amplitude of the orientational noise.
Actuated rheology of magnetic micro-swimmers suspensions: Emergence of motor and brake states
NASA Astrophysics Data System (ADS)
Vincenti, Benoit; Douarche, Carine; Clement, Eric
2018-03-01
We study the effect of magnetic field on the rheology of magnetic micro-swimmers suspensions. We use a model of a dilute suspension under simple shear and subjected to a constant magnetic field. Particle shear stress is obtained for both pusher and puller types of micro-swimmers. In the limit of low shear rate, the rheology exhibits a constant shear stress, called actuated stress, which only depends on the swimming activity of the particles. This stress is induced by the magnetic field and can be positive (brake state) or negative (motor state). In the limit of low magnetic fields, a scaling relation of the motor-brake effect is derived as a function of the dimensionless parameters of the model. In this case, the shear stress is an affine function of the shear rate. The possibilities offered by such an active system to control the rheological response of a fluid are finally discussed.
NASA Astrophysics Data System (ADS)
Lin, Xianke; Lu, Wei
2017-07-01
This paper proposes a model that enables consideration of the realistic anisotropic environment surrounding an active material particle by incorporating both diffusion and migration of lithium ions and electrons in the particle. This model makes it possible to quantitatively evaluate effects such as fracture on capacity degradation. In contrast, the conventional model assumes isotropic environment and only considers diffusion in the active particle, which cannot capture the effect of fracture since it would predict results contradictory to experimental observations. With the developed model we have investigated the effects of active material electronic conductivity, particle size, and State of Charge (SOC) swing window when fracture exists. The study shows that the low electronic conductivity of active material has a significant impact on the lithium ion pattern. Fracture increases the resistance for electron transport and therefore reduces lithium intercalation/deintercalation. Particle size plays an important role in lithium ion transport. Smaller particle size is preferable for mitigating capacity loss when fracture happens. The study also shows that operating at high SOC reduces the impact of fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.W.
1973-07-01
The current series of data provides evidence for the interpretation that fluoride-induced growth retardation and aging are processes controlled by changes directly related to protein formation and by changes at the site of protein synthesis, respectively. These changes are decreases in the content of total and ribosomal RNA, alteration of ribosomal components, and a shift in ribosomal distribution from polysomes to smaller particles. The factors responsible for these findings are the accumulation of ATP, the activation of ribonuclease activity in roots, and the inhibiton of phytase activity in endosperm-scutellar tissues.
NASA Astrophysics Data System (ADS)
Ahmadi, Eltefat; Rezan, Sheikh Abdul; Baharun, Norlia; Ramakrishnan, Sivakumar; Fauzi, Ahmad; Zhang, Guangqing
2017-10-01
The kinetics of chlorination of titanium nitride (TiN) was investigated in the temperature range of 523 K to 673 K (250 °C to 400 °C). The results showed that the extent of chlorination slightly increased with increasing temperature and decreasing particle size of titanium nitride at constant flow rate of N2-Cl2 gas mixture. At 523 K (250 °C), the extent of chlorination was 85.6 pct in 60 minutes whereas at 673 K (400 °C), it was 97.7 pct investigated by weight loss measurement and confirmed by ICP analyses. The experimental results indicated that a shrinking unreacted core model with mixed-control mechanism governed the chlorination rate. It was observed that the surface chemical reaction of chlorine gas on the surface of TiN particles was rate controlling in the initial stage and, during later stage, internal (pore) diffusion through the intermediate product layer was rate controlling step. Overall the process follows the mixed-control model incorporating both chemical reaction and internal diffusion control. The activation energy for the chlorination of TiN was found to be about 10.97 kJ mol-1. In processing TiCl4 from TiN and TiO0.02C0.13N0.85, the solids involved in the chlorination process were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectrometer (EDX). The SEM/EDX results demonstrated the consumption of TiN particles with extent of chlorination that showed shrinking core behavior.
Fast-ion stabilization of tokamak plasma turbulence
NASA Astrophysics Data System (ADS)
Di Siena, A.; Görler, T.; Doerk, H.; Poli, E.; Bilato, R.
2018-05-01
A significant reduction of the turbulence-induced anomalous heat transport has been observed in recent studies of magnetically confined plasmas in the presence of a significant fast-ion fractions. Therefore, the control of fast-ion populations with external heating might open the way to more optimistic scenarios for future fusion devices. However, little is known about the parameter range of relevance of these fast-ion effects which are often only highlighted in correlation with substantial electromagnetic fluctuations. Here, a significant fast ion induced stabilization is also found in both linear and nonlinear electrostatic gyrokinetic simulations which cannot be explained with the conventional assumptions based on pressure profile and dilution effects. Strong wave-fast particle resonant interactions are observed for realistic parameters where the fast particle trace approximation clearly failed and explained with the help of a reduced Vlasov model. In contrast to previous interpretations, fast particles can actively modify the Poisson field equation—even at low fast particle densities where dilution tends to be negligible and at relatively high temperatures, i.e. T < 30T e . Further key parameters controlling the role of the fast ions are identified in the following and various ways of further optimizing their beneficial impact are explored. Finally, possible extensions into the electromagnetic regime are briefly discussed and the relevance of these findings for ITER standard scenarios is highlighted.
Yang, W Z; Beauchemin, K A; Rode, L M
2001-12-01
Dietary factors that alter fermentability, NDF content, or particle size of the diet were evaluated for their effects on chewing behavior and distribution and passage of feed particles in the digestive tract of dairy cows. A double 4 x 4 quasi-Latin square design with a 2(3) factorial arrangement of treatments was used. The dietary factors were: extent of barley grain processing, coarse (1.60 mm) or flat (1.36 mm); forage-to-concentrate ratio (F:C), low (35:65) or high (55:45) (dry matter basis); and forage particle length, long (7.59 mm) or short (6.08 mm). Eight lactating cows with ruminal and duodenal cannulas were offered ad libitum access to total mixed diets. Chewing time, expressed as minutes per day or per kilogram of dry matter or neutral detergent fiber (NDF), was increased with high F:C diets due to increased eating and ruminating times but was decreased when expressed per kilogram of NDF intake from forage. The influence of forage particle length or grain processing on chewing activity was less pronounced than F:C ratio. Chewing activity was positively correlated to proportion of long forage particles in the diet but not to particle length of the diets. Influence of feed particle size on particle size distribution in different sites of the digestive tract was minimal. Particle size distributions of duodenal digesta and feces differed; the proportion of particles retained on the 3.35- or 1.18-mm screens was higher, but proportion of particles that passed through the 1.18-mm screen was lower in duodenal digesta than in feces. Relationships between chewing activities and ruminal pH or fractional passage rate of rumen contents were not significant. These results indicate that particle size of barley-based diets was not a reliable indicator of chewing activity. Forage particle size and NDF content of the diets were more reliable indicators of chewing activity than was the NDF content of forage. Fecal particle size was not an appropriate means of estimating the size of particles exiting the reticulorumen, at least for barley-based diets. Breakdown of coarse particles was necessary, but not a rate-limiting step for particles exiting the rumen. Passage rate of the rumen contents was affected by numerous factors including chewing activity.
Zhang, Weiwei; Huang, Guoyou; Ng, Kelvin; Ji, Yuan; Gao, Bin; Huang, Liqing; Zhou, Jinxiong; Lu, Tian Jian; Xu, Feng
2018-03-26
Hydrogel particles that can be engineered to compartmentally culture cells in a three-dimensional (3D) and high-throughput manner have attracted increasing interest in the biomedical area. However, the ability to generate hydrogel particles with specially designed structures and their potential biomedical applications need to be further explored. This work introduces a method for fabricating hydrogel particles in an ellipsoidal cap-like shape (i.e., ellipsoidal cap-like hydrogel particles) by employing an open-pore anodic aluminum oxide membrane. Hydrogel particles of different sizes are fabricated. The ability to produce ellipsoidal cap-like magnetic hydrogel particles with controlled distribution of magnetic nanoparticles is demonstrated. Encapsulated cells show high viability, indicating the potential for using these hydrogel particles as structure- and remote-controllable building blocks for tissue engineering application. Moreover, the hydrogel particles are also used as sacrificial templates for fabricating ellipsoidal cap-like concave wells, which are further applied for producing size controllable cell aggregates. The results are beneficial for the development of hydrogel particles and their applications in 3D cell culture.
Zeng, Qin; Zhang, Peipei; Zeng, Xiangbin; Tostanoski, Lisa H; Jewell, Christopher M
2017-12-19
The continued challenges facing vaccines in infectious disease and cancer highlight a need for better control over the features of vaccines and the responses they generate. Biomaterials offer unique advantages to achieve this goal through features such as controlled release and co-delivery of antigens and adjuvants. However, many synthesis strategies lead to particles with heterogeneity in diameter, shape, loading level, or other properties. In contrast, advanced manufacturing techniques allow precision control of material properties at the micro- and nano-scale. These capabilities in vaccines and immunotherapies could allow more rational design to speed efficient design and clinical translation. Here we employed soft lithography to generate polymer microdisk vaccines with uniform structures and tunable compositions of vaccine antigens and toll like receptor agonists (TLRas) that serve as molecular adjuvants. Compared to conventional PLGA particles formed by emulsion, microdisks provided a dramatic improvement in the consistency of properties such as diameter. During culture with primary dendritic cells (DCs) from mice, microdisks were internalized by the cells without toxicity, while promoting co-delivery of antigen and TLRa to the same cell. Analysis of DC surface activation markers by flow cytometry revealed microdisk vaccines activated dendritic cells in a manner that depended on the level of TLRa, while antigen processing and presentation depended on the amount of antigen in the microdisks. Together, this work demonstrates the use of advanced manufacturing techniques to produce uniform vaccines that direct DC function depending on the composition in the disks.
Mabray, Marc C.; Lillaney, Prasheel; Sze, Chia-Hung; Losey, Aaron D.; Yang, Jeffrey; Kondapavulur, Sravani; Liu, Derek; Saeed, Maythem; Patel, Anand; Cooke, Daniel; Jun, Young-Wook; El-Sayed, Ivan; Wilson, Mark; Hetts, Steven W.
2015-01-01
Purpose To establish that a magnetic device designed for intravascular use can bind small iron particles in physiologic flow models. Materials and Methods Uncoated iron oxide particles 50–100 nm and 1–5 μm in size were tested in a water flow chamber over a period of 10 minutes without a magnet (ie, control) and with large and small prototype magnets. These same particles and 1-μm carboxylic acid–coated iron oxide beads were likewise tested in a serum flow chamber model without a magnet (ie, control) and with the small prototype magnet. Results Particles were successfully captured from solution. Particle concentrations in solution decreased in all experiments (P < .05 vs matched control runs). At 10 minutes, concentrations were 98% (50–100-nm particles in water with a large magnet), 97% (50–100-nm particles in water with a small magnet), 99% (1–5-μm particles in water with a large magnet), 99% (1–5-μm particles in water with a small magnet), 95% (50–100-nm particles in serum with a small magnet), 92% (1–5-μm particles in serum with a small magnet), and 75% (1-μm coated beads in serum with a small magnet) lower compared with matched control runs. Conclusions This study demonstrates the concept of magnetic capture of small iron oxide particles in physiologic flow models by using a small wire-mounted magnetic filter designed for intravascular use. PMID:26706187
The effect of post-synthesis aging on the ligand exchange activity of iron oxide nanoparticles.
Davis, Kathleen; Vidmar, Michael; Khasanov, Airat; Cole, Brian; Ghelardini, Melanie; Mayer, Justin; Kitchens, Christopher; Nath, Amar; Powell, Brian A; Mefford, O Thompson
2018-02-01
Ligand exchange is a widely-used method of controlling the surface chemistry of nanomaterials. Exchange is dependent on many factors including the age of the core particle being modified. Aging of the particles can impact surface structure and composition, which in turn can affect ligand binding. To quantify the effects of aging on ligand exchange, we employed a technique to track the exchange of radiolabeled 14 C-oleic acid with unlabeled, oleic acid bound to iron oxide nanoparticles. Liquid scintillation counting (LSC) was used to determine the amount of 14 C-oleic acid adsorbing to the particles throughout the duration of the exchange for particles aged for 2days, 7days, and 30days. Results revealed an increase in the total amount of ligands exchanged with aging up to 30days. Kinetic analysis of these results revealed a significant decrease in the overall rate of ligand exchange between 2 and 30days. The change in extent of adsorption with age could suggest increased availability of free binding sites. A follow-up study comparing exchange with oxidized and unoxidized particles suggested this increase in ligand adsorption may be due to changes in the Fe 2+ /Fe 3+ ratio on the surface as the particles aged. Copyright © 2017 Elsevier Inc. All rights reserved.
Amancha, Kiran Prakash; Balkundi, Shantanu; Lvov, Yuri; Hussain, Alamdar
2014-05-15
The present study tests the hypothesis that layer-by-layer (LbL) nanoassembly of thin polyelectrolyte films on insulin particles provides sustained release of the drug after pulmonary delivery. LbL insulin microparticles were formulated using cationic and anionic polyelectrolytes. The microparticles were characterized for particle size, particle morphology, zeta potential and in vitro release. The pharmacokinetics and pharmacodynamics of drug were assessed by measuring serum insulin and glucose levels after intrapulmonary administration in rats. Bronchoalveolar lavage (BAL) and evans blue (EB) extravasation studies were performed to investigate the cellular or biochemical changes in the lungs caused by formulation administration. The mass median aerodynamic diameter (MMAD) of the insulin microparticles was 2.7 μm. Confocal image of the formulation particles confirmed the polyelectrolyte deposition around the insulin particles. Zeta potential measurements showed that there was charge reversal after each layering. Pulmonary administered LbL insulin formulation resulted in sustained serum insulin levels and concomitant decrease in serum glucose levels. The BAL and EB extravasation studies showed that the LbL insulin formulation did not elicit significant increase in marker enzymes activities compared to control group. These results demonstrate that the sustained release of insulin could be achieved using LbL nanoassembly around the insulin particles. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Tudela, Ignacio; Bonete, Pedro; Fullana, Andres; Conesa, Juan Antonio
2011-01-01
The unreacted-core shrinking (UCS) model is employed to characterize fluid-particle reactions that are important in industry and research. An approach to understand the UCS model by numerical methods is presented, which helps the visualization of the influence of the variables that control the overall heterogeneous process. Use of this approach in…
Fabrication and Modification of Nanoporous Silicon Particles
NASA Technical Reports Server (NTRS)
Ferrari, Mauro; Liu, Xuewu
2010-01-01
Silicon-based nanoporous particles as biodegradable drug carriers are advantageous in permeation, controlled release, and targeting. The use of biodegradable nanoporous silicon and silicon dioxide, with proper surface treatments, allows sustained drug release within the target site over a period of days, or even weeks, due to selective surface coating. A variety of surface treatment protocols are available for silicon-based particles to be stabilized, functionalized, or modified as required. Coated polyethylene glycol (PEG) chains showed the effective depression of both plasma protein adsorption and cell attachment to the modified surfaces, as well as the advantage of long circulating. Porous silicon particles are micromachined by lithography. Compared to the synthesis route of the nanomaterials, the advantages include: (1) the capability to make different shapes, not only spherical particles but also square, rectangular, or ellipse cross sections, etc.; (2) the capability for very precise dimension control; (3) the capacity for porosity and pore profile control; and (4) allowance of complex surface modification. The particle patterns as small as 60 nm can be fabricated using the state-of-the-art photolithography. The pores in silicon can be fabricated by exposing the silicon in an HF/ethanol solution and then subjecting the pores to an electrical current. The size and shape of the pores inside silicon can be adjusted by the doping of the silicon, electrical current application, the composition of the electrolyte solution, and etching time. The surface of the silicon particles can be modified by many means to provide targeted delivery and on-site permanence for extended release. Multiple active agents can be co-loaded into the particles. Because the surface modification of particles can be done on wafers before the mechanical release, asymmetrical surface modification is feasible. Starting from silicon wafers, a treatment, such as KOH dipping or reactive ion etching (RIE), may be applied to make the surface rough. This helps remove the nucleation layer. A protective layer is then deposited on the wafer. The protective layer, such as silicon nitride film or photoresist film, protects the wafer from electrochemical etching in an HF-based solution. A lithography technique is applied to pattern the particles onto the protective film. The undesired area of the protective film is removed, and the protective film on the back side of the wafer is also removed. Then the pattern is exposed to HF/surfactant solution, and a larger DC electrical current is applied to the wafers for a selected time. This step removes the nucleation layer. Then a DC current is applied to generate the nanopores. Next, a large electrical current is applied to generate a release layer. The particles are mechanically suspended in the solvent and collected by filtration or centrifuge.
Christou, Konstantin; Knorr, Inga; Ihlemann, Jürgen; Wackerbarth, Hainer; Beushausen, Volker
2010-12-07
The fabrication of SERS-active substrates, which offer high enhancement factors as well as spatially homogeneous distribution of the enhancement, plays an important role in the expansion of surface-enhanced Raman scattering (SERS) spectroscopy to a powerful, quantitative, and noninvasive measurement technique for analytical applications. In this paper, a novel method for the fabrication of SERS-active substrates by laser treatment of 20, 40, and 60 nm thick gold and of 40 nm thick silver films supported on quartz glass is presented. Single 308 nm UV-laser pulses were applied to melt the thin gold and silver films. During the cooling process of the noble metal, particles were formed. The particle size and density were imaged by atomic force microscopy. By varying the fluence, the size of the particles can be controlled. The enhancement factors of the nanostructures were determined by recording self-assembled monolayers of benzenethiol. The intensity of the SERS signal from benzenethiol is correlated to the mean particle size and thus to the fluence. Enhancement factors up to 10(6) with a high reproducibility were reached. Finally we have analyzed the temperature dependence of the SERS effect by recording the intensity of benzenethiol vibrations from 300 to 120 K. The temperature dependence of the SERS effect is discussed with regard to the metal properties.
Post, Janina; van Deenen, Nicole; Fricke, Julia; Kowalski, Natalie; Wurbs, David; Schaller, Hubert; Eisenreich, Wolfgang; Huber, Claudia; Twyman, Richard M; Prüfer, Dirk; Gronover, Christian Schulze
2012-03-01
Certain Taraxacum species, such as Taraxacum koksaghyz and Taraxacum brevicorniculatum, produce large amounts of high-quality natural rubber in their latex, the milky cytoplasm of specialized cells known as laticifers. This high-molecular mass biopolymer consists mainly of poly(cis-1,4-isoprene) and is deposited in rubber particles by particle-bound enzymes that carry out the stereospecific condensation of isopentenyl diphosphate units. The polymer configuration suggests that the chain-elongating enzyme (rubber transferase; EC 2.5.1.20) is a cis-prenyltransferase (CPT). Here, we present a comprehensive analysis of transgenic T. brevicorniculatum plants in which the expression of three recently isolated CPTs known to be associated with rubber particles (TbCPT1 to -3) was heavily depleted by laticifer-specific RNA interference (RNAi). Analysis of the CPT-RNAi plants by nuclear magnetic resonance, size-exclusion chromatography, and gas chromatography-mass spectrometry indicated a significant reduction in rubber biosynthesis and a corresponding 50% increase in the levels of triterpenes and the main storage carbohydrate, inulin. Transmission electron microscopy revealed that the laticifers in CPT-RNAi plants contained fewer and smaller rubber particles than wild-type laticifers. We also observed lower activity of hydroxymethylglutaryl-coenzyme A reductase, the key enzyme in the mevalonate pathway, reflecting homeostatic control of the isopentenyl diphosphate pool. To our knowledge, this is the first in planta demonstration of latex-specific CPT activity in rubber biosynthesis.
General solution for diffusion-controlled dissolution of spherical particles. 1. Theory.
Wang, J; Flanagan, D R
1999-07-01
Three classical particle dissolution rate expressions are commonly used to interpret particle dissolution rate phenomena. Our analysis shows that an assumption used in the derivation of the traditional cube-root law may not be accurate under all conditions for diffusion-controlled particle dissolution. Mathematical analysis shows that the three classical particle dissolution rate expressions are approximate solutions to a general diffusion layer model. The cube-root law is most appropriate when particle size is much larger than the diffusion layer thickness, the two-thirds-root expression applies when the particle size is much smaller than the diffusion layer thickness. The square-root expression is intermediate between these two models. A general solution to the diffusion layer model for monodispersed spherical particles dissolution was derived for sink and nonsink conditions. Constant diffusion layer thickness was assumed in the derivation. Simulated dissolution data showed that the ratio between particle size and diffusion layer thickness (a0/h) is an important factor in controlling the shape of particle dissolution profiles. A new semiempirical general particle dissolution equation is also discussed which encompasses the three classical particle dissolution expressions. The success of the general equation in explaining limitations of traditional particle dissolution expressions demonstrates the usefulness of the general diffusion layer model.
Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles
NASA Astrophysics Data System (ADS)
Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail
2012-12-01
Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV-vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.
Miura, Hiroki; Bon, Volodymyr; Senkovska, Irena; Ehrling, Sebastian; Watanabe, Satoshi; Ohba, Masaaki; Kaskel, Stefan
2017-10-17
Controlled nucleation in a micromixer and further crystal growth were used to synthesize Ni 2 (2,6-ndc) 2 dabco (2,6-ndc - 2,6-naphthalenedicarboxylate, dabco - 1,4-diazabicyclo[2.2.2]octane), also termed DUT-8(Ni) (DUT = Dresden University of Technology), with narrow particle size distribution in a range of a few nm to several μm. The crystal size was found to significantly affect the switching characteristics, in particular the gate opening pressure in nitrogen adsorption isotherms at 77 K for this highly porous and flexible network. Below a critical size of about 500 nm, a type Ia isotherm typical of rigid MOFs is observed, while above approximately 1000 nm a pronounced gating behaviour is detected, starting at p/p 0 = 0.2. With increasing crystal size this transition gate becomes steeper indicating a more uniform distribution of activation energies within the crystal ensemble. At an intermediate size (500-1000 nm), the DUT-8(Ni) crystals close during activation but cannot be reopened by nitrogen at 77 K possibly indicating monodomain switching.
NASA Astrophysics Data System (ADS)
Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Aghazadeh, Mustafa; Ganjali, Mohammad Reza; Karimi, Meisam Sadeghpour; Norouzi, Parviz
2017-12-01
This work focuses on the application of an orthogonal array design to the optimization of the facile direct carbonization reaction for the synthesis of neodymium carbonate nanoparticles, were the product particles are prepared based on the direct precipitation of their ingredients. To optimize the method the influences of the major operating conditions on the dimensions of the neodymium carbonate particles were quantitatively evaluated through the analysis of variance (ANOVA). It was observed that the crystalls of the carbonate salt can be synthesized by controlling neodymium concentration and flow rate, as well as reactor temperature. Based on the results of ANOVA, 0.03 M, 2.5 mL min-1 and 30 °C are the optimum values for the above-mentioend parameters and controlling the parameters at these values yields nanoparticles with the sizes of about of 31 ± 2 nm. The product of this former stage was next used as the feed for a thermal decomposition procedure which yielding neodymium oxide nanoparticles. The products were studied through X-ray diffraction (XRD), SEM, TEM, FT-IR and thermal analysis techniques. In addition, the photocatalytic activity of dyspersium carbonate and dyspersium oxide nanoparticles were investigated using degradation of methyl orange (MO) under ultraviolet light.
NASA Astrophysics Data System (ADS)
Liu, Jian-li; Lu, Shi-cai; Ai, Bao-quan
2018-06-01
Due to the chirality of active particles, the transversal asymmetry can induce the the longitudinal directed transport. The transport of chiral active particles in a periodic channel is investigated in the presence of two types of the transversal asymmetry, the transverse force and the transverse rigid half-circle obstacles. For all cases, the counterclockwise and clockwise particles move to the opposite directions. For the case of the only transverse force, the chiral active particles can reverse their directions when increasing the transverse force. When the transverse rigid half-circle obstacles are introduced, the transport behavior of particles becomes more complex and multiple current reversals occur. The direction of the transport is determined by the competition between two types of the transversal asymmetry. For a given chirality, by suitably tailoring parameters, particles with different self-propulsion speed can move in different directions and can be separated.
Sacchetin, Priscila Soares Costa; Setti, Rafaela Ferreira; Vieira e Rosa, Paulo de Tarso; Moraes, Ângela Maria
2016-01-01
The aim of this study was to produce PLA (poly(lactic acid)) and PCL (polycaprolactone) oral carriers through the precipitation of the polymer solutions using supercritical CO2 as an antisolvent for the controlled release of the hydrophobic model drug 17α-methyltestosterone (MT). Such drug is a steroidal hormone used orally to develop and sustain primary and secondary male sex characteristics, e.g. for female Nile tilapia sex reversal in aquaculture. The influence of hormone, PLA and PCL concentrations on particle formation was analyzed, showing that high PCL concentrations produced particles with rougher surfaces and greater mean diameters. The incorporation efficiency of MT ranged from 20 to 51%, and its addition resulted in increases in particle mean diameter from 23 to 54 μm. Aggregation was observed for particles incorporating or not MT and high concentrations of MT led to the formation of more amorphous structures, changing the thermal behavior of the particles. The exposure of the PLA/PCL particles to pH conditions simulating gastrointestinal fish conditions showed that hormone release fraction at acidic pH ranged from 8 to 63% (over 2h), while in the basic pH the proportion released varied from 23 to 60% (over 10h), reaching levels adequate for the desired in vivo activity. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gierlus, Kelly M.; Laskina, Olga; Abernathy, Tricia L.; Grassian, Vicki H.
2012-01-01
Dicarboxylic acids, which make up a significant portion of the atmospheric organic aerosol, are emitted directly through biomass burning as well as produced through the oxidation of volatile organic compounds. Oxalic acid, the most abundant of the dicarboxylic acids, has been shown by recent field studies to be present in mineral dust aerosol particles. The presence of these internally mixed organic compounds can alter the water absorption and cloud condensation nuclei (CCN) abilities of mineral particles in the Earth's atmosphere. The University of Iowa's Multi-Analysis Aerosol Reactor System ( MAARS) was used to measure the CCN activity of internally mixed particles that were generated from a mixture of either calcite or polystyrene latex spheres (PSLs) in an aqueous solution of oxalic acid. Although PSL is not a mineral dust component, it is used here as a non-reactive, insoluble particle. CCN measurements indicate that the internally mixed oxalate/calcite particles showed nearly identical CCN activity compared to the original calcite particles whereas oxalic acid/PSL internally mixed particles showed much greater CCN activity compared to PSL particles alone. This difference is due to the reaction of calcite with oxalic acid, which produces a relatively insoluble calcium oxalate coating on the particle surface and not a soluble coating as it does on the PSL particle. Our results suggest that atmospheric processing of mineral dust aerosol through heterogeneous processes will likely depend on the mineralogy and the specific chemistry involved. Increase in the CCN activity by incorporation of oxalic acid are only expected for unreactive insoluble dust particles that form a soluble coating.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... For the purposes of monitoring for gross alpha particle activity, radium-226, radium-228, uranium, and... monitoring: Systems must conduct initial monitoring for gross alpha particle activity, radium-226, radium-228...) For gross alpha particle activity, uranium, radium-226, and radium-228 monitoring, the State may waive...
NASA Astrophysics Data System (ADS)
Horvath, J.; Moffatt, S.
1991-04-01
Ion implantation processing exposes semiconductor devices to an energetic ion beam in order to deposit dopant ions in shallow layers. In addition to this primary process, foreign materials are deposited as particles and surface films. The deposition of particles is a major cause of IC yield loss and becomes even more significant as device dimensions are decreased. Control of particle addition in a high-volume production environment requires procedures to limit beamline and endstation sources, control of particle transport, cleaning procedures and a well grounded preventative maintenance philosophy. Control of surface charge by optimization of the ion beam and electron shower conditions and measurement with a real-time charge sensor has been effective in improving the yield of NMOS and CMOS DRAMs. Control of surface voltages to a range between 0 and -20 V was correlated with good implant yield with PI9200 implanters for p + and n + source-drain implants.
Pessi, Jenni; Lassila, Ilkka; Meriläinen, Antti; Räikkönen, Heikki; Hæggström, Edward; Yliruusi, Jouko
2016-08-01
We introduce a robust, stable, and reproducible method to produce nanoparticles based on expansion of supercritical solutions using carbon dioxide as a solvent. The method, controlled expansion of supercritical solution (CESS), uses controlled mass transfer, flow, pressure reduction, and particle collection in dry ice. CESS offers control over the crystallization process as the pressure in the system is reduced according to a specific profile. Particle formation takes place before the exit nozzle, and condensation is the main mechanism for postnucleation particle growth. A 2-step gradient pressure reduction is used to prevent Mach disk formation and particle growth by coagulation. Controlled particle growth keeps the production process stable. With CESS, we produced piroxicam nanoparticles, 60 mg/h, featuring narrow size distribution (176 ± 53 nm). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Mutagenicity of particulate emissions from the M16 rifle: variation with particle size.
Palmer, W G; Andrews, A W; Mellini, D; Terra, J A; Hoffmann, F J; Hoke, S H
1994-08-01
Emissions generated by firing the M16 rifle with the propellant WC844 in a combustion chamber designed to simulate conditions of actual use were tested for mutagenic activity in the Salmonella/Ames assay. Dimethyl sulfoxide extracts of emissions collected from either the breech or muzzle end of the rifle were mutagenic in three strains of Salmonella (TA1537, TA1538, and TA98) both in the presence and absence of metabolic activation systems (S9). The extracts were negative in strains TA100 and TA102. Aerosols generated by firing the M16 rifle were fractionated according to aerodynamic diameter. Submicrometer particles were far more mutagenic than particles with aerodynamic diameters between 1 and 15 microns. The mutagens associated with the smaller particles were more active in the presence of S9, while extracts of larger particles were as active, or more active, in the absence of S9. Heavier particles, which settled rapidly out of the airstream, were not mutagenic.
Effect of storage temperature on the activity of submitochondrial particles.
Doherty, Francis G
2008-12-01
The submitochondrial particle (SMP) assay employs processed mammalian mitchondria to assess the toxicity of chemical contaminants in aqueous solutions. Particles and associated reagents are commercially available to support two individual procedures, the electron transfer (ETr) and reverse electron transfer (RET) assays. The objective of the present study was to assess the effect of storage temperature on SMP activity. One RET and one ETr assay were conducted with sodium dodecylsulfate on each of two vials of particles stored at -20 and -80 degrees C at periodic intervals over a six-month span. Results demonstrated that SMP could remain active in either assay through six months of storage at either temperature. However, there were isolated vials of particles stored at -20 degrees C that exhibited unacceptable reductions in activity for both the ETr and the RET assays that were not related to storage duration. These results were used to develop guidance in assessing the acceptability of particle activity in SMP assays.
Cullen, Laurence G; Tilston, Emma L; Mitchell, Geoff R; Collins, Chris D; Shaw, Liz J
2011-03-01
The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg g⁻¹ soil) apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVI-enhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation-reduction reactions, potential confounding effects of the test particles on assay conditions should be considered. Copyright © 2010 Elsevier Ltd. All rights reserved.
Electron beam interaction with space plasmas.
NASA Astrophysics Data System (ADS)
Krafft, C.; Bolokitin, A. S.
1999-12-01
Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification.
A three-dimensional spacecraft-charging computer code
NASA Technical Reports Server (NTRS)
Rubin, A. G.; Katz, I.; Mandell, M.; Schnuelle, G.; Steen, P.; Parks, D.; Cassidy, J.; Roche, J.
1980-01-01
A computer code is described which simulates the interaction of the space environment with a satellite at geosynchronous altitude. Employing finite elements, a three-dimensional satellite model has been constructed with more than 1000 surface cells and 15 different surface materials. Free space around the satellite is modeled by nesting grids within grids. Applications of this NASA Spacecraft Charging Analyzer Program (NASCAP) code to the study of a satellite photosheath and the differential charging of the SCATHA (satellite charging at high altitudes) satellite in eclipse and in sunlight are discussed. In order to understand detector response when the satellite is charged, the code is used to trace the trajectories of particles reaching the SCATHA detectors. Particle trajectories from positive and negative emitters on SCATHA also are traced to determine the location of returning particles, to estimate the escaping flux, and to simulate active control of satellite potentials.
Developing a new controllable lunar dust simulant: BHLD20
NASA Astrophysics Data System (ADS)
Sun, Hao; Yi, Min; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin
2017-07-01
Identifying and eliminating the negative effects of lunar dust are of great importance for future lunar exploration. Since the available lunar samples are limited, developing terrestrial lunar dust simulant becomes critical for the study of lunar dust problem. In this work, beyond the three existing lunar dust simulants: JSC-1Avf, NU-LHT-1D, and CLDS-i, we developed a new high-fidelity lunar dust simulant named as BHLD20. And we concluded a methodology that soil and dust simulants can be produced by variations in portions of the overall procedure, whereby the properties of the products can be controlled by adjusting the feedstock preparation and heating process. The key ingredients of our innovative preparation route include: (1) plagioclase, used as a major material in preparing all kinds of lunar dust simulants; (2) a muffle furnace, applied to expediently enrich the glass phase in feedstock, with the production of some composite particles; (3) a one-step sand-milling technique, employed for mass pulverization without wasting feedstock; and (4) a particle dispersant, utilized to prevent the agglomeration in lunar dust simulant and retain the real particle size. Research activities in the development of BHLD20 can help solve the lunar dust problem.
Anomalous Growth Rate of Ag Nanocrystals Revealed by in situ STEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Mingyuan; Lu, Ming; Chu, Yong
In situ microscopy of colloidal nanocrystal growth offers a unique opportunity to acquire direct and straightforward data for assessing classical growth models. For this study, we observe the growth trajectories of individual Ag nanoparticles in solution using in situ scanning transmission electron microscopy. For the first time, we provide experimental evidence of growth rates of Ag nanoparticles in the presence of Pt in solution that are significantly faster than predicted by Lifshitz-Slyozov-Wagner theory. We attribute these observed anomalous growth rates to the synergistic effects of the catalytic properties of Pt and the electron beam itself. Transiently reduced Pt atoms servemore » as active sites for Ag ions to grow, thereby playing a key role in controlling the growth kinetics. Electron beam illumination greatly increases the local concentration of free radicals, thereby strongly influencing particle growth rate and the resulting particle morphology. Through a systematic investigation, we demonstrate the feasibility of utilizing these synergistic effects for controlling the growth rates and particle morphologies at the nanoscale. Our findings not only expand the current scope of crystal growth theory, but may also lead to a broader scientific application of nanocrystal synthesis.« less
Anomalous Growth Rate of Ag Nanocrystals Revealed by in situ STEM
Ge, Mingyuan; Lu, Ming; Chu, Yong; ...
2017-11-27
In situ microscopy of colloidal nanocrystal growth offers a unique opportunity to acquire direct and straightforward data for assessing classical growth models. For this study, we observe the growth trajectories of individual Ag nanoparticles in solution using in situ scanning transmission electron microscopy. For the first time, we provide experimental evidence of growth rates of Ag nanoparticles in the presence of Pt in solution that are significantly faster than predicted by Lifshitz-Slyozov-Wagner theory. We attribute these observed anomalous growth rates to the synergistic effects of the catalytic properties of Pt and the electron beam itself. Transiently reduced Pt atoms servemore » as active sites for Ag ions to grow, thereby playing a key role in controlling the growth kinetics. Electron beam illumination greatly increases the local concentration of free radicals, thereby strongly influencing particle growth rate and the resulting particle morphology. Through a systematic investigation, we demonstrate the feasibility of utilizing these synergistic effects for controlling the growth rates and particle morphologies at the nanoscale. Our findings not only expand the current scope of crystal growth theory, but may also lead to a broader scientific application of nanocrystal synthesis.« less
Pasold, Juliane; Markhoff, Jana; Tillmann, Jenny; Krogull, Martin; Pisowocki, Phillip; Bader, Rainer
2017-09-01
Within the last ten years of biomedical implants, the focus is increasingly on bioceramics, specifically on zirconia (ZrO 2 ). Hence, we analyzed the impact of ZrO 2 particles in comparison to titanium particles on mature human osteoclasts (OCs) as little is known about the direct effect of wear particles on mature OCs and their role in the osteolytic process during aseptic endoprosthesis loosening. Changes in cell morphology and functionality of OCs incubated with particles in different concentrations were investigated in vitro. OCs tend to be enlarged after three days of cultivation with both types of particles, especially with high concentrations of ZrO 2 , suggesting increased cell fusion. Further, we identified significantly increased expression of OC specific and bone matrix related genes: VNR, RANK, TRAP, and CTSK pointing on a direct stimulatory particle effect on the functionality of mature OCs. In completion, we quantified the bone resorption activity of particle treated mature OCs but could not detect a significant difference in bone resorption compared to OCs cultivated without particles. However, we could identify significantly higher gene expression of MMP-1 in particle treated OCs compared to untreated control OCs after three days of incubation. We also detected an impaired production of the tissue inhibitor of metalloproteinase, especially for OCs treated with high ZrO 2 concentrations. In conclusion, our in vitro data show that abrasion particles could have a direct influence on mature OCs and therefore could promote increased OC-mediated bone resorption during aseptic loosening of total joint replacements. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2608-2615, 2017. © 2017 Wiley Periodicals, Inc.
Light-activated self-propelled colloids
Palacci, J.; Sacanna, S.; Kim, S.-H.; Yi, G.-R.; Pine, D. J.; Chaikin, P. M.
2014-01-01
Light-activated self-propelled colloids are synthesized and their active motion is studied using optical microscopy. We propose a versatile route using different photoactive materials, and demonstrate a multiwavelength activation and propulsion. Thanks to the photoelectrochemical properties of two semiconductor materials (α-Fe2O3 and TiO2), a light with an energy higher than the bandgap triggers the reaction of decomposition of hydrogen peroxide and produces a chemical cloud around the particle. It induces a phoretic attraction with neighbouring colloids as well as an osmotic self-propulsion of the particle on the substrate. We use these mechanisms to form colloidal cargos as well as self-propelled particles where the light-activated component is embedded into a dielectric sphere. The particles are self-propelled along a direction otherwise randomized by thermal fluctuations, and exhibit a persistent random walk. For sufficient surface density, the particles spontaneously form ‘living crystals’ which are mobile, break apart and reform. Steering the particle with an external magnetic field, we show that the formation of the dense phase results from the collisions heads-on of the particles. This effect is intrinsically non-equilibrium and a novel principle of organization for systems without detailed balance. Engineering families of particles self-propelled by different wavelength demonstrate a good understanding of both the physics and the chemistry behind the system and points to a general route for designing new families of self-propelled particles. PMID:25332383
Li, Gan; Li, Qi; Lin, Li-Jun; Duan, Xin; Zhang, Xi-Qi
2012-03-01
To observe the effect of a slow-release recombinant human bone morphogenetic protein-2 (rhBMP-2) formulation on the expressions of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) in a murine air pouch model of bone implantation. A cranial bone allograft was implanted in the air pouch induced on the back of the recipients. The rat models were then randomized into 5 groups, including a blank control group, chromium particle group, and 3 rhBMP-2 groups receiving 50, 100 or 200 µg/L slow-release rhBMP-2 in addition to chromium particles. Three weeks later, the expressions of RANKL and OPG in the air pouch was detected using Western blotting and RT-PCR, and the positively stained area for osteoclasts in the bone graft was determined with TRAP staining for drug effect assessment. RANKL and OPG expressions were found in the air pouches in all the 5 groups. RANKL and OPG protein and mRNA expressions, RANKL/OPG ratio and osteoclast staining area in the bone graft were the highest in chromium particle group (P<0.05), but were significantly decreased by treatment with the slow-release rhBMP-2 formulation (P<0.05); the measurements showed no significant differences between the blank control group and 200 µg/L rhBMP-2 group (P>0.05). Chromium particles can cause osteolysis by increasing the RANKL/OPG ratio in rats, and intervention with slow-release rhBMP-2 can significantly promote bone formation and suppress bone resorption by decreasing RANKL/OPG ratio.
Meroño, Tomás; Dauteuille, Carolane; Tetzlaff, Walter; Martín, Maximiliano; Botta, Eliana; Lhomme, Marie; Saez, María Soledad; Sorroche, Patricia; Boero, Laura; Arbelbide, Jorge; Chapman, M John; Kontush, Anatol; Brites, Fernando
2017-04-01
Iron deficiency anemia (IDA) affects around 20-30% of adults worldwide. An association between IDA and cardiovascular disease (CVD) has been reported. Oxidative stress, inflammation and low concentration of high-density lipoproteins (HDL) were implicated on endothelial dysfunction and CVD in IDA. We studied the effects of iron deficiency and of an intravenous iron administration on oxidative stress and HDL characteristics in IDA women. Two studies in IDA women are presented: a case-control study, including 18 patients and 18 age-matched healthy women, and a follow-up study 72hr after the administration of intravenous iron (n = 16). Lipids, malondialdehyde, cholesteryl ester transfer protein (CETP), paraoxonase-1 (PON-1) and HDL chemical composition and functionality (cholesterol efflux and antioxidative activity) were measured. Cell cholesterol efflux from iron-deficient macrophages to a reference HDL was also evaluated. IDA patients showed higher triglycerides and CETP activity and lower HDL-C than controls (all p < 0.001). HDL particles from IDA patients showed higher triglyceride content (+30%,p < 0.05) and lower antioxidative capacity (-23%,p < 0.05). Although HDL-mediated cholesterol efflux was similar between the patients and controls, iron deficiency provoked a significant reduction in macrophage cholesterol efflux (-25%,p < 0.05). Arylesterase activity of PON-1 was significantly lower in IDA patients than controls (-16%,p < 0.05). The intravenous administration of iron was associated with a decrease in malondialdehyde levels and an increase in arylesterase activity of PON-1 (-22% and +18%, respectively, p < 0.05). IDA is associated with oxidative stress and functionally deficient HDL particles. It remains to be determined if such alterations suffice to impair endothelial function in IDA. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, R. K.; Kim, W.-S.; Ollinger, M.; Craciun, V.; Coowantwong, I.; Hochhaus, G.; Koshizaki, N.
2002-09-01
There is an urgent need to develop controlled drug release systems for the delivery of drugs via the pulmonary route. A key issue in pulmonary dry delivery systems is to reduce the amount of biodegradable polymers that are added to control the drug release. We have synthesized nanofunctionalized drug particles using the pulsed laser deposition on particles (PLDP) (e.g. budesonide) in an effort to control the architecture and thickness of a nanoscale polymer coating on the drug particles. In vitro studies indicated that the dry half-life release for budesonide can be enhanced from 1.2 to over 60 min by a nanoscale coating on the drug particle. Extensive studies have been conducted to characterize the bonding and composition of the polymer film deposited on drug particles.